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Two isoforms of pyruvate kinase enzymes in Pseudomonas aeruginosa 

with distinct functional and structural properties 

 

Yassmin Abdelhamid Abdeldayem Karin 

 

 In most organisms, phosphofructokinase (PFK) and pyruvate kinase (PK) are the 

key glycolytic regulatory enzymes. However, the opportunistic human pathogen, 

Pseudomonas aeruginosa, relies entirely on the Entner-Doudoroff pathway for glycolysis, 

and consequently, does not encode a PFK homologue. It does encode two PK isozymes 

though, denoted PykA and PykF. This arrangement is uncommon in bacteria, although 

when it does arise, PykF is usually the dominant isozyme. In this project, I investigated 

the genetic, functional and structural characteristics of PykA and PykF in P. aeruginosa. 

The P. aeruginosa PykA and PykF enzymes are phylogenetically distinct, and display a 

number of unusual properties compared with the isozymes previously characterized 

from other species. 

 

 I found that a pykA mutant (but not a pykF mutant) of P. aeruginosa showed 

decreased growth on glucose and glycerol, suggesting that PykA is the dominant enzyme 

in this pathogen. However, a mutant defective in both pykA and pykF could be 

complemented (i.e., made to grow normally on glucose or glycerol) by expression of 

either enzyme in trans, indicating that both enzymes have the potential to be active. 

Consistent with the notion that PykA is the dominant enzyme in P. aeruginosa, I also found 

that PykA (but not PykF) was highly expressed under all conditions tested. Biochemical 

characterization revealed that purified PykA and PykF share similar catalytic activity, but 

were differentially regulated by a number of metabolites, most notably by intermediates 

from the anabolic pentose phosphate pathway. This suggests that P. aeruginosa 

coordinates glycolysis with the availability of key gluconeogenic precursors, which seems 

to be a common emerging theme for this pathogen. Given that PykA appears to play an 

important physiological role, it also represents an excellent target for the development of 

new antimicrobial agents. With this in mind, I found that a natural product, shikonin, 

inhibits PykA and prevents growth on glucose.  

 



 I also solved the x-ray crystal structures of P. aeruginosa PykA and PykF. The PykA 

structure revealed a proven regulator, glucose-6-phosphate (G6P), bound to an allosteric 

site and a substrate analogue, malonate, bound in the active site. Only one structure has 

previously been solved for a microbial PK containing a bound regulator – that of the PK 

from Mycobacterium tuberculosis (Mtb). Interestingly, the G6P binding site in P. 

aeruginosa PykA was clearly distinct from the G6P binding site in Mtb PK. Based on my 

results, I propose a mechanism by which the conformational change might be transmitted 

from the allosteric G6P site to the active site of PykA. By contrast, the P. aeruginosa PykF 

structure was solved in the apo-state, with no bound ligands. However, this too proved to 

be distinct from the structure proposed for PykF from Escherichia coli.   
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Chapter 1 

1 Introduction 

1.1 Pseudomonas aeruginosa 

1.1.1 General features 

Pseudomonas aeruginosa is a rod-shape, Gram-negative, motile bacteria that can 

grow in aerobic as well as anaerobic conditions. It is a metabolically versatile organism 

that is often present in the soil, but it can also thrive on natural and artificial surfaces 

including in medical facilities (Gellatly and Hancock, 2013). P. aeruginosa is an 

opportunistic pathogen, meaning that it is not a threat to healthy individuals, whereas 

infections by P. aeruginosa mostly develop when the immune system is compromised 

(Lyczak et al., 2000). 

 

P. aeruginosa infections are commonly seen in patients with cystic fibrosis. The 

disease itself is genetic and caused by a mutation of the CFTR (cystic fibrosis 

transmembrane conductance regulator) gene that is responsible for the normal transport 

of chloride ions across the epithelial cell membranes. The mutation of the CFTR, 

therefore, alters the ionic balance across the epithelium leading to accumulation of thick 

mucus that is difficult to clear  (Riordan et al., 1989). CF affects different parts of the body, 

including the lungs where the disease usually gets complicated by secondary bacterial 

infections of P. aeruginosa. The persistent infection of the CF lungs by P. aeruginosa 

causes irreversible tissue damage, leading to severe impairment of patient quality of life 

and, eventually, to death (Flume et al., 2007).  

 

1.1.2 Virulence factors  

 The P. aeruginosa genome encodes numerous virulence factors that facilitate the 

establishment and persistence of infections, as well as evasion of the host immune system 

(Bianconi et al., 2015). These virulence determinants can be used by P. aeruginosa to 

mediate both acute and chronic infections. Figure 1.1 illustrates the major virulence 

factors associated with P. aeruginosa infections. 
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Figure 1.1: Major virulence factors in P. aeruginosa (adapted from Gellatly and 

Hancock, 2013). The pathogenicity of P. aeruginosa is attributed to multiple virulence 

factors that can be cell surface-associated (lipopolysaccharide layer, flagellum, pili, T3SS), 

secreted (proteases, alginate, exotoxin A, pyocyanin, pyoverdine, phosholipases) or 

behaviour-related (biofilm).  

 

1.1.2.1  Biofilm formation 

 Biofilm formation is the transition of bacteria from a free swimming lifestyle 

(planktonic state) into cell aggregations (sessile state) that are embedded in an 

extracellular polymeric substance (EPS). With this, the bacteria can adhere to the host 

cells, while being protected from the surrounding environment (O’Toole et al., 2000). The 

EPS is considered as reservoir of nutritional metabolites and also acts as a shield against 

environmental stressors and antimicrobial agents (Mann and Wozniak, 2012). In P. 

aeruginosa biofilms, the EPS is made of exopolysaccharides (Psl, Pel, alginate) (Periasamy 

et al., 2015), biosurfactant rhamnolipid (Davey et al., 2003), extracellular DNA from dead 

bacteria (Whitchurch et al., 2002) and proteins such as flagella and type IV pili (Klausen 

et al., 2003).  
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Within P. aeruginosa biofilms, cell-to-cell communication is facilitated by a social 

phenomenon known as quorum sensing. Using this social behaviour, bacteria use 

chemical signals to regulate the expression of large number of operons, in response to 

population density (Smith et al., 2002). For example, there are nearly 40 identified genes 

in P. aeruginosa (including metabolic and virulence genes) that are controlled only by 

quorum sensing signals of acyl-homoserine lactone (Whiteley et al., 1999). 

 

When P. aeruginosa grows in biofilms, the cells become more tolerant to hostile 

conditions, but become less virulent (Winstanley et al., 2016). P. aeruginosa can form 

mucoid biofilms in the airways of CF patients and these biofilms are resilient to nutrient 

limitations, oxidative stress and antimicrobial treatment (Mah et al., 2003). Mucoid 

biofilms are typically developed due to mutation of mucA. When MucA is functional, it 

interacts with and sequesters AlgU (a sigma factor required for alginate production) 

leading to suppression of alginate expression. In contrast, defective MucA is unable to 

bind or sequester AlgU and this in turn enhances alginate biosynthesis (Martin et al., 

1993). After the biofilms are formed, P. aeruginosa infections become persistent and the 

pathogen dominates the pulmonary tissue over other species (McDaniel et al., 2015). 

 

1.1.2.2  The type III secretion system (T3SS) 

The T3SS is a hollow needle-like structure present at the cell surface of P. 

aeruginosa, through which the pathogen delivers its effectors (ExoS, ExoT, ExoU, ExoY) 

directly into the host cytoplasm (Coburn et al., 2007). The effectors of T3S are toxigenic 

with broad anti-host properties and they act by enhancing tissue destruction (Finck-

Barbançon et al., 1997), reducing wound healing and opposing phagocytosis (Garrity-

Ryan et al., 2000). Moreover, they are responsible of dissemination of P. aeruginosa cells 

from the primary colonization sites into the bloodstream leading to septicaemia (Koh et 

al., 2005). Thus, P. aeruginosa infections associated with a functional T3SS are an 

indication of a poor clinical prognosis (Roy‐Burman et al., 2001). 
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1.1.2.3  Motility appendages  

P. aeruginosa has one long polar flagellum and few short type IV pili, present at 

the cell surface, which are primarily used for motility activities. These proteinaceous 

appendages are also considered indispensable for virulence as they promote attachment 

to the host cells, establishment of biofilms and cause inflammation (Haiko and 

Westerlund-Wikström, 2013). Whilst acute infections of P. aeruginosa are mostly 

associated with flagellated cells, flagella-encoding genes are down-regulated in chronic 

infections such as those associated with CF (Wolfgang et al., 2004). 

 

Compared with flagella, pili are more selective in targeting cell types (Ramphal 

and Vishwanath, 1987) and they are known to enhance formation of microcolonies that 

are commonly found in the sputum of CF patients (Lam et al., 1980; Matz et al., 2004). 

Microcolonies are formed by the aggregation and concentration of bacteria on host 

tissues as means of protection from the host immune response and antimicrobial therapy 

(Craig et al., 2004). The absence of pili from P. aeruginosa cells is a sign of reduced 

pathogenicity (Tang et al., 1995). 

 

1.1.2.4  Proteases 

 P. aeruginosa produces a number of proteases that are capable of causing 

profound destruction of host cells, such as alkaline protease, LasA (metallopeptidase) and 

LasB (zinc metalloprotease) (Alhazmi, 2015). Protease production is commonly 

associated with severe infections of the respiratory tract, cornea and burn wounds 

(Hobden, 2002; Bielecki et al., 2008; Blackwood et al., 1983). Alkaline protease causes 

destruction of the host fibronectins and the protein complement systems leading to 

severe impairment of the host immune response (Laarman et al., 2012). LasB and LasA 

are elastases and both can be found in sputum samples from CF patients, especially 

during acute pulmonary exacerbation episodes (Hollsing et al., 1987). However, the 

destructive ability of LasB is more potent than that of LasA (Matsumoto, 2004) and 

bacterial cells that lack LasB can be easily phagocytosed and cleared by the host immune 

system (Mariencheck et al., 2003; Kuang et al., 2011). 
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1.1.2.5  Lipopolysaccharide 

 The outer membrane of P. aeruginosa is made of a complex lipopolysaccharide 

layer, which is comprised of hydrophobic lipid A, an oligosaccharide core and a distal 

polysaccharide O-antigen (Pier, 2007). The lipid A and the O-antigen are amongst the 

most antigenic factors of P. aeruginosa, and can strongly provoke all types of host immune 

response (Heine et al., 2001). The elicited immune response from these components 

underlies the extensive tissue inflammation, high morbidity and mortality rates that are 

commonly associated with P. aeruginosa infections (Li et al., 1997). Due to the high 

antigenicity of the LPS components, multiple attempts were made to include these 

structures in immunization of CF patients, however, all remained unsuccessful (Döring 

and Pier, 2008).  

 

1.1.2.6  Production of alginate 

 Alginate is a mucoid exopolysaccharide substance produced by some 

pseudomonads including P. aeruginosa (Gacesa and Wusteman, 1990; Fett et al., 1995). 

Mucoid strains of P. aeruginosa can be isolated from the lungs of the CF patients and are 

associated with poor clinical prognosis (Pedersen, 1992). Alginate plays a prominent role 

during biofilm formation because it facilitates adhesion of bacterial cells to the host tissue 

and it also protects the cells from external antimicrobial penetration (Boyd and 

Chakrabarty, 1995; May et al., 1991). Production of alginate together with the LPS layer 

cause synergistic effects on the immune response owing to their high antigenicity 

(McCaslin et al., 2015).  

 

1.1.3 Antibiotic resistance of P. aeruginosa  

P. aeruginosa is one of the “ESKAPE” pathogens, which are known to be highly 

resistant to antibiotics, and they require urgent development of antimicrobials. Besides, 

P. aeruginosa, ESKAPE pathogens also include Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter species 

(Santajit and Indrawattana, 2016). The antimicrobial resistance of P. aeruginosa is 

primarily due to intrinsic and/or acquired factors. 
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1.1.3.1  Intrinsic causes  

a) Low outer membrane permeability  

The outer membrane of P. aeruginosa is one of the main barriers that prevents 

antimicrobials from penetrating the bacterial cell. The pathogen has an outer cell 

membrane that impedes the entry of antimicrobials to the inner side of the cell 

(Livermore, 1984). Compared with E. coli, the outer membrane of P. aeruginosa is one 

hundred times more impermeable to hydrophilic agents (Yoshimura and Nikaido, 1982). 

The reduced permeability of the outer membrane in P. aeruginosa is attributed to the 

scarcity and inefficiency of the large channel porin (OprF) and the presence of many 

narrow channel porins (OprD and OprB) (Nikaido et al., 1991). With this, the pathogen is 

highly resistant to antimicrobials, unless the outer membrane barrier is perturbed by 

cationic antimicrobial peptides (Scott et al., 1999) or the narrow channel porins are 

widened by mutation (Huang and Hancock, 1996).  

 

b) Efflux pumps  

P. aeruginosa has a number of drug efflux systems including MexAB-OprM, MexXY-

OprM, MexCD-OprJ, MexEF-OprN and MexJK-OprM (Schweizer, 2003). In the first system, 

MexB functions as the main pump that transports the antibiotic from the cytoplasm to 

the periplasm. The drug is subsequently uptaken by the MexA linker protein and is 

delivered to the outer membrane. The MexAB system then collaborates with the OprM 

outer membrane protein to expel the antibiotic from the outer membrane to the exterior 

(Zhao et al., 1998). The other systems operate in a similar fashion, some using 

alternatives to OprM (Aires et al., 1999). Using the multi-drug efflux systems, P. 

aeruginosa can get rid of antibiotics, biocides, detergents and other small inhibitors 

(Schweizer, 2003). On the other hand, mutation of the drug efflux pumps increases the 

susceptibility of P. aeruginosa to a wealth of antibiotics (Hancock and Speert, 2000).  

 

c) Production of β-lactamase 

The resistance of P. aeruginosa to β-lactam antimicrobials is mainly attributed to 

the production of β-lactamase. The enzyme cleaves the β-lactam ring of pencillins, 

cephalosporins and carbapenems leading to loss of bioactivity (Newsom et al., 1970). The 

enzyme is expressed in the cell periplasm and is encoded by the ampC gene (Jacoby, 
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2009). Expression of the β-lactamase is induced upon exposure to β-lactam containing 

antibiotics and carbapenems (Hancock and Speert, 2000). Resistance to β-lactams is due 

to an interplay between the β-lactamase activity and the drug efflux pumps (Masuda et 

al., 1999). In strains that lack or exhibit inducible β-lactamase activity, the MexAB-OprM 

efflux system contributes greatly to enhanced β-lactam resistance, whereas in strains that 

overexpress the β-lactamase, there is little contribution from the efflux pump (Nakae et 

al., 1999).  

 

1.1.3.2  Acquired causes  

 P. aeruginosa applies many adaptive mechanisms in order to evade treatments by 

antibiotics. These acquired mechanisms explain in part the discrepancy between the poor 

treatment outcomes of CF patients and the susceptibility of the laboratory strains to 

antibiotics (Alhazmi, 2015). P. aeruginosa acquires antibiotic resistance primarily after 

continuous exposure of the bacteria to environmental stresses, or after the 

administration of sub-lethal doses of antibiotics, or during biofilm formation. These 

factors can either promote antibiotic resistance via horizontal gene transfer or induce 

other mutational modifications that reduce susceptibility of the bacteria to antibiotics 

(Gilleland et al., 1989). 

 

 Resistance to cationic antimicrobial peptides is one of the commonly seen 

examples of an acquired resistance of P. aeruginosa, which occurs independent of genetic 

mutations (Gellatly and Hancock, 2013). The continuous exposure of P. aeruginosa to 

polymyxins together with magnesium restrictions stimulate multiple sensor kinases in 

the cell, which lead to changes of the cell surface and insensitivity to cationic 

antimicrobial peptides (McPhee et al., 2006). An example of a mutation-induced 

antibiotic resistance is the mutation of mexZ, the transcriptional regulator. The mexZ gene 

normally represses expression of the MexXY efflux pump, whereas mutation of it causes 

overexpression of the MexXY system and confers resistance to aminoglycosides 

(Yamamoto et al., 2009).  

 

 Persister cells are a subpopulation of bacteria that mostly evolve due to an inactive 

metabolic state, known as dormancy, and they are characterized by resistance to 

antimicrobial treatment (Wood et al., 2013). Persister cells of P. aeruginosa are primarily 
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present in the lungs of CF patients and they contribute to the failure of antibiotic 

treatment in these individuals (Mulcahy et al., 2010). In contrast to bacteria with inherent 

antibiotic resistance, persisters cannot grow in the presence of antibiotics (Wood et al., 

2013). Moreover, antibiotic resistance in these cells is temporary and emerges 

independently on horizontal gene transfer or genetic mutations (Miyaue et al., 2018). The 

drug tolerance of persister cells is mainly associated with changes in the toxin-antitoxin 

systems (Grady and Hayes, 2003). In normal conditions, toxins are inactive by binding to 

their cognate antitoxins. In contrast, under stress conditions, the antitoxins are easily 

degraded because they are more labile than their toxins and this allows toxins to exert 

their harmful effects in the cell including inhibition of cell growth, promotion of 

dormancy and induction of drug resistance (Page and Peti, 2016). 

 

1.2 Glycolysis in bacteria 

Glycolysis is one of the most conserved metabolic processes in a living organism. 

It supplies the cell with the energy and essential metabolites that are required for cell 

function, whilst converting glucose into pyruvate (Noor et al., 2010). The Embden-

Meyerhof-Parnas pathway (EMPP), the Entner-Doudoroff pathway (EDP) and the 

pentose-phosphate pathway (PPP) are the primary glycolytic routes in bacteria (Conway, 

1992). The sequence of lower reactions of the EMPP and the EDP is the same and they 

differ only in the upper part of each pathway. The PPP is more distinctive than the EMPP 

and the EDP and runs parallel to these. The PPP can be split into an upper oxidative and 

a lower non-oxidative phase. P. aeruginosa relies exclusively on the EDP for glycolysis, so 

this chapter is focused mainly on the role of EDP in metabolism. 

 

1.2.1 General characteristics of the EDP 

The EDP is a primitive glycolytic pathway that was first described in Pseudomonas 

saccharophila (Entner and Doudoroff, 1952; Kresge et al., 2005). The pathway is 

commonly found in Gram-negative bacteria and to a lesser extent in Gram-positive 

species (Kersters and De Ley, 1968). It was also recently described as a metabolic 

pathway in cyanobacterium Synechocystis and, the plant, Hordeum vulgare (Chen et al., 

2016). The EDP is evolutionarily more ancient than the EMPP because it is mostly found 

in primitive, deep-rooted and slow-evolving organisms than does EMPP (Romano and 
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Conway, 1996). However, phylogeny analysis based on the availability of the EMPP and 

the EDP enzymes revealed the EMPP is more widely distributed among the different 

bacterial families compared with the EDP (Figure 1.2). Moreover, the key enzymes of both 

pathways can sometimes co-exist in some species (Flamholz et al., 2013), such as E. coli. 

In E. coli, the EMPP and the EDP operate alternately according to the cell’s metabolic 

demands (Fraenkel, 1986).  

 

 

Figure 1.2: Distribution of the EDP and the EMPP among bacterial families (adapted 

from Flamholz et al., 2013). Organisms are classified as ED-capable (encoding 6-

phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase, which 

are specific to the EDP) and EMP-capable (encoding 6-phosphofructokinase, which is 

specific to the EMPP). Each group of organisms also encodes a pyruvate kinase enzyme, 

given its essentiality for both pathways. The bottom Venn diagram demonstrates the 

percentage of each pathway in a non-redundant set of prokaryotes. The EMPP and the 

EDP are present among 57% and 27% of prokaryotes, respectively. Of these organisms, 

only 13% rely exclusively on the EDP for metabolism. 
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1.2.2 The key reactions of the EDP and the EMPP  

The EDP operates using a unique set of enzymes other than those used by the 

EMPP (Conway, 1992). The 6-phosphogluconate dehydratase (Edd, EC 4.2.1.12) and the 

2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (Eda, EC 4.1.2.14) are the key 

enzymes of the EDP, whereas the 6-phosphofructokinase (Pfk, EC 2.7.1.11) is specific for 

the EMPP.  

 

The general scheme of the EDP and EMPP is quite similar and differs at the upper 

part of glycolysis (Figure 1.3). In both pathways, a six-carbon phosphorylated metabolite 

is first formed and then cleaved by an aldolase enzyme yielding two three-carbon 

products (Peekhaus and Conway, 1998). In the EDP, the Edd catalyses the dehydration of 

6-phosphogluconate (6PG) to produce KDPG; the six-carbon metabolite of the EDP 

(Kovachevich and Wood, 1955a). KDPG is subsequently cleaved by KDPG aldolase (Eda) 

to yield two three-carbon products; pyruvate and glyceraldehyde 3-phosphate (G3P) 

(Kovachevich and Wood, 1955b). Alternatively in the EMPP, Pfk catalyses the 

phosphorylation of fructose 6-phosphate (F6P) to yield fructose 1,6-bisphosphate 

(F1,6P); the six-carbon metabolite of the EMPP. The F1,6P is then cleaved into two three-

carbon products; dihydroxyacetone phosphate (DHAP) and G3P (Drechsler et al., 1959). 

After the aldolase step, both the EDP and the EMPP share the same set of lower glycolytic 

pathway reactions to synthesize pyruvate.  

 

1.2.3 Types of EDP in bacteria 

Although the EDP is a primitive form of glycolysis, its operation is more 

complicated than it initially seems to be. There are several operational modes of the EDP 

that correlate perfectly with the lifestyle of different organisms (Conway, 1992). Among 

all modes, pseudomonads operate the EDP in a unique cyclic fashion that is not present 

in other EDP-dependent microorganisms.  
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Figure 1.3: Schematic representation of the EDP and the EMPP (adpated from 

Flamholz et al., 2013). The EDP and the EMPP are represented by purple and green 

arrows, respectively. Each pathway has an upper unique part (from glucose 6-phosphate 

to glyceraldehyde 3-phosphate) and a common lower part (from glyceraldehyde 3-

phosphate to pyruvate). Asterisks highlight the unique enzymes of each pathway. Edd 

and Eda are specific to the EDP, whereas Pfk is specific to the EMPP. Abbreviations: hxk, 

hexokinase; zwf, glucose 6-phosphate dehydrogenase; pgl, phosphogluconolactonase; 

edd, phosphogluconate dehydratase; eda, KDPG aldolase; pgi, phosphoglucose isomerase; 

pfk, 6-phosphofructokinase;  fba, fructose bisphosphate aldolase; tim, triosephosphate 

isomerase; gapdh; glyceraldehyde 3-phosphate dehydrogenase; pgk, phosphoglycerate 

kinase; pgm, phosphoglycerate mutase; eno, enolase; pyk, pyruvate kinase.  
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1.2.3.1  The cyclic EDP  

The cyclic EDP is an inducible pathway that is commonly present in 

pseudomonads, where the induced enzymes vary according to the inducer molecule 

(Udaondo et al., 2018). The cyclic EDP operates by using side branches of the EDP that 

mainly serve gluconeogenesis. Thus, this special operation of the EDP requires a series of 

gluconeogenic enzymes to be present and these include the triose phosphate isomerase, 

fructose 1,6-bisphosphate aldolase, fructose 1,6-bisphosphatase, phosphoglucose 

isomerase and glucose 6-phosphate dehydrogenase (Conway, 1992).  

 

P. aeruginosa lacks pfk (Lessie and Phibbs, 1984) and phosphogluconate 

dehydrogenase (Temple et al., 1998), which are necessary for the regular operation of 

the EMPP and the oxidative PPP, respectively (Figure 1.4). Instead, it relies heavily on the 

EDP for metabolism which can operate both in a linear and cyclic fashion (Kersters and 

De Ley, 1968). In the linear EDP, G3P feeds downwards into the lower glycolytic branch 

of the EDP to yield pyruvate which in turn joins the tricarboxylic acid (TCA) cycle. In 

contrast, in the cyclic EDP, the G3P feeds into the side branches of the EDP (the reversal 

of the EMPP and the non-oxidative PPP), yielding back glucose 6-phosphate (Phibbs, 

1988; Lessie and Phibbs, 1984; Tiwari and Campbell, 1969; Conway, 1992).  

 

Amongst bacterial species, the cyclic operation of the EDP is common in 

pseudomonads. Despite the availability of the EDP enzymes in other species, they cannot 

operate the EDP in a cyclic way. For example, in E. coli, the EDP functions only in one 

direction using glyceraldehyde 3-phosphate dehydrogenase (Hillman and Fraenkel, 

1975). The latter enzyme converts G3P into 1,3-bisphosphoglycerate, thus directs the 

carbon flux mainly towards lower glycolysis (Daldal and Fraenkel, 1983; Chambost and 

Fraenkel, 1980). 

 

1.2.3.2  The inducible linear EDP (IL-EDP) 

The genes encoding the IL-EDP require induction by certain metabolites and the 

pathway under this mode operates unidirectionally (Figure 1.5). The IL-EDP is more 

common among enteric bacteria, where glycolysis depends mainly on other metabolic 

routes, whereas the EDP has only a secondary role. E. coli is one of the enteric species that 
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can operate the IL-EDP. In E. coli, the EMPP and the PPP are the main metabolic pathways, 

but when gluconate is available, the metabolism switches to the EDP (Eisenberg and 

Dobrogosz, 1967). The presence of gluconate in the cell induces the synthesis of the EDP 

enzymes, gluconate transporters and gluconate metabolic enzymes (Istúriz et al., 1986). 

Moreover, when glucose and gluconate are both available in the cells, they are co-

metabolized and boost the cell yield in E. coli compared with when glucose is the sole 

carbon source. Thus, by using the IL-EDP, the enteric bacteria gains far more advantages 

than by using the EMPP alone (Fliege et al., 1992). The end products of the IL-EDP depend 

on the oxygen levels in the cell. If oxygen and gluconate are present, the carbon flux feeds 

into the TCA cycle, whereas under anaerobic conditions with gluconate, the EDP yields 

ethanol and CO2 as fermentation end products (Istúriz et al., 1986).  

 

 

Figure 1.4: Schematic representation of the EDP in P. aeruginosa. P. aeruginosa lacks 

phosphofructokinase and 6-phosphogluconate dehydrogenase that operate the EMPP 

and the oxidative PPP, respectively. P. aeruginosa, however, relies heavily on the EDP for 

metabolism that operates in a linear and a cyclic fashion. In the linear EDP (green), the 

carbon flux feeds unidirectional from glucose 6-phosphate to the tricarboxylic acid cycle, 

whereas in the cyclic mode, the carbon flux is recycled from glyceraldehyde 3-phosphate 

into the gluconeogenic direction of EMPP (orange) and non-oxidative PPP (blue). 
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1.2.3.3  The constitutive linear EDP (CL-EDP) 

The genes encoding the CL-EDP are constitutively expressed and the pathway 

itself operates in one direction (Figure 1.5). This pathway is used by both aerobic and 

anaerobic bacteria with end products that are adjustable accordingly. For example, the 

facultative anaerobe Zymomonas mobilis produces ethanol and CO2 as end products from 

the CL-EDP, whereas the aerobe Neisseria gonorrhoeae produces acetate and CO2 as end 

products from same pathway (Baratti and Bu’lock, 1986; Morse et al., 1974; Rogers et al., 

1979). 

 

1.2.4 Main products of the EDP 

Although the main purpose of the EDP and the EMPP is to provide energy and 

biosynthetic materials, their end products are dissimilar. Whilst the EDP produces one 

ATP, one NADH and one NADPH, the EMPP produces two ATPs and two NADH molecules 

(Flamholz et al., 2013). Thus, the EMPP surpasses the EDP in providing energy and 

biomass precursors to the cell (Bar-Even et al., 2012), whereas the EDP provides more 

tolerance to oxidative stress via NADPH production (Kim et al., 2008).  

 

1.2.4.1  Energy yield 

The EDP invests one ATP during the phosphorylation of glucose into glucose 6-

phosphate in order to yield KDPG. The latter is cleaved into G3P and pyruvate, and G3P 

undergoes substrate-level phosphorylation during lower glycolysis to produce two ATPs. 

Thus, the net energy production from the EDP is one ATP  molecule (Bar-Even et al., 

2012). By contrast, glycolysis by the EMPP consumes two ATP molecules during the 

phosphorylation of glucose into glucose 6-phosphate and the phosphorylation of fructose 

6-phosphate into fructose 1,6-bisphosphate. The latter is then cleaved into G3P and 

DHAP, and both undergo substrate-level phosphorylation providing four ATP molecules. 

With this, the net yield of the EMPP is two ATP molecules (Bar-Even et al., 2012; Kim and 

Gadd, 2008). 
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                       Fructose                           Glucose 

                     Fructose-6-P               Glucose-6-P 

6-P-Gluconolactone 

        Fructose-1,6-P       6-P-Gluconate   Gluconate 

KDPG 

 

        DHAP               Glyceraldehyde-3-P  Pyruvate TCA cycle 

    1,3-di-P-glycerate 

    3-P-glycerate 

    2-P-glycerate 

    Phosphoenolpyruvate 

           Pyruvate             Acetaldehyde + CO2 

        Ethanol 

 

        TCA cycle             

Figure 1.5: Types of EDP in bacteria (combined figures from Conway, 1992). The 

EDP can operate in constitutive-linear (yellow), inducible-linear (red) or inducible-cyclic 

(blue) manner. The yellow box highlights the common reactions in all types of EDP and 

the dashed box bounds the cyclic operation of the EDP which is common in Pseudomonas 

species. Abbreviations: glucokinase (glk), glucose dehydrogenase (gdh), gluconokinase 

(gnk), fructokinase (frk), triose phosphate isomerase (tpi), fructose bisphosphate 

aldolase (fda), fructose bisphosphatase (fdp), phosphoglucose isomerase (zwf), 6-

phosphogluconolactonase (pgl), 6-phosphogluconate dehydratase (edd), 2-keto-3-deoxy-

6-phosphogluconate aldolase (eda), glyceraldehyde 3-phosphate dehydrogenase (gap), 

phosphoglycerate kinase (pgk), phosphoglycerate mutase (pgm), enolase (eno), pyruvate 

kinase (pyk), pyruvate dehydrogenase (pdc), alcohol dehydrogenase (adh), DHAP 

(dihydroxyacetone phosphate), tricarboxylic acid cycle (TCA cycle).  
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 The energy yield from the EDP and the EMPP is directly correlated with their 

prevalence in bacteria. Thus, the EDP is mostly present in aerobic and facultative 

anaerobic bacteria where the ATP requirements are relatively low. In contrast, the EMPP 

is more prevalent in fermentative anaerobic strains where the ATP requirement is much 

greater and can only be driven from high energy producing reactions such as substrate-

level phosphorylation (Hofmann, 1976; Ronimus and Morgan, 2001; Flamholz et al., 

2013). Although the EDP seems to be less energy-efficient than the EMPP, it still has an 

interesting wide prevalence among prokaryotes (Fuhrer et al., 2005). This is mostly 

attributed to the low protein needs for production of energy in EDP-dependent 

organisms, compared with the EMPP-dependent organisms where more protein is 

invested in production of enzymes that operate the pathway (Flamholz et al., 2013).  

 

1.2.4.2  High reducing power 

Microorganisms that depend on the EDP are more resistant to external and 

internal stress compared with those which use the EMPP (Kim et al., 2008; Chavarría et 

al., 2013). Although both pathways can generate NADH (reduced nicotinamide adenine 

dinucleotide), the EDP can additionally provide the cell with NADPH (reduced 

nicotinamide adenine dinucleotide phosphate) during the oxidation of glucose 6-

phosphate into 6-phosphogluconolactone (Levy, 2006). Through the reducing power of 

NADPH, bacteria like Pseudomonas aeruginosa can cope better with the surrounding 

hostile environmental conditions. For example, P. putida (EDP-dependent) was more 

tolerant to redox stress than E. coli (EMPP-dependent), when both were exposed to a 

sulfhydryl-oxidizing agent. Moreover, switching to the EMPP in P. putida (by knocking-in 

phosphofructokinase) caused a significant drop in the growth rate due to the decline in 

the NADPH production (Chavarría et al., 2013).  
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1.3 Pyruvate kinase 

1.3.1 The reaction of pyruvate kinase 

 Pyruvate kinase (PK, E.C. 2.7.1.40) is an ancient enzyme that is indispensable for 

glycolysis of prokaryotes and eukaryotes (Hattori et al., 1995) and it is located at the node 

between the lower arm of glycolysis and the TCA cycle. PK catalyses the production of 

pyruvate in two steps (Figure 1.6). The first step is the transfer of a phosphoryl group 

from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) yielding adenosine 

triphosphate (ATP) and enolate (Seeholzer et al., 1991) and the second step is the 

conversion of enolate to pyruvate by proton transfer (Rose, 1970).  

 

1.3.2 The effects of PK mutation in bacteria  

Besides the role of PK in energy production, the substrate and product of PK also 

feed into multiple metabolic pathways (Prichard and Schofield, 1968). Moreover, the 

central location of PK enables the enzyme to regulate the carbon flux and to act as a switch 

point between glycolysis and gluconeogenesis in many organisms (Al-Zaid Siddiquee et 

al., 2004). Thus, mutation of PK is always associated with physiological disturbances 

including dysregulation of genes, impairment of growth, as well as decline in pathogenic 

traits. The effects of PK mutation in bacteria and yeast can be found in Table 1.1. 

 

 

 

Figure 1.6: The reaction catalysed by PK (adapted from Voet et al., 2012). The 

enzyme catalyses the transfer of a phosphoryl group from PEP to ADP to yield pyruvate 

and ATP. The availability of the metal ions is important to facilitate the transfer of the 

phosphoryl group. 
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Table 1.1: The effects of PK mutation in bacteria and yeast.  

Organism  Effects of PK  mutation Reference 

Staphylococcus 

aureus (pyK) 

No growth (Zoraghi et al., 

2010) 

Mycobacterium 

tuberculosis (pyK) 

- Change in colony morphology 

- Up-regulation of protein expression of isocitrate 

dehydrogenase and oxidative stress proteins 

- Down-regulation of protein expression of 

isocitrate lyase, PEP carboxylase and fatty acid 

biosynthesis. 

(Chavadi et al., 

2009) 

Escherichia coli 

(pykF) 

-Down-regulation of glycolytic genes, acetate-

forming flux and lactate-forming flux 

- Up-regulation of PPP and FruR regulator 

(Siddiquee et al., 

2004) 

Yersinia 

pseudotuberculosis 

(pykF) 

- Decreased growth rate, glucose uptake, 

dissemination into host cells and persistence in 

deeper tissue. 

(Bücker et al., 

2014) 

Bacillus subtilis 

(pyK) 

- Decreased growth rate, acetate production and 

recombinant protein expression 

(Fry et al., 2000; 

Pan et al., 2008, 

2010) 

Corynebacterium 

glutamicum (pyK) 

 

- Decreased growth rate and lactate production 

- Increased glucose consumption and production 

of glutamate and aspartate 

(Sawada et al., 

2010; Chai et al., 

2016) 

Saccharomyces 

cerevisiae (pyK1) 

- Decreased growth on glucose, glycerol and 

fermentable carbohydrates 

(Sprague, 1977) 
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1.3.3  General kinetics of PK  

PK is a cooperative enzyme that is homotropically regulated by its substrate (PEP) 

and heterotropically regulated by different ligands other than the substrate. The 

homotropic activation is achieved when one PEP molecule binds to the active site of one 

subunit and this in turn improves the binding of the next PEP molecules to the adjacent 

enzyme subunits. Therefore, titration of PEP produces a characteristic sigmoidal 

allosteric response in most PK enzymes. The sigmoidal response to PEP is additionally, 

associated with a Hill coefficient >1 which confirms positive enzyme cooperativity. There 

are a few exceptions to this pattern in the mammalian PK (PKM1) and plant PK, where 

the PK enzymes display hyperbolic kinetics to titration of PEP (Hill coefficient=1) instead 

of the typical sigmoidal response  (Muirhead et al., 1986; Smith et al., 2000). 

 

The majority of PKs are heterotropically regulated by allosteric ligands which can 

bind to sites other than the active site (Figure 1.7). Binding of these ligands to PKs greatly 

boosts enzyme-substrate binding as these regulators are thought to cause major 

conformational changes in the enzyme that, in turn, alter the configuration of the active 

site (Fenton, 2008). In the presence of an allosteric regulator, the cooperativity of PK is 

reduced (the Hill coefficient is decreased) and the sigmoidal response to PEP saturation 

changes to a hyperbolic one. Allosteric regulation, however, does not change the maximal 

velocity of the enzyme (Vmax) nor the enzyme turnover number (kcat), although it 

decreases the value of the apparent binding affinity of the enzyme (S0.5) (Malcovati and 

Valentini, 1982). The nature of the allosteric ligands is variable, but PKs are mostly 

regulated by mono- and di-phosphorylated carbohydrates (Jurica et al., 1998). Whereas 

PKs respond to PEP titration with sigmoidal kinetics, they display “Michaelis-Menten” 

hyperbolic kinetics to ADP titration.  

 

1.3.4 Dependence of PK activity on metal ions  

 The availability of divalent cations (usually magnesium, Mg2+) is an absolute 

requirement for a PK reaction (Baek and Nowak, 1982). The ion functions as a mediator 

between the active site of the enzyme and the substrates (PEP and ADP) and it orients 

the phosphoryl groups of PEP and ADP in the active site, where the transfer of the 

phosphoryl group take places. On the other hand, the phosphotransfer fails if there are 
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no divalent ions in the reaction (Mesecar and Nowak, 1997; Muirhead et al., 1986). Apart 

from the dependence of all PK on divalent ions, a subset of PK also require an additional 

source of monovalent ions (mainly K+) in order to reach maximal enzymatic activity 

(Kachmar and Boyer, 1953). In this group of enzymes, K+ is essential for acquisition of the 

active conformation of the enzyme. It is also responsible for the conversion of the PK 

reaction from an ordered kinetics (where binding of the substrates is sequential) into 

random kinetics (where binding of the substrates is independent on each other). 

