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Abstract 
In reinforced concrete structures without transverse reinforcement, the shear resistance relies on 
different internal resisting mechanisms and their interaction. The dependence of the overall load-
bearing capacity upon different geometrical and mechanical parameters is complex. There is no 
unified theory that is universally accepted and certain aspects are still subject to scientific debate. 
The lack of agreement between theories has led to the development of different formulations and 
design provisions. The results of predictive models can vary significantly. In some instances, the 
limited accuracy can lead to safety risks. In other cases, it can lead to overly conservative design 
with increased economic and environmental costs. In this study on the shear resistance of 
reinforced concrete beams without transverse reinforcement, a comparison was carried out 
between analytical and experimental results. The data from laboratory tests were compared with 
the predictions from different formulations including those from the ACI 318, Eurocode 2, Simplified 
Modified Compression Field Theory, simplified Critical Shear Crack Theory, and Strut-and-Tie 
method. The findings of this study contribute to the development of safer and more sustainable 
infrastructure.  

Keywords: Arch; compression; crack; tooth; optimisation; strut. 
 

1 Introduction 
The efficiency of our infrastructure network 
depends on the accuracy and precision of the 
models that are used to estimate its performance. 
Where the load bearing resistance can be predicted 
adequately, design and assessment can lead to 
structures that are fully utilised and safe. In cases 
where predictive models are unable to give 
satisfactory predictions, decisions must be made 
on the conservative side, increasing the cost and 
environmental footprint of infrastructure. 
Conversely, in rare cases where the level of 
conservatism is not sufficient, structural collapses 
can occur with serious societal consequences. 
Although structural failures are to be prevented, 
the type of failure associated with each limit state 

is a critical aspect that affects design and 
assessment decisions. Structures are typically 
designed to behave – and only theoretically fail – in 
a safe manner. This means that the attainment of 
the ultimate resistance of a structure should occur 
gradually, with clear signs of distress and visible 
deformations. Nevertheless, there are instances 
where failures can occur suddenly, without prior 
indication that a structure is in a critical state. This 
is typically the case of brittle failures. These 
considerations can help identify structural aspects 
that constitute a priority for the industry. The 
‘riddle of shear failure’ is, among others, a critical 
example [1]. 

The behaviour of reinforced concrete structures 
subjected to shear is notoriously complex and 
depends on numerous factors. It is commonly 
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accepted that the presence of transverse 
reinforcement fundamentally changes the shear 
behaviour of reinforced concrete. Structures with 
or without shear reinforcement can therefore be 
studied separately [1-2]. The latter case typically 
leads to more brittle failures. Common structural 
elements of this type include deep transfer 
elements, flat slabs, cut-and-cover tunnels and 
foundation elements [2]. The present study 
focusses on the shear behaviour of reinforced 
concrete beams without transverse reinforcement. 

Building upon the early design approaches by Ritter 
[3] and Morsch [4], Kani [1] developed the basis for 
one of the first rational theories to describe the 
shear behaviour of reinforced concrete structures 
without transverse reinforcement. As the cracking 
pattern leads to the development of a comb-like 
structure, he identified two internal resisting 
mechanisms: the beam action, reliant on the 
resistance of the vertical concrete ‘teeth’, and the 
arch action, based on the residual resistance of a 
flow of inclined compressive stresses directed 
towards the supports, shaped like an internal arch. 
The agreement of theoretical considerations and 
experimental evidence confirmed that, among 
other parameters, the shear behaviour of beam 
elements depends heavily on the ratio between the 
shear span and the effective depth of the element. 
This dependence led to the development of the so 
called Kani’s valley. This design space indicates that 
certain configurations of span and longitudinal 
reinforcement are more vulnerable to premature 
shear failure and are characterised by a more 
severe reduction in strength. These considerations 
are of fundamental importance when investigating 
shear in reinforced concrete and are the basis for 
the investigation presented in this paper. 

The behaviour of reinforced concrete structures 
without shear reinforcement that are shear-critical 
is complex. Predicting their resistance with 
accuracy and precision is challenging. Although 
significant research efforts have been devoted over 
the last decades to the development of a rational 
and unified theory, there is still disagreement on 
some of the fundamental aspects that underpin 
existing theories [5-7]. This lack of consensus led to 
different approaches, models and formulations. 
The predictions can vary significantly, up to one 
order of magnitude in extreme cases [7]. 

