
Article
TET2 Regulates the Neuro
inflammatory Response in
Microglia
Graphical Abstract
Highlights
d TET2 is upregulated in microglia cells upon various

inflammatory stimuli

d TET2 regulates TLR-4-induced type I IFN response and LPS-

induced aerobic glycolysis

d TET2 regulates the proinflammatory response induced by

LPS in vitro and in vivo

d TET2 is expressed by amyloid b plaque-associated microglia

in AD brains
Carrillo-Jimenez et al., 2019, Cell Reports 29, 697–713
October 15, 2019 ª 2019 The Author(s).
https://doi.org/10.1016/j.celrep.2019.09.013
Authors

Alejandro Carrillo-Jimenez, Özgen Deniz,
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SUMMARY

Epigenomic mechanisms regulate distinct aspects
of the inflammatory response in immune cells.
Despite the central role for microglia in neuroin-
flammation and neurodegeneration, little is known
about their epigenomic regulation of the inflamma-
tory response. Here, we show that Ten-eleven
translocation 2 (TET2) methylcytosine dioxygenase
expression is increased in microglia upon stimula-
tion with various inflammogens through a NF-kB-
dependent pathway. We found that TET2 regulates
early gene transcriptional changes, leading to
early metabolic alterations, as well as a later
inflammatory response independently of its enzy-
matic activity. We further show that TET2 regulates
the proinflammatory response in microglia of
mice intraperitoneally injected with LPS. We
observed that microglia associated with amyloid
b plaques expressed TET2 in brain tissue from in-
dividuals with Alzheimer’s disease (AD) and in
5xFAD mice. Collectively, our findings show
that TET2 plays an important role in the microglial
inflammatory response and suggest TET2 as a po-
tential target to combat neurodegenerative brain
disorders.
Cell
This is an open access article under the CC BY-N
INTRODUCTION

Microglia, the resident immune cells in the CNS, are key players

inmaintaining homeostasis in the brain. Microglia play a wide va-

riety of roles under physiological and pathological conditions. In

the healthy brain, microglia are responsible for neuronal activity-

dependent synapse pruning during postnatal development

(Schafer et al., 2012; Wu et al., 2015). Upon neuronal injury or

infection, microglia become rapid responders that initiate an

innate inflammatory response (Hanisch and Kettenmann,

2007). If the inflammatory response is exaggerated or chronic,

it becomes detrimental for the surrounding neuronal population,

as in Parkinson’s disease (PD) and Alzheimer’s diseases (AD)

(Burguillos et al., 2011; Perry and Holmes, 2014; Abeliovich

and Gitler, 2016; Ransohoff, 2016), as well as ischemic stroke

(Lambertsen et al., 2012; Burguillos et al., 2015).

In PD or AD, only a minor subset of patients carry genetic mu-

tations contributing to disease development (Pickrell and Youle,

2015; Abeliovich and Gitler, 2016; Van Cauwenberghe et al.,

2016). Most cases appear to be a combination of genetic predis-

position and exposure to environmental risk factors. The identi-

fication of mutations in innate immunity-related genes that

confer higher risk for developing neurodegenerative diseases

supports the idea of microglia playing a key role in driving dis-

ease pathogenesis (Malik et al., 2015). Hence, epigenetic mech-

anisms are prime candidates for mediating environmentally

driven alterations to immune homeostasis. Indeed, the contribu-

tion of epigenetic modifications in PD (Park et al., 2016; W€ullner
Reports 29, 697–713, October 15, 2019 ª 2019 The Author(s). 697
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et al., 2016) and AD (Phipps et al., 2016; Watson et al., 2016), has

been addressed in a number of studies. However, despite the

key role of microglia in the neuroinflammatory response in those

neurodegenerative diseases, little is known about the epigenetic

regulation of the inflammatory response in these cells.

Major epigenetic mechanisms include post-translational

modification of histones, DNAmethylation at CpG dinucleotides,

and regulation by non-coding RNAs (Bonasio et al., 2010). Inter-

estingly, the age-dependent increase in microglial IL-1b levels is

associated with DNA hypomethylation within the IL-1b promoter

(Matt et al., 2016), which is seemingly driven by the age-depen-

dent loss of SIRT1 (a NAD-dependent deacetylase) (Cho et al.,

2015). DNA methylation could therefore play key roles in regu-

lating the inflammatory state in microglia. Importantly, DNA

methylation can be removed by the action of Ten-eleven translo-

cation (TET) enzymes, which are dioxygenases that catalyze the

oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcyto-

sine (5hmC) and other oxidative derivatives (Branco et al.,

2011). Recently, TETs have been shown to play various roles in

the physiology of immune cells, including thymocytes (Tsagara-

tou et al., 2017), T helper cells (Ichiyama et al., 2015), dendritic

cells (Zhang et al., 2015), and bone marrow-derived macro-

phages (Zhang et al., 2015; Cull et al., 2017).

Here, we investigated the role of TET enzymes in the inflam-

matory response in microglia cells upon Toll-like receptor 4

(TLR-4) activation. We found that TET2 regulates both early tran-

scription (after only a few hours) of genes affecting several

pathways (including control of the immune response and cell

cycle) and the late inflammatory response. We confirmed in vivo

that TET2 regulates the proinflammatory response in microglia

cells. Furthermore, we show that TET2 is expressed in

microglia close to amyloid b (Ab) plaques in both human AD sub-

jects and in 5xFAD mice. All these results highlight the potential

of TET2 as a novel drug target for neurodegenerative diseases,

including AD.

RESULTS

TLRActivation inMicroglia InducesUpregulation of Tet2
Expression
To assess the effect of TLR-4 activation on the expression of TET

enzymes in microglia, we treated the murine BV2 microglial cell

line with LPS.We found that LPS (1 mg/mL) induced both an early

2 h (Figure 1A) and sustained 24 h (Figure 1B) upregulation of

Tet2 expression. However, the expression of the other twomem-

bers of the TET family (TET1 and TET3) either did not vary upon

LPS treatment (Tet3; Figure 1A) or was not detectable (Tet1; not

shown) before or after LPS treatment. In concordance with the

RNA data, we detected an increase of TET2 expression at the

protein level 6 h after LPS treatment (Figure 1C). Interestingly,

a lower dose of LPS (0.1 mg/mL) also induced Tet2 expression

as early as 2 h after treatment (Figure 1D). To rule out the possi-

bility that LPS-induced TET2 expression might be due to the

transformed origin of our murine microglia cell line (Butovsky

et al., 2014), we analyzed the expression of Tet2 in primary adult

and postnatal primary microglia cells from mouse and rat origin

6 h after LPS treatment and obtained similar results to those seen

in BV2 microglia cells (Figure 1E). Notably, we also observed a
698 Cell Reports 29, 697–713, October 15, 2019
mild but significant upregulation of TET2 in humanmicroglia cells

(CHME3 human microglia cell line) (Figure 1E). We further

validated our observations by analyzing RNA sequencing

(RNA-seq) data from postnatal primary microglia cell culture ex-

periments (Janova et al., 2016), which showed that Tet2 expres-

sion was increased both at low and high levels of LPS treatment,

as well as after treatment with fibronectin, which also promotes

inflammation (Figure S1A). Fibronectin-mediated regulation of

Tet2 suggests that Tet2 upregulation might not only be driven

by TLR-4 activation. For this reason, we challenged our BV2 cells

with lipoteichoic acid (LTA), a known TLR-2 ligand, and observed

a similar pattern in the expression of Tet2 and Tet3 to that seen in

LPS-treated cells (Figures S1B and S1C). These data show that

multiple TLR agonists drive Tet2 upregulation in microglia from

different species.

NF-kB p65 Mediates LPS-Induced Tet2 Expression
We then sought to investigate the mechanisms responsible for

the transcriptional regulation of Tet2 upon TLR-4 activation.