Therefore, the maximal activity of the PK and the binding affinity to the substrates is 

increased by K+ (Oria-Hernández et al., 2005). 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The allosteric regulation of PK. The figure illustrates the effects of an 

allosteric activator on the PK enzyme kinetics. When the activator is absent, PK responds 

with allosteric sigmoid kinetics to PEP titration. Whereas when the activator is present 

and binds to the allosteric site, it causes major conformational changes of the active site 

that in turn facilitates the binding of the PEP to the active site. Thus, the allosteric 

sigmoidal kinetics of the enzyme with regards to PEP saturation (without the activator) 

converts to Michaelis-Menten hyperbolic kinetics (with the activator).  
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1.3.5 PykA and PykF isoforms in bacteria 

Almost all bacteria encode one PK, whilst a few can have more than one PK isoform 

(Muñoz and Ponce, 2003). Among the latter group are bacterial species which encode 

PykA (pyruvate kinase II) and PykF (pyruvate kinase I) isoforms. The PykA and PykF 

isoforms have been studied extensively in E. coli (Waygood et al., 1975, 1976), Salmonella 

enterica Serovar Typhimurium (Garcia-Olalla and Garrido-Pertierra, 1987), Yersinia 

species (Bücker et al., 2014; Hofmann et al., 2013) and P. aeruginosa (this study). The 

pykA and pykF genes are usually unlinked on the chromosome and they are often 

regulated independently (Pertierra and Cooper, 1977). Moreover, the PykA and PykF 

share a relatively low amino acid sequence homology (below 40%) when compared with 

each other in the same organism, whereas they have a higher sequence homology to other 

group members of the same isoform (Table 1.2). 

 

Table 1.2: Percentage of amino acid sequence identity of PykA and PykF among 

selected Gram-negative bacteria. 
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P. aeruginosa PykA 100 57. 1 57. 1 56. 4 37. 9 36. 6 36. 8 37. 3 

E. coli PykA  100 98. 5 90. 6 36. 7 36. 5 36. 3 39. 3 

S. typhimurium PykA   100 90. 6 37. 1 36. 7 36. 3 39. 3 

Y. pestis PykA    100 37. 5 37. 3 36. 9 38 

Y. pestis PykF     100 85. 7 86. 8 37. 3 

E. coli PykF      100 95. 7 36. 9 

S. typhimurium PykF       100 37. 3 

P. aeruginosa PykF        100 

 



22 

1.3.5.1  Genetic and biochemical characterization 

Results from previous work show that pykF is the dominant isoform in most 

bacteria that encode both isozymes. Genetic characterization of pykA and pykF mutants 

revealed that pykF contributes more to pyruvate biosynthesis than pykA and that 

pyruvate biosynthesis disappears completely when pykF is knocked-out. Moreover, the 

specific activity of PykF is several fold higher than PykA, when measured in the wild-type 

strain (Ponce et al., 1995).  

 

The PykA and PykF isoforms also show a typical response to allosteric regulators; 

PykA activity is often activated by ribose 5-phosphate (R5P) and adenosine 

monophosphate (AMP), whereas PykF is positively regulated by fructose 1,6-

bisphosphate (F1,6P). When these regulators are present, PykA and PykF lose 

cooperativity (indicated by a drop in the Hill coefficient); the allosteric kinetics with 

respect to PEP titration becomes hyperbolic, and the PEP binding affinity increases 

(indicated by a drop in the S0.5 values) (Malcovati and Valentini, 1982; Waygood et al., 

1976; Garcia-Olalla and Garrido-Pertierra, 1987; Waygood et al., 1975). The 

distinguishable allosteric regulation of PykA and PykF confirms that these isozymes have 

non-interconvertible roles in metabolism (Garcia-Olalla and Garrido-Pertierra, 1987).  

 

1.3.5.2  Genetic regulation  

The genetic control of pykF has been described before, whereas the regulation of 

pykA has not been characterized. Most likely, this is because so far pykF is the only 

essential PK in bacterial species that encode both pykA and pykF isoforms. The pykF gene 

was found to be controlled by two unrelated regulators; CsrA and FruR. CsrA is a global 

RNA-binding regulator which positively controls expression of the glycolytic genes 

(among many others), while having negative control on gluconeogenic genes (Romeo and 

Babitzke, 2018). In E. coli, PykF activity is strongly related to csrA and when the csrA is 

inactivated, the enzymatic activity of PykF is lost. On the other hand, mutation of csrA was 

found not to impact PykA activity at all (Sabnis et al., 1995).  
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FruR is a transcriptional regulator that has a central role in the regulation of 

carbon metabolism in enteric bacteria (Ramseier et al., 1995). In contrast to CsrA, FruR 

regulates pykF negatively. In E. coli, FruR binds to the promoter region of the pykF gene 

and represses its activity, under both glycolytic and gluconeogenic conditions (Bledig et 

al., 1996). Moreover, the negative impacts of FruR on pykF transcription were alleviated 

after inactivation of fruR or the addition of F1,6P; the key glycolytic metabolite in E. coli. 

 

Although the regulation of PK itself has not been yet characterized in 

pseudomonads, regulation of other enzymes (before and after the PK reaction) has been 

demonstrated. For example, the transcription of some EDP enzymes is tightly controlled 

by HexR and RccR. Both regulators share high sequence homology and can bind KDPG, a 

key metabolite of the EDP. Generally, HexR regulates the enzymes before the PK step of 

the EDP, whereas RccR regulates enzymes before and after the PK step. In P. putida and 

P. fluorescens, HexR represses the expression of glucose 6-phosphate dehydrogenase 

(zwf), 6-phosphogluconate dehydratase (edd) and glyceraldehyde 3-phosphate 

dehydrogenase (gap) when KDPG is not abundant, such as during growth in media 

containing carbon sources other than glucose (Daddaoua et al., 2009; Campilongo et al., 

2017). In contrast, when KDPG is present as during growth in glucose, HexR leaves its 

target operators and alternatively binds KDPG, thus the transcription of zwf, edd and gap 

is turned on (Daddaoua et al., 2009). 

 

Unlike HexR, RccR targets the genes of an entirely different set of metabolic 

enzymes (pckA: phosphoenolpyruvate carboxykinase, gap: glyceraldehyde 3-phosphate 

dehydrogenase, aceA: isocitrate lyase, glcB: malate synthase, aceE/F: pyruvate 

dehydrogenase subunits) and can simultaneously repress and activate their expression 

(Campilongo et al., 2017). According to the available carbon source, RccR inversely 

regulates pyruvate metabolism (aceE) and gluconeogenesis/glyoxylate shunt (pckA, gap, 

aceA, glcB). For example, when RccR binds KDPG (e.g. cells growing in glucose), the 

affinity of RccR to enzymes of the gluconeogenesis/glyoxylate shunt is increased and 

therefore their expression is suppressed. At the same time, the negative effect of RccR on 

pyruvate metabolism is removed, and vice versa when cells grow in acetate (Campilongo 

et al., 2017).  
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1.3.6 X-ray crystal structure of PK 

There are many PK structures from prokaryotes and eukaryotes that are already 

published on the Protein Data Bank (PDB) (Figure 1.8). More than 80% of these 

structures belong to eukaryotes. In contrast, the number of bacterial PK models are 

limited with only one structure from Gram-negative species; PykF from E. coli. The E. coli 

PykF is present with four PDB models and none of them contains a bound regulator to 

the enzyme, apart from metal ions. The E. coli PykF was either modelled unbound as in 

PDB 1PKY or bound with sulphate ions (1E0T, 1EOU and 4YNG). So far, the only available 

prokaryotic PK structure with bound regulators (not ions) belongs to PK of M. 

tuberculosis.  

 

 

Figure 1.8: PK structures in the PDB. Pie chart showing the distribution of the 

published PK structures in the PDB (updated last on 11-April-2019). Of PykA and PykF 

isoforms, only E. coli PykF has been deposited representing 4% of the deposited models, 

and there is no published structure for a PykA isoform. 
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1.3.6.1  The structure of a PK subunit 

PK is a tetramer of four identical subunits (Valentini et al., 1979) where each 

subunit is subdivided into three domains; A, B and C (Mattevi et al., 1995; Zhong et al., 

2017) (Figure 1.9A, 1.9B). Some PK structures may have additional domains which can 

be in a form of a short N-terminal domain or a long extra C-terminal domain (Figure 1.9C, 

1.9D). The N-terminal domain is mostly present in PK structures from mammals, yeast 

and some parasites (Muirhead et al., 1986; Wooll et al., 2001; Jurica et al., 1998; Cook et 

al., 2012; Allen and Muirhead, 1996), whereas the C-terminal domain is more common 

among bacterial PKs (Zoraghi et al., 2011; Axerio-Cilies et al., 2012; Suzuki et al., 2008).  

 

 Of the three main domains, the A domain is the largest and is centrally positioned 

between the B and C domains. The A domain is comprised of a typical triosephosphate 

isomerase (TIM)-barrel fold where eight β-strands alternate with eight α-helices along 

the peptide backbone. The A domain is linked to the B domain and the C domain at its C-

terminus and its N-terminus, respectively. The B domain, also called the lid domain, is the 

smallest among the three domains and is rich in β-sheets. The active site of all PK lies at 

the cleft between the A and the B domains. The C domain is mostly made of a four to five 

(α + β) open sheet structure (Larsen et al., 1994). The predicted allosteric site of almost 

all PKs lies within the structure of the C domain. Within a complete PK tetramer, the 

opposing A domains communicate across the A-A interface, whereas the opposing C 

domains interact via the C-C interface (Mattevi et al., 1995). 
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Figure 1.9: Structure of PK. A) A PykF tetramer from E. coli, (PDB 1PKY). The tetramer 

is made of four identical subunits that are coloured differently. Dashed lines highlight the 

intersubunit interfaces. B) The three-domain organization of a PK subunit from 

Saccharomyces cerevisiae (PDB 1A3W). The active site and the allosteric site are occupied 

by phosphoglycolic acid and F1,6P, respectively as shown by coral cylinders. C) A PK 

subunit from rabbit muscle (PDB 1F3W) showing the extra N-terminal domain. D) A PK 

subunit from S. aureus (PDB 3T05) showing the extra C-terminal domain. Ligands of 

figure C (K+, Mn2+ and pyruvic acid) and figure D (PO4) are not shown. All images are 

generated using CCP4mg. 
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1.3.6.2  The active site of PK 

The active site of PK lies in the cleft between the A and B domains (Muirhead et al., 

1986) and is comprised of strictly conserved residues in all organisms (Jurica et al., 1998; 

Muñoz and Ponce, 2003). Although, the active site is present in the A domain, the catalytic 

reaction of many PK enzymes is associated with movement of the B domain. For example, 

in rabbit muscle PK, when the substrate is present in the active site, the B domain rotates 

around the A domain with a hinge-bending motion in order to narrow the active site cleft 

(Larsen et al., 1997).  

 

Almost all published PK structures on the PDB have a substrate analogue bound 

in the active site, with the exception of PK of Trypanosoma brucei (PDB 4HYV), which 

instead has PEP (the natural substrate) bound to the enzyme (Figure 1.10) (Zhong et al., 

2013). At the active site of the 4HYV model, Arg50, Lys239, Mg2+ and K+ create a positively 

charged pocket that facilitates orientation and transfer of the phosphoryl group from PEP 

to ADP (Jurica et al., 1998). These positive charges are important in the reaction as they 

neutralize the negatively charged phosphate. Therefore, the electrophilic phosphate 

becomes available for nucleophilic attack on ADP and the reaction completes producing 

an ATP and eventually, pyruvate (Westheimer, 1987).  

 

Figure 1.10: The active 

site of PK. A Close-up 

view of T. brucei PK (PDB 

4HYV, Chain B) showing 

PEP (coloured sticks), 

Mg2+ (small coral 

sphere), K+ (large coral 

sphere) and water (small 

red spheres) bound in 

the active site. The figure 

was generated using 

CCP4mg.  
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1.3.6.3  The allosteric site of PK 

 The predicted allosteric site of almost all PK lies within the C domain, nearly 40Å 

away from the active site (Jurica et al., 1998; Morgan et al., 2014; Zhong et al., 2013). 

However, another allosteric site has been identified recently in the PK of M. tuberculosis, 

which is found in the vicinity between the A and the C domains (Zhong et al., 2017). Most 

of the published structures for prokaryotic PK are modelled with phosphate or sulphate 

ions bound to the allosteric site. Among prokaryotes, there is only one PK from M. 

tuberculosis (several models) with regulators bound. In PK of M. tuberculosis, there is an 

AMP bound to the predicted allosteric site, whereas the G6P is bound to a distinct position 

than the AMP binding site (Zhong et al., 2017). By contrast, so far there is no PK from 

Gram-negative species modelled with a bound regulator in the allosteric site. 

  

 In most of the PK structures (prokaryotic and eukaryotic), occupation of the 

allosteric site by ligands drives structural changes within the C domain and across the 

domain interfaces. Of these changes, the disposition of a mobile loop is most commonly 

seen (Figure 1.11). The loop is present between the last two β-strands of the C domain 

and when the allosteric site is empty, it is placed away from the allosteric pocket. 

However, when the ligand occupies the allosteric pocket, the loop shifts towards the 

bound ligand.  

 
 

Figure 1.11: Structural 

changes in the allosteric 

site of PK after binding to a 

regulator. Superposition of 

unbound (PDB 5WRP, yellow, 

chain B) and AMP-bound 

(PDB 5WSB, blue, chain D) PK 

from M. tuberculosis. The 

figure shows movement of the 

mobile loop after binding to 

AMP. The figure was 

generated using CCP4mg.  
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1.3.6.4  The mechanism of allosteric regulation of PK 

Without a positive regulator, PKs adopt a configuration of low substrate affinity 

known as T-state (tensed state). After the activator binds to the allosteric site, major 

conformational adjustments take place across the tetramer that facilitate binding of the 

substrate and the enzyme converts to an R-state (relaxed state), (Mattevi et al., 1995; 

Valentini et al., 2000; Zhong et al., 2017; Monod et al., 1965). The transition from the T-

state to the R-state is important for understanding the mechanism of transfer of the 

allosteric signals across the subunits. 

 

The switch from the less active T-state to the active R-state is an attention-

grabbing phenomenon as it explains the rapid response of many PKs to metabolic signals 

in the cell. Figure 1.12 shows that there are two established theories which describe the 

transition from the T-state to the R-state; the “Domain and subunit rotation” and the 

“Rigid body reorientation” (Donovan et al., 2016). In the first model, the enzyme-ligand 

complex at the allosteric site induces rotations of the individual domains in each subunit 

besides the rotation of each subunit independently. This mode is proposed for the 

allosteric regulation of PK from E. coli by F1,6P, although so far there is no bacterial PK 

structure with bound regulators other than the PK of M. tuberculosis (Mattevi et al., 1995; 

Valentini et al., 2000; Mattevi et al., 1996). The second model, however, explains that the 

transmission of the allosteric signal throughout the tetramer is due to the reorientation 

of the individual subunits as a whole rigid bodies, while using a pivot point at the 

intersection of the A and C domains. This model is proposed for the regulation of PK in 

Leishmania mexicana by F2,6P (Morgan et al., 2014).  

 

Analysis of the intersubunit interfaces is crucial for understanding the mechanism 

of the allosteric signal transduction (Wooll et al., 2001). This is because the transition 

from the unbound to the ligand-bound PK is usually associated with building or breaking 

of interactions across the A-A or the C-C interfaces. For example, the binding of the 

allosteric ligand to PK from Leishmania mexicana lead to formation of eight salt bridges 

across the C-C interface which contributed significantly to the stability  of the enzyme 

(Morgan et al., 2010). Moreover, the transition from the T- to the R- states in PK of L. 

mexicana was associated with changes also at the A-A interface (Naithani et al., 2015). 

Enzyme kinetics and site-directed mutagenesis confirmed that the intersubunit 
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interactions play a central role in the allosteric regulation of PK (Friesen and Lee, 1998; 

Fenton and Blair, 2002).  

 

 

 

Figure 1.12: The transition of a PK from the T-state to the R-state (adapted from 

Donovan et al., 2016). The transition of a PK from the T-state (unbound) to the R-state 

(bound) is explained by the domain and subunit rotation model (top) and by the rigid 

body reorientation model (bottom). In the first model, binding of the ligand induces 

rotational movement of all domains and the whole subunits (e.g. PK of E. coli), whereas 

in the second model, the ligand-enzyme complex causes rotation of the whole subunits 

only around a pivot point (e.g. PK of L. mexicana). In the two models, binding of the ligand 

to the allosteric site significantly improves binding affinity of the enzyme to the substrate. 
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1.4 Objectives of this study 

 PK is a key regulatory enzyme with a central position between upper glycolysis 

and TCA cycle. Thus, PK activity has been linked with major metabolic changes in the cell 

and more recently, with pathogenicity. Most of bacteria have a single PK and a few encode 

two PK isozymes, denoted as PykA and PykF. In the latter group of organisms, PykF is 

usually the dominant isoform, whereas PykA has a less important role. Moreover in 

species encoding both isoforms, PykA and PykF are found to follow a typical pattern of 

allosteric regulation; PykA is activated by AMP and/or R5P and PykF is activated by 

F1,6P. With respect to structural data, most (81%) relate to eukaryotic PKs and only 19% 

relate to bacterial enzymes. Of these bacterial structures, some pertain to PykF, and there 

are no structures currently available for any PykA enzyme.  

 

 P. aeruginosa encodes one PykA isozyme (PA4329) and one PykF isozyme 

(PA1498). Neither of these isozymes have been characterised to date. As P. aeruginosa 

relies exclusively on the EDP for metabolism (unlike most other bacteria), it is likely that 

PK regulation is different in this organism. It is my thesis that one or both of these 

enzymes plays a critical role in controlling flux through the EDP in P. aeruginosa, and that 

is because of the way in which this organism is “wired up” for the EDP. Also, the regulation 

of these isoforms in P. aeruginosa is likely to differ significantly from that reported in 

other species. Thus, the main aim of this project was to characterise the genetic, 

biochemical and structural properties of PykA and PykF in P. aeruginosa. To realise this 

aim, I pursued the following specific objectives: 

 To characterize the expression profile(s) of each isoform and to examine the 

impact of mutating pykA and pykF on cell growth, pyruvate biosynthesis and 

virulence phenotypes. 

 To characterize the kinetic and regulatory properties of purified PykA and PykF, 

and to identify non-physiological inhibitors of the enzymes with potential 

antimicrobial activity. 

 To solve the x-ray crystal structures of PykA and PykF with a view to 

understanding better the link between structure, function and regulation of these 

enzymes.  
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Chapter 2 

2 Materials and methods 

2.1 General microbiological procedures 

2.1.1 Bacterial strains  

 Bacterial strains used in this work are listed in Table 2.1 

 

Table 2.1: Bacterial strains and mutants used in this work.  

Strains Description Source 

P. aeruginosa strains  

PAO1 Wild-type  

 

B. Iglewski, 

University of 

Rochester, USA 

PW8308  PAO1 harbouring transposon (ISlacZ/hah) 

insertion in pykA, TetR 

UWGC mutant bank 

PW3705 PAO1 harbouring transposon (ISphoA/hah) 

insertion in pykF, TetR 

UWGC mutant bank 

PAF0 A double mutant defective in pykA and pykF, 

generated by phage transduction, TetR 

This study 

PW8308-cre PW8308 with the tetracycline resistance 

cassette removed by Cre-mediated excision 

This study 

PW8308C PW8308 containing pUCP20-pykA, TetR, CarbR This study 

PW3705C PW3705 containing pUCP20-pykF, TetR, CarbR This study 

PAF1 PAF0 containing pUCP20-pykA, TetR, CarbR This study 

PAF2 PAF0 containing pUCP20-pykF, TetR, CarbR This study 

PpykA PAO1 containing pLP170-pykA, CarbR This study 

PpykF PAO1 containing pLP170-PA1499, CarbR This study 

K3-3105-D4 Clinical isolate Papworth Hospital 

K9-1306-C6 Clinical isolate Papworth Hospital 
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E. coli strains 

JM109 endA1 gyrA96 recA1 thi hsdR17(rK
-, mK

+) relA1 

supE44 Δ(lac-proAB) [F' traD36 

proAB+ lacIq lacZΔM15]  

(Yanisch-Perron et 

al., 1985) 

BL21(DE3) F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 

[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-

12(λS) pLysS[T7p20 orip15A](CmR) 

Novagen 

BL21-PykA BL21 containing pET19m-pykA CarbR, CmR  This study 

BL21-PykF BL21 containing pET19m-pykF, CarbR, CmR This study 

 

2.1.2 Plasmids and bacteriophages 

 Table 2.2 shows the list of plasmids and bacteriophage used in this study. 

 

Table 2.2: Plasmids and bacteriophage used in this work. 

 Description Source 

   

Plasmids   

pFLP2-cre Site specific excision vector with Cre-

recombinase, CarbR  

Welch lab stocks  

pUCP20 Escherichia coli-Pseudomonas shuttle vector, 

CarbR  

(West et al., 

1994) 

pLP170 lacZ transcriptional fusion vector, CarbR (Preston et al., 

1997) 

pET19m A vector for inducible protein expression of 

N-terminally His-tagged proteins, CarbR 

Welch lab stocks  

 

 

pUCP20-pykA pUCP20 containing a PCR-amplified fragment 

of pykA, CarbR 

 

 

This work 
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Table 2.2: Continued 

Plasmids Description Source 

pUCP20-pykF pUCP20 containing a PCR-amplified fragment 

of pykF and PA1499, CarbR 

This work 

pLP170-pykA pykA reporter plasmid, CarbR This work 

pLP170-PA1499 pykF reporter plasmid, CarbR This work 

pET19m-pykA Vector for inducible expression of N-

terminally His-tagged PykA, CarbR 

This work 

pET19m-pykF Vector for inducible expression of N-

terminally His-tagged PykF, CarbR 

This work 

Bacteriophages   

ØPA3 Generalized transducing phage of P. 

aeruginosa  

(Monson et al., 

2011) 

 

2.1.3 Preparation and concentration of antibiotics 

 All antibiotics are prepared in 50% (v/v) ethanol in dH2O and filter-sterilized 

using 0.22 µm syringe filter units (Millipore). Antibiotic stocks were kept in aliquots and 

stored at -20oC.  

 

Table 2.3: Concentration of antibiotics used in this work. 

 Stock (mg/ml) Final concentration (µg/ml) 

  P. aeruginosa E. coli 

Carbenicillin 50 250 50 

Chloramphenicol 34  34 

Tetracycline  10 50  

 

2.1.4 Media, solutions and buffers 

2.1.4.1  Growth media 

 Liquid and solid media used in this study are detailed in Table 2.4 and Table 2.5, 

respectively. Glassware and media constituents were autoclaved at 115oC for 15 min 

(standard), unless otherwise stated. 



35 

Table 2.4: List of liquid growth media used in this study. 

Liquid media Per litre 

LB broth (lennox) 10 g tryptone 

5 g yeast extract 

5 g NaCl 

M9 minimal media, 1X  200 ml 5X M9 minimal salts 

2 mM magnesium sulfate 

0.1 mM  calcium chloride 

 And one of the following carbon sources: 

20 mM glucose  

40 mM acetate   

20 mM succinate 

30 mM glycerol 

15 mM ribose 

M9 Minimal salts, 5X  

(BD Difco) 

33.9 g disodium phosphate 

15 g monopotassium phosphate 

5 g ammonium chloride  

2.5 g sodium chloride 

 

 

Table 2.5: List of solid media used in this study. 

LB agar (LBA) 

Purpose   Routine growth media 

Preparation LB broth containing  1.5% (w/v) agar 

 

M9 minimal media agar, 1X 

Purpose Comparison of growth in different carbon sources  

Preparation M9 minimal media containing 1.5% (w/v) agar 
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PPGAS (Proteose Peptone Glucose Ammonium Salt) agar 

Purpose Detection of rhamnolipid production 

Components PPGAS salts  

20 mM ammonium chloride               

20 mM potassium chloride 

120  mM Tris-HCl pH 7.5  

1.6 mM magnesium sulfate 

0.5% (w/v) glucose 

1% (w/v) proteose peptone 

1.5% (w/v) agar 

CTAB (Cetyltrimethylammonium Bromide)          

20 mg/ml      

MB (Methylene blue) 

0.5 mg/ml 

Preparation The PPGAS salts were prepared in 200 ml dH2O and 

autoclaved as standard. The CTAB and MB stocks were 

prepared independently, filter-sterilized and stored at 

room temperature. For preparation of the PPGAS 

minimal media, 58.8 ml of PPGAS salts were mixed with 

600 µl of CTAB and 600 µl of MB in a sterilized bottle. 

The 60 ml of PPGAS agar was poured into a sterile 

square Petri-dish. 

 

Skim Milk Agar 

Purpose Detection of caseinase production  

Components Tryptone soy agar (TSA) 

50 g/L Tryptone soy agar 

Skim milk (SM) 

2% (w/v) skim milk  

Preparation The TSA was prepared in water and autoclaved as standard. The 

SM was prepared independently and autoclaved by special 

cycle for milk. The skim milk agar was prepared fresh by mixing 
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160 ml of TSA with 40 ml of SM. The mixture was shaken gently 

and 60 ml was dispensed into a sterile square Petri-dish. 

 

Gelatin agar media 

Purpose Detection of gelatinase production  

Components 13 g/L nutrient broth  

1.6% (w/v) agar  

30 g/L gelatin                                                                

Preparation 60 ml of prepared agar was dispensed into a sterile square 

Petri-dish. 

 

Swarming assay 

Purpose Detection of swarming activity 

Components  8 g/L Nutrient Broth                                

 5 g/L Glucose                                          

5 g/L agar  

Preparation 60 ml of prepared agar was dispensed into a sterile square 

Petri-dish. 

 

Swimming assay 

Purpose Detection of swarming activity 

Components 20 g/L LB media                                

3 g/L agar                          

Preparation 60 ml of prepared agar was dispensed into a sterile square 

Petri-dish. 
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2.1.4.2  Solutions, buffers and gels 

Table 2.6: Components of solutions, buffers and gels used in this study. 

Solution or Buffer Per litre 

  

Phosphate buffered saline (PBS) Ten tablets of 10 g PBS (Dulbecco A) 

Phage buffer 10  mM Tris-HCl pH 7.5 

10  mM magnesium sulfate 

0.01% (w/v) gelatin 

TAE buffer 40  mM Tris-HCl pH 8 

20  mM acetic acid 

1  mM EDTA 

Lysis buffer 50  mM Tris-HCl pH 7.5 

300  mM sodium chloride 

10 mM imidazole 

10% (v/v) glycerol 

Equilibration buffer 50  mM Tris-HCl pH 8 

200  mM sodium chloride 

10% (v/v) glycerol 

10  mM imidazole 

Elution buffer 50  mM Tris-HCl pH 8 

200  mM sodium chloride 

10% (v/v) glycerol 

250 mM imidazole 

Dialysis buffer 20  mM Tris-HCl pH 7.5 

100  mM sodium chloride 

5% (v/v) glycerol 

1  mM DTT 

0.1  mM EDTA 

Resolving buffer, 5X 151 g Tris-HCl 

0.5% (w/v) SDS 

pH 8.8 

 



39 

Table 2.6: Continued 

Solution or Buffer 

 

Per litre 

Stacking buffer, 5X 60 g Tris-HCl 

0.5% (w/v) SDS 

pH 6.8 

Resolving phase, 15%  

(per 10 ml) 

5 ml 30% (v/v) Bis-acrylamide (Severn 

Biotech) 

5 ml 5X resolving buffer 

50 µl 20% (w/v) SDS 

100 µl 8% (w/v) ammonium persulfate  

5  µl tetramethylethylenediamine  

Resolving phase, 9%  

(per 10 ml) 

3 ml 30% (v/v) Bis-acrylamide (Severn 

Biotech) 

5 ml 5X resolving buffer 

2 ml dH2O 

50 µl 20% (w/v) SDS 

100 µl 8% (w/v) ammonium persulfate  

5  µl tetramethylethylenediamine  

Stacking phase, 6% 

(per 10 ml) 

2 ml 30% (v/v) Bis-acrylamide (Severn 

Biotech) 

1 ml 5X stacking buffer 

50 µl 20% (w/v) SDS 

100 µl 8%(w/v)  ammonium persulfate 

5  µl tetramethylethylenediamine 

SDS PAGE running buffer (per 

Litre) 

25 mM Tris-HCl pH 8.3 

0.2 M Glycine 

0.1% (w/v) SDS 

SDS loading buffer, 4X 200 mM Tris-HCl pH 6.8 

40% (v/v) glycerol 

8% (w/v) SDS 

0.4% (w/v) bromophenol blue 

400 mM DTT  
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Table 2.6: Continued 

Solution or Buffer 

 

Per litre 

Coomassie stain 

(per Litre) 

1 g/L Coomassie Brilliant Blue G (sigma) 

50% (v/v) methanol  

10% (v/v) acetic acid 

Destain I 

(per Litre) 

50% (v/v) methanol  

7% (v/v) acetic acid 

Destain II 

(per Litre) 

10% (v/v) methanol  

7% (v/v) acetic acid 

 

2.1.5 Growth and phenotypic assays 

2.1.5.1  Storage of bacterial culture 

 Bacterial strains were stored at -80oC after mixing an equal volume of an 

overnight culture with 50% (v/v) sterile glycerol solution. Agar plates containing viable 

colonies of P. aeruginosa and E. coli were stored at room temperature and 4oC, 

respectively for up to two weeks.  

 

2.1.5.2  Growth on LBA 

 Colonies of P. aeruginosa and E. coli were grown in 10 cm diameter Petri-dishes 

containing 25 ml LBA. Antibiotics were added as appropriate. Plates were incubated 

overnight at 37oC. For growing cells from a frozen culture, a small part of the frozen stock 

was defrosted on the surface of the agar at room temperature. After melting, the culture 

was streaked onto the agar using a flame-sterilized inoculation loop.  

 

2.1.5.3  Overnight cultures in LB 

 A single colony was picked from an LBA plate and used to inoculate 10 ml LB 

broth in a 30 ml universal tube. Antibiotics were added as appropriate. Bacterial cultures 

were incubated overnight at 37oC on a rotating drum. Three biological replicates were 

prepared if needed by inoculating three independent colonies into three different 

overnight cultures. 
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2.1.5.4  Growth in M9 minimal media 

 Growth was carried out in a 250 ml conical flask containing 50 ml of M9 minimal 

media supplemented with the desired carbon source. First, overnight cultures were 

prepared in LB as above. Then, bacterial cells were pelleted down (3,200 x g, 20oC, 5 min) 

and the pellets were washed three times in PBS. The cells were inoculated into the 

minimal media with the desired carbon source to reach an initial OD600 of 0.05. When 

microaerobic growth was desired, a 1 cm thick layer of sterile mineral oil was added on 

top of the cell suspension. Flasks containing cell cultures were incubated in a shaking 

water bath at 37oC and 210 rpm for aerobic growth or at 37oC and 80 rpm for 

microaerobic growth. Antibiotics were added as appropriate. Three biological replicates 

were used for each growth condition. Samples of 1 ml bacterial culture were collected 

every hour for measurement of cell density at 595 nm. 

 

2.1.5.5  Growth on M9 minimal agar 

 An overnight culture was first prepared in LB as above. The culture was serially 

diluted in sterile PBS up to 10-6. A 10 µl of the last dilution was spotted onto M9 minimal 

agar containing the desired carbon source and left to dry. The spot was streaked into 

single colonies using a sterile inoculation loop. The plates were incubated at 37oC for 24 

– 48 hr. 

 

2.1.5.6  Production of rhamnolipids  

 An overnight culture was first prepared in LB as above. The OD600 of an 

overnight culture was adjusted to 1 and 5 µl were spotted onto PPGAS agar. The spot was 

left to dry and plates were incubated upright (agar at the bottom of the plate) at 37oC for 

48 hr. The rhamnolipid production was visualized as blue halos around the growing 

colonies. 

 

2.1.5.7  Caseinase production 

 Directly from an overnight culture in LB, a 5 µl spot was transferred onto skim 

milk agar. The spot was left to dry and plates were incubated upright (agar at the bottom 

of the plate) at 37oC for 48 hr. Caseinase production was indicated by halo formation 

around the growing colonies. 
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2.1.5.8  Gelatinase production 

 Directly from an overnight culture in LB, a 5 µl spot was transferred onto gelatin 

agar. The spot was left to dry and plates were incubated upright (agar at the bottom of 

the plate) at 37oC for 48 hr. Gelatinase production was indicated by halo formation after 

the plate was flooded with saturated ammonium sulphate solution. 

 

2.1.5.9  Swarming activity 

 The OD600 of an overnight culture was adjusted to 1 and 5 µl were spotted on top 

of the swarming agar. Plates were left to dry and incubated upright (agar at the bottom 

of the plate) at 37oC for 15 – 24 hr.  

 

2.1.5.10  Swimming activity 

 The OD600 of an overnight culture was adjusted to 1 and 5 µl were inoculated at 

the bottom of the swimming agar. Plates were left to dry and incubated upright (agar at 

the bottom of the plate) at 37oC for 15 – 24 hr.  

 

2.1.5.11  Biofilm assay 

 Overnight cultures were first prepared in LB as above. The cultures were 

sedimented and the pellets were washed three times in M9 minimal media supplemented 

with 20 mM glucose. The cells were adjusted to an OD600 of 0.1 using M9 minimal media 

with glucose and 100 µl were transferred to a sterile 96-well plate. For biofilm formation 

in LB, cells were taken directly from the overnight cultures and the OD600 was adjusted to 

0.1 in LB. Plates were sealed with a sterile breathable adhesive membrane (StarLab) and 

incubated for 24 hr at 37oC on a static surface. The planktonic culture was aspirated 

without disruption of the adhered cells to the sides of the well. The cells adhering to the 

plate were washed three times using 200 µl dH2O, followed by addition of 100 µl of 0.1% 

(w/v) crystal violet were added to stain the biofilms (15 min, static, room temperature). 

The stain was aspirated and the biofilms were washed three times using 200 µl dH2O and 

left to dry. The crystal violet stain absorbed to the attached biomass was solubilized by 

adding 120 µl of 30% (v/v) acetic acid for 15 min. The biofilm formation was quantified 

by measuring the absorbance of the solubilized crystal violet at 595 nm.  
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2.1.5.12 Growth assays with potential inhibitors 

 The effects of synthetic inhibitors (shikonin and R396907) on cell growth was 

measured using a sterile 96-well microtiter plate. An overnight culture was prepared in 

LB (for growth curves in LB) or M9 minimal media with 20 mM glucose (for growth 

curves in glucose). The cells were sub-cultured in 10 ml of the same media to reach an 

OD600 of 0.05. A serial fold dilution (0 – 500 µm) of each inhibitor was prepared in DMSO 

and 2 µl of each dilution was transferred into the microtiter plate. The sub-culture (200 

µl) was added into the microtiter plate and mixed gently with the inhibitors. For the 

control wells, 2 µl of DMSO was used. A sterile breathable membrane (StarLab) was used 

to seal the plate that were incubated at 37oC in FLUOstar Omega microplate reader (BMG 

LABTECH) static with 5 sec shaking prior to readings. Four readings per well were taken 

every 15 min at 595 nm. Three biological replicates were used for each growth condition.  

 

2.1.5.13  Measurement of β-galactosidase activity   

 Bacterial strains were grown in M9 Minimal media supplemented with the 

desired carbon source as indicated in section 2.1.5.4. One ml sample was collected every 

hour and used for both measuring planktonic growth and β-galactosidase activity. With 

regards to the latter, 100 µl aliquots were collected in a sterile 96-well plate that was kept 

on ice during collection of the samples and then stored at -80oC until measurement. At 

the time of the assay, the frozen plates were left to thaw at room temperature for 30 min. 

β-galactosidase activity was measured according to the protocol of Ramsay (Ramsay, 

2013), while using 4-methylumbelliferyl-β-D-galactopyranoside (MUG) as a substrate. 

Part of the stored aliquots (10 µl) was transferred into a fresh 96-well plate and 100 µl of 

the reaction mixture was added. The reaction mixture was prepared by adding 99.5 µl of 

20 mg/ml chicken lysozyme in PBS to 0.5 µl of 50 mg/ml MUG dissolved in DMSO. The β-

galactosidase activity was measured using Gemini XPS fluorimeter (Molecular Devices) 

at 360 nm excitation, 450 nm emission, 435 nm cut-off and 8 reads/well. The 

measurements were taken during the linear phase at 37oC every 30 sec for a total of 30 

min.  
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2.2 DNA techniques 

2.2.1 Gene cloning  

 Cloning experiments were performed using a standard protocol (Sambrook et 

al., 1989). Genomic DNA was extracted from PAO1 and used as a template for DNA 

amplifications. The desired gene was amplified from the genomic DNA using a 

Polymerase chain reaction (PCR). After PCR amplification of the gene, the DNA fragments 

were purified using agarose gel and digested using the appropriate restriction enzymes. 

The plasmid was also digested using the same restriction enzymes and both restricted 

gene and vector were purified before being ligated. Ligation was performed by mixing 

and incubation of the digested gene fragment, digested plasmid and DNA ligase enzyme. 

After ligation was performed, the desired construct was transformed into the appropriate 

bacterial host. All DNA products were kept at -20oC.  

 

2.2.1.1 DNA extraction  

 The genomic DNA was extracted from overnight bacterial cultures using the 

GeneJET Genomic DNA Purification Kit. Plasmid DNA was purified from overnight 

bacterial cultures using The GeneJET Plasmid Miniprep kit. The extracted DNA was 

quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).  

