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Abstract
We determine explicit birational models overQ for the modular surfaces parametrising pairs
of N -congruent elliptic curves in all cases where this surface is an elliptic surface. In each
case we also determine the rank of theMordell–Weil lattice and the geometric Picard number.
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1 Introduction

Let N ≥ 2 be an integer. A pair of elliptic curves are said to be N-congruent, if their N -torsion
subgroups are isomorphic as Galois modules. Such an isomorphism raises the Weil pairing
to the power ε for some ε ∈ (Z/NZ)×. In this situation we say that the N -congruence has
power ε. Since multiplication-by-m on one of the elliptic curves (form an integer coprime to
N ) changes ε to m2ε, we are only ever interested in the class of ε ∈ (Z/NZ)× mod squares.

Congruences of elliptic curves are interesting for several reasons. They can be used in the
modular approach to solving Diophantine equations, in studying morphisms from a genus 2
curve to an elliptic curve, and in visualising elements of the Tate-Shafarevich group. See for
example [9,15,25].

Let Z(N , ε) be the surface that parametrises pairs of N -congruent elliptic curves with
power ε, up to simultaneous quadratic twist. This is a surface defined over Q. We only
consider Z(N , ε) up to birational equivalence. Kani and Schanz [19, Theorem 4] classified
the geometry of these surfaces, explicitly determining the pairs (N , ε) for which Z(N , ε) is
birational over C to either (i) a rational surface, (ii) an elliptic K3-surface, (iii) an elliptic
surface with Kodaira dimension one (also known as a properly elliptic surface), or (iv) a
surface of general type. In case (i) it is known that the surface is rational over Q. We show
in cases (ii) and (iii) that the surface is birational over Q to an elliptic surface, determining
in each case a Weierstrass equation for the generic fibre as an elliptic curve over Q(T ). One
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application of these explicit equations is that we are then able to use the methods of van Luijk
and Kloosterman to compute the geometric Picard number of each surface.

The problem of computing Z(N , ε) is closely related to that of computing the modular
curves XE (N , ε) parametrising the elliptic curves N -congruent (with power ε) to a given
elliptic curve E . Equations for XE (N , ε), and the family of curves it parametrises, have been
determined as follows. In each case the equations have coefficients inQ(a, b) where a and b
are the coefficients of a Weierstrass equation for E . The cases N ≤ 5 were treated by Rubin
and Silverberg [26,28,30] for ε = 1, and by Fisher [11,12] for ε �= 1. The case N = 7 was
treated by Halberstadt and Kraus [17] for ε = 1, and by Poonen, Schaefer and Stoll [25] for
ε �= 1. The case N = 8 was treated by Chen [8], and the cases N = 9 and N = 11 by Fisher
[13,14].

If N is not a prime power, then in principle we obtain equations for XE (N , ε) as a
fibre product of modular curves of smaller level. Equations that are substantially better than
this have been obtained in the case (N , ε) = (6, 1) by Rubin and Silverberg [27], and
independently Papadopoulos [24], and in the cases (N , ε) = (12, 1) and (12, 7) by Chen [7,
Chapter 7]. Chen also gives equations for XE (N , ε) in the cases (N , ε) = (6, 5) and (10, 1).

The equations for XE (N , ε) do immediately give us equations for Z(N , ε), but unfortu-
nately this does not always make it easy to find the elliptic fibrations. The main purpose of
this note is to record the transformations that work in each case.

According to [19, Theorem 4] the surface Z(N , ε) is rational over C for all N ≤ 5, and
in the cases N = 6, 7, 8 with ε = 1. In each of these cases Z(N , ε) is rational over Q, as
follows (see [7, Chapter 8]) from the results cited above.

In our terminology, it is part of the definition of an elliptic surface that it has a section.
As we describe below, some of the cases in the next two theorems were already treated in
[7,8,14,21].

Theorem 1.1 The surfaces Z(N , ε) that are birational over C to an elliptic K3-surface, are
in fact birational overQ to an elliptic surface. The generic fibres are the elliptic curves over
Q(T ) with the following Weierstrass equations.

Z(6, 5) : y2 + 3T (T − 2)xy + 2(T − 1)(T + 2)2(T 3 − 2)y = x3 − 6(T − 1)(T 3 − 2)x2,

Z(7, 3) : y2 = x3 + (4T 4 + 4T 3 − 51T 2 − 2T − 50)x2 + (6T + 25)(52T 2 − 4T + 25)x,

Z(8, 3) : y2 = x3 − (3T 2 − 7)x2 − 4T 2(4T 4 − 15)x + 4T 2(53T 4 + 81T 2 + 162),

Z(8, 5) : y2 = x3 − 2(T 2 + 19)x2 − (4T 2 − 49)(T 4 − 6T 2 + 25)x,

Z(9, 1) : y2 + (6T 2 + 3T + 2)xy + T 2(T + 1)(4T 3 + 9T + 9)y

= x3 − (16T 4 + 12T 3 + 9T 2 + 6T + 1)x2,

Z(12, 1) : y2 + 2(5T 2 + 9)xy + 96(T 2 + 3)(T 2 + 1)2y = x3 + (T 2 + 3)(11T 2 + 1)x2.

Theorem 1.2 The surfaces Z(N , ε) that are birational over C to a properly elliptic surface,
are in fact birational over Q to an elliptic surface. The generic fibres are the elliptic curves
over Q(T ) with the following Weierstrass equations.

Z(8, 7) : y2 = x3 + 2(4T 6 − 15T 4 + 14T 2 − 1)x2 + (T 2 − 1)4(16T 4 − 24T 2 + 1)x,

Z(9, 2) : y2 + 3(4T 3 + T 2 − 2)xy + (T − 1)3(T 3 − 1)(4T 3 − 3T − 7)y

= x3 − 3(T + 1)(T 3 − 1)(9T 2 + 2T + 1)x2,

Z(10, 1) : y2 − (3T − 2)(6T 2 − 5T − 2)xy
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− 4T 2(T − 1)2(4T 2 − 2T − 1)(27T 3 − 54T 2 + 16T + 12)y

= x3 + T 2(T − 1)(27T 3 − 54T 2 + 16T + 12)x2,

Z(10, 3) : y2 + (T 3 − 8T 2 − 9T − 8)xy + 2T 2(T 3 − T 2 − 3T − 3)(7T 2 + 2T + 3)y

= x3 + 2(3T + 2)(T 3 − T 2 − 3T − 3)x2,

Z(11, 1) : y2 + (T 3 + T )xy = x3 − (4T 5 − 17T 4 + 30T 3 − 18T 2 + 4)x2

+ T 2(2T − 1)(3T 2 − 7T + 5)2x .

Although we have not made it formally part of the statements of Theorems 1.1 and 1.2,
our methods do also give the moduli interpretations of these surfaces. In other words, given a
point on one of these surfaces (away from a certain finite set of curves) we can determine the
corresponding pair of N -congruent elliptic curves. The fact that N -congruent elliptic curves
overQ have traces of Frobenius (at all primes of good reduction) that are congruent mod N ,
then provides some very useful check on our calculations. See for example [7, Chapter 9] or
the calculations at the end of the Magma file accompanying this article.