We first took advantage of published chromatin immunopre-

cipitation sequencing (ChIP-seq) data on the TLR-4-induced

‘‘enhancer landscape‘‘ in macrophages (Kaikkonen et al.,

2013). We used these data as a model for TLR-4-induced reg-

ulatory events that may also be occurring in microglia cells.

We mapped data for the activating histone mark H3K27ac,

as well as various transcription factors, and visually inspected

the promoter and upstream regions of Tet2 (profiles in Fig-

ure 2A and Figure S2A). In untreated macrophages,

H3K27ac was enriched both at the promoter region of Tet2

and a region lying 40 kb upstream, thus constituting a putative

distal enhancer element (Figure 2A). Notably, the levels of

H3K27ac increased in the upstream region (E1 and E2) after

1 h treatment with Kdo2-lipid A (KLA) (a TLR-4 agonist), and

this was concomitant with the recruitment of p65 to both the

promoter and upstream regions upon KLA treatment (Fig-

ure 2C). In contrast, the binding of CEBPA and PU.1 was

largely unaffected by KLA treatment (Figure S2A), suggesting

that p65 is a major driver of TLR-4-dependent activation of

Tet2. To test whether similar patterns can be observed in

BV2 cells, we performed ChIP followed by qPCR analysis at

the promoter and upstream regions of Tet2. In concordance

with the results obtained from bone marrow-derived macro-

phages (Figure 2A), BV2 cells are enriched for H3K27ac at

the Tet2 promoter and at the putative regulatory region up-

stream of Tet2 (Figure 2B). Interestingly, H3K27ac levels spe-

cifically increased in the upstream region upon LPS treatment

(Figure 2B). Moreover, we detected enrichment for H3K4me1,

a histone mark associated with both poised and active

enhancer elements, providing support for the upstream region

being an enhancer element that becomes active upon TLR-4

activation (Creyghton et al., 2010). We then analyzed p65

enrichment in the promoter and enhancer regions of Tet2

upon LPS treatment in BV2 cells and observed a clear in-

crease in p65 binding at the enhancer region, whereas LPS

more subtly modulated the binding of p65 at the promoter re-

gion (Figure 2D). We analyzed the promoter regions of NF-kB

inhibitor alpha (NFkBia) and Il-1b as positive controls for LPS-

dependent p65 binding (Figure S2B). These results suggest a
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Figure 1. LPS Induces an Early and Sustained Expression of Tet2 in Microglia Cells

(A and B) Tet2 and Tet3 expression in BV2 microglia cells treated with LPS (1 mg/mL) at 1, 2 and 6 h (A) and Tet2 expression after 24 h treatment with LPS

(1 mg/mL) (B).

(C) Representative immunoblot showing increase of TET2 and NOS-2 expression (a positive control of microglia activation) at 6 h after LPS treatment

(0.1 and 1 mg/mL) in BV2 cells.

(D) Tet2 LPS-induced dose-response in BV2 microglial cells at 2 h.

(E) Tet2 gene expression after 6 h LPS (0.1 mg/mL) treatment in human microglial cell line (CHME3), primary adult microglia in mouse, and primary postnatal

microglia culture in rat.

Statistical analysis was performed using one-way ANOVAwith Scheffé (A and B) and LSD (D) corrections or two-tailed Student’s t test (E). Data shown aremean ±

SD of three (A, D, and E) and five (B) independent experiments. *p < 0.05 and **p < 0.01.

See also Figure S1.
potential role of p65 inTet2 expression through binding to an

upstream enhancer element, increasing its activity, which is

reflected by the higher H3K27ac levels in LPS-treated cells.
To test the functional relevance of increased p65 binding to the

upstream region of Tet2 in regulating Tet2 expression upon LPS

treatment, we pre-treated BV2 cells for 1 h with wedelolactone,
Cell Reports 29, 697–713, October 15, 2019 699
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an inhibitor of the IKK complex, followed by treatment with LPS

for 6 h.We used Il-1b as a positive control, as its transcription has

been shown to be regulated by NF-kB (Cogswell et al., 1994)

(Figure S2C). In line with our ChIP-qPCR data, LPS-induced

expression of Tet2was abrogated in the presence of wedelolac-

tone (Figure S2D), suggesting that the NF-kB complex plays a

role in regulating Tet2 expression (either directly or indirectly)

upon LPS treatment.

TET2 Helps Drive the Expression of Genes Induced by
TLR-4 Stimulation
Given the reported involvement of TET2 in the regulation of im-

mune functions, we asked whether it also plays a role during

the neuroinflammatory response. For this purpose, we depleted

Tet2 in BV2 microglia cells using a small interfering RNA (siRNA;

siTET2) strategy prior to LPS treatment (Figure 3A). To confirm

that TET2 depletion resulted in decreased enzymatic activity,

we measured global 5hmC levels using mass spectrometry

and observed a significant 5hmC reduction in Tet2-knockdown

cells compared with a non-targeting control (Figure 3B). Interest-

ingly, LPS treatment did not change global 5hmC levels, despite

the increase in TET2 expression. We then performed RNA-seq

on TET2-depleted cells, before and after 3 h of LPS treatment,

and compared them against a non-targeting control. First, we

checked that the expression pattern in our BV2 cells after LPS

treatment is very similar to previously published RNA-seq data

from LPS-treated primary microglia cells in (Janova et al.,

2016) (Figure S3A). To identify genes whose activation or repres-

sion during LPS treatment depends on TET2, we intersected

LPS-regulated genes with TET2-regulated ones. Of 1,565 genes

that were upregulated by LPS, 140 (9%) had reduced expression

in TET2-depleted cells (Figure S3B). Conversely, of 1,110 genes

repressed by LPS, 38 (3%) had increased expression in TET2-

depleted cells (Figure S3B). Both groups of TET2-regulated

genes displayed an impaired response to LPS in Tet2-knock-

down cells, as judged by significant differences in the expression

fold change upon LPS treatment (Figure 3C). We validated

several of the gene expression changes mediated by TET2

depletion in LPS-treated cells (Figure S3C) by qPCR. Gene

Ontology analyses revealed that the 140 siTET2-downregulated

genes are associated mainly with the control of the innate im-

mune response, including the response to interferon (IFN)-b (or

type I IFN response), whereas the 38 siTET2-upregulated genes

are associated with cell cycle regulation (Figure 3D). A manual

classification of gene function on the basis of literature searches

confirmed an enrichment for inflammatory and cell cycle-related
Figure 2. NF-kBp65 Regulates LPS-Induced Tet2 Transcription

(A) Profile of H3K27acmarking at the Tet2 promoter and upstream regions after 1 h

(Kaikkonen et al., 2013).

(B) ChIP-qPCR results for H3K27ac and H3K4me1 at the promoter (P1 and P2)

(1 mg/mL).

(C) Profile of NF-kB p65 binding at the Tet2 promoter and upstream regions after

data (Kaikkonen et al., 2013).

(D) ChIP-qPCR results for NF-kB p65 in the same regions as in (B) in BV2 cells t

Tet2 middle region (M) represents a region between the promoter and the enha

results in (B) are the average of three (for H3K4me1) and four (for H3K27ac) inde

experiments. Statistical analysis was performed using two-tailed Student’s t tes

See also Figure S2.
genes in TET2-regulated targets, followed by genes related to

intracellular signaling and transcription factors (Figure 3E). Inter-

estingly, Gene Ontology analysis on siTET2-downregulated

genes that are not modified by LPS treatment revealed a similar

enrichment for genes involved in the immune response (Fig-

ure 3F). This result suggests that the effect of TET2 over the in-

flammatory response is not unique to LPS treatment but can

also potentially affect other immune signaling pathways.

To rule out the possibility that the observed gene deregulation

was due to increased cell death, we performed fluorescence-

activated cell sorting (FACS) analyses of control and TET2-

depleted cells. We could not find any indication of induction of

cell death (Figures S3D–S3G) or major change in morphology

(Figure S3H), suggesting a direct effect of TET2 over many of

those genes upon treatment.