 

2.2.1.2  Polymerase chain reaction (PCR) 

 PCR reactions were performed using Veriti Thermal cycler. Components of the 

PCR reaction are listed in Table 2.7. Steps of the PCR reaction can be found in Table 2.8. 

Conditions of the PCR reaction varied according to the length of the amplified gene and 

the annealing temperature of the primers. The list of synthetic oligonucleotides primers 

can be found in Table 2.9. Primers were purchased from Sigma-Aldrich.  

 

2.2.1.3  Colony PCR 

 Colony PCR was used to confirm the presence of insert DNA in plasmid 

constructs. A small portion of the colony containing the desired construct was picked and 

resuspended in 100 µl of dH2O. The colony suspension was boiled at 95oC for 10 min and 
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the cell debris was removed by centrifugation (3,200 x g, 5 min, 4oC). The supernatant 

was used (1 µl) as a gene template in a standard PCR reaction.  

 

Table 2.7: Components of the PCR reaction. 

Ingredients Volume ( µl) 

DNA template 0.5 

5X HF  or GC Phusion buffer 10 

Taq polymerase 0.5 

25 mM dNTPs 1 

10 µM Forward Primer 2.5 

10 µM Reverse Primer 2.5 

DMSO 0-5 

Nuclease-free water Up to 50 

 

 

Table 2.8: Steps of the PCR reaction. 

Step Temperature  

(oC) 

Time Number of cycles 

Initial denaturation 98 1 min 1 

Denaturation 98 10 sec  

35 Annealing  55-70 30 sec 

Extension 72 30s/kb of amplicon 

Final extension 72 5 min 1 
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Table 2.9: List of primers used in this work. 

Primer Sequence (5’-3’) Site  Product 

 

For complementation of pykA and pykF mutants  

 

cPykA F GATCGAATTCCTGCATACCCACGCGGCG

ATGCC 

EcoRI pUCP20-pykA 

cPykA R AAAAAAGGATCCTTATACCAGCAGGTC

GCCGACGTGC 

BamHI pUCP20-pykA 

cPykF F GATCGAATTCCTACCCAACACCGCCAAC

GCCCAG 

EcoRI pUCP20-pykF 

cPykF R AAAAAAAGCTTCACCATCACCATCATCA

CTCAGAGATCTCCCAGCGGCG 

HindIII pUCP20-pykF 

 

For transcriptional analysis of pykA and pykF 

 

pPykA F GATCGAATTCCTGCATACCCACGCGGCG

ATGCC 

EcoRI pLP170-pykA 

pPykA R CATGGGATCCGTGCGGCGAACGGACATG

CAAAG 

BamHI pLP170-pykA 

pPA1499 F GATCGAATTCCTACCCAACACCGCCAAC

GCCCAG 

EcoRI pLP170-

PA1499 

pPA1499 R CATGGGATCCCGCGTGGATCGGTACTCA

TGACAG 

BamHI pLP170- 

PA1499 

 

For overexpression of PykA and PykF 

 

rPykA F AAAAAACATATGATGTCCGTTCGCCGCA

CCAAAATCG 

NdeI pET19m-pykA 

rPykA R AAAAAAGGATCCTTATACCAGCAGGTC

GCCGACGTGC 

BamHI pET19m-pykA 

rPykF F GATGACCATATGACAGCCGACAAGAAA

GCCAAGA 

NdeI pET19m-pykF 

rPykF R CTGAAAGCTTAAGGTCTTTCCCGGATGG

ATGGAG 

HindIII pET19m-pykF 
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2.2.1.4  Agarose gel electrophoresis  

 Agarose gel electrophoresis was performed to separate the PCR products 

according to their size. The DNA samples were mixed with 6X DNA loading dye (Thermo 

Scientific, R0611) and loaded into 1% (w/v) agarose gel. The agarose gel was prepared 

by dissolving 0.6 g agarose in 60 ml 1X Tris-Acetate-EDTA (TAE) buffer using gentle 

heating. The agarose was supplemented with 0.5 µg/ml ethidium bromide and allowed 

to set. The gel was submerged under TAE buffer in a gel tray and 50 µl of DNA samples 

were loaded into each well. A DNA hyperLadder (10 kb, Bioline) was used as a sizing 

reference. DNA electrophoresis was performed at 80 V for 45-90 min depending on the 

size of the DNA. The DNA was visualized and photographed using a UV transilluminator. 

Bands with desired DNA size were excised using a scalpel and the DNA was purified using 

a GeneJET Gel Extraction Kit.  

 

2.2.1.5  Digestion of DNA 

 The DNA was digested using the indicated restriction endonucleases at 37oC for 

2 – 3 h. Table 2.10 lists the components of DNA digestion reaction. The digested DNA was 

purified using GeneJET PCR Purification Kit to avoid generation of random constructs and 

quantified by NanoDrop ND-100 spectrophotometer. If needed, agarose gel 

electrophoresis was performed to confirm successful digestion and products were 

purified from the agarose gel.  

 

Table 2.10: Components of the DNA digestion reaction. 

Components Restriction of PCR 

amplicon ( µl) 

Restriction of plasmid ( µl) 

Enzyme 1 2 2 

Enzyme 2 2 2 

PCR product  41 ___ 

Plasmid  ___ 10 

CutSmart buffer 5 5 

dH2O Up to 50 Up to 50 
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2.2.1.6  Ligation of DNA 

 The digested amplicon and digested plasmid were ligated using T4 DNA ligase. 

The reaction was conducted in 20 µl using 3:1 insert to plasmid molar ratio, 1 µl T4 DNA 

ligase and 2 µl T4 ligase buffer. The ligation reaction was incubated for 1 hr on ice and 1 

hr at room temperature. Products of ligation were stored at -20oC. 

 

2.2.1.7  Transformation  

 All bacterial transformations were performed using electroporation (Eppendorf 

Electroporator). The JM109 strain was used as an initial host for all constructs in this 

study. The transformed JM109 was confirmed to contain the desired constructs by 

growth on LBA with selective antibiotics, colony PCR and gene sequencing. Positive 

constructs were extracted and introduced into the appropriate final hosts (P. aeruginosa 

strains or E. coli BL21 strain).  

 

A) Transformation of E. coli by electroporation 

 A sub-culture was prepared by inoculation of 100 µl of overnight culture into a 

10 ml fresh LB. The sub-culture was incubated on a rotating drum at 37oC until reaching 

an OD600 of 0.4-0.5. Cells were then placed on ice for 30 min before being sedimented at 

3,200 x g, 4oC for 10 min. The cell pellet was washed three times using sterile 10% ice-

cold glycerol. The pellet was resuspended in 500 µl sterile 10% ice-cold glycerol for 

transformation. In an ice-cold electroporation cuvette, 100 µl of the final cell suspension 

were mixed with 2 µl of the ligation mixture and incubated for 10 min on ice. Cells were 

transformed by electroporation using Eppendorf Electroporator at 2.5 kV (25 µF, 200 Ω, 

5 ms time constant). Immediately after electroporation, 1 ml of pre-warmed LB was 

added to the transformed cells and the cells were incubated for 1 h at 37oC on a rotating 

drum. Finally, 100 µl were spread onto LBA plates supplemented with appropriate 

selective antibiotic. The plates were incubated overnight at 37oC.  

 

B) Transformation of P. aeruginosa cells by electroporation 

 Similar to transformation of E. coli except that all transformation steps were 

performed at 20oC.  
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2.2.1.8  Gene sequencing  

 Gene sequencing was carried out by GATC Biotech and samples were prepared 

as per the company’s instructions. 

 

2.3 Preparation of vectors and strains 

2.3.1 Construction of pUCP20-pykA and pUCP20-pykF complementation vectors 

 For complementation of pykA, the ORF and 500 bp upstream region of pykA were 

PCR-amplified using cPykA F and cPykA R primers. The PCR products corresponding to 

this region were purified and the amplified DNA fragment and pUCP20 plasmid were 

digested independently using EcoRI and BamHI restriction endonucleases. The restricted 

fragments were ligated to yield the complementation plasmid pUCP20-pykA. 

 

 The design of the complementation construct of the pykF gene was slightly 

different. The pykF ORF is predicted to form an operon with PA1499. Therefore, I PCR-

amplified the entire region spanning upstream of PA1499 to the 3’ end of pykF, using the 

cPykF F and the cPykF R primers. After purification of the DNA fragment from the agarose 

gel, it was digested by EcoRI and HindIII restriction enzymes and ligated to the 

corresponding sites in similarly digested pUCP20. The ligation produced the 

complementation plasmid pUCP20-pykF.  

 

 The pUCP20-pykA and pUCP20-pykF were introduced into JM109 independently 

and cells were spread onto LBA containing carbenicillin to select for positive 

transformants. The desired pUCP20 constructs were confirmed using colony PCR and 

gene sequencing before the plasmids were extracted and re-introduced into the relevant 

PK mutants. The complementation plasmid pUCP20-pykA was introduced into PW8308 

and PAF0 to produce PW8308C and PAF1, respectively. Likewise, pUCP20-pykF was 

introduced into PW3705 and PAF0 to produce PW3705C and PAF2, respectively. Cells 

were spread onto LBA containing carbenicillin to select for positive transformants. 
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2.3.2 Construction of pLP170-pykA and pLP170-PA1499 transcriptional 

reporters 

 Transcriptional reporters of pykA and pykF were prepared using pLP170 vector. 

This vector encodes a promoterless lacZ gene. The promoter of PA4329 (pykA) was PCR-

amplified using pPykA F and pPykA R primers, and the promoter of PA1499 (predicted to 

be operonic with pykF) was PCR-amplified using pPA1499 F and pPA1499 R primers. The 

DNA amplicons containing each promoter were digested using EcoRI and BamHI and 

introduced into similarly-digested pLP170. This produced pLP170-pykA (lacZ 

transcription driven by the pykA promoter) and pLP170-PA1499 (lacZ transcription 

driven by the PA1499 promoter).  

 

 The pLP170 constructs were introduced into JM109 independently and cells 

were spread onto LBA containing carbenicillin to select for positive transformants. The 

desired pLP170 constructs were confirmed using colony PCR and gene sequencing before 

the plasmids were extracted and re-introduced into PAO1. The pLP170-pykA and 

pLP170-PA1499 were introduced into PAO1 using electroporation to yield pPykA and 

pPykF, respectively. PAO1 cells were spread onto LBA containing carbenicillin to select 

for positive transformants.  

 

2.3.3 Construction of pET19m-pykA and pET19m-pykF expression vectors 

 Overexpression of PykA and PykF was driven from the lac promoter of the 

pET19m vector. The pykA ORF was PCR-amplified using rPykA F and rPykA R primers 

and the PCR product was gel-purified. The amplified pykA ORF and pET19m were 

digested with NdeI and BamHI restriction endonucleases. The pykA amplicon was ligated 

to the corresponding sites of similarly-digested pET19m and this generated pET19m-

pykA (able to overexpress PykA upon induction by IPTG). The pykF ORF was PCR-

amplified using rPykF F and rPykF R primers and the PCR product was gel-purified. The 

amplified pykF ORF and pET19m were digested with NdeI and HindIII restriction 

endonucleases. The pykF amplicon was ligated to the corresponding sites of similarly-

digested pET19m and this generated pET19m-pykF (able to overexpress PykF upon 

induction by IPTG). 

 



51 

 The pET19m constructs were first introduced into JM109 and cells were spread 

onto LBA containing carbenicillin to select for positive transformants. The desired 

pET19m constructs were confirmed by colony PCR and gene sequencing before the 

plasmids were extracted and re-introduced into BL21. The pET19m-pykA and pET19m-

pykF were introduced into BL21 using electroporation to yield BL21-PykA and BL21-

PykF, respectively. Cells were spread onto LBA containing carbenicillin and 

chloramphenicol to select for positive transformants. 

 

2.3.4 Construction of PAF0  

 PAF0 is defective in pykA and pykF and was generated using generalized phage 

transduction (ØPA3), in which the genetic material of a pykF mutant (donor strain) was 

transferred into the pykA mutant (recipient strain). The following sections show the steps 

of preparation of the pykF genetic material (2.3.4.1), preparation of the pykA mutant 

(2.3.4.2) and phage transduction techniques (2.3.4.3).  

 

2.3.4.1  Preparation of ØPA3 lysates 

 The ØPA3 is a generalized transducing phage of P. aeruginosa and was used for 

preparation of a phage lysate containing the genetic material of a pykF mutant (PW3705). 

First, a serial dilution of ØPA3 (100 to 10-7) was prepared using phage buffer. The ØPA3 

lysate of the pykF mutant was prepared by mixing 100 µl of an overnight culture of 

PW3705 with 4 ml of 0.35% molten LBA and 50 µl of each ØPA3 dilution. The mixture 

was poured on top of a 1.5% (w/v) LBA plate and left to set for 15-30 min. The plate was 

incubated overnight at 37oC in upright position (agar at the bottom of the plate). The 

0.35% soft agar layer was collected using a spreader from the dilution that showed an 

incomplete “lacy” surface and the lysate was transferred to a glass bijoux tube. The plate 

was washed with 3 ml phage buffer and the collected buffer was also transferred to the 

glass tube containing the lysates. The agar in the glass tube was disrupted by adding 500 

µl sodium bicarbonate-treated chloroform and the tube was vortexed for 2 min. The cell 

lysate was left at room temperature for 30 min before separation from the agar by 

centrifugation (3,200 x g, 4oC, 20 min). The phage lysate was the supernatant part of the 

mixture. The lysate was transferred into a fresh bijoux tube. In order to maintain sterility 

of the lysate, 50 µl of chloroform were added and the bijoux tube was stored at 4oC. 
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2.3.4.2  Removal of the antibiotic resistance marker from PW8308 

 PW8308 and PW3705 are transposon mutants of pykA and pykF, respectively, in 

which the genes are disrupted by the insertion of large tetracycline resistance-conferring 

cassettes. Before phage transduction, the antibiotic resistance of the recipient strain 

(PW8308) had to be removed to leave the mutant without an antibiotic marker (but still 

defective in pykA function) so that successful phage transduction (transfer of the genetic 

material from PW3705 into PW8308) could be verified through restoration of antibiotic 

resistance to PW8308.  

 

 The antibiotic marker of the PW8308 was removed using pFLP2-cre, which 

encodes a Cre-recombinase (enables the excision and recombination of loxP sites present 

on the tetracycline-resistance cassette). pFLP2-cre was introduced into PW8308 by 

electroporation according to the standard protocol of transformation of P. aeruginosa to 

produce PW8308-cre without an antibiotic marker. Transformants were selected on LBA 

containing 250 µg/ml carbenicillin and plates were incubated overnight at 37oC. Colonies 

were picked and streaked first onto LBA with 5% (w/v) sucrose (pFLP2-cre carries sacB 

as a counter-selectable marker) to cure the cells of the pFLP2-cre, and second onto LBA 

+/- tetracycline to confirm the loss of the tetracycline-resistance cassette. The site-

specific excision of the transposon using pFLP2-cre leaves behind a small 64 codon “scar” 

in place of the antibiotic marker. This small genetic scar was confirmed using PCR. 

 

2.3.4.3  Phage transduction for construction of PAF0 

 The PAF0 (pykA pykF mutant) was generated by transfer of the genetic material 

from PW3705 (pykF mutant, tetracycline resistant) into PW8308-cre (pykA mutant, 

tetracycline sensitive) using phage transduction. This was done by mixing 10 ml 

overnight culture of PW8308-cre (recipient) with 100 µl of ØPA3 phage lysate containing 

the genetic material of PW3705 (donor DNA). The mixture was incubated at room 

temperature for 30 min on a static surface followed by incubation for 20 min on a rotating 

drum at 37oC. Cells were pelleted by centrifugation (3,200 x g, 5 min) and the pellet was 

washed with 10 ml fresh LB. The cells were re-pelleted and resuspended in 1 ml LB from 

which 75 µl of the cell suspension was spread onto an LBA plate containing tetracycline. 
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PAF0 was verified to contain a small scar within the pykA (indicative of a pykA mutation) 

and a tetracycline transposon within the pykF (indicative of a pykF mutation) using PCR. 

  

2.4 Expression and purification of proteins 

2.4.1 Expression of PykA and PykF 

 BL21-PykA (containing pET19m-pykA) and BL21-PykF (containing pET19m-

pykF) were used for overexpression of PykA and PykF, respectively. The BL21 strains 

containing the pET19m constructs were able to overexpress PykA and PykF 

recombinantly upon induction of the lac promoter (present in pET19m constructs) by 

isopropyl-β-D-thiogalactopyranoside (IPTG). For expression of the PK proteins, the E. coli 

cells were grown in 1 litre of LB supplemented with 50 µg/ml carbenicillin and 34 µg/ml 

chloramphenicol. When the cells reached OD600 of 0.5-0.6, filter-sterilized IPTG was 

added at a final concentration of 1 mM. The BL21 cells were incubated overnight at 20oC 

and the cell pellet was collected by centrifugation (5170 x g, 30 min, 4oC) and stored at -

20oC until purification. 

 

2.4.2 Purification of PykA and PykF 

 The BL21 pellet was left to thaw at room temperature before being resuspended 

in 20 ml cell equilibration buffer containing an EDTA-free protease inhibitor cocktail 

tablet (Sigma). The cell suspension was sonicated for 3 min (30 sec, 6 rounds, 13 amps) 

and cell debris was removed by centrifugation (14,636 x g, 30 min, 4oC). Protein lysates 

(containing PykA and PykF) were collected from the supernatant fraction and loaded 

onto a Ni-NTA column that was pre-washed with equilibration buffer. After the sample 

was loaded, the Ni-NTA column was washed with equilibration buffer overnight at 4oC. 

Protein was eluted by passing 10-20 ml elution buffer through the column. The eluted 

protein His-tags were subsequently removed using TEV protease excision. 

 

 For removal of the His-tags from PykA and PykF, each protein was mixed with His-

tagged TEV protease and the mixture was loaded in a dialysis bag. Dialysis was performed 

overnight against dialysis buffer and the protein and TEV mixture was transferred into a 

falcon tube. Ni-NTA beads (100 µl) were added to the tube in order to capture the 

protease and uncleaved PK, while leaving the untagged PK enzyme free in solution. The 
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tube containing the mixture was incubated for 30 min at 4oC on a rotating drum before 

centrifugation (3,200 x g, 4oC, 30 min) to pellet the Ni-NTA. The purified untagged protein 

was collected from the supernatant fraction and concentrated using a Vivaspin column 

(MWCO 30,000 Da, Sartorius). Proteins were dispensed into aliquots, snap-frozen in 

liquid nitrogen and stored at -80oC. 

 

2.5 Quantification of proteins  

2.5.1 Quantification of purified proteins  

 Concentration of the purified proteins was measured by direct UV absorbance at 

280 nm using Eppendorf Biospectrometer. The protein concentration was determined 

using the calculated extinction coefficients of PykA (24410 M-1cm-1) and PykF (25440 M-

1cm-1). 

 

2.5.2 Quantification of total proteins in cell lysates 

2.5.2.1  Preparation of cell lysates  

 Cells were grown in M9 Minimal media containing the desired carbon source 

until reaching stationary phase. Cells were sedimented (3,200 x g, 4oC, 10 min) and the 

pellets were solubilized in 2 ml of lysis buffer containing an EDTA-free protease inhibitor 

cocktail tablet (Sigma). The cell suspensions were sonicated on ice for 30 sec and 

centrifuged at 14,636 x g, 4oC for 5 min. Whole-cell protein extracts were collected from 

the supernatant fraction and proteins were quantified using the Bio-Rad protein assay.  

 

2.5.2.2  Bio-Rad protein assay 

 The Bio-Rad protein assay is based on the Bradford method (Bradford, 1976) 

and was used in this study for quantification of total protein in cell lysates. Bradford 

reagent (1X) was prepared by mixing one part of the Bradford stock reagent (Bio-Rad 

Protein Assay Dye Reagent Concentrate, 500-0006) with four parts of dH2O. Protein 

standards of ɣ-globulin ranging from 0.2 to 1.4 mg/ml were prepared using PBS. The 

Bradford reagent (1X, 980 µl) was mixed with each ɣ-globulin dilution (20 µl) and a 

standard ɣ-globulin calibration curve was produced. 
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 For preparation of the samples, 20 µl of the sample protein lysate (diluted in PBS 

if needed) was mixed with 980 µl of the diluted Bradford reagent. PBS buffer was used 

for preparation of the blank and all reactions were incubated at room temperature for 10 

min for colour development. Readings were measured by spectrophotometer at 595 nm 

and compared with the standard curve. The assay was performed in triplicate. 

 

2.6 Preparation of protein gels 

2.6.1 SDS-polyacrylamide gel electrophoresis 

 Protein samples were mixed with SDS loading buffer and boiled for 5-10 min at 

95oC. The samples were loaded on 15% (v/v) SDS-PAGE gels for purified proteins or 9% 

(v/v) SDS-PAGE gels for cell lysates as described in Table 2.6. Samples were separated by 

electrophoresis at 20 V cm-1 for 80 min. Gels of purified proteins were stained with 

Coomassie Brilliant Blue and gels of cell lysates were used in western blot analysis. 

 

2.6.2 Coomassie staining 

 Components of the Coomassie Brilliant Blue stain and destaining solutions are 

described in Table 2.6. After gel electrophoresis, the gels were incubated overnight in 

Coomassie Brilliant Blue stain. The stain was decanted and the gels were incubated in 

Destain I for 1h followed by Destain II for 3 h. The Destain II was replaced with a fresh 

solution every hour. Staining and destaining were performed with gentle rotation on a 

moving platform. 

 

2.7 Western blot analysis  

 Polyclonal antibodies were raised in rabbit against purified PykA and PykF 

proteins (Biogenes.De). The anti-PykA and anti-PykF antibodies were pre-adsorbed 

against an acetone extract of pykA and pykF mutants, respectively. The acetone extraction 

step was essential in order to minimize non-specific binding. The cleaned antibodies were 

dispensed in 20 µl aliquots and stored at -20oC. 
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 After gel electrophoresis, proteins were transferred from the SDS-PAGE gels to the 

polyvinylidene difluoride membrane (PVDF) using transfer buffer (25 mM Tris, 190 mM 

glycine, 20% methanol). The transfer of proteins was performed at 25 V for 120 min. The 

PVDF membrane containing the transferred proteins was incubated in blocking buffer 

(5% w/v semi-skimmed milk in PBS) overnight. The blocking buffer was decanted and 

the membrane was washed twice in wash buffer (PBS with 0.1% v/v tween). The primary 

antibody (anti-PykA or anti-PykF) was added (at dilution of 1:2000 in blocking buffer) to 

the membrane and this was followed by incubation for 1 h. The membrane was washed 

four times in wash buffer, with 5 min washing intervals and the secondary HRP-coupled 

goat anti-rabbit antibody was added to the membrane (at dilution of 1:10,000 in blocking 

buffer). This was followed by incubation for 30 min and then the membrane was washed 

three times in wash buffer. The membrane was developed using Clarity Western Blotting 

substrate (Bio-Rad) and chemiluminescence was detected on an x-ray film. All incubation 

steps were performed at room temperature on a rotating platform. 

 

2.8 Measurements of pyruvate kinase (PK) activity  

2.8.1 LDH-coupled assay 

 The PK activity was measured using an LDH-coupled assay (Figure 2.1). In the 

assay, PK catalyses the de-phosphorylation of PEP into pyruvate, and LDH converts the 

pyruvate into lactate along with consumption of NADH. The decline of the NADH at 340 

nm indicates PK enzymatic activity.  

 

 

 

Figure 2.1: LDH-coupled assay. The PK activity is measured by the decline of the NADH 

concentration which is measurable at 340 nm. 
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2.8.2 Components and measurement of the reaction  

 Components of the LDH-coupled assay can be found in Table 2.11. Stock solutions 

were prepared in dH2O, divided into aliquots and stored at -20oC. The reaction mixture 

was prepared in 1 ml and incubated for 10 min at 37oC before measurement to ensure 

optimum enzymatic activity. PykA and PykF were freshly diluted to 0.1 µg/µl in dialysis 

buffer and these stocks were kept on ice throughout the time of the experiment. The 

reaction was initiated by the addition of 2 µl of PykA stock or 2.5 µl of PykF stock to the 

reaction mixture followed by gentle pipetting for mixing. The reaction was measured 

immediately at 340 nm and 37oC after the addition of the purified enzymes using the 

Eppendorf Biospectrometer. Each reaction was carried out in triplicate. Data were 

analysed using GraphPad prism 7 for extraction of the kinetic constants. One unit of PK 

enzymatic activity was defined as the reduction of 1 µM of NADH per second per 

milligram of protein.  

 

Table 2.11: Components of the LDH-coupled assay. 

Standard reactions Up to 1 ml 

Basic mixture 

(without PEP or ADP) 

50 mM Tris-HCl pH 7.5 

10 mM MgCl2 

0.2 mM NADH 

10 units L-LDH (rabbit muscle) 

Standard titration of PEP 

 

Basic mixture 

2 mM ADP 

Variable PEP  (0-6 mM) 

Standard titration of ADP 

 

Basic mixture 

Variable ADP (0-2.5 mM) 

5 mM PEP 

Regulators                                                        Up to 1 ml 

Screening of regulators at low PEP 

concentration 

Basic mixture 

2 mM ADP 

0.3 mM PEP 

1 mM regulator (unless otherwise 

stated) 
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Table 2.11: Continued  

Screening of regulators at high PEP 

concentration 

Basic mixture 

2 mM ADP 

2 mM PEP 

1 mM regulator (unless otherwise 

stated) 

Titration of PEP with regulators Standard titration of PEP 

1 mM regulator (unless otherwise 

stated) 

Titration of ADP with regulators Standard titration of ADP 

1 mM regulator (unless otherwise 

stated) 

Inhibitors                                                         Up to 1 ml 

Screening of synthetic inhibitors Basic mixture 

2 mM ADP 

5 mM PEP 

200 µM inhibitor 

Titration of PEP with inhibitors Standard titration of PEP 

IC25 or IC50 inhibitor  

Titration of ADP with inhibitors Standard titration of ADP 

IC25 or IC50 inhibitor  

Metal ions                                                        Up to 1 ml 

Screening of divalent ions Basic mixture without MgCl2 

2 mM ADP 

5 mM PEP 

10 mM divalent ions  

Titration of PEP with monovalent 

ions 

Standard titration of PEP 

100  mM monovalent ions  

Titration of ADP with monovalent 

ions 

Standard titration of ADP 

100  mM monovalent ions 

 

 

 



59 

2.8.3 PK activity of cell lysates 

 PK activity in cell lysates was measured using the same protocol for purified 

proteins (LDH-coupled assay). Each reaction consisted of the basic mixture (Table 2.11), 

although PEP (5 mM) and ADP (2 mM) were added at saturation. After quantification of 

proteins, the concentration of the cell lysates were normalized using lysis buffer. The 

reaction was initiated by the addition of an equal volume of normalized cell lysates to the 

reaction mixture. The PK activity was measured immediately after addition of the lysates 

and each experiment was done three times.  

 

2.8.4 Regulators, synthetic inhibitors and metal ions 

 Metabolic regulators, synthetic inhibitors and ions used in this study can be 

found in Table 2.12. Regulators and metal ions were prepared in dH2O at a final 

concentration of 50 mM and 1M, respectively, whereas the synthetic inhibitors were 

dissolved in DMSO at a final concentration of 50 mM. Regulators, inhibitors and ions were 

kept at -20oC, 4oC and room temperature, respectively. 

 

Table 2.12: List of regulators, ions and inhibitors used in this study. 

Regulators 

Sodium acetate 

Acetyl-CoA 

Adenosine monophosphate (AMP) 

Adenosine triphosphate (ATP) 

Citrate 

Co-enzyme A 

Fructose 1,6-bisphosphate (F1,6P) 

Guanosine diphosphate (GDP) 

Guanosine triphosphate (GTP) 

6-phosphogluconate (6PG) 

Glucose 6-phosphate (G6P) 

Glyceraldehyde 3-phosphate (G3P) 

Glycolic acid 

Itaconic acid 

L-glutamic acid 

2-keto-3-deoxy-6-phosphogluconate (KDPG) 

Sodium succinate 

DL-isocitric acid 

Ribose 5-phosphate (R5P) 

Fructose 6-phosphate (F6P) 

Xylulose 5-phosphate (X5P) 

Ribulose 5-phosphate (RL5P) 

Sodium propionate 

cis-aconitic acid 

Ribose 

Glucose 

Fumarate 

Maleic acid 

Methylglyoxal 

3-nitropropionic acid 

α-ketoglutarate 

Malate 
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Table 2.12: Continued 

Monovalent ions 

KCl  

NH4Cl 

NaCl 

  

Divalent ions 

MnCl2 

CaCl2 

NiSO4 

ZnSO4 

CoCl2 

 

Inhibitors 

PZ0301   

S7576 (Shikonin) 

R396907  

S171204  

L334588 

 

2.8.5 Kinetic plots and calculations  

 All data from kinetics analyses were plotted and analysed using GraphPad 

Prism7. With respect to ADP titration, the kinetic constants (Vmax and KM) were obtained 

using the Michaelis-Menten equation as no cooperativity was observed and the data 

were hyperbolic. However, the kinetic constants (Vmax, S0.5 and h) with respect to PEP 

titration were obtained using the allosteric sigmoidal equation as positive cooperativity 

was apparent. The Michaelis-Menten and the allosteric sigmoidal equations are shown 

below: 

 

Michaelis-Menten equation:  Y = Vmax . X/(KM + X)    

Allosteric sigmoidal equation: Y = Vmax . Xh/(S0.5
h + Xh)   

 

in which Vmax is the maximum enzyme velocity, X is the variable concentration of the 

substrate (PEP or ADP), KM is the Michaelis-Menten constant, S0.5 is equivalent to the KM 

when sigmoidal kinetics is applied, and h corresponds to the Hill coefficient. The KM or 

S0.5 is the concentration of the substrate that produces a half-maximal enzyme velocity. 

 

The kcat is the catalytic turnover number and it was calculated from: 

 

kcat = Vmax/Et  
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where the Et is the total concentration of the enzyme (monomer) used in the 

experiments. The Et for the PykA and the PykF was 3.82 nM and 4.85 nM, respectively.  

 

The catalytic efficiency of each enzyme was calculated as shown: 

 

Catalytic efficiency with respect to ADP titration = kcat/KM 

Catalytic efficiency with respect to PEP titration = kcat/S0.5 

 

The Lineweaver-Burk plots were used to determine enzyme activation and enzyme 

inhibition kinetics. The plot results in a straight line with a slope equals to KM/Vmax, a Y-

intercept equals to 1/Vmax and an X-intercept equals to -1/KM. The plots were calculated 

from the double-reciprocal of the data as shown below: 

X = 1/[S]  

Y = (1/Vmax). (1 + KM/[S])   

 

in which [S] corresponds to the variable concentration of the substrate used in the 

experiment. The KM values were substituted with the S0.5 values when investigating 

changes with respect to PEP titration.  

 

2.9 Analytical ultracentrifugation (AUC) 

 AUC was performed in collaboration with Biophysics Facility, University of 

Cambridge Biochemistry Department, in order to determine the oligomeric status of 

PykA and PykF in solution. The protein sample was dialyzed against 20 mM Tris-HCl pH 

7.5, 100 mM NaCl and 0.1 mM EDTA to remove glycerol. The centrepieces of the Epon 

double-sector of Beckman Optima XL-I (AN-60 Ti rotor) were filled with 400 µl of the 

protein or blank buffer. The sample was sedimented at 29160 x g, for 24 hr at 20oC. 

Absorbance data were taken every 2 min at 280 nm with interference scans collected 

every minute. Data analysis and the calculations of buffer viscosity, protein partial 

specific volumes and frictional ratios were performed using SEDFIT (Schuck, 2000) and 

SEDNTERP (Hayes et al., 1995). 
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2.10 X-ray crystallography 

2.10.1 Setting up crystallization screens 

 Crystallization screens were performed using sitting-drop vapour diffusion with 

ready-to-use screening plates from the X-ray Crystallography Facility, University of 

Cambridge. Each purified enzyme was adjusted to 20-30 mg/ml final concentration using 

dialysis buffer and the diluted enzymes were added to the reservoir solution in 1:1 ratio. 

Screening plates were incubated for 2-3 weeks at 19oC until crystals grew and reached a 

desirable size. The crystals were mounted on nylon loops and cryoprotected in mother 

liquor supplemented with 40% (v/v) glycerol before being flash frozen in liquid nitrogen. 

  

2.10.2 Co-crystallization of PykA and PykF 

 Co-crystallization solutions of PykA and PykF were prepared independently 

before being added to screening plates. The co-crystallization solutions (25 µl each) were 

prepared using dialysis buffer and the solutions were incubated for 10 min at room 

temperature before being added to screening plates in 1:1 ratio.  

 

 With respect to PykA, the co-crystallization mixture was made of 22 mg/ml 

purified PykA, 20 mM MgCl2, 2 mM G6P and 2 mM PEP, and the mother liquor consisted 

of 20% (w/v) PEG 3350, 0.1 M Bis-Tris propane pH 7.5 and 0.2 M disodium malonate. 

The co-crystallization solution of PykF consisted of 29 mg/ml purified PykF, 20 mM 

MgCl2, 200 mM KCl and 2 mM PEP and the mother liquor was made of 25% (w/v) PEG 

6000 and 0.1 M Hepes pH 7.5.  

 

2.10.3 X-ray diffraction and structure refinement 

 Diffraction data were collected remotely at the Diamond Light Source 

Synchrotron (Didcot, UK) on beamline IO4 (MX14043-47), at a wavelength of 0.9159 Å. 

The PykA structure was obtained from molecular replacement with BALBES (Long et al., 

2008) using PK of T. brucei (PDB 4HYV) as a structural template. Model building and 

refinement of PykA were performed using Coot (Emsley et al., 2010) and REFMAC5 

(Murshudov et al., 1997), respectively. The PykF structure was obtained from molecular 

replacement with Phaser MR (Adams et al., 2010) using a PykF ensemble generated by 
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the Swiss model (Waterhouse et al., 2018) as a structural template. Model building and 

structure refinement was performed using Coot and phenix.refine (Adams et al., 2010), 

respectively. 

 

 For both structures, ligands, metal ions and water molecules were added as 

appropriate. MolProbity (Chen et al., 2010) was used to check the stereochemistry of the 

structures. PDBePISA (Krissinel and Henrick, 2007) was used for analysis of the inter-

protomer and protein-ligand interfaces, while the PDBeFold (Krissinel et al., 2004) was 

used for analysis of structural alignments. Structural figures were generated using 

CCP4mg (McNicholas et al., 2011). 

 

2.11 Statistical significance 

 Where appropriate, an unpaired t-test was performed between experimental 

groups to investigate statistical significance. The t-test was based on a two-tailed p-value. 

Asterisks were used as indicated on figures to refer to the degree of significance (*=p 

<0.05, **=p <0.01, ***=p <0.001). 
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Chapter 3 

3 Genetic characterization of pykA and pykF  

3.1 Introduction 

Some Gram-negative bacteria encode pykA (pyruvate kinase II) and pykF 

(pyruvate kinase I) instead of a single PK (Ponce et al., 1995; Garcia-Olalla and Garrido-

Pertierra, 1987; Hofmann et al., 2013). In these species, pykF is the dominant isozyme 

and inactivation of pykF causes major perturbations of the metabolism, growth defects 

and most importantly diminished virulence (Ponce et al., 1995; Muñoz and Ponce, 2003; 

Bücker et al., 2014). 

 

P. aeruginosa is an opportunistic pathogen which encodes uncharacterized pykA 

and pykF isoforms. Here, I show that pykA is the dominant isoform, and that it has a 

primary role in pyruvate biosynthesis and cell growth on glucose and glycerol carbon 

sources. In this chapter, I compare pykA and pykF from P. aeruginosa with respect to their 

locations on the genome and protein classifications. I use β-galactosidase activity assays 

to investigate the transcription from the pykA and pykF promoters. I also use Western 

blots to compare the expression of PykA and PykF. I also examine how inactivation of 

pykA, pykF or both genes together impact on pyruvate biosynthesis, cell growth and 

phenotypic behaviour.  

 

3.2 Bioinformatics 

3.2.1 The genomic context of pykA and pykF in P. aeruginosa 

PAO1 (a wild-type strain of P. aeruginosa) encodes two pyruvate kinase (PK) 

genes; pykA (PA4329, 1452 bp) and pykF (PA1498, 1434 bp). The two genes are placed 

more than 2500 genes apart on the chromosome of PAO1 (Figure 3.1A). Investigation of 

the genomic location of pykA revealed that it is found downstream of two hypothetical 

genes (PA4327 and PA4328) which are predicted to be parts of an operon (Figure 3.1B). 

Protein domain analysis using InterPro revealed that PA4327 contains a 

tetratricopeptide repeat (TPR) which is known to mediate protein-protein interactions, 

whereas PA4328 encodes a universal stress protein A (UpsA). The downstream region of 
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pykA consists of another set of genes that are also predicted to be parts of an operon and 

this region included PA4330, PA4331 and sadC which encode an enoyl-CoA hydratase, a 

probable ferredoxin reductase and a protein with diguanylate cyclase activity, 

respectively. 

 

Unlike pykA, pykF (PA1498) is part of a more organized genetic cluster. The 

upstream region of pykF encodes gcl (PA1502), PA1501, PA1500, and PA1499, which are 

predicted to encode genes for enzymes that catalyse a series of reactions involved in 

glyoxylate metabolism (Figure 3.1B, 3.2). pykF is also predicted to be operonic with, and 

to function downstream of PA1499. Similarly, PA1501 and PA1500 are also predicted to 

be parts of an operon. The downstream region of pykF consists of hypothetical genes with 

functions unrelated to glyoxylate metabolism. The genetic bioinformatics of pykA and 

pykF was generated using Pathway Tools software which is integrated with BioCyc 

database collection. 

