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We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own
frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due
to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to
find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine
the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of
qubits coupled to a common bath.
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The coherence of a quantum system is limited by the
strength and nature of its coupling to the environment. Often,
an environment consisting of many degrees of freedom can
be treated as a source of noise that subjects the system to
random disturbances [1]. A central theme in quantum
information science is the preparation and manipulation of
quantum states in which such disturbance is minimal [2,3].
The usual framework for the theoretical analysis of the

open quantum systems described above is the quantum
master equation (QME) for the system’s density matrix ρ.
Assuming Markovian dynamics, this may be written in
Lindblad form [1]:

ρ̇ ¼ −i½H; ρ� þ
X
α

�
LαρL

†
α −

1

2
L†
αLαρ −

1

2
ρL†

αLα

�
; ð1Þ

where H is the system Hamiltonian, Lα are known as the
Lindblad operators, and we set ℏ ¼ 1.
Solving the master equation exactly for a large system is,

in general, impossible. However, as with pure unitary
dynamics described by the Schrödinger equation, we
may ask whether there are examples of exact solutions
that are nontrivial, physically motivated, and valid for a
system of arbitrary size. There is a long history of master
equations of classical stochastic processes being solved by
methods developed for exactly solvable quantum models
[4]. Surprisingly, very few examples of integrable QMEs—
allowing for a complete determination of the spectrum of
decay modes—may be found in the literature [5–8].
In this Letter, we solve amodel ofN spins described by [9]

H ¼
XN
j¼1

½Ωþ ωj�szj;

Lz ¼
ffiffiffiffiffi
g0

p X
j

szj; L� ¼ ffiffiffiffiffiffi
g�

p X
j

s�j : ð2Þ

This model describes the precession of the individual spins at
frequencies Ωþ ωi, which could represent unequal level
splittings in a system of qubits, for example. The Lα describe
correlated coupling to the environment: Lz accounts for pure
dephasing, while L� describe the excitation and decay of the
spins. The three couplings g0, g� depend on the spectral
density of the environment at frequencies 0, �Ω. Detailed
balance for an environment at temperature T implies
gþ/g− ¼ e−Ω/kBT . We solve the model Eq. (2) exactly in
the high-temperature limit when gþ ¼ g−. This situation,
describing incoherent driving, arises in many situations. As a
representative sample, we cite superconducting qubits [10],
photosynthetic light-harvesting complexes [11–13], and ion
traps [14]. In a Rabi driven system, an infinite-temperature
bath can arise as an effective description of a zero-temperature
bath describing only spontaneous emission [15].
When ωj ¼ 0, the components of the density matrix

describing isotropic spin correlations are stationary, corre-
sponding to degenerate zero eigenvalues of the Liouvillian.
The exact solution allows us to calculate the spectrum of
n-spin correlations when ωj ≠ 0 for arbitrary n, a result
which can be obtained for only moderate n by exact
diagonalization (see Fig. 1). When the ωj are small, the
decay rates have parametric form ω2

j /gþ, showing that
increasing the noise reduces the decay rate, a manifestation
of the quantum Zeno effect [16]. Although it is natural to
interpret this in terms of second-order degenerate pertur-
bation theory, it is not clear to us how to actually perform
such a calculation. Indeed, the first step—to resolve the
degeneracy at ωj ¼ 0 into an appropriate eigenbasis—is
most effectively accomplished by the exact solution, with
its many integrals of motion besides the Liouvillian.
Solving Eq. (2) is possible because of the correlated

coupling to the environment. Models of this type may be
traced back to Dicke’s paper [17,18] on the spontaneous
emission of atoms confined to a region smaller than the

PHYSICAL REVIEW LETTERS 120, 090401 (2018)

0031-9007=18=120(9)=090401(5) 090401-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.090401&domain=pdf&date_stamp=2018-02-27
https://doi.org/10.1103/PhysRevLett.120.090401
https://doi.org/10.1103/PhysRevLett.120.090401
https://doi.org/10.1103/PhysRevLett.120.090401
https://doi.org/10.1103/PhysRevLett.120.090401


wavelength of the emitted light and have appeared in many
contexts since [9]. Dicke identified superradiant and sub-
radiant states of the atomic ensemble, corresponding to
states of maximum and minimum total spin. For ωj ¼ 0,
the QME may be written purely in terms of the total spin,
and the solution was found long ago [19–22]. For ωj ≠ 0,
the total spin does not commute with the Hamiltonian. Our
solution proceeds via a mapping to a non-Hermitian version
of the Richardson-Gaudin model [23].
Density matrix and correlation functions.—For s ¼ 1/2,

the density matrix for a single spin may be written

ρð1Þ ¼ 1

2
1þ c · s; jcj ≤ 1; ð3Þ

with jcj ¼ 1 corresponding to pure states. More generally, a
spin-s density matrix can be decomposed into a convex