TET2 Does Not Affect DNA Methylation Levels at Target
Genes
TET2 has been shown to act via both 5mC oxidation and

catalytic-independent mechanisms, such as recruitment of

epigenetic modifiers (Ichiyama et al., 2015; Zhang et al., 2015).

Therefore, we investigated whether the regulatory effect of

TET2 on LPS-driven gene expression in microglia was depen-

dent on its catalytic activity. We first analyzed global 5mC levels

by mass spectrometry in LPS-treated cells, comparing TET2-

depleted cells with controls (Figure S4A). Neither LPS treatment

nor knockdown of TET2 resulted in a significant change in global

5mC levels (Figure S4A), despite the fact that global 5hmC levels

were altered in siTET2 cells (Figure 3B). In order to determine

whether TET2-mediated 5mC oxidation occurs in a locus-spe-

cific manner, we used oxidative bisulfite sequencing (oxBS-

seq) (de la Rica et al., 2016; Booth et al., 2012) and measured

5mCand 5hmC levels at the promoters of six target geneswhose

expression levels were altered by TET2 knockdown (Figures 4A–

4F; Figures S4B–S4G). No significant changes were detected in

the levels of 5mC (Figures 4A–4F). In 5hmC levels, we observed

some statistically significant but very minor differences (Fig-

ure S4C). These results suggest that the action of TET2 on these

genes does not involve its catalytic activity at these gene pro-

moters. In line with this, our mass spectrometry data show that

LPS treatment does not induce global changes in 5hmC levels,

suggesting that increased TET2 catalytic activity is not neces-

sary to mediate gene expression changes upon LPS treatment.

The effect of TET2 on the expression of selected genes could

also be explained by indirect effects. To test whether TET2 was

bound to the promoters of genes affected by TET2 depletion, we
treatment ofmacrophageswith KLA, generated from published ChIP-seq data

, middle (M), and enhancer (E1 and E2) regions in BV2 cells treated with LPS

1 h treatment of macrophages with KLA, generated from published ChIP-seq

reated with LPS (1 mg/mL).

ncer used as negative control for ChIP. Data represented as mean ± SD. The

pendent experiments. The results in (D) are the average of three independent

t. *p < 0.05 and **p < 0.01.
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performed TET2 ChIP-qPCR. Our data show that, indeed, TET2

binding increases substantially at target genes upon LPS treat-

ment, whereas a control locus (Oct4) shows no alterations (Fig-

ure 4G). Importantly, LPS-driven TET2 recruitment can be

reversed upon knockdown of Tet2 (Figure 4H; Figure S4H).

These results suggest that TET2 acts directly on these genes

but that its effect upon LPS is not predominantly mediated

through its catalytic activity.

TET2 Regulates the ‘‘Classical’’ Inflammatory Response
and the Metabolic Reprogramming Induced by LPS
The RNA-seq data suggested that TET2 plays a role in the LPS-

induced inflammatory response, in particular the response to

IFN-b (or type I IFN response) (Figure 3E). It was previously

shown that TET2 is required for the repression of IL-6 upon

LPS treatment in peripheral macrophages to ensure termination

of inflammation (Zhang et al., 2015). IL-6 expression was un-

changed in our RNA-seq, which was performed 3 h after LPS

treatment. Given that 3 h is too early for the inflammatory resolu-

tion process to start, we analyzed the expression levels of IL-6

and other players related to the ‘‘classical’’ proinflammatory

response (IL-1b and NOS-2 expression) at later time points

upon LPS treatment (Figures 5A–5E). We observed in BV2 cells

that although there was no difference at 3 h after LPS treatment,

the expression of Il-1b, Il-6 andNos-2was reduced at 6 and 24 h

post-LPS treatment upon TET2 depletion (Figures 5A–5C).

Knockdown of TET2 led to significantly less IL-6 release into

the media upon LPS treatment at 6 and 24 h in BV2 cells

(Figure 5D).

To validate our observations in primary microglia cell cultures,

we crossed conditional Tet2 floxed mice (Tet2flox/flox) with

Cx3cr1 Cre mice (Cx3cr1CreERT2/WT) to enable the production

of inducible microglia-specific deletion of Tet2 (Figures S5A–

S5C). We isolated primary microglia from both Tet2flox/floxCx3cr1

Cre-positive (henceforth referred to as Tet2
flox/flox

Cx3cr1Cre/WT)

and negative mice (referred as Tet2flox/floxCx3cr1WT/WT) and

treated cells with 4-OH-tamoxifen for 48 h, producing a partial

genomic deletion of Tet2 (Figures S5A and S5B). Importantly,

this led to decreased Tet2 expression in Tet2flox/floxCx3cr1Cre/WT

in basal conditions and complete abrogation of Tet2 upregula-

tion upon treatment with 100 ng/mL of LPS for 24 h (Figure S5C).

To analyze the effects of Tet2 deletion over the inflammatory

response, we compared the expression levels of different proin-

flammatory markers between primary Tet2
flox/flox

Cx3cr1Cre/WT and

Tet2flox/floxCx3cr1WT/WT microglia in response to LPS. In accor-

dance with our results from BV2 cells, Nos-2 expression

decreased by about 50% in Tet2flox/floxCx3cr1Cre/WT compared

with Tet2flox/floxCx3cr1WT/WT primary microglia 24 h after LPS

challenge (Figure 5E). We also analyzed the release of IL-6 and
Figure 3. TET2 Regulates Signaling Pathways Induced by LPS

(A and B) Effect of siRNA Tet2 knockdown on Tet2 gene expression (A) and on t

(C) Expression change of LPS-responsive TET2-regulated genes (see Venn diagra

(D) Table representing Gene Ontology (GO) analysis of all genes affected by Tet2

(E) Manual annotation representing different functional groups (and some examp

(F) Manual annotation representing different functional groups (and some examp

Data shown are represented as mean ± SD from five (A) and three (B and C) ind

See also Figure S3.
TNF-a into the media 24 h after LPS treatment and observed a

statistically significant inhibition of IL-6 release and TNF-a in pri-

mary microglia cell cultures supernatants (Figures 5F and 5G).

Collectively, our data suggest that in microglial cells, TET2 is

not involved in the resolution of the inflammatory response as re-

ported in peripheral immune cells (Zhang et al., 2015). Instead,

microglial TET2 modulates the classical inflammatory response

upon direct stimulus by LPS treatment. However, this time-

dependent effect of TET2 on the LPS-induced expression of

‘‘classical’’ proinflammatory markers suggests an indirect effect.

Therefore, we aimed to dissect themechanisms that could affect

the delayed expression of different inflammatory cytokines in

activated microglia. TLR-4 stimulation induces a rapid and

robust transcriptional response that involves genes that regulate

metabolic reprogramming (Medzhitov and Horng, 2009). Treat-

ment with LPS in macrophages and dendritic and microglia cells

provokes a metabolic shift from oxidative phosphorylation

(OXPHOS) toward aerobic glycolysis, a process required to

quickly supply high-energy demands of the inflammatory

response (Ruiz-Garcı́a et al., 2011; Galván-Peña and O’Neill,

2014; Ganeshan and Chawla, 2014; Orihuela et al., 2016).