 

 

 

 

Figure 3.1: The genetic context of pykA and pykF. A) Location of pykA (PA4329) and 

pykF (PA1498) on the PAO1 chromosome. The numbers shown on the top refer to the 

coordinates of each gene (PAO1 chromosome numbering) and the arrows point to the 

direction of the DNA strands. B) Diagram representation of the genetic boundaries of 

pykA (top strand) and pykF (bottom strand). 

A) 

B) 
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Figure 3.2: Predicted reactions catalysed by gene products from the pykF cluster. 

pykF lies within a genetic cluster that is predicted to catalyse a series of reactions involved 

in the conversion of glyoxylate to pyruvate. Enolase is not part of the genetic cluster, but 

is inferred to complete the sequence of reactions. 

 

3.2.2 Phylogenetic classification 

 Before performing any genetic characterization, I wanted to verify that PykA and 

PykF in P. aeruginosa were correctly annotated. Therefore, I investigated the 

phylogenetic classification of PykA and PykF using PANTHER Tree Viewer, which is a 

system for classification of proteins and prediction of their functions based on amino acid 

sequences. Phylogenetic analysis revealed that PykA and PykF from P. aeruginosa are 

different isozymes and that they belong to two independent subfamilies of pyruvate 

kinase (Figure 3.3). The PykA of P. aeruginosa is a member of the pyruvate kinase II 

subfamily and is in the same cluster with other PykA enzymes from E. coli, S. enterica 

Serovar Typhimurium and Y. pestis. By contrast, the PykF from P. aeruginosa is a member 

of PKM subfamily together with PykF enzymes from other species. 

 

 The PANTHER protein classification was confirmed by performing a second 

phylogenetic analysis using selected species that are known to encode PykA and PykF 

together. The amino acid sequences of PykA and PykF from P. aeruginosa, E. coli, S. 

enterica Serovar Typhimurium and Y. pestis were first aligned using the ClustalOmega 

webserver, then the aligned sequences were used to generate a new phylogenetic 

classification using JalView. Results of the new phylogenetic analysis were almost in good 

overall agreement with the PANTHER classification (Figure 3.4). PykA and PykF were 

grouped into two independent branches, with PykA and PykF from P. aeruginosa placed 

correctly in their respective groups.  
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Figure 3.3: A snapshot of PANTHER classification system for a subset of PK enzymes. The PykA and PykF of P. aeruginosa (black 

arrows) belong to two independent subclasses of PK enzymes. 
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Figure 3.4: Phylogenetic analysis of PykA and PykF in selected bacterial species. 

The enzymes are identified by their Uniprot ID, bacterial origin and gene name. 

Phylogeny analysis was done by alignment of the amino acid sequence using 

ClustalOmega, and the average distances were then calculated from percentage sequence 

identity using JalView. The shown distances represent the length of branches (or leaves) 

from their nodes. 

 

3.2.3 Motif analysis 

 Motif analysis provided a more detailed reassurance that PykA and PykF in P. 

aeruginosa were correctly annotated. Motif analysis was done using the ScanProsite 

server. My approach was to find if there were any motifs that distinguish PykA from PykF 

in P. aeruginosa and then to check if the distinguishable motifs were present in PykA and 

PykF from other bacteria.  

 

Results from ScanProsite revealed that most of the motifs are identical in PykA 

and PykF from P. aeruginosa, however, there are a few distinguishable motifs which could 

discriminate each enzyme (Table 3.1). Motif analysis of PK enzymes from P. aeruginosa 
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showed that PykA has a unique predicted tyrosine kinase phosphorylation (TKP) site that 

is absent in PykF, whereas PykF encodes a unique predicted cAMP/cGMP dependent 

protein kinase phosphorylation (CAG-DPKP) site that is absent in PykA. With this, I 

carried out a motif analysis of PykA from other species to see if they encode a TKP site 

similar to PykAPA. Likewise, I analysed the PykF from other species to see if they encode 

a CAG-DPKP site similar to PykFPA. The ScanProsite results revealed that the PykA 

enzymes from these species are similar to PykAPA
 and they encode the TKP site that is 

absent in the PykF enzymes (Table 3.2). Also, the PykF enzymes from these species has a 

unique CAG-DPKP that is absent in the PykA enzymes. This confirmed further that the 

PykAPA
 and the PykFPA

 were correctly annotated PykA and PykF enzymes, respectively. 

 

Table 3.1: Motif analysis of PykA and PykF from P. aeruginosa. Analysis was 

performed by ScanProsite webserver. Red asterisks refer to the distinguishable motif for 

each enzyme. Consensus patterns of the predicted motifs are shown. 

 

Predicted Sites 

 

PykA 

 

PykF 

Pyruvate kinase active site signature 

[LIVAC]-x-[LIVM](2)-[SAPCV]-K-[LIV]-E-[NKRST]-x-[DEQHS]- [GSTA]-[LIVM] 

Yes Yes 

Protein kinase C phosphorylation site 

[ST]-x-[RK], S or T is the phosphorylation site 

Yes Yes 

N‐myristoylation site 

G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}, G is the N-myristoylation site 

Yes Yes 

N‐glycosylation site 

N-{P}-[ST]-{P}, N is the glycosylation site 

Yes Yes 

Casein kinase II phosphorylation site 

[ST]-x(2)-[DE], S or T is the phosphorylation site 

Yes Yes 

Tyrosine kinase phosphorylation site  

[RK]-x(2)-[DE]-x(3)-Y or[RK]-x(3)-[DE]-x(2)-Y, Y is the phosphorylation site 

Yes* _____ 

Cell attachment sequence 

R-G-D 

Yes Yes 

cAMP‐ and cGMP‐dependent protein kinase phosphorylation 

site 

[RK](2)-x-[ST], S or T is the phosphorylation site  

_____ Yes* 
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Table 3.2: Motif analysis of PykA and PykF in different bacterial species. Motifs are 

predicted by ScanProsite webserver based on the amino acid sequence of each enzyme.  

TKP and CAG-DPKP refer to tyrosine kinase phosphorylation site and cAMP/cGMP 

dependent protein kinase phosphorylation site, respectively. The subfamily classification 

of each enzyme is according to PANTHER Tree Viewer. 

 
Origin UnitProt ID TKP  CAG-DPKP Subfamily 

PykA (P. aeruginosa) Q9HW72 Present Absent Pyruvate kinase II 

PykA (Y. pestis) Q0WF92 Present Absent Pyruvate kinase II 

PykA (E. coli) P21599 Present Absent Pyruvate kinase II 

PykA (S. typhimurium) Q8ZNW0 Present Absent Pyruvate kinase II 

PykF (P. aeruginosa) Q9I3L4 Absent Present PKM 

PykF (Y. pestis) Q0WEC9 Absent Present PKM 

PykF (E. coli) P0AD61 Absent Present PKM 

PykF (S. typhimurium) P77983 Absent Present PKM 

 

 

 

 

 

 

 

 

http://www.uniprot.org/uniprot/P21599
http://www.uniprot.org/uniprot/Q0WEC9
http://www.uniprot.org/uniprot/P0AD61
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3.3 β-galactosidase activity of the pykA and the pykF promoters 

3.3.1 Construction of the pykA and the pykF transcriptional reporters 

For identification of environmental factors which might modulate the expression 

of pykA and pykF, transcriptional reporter strains were constructed using the 

promoterless pLP170-lacZ vector. For measurement of pykA transcription, the pykA 

promoter was cloned upstream of the lacZ reporter yielding pLP170-pykA. For 

measurement of pykF transcription, the promoter preceding the gene upstream of pykF 

(promoter of PA1499) was cloned in front of the lacZ gene, generating pLP170-PA1499. 

The lacZ reporter constructs were introduced into PAO1 to generate PpykA and PpykF 

which were used in transcription experiments.  

 

3.3.2 Transcription of pykA was consistently higher than pykF 

The β-galactosidase activity was measured in the PpykA and the PpykF grown in 

minimal media with different carbon sources. Glucose and glycerol were used as 

representative carbon sources feeding into the upper part of the EDP, whereas acetate 

and succinate were used as representative carbon sources feeding into metabolism after 

the EDP. Transcription of pykA and pykF was measured in cells grown in aerobic (Figure 

3.5) and limited oxygen conditions (Figure 3.6). Additionally, to check the effect of low 

temperature on the transcription of pykA and pykF, the β-galactosidase activity was also 

measured in the PpykA and the PpykF grown at 28oC in minimal media supplemented 

with glucose (Figure 3.7). 

 

The promoter activity of pykA was found to be consistently higher than that of 

pykF in all tested carbon sources, oxygen conditions and temperatures. Moreover, pykA 

transcription displayed a trend when cells grew in the presence of limiting oxygen. When 

the cells grew in glucose and glycerol at limited oxygen levels, transcription of pykA was 

high during exponential growth (1-6 hr) and tailed off during the stationary phase (up to 

31 hr). In contrast, the promoter activity of pykA seemed to reach its highest levels after 

24-25 hr of growth in acetate or succinate at limited oxygen levels. The control strain 

harbouring empty pLP170 did not show any β-galactosidase activity in all cases when 

compared with the PpykA or the PpykF. 



72 

 

 

Figure 3.5: Transcription of pykA and pykF in aerobic conditions. PpykA (PAO1 

harbouring pLP170-pykA) and PpykF (PAO1 harbouring pLP170-PA1499) were grown in 

minimal media with 20 mM glucose, 30 mM glycerol, 40 mM acetate or 20 mM succinate 

(as indicated) in aerobic conditions at 37oC. The β-galactosidase activity (as a proxy of 

transcriptional levels) and cell growth are represented in bars and lines, respectively. The 

β-galactosidase activity was measured in three biological replicates and the error bars 

represent standard error. Abbreviations: RFU, relative fluorescence units; OD600, optical 

density measured at 600 nm. Statistical significance was performed using an unpaired t-

test (*=p <0.05, **=p <0.01, ***=p <0.001). 
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Figure 3.6: Transcription of pykA and pykF in limited oxygen levels. PpykA (PAO1 harbouring pLP170-pykA) and PpykF (PAO1 

harbouring pLP170-PA1499) were grown in minimal media with 20 mM glucose, 30 mM glycerol, 40 mM acetate or 20 mM succinate (as 

indicated) at 37oC, under a layer of mineral oil. The β-galactosidase activity (as a proxy of transcriptional levels) and cell growth are 

represented in bars and lines, respectively. The β-galactosidase activity was measured in three biological replicates and the error bars 

represent standard error. Abbreviations: RFU, relative fluorescence units; OD600, optical density measured at 600 nm. Statistical 

significance was performed using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p <0.001).
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Figure 3.7: Transcription of pykA and pykF at 28oC. PpykA (PAO1 harbouring pLP170-

pykA) and PpykF (PAO1 harbouring pLP170-PA1499) were grown in minimal media with 

20 mM glucose in aerobic condition. The β-galactosidase activity (as a proxy of 

transcriptional levels) and cell growth are represented in bars and lines, respectively. The 

β-galactosidase activity was measured in three biological replicates and the error bars 

represent standard error. Abbreviations: RFU, relative fluorescence units; OD600, optical 

density measured at 600 nm. Statistical significance was performed using an unpaired t-

test (*=p <0.05, **=p <0.01, ***=p <0.001). 

 

3.4 Protein expression and enzymatic activity of PykA and PykF 

3.4.1 Generation of the PAF0 double mutant 

The PW8308 and PW3705 are transposon mutants of pykA and pykF, respectively, 

which were purchased from the UWGC PAO1 mutant bank. The two single mutants were 

used in generation of a double mutant defective in both genes (PAF0). This was done 

using phage transduction (Figure 3.8). The tetracycline resistance marker was first 

removed from PW8308 using pFLP2-cre plasmid, producing PW8308-cre mutant. 

Excision of the transposon from pykA left behind a 64-codon scar within the pykA ORF 

and this was confirmed using PCR (Figure 3.9). PW8308-cre (pykA- pykF+) was then 

infected by a phage which contains the genetic material of PW3705 (pykA+ pykF-), 

generating a double pykA pykF mutant (PAF0). I used PCR to verify that PAF0 contains a 

transposon within the pykF ORF (indicative of pykF mutation) and a small genetic scar 

within the pykA ORF (indicative of pykA mutation). 
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Figure 3.8: Construction of the 

PAF0 (pykA-pykF-) double mutant 

using phage transduction. The 

antibiotic marker was first 

removed from the tetracycline 

resistant PW8308 (pykA mutant) 

using Cre-recombinase excision 

producing a tetracycline sensitive 

PW8308-cre mutant. The latter 

(tetracycline sensitive) was mixed 

with phage lysate of ØPA3 containing the genetic material of PW3705 (pykF mutant, 

tetracycline resistant) to generate PAF0 (double mutant, tetracycline resistant) using 

generalized phage transduction.  

 

 

 

Figure 3.9: Excision of the transposon from the pykA mutant. A) Cartoon 

representation of the mechanism of excision of the antibiotic marker from the pykA 

mutant using Cre-recombinase following introduction of pFLP2-cre. B) Image of an 

agarose gel showing a DNA band of pykA disrupted with 64-codon scar after removal of 

the transposon (green arrow). The intact pykA gene band (1452 bp) is shown for 

comparison. The shown DNA bands were produced from PCR amplification of genomic 

DNA from the wild-type (generated intact pykA band) and PW8308-cre (generated 

disrupted pykA band), using rPykA R and rPykA F primers. Other bands (2000 bp and 

3000 bp) were generated non-specifically.  
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3.4.2 Complementation of the pykA and pykF mutants 

To confirm that observed phenotypes were truly caused by dysfunction of pykA 

and pykF, PW8308 (pykA- pykF+), PW3705 (pykA+ pykF-) and PAF0 (pykA- pykF-) were 

complemented using pUCP20 constructs. For complementation with pykA, the upstream 

region (500 bp) and the ORF of pykA were ligated into compatible sites of pUCP20 

generating pUCP20-pykA. The plasmid was introduced into PW8308 and PAF0 to produce 

PW8308C and PAF1, respectively. For complementation with pykF, the region spanning 

500 bp upstream of PA1499 to the 3’ end of pykF was ligated into compatible sites of 

pUCP20 producing pUCP20-pykF. The generated pUCP20-pykF was introduced into 

PW3705 and PAF0, generating PW3705C and PAF2, respectively. 

 

3.4.3 Protein expression of the PykA was turned on in all tested carbon sources 

To investigate if the transcription profiles of pykA and pykF correlate with their 

protein expression levels, Western blot analysis was performed using anti-PykA and anti-

PykF antibodies. First, cell lysates from PAO1, PW8308, PW3705 and PAF0 were 

prepared from cells grown in minimal media with glucose, glycerol, acetate, succinate or 

ribose as sole carbon source, in aerobic conditions. The concentration of the total protein 

was measured using Bradford assay and normalized for each Western blot. Anti-PykA 

and anti-PykF primary antibodies were used for detection of PykA and PykF, respectively. 

 

Consistent with the transcription results, a band of 52.3 kDa corresponding to 

PykA was clearly seen on the Western blots of PAO1 grown in all carbon sources. PykA 

expression was also seen in PW3705 (pykA+ pykF-) and was absent from PW8308 (pykA- 

pykF+) and PAF0 (pykA- pykF-) in all tested carbon sources (Figure 3.10). This was 

expected given that PW3705 encodes intact pykA, whereas PW8308 and PAF0 encode a 

disrupted pykA gene. Interestingly, the intensity of the PykA band was nearly doubled in 

the PW3705 compared with the PAO1 when cells grew in glucose and glycerol. Most 

likely, the elevated PykA expression was essential to compensate for the loss of the PykF 

in PW3705. Repeat Western blot analysis using cell lysates from the pykA complemented 

strains (PW8308C and PAF1) revealed that PykA expression was fully recovered (Figure 

3.10). 
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Although PykA was expressed in measurable ranges, the expression of PykF (51.5 

kDa) was undetectable. The Western blots from PAO1 and PW8308 (both encoding intact 

pykF) revealed no PykF band when blotted with anti-PykF antibodies. Moreover, no PykF 

expression was seen in any tested carbon sources. Western blot analysis of the pykF 

complemented strains (PW3705C and PAF2) revealed clear PykF bands against anti-PykF 

antibodies (Figure 3.10). The detectable PykF expression in the latter strains confirmed 

that the quality of the antibodies were in fact good. This also indicates that the basal levels 

of the PykF expression in PAO1 and P8308 were low, beyond the detection limit using 

Western blot analysis. 

 

 

 

Figure 3.10: Western blot analysis using anti-PykA (left panel) and anti-PykF (right 

panel) antibodies. Cell lysates were collected from stationary phase cultures grown in 

minimal media with 20 mM glucose, 30 mM glycerol, 40 mM acetate, 20 mM succinate or 

15mM ribose as sole carbon sources, aerobically at 37oC. Protein concentration was 

quantified using Bradford assay and normalized for each blot. The left panel shows 

lysates of the wild-type and the indicated mutants blotted using anti-PykA antibodies, 

whereas the right panel shows lysates of the indicated mutants complemented with pykF 

and blotted using anti-PykF antibodies. 
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3.5 Enzyme activity of PykA and PykF 

3.5.1 LDH-coupled assay 

The function of PK is to convert ADP and phosphoenolpyruvate into ATP and 

pyruvate, respectively. Thereby, pyruvate biosynthesis is directly correlated with ATP 

production. In order to investigate the contribution of pykA and pykF to pyruvate 

biosynthesis, PK enzymatic activity was measured in bacterial cells using an LDH-coupled 

assay. The assay is an indirect measurement of PK activity which quantifies the 

consumption of NADH (needed for conversion of the produced pyruvate into lactate). The 

enzymatic activity of PK was measured in cell lysates from PAO1, PW8308, PW3705 and 

PAF0 (Table 3.3). Cell lysates were collected from bacteria grown to stationary phase in 

M9 minimal media with different carbon sources in aerobic conditions. The 

concentration of total protein was quantified and normalized before each experiment. 

 

3.5.2 pykA contributes more to pyruvate biosynthesis than pykF 

The LDH-coupled assay revealed that pyruvate biosynthesis was associated with 

the availability of pykA (Table 3.3). The wild-type and PW3705 (both encode an intact 

pykA) exhibited high PK activity in all carbon sources. The highest levels of activity were 

reached when cells grew on succinate, which is a preferred carbon source for P. 

aeruginosa (Magasanik, 1961). In contrast, the measured PK activity was lower in 

PW8308 and PAF0 (both are pykA mutants) in all carbon sources. These findings indicate 

that PK activity correlates primarily with expression of PykA in the cell. 

 

Although the PK activity in PW8308 (pykA- pykF+) was low in almost all carbon 

sources, there was moderate enzymatic activity in the lysates of cultures grown in ribose. 

This was unexpected because there was no detected PykF expression on Western blots 

of lysates of cultures grown in ribose. Thus, it is likely that growth in ribose activates 

PykF, present in the background of PW8308.  

 

 Progression of CF disease is associated with accumulation of thick mucus in the 

airways of CF patients, changing the aerobic environment of the lungs into microaerobic 

or anaerobic (Worlitzsch et al., 2002). To see if low oxygen levels had an effect on PK 

enzymes, I measured the PK activity in cell lysates of cultures grown in microaerobic 
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conditions with glucose (Figure 3.11). Again, the LDH-assay revealed that lysates from 

PAO1 and PW3705 (both have intact pykA) had substantial PK activity compared with 

lysates from PW8308 and PAF0 (both are pykA mutants). Given that the pattern of PK 

activity was similar in aerobic and low oxygen levels, it seems that in P. aeruginosa, the 

regulation of PK activity is independent on the oxygen condition. 

 

Complementation of the pykA mutants (PW8308 and PAF0) by expression of pykA 

in trans fully restored PK activity. However, the enzymatic activity in the complemented 

strains (PW8308C and PAF1) was significantly higher than the basal PykA activity in the 

wild-type, which was unsurprising given the high copy number vector employed. 

 

Table 3.3: PK activity in cells grown in different carbon sources. Bacteria were grown 

to stationary phase in M9 minimal media with 20 mM glucose, 30 mM glycerol, 40 mM 

acetate, 20 mM succinate or 15 mM ribose as sole carbon sources, aerobically at 37oC. PK 

activity was measured using an LDH-coupled assay. The values represent samples from 

three biological replicates and the standard error is indicated. 

 

Pyruvate kinase activity (µM pyruvate/min/mg)  

 PAO1 

pykA+ 

pykF+ 

PW8308 

pykA- 

pykF+ 

PW3705 

pykA+ 

pykF- 

PAF0 

pykA- 

pykF- 

PW8308C 

pykA+ 

pykF+ 

PAF1 

pykA+ 

pykF- 

Glucose 89 ± 6 7 ±  1 91 ±  5 2 ±  1 583 ±  38 510 ± 16 

Glycerol 127 ±  12 7 ±  1 99 ±  9 3 ±  1 1078 ± 111 1406 ± 85  

Acetate 108 ±  6 2 ±  2 107 ±  6 3 ±  2 1136 ± 123 526 ± 31 

Succinate 170 ±  3 0 209 ± 5 0 1360 ± 10 1243 ± 41 

Ribose 122 ± 12 36 ± 7 103 ± 16 9 ± 4 538 ± 28 770 ± 49 
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Figure 3.11: PK activity in cells grown in glucose in low oxygen levels. Bacteria were 

grown until stationary phase in M9 minimal media with 20 mM glucose in microaerobic 

conditions at 37oC, using an LDH-coupled assay. PK activity was measured in three 

biological replicates and error bars represent standard error. Statistical significance was 

performed using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p <0.001). 

 

3.6 Growth analysis of pykA and pykF mutants 

To see if pykA and pykF were essential for growth, I compared the growth of PAO1 

to the PK mutants (PW8308, PW3705, PAF0) in different carbon sources. Growth rates 

were measured in liquid minimal media supplemented with 20 mM glucose, 30 mM 

glycerol, 40 mM acetate or 20 mM succinate. Growth was also compared using M9 

minimal agar supplemented with the same carbon sources. Growth in liquid cultures and 

agar was measured in aerobic conditions at 37oC. 

 

3.6.1 Growth in glucose and glycerol 

Growth in liquid media containing glucose and glycerol revealed that pykA 

contributes to growth of PAO1. Whereas, deletion of pykA, as in PW8308 and PAF0, 

caused a decline in the growth rate compared with the wild-type or PW3705 (figure 

3.12). Moreover, PAF0 (pykA- pykF-) was the most impaired for growth in glucose and 

glycerol. Interestingly, PW3705 (pykA+ pykF-) also showed slight impairment of growth 

in these carbon sources, indicating that pykF also seemed to have little effects on growth 

in glucose and glycerol. After 10 hr of growth in glucose, both PAO1 and PW3705 reached 

the same final OD600, whereas PW8308 and PAF0 reached an endpoint OD600 that was 



81 

clearly lower. In glycerol, the mutants could not reach the same final OD600 of the wild-

type, indicating that pykA and pykF combined seemed to be important for growth in 

glycerol. Growth on agar media was in agreement with the measured growth rates in 

liquid media. On glucose and glycerol minimal agar, PW8308 and PAF0 showed less 

growth compared with the wild-type, whereas the growth of PW3705 was comparative 

to the wild-type (figure 3.14).  

 

 

 

 

Figure 3.12: Impaired growth of the pykA defective mutants in glucose liquid 

media. Top figure: Growth curve in M9 minimal media with 20 mM glucose. Cells were 

grown in aerobic conditions at 37oC. Data represent the mean of three biological 

replicates ± standard error. Bottom figure: Image of bacterial cultures collected at the end 

of the growth curve (after 10 hr). The photograph represents a subset of three biological 

replicates. 
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Compared with glucose, all cells grew much slower in glycerol liquid media with a 

prolonged lag phase at the beginning of the growth rate (figure 3.13). On solid media, the 

lag phase extended to almost 24 hr as none of the cells grew, so the agar plates were left 

until 48 hr before growth was checked. The observed lag phase during growth of cells in 

glycerol was mostly due to the expression of GlpR regulator which represses the glp gene 

operon responsible for glycerol metabolism. The negative effects of GlpR on the glp genes 

are alleviated by the increase of the G3P pool in the cell (Schweizer and Po, 1996; Nikel 

et al., 2015b). 

 

Figure 3.13: Impaired growth of pykA defective mutants in glycerol liquid media. 

Bacterial cells were grown in M9 minimal media with 30 mM glycerol in aerobic 

conditions at 37oC. Data represent the mean of three biological replicates ± standard 

error.  

 

Figure 3.14: Impaired growth of pykA defective mutants on minimal agar. The cells 

were grown on M9 minimal agar with 20 mM glucose or 30 mM glycerol in aerobic 

conditions at 37oC.  

PAO1 pykA+ pykF+ 

PW8308 pykA- pykF+ 

PW3705 pykA+ pykF- 

PAF0 pykA- pykF- 
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3.6.2 Growth in acetate and succinate 

Growth of PAO1 and the PK mutants was also compared in minimal media 

containing acetate or succinate. In these media, PW8308 and PW3705 grew with 

comparable rates, although slightly slower than the growth of the wild-type (Figure 3.15). 

PAF0 again showed the slowest growth among all cells in these carbon sources. After 8-

10 hr of growth in acetate or succinate, all mutants reached the same final OD600 that was 

slightly below the final OD600 of the wild-type. The growth rates of the PK mutants in 

acetate and succinate indicated that pykA and pykF have little effects on growth with 

carbon sources that comes after the PK step in the EDP. These carbon sources will most 

likely feed directly into the TCA cycle, bypassing the PK reaction. Complementation of the 

pykA and pykF mutants restored the slightly impaired growth rates to wild-type levels. 

 

 

 

 

Figure 3.15: Growth of PK mutants in acetate and succinate. Cells were grown in M9 

minimal media with 40 mM acetate or 20 mM succinate aerobically at 37oC. Data 

represent the mean of three biological replicates ± standard error.  
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3.7 Phenotypic analysis of the pykA and pykF mutants 

P. aeruginosa contains a plethora of virulence factors which enable the pathogen 

to cause tissue destruction, evade antimicrobial treatment and promote its own survival. 

In some bacteria, PK was found to have an impact on many of these pathogenic traits. I 

therefore investigated if pykA and pykF were associated with virulence phenotypes in P. 

aeruginosa. 

 

3.7.1 Secretion of exoenzymes 

P. aeruginosa secretes proteases which facilitate invasion of the host tissue 

(Sakata et al., 1996). To test for secretion of proteases, the wild-type and the PK mutants 

(PW8308, PW3705 and PAF0) were spotted onto agar media containing gelatin or casein 

as substrates for the proteolytic activity. Caseinase and gelatinase activity was detected 

as a hydrolysed clear zone around the bacterial colony, indicating degradation of the 

substrates. The wild-type and the mutants were able to secrete caseinase and gelatinase 

efficiently and to form clear zones of proteolysis surrounding the growing colonies 

(Figure 3.16). Therefore, the production of proteases seemed to be independent of pykA 

and pykF. 

 

3.7.2 Production of rhamnolipids 

 Rhamnolipids are glycolipids produced intracellularly and secreted to the exterior 

of P. aeruginosa. They play an important role in maintenance of biofilm architecture, 

inhibition of phagocytosis and in promoting swarming motility (Davey et al., 2003; 

McClure and Schiller, 1996; Caiazza et al., 2005). To test for rhamnolipid production, 

PW8308, PW3705 and PAF0 were spotted onto PPGAS agar. Formation of clear blue halos 

indicated positive rhamnolipid production (Figure 3.17). Although the spreading of 

colonies from PW8308 (pykA- pykF+) and PAF0 (pykA- pykF-) seemed less, both were still 

able to produce clear blue halos comparable with the wild-type (pykA+ pykF+) and 

PW3705 (pykA+ pykF-). Apparently, the production of rhamnolipids was not influenced 

by mutation of PK genes. 
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Figure 3.16: Production of caseinase and gelatinase. Bacteria were spotted onto 

plates containing skim milk or gelatin. Secretion of proteolytic enzymes was visualized 

by a clear halo formation around the growing colonies. The production of the exoenzymes 

was seen in the wild-type and the PK mutants.  

 

 

 

 

Figure 3.17: Production of rhamnolipids. Clear halos surrounding the colonies 

indicate production of the rhamnolipids. The wild-type and the PK mutants were both 

capable of producing rhamnolipids. 
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3.7.3 Biofilm formation 

It is the aggregation of bacterial cells on a biotic or non-biotic surface (Abdallah et 

al., 2014). P. aeruginosa has been speculated to grow in biofilms in the cystic fibrosis lungs 

(Høiby et al., 2010). By forming biofilms, P. aeruginosa can potentially evade the host 

immune response and become more resistant to antimicrobial agents (Bielen et al., 2017; 

Drenkard, 2003). To see if the PK genes contribute to biofilm formation, I screened 

PW8308, PW3705 and PAF0 for their ability to form biofilms.  

 

The PK mutants were able to form biofilms to varying degrees in LB media (Figure 

3.18). Unexpectedly, the biofilm formed by PW8308 and PAF0 that were deficient in pykA, 

was denser than that formed by wild-type and PW3705. Moreover, the same pattern was 

seen following growth in minimal media with glucose, where PW8308 and PAF0 again 

exhibited greater biofilm formation than the wild-type and PW3705 (Figure 3.18). The 

increased biofilm formation of PW8308 and PAF0 may be an indication that these cells 

were experiencing some stress (which could be due to loss of pykA). Future work should 

investigate this further. 

 

 

 

Figure 3.18: Biofilm formation by PK mutants. Biofilms were grown in 96-well plates 

for 24 hr at 37oC. Biofilm formation was measured by the intensity of the crystal violet 

staining of the adherent cells on the sides of the wells. The data represents the mean of 

three biological replicates (Adjusted OD600 = OD600 of sample-OD600 of blank) and error 

bars represent standard error. Statistical significance was performed using an unpaired 

t-test (*=p <0.05, **=p <0.01, ***=p <0.001). 
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3.7.4 Motility assays  

P. aeruginosa has a single polar flagellum which enables the bacteria to perform 

swimming and swarming activities. From clinical perspective, severe and acute infections 

of P. aeruginosa are primarily associated with motile strains (Wolfgang et al., 2004). To 

test if pykA and pykF have an effect on motility, overnight cultures of PW8308, PW3705 

and PAF0 were spotted onto swim and swarm agar plates. Swimming and swarming 

activities were detected by formation of concentric halos and branch-spreading patterns 

on the semi-solid agar, respectively. Results of the motility assays can be seen in Figure 

3.19. 

 

Motility assays revealed that PW8308 and PW3705 were able to swim and swarm 

similar to the wild-type after 15 hr of incubation (Figure 3.19). However, PAF0, which 

was defective in both pykA and pykF, was unable to swim even after prolonged incubation 

for 48 hr. In addition, the double mutant strain also had decreased swarming motility. 

This decreased motility of PAF0 indicated either that the combined effects of pykA and 

pykF were necessary for motility, or that there might be unrelated secondary phenotypes. 

Consistent with this possibility motility assays using PAF1 (expressing pykA in trans) and 

PAF2 (expressing pykF in trans) failed to restore motility on the swim or swarm agar 

plates. 

 

 

Figure 3.19: Motility of the PK mutants. Overnight cultures of PK mutants were spotted 

onto swarm and swim agar, where motility was visualized as concentric halos indicative 

of swimming activity or branch-spreading patterns indicative of swarming activity. 

PAO1 pykA+ pykF+ 

PW8308 pykA- pykF+ 

PW3705 pykA+ pykF- 

PAF0 pykA- pykF- 
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3.8 Discussion 

3.8.1 pykA is the dominant PK in P. aeruginosa 

P. aeruginosa encodes pykA and pykF isozymes, similar to a group of 

Enterobacteriaceae including E. coli, S. enterica serovar Typhimurium and Y. pestis. Prior 

work done on pykA and pykF from the latter species revealed that pykF is the dominant 

enzyme and that the PykF activity has been linked with pyruvate biosynthesis, cell 

metabolism and virulence, whereas pykA was dispensable in these species (Ponce et al., 

1995; Muñoz and Ponce, 2003; Garcia-Olalla and Garrido-Pertierra, 1987; Bücker et al., 

2014). Nonetheless, findings from this chapter revealed that pykA is certainly the 

dominant PK in P. aeruginosa, whereas pykF plays a minor role. The LDH-coupled assay 

demonstrated that pykA was responsible for more than 90% of the PK enzymatic activity 

in lysates of cultures grown in all carbon sources and that inactivation of pykA caused a 

significant decline in the enzymatic activity. Moreover, pykA was essential for metabolism 

of carbon sources that feed into the EDP, so growth in glucose and glycerol was affected 

when pykA was inactivated. Whereas, pykA seemed to have little impact on metabolism 

of carbon sources that feed into the EDP but after the PK step (acetate and succinate). 

This is apparently why growth in acetate and succinate was not affected by inactivation 

of pykA as these carbon sources can feed directly into the TCA cycle, bypassing the PK 

reaction. In P. aeruginosa, pykF seemed to contribute very little mainly to partially rescue 

the growth of cells, when pykA was non-functional. Thus, finding a metabolic target such 

as pykA with direct and major impacts on metabolism and cell growth, is immensely 

important especially when there is an ongoing global call aiming to identify new drugs to 

treat P. aeruginosa infections.  

 

3.8.2 Up-regulated transcription of pykA 

The main reason for the dominance of pykA over pykF in P. aeruginosa is related 

to its great transcription and protein expression. Measurement of β-galactosidase activity 

associated with a pykA transcriptional reporter gene fusion revealed that the promoter 

of pykA was persistently active in all tested carbon sources, oxygen levels and 

temperatures. On the other hand, the promoter of PA1499 which is predicted to also drive 

the transcription of pykF, was low in all tested conditions. The Western blots were in 
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agreement with the transcriptional profiles and indicated that PykA is constantly 

expressed, whereas PykF expression is negligible. 

 

The up-regulated transcription of pykA in P. aeruginosa was considered unusual 

as compared with other bacteria that encode pykA and pykF enzymes, where the 

transcription of pykA in the latter species is usually lower than pykF (Al-Zaid Siddiquee 

et al., 2004). The unusual transcription of pykA in P. aeruginosa could be related to its 

genomic location in this organism compared with other species. pykA from the 

Enterobacteriaceae is present downstream of HexR/YebK which probably alters pykA 

transcription in these species (Figure 3.20). The HexR/YebK is a member of the RpiR 

family and is characterized in P. putida as a negative transcriptional regulator for glucose 

metabolism. Analysis of taxonomic distribution of HexR-regulated genes in 

Proteobacteria revealed that pykA is regulated by HexR in at least 30 species from six 

different lineages (Leyn et al., 2011). Gel shift assays showed that HexR binds to genes of 

glucose metabolism causing significant repression of their activity (Daddaoua et al., 

2009). In some organisms, inactivation of HexR was also found to cause global changes 

to glucose metabolism and most importantly up-regulation of pykA transcription 

(Antunes et al., 2016). Therefore, it is likely that HexR, upstream gene of pykA in 

Enterobacteriaceae, has a negative impact on the transcription of pykA in these species.  

 

 PA3184 is the HexR homologue in P. aeruginosa that regulates transcription of 

metabolic enzymes involved in glucose degradation (Udaondo et al., 2018). In P. 

fluorescens and P. putida, HexR primarily targets the promoters of glucose 6-phosphate 

dehydrogenase (zwf), 6-phosphogluconate dehydratase (edd) and glyceraldehyde 3-

phoshpate dehydrogenase (gap) (Campilongo et al., 2017; Daddaoua et al., 2009). 

However, pykA has not been identified as one of the Hex-regulon genes in Pseudomonas 

species (Udaondo et al., 2018; Kim et al., 2008). Moreover, the negative effects of HexR 

on its target genes are alleviated by binding of HexR to 2-keto-3-deoxy-6-

phosphogluconate (KDPG), which is a key metabolite of the EDP (Kim et al., 2009). Taken 

together, the transcription of pykA in P. aeruginosa seems to be unaffected by HexR, 

whereas the transcription of pykA homologues in other Gram-negative bacteria is 

probably suppressed by HexR. 
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Figure 3.20: The genomic location of pykA in selected bacterial species. The genomic 

position of pykA is shown in P. aeruginosa (PAO1 NC-002516), E. coli (K-12 MG1655), S. 

enterica Serovar Typhimurium (LT2 NC_003197) and Y. pestis (CO92 NC-003143) on the 

basis that they encode pykA and pykF genes. The genetic cluster of HexR analogue 

(PA3184) in P. aeruginosa is included for clarity. Colours refer to similar genes and sizes 

of genes are not represented. 

 

3.8.3 Transcription and function of PykF 

Whilst pykA was clearly the dominant PK in all tested conditions, the role of pykF 

was unclear. In this study, there was no condition identified that could have triggered the 

transcription of pykF, except when the gene was overexpressed using a high copy plasmid 

such as pUCP20. Complementation using pUCP20-pykF was able to boost the dormant 

transcription and expression of pykF in P. aeruginosa. Moreover, the gene expression of 

pykF was most likely driven by the activity of the lacZ promoter in pUCP20, and not by 

the promoter of PA1499 (predicted to be operonic with pykF). 

 

The pykF is found among an organized genetic cluster on the P. aeruginosa 

chromosome. The gene is present downstream and predicted to be operonic with PA1499 

as shown in Figure 3.1B. Moreover, the two genes are part of an organized gene cluster 

where all of the encoded genes are annotated as hypothetical, except for pykF. The 

possible function of this operon, including pykF, is to catalyse a series of reactions 

involved in glyoxylate metabolism. This is in agreement with a recent study involving the 

equivalent pykF genetic cluster in P. putida, where the corresponding genes encode 
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enzymes that catabolize ethylene glycol (a precursor of glyoxylate) (Franden et al., 2018). 