Comparing experimental evidence with existing 
analytical models, their assumptions, formulations 
and results, can help identify areas within the 
design space where there are knowledge gaps or 
further improvement is necessary. Enhanced 
predictions can ultimately reduce the economic, 
environmental and societal costs associated with 
the uncertainty of existing models.  

2 Predictive models 
Several predictive models are available in the 
literature. Some of the existing approaches have 
similarities and can be grouped into categories, 
which are schematically shown in Fig. 1. 

 
Figure 1. Different types of predictive models for 
reinforced concrete in shear: (a) Smeared crack; 

(b) Strut-and-Tie; (d) Discrete crack. 

Design codes typically adopt a sectional approach, 
attributing a nominal shear resistance to the cross 
section of the element. Other models treat steel 
reinforced concrete as a continuum with different 
equivalent properties before and after cracking. 
This is done vie the concept of smeared cracking, 
which allows for the properties of the cracked 
concrete to be averaged. Other theories rely on 
the definition of an internal resisting load-path 
that is in equilibrium with the external forces and 
does not violate yield criteria. Such configurations 
are meant to represent an ultimate state of the 
structure, and reduction factors are applied on the 
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material strength to take into account the 
detrimental effects of concrete cracking. Another 
class of theories focusses on the state of the 
structure after distributed cracking has localised, 
and failure is associated with the development of 
a single critical shear crack. For the purposes of 
this paper, only a few models and their 
formulations are recalled and compared in the 
following sections. 

2.1.1 ACI sectional design 

The American Concrete Institute (ACI) Building 
Code [8] includes a sectional shear design 
approach. An empirical equation for shear design 
was derived, corresponding to a lower threshold 
of the dataset from a large number of test results. 
The formulation for the concrete contribution 𝑉𝑉𝑐𝑐 
to the shear resistance is given by: 

𝑉𝑉𝑐𝑐 = 0.17𝛷𝛷𝑐𝑐√𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 (1) 

where 𝑓𝑓′𝑐𝑐 is the concrete compressive strength in 
MPa, 𝑏𝑏𝑤𝑤 is the effective width of the cross-section 
and 𝑑𝑑 is its effective depth. Disregarding the initial 
empirical coefficient and the safety factor 𝛷𝛷𝑐𝑐, it 
can be noted that the resistance is associated with 
a nominal shear stress, which is a function of the 
square root of the concrete compressive strength. 
The formulation is of immediate applicability for 
design thanks to its simplicity, but does not take 
into account the dependence on any material 
parameter other than the concrete strength. 

2.1.2 Eurocode 2 sectional design 

In the Eurocode 2 [9], the shear resistance of a 
member without transverse reinforcement can be 
calculated based on a sectional design approach 
with the following formula: 
 

𝑉𝑉𝑅𝑅𝑅𝑅,𝑐𝑐 = 𝐶𝐶𝑅𝑅𝑅𝑅,𝑐𝑐𝑘𝑘(100𝜌𝜌𝑓𝑓𝑐𝑐𝑐𝑐)1/3𝑏𝑏𝑤𝑤𝑑𝑑
≥ 0.035𝑘𝑘3/2𝑓𝑓𝑐𝑐𝑐𝑐

1/2 
(2) 

 

𝐶𝐶𝑅𝑅𝑅𝑅,𝑐𝑐 = 0.18
𝛾𝛾𝑐𝑐

 (3) 

 
𝑘𝑘 = 1 + √200/𝑑𝑑 ≤ 2.0 (4) 

 
𝜌𝜌 = 𝐴𝐴𝑠𝑠𝑠𝑠/𝑏𝑏𝑤𝑤𝑑𝑑 ≤ 0.02 (5) 

where 𝐶𝐶𝑅𝑅𝑅𝑅,𝑐𝑐 is an empirical coefficient with 
recommended values, 𝑘𝑘 is a factor that takes into 

account size effects and a reduction in resistance 
as the structural depth increases,  𝑓𝑓𝑐𝑐𝑐𝑐  is the 
characteristic concrete cylinder strength and 𝜌𝜌 =
𝐴𝐴𝑠𝑠/𝑏𝑏𝑑𝑑 is the longitudinal reinforcement ratio. An 
increase in resistance for higher reinforcement 
ratios is also taken into account. 