The second part of the following corollary was conjectured by Kani and Schanz [19,
Conjecture 5], and its proof (for ε = 1) was completed by Zexiang Chen in his PhD thesis
[7]. For N sufficiently large it is expected (with variants of this conjecture variously attributed
to Frey, Mazur, Kani and Darmon) that the conclusions of the corollary are false.

Corollary 1.3 Let N ≤ 12 and ε ∈ (Z/NZ)× with ε = 1 if N = 11 or 12.

(i) There are infinitely many pairs of non-isogenous elliptic curves over Q(T ) that are
N-congruent with power ε.

(ii) There are infinitely many pairs of non-isogenous elliptic curves over Q that are N-
congruent with power ε.

Moreover the j-invariants j1 and j2 of the elliptic curves in (i) (resp. (ii)) correspond to
infinitely many curves (resp. points) in the ( j1, j2)-plane.

Proof In Table 3 we list at least oneQ-rational section of infinite order for each of the elliptic
surfaces in Theorems 1.1 and 1.2. This proves the first part. The second part follows by
specialising T . See the proof of [14, Theorem 1.5] for further details. The final sentence of
the statement is included to guard against various “cheat” proofs, where new examples are
generated from old by taking quadratic twists, or making substitutions for T .

Remark 1.4 If elliptic curves E1 and E2 are N -congruent with power ε = −1, then the quo-
tient of E1 × E2 by the graph of the N -congruence is a principally polarised abelian surface.
The surface Z(N ,−1) may then be interpreted as a Hilbert modular surface, parametrising
degree N morphisms from a genus 2 curve to an elliptic curve. At the outset of our work,
this moduli interpretation had not been made explicit for any N > 5. Remarkably however,
this approach has been used by A. Kumar [21] to independently obtain results equivalent to
the first two parts of Theorem 1.1 and the first three parts of Theorem 1.2. As far as we are
aware, his methods do not generalise to ε �= −1.

In Tables 1 and 2 we record some further data concerning the elliptic surfaces in Theo-
rems 1.1 and 1.2. It is well known that K3-surfacesmay admit more than one elliptic fibration.
For some interesting arithmetic applications see [10,31,35]. In view of this, the data in Table 1
comes with the caveat that it relates to the elliptic fibration we happened to find in Theo-
rem 1.1. Since a properly elliptic surface has a unique elliptic fibration, there is no such caveat
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Table 1 The elliptic K3-surfaces in Theorem 1.1

(N , ε) Singular fibres |tors| rank/Q rank/Q ρ

(6,5) (I2, I2), I3, (I3, I3, I3), I4, I4 1 2 2 20

(7,3) I1, I2, (I2, I2), (I2, I2), I3, I10 2 2 2 20

(8,3) (I1, I1), I2, (I2, I2), (I2, I2), (I3, I3), I
∗
0 1 4 5 20

(8,5) I2, I2, (I2, I2), (I2, I2), (I3, I3), I
∗
0 2 2 4 20

(9,1) (I1, I1, I1), I2, (I2, I2, I2), I3, I4, I
∗
0 1 3 4 19

(12,1) (I1, I1, I1, I1, I1, I1, I1, I1), (I4, I4), (I4, I4) 1 3 5 19

Table 2 The properly elliptic surfaces in Theorem 1.2

(N , ε) Singular fibres |tors| rank/Q rank/Q ρ

(8,7) I2, (I2, I2), (I2, I2), (I3, I3), I4, I8, I8 2 1 2 30

(9,2) (I2, I2, I2), (I3, I3), (I3, I3, I3), I9, I
∗
0 1 2 2 29

(10,1) (I2, I2), (I2, I2), (I3, I3, I3), I5, I10, IV 1 1 1 28

(10,3) (I1, I1, I1), I2, (I2, I2), (I2, I2), (I3, I3, I3), I4, I4, I6 1 3 4 28

(11,1) (I1, I1, I1), I2, (I2, I2, I2), I3, I4, (I4, I4), I10 2 2 2 28

Table 3 Mordell-Weil generators over Q(T )

(N , ε) x-coordinates of independent sections of infinite order

(6,5) 0, 2T 4 − 4T ,

(7,3) 4T 2 + 20T + 25, 6T + 25,

(8,3) −7, −T 2 + 9, −4T 2 − 6T , (4T 5 − 2T 4 + 10T 3 + 6T 2 + 18T )/(T − 1)2,

(8,5) −4T 2 + 49, 2T 3 + 19T 2 + 60T + 63,

(9,1) 0, 4T 4 + 2T 3 − 2T 2, 4T 4 + 4T 3 + 9T 2 + 18T + 9,

(12,1) 0, −12T 4 − 24T 2 − 12, 4T 6 + 12T 4 − 4T 2 − 12,

(8,7) 4T 6 + 4T 5 − 9T 4 − 10T 3 + 4T 2 + 6T + 1,

(9,2) 0, 2T 5 − 8T 3 + 4T 2 + 6T − 4,

(10,1) 0,

(10,3) 0, 2T 5 − 4T 4 − 4T 3 + 6T , 4T 5 − 2T 4 − 14T 3 − 18T 2 − 6T ,

(11,1) T 4 + 4T 2 + 4, 3T 2 − 7T + 5.

for Table 2. We list in each case the Kodaira symbols of the singular fibres (with bracketing
to indicate fibres that are Galois conjugates), the order of the torsion subgroup over Q(T ),
the ranks of the group of sections over Q(T ) and Q(T ), and finally the geometric Picard
number ρ. The lower bounds on the ranks are immediate from the independent sections of
infinite order listed in Tables 3 and 4. The upper bounds on the ranks, and the geometric
Picard numbers are justified in Sect. 4.

We organise the proofs of Theorems 1.1 and 1.2 as follows. The cases N = 8 and N = 9
were already treated in [8,14], by starting from equations for XE (N , ε). In Sect. 2 we use a
similar approach to treat the cases (N , ε) = (7, 3), (11, 1) and (12, 1). Then in Sect. 3 we
treat the cases (N , ε) = (6, 5), (10, 1) and (10, 3) by exhibiting Z(N , ε) as a degree 3 cover
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Table 4 Additional Mordell–Weil generators over Q(T )

(N , ε) d Section of infinite order defined over Q(
√
d)

(8,3) −2 (−2T 4 − 5T 2 − 9, (2T 6 + 5T 4 + 20T 2 + 9)
√−2),

(8,5) −3 (−2T 3 + T 2 + 18T − 35, (12T 3 − 6T 2 − 108T + 210)
√−3),

(8,5) −1 (16T 2 − 196, (8T 4 − 346T 2 + 3038)
√−1),

(9,1) −3 (−(19/3)T 4 − 15T 3 − 9T 2, . . . ),

(12,1) −3 (−12T 4 − 40T 2 − 12, (8T 5 + 48T 3 + 72T )
√−3 + 12T 6 + 68T 4 + 84T 2 − 36),

(12,1) −1 (−16T 4 − 64T 2 − 48, (16T 6 + 112T 4 + 240T 2 + 144)
√−1 + 32T 6 + 224T 4 +

480T 2 + 288),

(8,7) −3 (−4T 6 − 20T 5 − 39T 4 − 36T 3 − 14T 2 + 1, (24T 8 + 120T 7 + 234T 6 + 216T 5 +
84T 4 − 6T 2)

√−3),

(10,3) −3 (−7T 6 − 23T 5 − 30T 4 − 15T 3 − 9T 2, . . . ).

of a K3-surface. See the opening paragraphs of these sections for some more explanation as
to how our work relates to that in Chen’s thesis [7].

