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Surveillance;
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syndrome;

WTI,

Overgrowth syndrome

diagnostic molecular tests for previously known syndromes have improved. In view of this, the
International Society of Pediatric Oncology (SIOP)-Europe Host Genome Working Group
and STOP Renal Tumour Study Group hereby present updated WT surveillance guidelines af-
ter an extensive literature review and international consensus meetings. These guidelines are
for use by clinical geneticists, pediatricians, pediatric oncologists and radiologists involved
in the care of children at risk of WT. Additionally, we emphasise the need to register all pa-
tients with a cancer predisposition syndrome in national or international databases, to enable

the development of better tumour risk estimates and tumour surveillance programs in the

future.

Crown Copyright © 2021 Published by Elsevier Ltd. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wilms tumour (WT) (nephroblastoma) is the most
common childhood renal malignancy. Current treat-
ment regimens include a combination of chemotherapy,
surgery and, in some cases, radiotherapy, achieving
survival rates of 90% [1]. Yet, advanced stage WT is still
associated with significant morbidity and mortality. To
enable the detection of smaller and lower-stage tu-
mours [2,3], WT surveillance is offered to children with
various cancer predisposition syndromes (CPS), with
WTI-related syndromes and Beckwith-Wiedemann
syndrome/spectrum (BWS/BWSp) being the most well-
known examples [4—6].

In general, tumour surveillance 1s recommended if the
benefits outweigh the costs and burden. This depends on
many factors, including the tumour risk of the screened
population and the consequences of early detection for
prognosis and management. Worldwide, different
countries use different arbitrary thresholds to determine
whether WT surveillance is indicated in children with a
specific CPS, varying between 1 and 5% estimated
childhood WT risk [4,5].

Since previous consensus-based WT surveillance
guidelines [4] were published, novel genes and syndromes
associated with WT risk have been identified [7—9]. For
some previously known syndromes, molecular tests have
improved, and/or larger series have been published,
enabling better WT risk estimates. More recent surveil-
lance recommendations are limited to BWSp [10] or tar-
geted towards the North American health-care culture [5].
Here, updated WT surveillance guidelines developed by
the International Society of Pediatric Oncology (SIOP)-
Europe Host Genome Working Group and SIOP Renal
Tumour Study Group (RTSG) are presented.

Recommendations and the rationale behind them are
discussed based on an extensive literature review and
international consensus meetings, addressing all
currently known WT predisposition genes and syn-
dromes. Additionally, we discuss imaging modalities
and surveillance interval and emphasise the need to
prospectively register all patients with a CPS in national
or international databases, to enable better risk

estimates in the future. These guidelines are for use by
clinical geneticists, pediatricians, pediatric oncologists
and radiologists involved in the care of children at risk
of WT.

2. Methods

The international consensus group was comprised of 16
participants from the United Kingdom, The
Netherlands, France, Germany and Japan, including
pediatric oncologists, geneticists, a radiologist and an
epidemiologist. Discussions occurred via video confer-
ences and email communications. A preliminary meeting
was held in June 2020 after which the identified CPS
were divided into four groups, discussed in smaller
meetings with eight participants each. Various patient/
parent representatives were contacted and requested to
comment on their experiences regarding the practical
and emotional burden, recommended risk threshold and
duration and willingness to travel for WT surveillance.
Based on the discussions during the meetings and the
mnput from patient/parent representatives, recommen-
dations were developed which were discussed in a final
consensus meeting with all participants in November
2020.

A PubMed search was conducted using the keywords
“Wilm™” or “Nephroblastoma#*” or the MeSH term
“Wilms Tumour” in combination with synonyms for the
various WT predisposition genes and syndromes
(Supplemental Table 1). Articles of interest were selected
based on title/abstract screening, prioritizing cohort
studies, larger series and previous literature reviews with
mformation on WT occurrences for each gene or syn-
drome. Additionally, the PubMed search was combined
with the keywords “Surveillance” or “Screening” to
explore the evidence supporting (or against) surveillance.

For the majority of the reviewed genes and syn-
dromes, our literature review identified only a limited
number of studies which were mainly case reports or
small case series. In order to grade the recommendations
that were established during the consensus meetings, we
used the following scale which was adapted from the
recently published European Reference Network-PTEN



J.A. Hol et al. | European Journal of Cancer 153 (2021) 51—63 53

cancer surveillance guideline [11]: (1) strong evidence,
consistent evidence and new evidence unlikely to change
recommendation and expert consensus; (i) moderate
evidence, expert consensus or majority decision but with
inconsistent evidence or significant new evidence ex-
pected and (i11) weak evidence, inconsistent evidence
AND limited expert agreement.