combination of spherical tensors TðkÞ
q (k ¼ 0; 1;…; 2s and

q ¼ −k;−kþ 1;…; k) [24].
For N spins (s ¼ 1/2), we may write

ρðNÞ ¼ 1

2N

X
fajg

ca1…aN s
a1
1 …saNN ; ð4Þ

where aj ¼ 0; x; y; z, with s0 ¼ 1. The coefficients ca1…aN
may be identified with the correlation functions of the spins

ca1…aN ¼ tr½ρðNÞsa11 …saNN �: ð5Þ
Note that c0…0 ¼ 1 is required by normalization of the
density matrix. The reduced density matrix for any sub-
system of spins is obtained by setting to zero the index for
all spins in its complement.

Mapping to the Richardson-Gaudin model.—The equa-
tion of motion of ca1…aN may be found by substituting
Eq. (4) into the QME. First, we note that for gþ ¼ g− we
may write the Lindblad operators as

Lx;y ¼ ffiffiffiffiffiffi
gþ

p X
j

sx;yj ; Lz ¼
ffiffiffiffiffi
g0

p X
j

szj: ð6Þ

Considering now the effect of one of the Lα and invoking
the cyclic invariance of the trace, we observe

X
j;k

tr

�
sαkρs

α
j ð…Þ− 1

2
fsαksαj ;ρgð…Þ

�

¼ 1

2

X
j;k

trfρ½sαj ð…Þsαk þ sαkð…Þsαj−ð…Þsαj sαk − sαj s
α
kð…Þ�g:

ð7Þ

We also note the following identity:

sαj s
aj
j s

ak
k sαk þ sαks

aj
j s

ak
k sαj − s

aj
j s

ak
k sαj s

α
k − sαj s

α
ks

aj
j s

ak
k

¼ −½sαj ; sajj �½sαk; sakk �
¼

X
b;c

εαajbεαakcs
b
j s

c
k ¼ ðTαsjÞajðTαskÞak ; ð8Þ

where ðTαÞbc ¼ −ϵabc are the generators of soð3Þ in the
adjoint representation. Since suð2Þ ≅ soð3Þ, they can
alternatively be thought of as generators of suð2Þ in the
adjoint representation.
If we switch to Hermitian Lie algebra generators, we can

introduce spin-1 operators Sa
j ¼ iTa

j . After combining
Eqs. (1), (7), and (8), we obtain the equation of motion
for the correlator C [with tensor components defined by
Eq. (5)]:

∂tC ¼ LC; ð9Þ

where the Liouvillian superoperator L takes the form of the
non-Hermitian spin-1 Richardson-Gaudin model:

L ¼ i
Xn
j¼1

½Ωþ ωj�Sz
j − gþ

Xn
j;k¼1

ðSx
jS

x
k þ Sy

jS
y
kÞ

− g0
Xn
j;k¼1

Sz
jS

z
k: ð10Þ

Here n is the number of nonzero indices of C, which
describe the reduced density matrix of the corresponding
spins. The same model, involving a system of spins
with Sj ¼ 1;…; 2s, would arise for spin-s physical degrees
of freedom.
Equivalence to stochastic evolution.—We can obtain the

same result in a more robust and transparent fashion by

FIG. 1. Spectrum of the Liouvillian [Eq. (10)] for n ¼ 6 spin
correlations for the case of Ω ¼ 1, gþ ¼ 800, g0 ¼ 0, and ωi ∼
Unið−0.2; 0.2Þ obtained by exact diagonalization. The inset is a
magnified view of a split multiplet of 15 states near zero. The
spectrum is symmetric with respect to the real axis due to the PT
symmetry of the Liouvillian.
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regarding the high-temperature limit (gþ ¼ g−) as a prob-
lem of stochastic evolution due to classical noise [25–31].
Consider N spins precessing in a common stochastic

field, so that their evolution is governed by the Hamiltonian
Hη ¼

P
N
j¼1 hjðtÞ, where

hjðtÞ ¼ ηxðtÞsxj þ ηyðtÞsyj þ ½Ωþ ωj þ ηzðtÞ�szj; ð11Þ

and ηjðtÞ describe Gaussian white noises with
covariances E½ηzðtÞηzðt0Þ�¼g0δðt−t0Þ and E½ηxðtÞηxðt0Þ�¼
E½ηyðtÞηyðt0Þ�¼gþδðt−t0Þ. The corresponding infinitesimal
stochastic unitary evolution Uðtþ dt; tÞ ¼ e−idHt is gen-
erated by

dHt ¼
X
j

ðΩþ ωjÞszjdtþ
X
j;α

ffiffiffiffiffi
gα

p
sαj dη

α
t ; ð12Þ

from which it follows by Itô’s lemma that the density
matrix ϱt satisfies the Itô stochastic differential equation

dϱt ¼−
�
i½H;ϱt� þ

1

2

X
α

½Lα; ½Lα;ϱt��
�
dt− i

X
α

½Lα;ϱt�dηαt :