The calculations described in this paperwere carried out usingMagma [3]. Accompanying
Magma files are available from the author’s website. We assume that the reader is familiar
with the standard techniques for putting an elliptic curve in Weierstrass form, as described
in [4, §8], or as implemented in Magma.

2 Proofs via equations for XE(N,")

We prove Theorems 1.1 and 1.2 in the cases (N , ε) = (7, 3), (11, 1) and (12, 1). The case
(N , ε) = (7, 3) was treated in [7, Section 8.2], but as this has not been published before, we
include the details for completeness.

Equations for Z(N , ε) as a surface fibred over the j-line may be obtained from the equa-
tions for XE (N , ε) by setting a = b = −27 j/(4( j − 1728)). However, instead of simply
setting a = b, it is better to quotient out by the Gm-action described below. We obtain the
same surface this way since a and b scale under the Gm-action by consecutive powers of λ.

Case (N,") = (7, 3)

Let E be the elliptic curve y2 = x3 + ax + b. The following equation for XE (7, 3), as a
quartic curve in P2, was computed by Poonen, Schaefer and Stoll [25, Section 7.2], building
on work of Halberstadt and Kraus [17].

F(a, b; x, y, z) = − a2x4 + 2abx3y − 12bx3z − 6(a3 + 6b2)x2y2 + 6ax2z2

+ 2a2bxy3 − 12abxy2z + 18bxyz2 + (3a4 + 19ab2)y4

− 2(4a3 + 21b2)y3z + 6a2y2z2 − 8ayz3 + 3z4.

Replacing E by a quadratic twist does not change the isomorphism class of XE (7, 3). This
is borne out by the identity

F(λ2a, λ3b; λx, y, λ2z) = λ8F(a, b; x, y, z).
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The surface Z(7, 3) is the quotient of {F = 0} ⊂ A2 × P2 by this Gm-action. We have
F(y, x1y; x2, T , y) = y2(cy2 + hy − f ) where

c = (T 2 + 1)(3T 2 − 8T + 3),

h = T 3(19T − 42)x21 + 2T (T − 3)2x1x2 − 6(T 2 − 1)x22 ,

f = 36T 2x21 x
2
2 − 2(T − 6)x1x

3
2 + x42 .

Therefore Z(7, 3) is birational to the total space (i.e., the corresponding fibred surface) for
the genus one curve over Q(T ) with equation Y 2 = h2 + 4c f . This is a double cover of P1

with a rational point above (x1 : x2) = (1 : 0). Putting this elliptic curve inWeierstrass form,
and replacing T by (6T − 3)/(4T + 4), gives the equation in the statement of Theorem 1.1.

Case (N,") = (11, 1)

Let E be the elliptic curve y2 = x3 + ax + b. Equations for XE (11, 1) as a curve in P4 were
computed in [13, Theorem 1.2]. These equations are the 4 × 4 minors of the 5 × 5 Hessian
matrix of the cubic form

F(a, b; v,w, x, y, z) = v3 + av2z − 2avx2 + 4avxy − 6bvxz + avy2 + 6bvyz

+ a2vz2−w3+aw2z−4awx2−12bwxz+a2wz2 − 2bx3 + 3bx2y

+ 2a2x2z + 6bxy2 + 4abxz2 + by3 − a2y2z + abyz2 + 2b2z3.

Replacing E by a quadratic twist does not change the isomorphism class of XE (11, 1). This
is borne out by the identity

F(λ2a, λ3b; λ2v, λ2w, λx, λy, z) = λ6F(a, b; v,w, x, y, z).

We may describe Z(11, 1) as the quotient of a 3-fold in A2 × P4 by this Gm-action.
We start by using the discriminant condition 4a3 + 27b2 �= 0 to simplify the equations

for XE (11, 1). The polynomials

F1 = vz + 2wz + x2 − xy − y2,

F2 = axz + bz2 − vx + vy − 2wx,

F3 = a2z2 + 2awz − 4ax2 − 12bxz − 3w2,

F4 = a2z2 + 2avz − 2ax2 + 4axy + ay2 − 6bxz + 6byz + 3v2,

F5 = 2a2yz − abz2 − 4avx − 2avy − 6bvz − 3bx2 − 12bxy − 3by2,

are linear combinations of the derivatives of F , where the matrix implicit in taking these
linear combinations is invertible if 4a3 + 27b2 �= 0. Now XE (11, 1) is defined by the 4 × 4
minors of the 5 × 5 Jacobian matrix (M say) of F1, . . . , F5.

We make the substitutions

a = (4U + 3x3)x4 − 3x25 ,

b = x2(x1 + x3)x4 − (4U + 3x3)x4x5 + 2x35 ,

(v,w, x, y, z) = (x2x4 + x4x5 + x25 , x3x4 − x25 , x5, x4, 1).

We have 4a3 + 27b2 = x4h for some polynomial h. We add x5 times the first row of M to
the second row. We then divide all but the first row by x4. Let I ⊂ Q[U , x1, x2, x3, x4, x5]
be the ideal generated by the 4 × 4 minors of M , and
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J = { f ∈ Q[U , x1, x2, x3, x4, x5] : x2h f ∈ I }.
Using the Gröbner basis machinery in Magma we find that J ∩ Q[U , x1, x2, x3, x4] is gen-
erated by 3 homogeneous polynomials of degree 4. These define a surface in P4 of degree
12. By the substitution

T = 4(2x1 − x2 + x3)U + (x1x2 − x22 + x3x4)

2(2x4 − x2)U + 2(x1x2 − x22 + x3x4)

this surface is birational to the surface {Q1 = Q2 = 0} in A1 × P3 where

Q1 = 4(T − 2)x1x2 + 8x1x3 + (T − 2)2x22

+ 4(T − 2)x2x3 + 2(T 2 − T + 1)x2x4 + 4x23 − 4T x3x4,

Q2 = 8x21 + 16x1x3 − 4(2T − 1)x1x4 − T (T − 2)x22 − T 2x2x3

− 2(T 2 − T + 1)x2x4 − 2(T − 4)x23 − 2(T 2 + 4T − 1)x3x4.

These same equations define a genus one curve in P3 defined overQ(T ), with a rational point
at (x1 : x2 : x3 : x4) = (0 : 0 : 0 : 1). Putting this elliptic curve in Weierstrass form gives
the equation in the statement of Theorem 1.2.