CPS with an estimated childhood WT risk of more
than 5% were primarily selected as those where sur-
veillance should be offered [12]. For syndromes with an
estimated WT risk between 1 and 5%, additional cancer
risks were taken into account when deciding on whether
to recommend surveillance. As accurate tumour risk
estimates require large, unbiased cohorts with long-term
follow-up, we estimated cumulative WT risks by calcu-
lating the percentage of reported patients with WT
among the total number of reported individuals with a
given CPS, acknowledging that such estimates are prone
to selection bias. The recommended duration of sur-
veillance was based on the age at which approximately
90—95% of reported WTs have been diagnosed, in
accordance with previous guidelines on WT surveillance
[4,5] and other CPS [13].

3. Aim and potential benefits of surveillance

WT surveillance aims to improve survival and to reduce
treatment-related toxicity for WT patients with a genetic
and/or epigenetic predisposition, by enabling the detec-
tion of smaller and lower stage tumours. There arec no
studies directly comparing survival rates or morbidity
between screened and unscreened patients. Owing to the
generally good prognosis of WT, the effects of WT
surveillance on overall survival rates may be small.
Diagnosing lower stage tumours can, however, avoid the
need for toxic treatment such as anthracyclines or
radiotherapy, reducing direct and late side-effects. It has
been retrospectively demonstrated that children with
BWS or hemihypertrophy undergoing WT surveillance
had significantly lower stage WT compared with chil-
dren not participating in a surveillance program [2,3]
and that WTs in patients with Wilms tumour, aniridia,
genitourinary anomalies and range of developmental
delays (WAGR) syndrome are significantly smaller if
they are surveillance-detected than symptomatic tu-
mours [14]. Analysis of a registry-based cohort could
provide stronger unbiased evidence in the future.
Diagnosing smaller tumours can also enable
nephron-sparing surgery (INSS). The SIOP-RTSG 2016
UMBRELLA protocol recommends NSS for children
with a genetic predisposition if feasible depending on the
size and location of the tumour [15]. Several studies have
demonstrated that NSS can be safely performed in
children with a WT predisposition syndrome with uni-
lateral or bilateral WT [16—18]. In patients with WAGR
syndrome and WT, mortality was more frequently

caused by end-stage renal discase (ESRD) than the
tumour itself [19]. Therefore, NSS is believed to be
particularly relevant for patients with a risk of devel-
oping renal failure (such as WTI-related conditions),
where it may prevent or delay the need for dialysis or
renal transplantation.

4. Costs and burden of surveillance

In 2001, a cost-benefit analysis was performed to esti-
mate the costs per life-year saved for WT and hepato-
blastoma surveillance in a hypothetical cohort of
children with BWS [20]. The costs were considered to be
reasonable in comparison to other population-based
cancer surveillance programs at the time [20]. An up-
date of this study is warranted, which would ideally also
address additional benefits such as decreased toxicity
and the feasibility of NSS.

False-positive or incidental findings detected by sur-
veillance have been reported in children with BWSp.
Choyke et al. reported two resected renal lesions, which
were suspected to be cystic WT, but proved to be
infected renal cysts upon histological examination [2]. In
one of these patients, a radical nephroureterectomy had
been performed. Zarate er al identified renal or liver
abnormalities in 25 of 63 (40%) children with BWSp
undergoing surveillance [21]. Such findings can trigger
unnecessary interventions and investigations, leading to
additional costs, and may cause anxiety in patients and
their guardians.

The practical and emotional burden associated with
cancer surveillance ranges from logistical issues to anx-
iety around surveillance visits. Based on input from the
International WAGR Syndrome Association (IWSA)
and the UK BWS Support Group, surveillance visits can
be stressful for some parents while reassuring for others,
and anxiety similarly varies from child to child. Both
groups reported that not undergoing surveillance can
also be stressful for parents. Practicalities such as time
and transport can be an issue but are less important
when surveillance visits can be combined with regular
hospital wvisits for other indications. Overall, both
groups emphasised that the benefits of surveillance
outweigh the practical and emotional burden, and they
would not object to surveillance of longer duration than
that being proposed here.

5. General recommendations: how to screen

Surveillance should be offered after parents have
received counselling about WT risk in their child by a
clinical geneticist or genetic counsellor. Renal ultraso-
nography is the recommended screening modality,
which avoids radiation exposure (unlike computed to-
mography [CT] imaging) and does not require anaes-
thesia in young children (unlike magnetic resonance



54 J.A. Hol et al. | European Journal of Cancer 153 (2021) 51—63

imaging [MRI]). Although CT or MRI may have a
higher resolution for discriminating between different
tumour types and nephrogenic rests, ultrasonography is
believed to be equally effective for initial WT detection
based on expert consensus. Guidelines on how to
perform renal ultrasound surveillance are provided in
Table 1.