Likewise, pykF from P. aeruginosa may be important for metabolism of ethylene glycol. 

 

The second probable function of pykF in P. aeruginosa could be correlated with 

ribose metabolism. This is because the PK activity of PW8308 (pykA- pykF+) was higher 

when cells grew in ribose as compared with negligible PK activity when cells grew in 

other carbon sources. This was particularly interesting because there was no detectable 

PykF on the Western blots from cells grown in ribose. It is likely that although PykF 

expression was undetectable or little in ribose, the activity of PykF was enhanced by 

ribose or ribose-related metabolites. To investigate this further, the enzymatic activity of 

purified PykF has to be measured in the presence of ribose and ribose-derivatives. 

 

3.8.4 Motif analysis of PykA and PykF 

Findings from the evolutionary and motif analyses demonstrated that the PykA and 

PykF from P. aeruginosa belong to different PK subclasses and that they were correctly 

annotated. Furthermore, motif analysis revealed that each isozyme is predicted to have a 

unique phosphorylation site that can be used for identification. A TKP site was predicted 

for identification of PykA group members, whereas a CAG-DPKP site was predicted for 

identification of PykF group members. 

 

In fact, this raised the question of whether bacterial PK can actually undergo 

phosphorylation. In prokaryotes, there is some evidence that enzymes can be 

phosphorylated including pyruvate kinases. For example in S. aureus, functional analysis 

revealed that the PK is phosphorylated by PknB protein kinase leading to a drop in the 

PK activity (Vasu et al., 2015). Likewise, PK from M. tuberculosis is also a substrate of a 

PknJ protein kinase which can also phosphorylate key residues of PK in this organism 

(Arora et al., 2010). Motif analysis of PK from S. aureus dictates that the enzyme has a 

CAG-DPKP phosphorylation site (Vasu et al., 2015) similar to PykF group members, 

whereas PK of M. tuberculosis alternatively encodes a TKP site similar to PykA group 

members. Thus, it is likely that PykA and PykF from P. aeruginosa and the 

Enterobacteriaceae may also be subjected to phosphorylation that possibly influences 

their activity. 
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3.9 Conclusion 

 In Gram-negative bacteria which have PykA and PykF enzymes, PykF is generally 

the dominant isozyme and PykA has little contribution. The results presented in this 

chapter reveal that P. aeruginosa, unlike other previously studied species, has a dominant 

PykA enzyme and a PykF of unclear function. My findings have shown that the gene 

transcription and expression of pykA were turned on in all tested conditions, whereas 

pykF transcription was persistently lower. The work here revealed that PykA was 

essential for pyruvate kinase activity and growth in glucose and glycerol. These 

phenotypes were produced from a true PykA enzyme that is evolutionary related to PykA 

from other bacteria. The successful complementation with pykA highlights the 

importance of this gene for metabolism and cell growth.  
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Chapter 4 

4 Biochemical characterization of PykA and PykF 

4.1 Introduction 

 P. aeruginosa has two PK isoforms; pykA and pykF similar to few bacteria. The 

genetic characterization in chapter 3 revealed that unlike other bacteria, pykA is the 

dominant enzyme in P. aeruginosa. Whereas in other species, pykF is the dominant PK. 

Given that P. aeruginosa is an exclusive EDP-dependent organism, it is likely that PykA 

and PykF from P. aeruginosa are regulated differently than PK isoforms in other species. 

 

 In this chapter, I overexpress PykA and PykF from P. aeruginosa using E. coli as a 

host, and use the purified proteins to characterize the biochemical properties of these 

enzymes. I used an LDH-coupled assay for determination of the kinetic parameters for 

each enzyme and I was able to find a set of metabolic regulators. Moreover, in 

collaboration with the Department of Pharmacology (University of Cambridge), I was 

able to identify a ligand that can inhibit PykA activity and alter the cell growth in glucose. 

 

4.2 Overexpression and purification of PykA and PykF  

The genes encoding PykA and PykF from P. aeruginosa were cloned using an IPTG-

inducible pET19m vector to generate pET19m-pykA and pET19m-pykF, respectively. The 

pET-19m constructs were then introduced into E. coli BL21 (DE3) to generate BL21-PykA 

and BL21-PykF, which were used for the overexpression of PykA and PykF, respectively. 

Protein expression was induced by the addition of 1 mM IPTG to the E. coli cultures at 

mid-exponential phase and the bacterial cultures were then incubated overnight at 20oC 

for large-scale protein production.  

  

 Protein lysates of PykA and PykF (with TEV-cleavable His-tags) were extracted 

from BL21 cell pellets and loaded onto a Ni-NTA column. After elution of the proteins 

from the Ni-NTA column, His-tags were removed using TEV protease. Therefore, each 

protein was mixed with His-tagged TEV protease and the mixture was loaded in a dialysis 

bag. After dialysis and collection of the protein-protease mixture into a falcon tube, Ni-
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NTA beads were added to the mixture in order to capture the protease and uncleaved PK, 

while leaving the untagged PykA or PykF free in solution. The tube containing the mixture 

was incubated and centrifuged, before PykA or PykF were collected from the supernatant 

fraction. 

 

 The purity of the enzymes was confirmed by SDS-PAGE (Figure 4.1). The total 

yield of PykA (6.3 mg/L of culture) was less than the total yield of PykF (29 mg/L of 

culture). Protein aliquots were stored at -80oC and used as needed for PykA and PykF 

biochemical characterization (this chapter), x-ray crystallography (chapter 5), AUC 

(chapter 5) and production of antibodies (chapter 3). 

 

 

 

Figure 4.1: SDS-PAGE of PykA (52.3 kDa) and PykF (51.5 kDa). The left figure shows 

an SDS-PAGE gel of crude cell lysates from two E. coli strains (Rosetta 2 and BL21-DE3), 

after overexpression of PykA and PykF (pink arrow) using pET19m constructs. The right 

figure shows an SDS-PAGE gel of PykA and PykF after Ni-NTA purification and His-tag 

removal. Samples of PykA (3 mg/L) and PykF (5 mg/L) were loaded at different volumes 

on the SDS-PAGE gel as indicated. Both gels were prepared at 12% acrylamide 

concentration and stained using Coomassie stain. 
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4.3  Kinetic properties of PykA and PykF 

 The kinetic properties of PykA and PykF were determined using an LDH-coupled 

assay. In the assay, PK catalyses the de-phosphorylation of PEP into pyruvate, and LDH 

converts the pyruvate into lactate along with consumption of NADH. The decline of the 

NADH at 340 nm indicates PykA or PykF activity. For calculation of S0.5 (concentration of 

PEP required to achieve a half-maximum enzyme activity) with respect to [PEP], PEP was 

used at variable concentrations (0 - 6 mM) and ADP at saturation (2 mM). Whereas for 

calculation of kinetic parameters (KM, Vmax, kcat, kcat/KM)) with respect to [ADP], ADP was 

used at variable concentrations (0 – 2.5 mM) and PEP at saturation (5 mM). PK enzymes 

are tetramers with four active sites per unit. However, they mostly show steady-state 

kinetics (Giles et al., 1976; Giles and Poat, 1980), so the four active sites can be treated as 

one active site. Using this assumption, the enzymatic turnover number (kcat) was 

calculated by dividing the maximal velocity for each enzyme (Vmax) by the molar 

concentration of the enzyme in the assay. 

  

 Figure 4.2 shows that PykA and PykF from P. aeruginosa responded to titration of 

PEP and ADP with similar kinetics compared with other PK. With respect to PEP titration, 

PykA and PykF showed sigmoidal kinetics with a Hill coefficient (h) of 2.14 and 2.8, 

respectively. In enzymes with multiple subunits like PK, the sigmoidal response (h>1) to 

PEP titration is common and this sigmoidal behaviour reflects the positive cooperativity 

of the enzymes to the substrate so that binding of one substrate molecule to the enzyme 

improves the binding of the next molecule. With respect to ADP titration, both enzymes 

responded with hyperbolic kinetics, which is typical for PK.  

 

Kinetic parameters were then calculated from the PEP and ADP titration curves 

using the sigmoidal allosteric and Michaelis-Menten models, respectively. Table 4.1 

shows the calculated kinetic parameters of PykA and PykF. The enzymatic turnover 

number (kcat) of PykA (kcat
PEP = 393 S-1, kcat

ADP = 356 S-1) and PykF (kcat= 378 S-1 for PEP 

and ADP) was almost the same given that the two enzymes have almost similar maximal 

activity (Vmax) and were used at equal molar concentrations in each assay (4-5 nM). 

Despite this, PykA showed half the S0.5 and KM values with respect to PEP and ADP 

titration, respectively compared with PykF. The S0.5
PEP and the KM

ADP of PykA were 0.67 
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mM and 0.07 mM, respectively, whereas PykF had an S0.5
PEP of 1.03 mM and the KM

ADP of 

0.11 mM. Therefore, the apparent catalytic efficiency (kcat/S0.5 or kcat/KM) which is 

dependent on the S0.5 and the KM values was higher in PykA.  

 

 

 

 

Figure 4.2: Kinetic response curves of PykA and PykF to titration of PEP and ADP. 

The PEP kinetics were measured at variable PEP concentrations and 2 mM ADP, whereas 

ADP kinetics were measured at variable ADP concentrations and 5 mM PEP. The 

enzymatic activity was measured using an LDH-coupled assay at 37oC and each reaction 

was initiated after the addition of 0.2 µg PykA or 0.25 µg PykF. Graphs were generated 

using GraphPad Prism 7 (n=3, standard errors are shown). 
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Table 4.1: Kinetic properties of PykA and PykF. The PEP kinetics were measured at 

variable PEP concentrations and 2 mM ADP, whereas ADP kinetics were measured at 

variable ADP concentrations and 5 mM PEP. The enzymatic activity was measured using 

an LDH-coupled assay at 37oC and each reaction was initiated after the addition of 0.2 µg 

PykA or 0.25 µg PykF. The kinetic parameters were calculated using GraphPad Prism 7 

(n=3, ± standard error). 

PEP titration PykA PykF 

S0.5 (mM) 0.67 ± 0.03 1.03 ± 0.006 

Hill coeff (h) 2.14 ± 0.2 2.8 ±0.3 

Vmax (ΔmM.min-1) 0.09  ± 0.003 0.11 ± 0.004 

kcat (s-1) 392.6 378 

kcat/S0.5 (s-1.mM-1) 585.9 366.9 

ADP titration PykA PykF 

KM (mM) 0.07 ± 0.008 0.11 ± 0.01 

Vmax (ΔmM.min-1) 0.08 ± 0.002 0.11 ± 0.02 

kcat (s-1) 335.9 378 

kcat/KM (s-1.mM-1) 5167.6 3436.4 
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4.4 Metabolic regulation of PykA 

 P. aeruginosa lacks the key enzymes of the EMPP and the oxidative-PPP, so it is 

mainly dependent on the EDP for metabolism (Lessie and Phibbs, 1984). Moreover, the 

EDP in Pseudomonas species operates in a special cyclic mode in which metabolites of the 

EDP can be redirected from the linear EDP pathway and feed into the reversal of the 

EMPP and the non-oxidative PPP (Conway, 1992). Using this knowledge, I tested PykA 

activity against a library of intermediates from the EDP, EMPP, PPP and TCA cycle. First, 

I screened the effect of these metabolites on PykA at 2 mM PEP (high [PEP]) in order to 

identify potential metabolic inhibitors and then I screened their effects on PykA at 0.3 

mM PEP (low [PEP]) to identify potential activators. When a positive “hit” was identified, 

the kinetic parameters of PykA was re-measured in the presence of this metabolite. 

 

4.4.1 Screening of PykA regulators 

Figure 4.3 shows the effect of 1 mM metabolites on PykA activity at high PEP 

concentrations. No inhibitors were identified, however, PykA activity was increased by 

some metabolites including ribulose 5-phosphate (RL5P), xylulose 5-phosphate (X5P), 

fructose 6-phosphate (F6P), ribose 5-phosphate (R5P), and glyceraldehyde 3-phosphate 

(G3P). In fact, the PykA activity was great when F6P, R5P, and X5P were added at 1 mM 

concentration as these metabolites seemed to have induced strong PykA activation. 

Therefore, I added the F6P, R5P and X5P at 0.2 mM, 0.15 mM and 0.5 mM, respectively in 

all experiments as indicated. 

 

The screen of metabolites at low PEP concentration confirmed that the above 

candidates were indeed activators of PykA (Figure 4.4). The greatest PykA activation was 

achieved with F6P and X5P. At low PEP concentration, glucose 6-phosphate (G6P) and 2-

keto-3-deoxy-6-phosphogluconate (KDPG) also seemed to increase PykA activity, 

although with lower potency compared with the above metabolites. Figure 4.4 also shows 

that guanosine triphosphate (GTP) and adenine triphosphate (ATP) seem to decrease the 

PykA activity. On the other hand, there is no effect of any TCA cycle metabolites on PykA 

activity either on the high or the low PEP screenings. 
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Figure 4.3: The effect of regulators on PykA activity at high PEP concentration. PykA 

activity was measured at 2 mM PEP and 2 mM ADP using an LDH-coupled assay. 

Regulators were used at final concentration of 1 mM except for F6P, R5P and X5P which 

were used at 0.2 mM, 0.15 mM and 0.5 mM, respectively. The represented values are 

mean of three replicates ± standard error. Statistical significance was performed between 

control group and test groups using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p 

<0.001). 
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Figure 4.4: The effect of regulators on PykA activity at low PEP concentration. PykA 

activity was measured at 0.3 mM PEP and 2 mM ADP using an LDH-coupled assay. 

Regulators were used at final concentration of 1 mM except for F6P, R5P and X5P which 

were used at 0.2 mM, 0.15 mM and 0.5 mM, respectively. The represented values are 

mean of three replicates ± standard error. Statistical significance was performed between 

control group and test groups using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p 

<0.001). 
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4.4.2 Effect of regulators on the kinetic properties of PykA 

4.4.2.1  Activation of PykA by EDP metabolites 

G3P, G6P and KDPG are metabolites from the EDP and were found to enhance 

PykA activity. I re-measured the kinetics of PykA with respect to [PEP] by using variable 

PEP concentrations (0-6 mM), 2 mM ADP and 1 mM of each candidate regulator. The 

addition of G3P, G6P and KDPG caused a drop in PykA cooperativity as indicated by the 

decrease of the Hill coefficient (h) compared with the control. Along with this, PykA 

kinetics became less sigmoidal and more hyperbolic to variable degrees according to the 

potency of each regulator (Figure 4.5). The three metabolites also decreased the apparent 

binding affinity of PykA to the substrate (S0.5), whilst maintaining comparable Vmax values. 

Therefore, the addition of these metabolites improved the catalytic efficiency (kcat/S0.5) 

of PykA to variable degrees; G6P > G3P > KDPG.  

 

4.4.2.2  Activation of PykA by EMPP and PPP metabolites  

It was surprising to find that metabolites from the PPP (RL5P, R5P, X5P) and the 

EMPP (F6P, from EMPP operating in gluconeogenic direction) were among the candidate 

activators of PykA, given that P. aeruginosa is an exclusively EDP-dependent organism. 

Moreover, these intermediates seemed to be potent activators of PykA and exerted their 

effects at lower concentrations compared with other regulators. Therefore, I re-

measured the PykA kinetics at various concentrations of PEP (0-6 mM), 2 mM ADP, in the 

presence of these metabolites. Given the strong effects of these metabolites on PykA, I 

added them at concentrations lower than 1 mM (0.2 mM F6P, 0.15 mM R5P, 0.5 mM X5P) 

except for RL5P which was used at 1 mM. Metabolites of the PPP and gluconeogenic EMPP 

enhanced PykA activity more strongly than the EDP metabolites (Table 4.2, Figure 4.6). 

They caused decrease of S0.5 values of PykA as compared with the control, whereas they 

had almost no effect on Vmax. As shown in Table 4.2, the addition of these metabolites 

improved the catalytic efficiency (kcat/S0.5) of PykA to variable degrees; F6P > X5P > R5P 

> RL5P.  
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Figure 4.5: Activation of PykA by EDP metabolites. Figures on the left show the effects 

of metabolites on the sigmoidal kinetics of PykA, whereas figures on the right illustrate 

Lineweaver-Burk plots of each regulator (y-intercept and the x-intercept indicate 1/Vmax 

and -1/S0.5, respectively). The enzymatic activity of PykA was measured at various PEP 

concentrations (0-6 mM), 2 mM ADP and 1 mM of each regulator. Values represent mean 

of three replicates ± standard error. All figures were generated using GraphPad Prism7. 
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Figure 4.6: Activation of PykA by PPP and EMPP (gluconeogenic direction) 

metabolites. Figures on the left show the effects of metabolites on the sigmoidal kinetics 

of PykA, whereas figures on the right illustrate Lineweaver-Burk plots of each regulator 

(y-intercept and the x-intercept indicate 1/Vmax and -1/S0.5, respectively). The enzymatic 

activity of PykA was measured at various PEP concentrations (0-6 mM), 2 mM ADP, and 

regulators as indicated. Values represent mean of three replicates ± standard error. All 

figures were generated using GraphPad Prism7. 
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Table 4.2: Changes in PykA kinetics caused by metabolic activators. 

PEP titration None 0.2 mM 

F6P 

0.15 mM 

R5P 

0.5 mM 

X5P 

1 mM 

RL5P 

1 mM 

G3P 

1 mM 

G6P 

1 mM 

KDPG 

S0.5 (mM) 0.67 ± 

0.03 

0.16  ± 

0.02 

0.195  ± 

0.01 

0.21 ± 

0.013 

0.27 ± 

0.012 

0.29  ± 

0.01 

0.29  ±  

0.02 

0.43  ± 

0.03 

Hill Coeff 

(h) 

2.14 ± 

0.2 

1.44  ± 

0.31 

1.65  ± 

0.24 

1.8 ± 

0.22 

1.6 ± 

0.12 

1.8 ± 

0.21 

1.78  ± 

0.31 

1.51  ± 

0.18 

Vmax 

(ΔmM.min-1) 

0.09  ± 

0.003 

0.095  ± 

0.004 

0.0916   ± 

0.002 

0.11 ± 

0.002 

0.10 ± 

0.002 

0.091 ± 

0.002 

0.1  ± 

0.003 

0.1  ± 

0.004 

kcat (s-1) 392.6 414.4 399.6 479.93 462.47 399.2 436.3 436.3 

kcat/S0.5 

(s-1.mM-1) 

585.9 2590 2049.2 2285.4 1712.9 1376.5 1504.4 1014.6 

ADP 

titration 

None 0.2 mM 

F6P 

0.15 mM 

R5P 

0.5 mM 

X5P 

1 mM 

RL5P 

1 mM 

G3P 

1 mM 

G6P 

1 mM 

KDPG 

KM (mM) 0.07 ± 

0.008 

N/D N/D N/D N/D N/D N/D N/D 

Vmax 

(ΔmM.min-1) 

0.08 ± 

0.002 

N/D N/D N/D N/D N/D N/D N/D 

kcat (s-1) 335.9 N/D N/D N/D N/D N/D N/D N/D 

kcat/S0.5 

(s-1.mM-1) 

5167.6 N/D N/D N/D N/D N/D N/D N/D 

N/D: Not Determined (initial tests suggested that the regulator had no effect on PykA kinetics compared with the 
control). 
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4.4.2.3  Effect of ATP and GTP on PykA activity 

 When regulators were screened at low PEP concentration, ATP and GTP showed 

some inhibitory effects on PykA. To confirm that these metabolites were inhibitors of 

PykA, I re-measured the PykA kinetics with respect to [PEP] at variable PEP 

concentrations (0-6 mM), 2 mM ADP and 1 mM of ATP or GTP. The addition of these 

nucleotides caused almost no change in the kinetics of PykA (Figure 4.7). The PykA 

kinetics with ATP (S0.5 of 0.58 s-1, Vmax of 0.09 mM/min) were almost comparable with 

those of GTP (S0.5 of 0.47 s-1, Vmax of 0.08 mM/min) and the control (S0.5 of 0.67 s-1, Vmax of 

0.09 mM/min). Values of the kcat/S0.5 with ATP (676.8 s-1mM-1) and GTP (714.6 s-1mM-1) 

were also close to the control (585.9 s-1mM-1). Therefore, it seemed that the addition of 

these nucleotides does not have an impact on PykA activity, at least at the tested 

concentrations. 

 

 

Figure 4.7: The effects of ATP and GTP on PykA activity. The upper panel shows the 

effects of 1 mM ATP or 1 mM GTP on the sigmoidal kinetics of PykA, whereas the lower 

panel shows Lineweaver-Burk plots of the two nucleotides (y-intercept and the x-

intercept indicate 1/Vmax and -1/S0.5, respectively). The enzymatic activity of PykA was 

measured at various PEP concentrations (0-6 mM), 2 mM ADP and 1 mM of each 

nucleotide. Values represent mean of three replicates ± standard error. All figures were 

generated using GraphPad Prism7. 
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4.4.2.4  Effect of regulators on the ADP-dependency of PykA 

 I showed above that the EDP and the PPP (including gluconeogenic EMPP) 

metabolites can change the PykA kinetics with respect to [PEP]. In order to investigate if 

these activators can also influence the PykA response to ADP, I measured the PykA 

kinetics with respect to [ADP] with these metabolites present. The enzymatic reaction of 

PykA was measured at variable concentrations of ADP (0.02, 0.03, 0.07 and 0.5 mM) and 

5 mM PEP with PykA activators added at the same concentrations used for the PEP 

titration experiments; 1 mM G6P, 1 mM KDPG, 1 mM G3P, 0.2 mM F6P, 0.15 mM R5P, 0.5 

mM X5P, 0.1 mM RL5P. Figure 4.8 shows that none of the PykA activators changed the 

PykA responses to [ADP]. This was expected as most of the regulators that activate PK 

enzymes improve the enzyme kinetics with respect to [PEP] only. 

 

 

Figure 4.8: The effect of metabolites on the ADP kinetics of PykA. PykA activity was 

measured at various concentrations of ADP, 5 mM PEP and different metabolites (1 mM 

G3P, 1 mM G6P, 1 mM KDPG, 0.2 mM F6P, 0.15 mM R5P, 0.5 mM X5P, 1 mM RL5P). Each 

bar represents the mean of three replicates and standard errors are shown. Statistical 

significance was performed between control group and test groups using an unpaired t-

test (*=p <0.05, **=p <0.01, ***=p <0.001). 
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4.5 Metabolic regulation of PykF  

4.5.1 Screening of PykF regulators 

Similar to PykA, I tested the effect of metabolic regulators on PykF activity at high 

(2 mM) and low PEP (0.3 mM) concentrations in order to identify PykF inhibitors and 

activators, respectively. In these experiments, the ADP was used at saturation (2 mM) and 

the regulators were added at 1 mM or less if they showed large effects on PykF activity. 

The effects of metabolites on PykF can be found in Figure 4.9 and 4.10. At high PEP 

concentrations, PykF seemed to be activated by R5P, RL5P and X5P which were also 

found to be activators of PykA. No metabolites were seen to inhibit PykF activity.  

 

At low PEP concentration, PykF activity (0.02 ΔmM.min-1) was at least seven fold 

higher when R5P (0.139 ΔmM.min-1), RL5P (0.14 ΔmM.min-1) and X5P (0.17 ΔmM.min-1) 

were present. Moreover, the three metabolites activated PykF even when present at less 

than 0.5 mM. At low PEP concentration, PykF was also activated moderately by G3P, G6P 

and AMP. Interestingly and compared with PykA, F6P could not enhance PykF, indicating 

that these activators are very selective for each isozyme. No PykF activation was seen by 

any TCA cycle metabolites and also no inhibitors of PykF could be detected.  

 

4.5.2 Effect of regulators on the kinetic properties of PykF 

Using these potential activators (R5P, RL5P, X5P, G6P, G3P, AMP), the PykF 

kinetics were re-calculated (with respect to PEP and ADP titrations) in order to see the 

effects of these metabolites on PykF enzymatic properties (S0.5, KM, Hill coef (h), Vmax, kcat, 

kcat/S0.5).  
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Figure 4.9: The effect of regulators on PykF activity at high PEP concentration. PykF 

activity was measured at 2 mM PEP and 2 mM ADP using an LDH-coupled assay. 

Regulators were used at final concentration of 1 mM except for R5P, RL5P and X5P which 

were used at 0.15 mM, 0.5 mM and 0.5 mM, respectively. The represented values are 

mean of three replicates ± standard error. Statistical significance was performed between 

control group and test groups using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p 

<0.001). 
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Figure 4.10: The effect of regulators on PykF activity at low PEP concentration. PykF 

activity was measured at 0.3 mM PEP and 2 mM ADP using an LDH-coupled assay. 

Regulators were used at final concentration of 1 mM except for R5P, RL5P and X5P which 

were used at 0.15 mM, 0.5 mM and 0.5 mM, respectively. The represented values are 

mean of three replicates ± standard error. Statistical significance was performed between 

control group and test groups using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p 

<0.001). 
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4.5.2.1  Effect of metabolites on the PEP-dependency of PykF  

 PykF activity was measured at variable concentrations of PEP (0-6 mM), 2 mM 

ADP and one of the candidate activators (0.15 mM R5P, 0.5 mM RL5P, 0.5 mM X5P, 1 mM 

G6P, 1 mM G3P, 1 mM AMP). The resulting kinetic data can be found in Table 4.3, Figure 

4.11 and Figure 4.12. In the presence of these metabolites, the sigmoidal kinetics of PykF 

with respect to [PEP] was decreased and became more hyperbolic, as indicated by the 

lower Hill coefficients (h) compared with the control. Moreover, the S0.5 value of PykF was 

also decreased, indicating that the apparent binding affinity of PykF to the substrate was 

improved. There was no accompanying change in Vmax. Similar to PykA, metabolites from 

the PPP (X5P, R5P, RL5P) were more potent activators of PykF than those from the EDP 

(G6P and G3P). AMP also decreased the S0.5 and the Hill coefficient of PykF, but less than 

other PPP metabolites. All the PykF activators improved the catalytic efficiency of the 

enzyme to variable degrees; X5P > RL5P > R5P > G6P > AMP > G3P. 

 

 

Figure 4.11: Activation of PykF by EDP metabolites. Figures on the left show the 

effects of metabolites on the sigmoidal kinetics of PykF, whereas figures on the right 

illustrate Lineweaver-Burk plots of each regulator (y-intercept and the x-intercept 

indicate 1/Vmax and -1/S0.5, respectively). The enzymatic activity of PykF was measured 

at various PEP concentrations (0-6 mM), 2 mM ADP, and regulators as indicated. Values 

represent mean of three replicates ± standard error. All figures were generated using 

GraphPad Prism7. 
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Figure 4.12: Activation of PykF by PPP metabolites. Figures on the left show the 

effects of metabolites on the sigmoidal kinetics of PykF, whereas figures on the right 

illustrate Lineweaver-Burk plots of each regulator (y-intercept and the x-intercept 

indicate 1/Vmax and -1/S0.5, respectively). The enzymatic activity of PykF was measured 

at various PEP concentrations (0-6 mM), 2 mM ADP, and regulators as indicated. Values 

represent mean of three replicates ± standard error. All figures were generated using 

GraphPad Prism7. 
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Table 4.3: Changes in PykF kinetics caused by metabolic activators. 

PEP titration None 0.15 mM 

R5P 

1 mM 

G6P 

1 mM 

AMP 

1 mM 

G3P 

0.5 mM 

X5P 

0.5 mM 

RL5P 

S0.5 (mM) 1.03 ± 

0.006 

0.23 ± 

0.03 

0.34 ± 

0.04 

0.56 ± 

0.02 

0.68 ± 

0.02 

0.11 ± 

0.008 

0.17 ± 

0.008 

Hill Coeff (h) 2.8 ±0.3 1.47 ± 0.3 1.25±0.2 2 ± 0.15 2.7 ± 17 1.58±0.21 2.15±0.2 

Vmax 

(ΔmM.min-1) 

0.11 ± 

0.004 

0.15 ± 

0.009 

0.13 ± 

0.007 

0.1064 

± 0.002 

0.092 ± 

0.001 

0.126 ± 

0.002 

0.128 ± 

0.002 

kcat (s-1) 378 515.4 446.7 365.6 316.15 432.9 439.8 

kcat/S0.5 

(s-1.mM-1) 

366.9 2240.8 1313.9 652.9 464.9 

 

3935.4 2587 

ADP titration None 0.15 mM 

R5P 

1 mM 

G6P 

1 mM 

AMP 

1 mM 

G3P 

0.5 mM 

X5P 

0.5 mM 

RL5P 

KM (mM) 0.11 ± 

0.01 

N/D N/D N/D N/D N/D N/D 

Vmax 

(ΔmM.min-1) 

0.11 ± 

0.02 

N/D N/D N/D N/D N/D N/D 

kcat (s-1) 378 N/D N/D N/D N/D N/D N/D 

kcat/KM 

(s-1.mM-1) 

3436.4 

 

N/D N/D N/D N/D N/D N/D 

N/D: Not Determined (initial tests suggested that the regulator had no effect on PykA kinetics compared with the 

control). 
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4.5.2.2  Effect of metabolites on the ADP-dependency of PykF 

In order to see if regulators of PykF modify the ADP-dependency of the enzyme 

kinetics, I again measured the PykF kinetics with respect to [ADP] in the presence of PykF 

activators (X5P, R5P, RL5P, G3P, G6P and AMP). PykF activity was measured at variable 

concentrations of ADP (0.02, 0.03, 0.07 and 0.5mM), 5 mM PEP with activators added at 

the same concentrations used for the PEP titration experiments. Similar to PykA 

regulators, none of the PykF regulators changed the ADP-dependency of PykF (Figure 

4.13).  

 

 

 

Figure 4.13: The effect of metabolites on the ADP kinetics of PykF. PykF activity was 

measured at various concentrations of ADP, 5 mM PEP and different metabolites (1 mM 

G3P, 1 mM G6P, 1 mM AMP, 0.15 mM R5P, 0.5 mM X5P, 0.5 mM RL5P). Each bar 

represents the mean of three replicates ± standard error. Statistical significance was 

performed between control group and test groups using an unpaired t-test (*=p <0.05, 

**=p <0.01, ***=p <0.001). 

 

 

 

 

 



114 

4.6 Effect of metal ions on PykA and PykF activity  

4.6.1 The effect of divalent cations on PykA and PykF  

All PK enzymes require a source of divalent cation for catalysis and this ion is 

mostly Mg2+. However, some PK enzymes reach higher activity levels when divalent ions 

other than Mg2+ are present. Therefore, I compared the enzymatic activity of PykA and 

PykF using a selection of divalent ions; MnCl2, CoCl2, CaCl2, ZnSO4, NiSO4 and MgCl2. The 

activity of each isozyme was measured at saturating concentrations of PEP (5 mM), ADP 

(2 mM), and divalent ions (10 mM). 

 

Figure 4.14 shows the effect of divalent cations on the PykA and PykF activity. 

Similar to the majority of PK enzymes, PykA and PykF reached maximal activity with 

MgCl2 as compared with other sources of divalent ions. Both enzymes were partly 

activated by MnCl2 and reached around 40% of their maximal activities in the presence 

of this salt. CoCl2 also induced partial activity of PykA and PykF. With CoCl2, the enzymatic 

activities of PykA and PykF were 45% and 92%, respectively compared with their 

maximal activity with MgCl2. There was no detectable PykA or PykF activity with CaCl2, 

ZnSO4 or NiSO4.  

 

Figure 4.14: The effect of divalent ions on PykA and PykF activity. The activity of each 

enzyme was measured using 5 mM PEP, 2 mM ADP and 10 mM of divalent ion. The 

reaction was initiated by the addition of 0.2 µg PykA or 0.25 µg PykF. Bars represent mean 

of three replicates ± standard error. Statistical significance was performed between 

control group (MgCl2) and test groups using an unpaired t-test (*=p <0.05, **=p <0.01, 

***=p <0.001). 
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4.6.2 PykA and PykF are K+-independent  

 While there is an obligate requirement for cations to be present during PK 

catalysis, some PK enzymes require an additional source of monovalent ions, mostly K+, 

in order to achieve maximal activity. To investigate whether PykA and PykF required a 

source of K+ along with Mg2+, I compared the enzyme activity of PykA and PykF with and 

without KCl. The enzyme activity of each isozyme was measured at 5 mM PEP, 2 mM ADP, 

10 mM MgCl2 and 100 mM KCl. Figure 4.15 shows that the PykA and PykF activities were 

entirely dependent on MgCl2 and there was no activity of either enzyme with KCl alone. 

Moreover, the combination of MgCl2 and KCl did not increase the activity of the isozymes 

and it seems that the addition of KCl even caused some minor negative impacts on the 

PykF. This suggests that PykA and PykF are K+-independent enzymes. 

 

4.6.3 The effect of monovalent ions on PykA and PykF  

 As shown in the previous section, the addition of K+ seemed to slightly reduce the 

enzyme activity of PykF. In fact, it was unclear whether the modification of the PykF 

activity by K+ was specific to the ion itself or it was a change that can be caused by any 

cation. To compare the effect of K+ and other monovalent ions on PykA and PykF activity, 

I measured the kinetics of PykA and PykF in the presence of 100 mM of KCl, NH4Cl or NaCl 

as monovalent ion sources. With respect to [PEP], I measured the activity of each isozyme 

at variable PEP concentrations (0-6 mM) and 2 mM ADP, whereas with respect to [ADP], 

I used variable concentrations of ADP (0-2 mM) and 5 mM PEP. Figure 4.16 and Table 4.4 

show the effect of monovalent ions on the kinetics of PykA and PykF.  

 

 With monovalent ions added, the S0.5
PEP and the KM

ADP values increased for both 

isozymes. Additionally, the maximal enzyme activity (Vmax) was also decreased in all 

reactions catalysed by PykF, whereas the Vmax of PykA was variable depending on the 

type of substrate and type of cation. The overall catalytic efficiencies of PykA and PykF 

for both substrates were decreased noticeably with all sources of monovalent ions when 

compared with control reactions. 
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Figure 4.15: The effect of MgCl2 and KCl on the activity of PykA and PykF. The activity 

of PykA and PykF was measured using 5 mM PEP, 2 mM ADP, 10 mM MgCl2 and 100 mM 

KCl. The reaction was initiated by the addition of 0.2 µg of PykA or 0.25 µg of PykF. Values 

represent the mean of three replicates ± standard error. Statistical significance was 

performed between control group (MgCl2) and test groups using an unpaired t-test (*=p 

<0.05, **=p <0.01, ***=p <0.001). 

 

Figure 4.16: The effect of monovalent ions on PykA and PykF. Top panel shows the 

effect of monovalent ions on PykA and bottom panel shows the effect of monovalent ions 

on PykF. Titration of PEP was performed using variable PEP concentrations (0-6 mM) 

and 2 mM ADP, whereas titration of ADP was performed using variable ADP 

concentrations (0-2 mM) and 5 mM of PEP. Monovalent ions were added at 100 mM 

concentration. Values represents mean of three replicates ± standard error.  
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Table 4.4: The effect of monovalent ions on PykA and PykF activity. The activity of 

each enzyme was measured in the presence of 100 mM monovalent ions. With respect to 

[PEP], ADP was used at 2 mM and PEP was used at variable concentrations (0-6 mM), 

whereas with respect to [ADP], PEP was used at 5 mM and ADP was used at variable 

concentrations (0-2 mM). Values represents mean of three replicates ± standard error. 

The kinetic parameters shown were calculated using GraphPad Prism7.  

  

PykA 

 

PykF 

PEP 

titration   

None KCl NH4Cl NaCl None KCl NH4Cl NaCl 

S0.5 

 (mM) 

0.67 ± 

0.03 

1.18 ± 

0.05 

1.4 ± 

0.05 

1.49 ± 

0.07 

1.03 ± 

0.006 

2.4 ± 

0.09 

2.18 ± 

0.05 

1.64 ± 

0.04 

Hill Coeff (h) 2.14 ± 

0.2 

2.36 ± 

0.18 

2.3 ± 

0.15 

2.4 ± 

0.2 

2.8 ± 0.3 2.13 ± 

0.1 

2.9 ± 0.1 3.3 ± 0.2 

Vmax 

(ΔmM.min-1) 

0.09  ± 

0.003 

0.087 ± 

0.002 

0.12 ± 

0.003 

0.11 ± 

0.004 

0.11 ± 

0.004 

0.085 ± 

0.002 

0.083 ± 

0.001 

0.077 ± 

0.001 

kcat  

(s-1) 

392.6 379.5 523.5 479.9 378 292 285.2 264.6 

kcat/S0.5 

(s-1.mM-1) 

585.9 321.6 373.9 322 366.9 121.6 130.8 161.3 

ADP 

titration 

None KCl NH4Cl NaCl None KCl NH4Cl NaCl 

KM  

(mM) 

0.07 ± 

0.008 

0.148 ± 

0.01 

0.156 ± 

0.01 

0.147 ± 

0.02 

0.11 ± 

0.01 

0.31 ± 

0.02 

0.47 ± 

0.05 

0.34 ± 

0.02 

Vmax 

(ΔmM.min-1) 

0.08 ± 

0.002 

0.088 ± 

0.002 

0.066 ± 

0.002 

0.078 ± 

0.003 

0.11 ± 

0.02 

0.086 ± 

0.002 

0.095 ± 

0.04 

0.087 ± 

0.002 

kcat  

(s-1) 

335.9 383.9 287.9 340.3 378 295.5 326.4 298.9 

kcat/KM 

(s-1 .mM-1) 

5167.6 2593.9 1845.5 2314.9 3436.4 953.2 694.4 879.1 
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4.7 Inhibitors of PykA 

 In Chapter 3, I showed that pykA was the dominant PK that has primary 

contributions to pyruvate kinase activity and cell growth in glucose and glycerol. A 

mutant defective in pykA had lower pyruvate kinase activity and struggled to grow 

normally compared with the wild-type cells. Moreover, successful complementation 

using pykA restored the defective phenotypes and this highlights the essential role of this 

isozyme for these systems. Using this knowledge, I aimed to identify PykA inhibitors that 

have the potential to be used as antimicrobial drugs against P. aeruginosa. This was 

challenging given that the pathogen is intrinsically resistant to many antimicrobials due 

to its multiple drug efflux pumps and a very low outer membrane permeability 

(Livermore, 1984; Schweizer, 2003). In collaboration with the Department of 

Pharmacology, University of Cambridge, I was able to identify two PykA inhibitors, one 

of which can penetrate the cell and displays antimicrobial activity in vivo. 