2.1.3 Simplified Modified Compression Field 
Theory 

The Modified Compression Field Theory (MCFT) 
[10] was developed based on tests on membrane 
concrete elements, considering concrete as a 
continuum even after cracking, but with different 
properties. It is therefore a theory of general 
applicability, and results on beam elements were 
used to validate its formulations, rather than 
calibrate them. It can however be computationally 
onerous and a Simplified Modified Compression 
Field Theory (SMCFT) [11] was developed for 
implementation in design codes, providing a 
sectional approach to shear design of more direct 
applicability. The calculations can be further 
simplified for elements under certain stress 
conditions, leading to the following formulation 
for elements without shear reinforcement: 

𝑣𝑣𝑐𝑐 = 𝛽𝛽√𝑓𝑓′𝑐𝑐  (6) 

 

𝛽𝛽 = 0.4
1 + 1,500𝜀𝜀𝑥𝑥

1,300
1,000 + 𝑠𝑠𝑥𝑥𝑥𝑥

 (7) 

 

𝜀𝜀𝑥𝑥 = 𝑓𝑓𝑠𝑠𝑥𝑥
𝐸𝐸𝑠𝑠

= 𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣𝑐𝑐/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐸𝐸𝑠𝑠𝜌𝜌𝑥𝑥

 (8) 

 

𝑠𝑠𝑥𝑥𝑥𝑥 = 35𝑠𝑠𝑥𝑥
𝑎𝑎𝑔𝑔 + 16 (9) 

where 𝛽𝛽 is the tensile stress factor in the cracked 
concrete, 𝜀𝜀𝑥𝑥 is the axial strain of the longitudinal 
reinforcement, 𝑠𝑠𝑥𝑥𝑥𝑥 is the crack spacing, 𝑠𝑠𝑥𝑥 is the 
vertical distance between longitudinal 
reinforcement and 𝑎𝑎𝑔𝑔 is the maximum aggregate 
size. In Equation 6 the first term in the denominator 
takes into account the strain effect and the second 
models the size effect. It can be noted that, even in 
this simplified formulation, the approach 
incorporates the dependence on several 
parameters. 
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2.1.4 Strut-and-Tie Model 

A Strut-and-Tie Model [13] essentially consists in 
simplifying complex stress patterns into 
triangulated models based on a truss analogy: 
tension ties correspond to reinforcement bars in 
tension, compression struts correspond to 
concrete in compression, nodes are the 
intersection zones of struts and ties and they can 
be categorised based on the type of forces (tension 
or compression) acting on them. It can be used for 
the shear design of beam elements, with some 
limitations on the angle of the struts which can 
reduce their strength. Although this method has 
been incorporated in several design code with 
slightly different formulations and coefficients, in 
this example the reduction factors suggested by 
Schlaich et al. [6] are used on the design strength 
 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐/γ𝑐𝑐 to be applied on the nodes: 1.0 𝑓𝑓𝑐𝑐𝑐𝑐 
for undisturbed compression; 0.8 𝑓𝑓𝑐𝑐𝑐𝑐 for nodes 
where tension reinforcement is anchored or 
crossing; 0.6 𝑓𝑓𝑐𝑐𝑐𝑐 for skew cracking or skew 
reinforcement; 0.8 𝑓𝑓𝑐𝑐𝑐𝑐 for skew cracks with 
extraordinary crack width. 

2.1.5 Critical Shear Crack Theory 

Theories such as the Critical Shear Crack Theory or 
the Critical Shear Displacement Theory assume 
that shear failure is associated with crack 
localisation. The load-carrying capacity is 
governed by a single critical crack and its ability to 
transfer shear forces. One key concept is 
aggregate interlock, that is the engagement of 
coarse aggregate in bearing across the 
discontinuity, activated by the relative slip of the 
two crack faces in the direction tangent to the 
crack. The Critical Shear Crack Theory [2] 
attributes the failure of a reinforced concrete 
beam to the development of one critical crack. As 
the width of the crack increases, the shear 
transfer through aggregate interlock across such a 
crack is lost, and this ultimately leads to failure. 
The generalised formulation is complex and can 
be solved iteratively. A few simplifications and 
assumptions allow for the derivation of a 
simplified closed-form expression [12], which can 
be used more directly for design purposes, leading 
to: 