Case (N,") = (12, 1)

Let E be the elliptic curve y2 = x3 + ax + b. Equations for XE (12, 1) as a curve in P5 were
computed in [7, Theorem 1.7.10]. These equations are F0 = F1 = F2 = F3 = 0 where

F0 = −X2Z + aXY 2 + 6bY 3 − 6aY 2Z − 12Z3,

F1 = X2 + 12X Z + 36Z2 − 2u0u2 − u21 + au22,

F2 = 4aXY + 36bY 2 − 24aY Z − 2u0u1 + 2au1u2 + bu22,

F3 = 8aX Z − 4a2Y 2 − u20 + 2bu1u2.

These polynomials satisfy

Fi (λ
2a, λ3b; λX , Y , λZ , λ2u0, λu1, u2) = λmi Fi (a, b; X , Y , Z , u0, u1, u2)

where (m0,m1,m2,m3) = (3, 2, 3, 4). Again, it is our aim to quotient out by thisGm-action.
We do this by setting (X + 6Z)Y = u22, which works since the left hand side and right hand
side scale by consecutive powers of λ. Specifically, we substitute (X , Y , Z , u0, u1, u2) =
(x2 − 6y, 1, y, vx, wx, x) and then solve for a and b so that the first two equations are
satisfied. In the remaining two equations we substitute

v = 2(w − 2y)y + T + 1

T − 1
(x2(y + 1) − (w + 2y)2).

The resultant of these two equations with respect to w is f (T )x14y2g(x, y)2h(x, ỹ) where
f (T ) is a rational function in T , g(x, y) = x6(y + 1) − 9y2(x2 + 4)2,

h(x, y) = (T + 1)2x2y2 + (T + 2)(T 2 + 3)2x2

− 4(T − 1)(T + 3)2xy + 4(T + 3)2y2 + 12T (T + 1)2(T + 3)2

and ỹ = (144(T + 1)y + (T + 3)2((T − 3)x2 + 12(T + 1)))/(8(T + 3)x). Therefore
Z(12, 1) is birational to the total space for the genus one curve C = {h = 0} in A2 defined
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over Q(T ). Replacing x by 2(T + 3)/(T 2 + 3)x , and completing the square in y shows that
C has equation

Y 2 = −(T + 2)x4 − (4T 3 + 5T 2 + 6T + 9)x2 − 3T (T 2 + 3)2. (1)

This gives a genus one fibration on Z(12, 1) defined overQ, but without aQ-rational section.
Indeed the fibres with T > 0 have no real points.

We now find another genus one fibration that does have a Q-rational section. Let
F(x1, x2, x3) be the unique homogeneous polynomial of degree 6 with the property that
F(x, T , 1) is the right hand side of (1). Then F is the discriminant of the following quadratic
in T .

x21 x2 + (T 2 + 2)x21 x3 + 2T x1x
2
2 − 2T x1x2x3 + T 2x32 + 3x22 x3 + 3T 2x2x

2
3 + 9x33 = 0

This same equation defines a genus one curve in P2 defined overQ(T ), with a rational point
at (x1 : x2 : x3) = (1 : 0 : 0). Putting this elliptic curve in Weierstrass form gives the
equation in the statement of Theorem 1.1.

3 Degree 3 covers of K3-surfaces

We prove Theorems 1.1 and 1.2 in the cases (N , ε) = (6, 5), (10, 1) and (10, 3). In the first
of these cases, Chen’s equations for XE (6, 5) already give a genus one fibration on Z(6, 5),
but one without a section. The content of Theorem 1.1 in this case is that we have found
another genus one fibration that does have a section.

For N an odd integer, let Z∗(N , ε) be the double cover of Z(N , ε) that parametrises pairs
of elliptic curves that are N -congruent with power ε, and additionally have the property that
their ratio of discriminants is a square.

Theorem 3.1 If (N , ε) = (3, 2), (5, 1) or (5, 2) then Z∗(N , ε) is a double cover of P2,
ramified over the union of two cuspidal cubics, with equation

y2 = F+(u, v, w)F−(u, v, w) (2)

where

Z∗(3, 2) : F± = u(u + 3v ± w)2 + 4v3,

Z∗(5, 1) : F± = u(u2 − 11uv − v2) + w2(12u + v) ± 2w(3u2 − 4uv + 4w2),

Z∗(5, 2) : F± = u2(11v + 8w) + w2(8u − v + 4w) ± 2u(2v − w)(4u − v + 4w).

In particular, in each of these cases Z∗(N , ε) is a K3-surface.

Proof Let E be the elliptic curve y2 = x3 + ax + b. We put � = −4a3 − 27b2, and define
polynomials

f (x) = x3 + ax + b,

g(x) = 3ax4 + 18bx3 − 6a2x2 − 6abx − a3 − 9b2,

h(x) = 3ax2 + 9bx − a2,

j(x) = 27bx3 − 18a2x2 − 27abx − 2a3 − 27b2.

If we assign the variables x, a, b weights 1, 2, 3, then each of these polynomials is homoge-
neous. We note that j2 = −4h3 − 27� f 2.
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Case (N, ε) = (3, 2). The following equations for the family of curves parametrised by
XE (3, 2) are taken from [11, Section 13]. Starting from the Klein form1

D(ξ, η) = −27aξ4 − 54bξ3η − 18a2ξ2η2 − 54abξη3 + (a3 − 27b2)η4,

we define

A(ξ, η) = 1

108

∣

∣

∣

∣

Dξξ Dξη

Dηξ Dηη

∣

∣

∣

∣

, and B(ξ, η) = 1

36

∣

∣

∣

∣

Dξ Dη

Aξ Aη

∣

∣

∣

∣

,

where the subscripts denote partial derivatives. These forms satisfy the syzygy

− 4A3 − 27B2 = 16(4a3 + 27b2)2D3. (3)

The family of elliptic curves 3-congruent to E with power ε = 2 is given by

y2 = x3 + A(ξ, η)x + B(ξ, η).

We dehomogenise by putting (ξ, η) = (x, 1). Then D = f 3x − 27 f 2 = j − 3 fx h where
fx = 3x2 + a. The quantities (u, v, r , s) = (D, fx h, h3, 36� f 4) are related by

(4r + (u + 3v)2)(ru − v3) = rs. (4)

As we verify in Remark 3.2 below, this is an equation for Z(3, 2) in P(1, 1, 2, 3) where the
coordinates u, v, r , s have weights 1, 1, 2, 3. We see by (3) that, up to squared factors, the
ratio of discriminants is s/u. We substitute s = uw2 in (4) to give a quadratic in r whose
discriminant is the polynomial F+F− in the statement of the theorem.