Surveillance can be undertaken at a local center but
should be performed by someone with experience of
pediatric ultrasonography with screen-detected lesions
managed at a specialist center. For certain syndromes
(specified in Table 1), we recommend replacing renal
ultrasonography by full abdominal ultrasonography
because of additional abdominal tumour risks.

Previous surveillance guidelines have recommended
scans every 3—4 months [4—6,10] as WTs are known to
have a high growth rate with the shortest reported esti-
mated doubling time being 11 days[22]. We recommend a
surveillance interval of 3 months because in clinical
practice, surveillance visits can be delayed, and the
consensus group agreed that an interval of >4 months
risks higher tumour stage at diagnosis. A recent clinical
report demonstrated that growth rate varies between tu-
mours, and this may depend on their molecular charac-
teristics [23]. Whether growth rate also varies between
different underlying predisposition syndromes is a rele-
vant research question to address in preclinical models.

6. General recommendations: when to screen

Surveillance recommendations for all identified CPS
associated with an increased risk of WT development
are presented in Table 2 and discussed in more detail in
the following sections. We recommend initiating

Table 1
Guidelines for renal/abdominal ultrasonography in children at risk of
Wilms tumour, adapted from Scott ez al, 2006 [4] and updated.

Equipment  High-frequency probes and pediatric settings. Linear
(>10 MHz) in infants, curvilinear (>6 MHz) and
linear (>10 MHz) probes in toddlers and children.

Preparation Fasting and bladder preparation are not required.

Target Kidney only, except for patients with BWS/BWSp,

organ lateralised overgrowth or SGBS, who require a full
abdominal ultrasound including adrenal glands and
liver to check for other abdominal tumours,
including neuroblastoma, hepatoblastoma
and adrenocortical carcinoma.

Technique Appropriate focal point and time gain settings.

The whole renal parenchyma should be imaged in
longitudinal and transverse planes with the
child both supine and prone.

Normal Foetal lobulations, dromedary hump, column of

variants  Bertin, duplex or bifid collecting systems.

Suspicious  Solitary or multiple cystic or solid parenchymal lesions

lesions with or without sonographic signs of expansile
growth. A solid lesion is more likely to represent
malignancy than a simple cystic anechoic lesion.

BWS/BWSp, Beckwith-Wiedemann Syndrome/Spectrum; SGBS,

Simpson-Golabi-Behmel Syndrome.

surveillance at birth or as soon as a CPS is diagnosed.
As molecular confirmation of a CPS can take some
months, surveillance can be initiated based on the clin-
ical suspicion of a CPS, while awaiting test results.

If WT surveillance is indicated, we recommend
continuing surveillance until a child’s 7th birthday
regardless of the underlying CPS diagnosis. By the age
of 7 years, 90% of sporadic WTs [3], 94% of WTs in
children with BWS [3] and >95% of WTs in children
with WTI-related syndromes [14,19,24] have been
diagnosed, and this age has been previously recom-
mended by other groups [5,10]. For other CPS, the
number of reported patients with WT was too small to
determine this percentage.

Among patients with W7TI-related syndromes,
>90—95% of WTs are diagnosed before the age of 5 years,
although patients with nephrogenic rests progressing to
(metachronous) tumours after the age of 5 years have
been reported [14,25]. Although we have previously sug-
gested screening patients with WT/-related syndromes
until the age of 5 years [4] and to prolong surveillance only
for patients with a prior diagnosis of WT/nephro-
blastomatosis [14], the consensus group agreed to
recommend surveillance until the 7th birthday for all CPS
including WTI-related syndromes. Factors that influ-
enced this decision were that nephroblastomatosis may
not be identified on ultrasound, to maintain consistency
with other WT predisposition genes/syndromes and in
response to patient/parent representatives’ views.