𝑉𝑉𝑅𝑅
𝑏𝑏 ∙ 𝑑𝑑 = 0.70 ∙ 𝑘𝑘𝑐𝑐

2/3 (100 ∙ 𝜌𝜌 ∙ 𝑓𝑓𝑐𝑐
𝑑𝑑𝑐𝑐𝑑𝑑

√𝑑𝑑 ∙ 𝑎𝑎𝑐𝑐𝑐𝑐
)

1/3
 

𝑘𝑘𝑐𝑐 = 1
1 − 0.5 · ℎ𝑓𝑓/𝑟𝑟𝑓𝑓

 (10) 

where 𝑘𝑘𝑐𝑐 takes into account the contribution of the 
compression zone, ℎ𝑓𝑓 which can be assumed equal 
to 0.3𝑑𝑑, 𝑟𝑟𝑓𝑓 refers to the distance between the tip of 
the critical shear crack and the load acting on the 
compression face, and 𝑑𝑑𝑐𝑐𝑑𝑑 is a parameter related 
to the maximum aggregate size and 𝑎𝑎𝑐𝑐𝑐𝑐 refers to 
the moment-to-shear ratio at the control section. 

3 Experimental programme 
Laboratory tests were conducted to compare the 
predictions of the above-mentioned models with 
experimental results. Two reinforced concrete 
beams were tested in 3-point bending, with the 
same nominal geometry and properties, but 
different longitudinal reinforcement ratios. The 
main characteristics of the experiments are hereby 
described. 

In many structural elements the type of loading is 
in principle unknown, and the concept of a defined 
shear span is often not directly relevant. Simplified 
code-based formulations therefore have to 
consider the most critical case possible, 
corresponding to the bottom of Kani’s valley. This 
configuration, corresponding to a shear span-to-
depth ratio of 2.5, was therefore adopted in the 
experimental programme, allowing for the 
majority of predictive models to be applied. 

3.1.1 Geometry and Materials 

The specimens were prismatic beams of length of 
2,000 mm, a width of 160 mm and a height of 340 
mm. The effective depth to the bottom 
reinforcement was 300 mm. The load and supports 
were positioned such that the shear span-to-depth 
ratio a/d was equal to 2.5. The bottom support 
plates had a length of 140 mm and a thickness of 
10 mm, whereas the top central loading plate was 
150 mm long and 34 mm thick. The clear distance 
between plates was therefore equal to 605 mm, 
resulting in a clear shear span-to-depth ratio of 
2.02. The geometry of the specimen is shown in Fig. 
2. The reinforcement consisted of two longitudinal 
deformed bars made of high-strength steel with a 
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nominal yield strength of 500 MPa on the bottom 
tension side of the beams. The bars were 2H20 in 
specimen A (ρ = 1.31%) and 2H16 (ρ = 0.84%) in 
specimen B. No transverse reinforcement was 
present. 

 
Figure 2. Geometry of the specimens. 

The concrete was a High-Strength Ordinary 
Portland Cement (OPC) mix with no admixtures. 
The cement was a CEM I strength class 52.5N. Fine 
aggregate consisted of river sand; coarse aggregate 
was uncrushed coarse gravel with a maximum size 
of 10 mm. The mix composition and proportions of 
the constituents are given in Table 1. Material 
characterisation tests were carried out at 28 days 
after casting, at the same age of the structural load 
tests. Although the measured concrete strengths of 
the two beams differed slightly (see Table 1), on 
average the cylinder compressive strength (dia: 
100 mm, height: 200 mm) was fc = 47.6 MPa (SD: 
4.68 MPa), the compressive strength measured on 
100 mm concrete cubes was fc,cub = 62.5 MPa (SD: 
1.56 MPa) and the split tensile strength measured 
on cylinders (dia: 100 mm, height: 200 mm) was 
fct,sp = 4.24 MPa (SD: 0.48 MPa).  

Table 1. Concrete composition 

Constituent 
 

Type 
 

Density 
[kg/m3] 

Amount 
[kg/m3] 

Water - 1,000 220 

Cement CEM I 
52.5N 

3,100  

Fine 
aggregate 

0/4 2,535  

Coarse 
aggregate 

4/10 2,535  

The concrete was mixed in a planetary mixer with 
a capacity of 100 litres. The specimens were 
subsequently cast into plywood formwork, 
demoulded at least 24 hours after casting, covered 
in plastic sheets and left to cure in an indoor 
laboratory environment. The temperature and 
humidity during curing were not actively controlled 
or monitored. The companion cubic and cylindrical 
control specimens for material characterisation 
were cured underwater at ambient temperature. 