Case (N, ε) = (5, 1). The following equations for the family of curves parametrised by
XE (5, 1) are taken from [11, Section 13]. Starting from the Klein form2

D(λ, μ) = λ12 + 22aλ10μ2 + 220bλ9μ3 − 165a2λ8μ4 − 528abλ7μ5

− 220(a3 + 12b2)λ6μ6 + 264a2bλ5μ7 − 165a(5a3 + 32b2)λ4μ8

− 880b(3a3 + 20b2)λ3μ9 + 22a2(25a3 + 168b2)λ2μ10

+ 20(19a4b + 128ab3)λμ11 + (125a6 + 1792a3b2 + 6400b4)μ12,

we define

A(λ, μ) = 1

5808

∣

∣

∣

∣

Dλλ Dλμ

Dμλ Dμμ

∣

∣

∣

∣

, and B(λ, μ) = 1

360

∣

∣

∣

∣

Dλ Dμ

Aλ Aμ

∣

∣

∣

∣

,

where the subscripts denote partial derivatives. These forms satisfy the syzygy

4A3 + 27B2 = (4a3 + 27b2)D5. (5)

The family of elliptic curves 5-congruent to E with power ε = 1 is given by

y2 = x3 + A(λ, μ)x + B(λ, μ).

We dehomogenise by putting (λ, μ) = (x, 1). Then

D = 4k f − 3( f 2 + g)2 + 32�( f 2 + g),

1 We obtain D fromD(ξ, η) in [11, Section 9] by putting c4 = −48a, c6 = −864b, multiplying ξ by 12, and
dividing through by 21233.
2 We obtain D from D(λ, μ) in [11, Section 8] by putting c4 = −48a, c6 = −864b, multiplying λ by 12,
and dividing through by 224312.
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where k(x) = f 3 + f j + 4� f + 3g(x fx − 2 f ) = x9 + 12ax7 + 84bx6 + · · ·
The quantities (t, u, v, r , s) = (4 f , 2( f 2 + g), 16�, 4k, D) are related by

r2 + st2 = u(u2 − 11uv − v2) + (12u + v)s,

r t = 3u2 − 4uv + 4s.
(6)

These are equations for Z(5, 1) in P(1, 2, 2, 3, 4) where the coordinates t, u, v, r , s have
weights 1, 2, 2, 3, 4. We see by (5) that, up to squared factors, the ratio of discriminants is s.
Putting s = w2 we obtain from (6) the equation

(r2 − st2)2 = (r2 + st2)2 − 4s(r t)2 = F+(u, v, w)F−(u, v, w)

where F± are the polynomials in the statement of the theorem.

Case (N, ε) = (5, 2). The following equations for the family of curves parametrised by
XE (5, 2) are taken from [12, Theorem 5.8]. Starting from the Klein form3

D(λ, μ) = (125a3 − 432b2)λ12 + 2430a2bλ11μ − 22a(25a3 − 378b2)λ10μ2

− 110b(11a3−108b2)λ9μ3−165a2(5a3−27b2)λ8μ4−132ab(53a3−189b2)λ7μ5

+ 220(a6 − 123a3b2 + 81b4)λ6μ6 + 132a2b(19a3 − 297b2)λ5μ7

− 165(a7 − 26a4b2 + 189ab4)λ4μ8 − 110(3a6b − 34a3b3 + 135b5)λ3μ9

− 22a2(a3 − 3b2)(a3 + 27b2)λ2μ10 − 10ab(5a6 + 82a3b2 + 189b4)λμ11

+ (a9 − a6b2 − 181a3b4 − 675b6)μ12,

we define

A(λ, μ) = 1

1452

∣

∣

∣

∣

Dλλ Dλμ

Dμλ Dμμ

∣

∣

∣

∣

, and B(λ, μ) = −1

180

∣

∣

∣

∣

Dλ Dμ

Aλ Aμ

∣

∣

∣

∣

,

where the subscripts denote partial derivatives. These forms satisfy the syzygy

− 4A3 − 27B2 = 16(4a3 + 27b2)2D5. (7)

The family of elliptic curves 5-congruent to E with power ε = 2 is given by

y2 = x3 + A(λ, μ)x + B(λ, μ).

We dehomogenise by putting (λ, μ) = (x, 1). Then

D = 16� f 4 − g3 + 4(2g3 − g2 j − 4� f 2g). (8)

The quantities (r , s, v, w) = (� f 4,� f 2g, g3, 2g3 − g2 j − 4� f 2g) are related by

r(4s − 2v + w)2 + 27rsv + sw2 − s2(v − 4w) = 0. (9)

This is an equation for Z(5, 2) as a cubic surface in P3. We see from (7) and (8) that, up to
squared factors, the ratio of discriminants is r(16r − v + 4w). Putting r(16r − v + 4w) =
(4r − u)2, where u is a new variable, and using this equation to eliminate r from (9), we
obtain a quadratic in s whose discriminant is the polynomial F+F− in the statement of the
theorem.

For the last part of Theorem 3.1, we note that one of the standard constructions of a K3-
surface is as a double cover of P2 ramified over a non-singular sextic curve. In our case the

3 We obtain D from D(λ, μ) in [12, Section 5] by putting c4 = −48a, c6 = −864b, multiplying λ by 12,
and dividing through by 236315.
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sextic is singular, but the surface is still (birational to) a K3-surface. See for example [18,
Chapter 1, Example 1.3(iv)].

Remark 3.2 Let (N , ε) = (3, 2), (5, 1) or (5, 2). We saw in the proof of Theorem 3.1 that
one model for Z(N , ε) is the weighted projective plane P(1, 2, 3) where the co-ordinates
x, a, b have weights 1, 2, 3. We mapped this to another model for Z(N , ε) defined by (4),
(6) or (9). The inverse maps are as follows.

(3, 2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = r + v2,

a = −3r(r + uv + 2v2),

b = r(u + 3v)(ru + v3) + 2r2(r + 3v2),

(5, 1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x = 32u − v + 5t2,

a = −3(8u − v)(32u − v) − 288r t + 30(28u + v)t2 − 75t4,

b = −2(32u − v)2(4u + v) − 144(32u − v)r t + 6(32u − v)(88u − 5v)t2

+ 1008r t3 − 150(28u + v)t4 + 250t6,

(5, 2)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x = 4rs + 4rv + rw − s2,

a = 3(8rs3 + 4rs2v + 6rs2w + rsw2 − s4),

b = r2s(16s3 − 8s2v − 24s2w − 40svw − 15sw2 + 4vw2 − 2w3)

+ rs3(24s2 + 8sv + 34sw + 7w2) − 2s6.

Remark 3.3 There are two naturally defined involutions on the K3-surfaces in Theorem 3.1.
The first switches the sign of y, and corresponds to swapping over the pair of N -congruent
elliptic curves. The second is given on Z∗(3, 1) and Z∗(5, 1) by switching the sign of w, and
on Z∗(5, 2) by (u, v, w, y) 
→ (̃u, v, w, (̃u/u)2y) where ũ = u(v − 4w)/(8u − (v − 4w)).
This second involution switches the choice of square root for the ratio of discriminants. The
two involutions commute, and the second swaps over the curves F+ = 0 and F− = 0.