In proinflammatory (M1) macrophages, aerobic glycolysis is a

consequence of glucose uptake and the conversion of pyruvate

into lactate (Galván-Peña and O’Neill, 2014). Interestingly, two of

the targets that were deregulated by Tet2 knockdown in our

RNA-seq data were hexokinase 3 (Hk3) and 6-phosphofructo-

2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3), both playing

an important role during the aerobic glycolysis process (Ruiz-

Garcı́a et al., 2011; Galván-Peña andO’Neill, 2014).We therefore

asked if TET2 was involved in the early stages of the metabolic

reprogramming induced by LPS. In BV2 cells, we measured

the extracellular acidification rate (ECAR) as an indicator of

lactate production and the mitochondrial oxygen consumption

rate (OCR) as an indicator of the mitochondrial energy produc-

tion in siControl and siTET2 BV2 cells with and without LPS at

different time points (Figures 5H and 5I). A functional bioener-

getics profile of siControl, siTET2 cells with and without LPS

treatment in response to sequential treatment with oligomycin,

FCCP, and rotenone/antimycin A was carried out (Figures S5D

and S5E). Our results show reduced lactate production after

Tet2 knockdown at 3 and 24 h of LPS treatment at basal condi-

tions (Figure 5H) and after oligomycin treatment, indicating

reduced glycolysis (Figure S5D). We then asked whether this

decrease in lactate formation at 3 h was correlated with a

decrease in the glucose consumption. We analyzed the extracel-

lular glucose levels after 3 h LPS treatment and found that

siControl LPS-treated cells consume glucose from the media

but that LPS-treated siTET2 cells show a substantial reduction

in the glucose uptake (Figure 5J). Because Tet2 knockdown
he global levels of 5hmC (B) with or without 3 h treatment with LPS (1 mg/mL).

ms in Figure S3B) upon LPS treatment in siRNA control and TET2-treated cells.

knockdown after LPS treatment.

les of the genes) affected by Tet2 knockdown after LPS treatment.

les of the genes) affected by Tet2 knockdown under basal conditions.

ependent experiments. Two-tailed Student’s t test. *p < 0.05 and **p < 0.01.
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strongly reduced LPS-induced glycolysis, and because micro-

glia have a metabolic dependence on glycolysis (Vilalta and

Brown, 2014), we tested whether inhibition of glycolysis affected

the inflammatory response. In agreement with our previous data,

inhibition of hexokinase activity by using 2-deoxy-D-glucose

(2-DG) inhibited the inflammatory response measured as

NOS-2 expression in BV2 at 6 h without inducing cell death

(Tannahill et al., 2013; Vilalta and Brown, 2014) (Figures S5F

and S5G). These results suggest that TET2 regulation of the in-

flammatory response might be mediated by the early changes

in glycolysis induced by TET2. Indeed, TET2 knockdown

reduced the basal and maximal oxygen consumption of the cells

after 3 h LPS treatment (Figure 5I; Figure S5E), but after 24 h LPS

treatment, the cellular oxygen consumption levels increased

(Figure 5I). This indicates that TET2 mediates the substantial

LPS-induced metabolic reprogramming of the cells, including

an early rise in glycolytic and mitochondrial energy production,

followed by a fall in mitochondrial energy production potentially

mediated by the well-known inhibition of mitochondria by NO

from NOS-2 (Bal-Price et al., 2002; Doulias et al., 2013; Kelly

and O’Neill, 2015).

Effect of TET2 Depletion in Microglia Cells In Vivo

Our in vitro results using primary microglia cells and BV2 cell line

suggest that TET2 is necessary for a full proinflammatory

response. These results contrast with findings in peripheral mac-

rophages after intraperitoneal injection in vivo (Zhang et al.,

2015). We therefore assessed the effect of microglial TET2

depletion in vivo, using an inflammatory model based on intra-

peritoneal injection of LPS, in our Tet2flox/floxCx3cr1Cre/WT and

Tet2flox/floxCx3cr1WT/WT mice (Figure S6A). It has been demon-

strated that this in vivo model induces a well-defined microglial

proinflammatory phenotype different from the recently charac-

terized molecular signature of disease-associated microglia

(DAM) (Bodea et al., 2014; Krasemann et al., 2017).

In our conditional inducible knockout (KO) mouse model, we

achieved about a 40% decrease in the expression of TET2 at

the protein level within microglial cells (Figures S6B and S6C).

We first assessed the effect of TET2 depletion in microglia cells

after intraperitoneal injection of LPS in the substantia nigra (SN)

in Tet2flox/floxCx3cr1Cre/WT and Tet2flox/floxCx3cr1WT/WT mice

(Figures 6A–6G). We observed that depletion of microglial

TET2 failed to affect microglia cell density at physiological con-

ditions. However, upon treatment with LPS, we observed a

decrease in the proliferation rate in microglia lacking TET2 (Fig-

ures 6A and 6B). This result is supported by our RNA-seq in

BV2 cells, where we showed that several genes involved in cell

cycle regulation were under control of TET2. Microglia activation
Figure 4. TET2 Binds to the Promoter Regions of Several Target Gene

(A–F) Quantification of 5mC levels by oxBS-seq of the promoters of target genes a

amplicons. Quantification of 5mC levels by oxBS-seq of the promoters of Axl (

(1 mg/mL) treatment. Blue bars indicate the position of the analyzed amplicons.

(G) TET2 ChIP for target genes after 3 h LPS treatment.

(H) TET2 ChIP of the genes after 3 h treatment with LPS (1 mg/mL) in control and

Data shown in (A)–(H) represent themean ±SD of two technical replicates. Results

Statistical analysis was performed using two-way ANOVA with a Tukey correctio

See also Figure S4.
is well known to be associated with prominent morphological al-

terations. Although homeostatic microglia are highly ramified

cells, upon activation, microglia increase cell body and Iba1

expression, along with thickening of processes to end in

complete retraction of cytoplasmic processes to acquire an

amoeboid morphology. In response to repeated systemic LPS

injections, a massive appearance of microglia exhibiting typical

morphological features of activation was found 24 h after LPS

challenge (Figure 6A). This observation prompted us to perform

a detailed analysis of microglia on the basis of morphological

features of homeostatic microglia and three well-defined states

of microglia activation, as shown in Figure 6C. TET2 deletion

did not alter the density of homeostatic microglia in

healthy unlesioned brain (Figure 6C). In response to LPS,

Tet2flox/floxCx3cr1WT/WT mice showed very low presence of ho-

meostatic microglia, with very robust increases of activated mi-

croglial cells (Figure 6C). Tet2flox/floxCx3cr1Cre/WT mice showed

significantly lower degree of microglia activation, affecting the

number of reactive microglia cells (Figure 6C). A typical early

feature of activated microglia is cell proliferation (Mathys et al.,

2017), hence an effect of TET2 in cell cycle regulation cannot

be discarded in response to proinflammatory challenge, in line

with our RNA-seq data. We next dissected out the SN and ex-

tracted mRNA to measure the expression of different cytokines.

TET2 knockdown in microglia cells failed to affect the expression

of Il-1b, Tnf-a, and Nos-2 in response to systemic LPS (Fig-

ure S6D). It is, however, important to note that in this in vivo

model, microglia are not directly activated by LPS binding to

TLR-4 but by different factors released by activated peripheral

immune cells (Chen et al., 2012). We therefore also analyzed

the effect of TET2 deletion on genes that become highly ex-

pressed after intraperitoneal injection with LPS. On the basis of

publicly available data in this model (Krasemann et al., 2017),

we focused on the expression of the two highest induced genes

upon repeated systemic LPS injections, Ptgs2 and Cybb (also

known as Cox-2 and Nox-2, respectively), both of which are

considered proinflammatory mediators (Benusa et al., 2017; Al-

hadidi and Shah, 2018). Although no difference in expression

was found with Nox-2 expression in LPS-treated TET2-depleted

mice (Figure 6D), there was a very strong inhibition of the LPS-

induced COX2 expression in TET2-depleted microglia cells at

both mRNA and protein levels (Figures 6E–6G).