ð13Þ

After averaging, ρ ¼ Eη½ϱ� can be seen to satisfy the QME
described by Eq. (2). However, we could alternatively
consider the evolution of the correlation tensorC, which for
nonstochastic ηj would be given by Eq. (9) with

iLns ¼
Xn
j¼1

ηxðtÞSx
j þ ηyðtÞSy

j þ ½Ωþ ωj þ ηzðtÞ�Sz
j: ð14Þ

Stochastic ηj therefore gives rise to Itô terms describing the
spin-spin interaction in Eq. (10).
Exact solution.—As a prelude to the exact solution of

Eq. (10), we first consider the much simpler case of ωj ¼ 0

(and g0 ¼ 0), such that the model reduces to

L ¼ iΩSz
tot − g½S2

tot − ðSz
totÞ2�; ð15Þ

from which the spectrum can be obtained immediately. It
consists of degenerate multiplets for given values of (Stot,
Sz
tot), with the multiplets of fixed Stot lying on parabolas. In

particular, states with Stot ¼ 0 have exactly zero eigen-
value. For these states, the tensor ca1…aN is isotropic. The
simplest example is provided by N ¼ 2, where the most
general rotationally invariant density matrix (two-qubit
Werner state) is

ρð2Þc ¼ 1

4
1þ c•s1 · s2; −1 ≤ c• ≤ 1/3; ð16Þ

corresponding to c00 ¼ 1, and ca1a2 ¼ 4c•δa1;a2 for
a1;2 ¼ x, y, z. Note that c• ¼ −1 corresponds to a pure

singlet state, but for larger N one cannot express the
isotropic tensors only in terms of singlet states. By virtue
of the Choi isomorphism, the density matrix can be
regarded as an element of the tensor product space
H ⊗ H, where H ¼ ðC2Þ⊗N is the Hilbert space of N
spins. Thus, the isotropic tensors with up to N indices are
the Stot ¼ 0 states formed from 2N spin-1/2’s, which
number ½1/ðN þ 1Þ�ð2NN Þ (the Catalan numbers CN). The
number of isotropic tensors of fixed rank n is the number of
Stot ¼ 0 states that can be formed from n spin-1’s. These
are the Riordan numbers Rn ¼

P
n
m¼0ð−1Þn−mðnmÞCm

[32–34].
Turning to nonzero ωi, the multiplets can be seen to split

as shown in Fig. 1. To find the decay rate, one must identify
the state whose eigenvalue has the least negative real part
(which we shall term the dominant eigenvalue). Therefore,
for small ωi ðjωij ≪ jΩjÞ at least, the dominant eigenvalue
will lie within the Stot ¼ 0 (i.e., singlet) subspace. The
splitting of the singlet multiplet in the real direction can be
thought of as a second-order perturbative correction of the
form ω2

i /gþ. However, for this problem we are in fact
afforded a more facile route via the exact solution, to which
we now turn.
The exact eigenstates of Eq. (10) take the Bethe form

[35]

jμ1…μmi ¼
Ym
k¼1

�Xn
j¼1

Sþ
j

μk − 1
2
iωj

�
jχ−i; ð17Þ

where Sz
tot ¼ m − n, the pseudovacuum jχ−i is the lowest

weight state j−1i⊗n, and the Bethe roots fμig satisfy the
Bethe ansatz equations

1

gþ
þ
Xn
k¼1

1

μj − 1
2
iωk

−
Xm
k≠j

1

μj − μk
¼ 0: ð18Þ

The eigenvalue λðμ⃗Þ of a Bethe state is given by

λðμ⃗Þ ¼ 2
Xm
j¼1

μj − i
Xn
j¼1

ωj; ð19Þ

where, since Sz
tot is conserved, we continue to set g0 ¼ 0

without loss of generality.
Equations (18) can be interpreted in terms of two-

dimensional classical electrostatics [23]: If the ωi and μi
correspond to the positions of fixed and free point charges,
respectively, and 1/gþ represents a uniform electric field,
then Eq. (18) describes the equilibrium condition. The
equilibrium configurations describe saddle points of the
energy (Earnshaw’s theorem), and so finding all solutions
for large n is a difficult task.
Naive numerical root finding on the Bethe equations for

random ωj configurations tends to yield solutions in which
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the Bethe roots condense onto curves as shown in Fig. 2.
These are the descendants of the states of maximum Stot
(when ωi ¼ 0), which though of interest in the context of
superradiance do not directly concern us here. We note in
passing that the analogue of superradiance that appears here
is that the eigenvalues of these states (for fixed gþ) scale
quadratically with n, and so the correlations for states of
Stot ∼ n decay at a rate that is Oðn2Þ. This is to be
contrasted with the OðnÞ decay rate of the singlet corre-
lations, which we shall discuss next.
We were able to find the Bethe roots for the dominant

state in the case of uniformly spaced ωi: They form the
string state shown in the inset in Fig. 3. In the n → ∞ limit,
it is possible to evaluate the infinite summations in Eq. (18)
exactly. If the spacing of the fixed charges is iΔy and the
free charges on either side of the imaginary axis have real
parts Δþ and −Δ−, we are left with