Remark 3.4 For a suitable parametrisation of the cuspidal cubic F+ = 0, we obtain a family
of elliptic curves with j-invariant

(3, 1) : j = 27(T − 3)3(T + 1)3/T 3,

(5, 1) : j = (T + 5)3(T 2 − 5)3(T 2 + 5T + 10)3/(T 2 + 5T + 5)5,

(5, 2) : j = 125T (2T + 1)3(2T 2 + 7T + 8)3/(T 2 + T − 1)5.

These correspond to X+
s (3), X+

s (5) and X+
ns(5), where X+

s (N ) and X+
ns(N ) are the modular

curves associated to the normaliser of a split or non-split Cartan subgroup of level N . Wemay
compute X+

s (N ) as the quotient of X0(N 2) by the Fricke involution, whereas the formula for
X+
ns(5) is taken from [6, Corollary 5.3]. The use of these modular curves to construct pairs

of N -congruent elliptic curves is described further in [16].

Let N be an odd integer and let ε ∈ (Z/2NZ)×. Then X(2N ) → X(N ), and hence
also XE (2N , ε) → XE (N , ε), is geometrically a Galois covering with Galois group
PSL2(Z/2Z) ∼= S3. Since the discriminant of an elliptic curve is equal (up to a constant
factor) to the discriminant of its 2-division polynomial, elliptic curves which are 2-congruent
have ratio of discriminants a square. It follows that Z(2N , ε) → Z∗(N , ε) is a degree 3
cover. In the cases (2N , ε) = (6, 5), (10, 1) and (10, 3) it turns out that the surface Z(2N , ε)

123



T. Fisher

has an elliptic fibration. The pushforward of a fibre gives a divisor class D on the K3-surface
Z∗(N , ε) with D2 = 2. Using this divisor class D we may write Z∗(N , ε) as a double cover
of P2. We have arranged (with the benefit of hindsight) that the equations in Theorem 3.1
write Z∗(N , ε) as a double cover of P2 in exactly this way.

The equations for Z(2N , ε) in Theorems 1.1 and 1.2 may be obtained from the equations
for Z∗(N , ε) in Theorem 3.1 as follows. The tangent line to a general point on the cuspidal
cubic F+(u, v, w) = 0 has equation:

(2N , ε) = (6, 5) (T 3 − 1)u + 3(T − 1)v − w = 0, (10)

(2N , ε) = (10, 1) (T − 2)u − T (T − 1)2v + 2(T − 1)w = 0, (11)

(2N , ε) = (10, 3) T 3u − (T + 1)v − T 2w = 0. (12)

We parametrise this line, and substitute into the right hand side of the equation y2 =
F+(u, v, w)F−(u, v, w). After cancelling a squared factor (which arises since we chose
a tangent line) the right hand side is a binary quartic with a linear factor. We now have the
equation for a genus one curve over Q(T ) with a rational point. Putting this elliptic curve
in Weierstrass form gives the equations for Z(6, 5), Z(10, 1) and Z(10, 3) in Theorems 1.1
and 1.2.

It remains to show that the degree 3 covers of Z∗(N , ε) defined by (10), (11) and (12) are
indeed birational to Z(2N , ε). To do this we must check that a point on Z∗(N , ε) lifts to the
degree 3 cover precisely when the corresponding pair of elliptic curves are 2-congruent. We
use the following lemma.

Lemma 3.5 Let K be a field of characteristic not 2 or 3. Elliptic curves E1 and E2 over K
with j-invariants j1 and j2, with j1, j2 /∈ {0, 1728}, are 2-congruent if and only if there exist
m, x ∈ K satisfying ( j1 − 1728)( j2 − 1728) = m2 and

x3 − 3 j1 j2x − 2 j1 j2(m + 1728) = 0.

Proof This follows from the formulae in [28] or [11, Sections 8 and 13] by a generic calcu-
lation.

We illustrate the use of Lemma 3.5 in the case (2N , ε) = (10, 3), the other cases being
similar, and treated in the accompanying Magma file. Above each point (u : v : w) ∈ P2

there are a pair of points on Z∗(5, 2) possibly defined over a quadratic extension. These
points correspond to a pair of elliptic curves, say with j-invariants j1 and j2. A calculation
using the formulae in Remark 3.2 shows that, for m a suitable choice of square root of
( j1 − 1728)( j2 − 1728), we have

j1 j2 = G6(u, v, w)H(u, v, w)2

j1 j2(m + 1728) = G9(u, v, w)H(u, v, w)3

where

G6(u, v, w) = 640u4v2 − 768u4vw − 72u3v3 − 240u3v2w + · · ·
G9(u, v, w) = 6912u7v2 − 1376u6v3 − 14976u6v2w + · · ·

are irreducible homogeneous polynomials of degrees 6 and 9, and H ∈ Q(u, v, w) is a
rational function. Finally we claim that the polynomials

X3 − 3G6(u, v, w)X − 2G9(u, v, w) = 0, (13)
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arising from Lemma 3.5, and

uT 3 − wT 2 − vT − v = 0, (14)

appearing in (12), define the same cubic extension. Indeed we find by computer algebra that
if (14) has root T0 then (13) has root

X0 = 3u2(8u − 3v − 4w)T 2
0 + 12u(2uv − 4uw + vw)T0

− 16u2v + 6uv2 + 8uw2 − vw2 + 4w3.

4 Computing the Picard numbers

Let E/Q(T ) be one of the elliptic curves in Theorems 1.1 and 1.2. We write X → P1 for the
minimal fibred surface with generic fibre E . The reduction of E mod p is an elliptic curve
Ep/Fp(T ), and the reduction of X mod p is a surface X p/Fp . We will always take p to be
a prime of good reduction.

Let X = X ×Q Q and X p = X p ×Fp Fp . We write NS for the Néron-Severi group. The
Shioda-Tate formula [29, Corollary 5.3] tells us that

rank E(Q(T )) + 2 + ∑

t∈P1(Q)(mt − 1) = rank NS(X), (15)

and
rank Ep(Fp(T )) + 2 + ∑

t∈P1(Fp)
(mt − 1) = rank NS(X p), (16)

where mt is the number of irreducible components in the fibre above t . We write ρ and ρp

for the numbers on the right of (15) and (16). These are the geometric Picard numbers of X
and X p . The sections exhibited in Tables 3 and 4 give a lower bound for rank E(Q(T )) and
hence by (15) a lower bound for ρ. These lower bounds are exactly the values recorded in
Tables 1 and 2.

Let X → P1 be a minimal elliptic surface with non-constant j-invariant, and let m =
χ(OX ) be the Euler characteristic of the structure sheaf. This may be computed from the fact
[22, III.4.4 and IV.3.3] that the sum of the Euler numbers of the singular fibres is 12m. By
[22, Lemma IV.1.1] the Hodge diamond of X is

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

1
0 0

m − 1 10m m − 1
0 0

1

The surfaces in Theorem 1.1 have m = 2 and those in Theorem 1.2 have m = 3. This may
be checked by computing the Euler numbers, but more simply corresponds to the fact that m
is the least integer such that the coefficients a1, . . . , a6 of the Weierstrass equations satisfy
deg(ai ) ≤ mi for all i . To tie in with [19, Theorem 4], we note that pg = h2,0 = m − 1. By
the Lefschetz theorem on (1, 1)-classes (see for example [2, Chapter IV, Theorem 2.13]) we
have ρ ≤ h1,1 = 10m. This already determines ρ in all cases with N ≤ 8. It remains for us
to improve this upper bound by 1 in the cases (N , ε) = (9, 1), (12, 1), (9, 2), and to improve
it by 2 in the cases (N , ε) = (10, 1), (10, 3), (11, 1).