Altogether these results suggest that TET2 plays a proinflam-

matory role in microglia (opposite to peripheral immune cells)

and highlight potential differences in the role of TET2 in the in-

flammatory response between microglia and peripheral immune

cells (London et al., 2013; Burm et al., 2015; Zarruk et al., 2018),

suggesting that the action of TET2 is highly context specific.
s

fter 3 h LPS (1 mg/mL) treatment. Blue bars indicate the position of the analyzed

A), Cxcl10 (B), Mmp14 (C), Tnfsf12a (D), Cd274 (E), and Irf1 (F) after 3 h LPS

TET2-depleted cells. Oct4 was used as a negative control.

from an independent biological replicate of data in (H) are shown in Figure S4H.

n taking into account all CpGs for (A)–(F).
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Microglial TET2 Expression during the
Neurodegenerative Process
We and others (Janova et al., 2016), have observed that Tet2

expression is induced under inflammatory conditions mediated

by different TLR agonists and fibronectin (Figures S1A–S1C).

Our next step was to test whether Tet2 expression could also

be affected by different pathological protein aggregates seen

in a number of neurodegenerative diseases (Ugalde et al.,

2016). For instance, a-synuclein aggregates induce microglial

activation (Boza-Serrano et al., 2014) in a TLR-4-dependent

manner (Fellner et al., 2013). Similarly, the fibrillar and oligomeric

Ab induce also a TLR-4-dependent immune response (Reed-

Geaghan et al., 2009; Wang et al., 2018). BV2 cells were treated

with a-synuclein aggregates and Ab oligomers for 6 h, which pro-

duced an increase of Tet2 expression similar to that observed

with LPS (Figure S7A). To test whethermicroglial TET2 is upregu-

lated in vivo, we analyzed TET2 expression in 18-month-old

5xFAD mice, which recapitulate many features of AD (Oakley

et al., 2006). We observed that plaque-associated microglia in

hippocampus displayed increased TET2 expression compared

with homeostatic microglia located further from the plaques (Fig-

ures 7A and 7B; Figure S7B).

Finally, to test the clinical relevance of these results, we

analyzed TET2 expression in post-mortem temporal cortex tis-

sue from three AD subjects (Figures 7C–7E). We measured the

fluorescent intensity of TET2 expression in Iba-1-positive mi-

croglial cells associated with Ab plaques. These values were

compared with TET2 expression in Iba-1-positive microglial

cells located in the white matter and therefore not associated

with plaques. Our analysis showed that in one subject

(subject 1), there was significant upregulation of TET2 in pla-

que-associated microglia, while no statistical significance was

observed in the other two subjects (Figure 7D). The discrep-

ancy in the human samples cannot be directly linked to age,

gender, or Braak stage (Figure 7E), and more thorough studies

are needed to clarify these differences. Of note, plaques in AD

subjects are very heterogeneous (unlike 5xFAD mice), which

may explain the difference in microglial TET2 among the three

subjects. Also, many TET2-positive cells did not colocalize

with Iba-1-positive cells (Figure 7D). On the basis of their

morphology, these TET2-positive/Iba-1-negative cells could

be neurons, as previously reported (Dzitoyeva et al., 2008; Mi

et al., 2015). We observed that the ratio of Iba-1+ to TET2+

cells varies within the three subjects. Although all the subjects
Figure 5. TET2 Modulates LPS-Induced Changes in Cellular Metabolis

(A) Graph showing the gene expression of Il-1b, Nos-2, and Il-6 in LPS-treated B

(B) and C) Representative immunoblot (B) and quantification (C) of NOS-2 protei

siRNA Tet2.

(D) Quantification of IL-6 release into the media upon LPS treatment at different

(E) Analysis of Nos-2 gene expression in primary microglia cells after 24 h treatm

(F and G) Histograms showing the effect of TET2 gene knockdown over IL-6 (F)

(H–J) Histograms showing the extracellular acidification rate (ECAR) (H), oxygen c

cells treated at different times with LPS.

Data shown are mean ± SD of five (A) and three (C) independent experiments. D

pendent experiments. Data shown in (E) are mean ± SD of seven independent ex

independent experiments. Data shown in (H)–(J) are mean ± SD of three independ

t test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

See also Figure S5.
present some Iba-1-positive cells expressing TET2, the

numbers vary greatly within the three subjects. The Iba-1+/

TET2+ ratio is relatively high in subject number 1, but on the

other hand, subjects 2 and 3 present lower ratios (Figure 7D).

Importantly, similar to the result obtained in the 5xFAD mouse

model, in one of the subjects, microglial TET2 expression is

highly expressed in the plaque-associated microglia (DAM),

whereas microglia localized away from the plaques (homeo-

static) showed little or no induction of TET2 expression (Figures

7A–7D). This differential response of TET2 expression in micro-

glia cells depending on the distance to the plaque suggests

that Ab might also be a direct or indirect inducer of TET2

expression over time. However, more comprehensive studies

are necessary to assess the impact of microglial TET2 in AD.

DISCUSSION

Epigenetic mechanisms mediated by TET2 have been proposed

to regulate distinct aspects of the inflammatory response in

different immune cell types. The potential involvement of TET2

in the recently characterized DAM (Keren Shaul et al., 2017; Kra-

semann et al., 2017) is deduced from our analysis of both AD

transgenic mice and human AD tissues in which TET2 was highly

upregulated specifically in plaque-associated microglia. We

found that TET2 regulates primarily genes involved in the innate

immune response and, more specifically, genes related to the

TLR-induced type I IFN response (Noppert et al., 2007; Luu

et al., 2014). Traditionally, the type I IFN response was consid-

ered solely a defense against viral and bacterial infections (Stifter

and Feng, 2015; Kovarik et al., 2016). However, there is an

increasing number of reports showing activation in the brain of

the type I IFN response in ischemia (McDonough et al., 2017),

spinal cord injury (Impellizzeri et al., 2015), and 5xFAD (Landel

et al., 2014) and APP/PS1 (Taylor et al., 2014) ADmousemodels,

and in AD patients (Taylor et al., 2014). Using single-cell RNA-

seq of microglia at different stages in a severe neurodegenera-

tion model for AD (Mathys et al., 2017), the authors described

that ‘‘late-stage’’ activated microglia highly express many type

I and type II IFN response genes. Incidentally, and similar to

our data, Gene Ontology analysis shows an enrichment in

the expression of genes controlling cell cycle in ‘‘early-stage’’

activated microglia. These results highlight the similarity of the

TET2-regulated inflammatory response in our experimental con-

ditions with other neurodegenerative models.
m and Inflammatory Response in Microglia Cells

V2 cells with or without TET2 gene knockdown at different time points.

n at 6 and 24 h LPS treatment in BV2 cells transfected with siRNA control and

times (3, 6 and 24 h).

ent with LPS.

and TNF-a (G) in LPS-treated primary microglia cells.

onsumption rate (OCR) (I), and concentration of glucose (J) in the media in BV2

ata shown in (D) are mean ± SEM of nine (3 h), six (6 h), and eight (24 h) inde-

periments. Data shown in (F) and (G) are mean ± SEM of nine (F) and three (G)

ent experiments. Statistical analysis was performed using two-tailed Student’s
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Notably, TET2 has been shown to terminate the inflammatory

response in macrophages (Zhang et al., 2015). Using the same

in vivomodel used by the authors, we observe that upregulation

of TET2 in microglia is necessary for a full proinflammatory

response.

How does TET2 influence the late phase of the classical in-

flammatory response? The type I IFN response plays an impor-

tant role in the TLR-induced classical inflammatory response

(Luu et al., 2014; Taylor et al., 2014). One of the TET2-regulated

genes that forms part of this response is the IFN-induced protein

with tetratricopeptide repeats 2 (IFIT2), which amplifies the

secretion of TNF-a and IL-6 in vivo in an endotoxin shock model

(Siegfried et al., 2013). Additionally, TET2 regulates a number of

small IFN-inducedGTPases, in particular guanylate-binding pro-

teins (GBPs), which are required for the full activation of the non-

canonical caspase-11 inflammasome activation (Meunier et al.,

2014). IFIT2, GBP2, and GBP3 appear in our RNA-seq analysis

as genes under TET2 control upon LPS treatment, which could

potentially affect the inflammatory response.