3.1.2 Load-tests results 

Specimen A with the greater reinforcement ratio of 
(ρ = 1.31%) failed at a shear force of 65.8 kN, 
whereas specimen B with less reinforcement (ρ = 
0.84%) failed at a lower shear force of 60.9 kN. 
However, as shown in Table 2, the ultimate shear 
stress, normalised by the square root of the 
average concrete compressive strength of each 
specimen, was similar in both cases and equal to 
0.190 √MPa.  

Table 2. Summary of test results 

Test 
 

Reinf. 
ratio 

Asl/bd [%] 

Concrete 
strength 
fc [MPa] 

Shear 
force 
Vu [kN] 

Norm. 
stress 

Vu/bd√fc 
A 1.31 51.9 65.8 0.1902 

B 0.84 44.6 60.9 0.1900 

 
Figure 3. Load-deflection curves from the two tests 

Fig. 3 indicates the load-deflection curves of the 
two tests. The load corresponds to the nominal 
shear force in the beams, equal to half the central 
point load, and the vertical displacement that was 
measured at midspan. The test on specimen A is 
indicated with a black line, whereas the test on the 
specimen B is shown in grey. Both specimens 
exhibited a similar behaviour. After an initial linear 
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segment, the stiffness started to reduce at a 
displacement of approximately 0.5 mm and a shear 
force of approximately 15~20 kN. This 
corresponded to the development of cracking on 
the bottom tension side of the concrete. 
Subsequently, a progressive and limited reduction 
in stiffness occurred. Thus, the specimens 
continued to deform almost linearly, until a brittle 
failure occurred at a displacement of 
approximately 2.5~3.0 mm. 

The cracking pattern of the two specimens after 
failure is shown in Figure 4. The outline of an 
assumed diagonal strut from the Strut-and-Tie 
Model is also shown with dashed white lines, for 
reference. The thin black lines indicate the final 
stage of the stable propagation of distributed 
cracking that developed as the external load 
increased. The analysis of the cracking pattern 
showed that the critical diagonal crack crossed the 
compression zone of the assumed diagonal strut 
before failure, at a load that was approximately 
80% of the ultimate value. The presence of 
diagonal cracking within the strut based on a direct 
path from the load point of the support therefore 
did not immediately compromise the load-bearing 
capacity. In both tests, failure was ultimately 
associated with the unstable propagation of a 
critical S-shaped crack that initiated at the bottom 
zone of the beam, developed towards the 
compression zone at midspan and ultimately 
progressed as a delamination crack along the 
bottom reinforcement towards the support. The 
critical crack is indicated with a thick black line. 

 
Figure 4. Cracking pattern after failure. Distributed 
cracking shown with thin black lines, critical cracks 
indicated with thick black lines, assumed diagonal 
strut shown with white dashed lines. (a) Specimen 

A with ρ=1.31%); (b) Specimen B with ρ=0.84%. 

4 Comparison and discussion 
A comparison between the experimental results 
and the analytical predictions based on the models 
described previously is shown in Fig. 5. 

 
Figure 5. Comparison of shear capacity between 

experiments and predictive models based on Strut-
and-Tie Model (STM), ACI-318, Eurocode 2 (EC2), 

Simplified Critical Shear Crack Theory (SCSCT), 
Simplified Modified Compression Field Theory 

(SMCFT): (a) Specimen A; (b) Specimen B. 