The main tool we wish to use (see [33, Proposition 6.2]) is that there is an injective map
NS(X) → NS(X p) that preserves the intersection pairing.
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Table 5 Bounding the geometric Picard number

(N , ε) Characteristic polynomial of Frobenius f p(x) deg gp �p

(9,1) f5(x) = (x − 1)16(x + 1)2(x2 + x + 1)(x2 + 7
5 x + 1) 20 3 · 17

f7(x) = (x − 1)18(x + 1)2(x2 + 10
7 x + 1) 20 2 · 3

(12,1) f5(x) = (x − 1)16(x + 1)4(x2 + 6
5 x + 1) 20 1

f11(x) = (x − 1)12(x + 1)8(x2 + 6
11 x + 1) 20 7

(9,2) f7(x) = (x−1)24(x+1)2(x2+x+1)2(x2+ 10
7 x+1)(x2+ 13

7 x+1) 30 2

f13(x) = (x − 1)24(x2 + x + 1)3(x2 + 1
13 x + 1)(x2 + 25

13 x + 1) 30 17

(10,1) f7(x) = (x − 1)24(x + 1)2(x2 + x + 1)2(x2 + 10
7 x + 1)2 30 1

f17(x) = −(x − 1)25(x + 1)5(x2 − 2
17 x + 1)(x2 + 25

17 x + 1) 30 2 · 59
(10,3) f31(x) = (x−1)24(x+1)2(x2+x+1)2(x2+ 46

31 x+1)(x2+ 58
31 x+1) 30 2 · 5

f37(x) = (x − 1)28(x + 1)2(x2 + 70
37 x + 1)2 30 1

(11,1) f23(x) = (x − 1)28(x + 1)2(x2 + 42
23 x + 1)(x2 + 45

23 x + 1) 30 2 · 7 · 11 · 13
f53(x) = (x − 1)28(x2 + x + 1)(x2 + 25

53 x + 1)(x2 + 70
53 x + 1) 30 11 · 131

Let f p(x) be the characteristic polynomial of Frobenius acting on H2
ét(X p,Q	(1)), nor-

malised so that f p(0) = 1. This is a polynomial of degree b2 = 12m − 2, independent
of the choice of prime 	 �= p. By the Weil conjectures it satisfies the functional equa-
tion f p(x) = ±xb2 f p(1/x). The polynomials f p(x) may be computed from the numbers
nr = |X p(Fpr )| using the Lefschetz trace formula. See for example [34, Section 3],
where f p is denoted ˜f p . We used both the functional equation and the Magma function
FrobeniusActionOnTrivialLattice to limit how many nr we had to compute.
The polynomials f p(x) for two primes of good reduction (carefully chosen with the calcula-
tions at the end of this section inmind) are recorded in Table 5, and again in the accompanying
Magma file.

Let �p ∈ Q×/(Q×)2 be the absolute value of the determinant of the intersection pairing
on NS(X p). It may be computed using either of the following two lemmas. We emphasise
at this point that our results in Tables 1 and 2 are unconditional. In particular they do not
depend on any unproven cases of the Tate conjecture.

Lemma 4.1 Write f p(x) = gp(x)h p(x) where every root of gp is a root of unity, and no
root of h p is a root of unity. Then ρp ≤ deg gp and in the case of equality we have �p ≡
h p(1)h p(−1) mod (Q×)2.

Proof. The first part is described for example in [34, Corollary 2.3]. The Tate conjecture
predicts that this inequality is always an equality, and this has been proved for K3-surfaces.
See [18, Section 17.3] or [32] for the history of this problem and further references. The
formula for �p is a small refinement of a result of Kloosterman, that in turn depends on
known cases of the Artin-Tate conjecture.

Let Fk(x) = ∏

(1− pkαk
i x) where f p(x) = ∏

(1−αi x). The result of Kloosterman [20,
Proposition 4.7], is that if k is an even integer with αk

i = 1 for all αi which are roots of unity,
then

�p = lim
s→1

Fk(p−ks)

(1 − pk(1−s))ρ
. (17)
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Let Hk(x) = ∏

(1− pkβk
i x) where h p(x) = ∏

(1−βi x). Then Fk(x) = (1− pkx)ρHk(x),
and (17) becomes

�p = Hk(p
−k) =

∏

i

(βk
i − 1) = h p(1)h p(−1)

∏

d|k
d>2

∏

i

�d(βi )

where �d is the dth cyclotomic polynomial. For d > 2 we claim that
∏

i �d(βi ) is a rational
square. By the functional equation we have

β1, . . . , β2m = γ1, . . . , γm, γ −1
1 , . . . , γ −1

m .

Since d > 2 we have�d(x) = xφ(d)�d(1/x)where φ(d) is even, say φ(d) = 2n. Therefore
γ −n
i �d(γi ) = γ n

i �d(γ
−1
i ). It follows that

∏m
i=1 γ −n

i �d(γi ) ∈ Q and

2m
∏

i=1

�d(βi ) =
2m
∏

i=1

β−n
i �d(βi ) =

( m
∏

i=1

γ −n
i �d(γi )

)2

.

Lemma 4.2 Suppose that P1, . . . Pr generate a finite index subgroup of Ep(Fp(T )). Then
we have �p ≡ (

∏

t ct )Reg(P1, . . . , Pr ) mod (Q×)2 where the product is over t ∈ P1(Fp)

and ct is the number of irreducible components of multiplicity one in the fibre of X p above t.

Proof See [29, Theorem 8.7 and (7.8)].

In the calculations below, we sometimes needed to find explicit generators for Ep(Fp(T )).
These were found by searching on 2-coverings, computed using 2-descent in Magma, as
implemented in the function field case by S. Donnelly.

If ρ = ρp = ρq for distinct primes p and q , then (by the properties of the map NS(X) →
NS(X p) cited above) we have �p ≡ �q mod (Q×)2. As observed by van Luijk [34], this
can sometimes be used to improve our upper bound on ρ by 1. This is particularly useful
since (assuming the Tate conjecture) ρp is always even. Indeed ρp = deg gp = b2 − deg h p ,
and deg h p is even by the functional equation. See [20] and [23] for further examples.

Case (N, ε) = (9, 1). From the second and third paragraphs of this section we already know
that ρ = 19 or 20. Since the Tate conjecture has been proved for elliptic K3-surfaces [1],
equality holds in Lemma 4.1. By Lemma 4.1 we compute �5 = 3 · 17 and �7 = 2 · 3, it
being understood that these are elements of Q×/(Q×)2. Since these are different, it follows
by the method of van Luijk that ρ = 19.