 

4.7.1 Screening of inhibitors 

 A computational prediction of potential PykA inhibitors was performed by the 

Dept. of Pharmacology using GOLD software (Jones et al., 1997) based on the amino acid 

sequence of PykA. The enzyme docking produced a list of predicted inhibitors and the top 

five compounds (PZ0301, S7576, R396907, L334588 and S171204) were selected and 

purchased from Sigma-Aldrich. I tested the effect of these compounds on PykA to check 

if they really could inhibit its activity. PykA activity was measured at 5 mM PEP, 2 mM 

ADP and 200 µM of each inhibitor. I found that PykA was inhibited by S7576 (also known 

as shikonin) and R396907, whereas the three other compounds seemed to have no effect 

on the enzyme (Figure 4.17). Moreover, PykA inhibition by shikonin was more profound 

than that of R396907. The two compounds were analysed further to investigate the types 

of PykA inhibition caused by them. 
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Figure 4.17: Effects of potential inhibitors on PykA activity. PykA activity was 

measured at 5 mM PEP, 2 mM ADP and 0.05 µg PykA. Compounds were dissolved in DMSO 

and used at 200 µM concentration. The figure represents mean values of three replicates 

± standard error. Statistical significance was performed between control group and test 

groups using an unpaired t-test (*=p <0.05, **=p <0.01, ***=p <0.001). 

 

4.7.2 Dose-response curves of shikonin and R396907 

To determine the mechanism by which shikonin and R396907 can inhibit PykA 

activity, the PykA kinetics with respect to [PEP] and [ADP] needed to be measured in the 

presence of IC25 and IC50 of these compounds. Therefore, to establish the IC25 and IC50 

of shikonin and R396907, dose-response curves were performed in which PykA activity 

was measured against an increasing concentration of each inhibitor. From each dose-

response curve, I calculated the IC50. Then, I used the IC50 and the Hill slope of that curve 

(steepness of the curve) to calculate the IC25 (the inhibitor concentration which can 

inhibit 25% of the maximal activity of the enzyme).  

 

The dose-response curves showed that inhibitory concentrations of shikonin were 

much lower than the ones of R396907 (Figure 4.18). With Shikonin, the dose-response 

curve extrapolated an IC50 of 23.2 µM (Hill slope of -1.86 ± 0.7), whereas the IC50 of 

R396907 was nearly four times more than that (IC50 of 95.5 µM, Hill slope of -1.567 ± 

0.29). Based on these figures, the IC25 of shikonin and R396907 were calculated; 13.4 µM 

and 47.4 µM, respectively.  
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Figure 4.18: Dose-response curves of PykA with shikonin and R396907. PykA 

activity was measured at 2 mM ADP, 5 mM PEP, and increasing concentrations of shikonin 

(0-100 µM) or R396907 (0-350 µM). The X-axis of each graph represents the logarithmic 

concentrations of the inhibitor and the Y-axis represents the percent of PykA activity 

remaining. The shown values are mean of three replicates ± standard error. The curves 

and the shown IC50 values were produced using GraphPad Prism 7.  

 

4.7.3 Inhibitory effects of shikonin on PykA kinetics  

In this section, I investigated the effects of shikonin on the PEP- and ADP-

dependency of PykA kinetics. Therefore, I repeated the PEP and ADP titration 

experiments whereas using shikonin at the identified IC25 (13.4 µM) and IC50 (23.2 µM) 

concentrations. The [PEP] was (0-6 mM as indicated), 2 mM ADP and 13.4 µM or 23.2 µM 

of shikonin, whereas the [ADP] was (0-2.5 mM as indicated), 5 mM PEP and 13.4 µM or 

23.2 µM of shikonin.  

 

The inhibitory effects of shikonin on PykA can be seen in Figure 4.19 and Table 

4.5. Non-competitive inhibition is achieved when the inhibitor binds either the free 

enzyme or the enzyme substrate complex causing a drop in the maximal enzyme activity 

without changing the S0.5. With respect to [PEP], shikonin induced non-competitive 

inhibition of PykA that was indicated by the decline of Vmax and the unchanged S0.5. The 

non-competitive inhibition of PykA by shikonin was observed at both IC25 and IC50.  

 

 

 



121 

Shikonin also induced changes of the ADP-dependency of PykA, however these 

changes were concentration-dependent. At IC25, the Vmax of PykA was decreased, while 

the KM was unchanged and this was consistent with non-competitive inhibition. Whereas, 

at IC50, the Vmax was decreased but the KM
 was increased which was consistent with 

mixed type inhibition. The latter type of inhibition is achieved due to conformational 

change of the active site (caused by ligand binding) which interferes with substrate 

binding and eventually leads to increase of the KM. Moreover, the newly formed 

conformation of the enzyme also inhibits the overall performance of the enzyme, thus the 

Vmax is decreased. In the presence of shikonin, both the catalytic turnover and the catalytic 

efficiency of PykA was reduced for PEP and ADP. The decline of these parameters was 

dependent on shikonin concentration; the higher the concentration of shikonin, the more 

the decline of the catalytic turnover number and the catalytic efficiency. 

 

Table 4.5: Changes in the kinetic parameters of PykA in the presence of shikonin. 

The inhibitor was used at 0 µM (control), 13.4 µM (IC25) or 23.22 µM (IC50). [PEP] was 

(0-6 mM) and 2 mM ADP, whereas [ADP] was (0-2.5 mM) and 5 mM of PEP. Values 

represent the mean of three replicates ± standard error. Kinetics were calculated using 

GraphPad Prism7. 

  Control IC25 IC50 

PEP S
0.5 (mM) 0.79 ±  0.06 0.87 ± 0.39 0.95 ± 0.53 

 Hill coeff. (h) 1.7 ±  0.2 1.08 ± 0.37 1.38 ± 0.87 

 Vmax (ΔmM.min‐1)  0.1 ±  0.004 0.076 ± 0.01 0.037 ± 0.01 

 kcat (s‐1) 454.5 334 161.4 

 kcat/S0.5 (s‐1.mM‐1)
 
 575.3 383 169.8 

ADP KM (mM)  0.05 ±  0.005 0.058 ± 0.005 0.095 ± 0.01 

 Vmax (ΔmM.min‐1) 0.11 ±  0.002 0.074 ± 0.001 0.067 ± 0.001 

 kcat (s‐1) 500 322 292.3 

 kcat/KM (s‐1.mM‐1)
 
 10000 5551.7 3076.8 
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Figure 4.19: Inhibitory effects of shikonin on PykA kinetics. A, B: The effects of 

shikonin on the PEP- and ADP-dependency of PykA kinetics. PykA kinetics were 

measured at 13.4 µM (IC25) and 23.22 µM (IC50) of shikonin. With respect to [PEP], ADP 

was used at 2 mM and PEP was used at variable concentrations, whereas with respect to 

[ADP], PEP was used at 5 mM and ADP was used at variable concentrations. The 

experiments were performed in triplicates and standard errors are shown. C, D: 

Lineweaver-Burk plots showing the effects of shikonin on PEP and ADP titration kinetics. 

The y-intercept and the x-intercept indicate 1/Vmax and -1/S0.5, respectively. All graphs 

were generated using GraphPad Prism. 

 

4.7.4 Inhibitory effects of R396907 on PykA kinetics 

Similar to shikonin, I investigated the effects of IC25 (47.4 µM) and IC50 (95.5 µM) 

of R396907 on PykA kinetics. Experiments were repeated with respect to PEP titration 

(variable PEP concentration and 2 mM ADP) and ADP titration (at variable ADP 

concentrations and 5 mM PEP). The PykA kinetics with R396907 revealed that this 

compound seemed to inhibit PykA using different mechanisms than the ones identified 

for shikonin (Figure 4.20 and Table 4.6). 
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With respect to [PEP], R396907 inhibited the PykA activity primarily by 

competitive inhibition. At IC25 and IC50 of R396907, S0.5
 of PykA was increased, whereas 

Vmax
 was almost unchanged and this pattern was consistent with competitive inhibition. 

This type of enzyme inhibition is achieved when the inhibitor binds to the active site of 

the enzyme causing a decline in the binding affinity of the enzyme to its substrate without 

changing the maximal activity, thereby the S0.5 of the enzyme increases while the Vmax is 

not changed. Competitive inhibition is considered a reversible type of inhibition that can 

be abolished by the addition of more substrate molecules. 

 

With respect to [ADP], R396907 inhibited PykA by two types of inhibition 

according to the concentration of R396907. At IC25, the KM of PykA was unchanged but 

the Vmax was decreased consistent with non-competitive inhibition. Whereas at the IC50 

dose, the KM of PykA was increased and the Vmax was decreased indicating mixed type of 

inhibition. Overall with respect to both substrates, R396907 caused a decline of the 

catalytic turnover number and the catalytic efficiency of PykA, in a dose-dependent 

manner. 

 

Table 4.6: Changes in the kinetic parameters of PykA in the presence of R396907. 

The inhibitor was used at 0 µM (control), 47.4 µM (IC25) or 95.5 µM (IC50). [PEP] was 

performed by using variable concentrations of PEP (0-6 mM) and 2 mM ADP, whereas 

[ADP] was performed by using variable concentrations of ADP (0-2.5 mM) and 5 mM of 

PEP. Each experiment was performed in triplicates and standard errors are shown. 

Kinetics were calculated using GraphPad Prism7. 

  Control IC25 IC50 

PEP S
0.5 (mM) 0.73 ±  0.01 1.76  ±  0.09 3.2  ±  0.3 

 Hill coeff. (h) 3 ±  0.23 2.43  ±  0.22 2.01  ±  0.18 

 Vmax (ΔmM.min‐1)  0.0811 ±  0.001 0.08166 ±  0.003 0.074 ±  0.006 

 kcat (s‐1) 368.6 356.2   323 

 kcat/S0.5 (s‐1.mM‐1)
 
 504.9 202.4 100.9 

ADP KM (mM)  0.06 ±  0.007 0.065  ±  0.007 0.098  ±  0.007 

 Vmax (ΔmM.min‐1) 0.09 ±  0.002 0.0652  ±  0.001 0.065  ±  0.001 

 kcat (s‐1) 409.09 284.4 286.2 

 kcat/KM (s‐1.mM‐1)
 
 6818.1 4375.3 2920.5 
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Figure 4.20: Inhibitory effects of R396907 on PykA kinetics. A, B: The effects of 

R396907 on the PEP- and ADP-dependency of PykA kinetics. PykA kinetics were 

measured at 45.4 µM (IC25) and 95.5 µM (IC50) of R396907. With respect to [PEP], ADP 

was used at 2 mM and PEP was used at variable concentrations, whereas with respect to 

[ADP], PEP was used at 5 mM and ADP was used at variable concentrations. The 

experiments were performed in triplicates and standard errors are shown. C, D: 

Lineweaver-Burk plots showing the effects of R396907 on PEP and ADP titration kinetics. 

The y-intercept and the x-intercept indicate 1/Vmax and -1/S0.5, respectively. All graphs 

were generated using GraphPad Prism 

 

4.7.5 The effects of PykA inhibitors on cell growth 

To investigate the effect of PykA inhibitors in vivo, I measured the growth rate of 

PAO1 across a range of concentrations of shikonin (0.19 µM to 50 µM) and R396907 (0.48 

µM to 500 µM). I used R396907 at higher doses than shikonin because as shown before, 

R396907 was a less potent inhibitor of PykA compared with shikonin. Cells were grown 

in 96-well plates containing LB or minimal media with glucose and growth was 

monitored following the addition of the inhibitors for 20 hr at 37oC.  
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Figure 4.21 shows that neither shikonin nor R396907 altered the growth of the 

cells in LB. This was unsurprising given that the LB is a very rich media with many 

ingredients that can promote growth. Cell growth was temporarily delayed at mid-

exponential phase with 50 µM of shikonin, however growth soon took over and cells 

reached the same final OD600 similar to the wild-type. 

 

Whilst growth in LB is not expected to be affected by PykA inhibitors, growth in 

minimal media with glucose as a sole carbon source is expected to be impaired since pykA 

has previously been shown to be important for growth on this substrate. Figure 4.22 

shows that growth of cells in minimal media with glucose was clearly inhibited by 

shikonin, whereas no growth change was seen with R396907. The growth inhibition by 

shikonin was concentration-dependent from 50 µM to 6.25 µM, whereas doses of less 

than 6.25 µM concentration were ineffective. In the presence of shikonin, cells could not 

reach the same growth endpoint as those of the wild-type. On the other hand, R396907 

failed to inhibit the growth in minimal media with glucose even at its maximum dose of 

500 µM. Apart from that, the growth in minimal media with glucose had a prolonged lag 

phase for the first ten hours as compared with growth in LB, where the lag phase lasted 

only for five hours. This is acceptable given the limitation of nutrients in minimal media 

compared with the nutrient-rich LB.  

 

4.7.5.1 Inhibition of growth of clinical isolates by shikonin 

Because PAO1 is a laboratory strain and might not be representative of clinical 

strains, I tested the effect of shikonin on the growth of two clinical isolates. The isolates 

were collected from cystic fibrosis patients (Papworth Hospital, Cambridge) who were 

infected with P. aeruginosa. The strains were classified as fast growers in LB (personal 

communication with Dr. Emem-Fong Ukor).  

 

Growth of the clinical isolates was performed in minimal media with glucose and 

at 50 µM shikonin and growth was monitored for 48 hr at 37oC. Figure 4.23 shows that 

shikonin was able to inhibit the growth of the two isolates. With shikonin, the isolates 

failed to reach the same growth endpoint compared with the control cells without 

shikonin added. 
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A) 

 

B) 

 

 

Figure 4.21: The effect of PykA inhibitors on growth of cells in LB. Growth of PAO1 

was measured in LB across a range of concentrations of shikonin (A) and R396907 (B). 

Cells were inoculated at OD600 of 0.05 in a 96-well plate containing LB and growth was 

monitored for 20 hr at 37oC using a microtiter plate reader. The data were collected from 

three biological replicates and error bars represent standard errors.  
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A) 

 

B) 

 

Figure 4.22: The effect of PykA inhibitors on growth of cells in minimal media with 

glucose. Growth of PAO1 was measured in minimal media with 20 mM glucose across a 

range of concentrations of shikonin (A) and R396907 (B). Cells were inoculated at OD600 

of 0.05 in a 96-well plate containing the media and growth was monitored for 20 hr at 

37oC using a microtiter plate reader. The data were collected from three biological 

replicates and error bars represent standard errors.  
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Figure 4.23: Inhibition of growth of clinical isolates by shikonin. Clinical isolates 

were grown in minimal media with 20 mM glucose in the presence of 50 µM shikonin. 

Cells were inoculated at OD600 of 0.05 in a 96-well plate and growth was measured at 37oC 

for 48 hr using a microtiter plate reader. Solid lines represent growth of cells without 

shikonin and dotted lines represent growth with shikonin. The data represent the mean 

of three biological replicates and standard errors are shown. 

 

4.8 Discussion 

4.8.1 Kinetic properties of PykA and PykF  

PykA and PykF responded equally to titration of PEP (with sigmoidal kinetics) and to 

titration of ADP (with hyperbolic kinetics). However, the kinetic constants revealed that 

PykA was intrinsically more active than PykF. This was clearly demonstrated by the lower 

S0.5
PEP and KM

ADP of PykA compared with PykF. Given the catalytic turnover number (kcat) 

was almost equal for both isozymes, the catalytic efficiency (kcat/S0.5) of PykA was 

substantially higher than PykF for both substrates. The higher activity of PykA compared 

with PykF is consistent with findings of chapter 3 which showed that pykA was the 

dominant isozyme and not pykF. 

 

 Many PK enzymes require the presence of monovalent ions, particularly K+, in 

order to achieve 100% catalytic activity (Kachmar and Boyer, 1953). For example, the 

activity of PykF in E. coli greatly increases with monovalent ions (NH4
+, K+, Ti+, Rb+, Cs+, 
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Li+, Na+) and reaches maximum activity when K+ is added (Waygood et al., 1976). The 

main function of K+ during catalysis by PK is to participate in neutralization of the 

negatively charged active site and this facilitates the transfer of the phosphoryl group 

from PEP to ADP (Westheimer, 1987).  

 

 Findings of this chapter revealed that K+ was not required for PykA or PykF 

catalytic activity. The K+-independence of PykA and PykF can be attributed to the amino 

acid sequence of these enzymes. K+-dependent enzymes were found to encode a 

glutamate equivalent to Glu117 in rabbit PK, whereas K+-independent PK often encode a 

lysine equivalent to Glu117 in rabbit PK (Laughlin and Reed, 1997; Oria-Hernández et al., 

2006). Structural data revealed that these residues lie in a hinge region which contributes 

to the acquisition of the active conformation of PK enzymes. Amino acid sequence 

alignment of PykA and PykF using rabbit PK as a reference revealed that both isozymes 

encode a lysine in the position of Glu117 in rabbit PK (Figure 4.24). This verifies my 

findings that PykA and PykF were independent on K+. The lysine residue in K+-

independent PK enzymes (such PykA and PykF from PAO1) acts as an integral positive 

ion and replaces the function of K+ in the active site (Laughlin and Reed, 1997). Moreover, 

the perturbations of PykA and PykF activities after the addition of K+ and other 

monovalent ions can be due to disturbance of the ionic strength in the reaction following 

the increase of these positive charges. This question can be answered in future work. 

 

Figure 4.24: Amino acid sequence alignment using PK from rabbit as a reference. 

The figure shows Glu117 in rabbit PK (highlighted in blue) and its equivalent residues in 

other species which dictate whether an enzyme is K+-dependent (if the equivalent residue 

is glutamate) or K+-independent (if the equivalent residue is lysine). Each enzyme is 

identified using its Uniprot ID, species of origin and gene name. The amino acid sequence 

alignment was performed using JalView. 
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4.8.2 Metabolic regulation of PykA and PykF 

 The most striking finding in this chapter was the unusual metabolic regulation of 

PykA and PykF from P. aeruginosa. Functional characterization revealed that PykA is 

activated by metabolites from the EDP (KDPG, G6P, G3P), PPP (R5P, RL5P, X5P) and EMPP 

(F6P from EMPP operating in gluconeogenic direction), whereas it was insensitive to 

AMP. Moreover, the PykF from PAO1 was also activated by metabolites from the EDP 

(G6P, G3P) and PPP (R5P, RL5P, X5P, AMP) and it was insensitive to F6P and F1,6P. These 

findings contradict the established regulation of PykA and PykF in other bacteria. In other 

species, PykA is activated by R5P and AMP, whereas PykF is activated primarily by F1,6P 

(Waygood et al., 1975; Garcia-Olalla and Garrido-Pertierra, 1987).  

 

 The observed discrepancy of PykA and PykF regulation is mostly governed by the 

mechanism of glycolysis and the dominant isozyme in a given bacteria. In 

Enterobacteriaceae, the EMPP is the main glycolytic pathway and the EDP plays a 

marginal role. Moreover, PykF in these species is the dominant isozyme, whereas PykA is 

the less important one. Therefore, it is sensible to conclude that PykF in these bacteria is 

activated by metabolic signals (such as F1,6P) from the EMPP, whereas PykA can be only 

activated by metabolites (R5P and AMP) from the peripheral metabolic pathways (PPP). 

 

 The same principle can be applied to explain the regulation of PykA and PykF in P. 

aeruginosa. This pathogen lacks the phosphofructokinase and 6-phosphogluconate 

dehydrogenase that are required for operation of the EMPP and the upper arm of the 

reductive PPP, respectively (Lessie and Phibbs, 1984; Temple et al., 1998; Berger et al., 

2014). Thus, P. aeruginosa is exclusively reliant on the EDP for glycolysis similar to some 

13% of species for which a genome sequence is available (Flamholz et al., 2013). 

Moreover, pseudomonads have the capability to recycle metabolites from the main EDP 

into the side branches of the EMPP and the lower arm of the PPP (known as the EDEMP 

or the cyclic EDP ) (Conway, 1992; Lee et al., 2015a; Nikel et al., 2015a). I conclude that 

metabolites from the three pathways may be signals to activate the dominant PK. Given 

that PykA is the dominant isozyme in P. aeruginosa, it is not surprising that it is activated 

by metabolites from the EDP and the PPP (Figure 4.25), while PykF is regulated primarily 

by metabolites from the PPP. 
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Figure 4.25: The metabolic regulation of PykA. Metabolic pathways are shown by 

black (EDP), blue (PPP) and yellow (EMPP operating in gluconeogenic direction) arrows, 

respectively, whereas pathways involved in biosynthetic processes are shown by red 

dotted arrows. Fructose 6-phosphate is shown as part of the PPP as the gluconeogenic 

EMPP and PPP are tightly connected. The regulators of PykA are shown in red boxes and 

the respective S0.5 of PykA is shown as indicated. The S0.5 of PykA without regulators is 

shown in a violet box. The S0.5 values were calculated from titration of [PEP] at 2 mM ADP 

and 1 mM regulator except for F6P (0.2 mM), R5P (0.15 mM) and X5P (0.5 mM). GraphPad 

Prism7 was used for calculation of the S0.5 according to the best-fit nonlinear regression 

using the allosteric sigmoidal equation. Each experiment was done in triplicates and 

standard errors are shown. Abbreviations: RpiA, ribose 5-phosphate isomerase; Rpe, 

ribulose phosphate 3-epimerase; TktA, transketolase; Tal, transaldolase; Fda, fructose 

1,6-bisphosphate aldolase; Fbp, fructose 1,6-bisphosphatase; KDPG, 2-keto-3-deoxy-6-P-

gluconate. 

  

 There seem to be many benefits for the cell during operation of the EDEMP 

pathway. One of these is the continuous supply of F6P which is a crucial component in 

production of exopolysaccharides. In EDEMP, F6P is supplied at a relatively low energy 

cost compared with its direct production from the EMPP (May et al., 1991). Besides F6P, 
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other metabolites from the EDEMP such as G6P, F1,6P, and DHAP are known to be 

essential for biomass production (Nikel et al., 2015a). Also, intermediates from the PPP 

(R5P, X5P, RL5P) which strongly activate PykA and PykF, are essential for production of 

nucleotides precursors and the redox equivalents required to cope with stressful 

conditions (Juhnke et al., 1996; Christodoulou et al., 2018). Therefore, it seems that P. 

aeruginosa has evolved to coordinate glucose oxidation with production of essential 

biosynthetic precursors mainly through activation of PykA. 

 

4.8.3 The anti-Pseudomonas effects of shikonin 

 Shikonin is a natural product that is extracted from the Arnebia euchroma plant 

and is commonly used in the traditional Chinese medicine (Liu et al., 2013). The 

compound and its derivatives are known for their broad therapeutic effects including 

promotion of wound healing, anti-inflammatory and anti-microbial properties, inhibition 

of free radicals and more recently, anti-cancer effects (Kourounakis et al., 2002; 

Papageorgiou et al., 2008; Chen et al., 2011; Zhao et al., 2018; Lee et al., 2015b). As far as 

I am aware, there has been no work done to investigate the mechanism by which shikonin 

confers its antimicrobial properties. Here, I have shown that shikonin has anti-

Pseudomonas effects which are promoted by targeting PykA.  

 

 Comparison between shikonin and R39607 revealed that the inhibitory properties 

of shikonin by far outweigh those of R396907. My findings revealed that shikonin inhibits 

PykA activity by non-competitive and mixed inhibition mechanisms, whereas R396907 

inhibits PykA competitively. This means that shikonin binds to the enzyme-substrate 

complex in an irreversible manner and increasing [substrate] cannot displace the bound 

shikonin. On the other hand, R396907 is a competitive inhibitor, anticipated to bind to 

the active site in a reversible fashion. In addition, dose-response curves revealed that the 

IC50 of R396907 (95.5 µm) is four times more than the IC50 of shikonin (23.4 µm) and 

this highlights the potency of shikonin as a robust PykA inhibitor compared with 

R396907. Furthermore, shikonin has demonstrated inhibitory properties in vivo 

compared with R396907, which was ineffective. 
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 One of the main reasons for the failure of antimicrobials in P. aeruginosa is due to 

the low outer membrane permeability of the organism (Westbrock-Wadman et al., 1999). 

Having said that, the cell surface of P. aeruginosa seemed to be permeable to shikonin 

allowing the compound to enter the cells and to exert its inhibitory effects. In vivo, 

shikonin inhibited the growth of P. aeruginosa in glucose minimal media and this was 

consistent with findings of chapter 3 showing that loss of PykA function resulted in a 

reduction of growth in glucose minimal media. Moreover, shikonin was also able to 

decrease the growth of some clinical isolates that were previously identified as fast-

growers. However, there was no detectable in vivo effect of R396907. There are many 

factors that possibly contribute to the failure of R396907 during in vivo studies. Firstly, it 

is a competitive inhibitor of PykA meaning that its inhibitory effects might have been 

abolished if the PEP concentration was high so that PEP can displace R396907 from the 

active site of PykA. Secondly, it could be possible that the cell surface of P. aeruginosa was 

impermeable to R396907 and that the inhibitor was unable to enter into the cell. Thirdly, 

it is possible that R396907 successfully enters the cell but is pumped out again, given that 

surface of P. aeruginosa is equipped with multiple drug efflux pumps (Westbrock-

Wadman et al., 1999; Schweizer, 2003). These possibilities can be addressed in future 

research. 

 

 Future work should investigate further if P. aeruginosa is an actual microbial 

target for shikonin. From an experimental perspective, a rich broth such as LB is not the 

best comparator for glucose minimal media. Therefore, future experiments should 

measure the effects of shikonin during the growth of PAO1 and mutants in glucose and 

other less-rich media such as acetate minimal media where the growth of PAO1 and the 

PK mutants is supported equally well (chapter 3). Future work should also investigate if 

overexpression of PykA can reduce the drug efficacy of shikonin. Moreover, the efficacy 

of shikonin should also be checked in an animal model of P. aeruginosa infection. Finally, 

the amino acid sequence (or crystal structure) of PykA can be used for docking of PykA 

using shikonin as a ligand and this should help identify the potential binding site(s) of 

shikonin in PykA. Once a binding site is detected, site-directed mutagenesis of PykA can 

be used to identify the essential residues for shikonin binding. 
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4.9 Conclusion 

 P. aeruginosa encodes PykA and PykF isozymes which were uncharacterized (until 

this study). Here, I investigated the biochemical properties of purified PykA and PykF 

from P. aeruginosa. My findings reveal that PykA is intrinsically more active than PykF. I 

have also shown that unlike many PK, these enzymes are K+-independent owing to the 

fact that they encode a lysine residue at a position equivalent to Glu117 in rabbit PK 

which can replace the function of the K+ in the active site. Moreover, I identified activators 

of PykA and PykF, with the most potent ones derived from the PPP. This highlights that 

P. aeruginosa has possibly evolved to coordinate glucose oxidation with production of 

essential biosynthetic precursors. Moreover, findings of this chapter has have shown that 

PykA is likely to be a potential target for antimicrobial intervention. 
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Chapter 5 

5 Crystal structures of PykA and PykF 

5.1 Introduction 

More than 80% of PK structures in the PDB belong to eukaryotes, whereas the 

number of PK structures from prokaryotes is limited. So far, there is only one bacterial 

PK structure with metabolites (apart from metal ions) bound to the allosteric site which 

belongs to the PK of M. tuberculosis. Most importantly, there is no structure of any PykA 

isozyme, whereas the PykF isozyme from E. coli has been previously determined. 

 

In this chapter, I demonstrate the first x-ray crystal structures of PykA and PykF 

from P. aeruginosa. The PykA was modelled with a G6P bound in the allosteric site, and a 

malonate and a Mg2+ bound in the active site. By contrast, PykF was modelled in the apo 

state. Analysis of the PykA and PykF structures show that they both have different 

properties than the previously modelled PKs from prokaryotes. I found that the G6P 

binding site in PykA is distinct from the previously identified G6P binding site in the PK 

of M. tuberculosis, meaning that the G6P regulation of PykA is likely to be different 

compared with M. tuberculosis PK. Likewise, comparison of P. aeruginosa PykF and E. coli 

PykF demonstrates an extra short helix (Cα1’) present only in PykF from P. aeruginosa 

and absent in the E. coli isozyme, and this helix is apparently important for enzyme 

stability as well as for the transmission of conformational signals between the subunits. 

 

5.2 Crystallization, data collection and model building 

5.2.1 Crystallization of PykA and PykF 

PykA and PykF crystals were obtained from screening using sitting drop vapour 

diffusion, where the protein and mother solution were mixed in 1:1 ratio. The PykA 

structure was obtained from co-crystallization of PykA with PEP, G6P and MgCl2, and a 

mother solution consisting of 20% (w/v) PEG 3350, 200 mM sodium malonate and 100 

mM Bis-Tris propane at pH 7.5. This mixture was essential for obtaining a PykA crystal 

that diffracted and any change in the ingredients caused either no growth or no 

diffraction of the crystal (Figure 5.1). Also, other co-crystallization trials of PykA with PEP 
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alone, MgCl2 alone, F6P, R5P, Shikonin, R396907, KCl or using His-tagged PykA were 

unsuccessful. 

 

The PykF crystals were also produced from screening after co-crystallization of 

PykF with PEP, KCl and MgCl2, and a mother solution containing 25% (w/v) PEG 6000 

and 0.1 M Hepes pH 7.5. Co-crystallization components were also essential for both 

development of the PykF crystal and for obtaining a good diffraction data (Figure 5.2). 

Similar to PykA, other co-crystallization trials of PykF with PEP alone, MgCl2 alone, G6P, 

R5P or using His-tagged PykF were unsuccessful. PykA and PykF crystals both appeared 

after two days of setting up the crystallization plates and crystals were harvested at the 

sixth day. 
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PEP                + - + + - 

MgCl2            + + + - - 

G6P               + + - - - 

     

2.43 Å 

(used in this study) 

No diffraction No crystals No crystals No crystals 

 

Figure 5.1: The effect of co-crystallization conditions on growth and diffraction of PykA crystals. Light microscope images of PykA 

crystallization drops taken after five days of incubation in a mother solution containing 20% (w/v) PEG 3350, 200 mM sodium malonate 

and 100 mM Bis-Tris propane pH 7.5. The PykA (22.4 mg/ml) was mixed with 2 mM PEP, 2 mM G6P, or 20 mM MgCl2 (as indicated) before 

being added to the mother solution. Drops were visualized using ROCK IMAGER. 
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PEP                + - + + - 

KCl                 + + - - - 

MgCl2                   + + + - - 

     

3 Å 

(used in this study) 

No crystals No crystals  No diffraction No crystals 

 

Figure 5.2: The effect of co-crystallization conditions on growth and diffraction of PykF crystals. Light microscope images of PykF 

crystallization drops taken after six days of incubation in a mother solution containing 25% (w/v) PEG 6000 and 100 mM Hepes pH 7.5. 

The PykF (29 mg/ml) was mixed with 2 mM PEP, 200 mM KCl, or 20 mM MgCl2 (as indicated) before being added to the mother solution. 

Drops were visualized using ROCK IMAGER. 
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5.2.2 Data collection and model building of PykA 

The full length (483 residues) PykA crystal diffracted to 2.43 Å, untagged. The data 

were processed with space group P3121, with 100% completeness. Statistical data of 

PykA and PykF are shown in Table 5.1. Molecular replacement of PykA was performed 

using the BALBES Pipeline (Long et al., 2008), and T. brucei (32% amino acid identity) 

was used as a search model. The asymmetric unit of PykA comprised 12 chains, denoted 

as chain A to chain L. After several rounds of manual model building using Coot and 

REFMAC5 for refinement, the crystallographic R factor and free R of PykA reached 0.23 

and 0.26, respectively, indicating agreement of the PykA model with the experimental 

diffraction data. 

 

Generally, the PykA model fitted well in the electron density, except for a weak 

signal noted in chain J (residue 70-175). This region of chain J was far from any crystal 

contacts and was left unmodelled. Geometrical analysis of PykA revealed that Thr282 was 

a consistent Ramachandran outlier across all chains. This residue had a well-defined 

electron density, although it was consistently plotted as an outlier on the phi and psi 

geometrical plots (Appendix 1). The unusual geometry of Thr282 was observed before in 

the corresponding threonine of many PK structures. In these structures, they considered 

the odd geometry of this residue acceptable, given its location in the active site of the 

enzyme, within a highly restricted environment. This threonine is also known to facilitate 

the interaction between the active site and the substrate in other PykF structures.  

 

5.2.3 Data collection and model building of PykF 

The full length (477 residues) PykF crystal diffracted to 3 Å, untagged. The PykF 

data were processed with space group P321 with 99.7% completeness (Table 5.1). 

Phases of PykF structure were obtained using Phaser MR (McCoy et al., 2007) against a 

PykF ensemble that was generated using a Swiss model (Waterhouse et al., 2018). The 

asymmetric unit of PykF comprised two chains, denoted as chain A and B. After several 

rounds of model building (using Coot) and refinement (using PHENIX), the 

crystallographic R factor and free R of PykF reached 0.23 and 0.27, respectively, 

indicating agreement of the PykF model with the experimental data. Geometrical analysis 

demonstrated that the PykF model was generally acceptable with more than 99% of 
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residues present within the allowed Ramachandran regions. Similar to PykA, the active 

site residue Thr275 of PykF (corresponding to Thr282 in PykA) was also depicted as an 

outlier on the geometrical plots of the two chains of PykF (Appendix 2).  

 

Table 5.1: Data collection and refinement statistics of PykA and PykF. 

  

PykA/G6P/MLI/Mg2+ 

 

Apo PykF 

 

Radiation source 

 

Diamond (UK), I04-1 

 

Diamond (UK), I04-1 

Data collection   

Wavelength 0.9159 0.9159 

Resolution range (Å) 405.44-2.43 (2.49-2.43) 115.14-3.01 (3.09-3.01) 

Space groups P31 2 1 P3 2 1 

Cell dimensions   

          a, b, c (Å) 182.48, 182.48, 405.04 169.05, 169.05, 115.11 

          α, β, ɣ (o) 90, 90, 120 90, 90, 120 

Total reflections 4318494 (226510) 1772874  

Unique reflections 292996 (21477) 37859 

Multiplicity 14.7 (10.5) 46.8 (21.2) 

Completeness (%) 100.0 (100.0) 99.7 (94.0) 

Mean I/sigma(I) 11.1 (1.1) 16.3 (1.2) 

Wilson B-factor 55.5  115.96 

R-merge 0.143 (2.210) 0.139 (3.014) 

R-meas 0.148 (2.324) 0.140 (3.088) 

CC half 0.999 (0.642) 1.000 (0.846) 

 

Refinement  

 

Resolution range (Å) 158.03 – 2.43 (2.49-2.43) 73.20-3.01 (3.09-3.01) 

Reflections used in refinement 275231 (19691) 37564 (2728) 

Reflections used for R-free 14353 (1061) 1859 (110) 

R-work 0.235 (0.438 ) 0.237 (0.505) 

R-free 0.261 (0.456) 0.275 (0.502) 

No. of molecules in the ASU 12 2 



141 

Table 5.1: Continued   

 PykA/G6P/MLI/Mg2+ Apo PykF 

No. of non-hydrogen atoms   

          Macromolecules 43,349 7213 

          Ligands 1075 n/a 

Protein residues   

          RMS (bonds) (Å) 0.01 0.01 

          RMS (angles) (°) 1.64 1.6 

Ramachandran favoured (%) 96.98 94 

Ramachandran allowed (%) 2.79 5.9 

Ramachandran outliers (%) 0.23 0.1 

Average B-factor   

          Macromolecules 55.5 124 

          Ligands 55.65 n/a 

          Solvent 62.51 n/a 

 

5.3 PykA tetramer and domain organization 

The asymmetric unit of PykA comprised 12 subunits (Chain A to Chain L), in which 

four of the chains were already assembled into a homotetramer (Figure 5.3) and the rest 

of the chains were related by non-crystallographic symmetry. This was in agreement with 

analytical ultracentrifugation (AUC) analysis of PykA which demonstrated that the 

enzyme was a tetramer in solution (Appendix 3). The surface area of the complete PykA 

tetramer (Chains L, I, K, C) was 70240  Å2  with accessible solvent area of 14490 Å2. The 

tetramer assembly was stable in solution with a solvation free energy gain (ΔG) of -102 

kcal/mol. Each subunit of PykA consisted of three domains; A, B and C (Figure 5.3, 5.4). 

The PykA tetramer contains four inter-protomer interfaces, two of which are between 

adjacent A domains (A-A interface) and two between adjacent C domains (C-C interface). 

javascript:openWindow('pi_asmlist_sarea.html',400,250);
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Figure 5.3: Structure of PykA. Top figure: Cartoon representation of a PykA tetramer. 

The dashed lines highlight the position of the A-A and the C-C interfaces within the 

tetramer. Bottom figure: Cartoon representation of a single PykA protomer with sodium 

malonate and Mg2+ bound in the active site (PykA-MLI-Mg complex) and G6P bound in 

the allosteric/effector site. 