7. Considerations for specific WT predisposition genes
and syndromes

7.1. WTI pathogenic variants

WT surveillance is recommended for children with
germline pathogenic variants in WTI, except for intron
9 mutations. W7/ was the first known WT predisposi-
tion gene [26—28]. Germline WTI aberrations are pre-
sent in an estimated 2—11% of patients with WT
[29—33], usually occurring de novo in isolated (non-fa-
milial) cases. The exact percentage may vary between
different geographic WT cohorts [34]. In addition to an
increased risk of WT, WTI pathogenic variants arc
associated with renal disease (glomerulosclerosis) which
can lead to renal failure and disorders of sexual devel-
opment (DSD). There is considerable overlap in the
phenotypic spectrum of patients previously referred to
as having Denys-Drash syndrome (exon 8 or 9 muta-
tions) or Frasier syndrome (intron 9 mutations) [35],
although  genotype-phenotype  correlations  exist
[24,36—38]. Notably, WT can also be the first manifes-
tation of a pathogenic W71 variant in children with an
otherwise unremarkable medical and family history.
Based on data extracted from five studies
(Supplemental Table 2), WTs were reported in ~50% of
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Table 2
Summary of cancer predisposition genes/syndromes with a reported risk of Wilms tumour (WT) development and surveillance recommendations.
Syndrome/gene Estimated % of WT surveillance recommended? Evidence*
patients with this If yes: 3-monthly from birth
condition with WT until 7th birthday
WTI mutations Exonic missense variants ~50% Yes, renal US Strong
Exonic truncating variants ~80% Yes, renal US Strong
Intron 9 variants ~2% No Moderate
WAGR syndrome (11pl3 deletion ~55% Yes, renal US Strong
encompassing WT1)
Beckwith-Wiedemann syndrome/ LOM IC2 <1% No Moderate
spectrum (BWS/BWSp) GOM IC1 ~21% Yes, full abdominal US* Strong
Paternal UPD 11pl5 ~8% Yes, full abdominal US* Strong
CDKNIC mutation ~1% Yes, full abdominal US* Moderate
Classical BWS with ~5% Yes, full abdominal US* Moderate
negative tests
Lateralised overgrowth Unknown Yes, full abdominal US* Moderate
with >1 BWS feature
Lateralised overgrowth Unknown No Moderate
without additional
BWS features
Perlman syndrome ~64% Yes, renal US Strong
(DIS3L2) (recessive)
PIK3CA-related overgrowth 1-5% No Moderate
(PIK3CA) (somatic mosaic)
Simpson-Golabi Behmel ~3% Yes, full abdominal US* Moderate
syndrome (GPC3/GPC4)
TRIM28 mutations >50% penetrance Yes, renal US Moderate
REST mutations >50% penetrance Yes, renal US Moderate
CTRY mutations Truncating/splicing variants Appears high Yes, renal US Moderate
Missense variants WT not reported No Moderate
HACE] mutations Unknown No Moderate
KDM3B mutations Appears low No Moderate
FBXW?7 mutations Unknown No Moderate
NYNRIN mutations (recessive) Unknown No® Moderate
Fanconi anaemia FANC-DI1 (BRCA2) (recessive) ~20% Yes, renal US Strong
FANC-N (PALB?2) (recessive) ~40% Yes, renal US Strong
Other subtypes WT not reported No Moderate
Mulibrey nanism (7’RIM37) ~6—8% Yes, renal US Moderate
(recessive)
Mosaic variegated BUBI B variants (recessive) ~50% Yes, renal US Moderate
aneuploidy (MVA) TRIPI3 variants (recessive) ~20% Yes, renal US Moderate
CEP57 variants (recessive) WT not reported Yes, renal US Moderate
MVA with unknown cause WT not reported Yes, renal US Moderate
9¢22.3 microdeletion syndrome 10—20% Yes, renal US Moderate
2p24.3 duplication Unknown No Moderate
(encompassing MYCN )
Osteopathia striata with cranial Unknown, but Yes, renal US Moderate
sclerosis (WT'X ') (X-linked) appears >5%
2q37 deletion syndrome Extending to 2q37.1 10—20% (3 cases) Yes, renal US Moderate
More distal deletions WT not reported No Moderate
Bloom syndrome (BLM ) (recessive) ~3% No Moderate
DICER1 syndrome (DICERI) <2% No“P Moderate
Li Fraumeni syndrome (7P53) Low No® Moderate
Neurofibromatosis type 1 (NFI) <1% No® Moderate
Hyperparathyroidism-jaw <5% No® Moderate
tumour syndrome (CDC73)
Constitutional mismatch ~3% No® Moderate
repair deficiency (MSH?2,
MSH6, MLHI, PMS2) (recessive)
Bohring-Opitz syndrome (ASXLI) ~7% Yes, renal US Moderate
Trisomy 13 <1% No Moderate
Trisomy 18 ~1% No Moderate

BWS/BWSp, Beckwith-Wiedemann Syndrome/Spectrum; GOM, gain of methylation; US, ultrasound; WAGR, Wilms tumour, aniridia, genito-
urinary anomalies and range of developmental delays.

Notes.

A. Additional risk of other abdominal tumours.
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B. Surveillance can be considered in a research setting.

C. In these syndromes, cancer surveillance is recommended for other cancer types (beyond the scope of this guideline), but does not include 3-

monthly renal or abdominal US.

D. To enable early detection of cystic nephromas, the SIOP-Europe Host Genome Working Group and CanGene-CanVar Clinical Guideline
Working Group recommend 6-monthly renal US until the child’s 6th birthday (manuscript under review).

*Evidence.