Our data also suggest that TET2 could regulate the classical

inflammatory response through modulation of LPS-induced

changes in metabolism. LPS causes a major shift in the meta-

bolism of immune cells from OXPHOS toward aerobic glycolysis

(a process known as the Warburg effect) (Rodrı́guez-Prados

et al., 2010; Orihuela et al., 2016). We found that TET2 depletion

leads to reduced glucose consumption and lactate production,

an effect that precedes the reduction in classic inflammatory

markers. Two genes known to regulate glycolysis (Hk3 and

Pfkfb3) are regulated by TET2 upon LPS treatment. HK3 cata-

lyzes the first committed step of glycolysis (Nishizawa et al.,

2014), while PFKFB3 catalyzes both the synthesis and degrada-

tion of fructose-2,6-bisphosphate (F2,6BP), a regulatory mole-

cule that controls glycolysis in eukaryotes. Direct inhibition

of glycolysis (using 2-D-deoxyglucose to inhibit hexokinase

activity) prevented LPS induction of NOS-2, suggesting that

the TET2 regulation of glycolysis may mediate the LPS-induced

inflammatory response.

We also found thatmicroglial TET2 is upregulated in vivo in two

different models: in a neuroinflammatory mouse model induced

by repeated intraperitoneal injections of LPS (Bodea et al., 2014;

Krasemann et al., 2017) and in AD, including human subjects and

transgenicmice (5xFAD). In AD, upregulated TET2was restricted

to plaque-associated microglia, which has been largely associ-

ated with AD pathogenesis. AD is characterized by the accumu-

lation of aggregated proteins with immunogenic properties over

DAM (Keren-Shaul et al., 2017; Krasemann et al., 2017; Mathys

et al., 2017), which is strictly confined to Ab plaques (Keren-
Figure 6. Abrogation of Tet2 in Microglia Cells Decreases the LPS-Ind

(A–C) Iba-1 immunostaining in substantia nigra of Tet2flox/floxCx3cr1 Cre/WT and T

and sacrificed 24 h later (A) and analysis of microglia cell numbers (B) and activa

(D and E) qRT-PCR analysis of Nox-2 (D) and Cox-2 (E) in Tet2flox/floxCx3cr1 Cre/WT

(PBS) and sacrificed 24 h later.

(F and G) Quantification of Cox-2 staining (F) in Iba-1-positive cells (G) in the sam

Data represented asmean ± SEM. The results correspond to three independent ex

is equal to three for Tet2flox/floxCx3cr1WT/WT + LPS and seven for Tet2flox/floxCx3cr

Tet2flox/floxCx3cr1Cre/WT + LPS, which is four independent experiments. Statistical

post hoc test (C and G) or two-tailed Student’s t test (D and E). *p < 0.05, **p < 0

See also Figure S6.
Shaul et al., 2017). Interestingly, different single-cell RNA-seq

of microglia in different AD models showed no upregulation of

TET2 (Keren-Shaul et al., 2017; Krasemann et al., 2017; Mathys

et al., 2017). However, our analysis using an antibody against

TET2 (validated in KO mice) in human AD and 5xFAD mice

demonstrated upregulation of TET2 in disease plaque-related

microglia but not in homeostatic microglia. This suggests that

increased levels of TET2 protein present in microglia cells might

result from a post-translational mechanism (e.g., decrease in the

rate of protein degradation).

Our results support the idea that TET2 could drive the proin-

flammatory activation of microglia and induction of metabolic re-

programming upon inflammatory stimulus. TET2 may become a

potential drug target to control exacerbated neuroinflammatory

response in different neurodegenerative diseases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

b-Actin (clone AC-74) Sigma Aldrich Cat.# A5316; RRID:AB_476743

b-Amyloid (clone 4G8) Biolegend Cat.# 800701; RRID:AB_2564633

b-Amyloid (clone BAM-10) Sigma Aldrich Cat.# A3981; RRID:AB_1078153

COX-2 R & D systems Cat.# AF4198; RRID:AB_2229909

Donkey anti-Goat IgG, Alexa Fluor 568 Invitrogen Cat# A-11057; RRID: AB_142581

Donkey anti-Rabbit IgG, Alexa Fluor 488 Invitrogen Cat# A-21206; RRID: AB_141708

Donkey anti-Mouse IgG, CF633 Biotium Cat# 20124; RRID: AB_10853607

Goat Anti-Mouse Immunoglobulins/HRP

(affinity isolated)

Dako (Agilent) Cat# P044701-2; RRID: AB_2617137

Goat Anti-Rabbit Immunoglobulins/HRP

(affinity isolated)

Dako (Agilent) Cat.# P044801-2; RRID: AB_2617138

Histone-3 (H3) Abcam Cat.# ab1791; RRID:AB_302613

H3K4me1 Diagenode Cat.# C15410194; RRID:AB_2637078

H3K27ac Diagenode Cat.# C15410196; RRID:AB_2637079

Iba-1 Abcam Cat.# ab5076; RRID:AB_2224402

Iba-1 Wako Cat.# 019-19741; RRID:AB_839504

NF-kB p65 (C-20) Santa Cruz Biotech. Cat.# sc-372; RRID:AB_632037

NOS2 (M-19) Santa Cruz Biotech. Cat.# sc-650; RRID:AB_631831

TET2 Abcam Cat.# ab94580; RRID:AB_10887588

TET2 Abcam Cat.# ab124297; RRID:AB_2722695

Biological Samples

Human Temporal lobes belonging to AD patients University Hospital Virgen del

Rocio, Seville (Spain)

A17-8, A14-78, A12-103

Chemicals, Peptides, and Recombinant Proteins

LPS (from Escherichia coli, serotype 026:B6),

-in vitro studies-.

Sigma Aldrich Cat.# L8274

LPS (from Salmonella abortus equi S-form),

-in vivo studies-.

Enzo LifeSciences Cat.# ALX-581-009-L001

Lipofectamine 3000 Reagent ThermoFisher Scientific Cat.# L3000015

TRI Reagent� Sigma Aldrich Cat.# T9424

Autofluorescence Eliminator Reagent Millipore Cat.# 2160

RevertAid First Strand cDNA Synthesis Kit ThermoFisher Scientific Cat.# K1622

MESA BLUE qPCR 2X MasterMix Plus for SYBR� Eurogentec Cat.# 05-SY2X-03+WOUB

Potassium perruthenate(VII), 97% (KRuO4) Alfa Aesar Cat. # 11877.03

Micro Bio-Spin Size Exclusion Spin Columns Bio-Rad Cat.# Micro Bio-Spin� Columns with

Bio-Gel� P-XX

Target Retrieval Solution, Citrate pH 6.1 (10x) Agilent Cat.# S1699

Fluoromount-G SouthernBiotech Cat.# 0100-01

Seahorse XF24 Cell Culture Microplates Agilent Cat.# 0100-01100882-004

BD Cell-Tak BD Biosciences Cat.# 354240

Seahorse Bioscience XF Calibrant Agilent Cat.# 100840-000

Seahorse XF assay media Agilent Cat.# 102365-100

Oligomycin Sigma-Aldrich Cat.# 75351

FCCP Sigma-Aldrich Cat.# C2920

(Continued on next page)

e1 Cell Reports 29, 697–713.e1–e8, October 15, 2019



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rotenone Sigma-Aldrich Cat.# R8875

Antimycin A Sigma-Aldrich Cat.# A8674

Human recombinant a-synuclein monomers Alexo Tech AB Cat.# AS-600-XX

Siliconized Low-Retention Microcentrifuge

Tubes (Fisherbrand)