Case (N, ε) = (12, 1). This is identical to the previous example, except that now �5 = 1
and �11 = 7.

Case (N, ε) = (9, 2). We already know that ρ = 29 or 30. Let p = 7 or 13. By Lemma 4.1
and (16) we have rank Ep(Fp(T )) ≤ 3. We prove equality by exhibiting three independent
points of infinite order in Ep(Fp(T )). In addition to the reductions of the two points in
Table 3, we have when p = 7 the point

(5T 5 + 6T 4 + 4T 2 + 6T , T 7 + 3T 6 + 6T 3 + 2T 2 + 2T ),

and when p = 13 the point

(4T 6+8T 5+3T 4+7T 3+5T 2+10T+2, 10T 9+4T 8+5T 6+5T 5+12T 3 + 4T 2 + 12).
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Using either Lemma 4.1 or Lemma 4.2 we find that �7 = 2 and �13 = 17. Since these are
different, it follows that ρ = 29. As the referee points out, hadwe assumed for a contradiction
thatρ = 30, then thiswould already give equality in Lemma4.1 for p = 7 and 13. Computing
the extra points was therefore not necessary in this case.

In the cases (N , ε) = (10, 1), (10, 3), (11, 1) we aim to show that ρ = 28. We were
unable4 to find a prime p with ρp = 28, despite computing the polynomials f p(x) for
all p < 150. This prompted us to try a variant of van Luijk’s method, where we use the
intersection pairing to improve our upper bound for ρ by 2.

Case (N, ε) = (10, 1). We already know that ρ = 28, 29 or 30. In addition to the point
P1 = (0, 0) in Table 3 we have when p = 7 the points

Q1 = (6T 6 + 6T 4 + 4T 3 + 5T 2, 4T 9 + 6T 8 + 6T 7 + T 6 + T 5 + 3T 4),

Q2 = (T 6 + 5T 5 + 6T 4 + 4T 3 + 5T 2, 2T 9 + 6T 8 + 2T 7 + T 6 + 3T 4),

and when p = 17 the points

R1 = (16T 6 + 13T 5 + 6T 4 + 4T 3 + 12T 2, 4T 9 + 2T 8 + 5T 7 + 8T 5 + 15T 4),

R2 = ((6T 8 + 8T 7 + 2T 6 + 5T 5 + 8T 4 + 4T 3 + T 2)/(T + 6)2, . . . ).

We checked that these points are independent. Therefore by Lemma 4.1 and (16) we have
ρp = 30 and rank Ep(Fp(T )) = 3 for p = 7 and 17. Using either Lemma 4.1 or Lemma 4.2
we find that �7 = 1 and �17 = 2 · 59. Since these are different, it follows that ρ ≤ 29.

As we checked usingMagma, reducing mod 7 or 17 does not change the Kodaira symbols
of the singular fibres. So by Lemma 4.2 it will be enough for us toworkwith the height pairing
on theMordell-Weil group, rather than the intersection pairing on the fullNéron-Severi group.
We compute

Reg(P1, uQ1 + vQ2) = 2
75 (7u

2 − 12uv + 18v2),

Reg(P1, x R1 + yR2) = 1
450 (139x

2 + 76xy + 316y2).

If ρ = 29 then we have rank E(Q(T )) = 2, and so there exists P2 ∈ E(Q(T )) whose
reduction mod 7 is λP1 + uQ1 + vQ2 and whose reduction mod 17 is μP1 + x R1 + yR2 for
some λ,μ, u, v, x, y ∈ Z with (u, v) �= (0, 0) and (x, y) �= (0, 0). Therefore the equation
2
75 (7u

2 − 12uv + 18v2) = 1
450 (139x

2 + 76xy + 316y2) has a solution in rational numbers
u, v, x, y not all zero. However this quadratic form of rank 4 is not locally soluble over the
3-adics. Therefore ρ = 28.

Case (N, ε) = (10, 3). We already know that ρ = 28, 29 or 30. Let p = 31 or 37. Since
p ≡ 1 (mod 3) the reductions of the points in Tables 3 and 4 give us points P1, P2, P3, P4 ∈
Ep(Fp(T )). In addition when p = 31 we have

Q1 = (20T 4 + 13T 3 + 30T 2 + 6T , 5T 5 + 4T 4 + 29T 3 + 4T 2 + 5T ),

Q2 = (7T 6 + 12T 5 + 9T 4 + 19T 2 + 13T + 4)/(T + 29)2, . . . ),

and when p = 37 we have

R1 = (36T 4 + 11T 3 + 4T 2, 26T 5 + 34T 4 + 2T 3 + 15T 2),

R2 = (6T 4 + 5T 3 + T 2 + 26T + 32, 29T 5 + 35T 4 + 2T 3 + 15T 2 + 19T + 10).

4 There is presumably a systematic reason for this, similar to that described in [5].
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Using either Lemma 4.1 or Lemma 4.2 we find that �31 = 2 · 5 and �37 = 1. Therefore
ρ ≤ 29.

As in the previous example, reducing mod 31 or 37 does not change the singular fibres.
We compute

Reg(P1, P2, P3, P4, uQ1 + vQ2) = 5
96 (25u

2 − 4uv + 52v2),

Reg(P1, P2, P3, P4, x R1 + yR2) = 1
8 (5x

2 + 8y2).

If ρ = 29 then the equation 5
96 (25u

2 − 4uv + 52v2) = 1
8 (5x

2 + 8y2) has a solution in
rational numbers u, v, x, y not all zero. However this quadratic form is not locally soluble
over the 3-adics. Therefore ρ = 28.

Case (N, ε) = (11, 1). We already know that ρ = 28, 29 or 30. Let P1 and P2 be the
reductions mod p of the points in Table 3. In addition, when p = 23 we have

Q1 = (16T 2 + 5T + 5, 21T 3 + 15T 2 + 3T + 18),

Q2 = (18T 6 + 5T 5 + 5T 4 + 22T 3 + 9T 2)/(T + 16)2, . . . ),

and when p = 53 we have

R1 = (28T 5 + T 4 + 23T 3 + 40T 2 + 15T , . . . ),

R2 = (49T 6 + 44T 5 + 38T 4)/(T 2 + 42T + 5)2, . . . ).

Using either Lemma 4.1 or Lemma 4.2 we find that �23 = 2 · 7 · 11 · 13 and �53 = 11 · 131.
Therefore ρ ≤ 29.

Again, reducing mod 23 or 53 does not change the singular fibres. We compute

Reg(P1, P2, uQ1 + vQ2) = 11
480 (57u

2 − 46uv + 137v2),

Reg(P1, P2, x R1 + yR2) = 1
240 (541x

2 − 228xy + 1196y2).

If ρ = 29 then the equation 11
480 (57u

2 − 46uv + 137v2) = 1
240 (541x

2 − 228xy + 1196y2)
has a solution in rational numbers u, v, x, y not all zero. However this quadratic form is not
locally soluble over the 11-adics. Therefore ρ = 28.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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