(i) strong evidence: consistent evidence and new evidence unlikely to change recommendation and expert consensus.
(1) moderate evidence: expert consensus or majority decision but with inconsistent evidence or significant new evidence expected.

(iii) weak evidence: inconsistent evidence AND limited expert agreement.

patients with exonic missense mutations, ~80% of pa-
tients with exonic truncating mutations and ~2% of
patients with intron 9 mutations [36—40]. Patients
included in these studies were identified because of the
presence of nephrotic syndrome or DSD. A subset of
these patients, particularly those with exonic missense
variants, had ESRD in infancy and underwent pro-
phylactic bilateral nephrectomies, potentially leading to
an underestimate of WT risk in these studies. This is not
the case for patients with intron 9 mutations, who
typically develop ESRD at older ages [41]. Although
patients with intron 9 mutations are frequently diag-
nosed with DSD, which is associated with a high risk of
gonadoblastoma [41], ultrasound or MRI surveillance is
not reliable for the early detection of gonadal nco-
plasms [42]. Therefore, combined with the low risk of
WT, renal or abdominal ultrasound surveillance is not
recommended for patients with intron 9 mutations.

In series of patients with WT/ variants and WT, the
age at tumour development varied from 0 to 4.5 years,
with medians between 9 months and 1.6 years
[24,25,29,31,32,36—38,43]. A risk of later-onset meta-
chronous WT has been reported [25].

7.2. WAGR syndrome

WT surveillance is recommended for all children with
WAGR syndrome.

WAGR syndrome is caused by the contiguous dele-
tion of WT1 and PAX6 genes at 11pl3. The diagnosis of
WAGR syndrome is usually established early because of
aniridia, frequently accompanied by other ophthalmo-
logic abnormalities, genitourinary anomalies and
developmental delay.

Based on data extracted from four published cohorts
of patients with WAGR syndrome (Supplemental Table
3), WTs were reported in ~55% of all patients [44—47].
Reported ages at WT diagnosis varied from 0.3 to 25
years (median ages: 15—23 months) [14,19,32,45,46,48].
Similar to patients with WTI variants, patients with
WAGR syndrome are at risk of developing metachro-
nous tumours [14] and renal failure [19].

7.3. Beckwith-Wiedemann spectrum

Surveillance by full abdominal ultrasound is recom-
mended once every 3 months for all molecular subtypes

of BWSp, except for IC2 (KCNQIOTI:TSS-DMR) loss
of methylation (IC2 LOM).

BWSp is the most frequently diagnosed WT predis-
position syndrome, affecting 1 in 10,500 children in
Western populations [49]. BWSp is considered an
overgrowth syndrome with a highly variable phenotype
which can include (lateralised) overgrowth, macro-
glossia, abdominal wall defects and hyperinsulinism
leading to neonatal hypoglycemia [10].

BWS is molecularly characterised by genetic and/or
epigenctic changes at the 11pl5.5 imprinted region,
which are frequently mosaic. In 2018, the European
Cooperation in Science and Technology (COST)-funded
European Network for Congenital Imprinting Disorders
published a consensus document in which the novel term
BWSp was introduced. BWSp includes patients with
classical BWS as well as patients with ‘atypical BWS’
(not meeting the criteria for a clinical diagnosis) or
‘isolated lateralised overgrowth’ with a BWS-associated
molecular (epi)genetic alteration at the 11p15.5 imprin-
ted region [10].

Maternal IC2 LOM, the most prevalent molecular
subtype, is associated with an estimated WT risk of only
~0.2%, and therefore, surveillance is not recom-
mended [10,50,51]. Patients with a gain of methylation at
the maternal IC1 locus (H19/IGF2 DMR) comprise only
5% of all patients with BWSp but have an estimated
~21% cumulative risk of WT development [10,50,51].
This risk is estimated to be ~8% in patients with a
paternal uniparental disomy of 11pl5.5 [10,50,51].
Pooled WT risk estimates and implications for surveil-
lance are described for the major molecular subtypes in
Supplemental Table 4, which was adapted from the study
by Maas et al. and updated to include the more recently
published study by Coktii ef al. [10,50,51].

7.4. Lateralised overgrowth

Full abdominal ultrasound is recommended once every
3 months for patients with lateralised overgrowth (LO)
and >1 additional feature of BWSp. LO, also known as
hemihypertrophy or hemihyperplasia, is defined as
overgrowth of one side of the body compared with its
contralateral side. This may be restricted to (part of) a
limb or the face, with a pragmatic definition that it
should be apparent ‘from the end of the bed’ [52]. The
incidence is estimated to be 1:13,000 to 1:86,000 live
births [53].
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If a syndromic diagnosis can be established based on
molecular testing or clinical criteria, tumour surveillance
should be initiated accordingly. Robust data are lacking
for remaining patients (i.e. isolated LO and no detect-
able molecular finding). Two studies have estimated the
overall tumour risk to be around 10%, with WT and
neuroblastoma being the most common tumour types
[54,55], although it is likely that this includes patients
with low-level mosaic BWSp aberrations.