143 

The A domain is located in the centre between the B and C domains and it is 

composed of two stretches of amino acids (residues 1-69 and 174-346) that are 

interrupted by the B domain. The A domain consists of eight alternating α-helices and β-

strands forming a TIM barrel, where the α-helices encircle the β-barrel core. The Aα6 and 

Aα8 helices were subdivided into shorter segments; Aα6’ and Aα8’ which preceded Aα6 

and Aα8, respectively. The B domain (residues 73-163) is present at the C-terminus of 

the A domain. It consists of nine β-strands (Bβ1…Bβ9) and a short α-helix (Bα1) that is 

positioned between the fourth and the fifth β-strands. The active site of PykA is found 

between the A and B domains and each active site is occupied by a malonate (MLI) and a 

Mg2+, forming a PykA-MLI-Mg complex. The C domain (residues 360-480) is located at 

the N-terminus of the A domain and is composed of four alternating (α/β) structures with 

an additional terminal β-strand that runs antiparallel to the previous four ones. The 

allosteric site of PykA is present in the middle of the C domain and each allosteric site was 

occupied by a glucose 6-phosphate (G6P) molecule. Interactions of PykA with the bound 

ligands are detailed in the upcoming sections of this chapter. 

 

In some PKs, the transition from the inactive (T-state) to the active (R-state) state 

is associated with movement of the B domain (Donovan et al., 2016). Motion of the B 

domain causes closure of the active site in these enzymes leading to improvement of 

enzyme substrate binding. However, in some cases such as the PK of Toxoplasma gondii, 

the B domain can have variable positions among the chains of the same model (Bakszt et 

al., 2010). Thus, in order to investigate if the B domain has variable positions among the 

PykA chains, I superposed the 12 chains of PykA to each other using PDBeFold. 

Superposition of the PykA chains generated an rmsd (root mean square deviations of 

atomic positions) range of 0.17 to 1.56Å, meaning that there is some movement seen 

among the chains (Appendix 4). However, the PDBeFold analysis does not define the 

movable part of the structure. Further domain motion analysis using the DynDom 

webserver was performed to depict the exact movable domain. In this analysis, chain E 

was used as a fixed model and its atomic position was compared with the rest of the 

chains. Domain motion analysis revealed that all the PykA chains pivot around the B 

domain region and that the B domain rotates to variable degrees (Appendix 5). This 

indicates that the B domain motion was likely the reason for the relatively high rmsd 

ranges. To verify this further, I deleted the B domains from all the chains, superposed the 
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chains on each other and re-measured the rmsd ranges using PDBeFold. After deletion of 

the B domain, the rmsd ranges declined (0.088 to 0.531Å) (Appendix 6) which confirms 

that the B domain has variable positions in the PykA structure. 

 

 

   

 

Figure 5.4: Secondary structures of PykA. Cartoon representation of secondary 

structures of a single PykA protomer. The α-helices and the β-strands are shown in red 

and blue, respectively. All ligands were removed for clarity. The B domain is β-rich and is 

found at the C-terminus of the A domain. The A domain is found at the core of the enzyme 

and is characterized by the presence of the active site helix Aα6’. The C domain is found 

at the N-terminus of the A domain and contains the allosteric site of the enzyme. 

 

The B domain 

The A domain 

The C domain 
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5.4 The active site of PykA 

 So far, there is one PK structure that has the active site occupied by PEP (the 

natural substrate of the enzyme) and this structure belongs to PK of T. brucei (PDB 4HYV). 

The PykA from P. aeruginosa (PykAPA) was co-crystallized with PEP and Mg2+ in a mother 

solution containing MLI (an analogue of PEP). However, the crystal structure of PykA 

revealed that the active site did not contain PEP and instead, was complexed with MLI 

and Mg2+, which I refer to here as the “PykA-MLI-Mg complex.” The presence of MLI 

instead of PEP in the active site of PykA was likely due to the MLI (200 mM) in the co-

crystallization solution. 

 

5.4.1 The PykA-MLI-Mg complex 

The MLI and Mg2+ were seen clearly at the cleft between the A and B domains, 

where the active site of PK structure lies. The electron density was good for this region in 

all PykA chains with Fo-Fc map of more than 3σ, indicating a clear ligand binding site 

(Figure 5.5A). Using chain E as a reference, the interface between MLI and PykA was 

measured to be approximately of 185 Å, burying around 83% of the ligand. The MLI 

coordinated with the Aα6’ helix, Aβ2 strand, Aβ5-Aα5 loop, and the Aβ7-Aα7 loop via a 

series of hydrogen bonds. These interactions were between the hydroxyl moieties of MLI 

and the backbone of Gly249 (2.77 Å) and Asp250 (3.06 Å), and the side chains of Arg34 

(3.25 Å), Lys221 (2.92 Å) and Thr282 (2.56 Å). Figure 5.5B shows the different 

interactions in the PykA-MLI-Mg complex. 

 

Mg2+ was another component of the complex that seemed to stabilize the bound 

MLI through further interactions with the active site. The ion had a complete octahedral 

coordination sphere through six interactions with the surrounding structures, including 

interactions with the hydroxyl moieties of MLI, the adjacent water molecules and with 

the side chains of Glu223 and Asp250. The octahedral coordination sphere was confirmed 

using the metal binding site validation server (CheckMyMetal) and was found to be 

present in most of the PykA chains.  
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A) 

 
B) 

  

Figure 5.5: The PykA-MLI-Mg complex. A) Cartoon representation of the active site of 

PykA with bound MLI and Mg2+. The electron density map (Fo-Fc) around the MLI and 

magnesium is shown as orange mesh and contoured at 3 σ. B) Interactions of the PykA-

MLI-Mg complex. Active site residues and the bound MLI are shown as yellow and green 

sticks, respectively. The Mg2+ and water molecules are shown as grey and red spheres, 

respectively. The red dashed lines illustrate the octahedral sphere coordination of Mg2+ 

with the surrounding structures (distances in Angstroms) and the black dashed lines 

represent the interactions of PykA with MLI or water molecules.  
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5.4.2 Comparison of the active site of PykAPA with apo and bound PK structures 

The ideal situation is to compare a bound enzyme with the apo form of the same 

enzyme in order to understand the changes associated with ligand binding. When the apo 

or the bound PK is not available, models from other species are often used instead. The 

crystal structure of PykF from E. coli (PykFEC) in the apo state (PDB 1PKY) is suitable and 

has been used as an unbound model in many studies, when the unbound enzyme is not 

available. In contrast, PK from rabbit muscle (PKM1) is used as a model of a bound/active 

PK (PDB 1F3W), when the bound form is not available; this is because PKM1 is 

physiologically locked in the active state.  

 

Unfortunately, I was not able to obtain a crystal of apo-PykA that diffracted beyond 

4 Å in spite of crystallization and optimization trials. Therefore, I compared PykAPA (MLI-

Mg-bound) with both PykFEC (PDB 1PKY) and PKM1 (PDB 1F3W) to study 

conformational changes in the active site. Comparison of bound PykAPA with apo 1PKY 

revealed that many of the active site residues were shifted in position. These included 

Arg34, Lys221, Glu223, Gly249 and Asp250 (Figure 5.6A). Additionally, the side chain of 

Thr282 was in a different orientation in PykAPA, with the hydroxyl group facing the bound 

MLI. In contrast, superposition of the MLI-bound PykAPA
 and the pyruvate-bound PKM1 

(PDB 1F3W) showed that the active site residues of the two structures superimposed 

well, in the same positions and orientations (Figure 5.6B). Moreover, the bound substrate 

analogues superposed very well in both structures.  

 

5.4.3 Amino acid sequence alignment of the active site  

To determine the degree of conservation of the active site residues in PykAPA with 

these in other bacterial species, I compared the amino acid sequence of PykAPA with 

PykFPA, and with PykA and PykF from S. enterica Serovar Typhimurium, Y. pestis, and E. 

coli. These species were selected because they encode both PykA and PykF together, 

similar to P. aeruginosa. Amino acid sequence alignment showed that the active site 

residues in PykA were 100% conserved. Moreover, the alignment also showed that the 

active site signature of PykA “245MVARGDLGVE254” was also present in all included 

sequences (Figure 5.8). 
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 A) 

  

 B) 

 

Figure 5.6: Comparison of the active site of PykAPA with apo and bound PK 

structures. A) Superposition of the active site of MLI-bound PykAPA (green) and the apo 

1PKY from E. coli (yellow). B) Superposition of the active site of MLI-bound PykAPA 

(green) and pyruvate-bound PKM1 from rabbit muscle (PDB 1F3W, yellow). Residues are 

annotated using PykAPA numbering.  
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5.4.4 Elongation of the Aβ5-Aα5 loop in PykAPA 

While comparing the active site of PykA with other PK structures, I observed that 

the Aα5 helix of PykA had an outward orientation away from the core of the enzyme 

(Figure 5.7). This orientation of Aα5 was not apparent in other PK structures from 

prokaryotes or eukaryotes. Moreover, it was unlikely to be a modelling error given the 

good electron density signal in this region of PykA (Appendix 7). Analysis of the amino 

acid sequence revealed that the Aβ5-Aα5 loop which precedes the Aα5 helix was slightly 

longer in PykA than in certain other PKs, and this might have forced this conformation of 

the Aα5 helix. The loop contained three additional residues (Ala229, Asp230 and Asp231) 

which have unbiased electron density (Appendix 7). Alignment of the amino acid 

sequence revealed that PykA isozymes from other species also encode three extra 

residues in the same region (Figure 5.8). Presumably, the Aα5 helices of other PykAs most 

likely adopt a similar conformation of the Aα5 helix of PykAPA. Although the three 

residues which elongate Aβ5-Aα5 loop in PykAPA (Ala229, Asp230 and Asp231) were not 

directly involved in interactions of the active site, other residues from the same loop 

participated in formation of the PykA-MLI-Mg complex; including Glu223 (one of the 

octahedral coordinates of Mg2+) and Lys221 (coordinates directly with MLI).  

 

 

Figure 5.7: Superposition of the Aα5 helix from PykAPA and other PKs. The figure 

shows superposition of PykAPA (blue), PykF of E. coli (PDB 1PKY, green), PK of rabbit 

muscle (PDB 1F3W, lilac), PK of S. aureus (PDB 3T05, grey), PK of M. tuberculosis (PDB 

5WRP, maroon) and PK of T. cruzi (PDB 4KS0, yellow). Alpha helices are shown as 

coloured tubes and the black arrow points to the elongated Aβ5-Aα5 loop in PykAPA. 
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Figure 5.8: Alignment of the amino acid sequence in the active site of PKs. Residues 

involved in binding of MLI and Mg2+ in PykAPA are highlighted in red and black asterisks, 

respectively. Yellow asterisks indicate the three additional residues that elongate the 

Aβ5-Aα5 loop in PykA enzymes. Residues highlighted in red are 100% identical, whereas 

a column is framed in blue if more than 70% of the residues have similar physicochemical 

properties. 

 

5.5 The allosteric site of PykA 

 So far, there is only one other prokaryotic PK structure with a bound regulator and 

this belongs to the PykF subfamily enzyme from M. tuberculosis. In that structure, AMP 

binds to the canonical allosteric site (at the C domain), whereas G6P is present in a 

different binding pocket (between the A and C domains). In chapter 4, the kinetics of PykA 

showed that it is allosterically activated by G6P and that the addition of this regulator led 

to sigmoidal kinetics with respect to PEP titration to become more hyperbolic. Moreover, 

co-crystallization of PykA with G6P improved the diffraction quality, suggesting that 

addition of G6P may induce conformational changes in PykA that stabilize the structure 
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and improve the packing of the crystal. Herein, I present the structure of PykA with G6P 

bound to the allosteric site. However, the binding site of G6P to PykA is distinct from the 

G6P binding site in the PK from M. tuberculosis, meaning that this regulator is likely to 

activate PykA via a different allosteric mechanism than the one in M. tuberculosis PK. 

 

5.5.1 The binding site of G6P 

Analysis of the PykA structure revealed that G6P was present in a clear binding 

pocket within the C domain, with an average interactive surface area of 275 Å2. The 

observed electron density for the bound G6P was unbiased in all chains, with strong Fo–

Fc difference (Figure 5.9A). The G6P binding pocket was bordered by the Cβ1-Cα2 loop 

(residues 383-388), the Cα2 helix (residues 389-393) and the Cβ4-Cβ5 loop (residues 

460-471). The Cβ1-Cα2 loop and the first turn of the Cα2 helix anchored the phosphate 

moiety of G6P, thus the Cβ1-Cα2 loop is referred to as “the phosphate loop”, whereas the 

Cβ4-Cβ5 loop anchored the ring part of G6P and so is referred to as “the ring loop”. 

 

G6P was bound tightly in the allosteric pocket of PykA via an extensive network of 

hydrogen bonds. The phosphate group of G6P coordinated with the side chain of Thr384, 

the backbone atoms of Glu385, Phe388 and Gly468, and with both the side chains and the 

backbone atoms of Ser386 and Thr389. In contrast, the ring moiety of G6P bonded with 

the side chain of Ser463, the backbone atoms of Ala466 and Gly469, and with the side 

chain and backbone of Glu385 (Figure 5.9B). Interactions of the phosphate group of G6P 

were present in all 12 chains of PykA, whereas the interactions of the ring part were 

present in at least nine chains.  

 

5.5.2 The phosphate-ring loop interaction 

 The phosphate and the ring loops also co-interacted (Figure 5.10). These loops 

bonded with each other via a pair of electrostatic interactions between Ser386 and 

Gln467, and between Thr389 and Thr470. The phosphate-ring loop interaction took 

place primarily near the phosphate moiety of G6P. Additionally, Lys460 and Tyr464 (both 

from the ring loop) bonded together near the ring moiety of G6P. Taken together, it seems 

that these interactions keep the allosteric pocket of PykA in a closed conformation 

covering the bound G6P. 
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 A) 

 
 

 B) 

 

Figure 5.9: The allosteric site of PykA. A) Cartoon representation of the allosteric site 

of PykA (Chain E) containing bound G6P. The electron density map (Fo-Fc) around the G6P 

is shown as an orange mesh and contoured at 3σ. The image was generated using 

CCP4mg. B) Schematic diagram of the interactions of G6P with the surrounding residues 

in the allosteric pocket of PykA. Residues belonging to the phosphate loop, ring loop and 

Cα2 helix are highlighted in yellow, blue and green colours, respectively. Filled and open 

squares represent side chain and peptide backbone atoms, respectively. Interactions of 

the bound G6P were analyzed using PDBePISA.  
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Figure 5.10: Phosphate-ring loop interactions. Cartoon representation of the 

interactions between the phosphate loop (cyan) and the ring loop (blue) in the allosteric 

site of PykA. The bound G6P is shown as pink sticks. The conservation of the residues is 

highlighted in green (All, found in all PykAs and PykFs; All PykAs, found only in PykAs 

and absent in PykFs; PykA of PAO1, unique to PykA from PAO1 and absent in other PykAs 

and PykFs). The figure was generated using CCP4mg.  

 

5.5.3 Analysis of the amino acid sequence in the allosteric site 

The biochemical analysis in chapter 4 revealed that PykAPA was regulated 

differently compared with PykA from other species, meaning that it is likely that the 

allosteric site of PykAPA is built up of different residues (likewise for PykFPA). To 

investigate this further, I compared the amino acid sequence of the allosteric site in 

PykAPA with PykA and PykF enzymes from other bacteria (Figure 5.11). Amino acid 

sequence alignment showed that the residues of the phosphate loop and Cα2 helix were 

highly similar among the PykA enzymes including PykAPA and among the PykF enzymes 

including PykFPA. This indicates that the phosphate loop and the Cα2 helix were 

apparently unlinked with the unusual allosteric regulation of PykAPA and PykFPA. 
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On the other hand, the amino acid sequence of the ring loop was different in 

PykAPA and PykFPA, despite its high conservation among PykA and PykF from other 

species. This suggests that the unusual allosteric regulation of PykAPA and PykFPA may be 

related to the distinct composition of their respective ring loops. The amino acid 

sequence alignment also showed that the phosphate-ring loop interactions seemed to be 

specific to PykAPA, as half of the residues involved in these interactions were present only 

in PykAPA. The only exception to this was the interaction of Thr389 and Thr470, which 

was mediated by conserved residues in all PykA enzymes. 

 

 

 

Figure 5.11: Alignment of the amino acid sequence in the allosteric site of PKs. 

Residues involved in G6P-binding and phosphate-ring loop interactions in PykAPA are 

highlighted by pink and grey asterisks, respectively. Residues of the phosphate and ring 

loops are surrounded by yellow boxes. Residues highlighted in red are 100% identical, 

whereas a column is framed in blue if more than 70% of the residues have similar 

physicochemical properties. 
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5.5.4 Comparison of the allosteric site in PykAPA with apo PykF from E. coli 

In the allosteric site of PykAPA, G6P was anchored by the phosphate loop, the Cα2 

and the ring loop. Comparison of the allosteric site in PykAPA with the apo PykF model 

from E. coli (1PKYEC) revealed major disparities between the two structures, particularly 

in the ring loop (Figure 5.12). In PykAPA, the ring loop shifted towards the bound G6P, 

closing the allosteric pocket, whereas in 1PKYEC, the ring loop was shifted away from the 

allosteric pocket and the allosteric site was in a more open conformation. The phosphate 

loop and the Cα2 helix, however, were in the same conformation in both structures. 

Although, the Cα4 helix was not involved in interactions of PykAPA with G6P, was partially 

unwound in PykAPA in comparison with1PKY.  

 

 

 

 

Figure 5.12: Comparison between the allosteric site in PykAPA and 1PKYEC. Cartoon 

representation of the allosteric site of G6P-bound PykAPA (light blue) superposed with 

1PKYEC (light yellow). G6P is shown as a coral cylinder. Secondary structures are 

annotated using PykAPA numbering. The figure was generated using CCP4mg. 
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5.6. Intersubunit interactions in PykA 

Intersubunit interactions are the means by which allosteric or activity signals can 

be transmitted from one subunit to another. In PykA, the opposing A domains 

communicate via the A-A interface, whereas the opposing C domains communicate via 

the C-C interface. I analysed the interactions across the PykA subunits using PDBePISA 

webserver.  

 

5.6.1 The A-A interface in PykA 

 The PykA tetramer contained two A-A interfaces; between chains I & L and 

between chains K & C. However, there were additional A-A interfaces present between 

the scattered chains in the asymmetric unit of PykA; A-A interface between chains H & E 

and between chains B & F. The A-A interface was derived from interactions between two 

protomers, with one being apparently perpendicular to the other (Figure 5.13A). The 

average surface area of the interface was around 1450 Å2, burying about 7% of the 

surface of each subunit.  

 

 The A-A interface is stabilized primarily by hydrogen bonds and a small subset of 

salt bridges (Table 5.2). The interface comprises four helices; Aα6’, Aα6, Aα7 and Aα8 and 

three connecting loops; Aα6- Aα6’, Aβ7- Aα7 and Aα8- Cα1 (Figure 5.13B, 5.14). Of these 

structures, the most important interaction is mediated by the active site helix Aα6’. In this 

interaction, Arg248 and Gly249 (both from Aα6’) which mediate the coordination of MLI 

and Mg2+ to the active site, also bond with Arg296 (Aα7) from the opposing monomer. 

This suggests that the Aα6’ helix is not just important for formation of the active site 

pocket, it also plays a role in transmission of the activity signals between adjacent 

subunits.  
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A) 

 

B) 

 

Figure 5.13: Structures of the A-A interface in PykA. A) Cartoon representation of the 

A-A interface between two PykA protomers. B) Close-up view of the secondary structures 

forming the A-A interface in PykA. The bound MLI in the active site is shown as a coral 

cylinder. The figure was generated using CCP4mg.  
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Table 5.2: Intersubunit interactions in PykA. The table lists the interactions at the A-

A and the C-C interfaces in PykA. The shown distances at the A-A interface represent the 

interactions between chain B & F and those at the C-C interface section represent the 

interactions between chain I & C. Black and red “plus” marks indicate hydrogen bonds 

and salt bridges, respectively. The results are based on interface analysis using PDBePISA. 

 
The A-A interface in PykA 

Chain I Chain II  Å I & L K & C H & E B & F 

Aα6 Lys265 Aα7 Asn304 2.82 + + + + 

Aα7 Arg296 Loop Aβ7-Aα7 Gln283 3.2 + + + + 

Aα7 Arg296 Aα6’ Arg248 2.86 + + + + 

Aα7 Arg296 Aα6’ Gly249 2.75 + + + + 

Loop Aα8-Cα1 Lys341 Loop Aα6’-Aα6 Glu259 3.68 + + + + 

Aα8 Arg334 Loop Aα6’-Aα6 Asp257 3.21  + + + 

Aα7 Arg296 Loop Aα6’-Aα6 Asp257 3.32 +  +  

Loop Aβ7-Aα7 Gln283 Aα7 Ala297 3.79  + + + 

Loop Bβ5-Bβ6 Asp129 Aα7 Arg296 3.39    + 

The C-C interface in PykA 

Chain I Chain II  Å I & C K & L 

Cα1 Tyr369 Loop Aα8-Cα1 His350 2.7 + + 

Loop Aα8-Cα1 Phe356 Cα1 His373 2.87 + + 

Cβ5 Lys474 Loop Cβ4 -Cβ5 Asp462 3.03 + + 

Cβ5 Val475 Cβ5 Asn471 3.11 + + 

Cβ5 Lys474 Cβ5 Thr472 3.6 + + 

Cβ5 Met473  Cβ5 Met473 2.92 + + 

Cα1 Cys359  Cβ5 Val475 3.62 + + 
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Figure 5.14: Interactions across the A-A interface in PykA. A) Interactions of the 

active site helix Aα6’ (Arg248 and Gly249), Aα7 (Arg296) and loop Aβ7-Aα7 (Gln283). B) 

Formation of salt bridges between Aα8 + loop Aα8-Cα1 (Arg334, Lys341) and loop Aα6’-

Aα6 (Asp257, Glu259). C) Interactions of Aα6 (Lys265) and Aα7 (Asn304).  

 



160 

5.6.2 Analysis of the amino acid sequence in the A-A interface 

Residues in the A-A interface in PykA can be sorted according to their conservation 

into three groups; strictly-conserved residues, residues that are highly conserved except 

for PykFPA, and residues that are specific to PykA enzymes (Figure 5.15). The 100% 

conserved residues belong to Aα6’, Aα6, loop Aβ7-Aα7 and the first turn of Aα7. This 

means that the same interactions mediated between Aα7 and Aα6’ or Aα6 or loop Aβ7-

Aα7 are likely to take place at the A-A interfaces of PykA and PykF in different species. 

The second group of residues are Glu259 and Asn304 and these are conserved in all 

enzymes except for PykFPA (replaced by a serine and a threonine, respectively). This 

indicates that possibly the interactions of the A-A interface in PykFPA are mediated by 

different mechanisms than they are in other PykA or PykF enzymes. The last group of 

residues are specific to the PykA enzymes including PykAPA and they are absent in all 

PykF isozymes. These residues include Asp257, Arg334 and Lys341 (with the exception 

of Arg334, which is replaced in S. enterica Serovar Typhimurium by a lysine). The latter 

three residues are particularly important as they contribute the only two salt bridges at 

the A-A interface. Altogether, the A-A interface in PykAPA is highly conserved across PykA 

isoforms. 

 

Figure 5.15: The A-A interface in PykA. Amino acid sequence alignment showing the 

residues that mediate the A-A interface in PykA (green asterisks) compared with other 

enzymes. Residues highlighted in red are 100% identical, whereas a column is framed in 

blue if more than 70% of the residues have similar physicochemical properties. 
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5.6.3 The C-C interface in PykA 

The C-C interface was formed between the opposing C domains of two protomers 

(Figure 5.16A, 5.16B). There are two C-C interfaces present in the PykA tetramer; one is 

formed between chains I & C and the second is formed between chains L & K. The C-C 

interface had a slightly smaller surface area than the A-A interface (approximately 1200 

Å2) burying around 6 % of each protomer. 

 

The C-C interface in PykA can be viewed as pairing of the Cα1 and Cβ5 from one 

protomer with the same structures from the opposite protomer (Figure 5.16B). The C‐C 

interface was stabilized by interactions from Cα1, Cβ5, loop Aα8-Cα1 and loop Cβ4‐Cβ5 

(Figure 5.17). The Aα8-Cα1 loop was also a part of the A-A interface, meaning that this 

loop apparently contacts two protomers at the same time. Moreover, the Cβ4‐Cβ5 loop is 

also the ring loop anchoring the ring of G6P to the allosteric site. The C‐C interface is 

mediated mainly by hydrogen bonds, with the exception of one salt bridge found between 

Asp462 (ring loop) and Lys474 (Cβ5). Interactions at the C-C interface in PykA are shown 

in Table 5.2.  

 

5.6.4 Analysis of the amino acid sequence in the C-C interface 

Amino acid sequence alignment of PykAPA and PK enzymes from other species 

showed that the residues which mediate the C-C interface are apparently less conserved 

than PykAs and PykFs from other species (Figure 5.18). Apart from Asn471, which is 

highly conserved in all PK enzymes, the C-C interface in PykAPA is mediated either by 

residues conserved in all PykA enzymes (His350, Phe356, Tyr369, His373, Asp462, 

Thr472) or by residues specific to PykAPA (Met473, Lys474, Val475, Cys359). The 

diversity of residues mediating the C-C interface in PykAPA indicates that the transmission 

of activity signals across the protomers of this enzyme is likely different compared with 

the PKs from other bacteria. 
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A) 

 

 

B) 

 

Figure 5.16: Structures of the C-C interface in PykA. A) Cartoon representation of the 

C-C interface formed between two PykA protomers. B) Close-up view of the secondary 

structures in the C-C interface. The bound G6P at the allosteric site is shown as coral 

cylinders. The figure was generated using CCP4mg.  
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 A) 

 
 B) 

 
 C) 

 

Figure 5.17: Interactions across the C-C interface in PykA. A) Interactions of the Cβ5 

(Lys474), loop Cβ4 - Cβ5 (Asp462) and Cβ5 (Thr472). B) & C) Interactions between the 

loop Aα8-Cα1 (His350, Phe356) and Cα1 (Tyr369, His373).  



164 

 

Figure 5.18: The C-C interface in PykA. Amino acid sequence alignment showing the 

residues mediating the C-C interface in PykA (blue asterisks) compared with other 

enzymes. The phosphate and the ring loops in the allosteric site are shown in yellow 

boxes. Residues highlighted in red are 100% identical, whereas a column is framed in 

blue if more than 70% of the residues have similar physicochemical properties. 

 

5.6.5 Intersubunit interactions in PykAPA compared with 1PKY from E. coli 

Occupation of the active/allosteric site of a multi-subunit enzyme such as PK is 

associated with rearrangement of the intersubunit structures in a way which facilitates 

the transfer of the activity/allosteric signals from one subunit to another. Given that there 

is no apo PykAPA structure, I again used 1PKY available from E. coli as an apo model to 

compare the intersubunit interactions. I analysed the interactions of the A-A and the C-C 

interfaces of PykAPA and 1PKYEC using PDBePISA. The interactions are summarized in 

Figure 5.19. 

 

  



165 

Analysis of the A-A interface in PykAPA showed that the interface network was 

primarily mediated by hydrogen bonds and without the co-interaction of opposite Aα7 

helices (Figure 5.19). The interaction between Aα7 helices of two adjacent protomers is 

an indication of unbound PK (Mattevi et al., 1995). Moreover, the Aα6’ helix and the Aα8-

Cα1 loop contributed to formation of the A-A interface in PykAPA. In contrast, the A-A 

interface in 1PKYEC was mediated by a network of salt bridges and included bonding of 

the opposite Aα7 helices (Mattevi et al., 1995). In addition, neither the active site helix 

(Aα6’) nor the Aα8-Cα1 loop were part of the A-A interface in 1PKYEC. There were also 

differences between the C-C interface in PykAPA and 1PKYEC (Figure 5.19). In PykAPA, the 

C-C interface included interactions from Cα1 and loop Aα8-Cα1, without interactions 

from Cα4. By contrast, the C-C interface in 1PKY did not contain interactions from Cα1 or 

loop Aα8- Cα1, but did include contributions from Cα4.  

 

             The A-A interface    The C-C interface 

   

Figure 5.19: Comparison between the intersubunit interactions in PykAPA and 

1PKYEC. The figure summarizes the interactions of the A-A and the C-C interfaces of 

PykAPA and 1PKYEC. Black dashed, yellow dashed and black solid lines represent 

interactions of PykAPA only, of 1PKYEC only, and of both structures, respectively. Filled 

cylinders represent alpha helices or beta strands, whereas empty cylinders represent 

connecting loops. All interactions were analysed using PDBePISA. 
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5.7 The PykF tetramer and domain organization  

The asymmetric unit of PykF consisted of two chains (chain A & B), whereas a 

complete PykF tetramer was generated by symmetry coordinates (chain C & D) (Figure 

5.20A). This was consistent with AUC analysis of PykF which demonstrated that the 

enzyme is a tetramer in solution (Appendix 8). Analysis of the PykF tetramer using 

PDBePISA revealed that the surface area of the PykF tetramer was 75449.9 Å2  with total 

accessible solvent area of 8474.2 Å2. The tetramer assembly was stable in solution with a 

solvation free energy gain (ΔG) of -42 kcal/mol. There was no electron density indicative 

of bound ligands in the active site or in the predicted allosteric site of PykF so it was 

modelled as an apo PykF. 

 

Each chain of PykF comprised three domains; A, B and C (Figure 5.20B). The A 

domain was formed of two stretches of residues; 4-72 and 169-336, whereas the B and 

the C domains ran through 74 -167 and 337-470, respectively. The A domain was placed 

at the centre of the chain and was comprised of typical eight α/β TIM-barrel structure 

where the alpha helices span around the core of the beta strands. Similar to PykA, there 

were an additional two helical fragments preceding the Aα6 and Aα8 and these were 

annotated as the Aα6’ and Aα8’, respectively. The B domain was present at the C-terminus 

of the A domain and was comprised of seven β-strands and a small α-helix. While the C 

domain was present at the N-terminus of the A domain and was formed of four α-helices 

alternating with five β-strands, with the fifth strand running anti-parallel to the four other 

strands. Given the lower resolution of the PykF diffraction data, the electron density of 

the Cβ3 strand of chain A was weak and the strand was modelled as a loop. Also, the 

electron density signal was weak at the three terminal residues of chain A and these were 

left unmodelled. 

 

Although the secondary structures of PykFPA resemble those of PykAPA, there is 

one key difference between the two. The first α-helix of the C domain (Cα1) was preceded 

by a short helical segment in PykFPA and I denoted this short helix as Cα1’ (Figure 5.20). 

The Cα1’ helix is absent in PykAPA and apo PykF from E. coli and it seems to be a unique 

structure present only in PykFPA of the PykF structures solved to date. Cα1’ was clearly 

seen in the two chains of PykFPA, in spite of the low resolution of the model. Within the 

javascript:openWindow('pi_asmlist_sarea.html',400,250);
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PykF tetramer, the opposing Cα1’ helices are placed close to each other, particularly at 

the A-A interface region. 

 

 A)       B) 

 

Figure 5.20: Structure of PykF. A) Cartoon representation of the PykF tetramer. Chain 

A and B were present in the asymmetric unit, whereas chain C and D were generated by 

symmetry coordinates. The dashed lines and dashed ovals highlight the PykF interfaces 

and the Cα1’ helices, respectively. B) Cartoon representation of the secondary structures 

of a PykF protomer (chain B). Alpha helices and beta strands are presented in red and 

blue, respectively.  

 

5.8 The active site of PykF 

Although the PykF crystal diffracted only following co-crystallization of the 

enzyme with PEP, Mg2+ and KCl, there was no evidence of these in the final PykF model. 

To investigate the conformation of the active site of PykFPA, I compared the active site of 

PykFPA with the MLI-bound PykAPA (Figure 5.21A). Superposition of the two models 

revealed that Arg35, Lys217, Glu219, Gly242, Asp243 and Thr275 were the likely active 

site residues in PykFPA. These residues were clearly disorganized in the active site of 
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PykFPA compared with PykAPA, meaning that apparently the active site of PykFPA did not 

contain any bound ligand. I also superposed PykFPA with unbound 1PKY from E. coli and 

this revealed that the active site residues of the two structures superimposed well, in the 

same positions and orientations (Figure 5.21B) which indicates that the active site of 

PykFPA did not contain a bound ligand. 

 

 A) 

 
 

 B) 

 

Figure 5.21: The predicted active site in PykF. A) Superposition of the active site in 

PykFPA (blue, chain B) and PykAPA (yellow, chain E). B) Superposition of the active site in 

PykFPA (blue, chain B) and 1PKY from E. coli (yellow, chain C). Residues are annotated 

according to the PykFPA model.  
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5.9 The allosteric site of PykF 

PykF was crystallized in the absence of heterotropic regulators and it was likely 

that the conformation of its allosteric site is similar to the allosteric site of the unbound 

1PKY from E. coli. To investigate this further, I superposed the allosteric site of PykFPA 

with 1PKYEC (unbound to regulators) and PykAPA (bound with G6P) (Figure 5.22). 

Alignment of the three models revealed that the allosteric site in PykFPA seemed to adopt 

a more closed conformation than 1PKYEC, as the Cβ4-Cβ5 loop in PykFPA is shifted closer 

to the allosteric pocket than the corresponding loop in 1PKYEC. On the other hand, the 

position of the Cβ4-Cβ5 loop in PykFPA was not as close to the allosteric pocket as the 

corresponding loop in PykAPA. Thus, the conformation of the allosteric site of PykFPA was 

apparently in partial closure, although the allosteric pocket was empty of regulators. The 

partially closed allosteric site of PykFPA is probably because the Cβ4-Cβ5 loop of PykFPA 

contains two prolines (Pro455 and Pro459) and these are known to provide flexibility to 

the structures. In contrast, the Cβ4-Cβ5 loop in 1PKYEC contains just a single proline and 

is presumably less flexible than the loop in PykFPA. 

 

 

Figure 5.22: The allosteric site in PykF. Superposition of the allosteric site of PykFPA 

(cyan), PykAPA (blue) and 1PKY from E. coli (yellow). The Cβ4-Cβ5 in PykFPA adopts an 

intermediate conformation between fully opened and closed. Figure was generated using 

CCP4mg. 
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5.10 Intersubunit interactions in PykF 

5.10.1 The A-A interface in PykF 

The A-A interface in PykF is formed between the opposing A domains of chain A 

and B, and of chain C and D. Interactions of the A-A interface are shown in Table 5.3, 

Figure 5.23 and Figure 5.24. The interface comprises of a mixed network of hydrogen 

bonds and salt bridges and is coordinated through interactions from four α-helices (Aα6, 

Aα7, Aα8 and Cα1’) and two loops (Aα7-Aβ7 loop and Aα8-Cα1’ loop). Most importantly, 

Aα6’ (the active site helix) is not a part of the A-A interface in PykFPA. Also, the Cα1’ helix 

which is unique to PykFPA (absent in PykAPA and apo PykF from E. coli), connects the two 

adjacent A domains of PykFPA through a Cα1’-Cα1’ interaction (Figure 5.24).  

 

Amino acid sequence analysis of the A-A interface in PykFPA (Appendix 9) revealed 

that the interface was mediated equally by bonds provided by conserved and less-

conserved residues. Many of the less-conserved residues were only present in PykFPA and 

absent in PykA or PykF from other species. These residues include Thr297, Lys327, 

Glu335, Asp337, and Gln341. The coordination of the A-A interface in PykFPA via a set of 

less-conserved residues indicates that this enzyme may have evolved differently in P. 

aeruginosa compared with PykF from other species. Gln341 is one of the less-conserved 

residues which is present only in PykFPA. At the A-A interface in PykFPA, Gln341 forms a 

glutamine dimer connecting the opposite Cα1’ helices together (Figure 5.24). The 

Gln341-Gln341 interaction (or the Cα1’-Cα1’ interaction) is the shortest bond (2 Å) at the 

A-A interface in PykFPA. The rest of the less-conserved residues at the A-A interface in 

PykFPA (Lys327, Glu335 and Asp337) seem to be of equal importance to Gln341 as they 

mediate formation of three different salt bridges.  

 

5.10.2 The C-C interface in PykF 

As there is no C-C interface present in the asymmetric unit of PykF, the C-C 

interface was generated by symmetry coordinates from chain A and B. The C-C interface 

was generated between the opposing C domains of chain A and C, and of chain B and D. 

The accessible solvent surface area of the C-C interface is 1070 Å2, burying around 5% of 

each protomer surface. Table 5.3 and Figure 5.25 illustrate the inter-protomer 

interactions at the C-C interface in PykF. The arrangement of the structures at the C-C 
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interface in PykFPA was similar to the same interface in PykF from E. coli (PDB 1PKY), in 

which the adjacent Cα4 and Cβ5 are placed close to the interface and coordinate with the 

opposite Cα4 and Cβ5, respectively. The Cα1-Cα1’ loop (Aα8-Cα1 loop in E. coli) is also 

shifted away from the interface in both structures (Figure 5.25). The configuration of the 

C-C interface in PykFPA is likely associated with the unbound status of the enzyme. 

 

Table 5.3: Intersubunit interactions in PykF. Each interaction is presented once. Red 

asterisks refer to the formation of salt bridges. The results are based on interface analysis 

using PDBePISA. 