It should be noted that safety factors equal to unity 
have been adopted in the calculations. In the case 
of specimen A with a greater amount of 
reinforcement, the majority of the models are 
reasonably accurate and the experimental-to-
predicted shear strength ratios vary between 0.97 
and 1.14. However in the STM the support node 
was predicted to limit the design and this was not 
observed in the experiment.  In the second case of 
specimen B with less reinforcement, a greater 
scatter in the predictive results is obtained and the 
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ratios vary between 1.04 and 1.28. Overall, the 
SMCFT was closer to the experimental results if 
both tests are considered. In the case of the STM, 
the predictions are reasonably close to the 
experimental values and conservative, which is to 
be expected from an equilibrium-based method, 
therefore based on the lower bound theorem of 
plasticity. Nevertheless, the model was governed 
by the support node at the bottom face in 
compression, although this was not the failure 
mode observed in the experiments, which 
exhibited limited plasticity. For reference, the 
shear force corresponding to the nominal ultimate 
flexural capacity at mid-span is indicated in Fig. 5 
with dashed lines. The flexural capacities of the 
cross sections were calculated adopting an elastic-
perfectly plastic behaviour of the steel 
reinforcement corresponding to the nominal 
strength of 500 MPa. For specimen A, the 
calculated flexural capacity was equal to 87.9 kNm, 
which corresponds to a shear force of 117.2 kN. For 
specimen B, the calculated flexural capacity was 
57.7 kNm at a shear force of 76.9 kN. This suggests 
that the steel reinforcement did not reach its yield 
point and the cross sections remained below their 
plastic limit. In particular, the utilisation factor in 
bending of the midspan cross sections at shear 
failure was 56% for specimen A and 79% for 
specimen B. This was confirmed by the 
measurements from the strain gauges on the 
reinforcement. 

The loading and support plates transfer 
concentrated vertical compressive stresses and 
providing a degree of restraint to horizontal strains 
through friction. They therefore provide a degree 
of confinement locally. It can be observed that 
cracking did not develop in the zones close to the 
plates, and the top of the critical cracks 
corresponds to the edge of the loading plate. 
Although the total shear span is calculated to the 
center of the plate, consistent with equilibrium 
considerations, a reduced span could be 
considered with respect to cracking. The evolution 
of the cracking pattern during the tests indicated a 
change in behaviour as the load increased. The 
stable propagation of cracks led to the 
development of distributed cracking, with an 
inclination that progressively reduced as the cracks 
extended towards the top compression zone of the 

beams. In this stage, the experimental 
observations appeared consistent with the 
assumption of a smeared crack model, and the 
specimens exhibited significant load-bearing 
capacity even if the cracks interfered with the 
assumed compression diagonal strut. At the 
ultimate state close to failure, the development of 
a single crack reflected the assumptions of theories 
based on a critical crack. During its unstable 
propagation, the critical crack also crossed the 
diagonal compressive strut path between the load 
and support. This possible resisting mechanism 
identified by the STM was therefore compromised 
by the cracking within the compression struts, and 
this effect is reflected in the models with 
appropriate reduction factors on the material 
strength. Nevertheless, the prediction was 
governed by the bottom node, which should have 
failed by crushing of the concrete at the interface 
with the supports. This failure mode was not 
observed in the tests and bearing pressures 
appeared to have stayed well below acceptable 
levels. Another aspect of the STM that could be 
further interrogated relates to the kinematics of 
the internal resisting truss.  Relative displacements 
are necessary to develop the resisting mechanism 
and induce internal strains and distortional energy. 
Yet the strut-and-tie method is an equilibrium-
based approach, therefore based on the lower-
bound theorem of plasticity, according to which 
compatibility conditions can be disregarded. A 
sufficent ability to redistribute stresses is one of 
the assumptions of this approach, which may be 
questioned in the case of low-ductility concrete, no 
transverse reinforcement and a resisting 
mechanism with significant strain demand. 

5 Conclusions 
Two reinforced concrete beams without shear 
reinforcement were tested in 3-point bending with 
a shear span-to-depth ratio of 2.5. The 
reinforcement ratio As/bd was 1.31% in specimen A 
and 0.84% in specimen B. The results were 
compared with predictive models from literature. 
The following conclusions were drawn: 

- The shear strength was 65.8 kN for specimen A 
and 60.9 kN for specimen B. 
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- Cracks propagated within the zone of an assumed 
diagonal compression strut that ran from the 
support to the loading point at a force of 
approximately 80% of the ultimate shear force. 

- The analytical predictions were more accurate for 
specimen A and varied by 14%. The predictions for 
specimen B were characterised by greater scatter 
and varied by 28%. 

- The experimental evidence reflected the 
assumptions of theories based on smeared crack 
and critical shear crack concepts at different stages 
of the tests.  

- The characteristics of a Strut-and-Tie Model in 
terms of failure mode were not observed in the 
experiments 
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