Therefore, for all patients with LO, we recommend
careful assessment by a clinical geneticist and molecular
testing which should include 11pl5.5 analysis in germ-
line DNA. Baseline abdominal ultrasonography is
advised to assess the presence of organomegaly, which is
an additional BWSp feature and therefore an indication
for imitiating WT surveillance. For significant isolated
LO, we advise trying to establish the underlying (epi)
genetic cause by testing overgrown tissues and initiating
surveillance while awaiting test results. Further research
focussing on this group of patients is necessary to clarify
WT risks.

7.5. Other overgrowth syndromes

WT surveillance is recommended for Perlman syndrome
(renal ultrasound) and Simpson-Golabi Behmel syn-
drome (SGBS) (full abdominal ultrasound). Although
WTs are reported in a subset of patients with PIK3CA-
related overgrowth spectrum (PROS), surveillance is
currently not recommended by the consensus group (see
paragraph on PROS). In patients with other overgrowth
syndromes (¢.g. Sotos, Proteus, Malan, Thauvin Rob-
inet Faivre and Weaver syndrome), WTs were only
sporadically reported or not at all, and surveillance is
therefore not recommended.

Perlman syndrome is an autosomal recessive syn-
drome associated with a 64% risk of WT development in
children surviving the neonatal period, in addition to
polyhydramnios, macrosomia, facial dysmorphism,
renal dysplasia, multiple congenital anomalies and
frequently neurodevelopmental delay [56—58]. More
than half of the children with Perlman syndrome die
within the first year of life because of respiratory
insufficiency, sepsis and/or renal failure [59]. In 2012,
biallelic inactivating variants in DIS3L2 were identified
as the cause of Perlman syndrome [60]. DIS3L2 appears
to play a role in normal kidney development, and the
mechanism by which Perlman syndrome increases WT
risk may be duec to increased IGF2 expression as
demonstrated in mouse models [61].

SGBS is an X-linked disorder due to pathogenic
GPC3 variants or deletions, which may involve GPC4,
or a multi-exon duplication of GPC4 [62,63]. Affected
males have pre- and post-natal overgrowth, distinctive
facial features, variable levels of intellectual disability
and congenital anomalies [64—66]. Older studies re-
ported WT risks between 5 and 15% [67—73], but these

studies did not always include molecular analysis and
cases may have been misdiagnosed. A 2019 literature
review identified 152 patients with GPC3 variants and
found an overall tumour risk of 8.5%, including 5 WTs
(5/152 = 3%), with the most common tumour type
being hepatoblastoma [74]. Therefore, full abdominal
ultrasonography is recommended once every 3 months
for children with SGBS.

PROS covers a range of disorders now known to
be caused by somatic mosaic PIK3CA mutations,
including CLOVES syndrome (congenital lipomatous
overgrowth, vascular malformations, epidermal
nevi and skeletal anomalies), Klippel-Trenaunay syn-
drome, megalencephaly-capillary malformation syn-
drome and fibroadipose hyperplasia [75—77]. Although
WT risk estimates vary between different reports,
currently available data suggest that the WT risk is less
than 5% [76,77]. Other tumour types have not been re-
ported in relation to PROS, and therefore, surveillance
is not recommended.

7.6. Novel genes

WT surveillance is recommended for all children with
germline pathogenic variants in TRIM28 or REST, as
well as children with truncating CTR9 variants.

TRIM?28 was recently identified as a novel WT pre-
disposition gene, with heterozygous germline pathogenic
variants currently reported in >30 patients with WT
[7,78—81]. Pedigrees from families with TRIM?28 vari-
ants suggest a WT penetrance of >50% [7,80]. Although
the median age at WT diagnosis was young (13 months),
only 83% of WTs were diagnosed before the age of 7
years [7,78—81], and further rescarch is neceded to
determine whether longer surveillance is indicated for
this group. Although there is some evidence that WT
risk may be preferentially associated with maternally
inherited familial TRIM?28 mutations [7], until definitive
evidence is available, surveillance should be offered
irrespective of the inheritance pattern.

REST pathogenic variants were identified in familial
WT pedigrees by Mahamdallie et al, in 2015 [82].
Heterozygous germline variants have currently been
reported in 19 patients with WT from 14 families [82,83].
Additionally, a de novo deletion encompassing REST
was recently identified in a patient with diffuse hyper-
plastic perilobar nephroblastomatosis [84]. The REST
gene encodes the REl-silencing transcription factor
which, similar to TRIMZ2S8, is thought to play an
important role during embryonic development [8].
Pedigrees from families with REST variants suggest a
disease penetrance of >50% [82].