Fisher Scientific Cat.# 2.0MLGRD FLTP LW RT

Di(N-succinimidyl) glutarate (DSG) R 97.0% (CHN) Sigma-Aldrich Cat.# 80424

Formaldehyde Solution, 16%, Fisher Scientific Uk Ltd Cat.# 10751395

GeneJET PCR Purification Kit ThermoFisher Scientific Cat.# K0701

Dynabeads Protein G for Immunoprecipitation ThermoFisher Scientific Cat.# 10003D

20-deoxycytidine Berry & Associates Cat.# PY 7216

20-deoxyguanosine Berry & Associates Cat.# PR 3452

C5-hydroxymethyl-20-deoxycytidine Berry & Associates Cat.# PR 7588

C5-methyl-20-deoxycytidine (5-mC) Carbosynth Cat.# ND06242

QuickExtract DNA Extraction solution Epicenter Cat.# QE09050

MyTaq Red DNA Polymerase Bioline Cat.# BIO-211XX

Amyloid b-Protein (1-42) (HFIP-treated) Bachem Cat.# 4090148.XXXX

Bovine serum albumin (BSA) Sigma-Aldrich Cat.# A2153

Critical Commercial Assays

Dynabeads mRNA DIRECT Purification Kit ThermoFisher Scientific Cat.# 61011

ScriptSeq Complete Gold Kit Epicenter Cat. # BEP1224

EpiTect Bisulfite Kits QIAGEN Cat. # 59104

eBioscience Annexin V-FITC Apoptosis

Detection Kit

ThermoFisher Scientific Cat.# BMS500FI-XXX

CellTiter-Glo� Luminescent Cell Viability Assay Promega Cat.# G7570

Deposited Data

Murine BV2 RNA seq data (Raw data) This paper GEO: GSE105155

Experimental Models: Cell Lines

Mouse: BV2. Passage % 25 (Female) Bertrand Joseph0s lab

(Shen et al., 2016)

RRID:CVCL_0182

Human: CHME3 (also known as HMC3).

Passage % 25 (Undetermined sex)

ATCC ATCC� CRL-3304; RRID:CVCL_II76

Experimental Models: Organisms/Strains

Mouse: 5xFAD: B6. SJL-Tg(APPSwFlLon,

PSEN1*M146L*L286V)6799Vas/Mmjax) (Male)

The Jackson Laboratory Cat.# 34840-JAX

Mouse: TET2floxed/floxed: B6;129STet2tm1.1Iaai/

J (Male)

The Jackson Laboratory Cat.# 017573

Mouse: CX3CR1CreERT2/WT: B6.129P2(Cg)

Cx3cr1tm2.1(cre/ERT)Litt/WganJ (Male)

The Jackson Laboratory Cat.# 021160

Rat: Wistar IGS (Male) Charles River Cat.# Crl:WI

Mouse: CD-1� IGS (Male) Charles River Cat.# Crl:CD1(ICR)

Oligonucleotides

See Table S1 (For primer list for RT-qPCR) This paper N/A

See Table S2 (For primer list for ChIP) This paper N/A

See Table S3 (For primers list for Ox-Bs sequencing) This paper N/A

siGENOME Non-Targeting siRNA #2 Dharmacon Cat.# D-001210-02-xx

Silencer� Select Pre-Designed siRNA-Tet2 Life Technologies Cat.# S103016

Flox Tet2 (Forward primer for genotyping)

AAGAATTGCTACAGGCCTGC

This paper Sequence obtained from (Moran-Crusio

et al., 2011)

(Continued on next page)
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Flox Tet2 (Reverse primer for genotyping)

TTCTTTAGCCCTTGCTGAGC

This paper Sequence obtained from (Moran-Crusio

et al., 2011)

Deleted TET2 (LoxP3R for genotyping)

TAGAGGGAGGGGGCATAAGT

This paper Sequence obtained from (Moran-Crusio

et al., 2011)

Software and Algorithms

Statgraphics Centurion XVII Statgraphics RRID:SCR_015248

Trim Galore https://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/

RRID:SCR_011847

Bismark https://www.bioinformatics.babraham.

ac.uk/projects/bismark/

RRID:SCR_005604

Tophat https://ccb.jhu.edu/software/tophat/

index.shtml

RRID:SCR_013035

Seqmonk https://www.bioinformatics.babraham.

ac.uk/projects/seqmonk/

RRID:SCR_001913

DESeq2 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

RRID:SCR_016533

topGO http://bioconductor.org/packages/

release/bioc/html/topGO.html

RRID:SCR_014798

Fiji ImageJ http://fiji.sc/ RRID:SCR_002285

GraphPad Prism 7 https://www.graphpad.com/scientific-

software/prism/

RRID:SCR_002798

ZEN Zeiss software (version 14.0.18.201) https://www.zeiss.com/microscopy/us/

products/microscope-software/zen.

html#introduction

RRID:SCR_013672
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Miguel Angel Burguillos (maburguillos@us.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and siRNA Transfection
Human CHME3 (undetermined sex) and murine microglial BV2 (female) cell line were cultured as described in Shen et al. (2016).

Briefly, the cells were maintained in 10% fetal calf serum (FCS) in DMEM and reduced to 5% FCS during the experiments supple-

mented with penicillin/streptomycin (100 U/ml and 100 mg/ml respectively). Transfection of BV2 cells was carried out using Lipofect-

amine 3000 (Invitrogen) following the manufacturer’s instructions.

Animals and Subject tissue
18-month-old male B6. SJL-Tg (APPSwFlLon, PSEN1*M146L*L286V)6799Vas/Mmjax), called 5xFAD (generously provided by Dr.

Javier Vitorica) and 8 to 12-week-old male B6;129STet2tm1.1Iaai/J, called TET2floxed/floxed, B6.129P2(Cg) Cx3cr1tm2.1(cre/ERT)

Litt/WganJ, called CX3CR1CreERT2/WT (both Jackson Laboratories), and CD-1� IGS mice and Wistar IGS rats (both Charles River)

were kept under controlled light (12-hr light/dark cycles) and temperature (22�C-24�C) and with free access of food and water.

For the generation of primary microglia cultures, both male and female pups were used.

For the LPS intraperitoneal experiment in mice, we followed the procedure detailed in Bodea et al. (2014). Briefly, injections in

Tet2flox/floxCx3cr1Cre/WT and Tet2flox/floxCx3cr1WT/WT mice consisted in four daily injections with 1 mg per g of body mass per day

of LPS or vehicle (PBS), and the analysis was performed on the fifth day since the start of the treatment (LPS in vivo experiments

were carried out with LPS from Salmonella abortus equi while for the in vitro experiments, we used LPS from Escherichia coli, sero-

type 026:B6).

All experiments conducted with animals were previously approved by the different Ethical Committee for Experimental Research

from University of Seville and University of Cambridge and fulfilled the requirements for experimental animal research in accordance

with in accordance with the UK Animals (Scientific Procedures) Act (1986) and the Guidelines of the European Union Council

(86/609/EU) and the Spanish and UK regulations (BOE 34/11370–421, 2013) for the use of laboratory animals.
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Human brain tissue was obtained from 1male (subject 3) and 2 females (subject 1 and 2) subjects who suffered and died from AD.

The region investigated was the Temporal lobe. All sections were stained with hematoxylin and eosin and with antibodies against

TET2, Iba-1 and Ab. They were microscopically reviewed for verification of pathology. Before the investigation, the entire collection

of brain sections, were subjected to a neuropathological whole-brain analysis for clinical diagnostic purposes, according to routine

procedures at the University Hospital Virgen del Rocio, Seville (Spain). The project procedures involving human brain tissue was

approved by the Regional Ethical Review Board, reference number C.P. 33170015 - C.I. 0422-N-17.

METHOD DETAILS

Generation of microglia Tet2-deficient mice
Tet2flox/flox C57BL/6 mice with the Tet2 allele floxed at exon 3 (Jackson Laboratories, B6;129S-Tet2tm1.1Iaai/J) and C57BL/6

mice containing a Cre recombinase under the control of Cx3cr1 promoter and enhancer elements (Jackson Laboratories,

B6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT)Litt/WganJ), were crossed to generate Tet2flox/flox;Cx3Cr1Cre/WT (experimental mice) and

Tet2flox/flox;Cx3Cr1WT/WT (control mice).