 
 

The A-A interface in PykF 

Chain B Secondary 
structure 

Distance (Å) Chain A Secondary 
structure 

 

Lys258 Aα6 2.54  Glu335  loop Aα8‐Cα1’ * 

Arg289  Aα7  2.68 Gln276  loop Aβ7‐Aα7  

Arg289 Aα7 2.64  Asp294  Aα7 * 

Thr297 Aα7 3.84  Thr297  Aα7  

Asp337 loop Aα8‐Cα1’ 2.71  Lys258  Aα6 * 

Glu251  Aα6 3.10  Lys327  Aα8 * 

Gln341 Cα1’ 2.07  Gln341  Cα1’  

 
The C-C interface in PykF 

Chain B Secondary 
structure 

Distance (Å)  Chain C Secondary 
structure 

 

Ile467 Cβ5 2.91 Asn463 Cβ5  

Leu465 Cβ5 2.92 Leu465 Cβ5  

Asp426 Cα4 3.91 His424 Cα4 * 
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 A) 

 
 B) 

 
 C) 

 

Figure 5.23: Close-up view of the A-A interface in PykF. The figure shows the salt 

bridge mediated interactions between the A domains of chain A (yellow) and B (cyan). 

The figure was generated using CCP4mg.  
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 A)  

 

 B) 

 

Figure 5.24: The A-A interface in PykF. A) Front view of the A-A interface in PykF. Chain 

A and B are presented as blue and yellow ribbons, respectively. The adjacent Cα1’ helices 

are shown as coral ribbons. B) Close-up view of the A-A interface in PykF showing the 

glutamine dimer between the adjacent Cα1’ helices. Figures were generated using 

CCP4mg. 
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Figure 5.25: Comparison between the C-C interface in PykFPA and 1PKY from E. coli. 

The figure shows cartoon representation of the C-C interface in PykFPA (left, blue) and 

1PKY (right, beige). The C-C interface in PykFPA shows the same configuration of the 

unbound 1PKY. The figure was generated using CCP4mg. 

 

5.10.3 Intersubunit interactions in PykFPA compared with 1PKY from E. coli 

Although PykFPA and PykF of E. coli (PDB 1PKY) were modelled as apo enzymes, 

investigation of the interactions at inter-protomer spaces revealed many differences 

between the two models (Figure 5.26). The A-A interface in PykFPA showed a prominent 

Cα1’-Cα1’ interaction, whereas there is no Cα1’ structure in 1PKYEC (Figure 5.26A). There 

is also bonding of Aα6 with the opposite Aα8-Cα1’ loop or the Aα8 helix at the A-A 

interface in PykFPA and these interactions are absent in 1PKYEC. By contrast, the A-A 

interface in 1PKYEC included interactions from the Aα6- Aα6’ loop and these were absent 

in PykFPA. Analysis of the PykFPA and 1PKYEC structures demonstrated that the C-C 

interface in PykFPA is stabilized by salt bridge formation and lacks any interactions from 

the Cβ4-Cβ5 loop (Figure 5.26B). By contrast, in 1PKYEC, the C-C interface is mediated 

without salt bridges and with contributions from Cβ4-Cβ5 loop. The differences between 

PykFPA and 1PKYEC structures may partly explain the unusual regulation of PykF in P. 

aeruginosa compared with PykF from E. coli. 
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  A) 

 
 

  B)  

 

Figure 5.26: Comparison between the intersubunit interactions in PykFPA and 1PKY 

from E. coli. The figure illustrates the interactions at the A-A interface (A) and at the C-C 

interface (B) in PykFPA and in the unbound 1PKY from E. coli. Black dashed, yellow dashed 

and black solid lines represent the interactions present in PykFPA only, 1PKY only, and 

both structures, respectively. Filled cylinders represent alpha helices or beta strands, 

whereas unfilled cylinders represent the connecting loops. The diagram was based on 

analysis of inter-protomer interactions using PDBePISA. 
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5.11 Discussion 

Here, I present the first crystal structures of PykA and PykF from P. aeruginosa. 

PykAPA was solved in complex with MLI, Mg2+ and G6P, whereas PykFPA was solved in an 

apo state and at a slightly lower resolution than PykAPA. At present, PK of M. tuberculosis 

is the only available bacterial PK structure in the PDB with bound ligands (apart from 

metal ions). In M. tuberculosis, PK displays two ligand binding sites; a G6P-binding site 

and an AMP-binding site. Analysis of PykAPA revealed that it has a G6P-binding site which 

corresponds to the AMP-binding site in PK of M. tuberculosis, meaning that PykAPA and 

PK of M. tuberculosis presumably have different mechanisms of allosteric regulation by 

G6P. Likewise, PykFPA also revealed many structural differences when compared with 

PykF from E. coli, although both were modelled as unbound.  

 

5.11.1 The unusual regulation of PykAPA and PykFPA is mostly related to their 

structures 

Findings from chapter 4 showed that PykAPA and PykFPA are regulated differently 

than the PykA and PykF enzymes from other Gram-negative species. PykAPA was 

activated by a diverse set of metabolites from the EDP and PPP, whereas regulation of 

PykA from other species was mainly achieved by R5P and AMP (Waygood et al., 1975; 

Garcia-Olalla and Garrido-Pertierra, 1987). PykFPA was activated by 

monophosphorylated metabolites of the PPP, whereas other PykF enzymes are activated 

by di-phosphorylated metabolites of the EMP pathway (Waygood et al., 1976; Garcia-

Olalla and Garrido-Pertierra, 1987; Waygood and Sanwal, 1974). Thus, apparently there 

are some structural features of PykAPA and PykFPA which could be responsible for their 

unusual regulation. 

 

 Why do PykAPA and PykFPA respond differently to allosteric regulators?. The 

G6P-binding site in PykAPA corresponds to the predicted allosteric site in other enzymes. 

In PykAPA, the phosphate loop and Cα2 helix bind to the phosphate moiety of G6P, 

whereas the ring loop anchors the ring moiety of the ligand. Given that the residues of the 

first region are strictly-conserved among all PykA enzymes including PykAPA 

(384TESGFT389, with the exception of the Phe388 in PykAPA which is replaced by an 

arginine in other PykAs), it is unlikely that this region is behind the unusual regulation of 
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PykAPA. By contrast, the ring loop of PykAPA encodes a unique sequence (462DSYTAQ467) 

which is not present in other PykA group members. Likewise, the equivalent ring loop in 

PykFPA also encodes a distinguishable sequence (454VPFGRP459). Taken together, it seems 

that the unusual regulation of PykA and PykF in P. aeruginosa may be partly associated 

with the different amino acid sequence composition of their ring loops.  

 

In PykAPA, the ring loop is apparently important for many aspects of the allosteric 

regulation. Using the ring loop, PykAPA can directly interact with both G6P and the 

surrounding structures of the C domain (phosphate-ring loop interaction). These 

interactions of the ring loop likely stabilize the ligand in the allosteric pocket. Moreover, 

the loop itself forms a salt bridge across the C-C interface, thus the ring loop might also 

be essential for transmission of allosteric signals across the subunits of PykAPA. Future 

work should study the specific impact of ring loop mutations on the allosteric response 

of PykAPA and PykFPA. 

 

Why is PykFPA not activated by di-phosphorylated metabolites?. Many PK 

enzymes are known to be allosterically regulated by di-phosphorylated metabolites such 

as F1,6P (Waygood and Sanwal, 1974; Waygood et al., 1976; Garcia-Olalla and Garrido-

Pertierra, 1987; Hofmann et al., 2013). However, PykFPA was unaffected by F1,6P which 

could also be due to structural factors of PykFPA. Analysis of PK enzymes which are 

activated by F1,6P shows that this bisphosphate binds to the predicted allosteric site of 

these enzymes. At the allosteric site, the negatively charged 1-phosphate of F1,6P binds 

to a positively charged residue (mostly arginine) from Cα4 (Jurica et al., 1998). Analysis 

of PykFPA structure and amino acid sequence reveal that Cα4 lies between Val425 and 

Ala438 and this region lacks any positively charged residues. This means that the Cα4 

helix of PykFPA is apparently less favourable for binding of the 1-phosphate of F1,6P. By 

contrast, amino acid sequence analysis of PykF from other bacteria shows that there are 

two conserved positively charged residues (arginine and lysine) in the centre of the Cα4 

helix (Figure 5.27). The positively charged residues in the Cα4 helix of these PykF 

enzymes are likely involved in the binding of F1,6P. However, this needs further 

investigation as there are no bacterial PykF structures in the PDB bound to F1,6P.  
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Figure 5.27: Amino acid sequence alignment of PykF enzymes. Secondary structures 

are annotated according to the structure of PykFPA. Black arrows point to the positively 

charged residues which probably bind to 1-phosphate group of F1,6P (in the Cα4 helix of 

the PykF enzymes). PykFPA lacks these residues. Residues highlighted in red are 100% 

identical, whereas a column is framed in blue if more than 70% of the residues have 

similar physicochemical properties. 

 

5.11.2 The G6P-binding site in PykA 

The only published G6P-bound bacterial PK structure belongs to M. tuberculosis 

(PDB 5WSA, 5WSB, 5WSC). Alignment of PykAPA and PK of M. tuberculosis reveals that the 

G6P-binding site in PykAPA is clearly distinct than the one in PK of M. tuberculosis (Figure 

5.28). Whereas G6P binds to the heart of the C domain of PykAPA, it is placed between the 

A and C domains of PK of M. tuberculosis. Moreover, the G6P-binding site of PykAPA 

overlaps with the AMP-binding site of PK of M. tuberculosis. Despite sharing the same 

allosteric site, the secondary structures that anchor G6P in PykAPA are different than the 

ones that hold AMP in the PK of M. tuberculosis. PykAPA coordinates G6P in the allosteric 

site using the ring loop, the phosphate loop and the Cα2 helix. By contrast, the AMP in M. 

tuberculosis is anchored using additional residues from Cα1, Cα4 and loop Cβ3-Cα4 

(Zhong et al., 2017). Also, the Cα4 helix of PykAPA is partially unwound and placed far 

from the bound G6P, whereas the Cα4 helix of PK from M. tuberculosis is placed closer to 

the bound AMP. All these structural differences between PykAPA and PK from M. 

tuberculosis highlights that there is likely a different regulatory mechanism by which G6P 

activates PykAPA. 
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Figure 5.28: The G6P-binding site in PykAPA and PK of M. tuberculosis. Cartoon 

representation of the allosteric site in PykAPA (cyan) and PK of M. tuberculosis (PDB 

5WSB, blue). G6P bound to PykAPA is shown as a coral cylinder, whereas the G6P and AMP 

that bind to PK of M. tuberculosis are shown in yellow and pink cylinders, respectively. 

Secondary structures are annotated according to PykAPA. The figure was generated using 

CCP4mg. 

 

5.11.3 Contributions of the Aβ5-Aα5 loop to formation of the active site in PykA 

Analysis of the active site in PykA showed a distinguishable outward orientation 

of Aα5 helix which was attributed to elongation of the preceding Aβ5-Aα5 loop. Although, 

there was no direct involvement of Aα5 residues to the interactions at the active site, the 

Aβ5-Aα5 loop clearly contributes to formation of the PykA-MLI-Mg complex (Figure 

5.29). In PykA, the Aβ5-Aα5 loop terminates with two strictly-conserved residues; 

Lys221 and Glu223, which are known to have significance for the enzymatic activity. In 

other PKs, the equivalent lysine binds to the phosphoryl group of phosphoenolpyruvate 

and stabilizes its transfer from PEP to ADP (Bollenbach et al., 1999). In bacteria and yeast, 

site-directed mutagenesis of the DNA encoding this lysine residue caused a significant 

drop of catalytic activity compared with wild-type (Suzuki et al., 2008; Bollenbach et al., 

1999). 
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Also, Glu223 seems to be of equal importance for the enzymatic activity of PK. In 

PykA, Glu223 holds Mg2+ in the active site pocket. In other enzymes, the equivalent 

glutamic acid is important for binding of PEP, ADP and ATP in the active site (Muirhead 

et al., 1986). Moreover, substitution of this glutamic acid with other residues, even 

aspartate, causes loss of PK enzymatic activity and shutdown of carbohydrate 

metabolism (Keating et al., 2005). Despite the importance of the Aβ5-Aα5 loop for the 

enzymatic activity, the impact of its elongation on PykAPA activity is still unclear. 

 

 

 

Figure 5.29: Contributions of the Aβ5-Aα5 loop to the active site in PykA. A cartoon 

diagram showing that the elongated Aβ5 and Aα5 loop terminates with Lys221 and 

Glu223, which participate in formation of the PykA-MLI-Mg complex in the active site. 

The bound MLI and Mg2+ ion are indicated by a coral cylinder and a black sphere, 

respectively. The figure was generated using CCP4mg. 

 

Aβ5 

Aα5 
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5.11.4 Interactions of Aα6’ and Aα7 at the A-A interface in PykA 

One of the most important interactions across the A-A interface in PykAPA was the 

pairing of the active site helix Aα6’ from one protomer (Arg248 and Gly249) with the Aα7 

helix (harbouring Arg296) of the adjacent protomer. This coordination is considered as a 

hallmark of a bound or active PK conformation (Mattevi et al., 1995) and it is likely 

primed by movement of Arg296 on Aα7. 

 

Arg296 is strictly-conserved among all PK and the equivalent arginine in PykF of 

E. coli (Arg292) is predicted to have a role in transmission of the activity signal from the 

active site to the adjacent subunits (Valentini et al., 2000). Moreover, mutagenesis of 

Arg292 in E. coli PykF causes loss of enzymatic activity and disorder of integral structures 

of the active site (Valentini et al., 2000). Mutagenesis of Arg292 in PykFEC, however did 

not alter the oligomeric state of the enzyme.  

 

Reorientation of Arg292 (equivalent to Arg296 in PykAPA) has been proposed to 

prime the transition of E. coli PykF from the unbound to the bound state (Valentini et al., 

2000). In unbound PykF, Arg292 forms a salt bridge with Asp297 from the adjacent 

protomer (Figure 5.30). Upon transition to the bound state, Arg292 is predicted to 

reorient towards Aα6’ (the active site helix). With this, Arg292 brings helix Aα6’ to the A-

A interface, allowing the newly freed Asp297 to form a salt bridge (intra-protomer) with 

Arg244 (Valentini et al., 2000). Given that these residues are conserved in E. coli PykF and 

P. aeruginosa PykA, the same scenario can be predicted for PykAPA upon transition from 

the unbound to the bound state. In unbound PykAPA, Arg296 likely coordinates with 

Asp301 via a salt bridge (equivalent to the Arg292-Asp297 interaction in PykFEC). Then, 

upon converting to the bound state, the Arg296-Asp301 interaction is disrupted due to 

rearrangement of the structures at the active site. Alternatively, Arg296 reorients 

towards and interacts with helix Aα6’ and the free Asp301 forms an intra-protomer salt 

bridge with Arg248 (Figure 5.30). 
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Figure 5.30: Interactions of Aα6’ and Aα7 in PykAPA (A) and apo PykF from E. coli 

(B). Protomers are shown in different colours. Sodium malonate is shown as a coral 

cylinder in the active site of PykAPA. PDB 1PKY was used as a model for E. coli PykF. 

Figures were generated using CCP4mg.  

A 

B 
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5.11.5 A proposed mechanism of PykA regulation by G6P 

 To understand the mechanism of transmission of allosteric signals from the G6P 

binding site to the active site in PykA, inter-protomer interactions should be compared in 

G6P-bound PykA and apo-PykA. However, due to the unavailability of an apo PykA 

structure, the A-A interfaces and the C-C interfaces were analysed using PykF from E. coli 

as an apo model. Analysis of PykAPA shows that the A-A interface comprises interactions 

from the Aα6’ helix and Aα8-Cα1 loop, whereas these are absent in apo-PykFEC. In 

contrast, the A-A interface in apo-PykFEC has an Aα7-Aα7 interaction which is disrupted 

in G6P-bound PykAPA (due to mobility of Arg292 towards the active site, Figure 5.30). 

Analysis of PykAPA and apo-PykFEC demonstrated additional differences in the allosteric 

site and at the C-C interface. In apo-PykFEC, the allosteric pocket is opened (due to 

movement of the ring loop away from the allosteric site), whereas the allosteric site of 

PykAPA adopts a closed configuration (due to movement of the ring loop towards the 

bound G6P). Also, the C-C interface in apo-PykFEC contains interactions from Cα4, 

whereas Cα4 is replaced by Cα1 and the Aα8-Cα1 loop at the C-C interface in PykAPA.  

 

 By combining these differences, a mechanism of PykA regulation by G6P can be 

proposed (Figure 5.31). The proposed sequence of interactions begins with occupation 

of the allosteric site of PykA by G6P which causes relocation of the ring loop towards the 

allosteric pocket. This movement of the ring loop promotes closure of the allosteric 

pocket and facilitates the bonding of G6P with the ring and phosphate loops. Movement 

of the ring loop also displaces the Cα4-Cα4 at the C-C interface. This new configuration of 

the allosteric site in PykA promotes disruption of Cα4 interactions at the C-C interface, 

but also recruits Cα1 and the Aα8-Cα1 loop to the interface. In PykA, the Aα8-Cα1 loop 

coordinates two protomers simultaneously via the A-A interface and the C-C interface. 

Therefore, changes at the C-C interface are likely accompanied by changes at the A-A 

interface via Aα8-Cα1. Given the proximity of the A-A interface with the active site helix 

(Aα6’), this suggests a likely mechanism by which G6P binding may influence catalysis by 

PykA.  
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Figure 5.31: Configuration of key secondary structures in PykAPA and PykFEC. The 

proposed mechanism of allosteric regulation of PykA by G6P begins with binding of G6P 

to PykA which leads to retraction of the ring loop towards the bound ligand. This 

movement of the ring loop causes disruption of Cα4-Cα4 at the C-C interface, but recruits 

Cα1 and the Aα8-Cα1 loop to join the interface. These changes cause displacement of Aα8 

which subsequently pairs with the Aα6-Aα6’ loop at the A-A interface. As the Aα6’ helix 

is a prominent structure of the active site in PykA, this cascade of interactions most likely 

explains the allosteric activation of PykA by G6P.  

 

5.11.6 The Cα1’ helix of PykF 

One of the main differences between PykF from P. aeruginosa and PykF from E. 

coli is that the former has a Cα1’ helix. Cα1’ is a short helical fragment that precedes the 

Cα1 helix, thus it connects between the A and C domains. Cα1’ was clearly seen in the 

electron density of both subunits of PykF. By contrast, Cα1’ is absent from the PK 

structures of other Proteobacteria such as E. coli PykF or P. aeruginosa PykA. In the latter 

species, Cα1’ is replaced by a long uninterrupted loop connecting the A and C domains 

(Aα8-Cα1 loop). On the other hand, the crystal structures of PK from some Firmicutes and 

eukaryotes do contain a helix similar to Cα1’ in PykFPA. These structures include PK from 

Bacillus stearothermophilus (PDB 2E28), Staphylococcus aureus (PDB 3T05 and 3T07) 

https://en.wikipedia.org/wiki/Firmicutes
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and Toxoplasma gondii (PDB 3EOE). Comparison of the amino acid sequence of these 

enzymes revealed that residues of Cα1’ are diverse, meaning that the function of Cα1’ (if 

any) is likely species-specific. 

 

In PykFPA, Cα1’ contributes to formation of the A-A interface via reciprocal 

hydrogen bonds formed between the side chains of opposite Gln341 residues. In 

crystallography, enthalpic cooperativity is always preferred over entropic interactions in 

order to achieve structural stability. Hydrogen bonding between side chains of glutamine 

is considered one of the best interactions which achieves maximum enthalpic 

cooperativity (Plumley and Dannenberg, 2010). Thus, it is likely that the glutamine dimer 

across the A-A interface in PykFPA may have a major impact on the stability of the enzyme. 

Moreover, the shorter the distances between side chains of a “glutamine dimer”, the 

stronger the interaction they stabilize. In PykF, the distance of the Gln341-Gln341 

hydrogen bond was just 2 Å. Future work should study the impact of Gln341 on the 

stability and activity of PykF. 

 

5.12 Conclusion 

 X-ray crystallography is a powerful tool for determination of biological structures 

and molecular interactions, and its outputs can serve as a basis for drug-design efforts. 

Here, I have shown the first x-ray structures of PykA (bound with G6P, MLI and Mg2+) and 

PykF (unbound) from P. aeruginosa. The allosteric site of PykA was bound with its 

regulator (G6P), however the G6P binding site in PykA was distinct from that previously 

identified in the PK from M. tuberculosis. My data also suggest a plausible mechanism by 

which the binding of G6P transmits a conformational change to the active site of PykA. 

Analysis of the PykF structure has also shown many differences compared with E. coli 

PykF. The structure-sequence analysis revealed that the unusual allosteric regulation of 

PykA and PykF in P. aeruginosa is likely related to the amino acid composition of their 

ring loops.  
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Chapter 6 

6 Final conclusions 

 PK is a key metabolic enzyme with a central position between glycolysis and the 

TCA cycle. PK activity has also been linked with physiological changes in many 

microorganisms, impacting on energy production, survival and virulence (Pan et al., 

2008; Bücker et al., 2014; Chai et al., 2016). Thus, PK has become a promising metabolic 

target in the treatment of antibiotic resistant infections such as those caused by 

Staphylococcus aureus (Axerio-Cilies et al., 2012). Most of bacteria encode one PK, 

whereas a few have two PK isozymes, denoted as PykA and PykF. In the latter species, 

PykF is usually the dominant isoform and is activated by F1,6P (an intermediate from the 

EMPP), whereas PykA plays a less important role and is activated by R5P and/or AMP 

(intermediates from the PPP). P. aeruginosa encodes one PykA and one PykF isoform, and 

they are uncharacterized to date. Unlike most bacteria, P. aeruginosa depends mainly on 

the EDP for metabolism because it lacks the key enzymes for operation of the EMPP and 

the PPP. However, this organism can recycle metabolites from the main EDP into the side 

branches of the EMPP and the lower arm of the PPP (known as the EDEMP or the cyclic 

EDP). Therefore, it is likely that PykA and PykF behave differently in this organism and 

that is because of the way in which this organism is “wired up” for the EDP. With this, my 

main aim was to characterize the genetic, biochemical and structural properties of PykA 

and PykF in P. aeruginosa. 

 

 Bioinformatic analysis revealed that the PK isozymes in P. aeruginosa have been 

rightly assigned to the correct PK subclasses. PykA and PykF from P. aeruginosa were 

classified according to their amino acid sequence to the PK II subfamily and PKM 

subfamily, respectively. Motif analysis further demonstrated that PykA has a predicted 

tyrosine kinase phosphorylation (TKP) site which is absent in PykF. By contrast, PykF is 

predicted to have a cAMP/cGMP dependent protein kinase phosphorylation (CAG-DPKP) 

site which is absent in PykA. These sites were also predicted in PykA and PykF from other 

species. Given that these sites are more common in eukaryotes, the question as to why 

they are predicted and conserved among PykA and PykF isoforms still needs to be 

addressed. 
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 Having verified that PykA and PykF were annotated correctly in P. aeruginosa, my 

first objective was to investigate pykA and pykF from a genetic perspective and to see if 

they both contribute to cell physiology. Unlike previously characterized pykA and pykF 

isoforms from other species, the transcription of pykA was predominant in all tested 

carbon sources and oxygen levels. In contrast, the transcription of pykF was 

comparatively low throughout. Protein expression data were in agreement with the 

transcription profiles and revealed that PykA is the dominant isoform expressed in all the 

tested carbon sources, whereas the expression of PykF was undetectable. 

 

 To investigate the contribution of PykA and PykF towards cell physiology, 

enzymatic activity assays, growth curves and virulence assays were performed using 

pykA and pykF mutants and their complements. Results of these indicated that the 

function of PykA and PykF correlates well with their transcription and protein expression 

profiles. The data demonstrated that pykA was indispensable for pyruvate kinase activity 

and growth in glucose and glycerol (substrates that require PK catalysis), whereas it had 

little effect on growth in acetate and succinate (substrates that do not require PK 

catalysis). On the other hand, mutation of pykF did not alter the pyruvate kinase activity 

or growth phenotypes. These data combined indicates that unlike other species, PykA is 

the dominant isoform in P. aeruginosa and not PykF. 

 

 As this work started as an investigation of the pykA and pykF genetics, my second 

objective was to characterize the kinetics and regulatory properties of purified PykA and 

PykF. PykA and PykF were overexpressed in E. coli and purified in good yield. Kinetic 

analysis of PykA and PykF revealed that PykA was intrinsically more active than PykF as 

the KM and S0.5 values of PykA (with respect to ADP and PEP titration, respectively) were 

lower than those of PykF. Further analysis revealed that unlike most PK, PykA and PykF 

were K+-independent and that they require Mg2+ for catalysis. In fact the addition of 

monovalent ions such as K+ slightly perturbed their enzymatic activity. Amino acid 

sequence analysis of PykA and PykF revealed that these isoforms have a lysine residue 

which could replace the function of K+ in the active site. 

 

 In order to identify potential regulators of PykA and PykF, I measured their 

activity in the presence of a range of metabolites. Although no inhibitors were identified, 
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a large set of activators of PykA and PykF was found. The most potent activators of PykA 

and PykF were X5P, R5P and RL5P, which all belong to the PPP. This was unexpected 

given that P. aeruginosa depends mainly on the EDP for glycolysis and it lacks 6-

phosphogluconate dehydrogenase that feeds carbon into the upper arm of the PPP. 

However, metabolites can be recycled from the main EDP into the side branches of the 

EMPP and the lower arm of the PPP, such as during gluconeogenesis. Therefore, the 

activation of PykA and PykF by PPP metabolites highlights that in P. aeruginosa, the 

production of biosynthetic precursors is apparently coordinated with glycolysis.  

 

 P. aeruginosa is intrinsically resistant to many conventional antibiotics and it is 

one of the top-listed pathogens which require urgent development of new antimicrobials. 

Given that PykA was the dominant PK in P. aeruginosa, I aimed to identify PykA inhibitors 

that have the potential to be used as antimicrobial drugs against P. aeruginosa. Drug 

screening showed that shikonin and R396907 can inhibit the PykA activity, however via 

different inhibitory mechanisms. Shikonin inhibited PykA non-competitively, whereas 

R396907 inhibited PykA competitively. Moreover, dose-response curves revealed that 

the IC50 of shikonin (23.2 µM) was lower than the IC50 of R396907 (95.5 µM), meaning 

that shikonin was more potent than R396907. Growth curves of wild-type and clinical 

isolates showed that shikonin was also able to impair the growth of cells in glucose in a 

dose-dependent manner, whereas R396907 did not have an impact on growth. Although 

shikonin is known to have antimicrobial properties against P. aeruginosa (Al-Mussawi, 

2010), there is no currently-identified target for shikonin in this organism. With this 

work, PykA becomes the first identified microbial target for shikonin in P. aeruginosa. 

Future work should investigate the effects of shikonin in treatment of cells/animals 

infected by P. aeruginosa. 

 

 My third objective was to solve the x-ray crystal structures of PykA and PykF in 

order to link the structure, function and regulation of these enzymes. I solved the 

structure of PykA (2.43 Å) bound with MLI and Mg2+ in the active site and with its 

activator G6P bound in the allosteric site. The PykF structure (3 Å) was solved as an apo 

enzyme. Structural analysis of PykA and PykF revealed many distinct properties of these 

enzymes compared with previously characterized PK structures. 
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 The active site of PykA adopts a similar configuration to the active site of PKM1 

from rabbit muscle which is known to be locked to the active state. The active site of PykA 

also forms a complex with the bound substrate analogue and ion (PykA-MLI-Mg complex) 

which is mediated by many conserved residues. Interestingly, helix Aα5 was found in an 

outward orientation away from the active site and this was attributed to elongation of the 

preceding Aβ5-Aα5 loop. The Aβ5-Aα5 loop was longer in PykA than in other PK 

structures and it contributes to formation of the active site via Lys221 and Glu223. Based 

on the amino acid sequence of PykA isozymes from other species, it is predicted that these 

also have a longer Aβ5-Aα5 loop, although the exact physiological role of this elongation 

is unclear. 

 

 In PykA, G6P was bound to an allosteric pocket which is distinct from the G6P 

binding site in PK from M. tuberculosis. This means that the mechanism by which G6P 

activates PykA is apparently different compared with the way it activates PK from M. 

tuberculosis. In the allosteric site of PykA, G6P was bound by two loops, denoted as the 

phosphate and ring loops. The two loops coordinate G6P in the allosteric site and they 

can also co-interact. The amino acid sequence of the phosphate loop was found to be 

conserved among PykA and PykF isoforms from many species. By contrast, the ring loop 

was found to be less conserved in the PKs from P. aeruginosa, so it is possible that the 

atypical regulation of these enzymes in P. aeruginosa is related to the amino acid 

composition of their ring loops.  

 

 Additionally, I proposed a mechanism by which G6P activates PykA based on 

comparisons between PykA (obtained in this study) and apo PykF from E. coli (PDB 

1PKY). I hypothesized that when G6P binds to the allosteric site of PykA, it retracts the 

ring loop towards the allosteric site in order to stabilize the binding of the metabolite. 

Therefore, the ring loop initiates interactions with the G6P and also with the phosphate 

loop. The movement of the ring loop also disrupts the Cα4-Cα4 interaction at the C-C 

interface, whereas it recruits Cα1 and the Aα8-Cα1 loop to the C-C interface. The Aα8-Cα1 

loop is part of the A-A interface and subsequently recruits the active site helix Aα6’ to the 

A-A interface. This may explain how binding of G6P to the allosteric site enhances PykA 

activity. 
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 Investigation of PykF showed that this isozyme adopts an inactive configuration. 

However, there are many differences found between P. aeruginosa PykF and E. coli apo-

PykF. First, PykF from P. aeruginosa has a Cα1’ helix (a short helical segment preceding 

Cα1), whereas Cα1’ is absent in PykF from E. coli. The Cα1’ helix in PykFPA connects the 

two opposite protomers together and also seems to have a role in stabilizing PykFPA by 

formation of a glutamine-dimer. Second, the allosteric site of PykFPA is partially closed 

due to disposition of the ring loop, whereas the allosteric site in PykFEC is open. This is 

likely related to the proline content of the ring loop in these enzymes; the ring loop of 

PykFPA contains two proline residues so it is likely to be more flexible, whereas the ring 

loop of PykFEC has one proline. Third, many of the inter-protomer interactions are 

different in PykFPA compared with PykFEC, meaning that the communication between the 

subunits is likely to be different in the two proteins. This is important because inter-

protomer interactions correlate well with the enzyme regulation. These differences 

combined may explain why PykFPA is regulated differently than PykFEC. 

 

 In summary, the results presented in this dissertation show that in P. aeruginosa, 

PykA contributes more to cell physiology and growth than does PykF. This is primarily 

because the transcription and gene expression of pykA by far exceed that of pykF. 

However, PykF seems to have a role in glyoxylate metabolism based on its genomic 

location among the glyoxylate catabolism operon. Further analysis revealed that PykA 

and PykF are functional enzymes and are strongly activated by metabolites of the PPP. 

Since PykA and PykF lie downstream of the EDP and not the PPP, the question as to why 

the PPP metabolites activate PykA and PykF needs an answer. The most probable 

explanation could be that PykA and PykF are the sources of the energy required to fuel 

the adaptive processes in P. aeruginosa. 

 

 P. aeruginosa can thrive under diverse environments including low oxygen, 

limited nutrients, and industrial areas. Among the three metabolic pathways, the PPP is 

an excellent choice to support growth in these conditions. The PPP can supply the cell 

with NADPH and R5P that are used for the alleviation of oxidative stress and repair of 

damaged DNA, respectively. Also, PPP can provide the cell with E4P which can be used 

for biosynthesis of amino acids, the building blocks of the cell. Furthermore, various 

carbon intermediates can enter the metabolism via PPP (through the interconversion 
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reactions of C3, C4, C5, C6, and C7). Thus, the PPP has a role in promotion of cell 

adaptation in P. aeruginosa. Given that these adaptive processes require energy for 

operation, it is not surprising that PykA and PykF are strongly activated by most of the 

PPP intermediates. Moreover, the genetic location of pykF within a glyoxylate metabolism 

operon also supports that PykF is particularly required for adaptation in industrial 

settings where ethylene glycol and its derivatives are quite abundant.  
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Appendixes 

Appendix 1: Geometry of Thr282 in PykA. Left: Image of the PykA model showing that 

the enzyme has well-defined electron density surrounding Thr282. Right: Ramachandran 

plot showing that Thr282 (arrow) had unusual phi and psi angles and that it lies in an 

outlier area. This geometry of Thr282 is seen in the 12 chains of PykA (outliers = 12). 
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Appendix 2: Geometry of Thr275 in PykF. Left: Image of the PykF model showing that 

the enzyme has well-defined electron density surrounding Thr275. Right: Ramachandran 

plot showing that Thr275 had unusual odd phi and psi angles (arrow) and that it lies in 

an outlier area. This geometry of Thr275 is seen in the two chains of PykF (outliers = 2). 
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Appendix 3: Analytical ultracentrifugation (AUC) analysis of PykA (52.3 kDa) showing 

that the enzyme is assembled into a tetramer in solution (196 kDa). 
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Appendix 4: Superposition of PykA chains. Rmsd values were generated using PDBefold. 

All chains were assumed as complete except for chain J, where the B domain was 

unmodelled. 

Rmsd 

(Å) 

A B C D E F G H  I  J K L 

A  0.24 0.61 1.2 1.25 1.39 1.54 1 1.27 0.34 1.56 0.72 

B 0.24  0.53 1.2 1.21 1.53 1.27 0.88 1.2 0.33 1.45 0.6 

C 0.61 0.53  0.92 0.99 1.56 1.32 0.86 0.93 0.39 1.55 0.77 

D 1.2 1.2 0.92  0.17 1.1 1.29 0.87 0.32 0.36 1.4 1.04 

E 1.25 1.21 0.99 0.17  1.05 1.51 0.92 0.27 0.37 1.42 1.11 

F 1.39 1.53 1.56 1.1 1.05  0.44 1.37 1.33 0.59 0.5 1.21 

G 1.54 1.27 1.32 1.29 1.51 0.44  1.41 1.48 0.42 0.46 1.54 

H 1 0.88 0.86 0.87 0.92 1.37 1.41  0.78 0.19 1.28 0.48 

I 1.27 1.2 0.93 0.32 0.27 1.33 1.48 0.78  0.34 1.4 1.05 

J 0.34 0.33 0.39 0.36 0.37 0.59 0.42 0.19 0.34  0.48 0.2 

K 1.56 1.45 1.55 1.4 1.42 0.5 0.46 1.28 1.4 0.48  1.16 

L 0.72 0.6 0.77 1.04 1.11 1.21 1.54 0.48 1.05 0.2 1.16  
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Appendix 5: Domain motion analysis of PykA using DynDom. The data represents output 

results from superposition of all chains to chain E. Note that the bending residues in all 

moving domains correspond to the B domain region in each chain. 

Moving 

domain 

Rotation angle (o)  Translation 

(Å)  

Closure  % Bending 

residues 

A 18.9 0.6 39.8    71-75  

            162-176  

B 18.1 0.5 31.7              71-75  

           162-171  

C 11.5 -0.1 47   71-75  

         162-164  

D 1.2 0 96.4                70-71  

          169-170  

F 32.8 0 89.6                71-74  

            162-176  

G 36.9 -0.2 88.1               70-75  

             165-174 

H 12.5 0.3 5     71-75  

            164-171  

I 3.1 0.1 7     71-75  

             163-172 

K 32.8 -0.4 91.7                69-73  

             166-179 

L 17.2 0.3 12                71-75  

            162-176  
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Appendix 6: Superposition of PykA chains after deletion of the B domain. Rmsd values 

were generated using PDBefold.  

Rmsd 

(Å) 

A B C D E F G H  I  J K L 

A  0.149 0.213 0.234 0.242 0.431 0.359 0.236 0.226 0.218 0.398 0.18 

B 0.149  0.151 0.275 0.24 0.48 0.41 0.303 0.259 0.268 0.441 0.245 

C 0.213 0.151  0.262 0.221 0.406 0.529 0.358 0.249 0.333 0.418 0.308 

D 0.234 0.275 0.262  0.109 0.374 0.269 0.253 0.088 0.271 0.395 0.241 

E 0.242 0.24 0.221 0.109  0.394 0.282 0.281 0.097 0.276 0.416 0.267 

F 0.431 0.48 0.406 0.374 0.394  0.351 0.508 0.482 0.53 0.359 0.476 

G 0.359 0.41 0.529 0.269 0.282 0.351  0.329 0.282 0.348 0.249 0.407 

H 0.236 0.303 0.358 0.253 0.281 0.508 0.329  0.254 0.139 0.375 0.123 

I 0.226 0.259 0.249 0.088 0.097 0.482 0.282 0.254  0.25 0.432 0.239 

J 0.218 0.268 0.333 0.271 0.276 0.53 0.348 0.139 0.25  0.384 0.160 

K 0.398 0.441 0.418 0.395 0.416 0.359 0.249 0.375 0.432 0.384  0.415 

L 0.18 0.245 0.308 0.241 0.267 0.476 0.407 0.123 0.239 0.160 0.415  
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Appendix 7: Close-up view of the three extra residues which elongate the Aβ5-Aα5 loop 

in PykA. The figure shows that there is unbiased electron density surrounding the three 

residues. 
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Appendix 8: Analytical ultracentrifugation (AUC) analysis of PykF (51.5 kDa) showing 

that the enzyme is assembled into a tetramer in solution (192 kDa). 
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Appendix 9: Alignment of the amino acid sequence at the A-A interface in PykF. Residues 

involved in the formation of the A-A interface are marked with black asterisks. Residues 

highlighted in red are 100% identical, whereas a column is framed in blue if more than 

70% of the residues have similar physicochemical properties. Residues are annotated 

according to the amino acid sequence of PykF in P. aeruginosa. 

 

 