Inactivating heterozygous CTR9 variants were iden-
tified in three WT families by Hanks et al. [85] in 2014
and reported in an additional family by Martins et al.
[86]. These four families included a total of nine patients
with WT. In a recently presented conference abstract,
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missense CTRY variants were reported in 11 patients
with necurodevelopmental disorders but no tumours
(Meuwissen et al., P08.021.C at the European Society of
Human Genetics Virtual Conference 2020.2). This sug-
gests that only truncating variants are associated with an
increased risk of WT development.

Other genes that have been associated with WT pre-
disposition in the last decade include HACEI, KDM3B,
FBXW?7 and NYNRIN [7,87,88]. Based on current evi-
dence, we would not recommend standard surveillance
for patients with HACEI, KDM3B or FBXW7 variants,
given that only few (<5) patients have been reported to
develop WT and there are no families with multiple
affected relatives. NYNRIN pathogenic variants seem to
predispose to WT development in a recessive manner,
with biallelic variants identified in two affected siblings
and a third unrelated patient [7]. We suggest that WT
surveillance can be considered in a research setting for
patients with biallelic (likely) pathogenic NYNRIN
variants, with the aim to collect more data regarding
these patients” WT risk.

7.7. Other syndromes

Other syndromes for which WT surveillance is recom-
mended include Fanconi anaemia type D1, Fanconi
anaemia type N, Mulibrey nanism, mosaic variegated
aneuploidy (MVA), osteopathia striata with cranial scle-
rosis (OSCS), Bohring-Opitz syndrome (ASXL/ muta-
tion), 9q22.3 deletions and 2q37.1 deletions (Table 2).

Fanconi anaemia types DI (biallelic pathogenic
BRCA2 variants) and type N (biallelic pathogenic
PALB? variants) are associated with estimated WT risks
of around 20% and 40%, respectively [89—93]. We did
not identify reports of WT in children with Fanconi
anaemia because of other molecular causes, although
these patients are at risk for a range of other malig-
nancics which are beyond the scope of this guideline [94].

Mulibrey nanism, caused by biallelic pathogenic
TRIM37 variants, has mainly been reported in Finnish
patients and is associated with an estimated WT risk of
6—8% [95,96].

MVA can be caused by biallelic BUBIB, TRIPI3 or
CEPS57 pathogenic variants, while in some patients, the
cause remains unknown [97—100]. WTs have been re-
ported in approximately 50% of patients with BUBIB
variants [101,102], 20% of patients with TRIP13 variants
[99] and, to our current knowledge, none of the reported
patients with CEP57 variants or MVA because of an
unknown cause [100,103]. Because of the limited number
of reported patients, we recommend WT surveillance for
all patients with cytogenetically confirmed MVA.

OSCS is an X-linked condition caused by germline
loss-of-function variants affecting the AMERI (WTX)
gene. Currently, WT has been reported in four female
heterozygotes [104,105], and bilateral nephrogenic rests
were reported at autopsy in a male patient with

OSCS [106]. Although two published OSCS cohorts,
including 17 and 22 liveborn patients, respectively, did
not report childhood tumours [107,108], we consider WT
surveillance to be justifiable based on the well-established
role of AMERI/WTX in WT development [109].

Bohring-Opitz syndrome is assumed to be genetically
heterogeneous, with a subset of patients harbouring
germline heterozygous nonsense variants in ASXL/I [110].
WT or nephroblastomatosis has been reported in 3 of 43
(7%) reported patients with a clinical or molecular diag-
nosis of Bohring-Opitz syndrome [111,112]. Therefore,
WT surveillance i1s recommended for patients with
Bohring-Opitz syndrome.

Among 44 published cases of 9q22.3 microdeletion
syndrome, seven patients with WT (16%) were re-
ported [113]. Although these deletions all encompass
PTCHI and cause a clinical phenotype which overlaps
with that of Gorlin syndrome [114], WTs have not been
observed in patients with Gorlin syndrome (caused by
PTCHI or SUFU pathogenic variants) [113], and WT
surveillance is only recommended for patients with
9¢22.3 deletions.

2q37 Deletion syndrome has been reported in around
115 patients [115], with the minimal critical region
limited to a single gene (HDAC4) on 2q37.3 [116]. WTs
were reported in three of these patients, who all had
deletions encompassing 2q37.1 (including DIS31.2, mu-
tations in which cause Perlman syndrome [discussed
previously]) [117]. We suggest that WT surveillance can
be considered in cases where the deletion includes 2g37.1.