2π

Δy
tanh

�
2πΔþ
Δy

�
¼ π

Δy
coth

�
πðΔþ þ Δ−Þ

Δy

�
−

1

gþ
;

2π

Δy
tanh

�
2πΔ−

Δy

�
¼ π

Δy
coth

�
πðΔþ þ Δ−Þ

Δy

�
þ 1

gþ
: ð20Þ

Solving these two equations numerically for Δ� enables us
to find the Liouvillian eigenvalue of the string state.
In Fig. 3, we show convergence of the finite n solution of

the Bethe equations to this large n result and also verify
that, for small n, the string solution coincides with
the dominant eigenvalue found by exact diagonalization.

The observed linear dependence of the dominant eigen-
value on 1/gþ is consistent with the aforementioned ω2

i /gþ
splitting predicted by perturbation theory.
A further interesting consequence of the integrability of

our model is the absence of level repulsion as the spectrum
varies with varying ωi (see Fig. 4), leading to Poissonian
level statistics. We conjecture that choosing ωi to be
independent and identically distributed will therefore lead
to the relaxation rate (magnitude of the real part of the
dominant eigenvalue) λ0 ðλ0 ≥ 0Þ having the Weibull
distribution α

β ðλ0β Þα−1e−ðλ0/βÞ
α
for some α and β [36].

Conclusions and outlook.—We have computed the exact
relaxation rate of correlations in a model of spins

FIG. 2. Bethe root distribution corresponding to the Sz
tot ¼ 0

eigenstate descended from the maximal Stot state of the ωi ¼ 0
model (n ¼ 20). The curves of different color correspond to
different values of 1/gþ (increasing from left to right), and the ωi
are shown as red circles along the imaginary axis. One can see
that Stot is maximum by noting that all μi go to infinity as 1/gþ
vanishes, and so from Eq. (17) the state is derived from jχ−i
simply by raising Sz

tot to zero.

FIG. 3. Comparison of the decay rate (dominant Liouvillian
eigenvalue) of n-spin correlations for Ω ¼ −ðnþ 3Þ and ωj ¼
jΔy (where Δy ¼ 2) evaluated by (i) exact diagonalization for
n ¼ 8, (ii) exact solution at n ¼ 8 and 60, and (iii) exact solution
for n → ∞. The inset shows the string state formed by the Bethe
roots (blue squares), found by numerical solution of Eq. (18) for
n ¼ 20 and gþ → ∞; as in Fig. 2, the ωi are represented by red
circles. The effect of finite gþ is to push the Bethe roots in the
negative real direction.

FIG. 4. Typical motion of the singlet eigenvalues as the ωi are
smoothly translated (parameterized by Δω), revealing the pres-
ence of level crossings.
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precessing at different frequencies and coupled to a
common noise source by exploiting a mapping to an
exactly solvable model in the high-temperature limit.
Our solution can be used to evaluate the effect of inho-
mogeneous splittings on a system of qubits coupled to a
common bath.
The derivation of the spin-spin interaction in (10) may be

generalized to the case of noise with arbitrary correlations
between different spins j and k, leading to a coupling gij
that could define an arbitrary quadratic spin-spin interac-
tion. In general, the dominant eigenvalue of such an
interaction will be nonzero and negative—a spin model
will have a finite positive ground state energy—whereas,
for the infinite-range coupling we have considered, a
nonzero dominant eigenvalue arises because of the ωi.
Nevertheless, it would be interesting to explore other
possibilities, e.g., integrable 1D spin chains.
What happens at finite temperature when gþ ≠ g−—a

situation describing relaxation as well as classical noise?
The Lindblad operators vanish on any state jΨi satisfyingP

jsjjΨi ¼ 0, and for ωi ¼ 0 these form a decoherence-
free subspace for N even of dimension CN/2, for any g�
[2,3]. Density matrices formed from these states are a
subset of the isotropic density matrices considered earlier.
As in that case, ωj ≠ 0 will cause decoherence of this
subspace. Unfortunately, we have no reason to believe that
the model remains integrable in the more general case, so
finding an analytical description of the relaxation of n-spin
correlations at finite temperature remains an open problem.
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