Constitutional 2p24.3 duplication (involving M YCN )
has been reported in less than 100 patients overall, with four
reported cases of WT or nephroblastomatosis [118—120].
Two WT cases occurred within one family, where an (un-
known) additional genetic factor may have played a
role [120]. Until more evidence emerges in the future, we
would currently not recommend standard WT surveillance.

Until recently, only three patients with WT had been
reported in unrelated families with hyperparathyroidism-
jaw tumour syndrome (HP-JT), out of a total of >40
reported families (>100 patients) [121,122]. In 2019,
Mahamdallie et al. identified a germline CDC73 muta-
tion in a father and his daughter who were both affected
with WT but had no additional phenotypic features of
HP-JT [7]. We would not currently recommend standard
‘WT surveillance, in line with previously published HP-JT
surveillance guidelines [123,124].

WTs have also been reported in patients with Bloom
syndrome, DICERI syndrome, Li Fraumeni syndrome,
neurofibromatosis type 1, constitutional mismatch
repair deficiency, trisomy 13 and trisomy 18. For these
syndromes, the estimated WT risk was considered too
low to recommend targeted WT surveillance, although
cancer surveillance for other tumour types is warranted
in some of these conditions (but outside the scope of this
guideline). Considerations and references for these syn-
dromes are listed in Supplemental Table 5.
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8. Other considerations for children diagnosed with WT/
nephroblastomatosis

In children with WT/nephroblastomatosis who have been
diagnosed with a CPS, surveillance of the remaining
kidney(s) by 3-monthly renal ultrasonography is war-
ranted until the 7th birthday, or longer if indicated by the
follow-up guidelines for the treated tumour.

For all patients with bilateral WT/nephroblastomatosis,
we recommend surveillance of the remaining kidney(s) by
3-monthly renal ultrasonography until the 7th birthday
and genetic testing to exclude germline genetic/epigenetic
aberrations. While awaiting test results, siblings may be
offered a single ultrasound examination. Recent evidence
suggests that bilateral WT may frequently be due to post-
zygotic (mosaic) events [125,126]. If germline testing is
negative, we therefore recommend that renal tissue from
the resected kidney is tested, where possible, to exclude or
diagnose a mosaic WT susceptible condition. The
consensus opinion was that 3-monthly surveillance for
siblings 1s not recommended if no germline genetic diag-
nosis is identified in the proband.

9. Familial WT

Familial WT is defined as the presence of >2 patients
with WT within one family, who are at least third degree
relatives of each other (Fig. 1). The WT diagnosis of
both patients should be confirmed in their medical re-
cords. If the causative gene is not identified after
germline genetic testing, WT surveillance until the 7th
birthday i1s recommended for first and second degree
relatives of presumed mutation carriers.

10. Future perspectives

The development of this guideline has demonstrated an
urgent need for more robust data to enable better (Wilms)
tumour risk estimates for children with a CPS. We strongly
advise clinical geneticists, pediatricians, pediatric oncolo-
gists, radiologists and epidemiologists to collaborate in the
establishment of national or international CPS registries.

LHO

Lo

Parent support organizations can play an important role in
catalysing the development and/or awareness of such a
registry. Several international registries already exist which
can be used by clinicians, after local ethical approval and
informed consent from parents have been obtained. This
includes the DECIPHER database where any patient with
a rare genomic variant (single nucleotide variant or copy
number variant) can be registered (https://decipher.sanger.
ac.uk/) [127], or the CPS registry established by the Hei-
delberg Hopp Childhood Tumor Center and Hannover
Medical School, in which patients diagnosed with all types
of CPS can be included (http://www krebs-praedisposition.
de/en/registries/cps-registry/). This CPS registry includes a
self-registration option where (German or English-
speaking) parents can register their child’s data. Addition-
ally, the IWSA has designed a CoRDS (Coordination of
Rare Diseases at Sanford) registry where (parents of) pa-
tients with WAGR syndrome can register their data for
rescarch  purposes  (https://wagr.org/wagr-syndrome-
patient-registry), and other CPS-specific registries may be
realised in the future. Linking such registries to interna-
tional WT/cancer registries can provide additional insight
into tumour risks.

With the rise of genomic sequencing and advances in
other molecular techniques in children with cancer, we
expect that more children will be diagnosed with a CPS,
novel CPS may be identified and known CPS may be
further subdivided into molecular subtypes in the future.
Therefore, WT surveillance guidelines will require
continuous discussion and may be subject to change
when new evidence emerges.
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Fig. 1. Example of a familial Wilms tumour (WT) pedigree where the causative gene is not identified.
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Appendix A. Supplementary data

Supplementary data to this article can be found online
at https://doi.org/10.1016/j.ejca.2021.05.014.
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