The genotype of Tet2flox/flox; Cx3Cr1WT/WT and Tet2flox/flox;Cx3Cr1Cre/WT mice was determined by analysis of DNA extracted from

the fingers using a QuickExtract (Epicenter) and amplified with MyTaq Red DNA Polymerase (Bioline). The deletion of the Tet2 gene

was determined by analysis of DNA extracted from isolated primary microglia using a QuickExtract DNA Extraction solution

(Epicenter) and amplified with MyTaq Red DNA Polymerase (Bioline).

The PCR consisted of 94�C for 1min, then 35 cycles with denaturation at 95�C for 15 s, annealing at 58�C for 15 s, and elongation at

72�C for 10 s. The primer sequences used were obtained from a previous study (Moran-Crusio et al., 2011).

Primary microglia cell culture preparations
Rat glial cultures were prepared from postnatal day 5-7 rat cerebral hemispheres as described previously (Bal-Price and Brown,

2001). Cortical hemispheres were dissected and meninges, blood vessels as well as white matter were removed. Tissue was trans-

ferred to pre-warmed HBSS containing 0.17% trypsin (37�C), chopped thoroughly and incubated for 15-20 min.s at 37�C, 5% CO2.

Supernatant was removed and remaining trypsin was neutralized by addition of an equal amount of deoxyribonuclease I solution

(0.02 mg/ml) in glial culture medium: DMEM supplemented with 10% FCS and antibiotics gentamicin (50 mg/ml) or penicillin/strep-

tomycin (100 U/ml and 100 mg/ml respectively). Tissue was mechanically dissociated by repeated trituration through fire-polished

glass Pasteur pipettes of two decreasing aperture sizes; and the suspension was centrifuged at 1503 g for 7 min.s at room temper-

ature (RT). The pellet was resuspended in glial culture medium, and this suspension was sequentially passed through a 100 mm and

40 mmcell-strainers (BDBiosciences). Cells were plated at a density of 105 cells/cm2 onto 24-well plates or into T75 cell culture flasks

(Nunc) that were coated with poly-L-lysine (0.0005% in PBS) for at least 30min at RT. After 24 h plates or flasks were carefully tapped

to dislodge sedimentary cell debris, and medium was exchanged. Cultures were maintained at 37�C in a humidified atmosphere of

5% CO2/ 95%O2. Cells were stimulated after 7-9 days in vitro (DIV). Pure microglial cultures were obtained frommixed glial cultures

(7-9 DIV). Culture flasks were gently vortexed for�1min., supernatant containing detachedmicroglial cells was collected and centri-

fuged at 1503 g for 7 min at RT. Microglia cells were resuspended in conditioned glial medium mixed with fresh glial medium (at the

ratio 2:1) and plated at a density of 2.5-5 3 104 cells/cm2 onto 6- or 24-well plates (Nunc) coated with 0.0005% poly-L-lysine.

Primary adult murine microglia cultures from 10-12-week old adult mouse cortices were carried out as previously described

(Yip et al., 2009). Briefly, adult CD1 male mice were deeply anaesthetized with sodium pentobarbital, then perfused with saline to

remove peripheral monocytes/macrophages. The cortical region was dissected out and placed into ice-cold Hanks Balanced Salt

Solution (HBSS)media. Themeningeswere removed prior cutting into longitudinally segments using a tissue chopper. After digestion

in papain followed by dissociation, the cell suspension was passed through a 70 mm sieve. The cells were plated into each well con-

taining an ethanol-cleaned coverslip. After 2 h, unattached cells were washed away with DFPmedia (containing Dulbecco’s modified

eagle medium (DMEM)), 15% heat-inactivated fetal bovine serum (HI-FBS) and penicillin-streptomycin; 100 IU/ml), and allowed to

incubate overnight at 37�C and 5% CO2 and were used the next following day for experimental studies.

Primary postnatal mousemicroglial cells were prepared from P1-4 experimental and control mouse brain following described pro-

tocol (Deierborg, 2013). Postnatal P1-4micewere decapitated and brainswere carefully dissected removing all themeninges and the

cortices were washed in ice-cold Ca2+- and Mg2+-free Hanks’ buffered salt solution (HBSS; Biowest). Later on, they were minced,

and resuspended in ice-cold HBSS. After being washed, tissues were incubated for 15 min in HBSS containing 0.1% trypsin and

DNase 0.05%, and resuspended in DMEM medium containing 10% FBS and 1% P/S (DMEM high glucose, Biowest). Cells were

cultivated in a T25 flask. Medium was replaced completely after 1 day seeding and 7 days after seeding.

Deletion was induced upon 4-OH-tamoxifen treatment for 48 h before harvesting of microglia. Microglial cells were harvested from

confluent astrocyte monolayers, 14 days after the initial seeding, by tapping the side of the culture flask. These microglial cells found

in the medium were plated into 12-well dishes. Experiments were performed 24 h after the final plating.

We regularly tested the purity of our primary microglia cell cultures and observed consistently that over 80% of our cultures were

positive to Iba-1 staining, and therefore microglia cells.
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RT-qPCR analysis
Total RNAwas extracted using the TRIzol reagent (Sigma Aldrich) following themanufacturer’s instructions. Using the RevertAid First

Strand cDNA Synthesis Kit (Thermo Scientific, UK), 1 mg of the total RNAwas transformed into cDNA. qPCRwas performed using the

MESA BLUE SYBR� Assay (Eurogentec, UK). Results were calculated using delta Ct method and represented as absolute values

with arbitrary units. Atp5b and Actb genes were used as housekeeping genes in murine samples, Actbwas used as a housekeeping

gene in rat samples and PGK1 was used as housekeeping gene in human samples.

Immunofluorescence for mouse material
5xFAD mice (18 months old; kindly provided by Dr. Javier Vitorica), a model for Alzheimer disease and LPS intraperitoneally injected

mice, were transcardially perfused under deep anesthesia with 4% paraformaldehyde and PBS, pH 7.4. Brains were removed, cry-

oprotected in sucrose and frozen in isopentane at �15�C and serial coronal sections (30 mm thick) were cut with a cryostat, and

further processed. Briefly, the tissue was subjected to antigen retrieval (10mM citrate buffer pH 6.0. 80�C in a water bath for

30 min). Later on, the brain sections were permeabilized with 1% (v/v) Triton X-100 in PBS for 1 h, and then incubated in 5% (w/v)

BSA, 1% Triton X-100 in PBS for 1 h, to prevent unspecific staining. The tissue was then incubated overnight at 4�C with the primary

antibodies against Ab (1:1000, Sigma-Aldrich), Tet2 (1:250, Abcam), Iba 1 (1:500, Wako) and Cox-2 (1:100 R&D System) and the

following day, the brain sectionwas rinsed for 1 h in PBS containing 0.1%Triton X-100. After incubating for 1 hwith the corresponding

secondary antibodies (1:500; Alexa antibodies, Invitrogen), and rinsed again with PBS containing 0.1% Triton X-100 for 60 min. For

staining with Hoechst (1mg/ml; Sigma Aldrich) sections were first washed in PBS containing 0.1%Triton X-100 and then incubated for

5min. Next, we washed sections 2x10min in in PBS containing 0.1%Triton X-100. The brain sections weremounted in Glycerol 50%

for visualization in an inverted ZEISS LSM7DUO confocal laser-scanningmicroscope using a 63x oil objective with a numerical aper-

ture of 1.3. Images from all experimental groups were obtained at the same day and under equal conditions (laser intensities and

photomultiplier voltages).

Immunofluorescence for the subject material
Brain tissue sections were deparaffinized in xylene (15 min each) followed by two 10-min washes with ethanol 100%, two 10 min

washes with ethanol 95% and three 5-min washes with distilled water. Tissue was subjected to heat-induced antigen retrieval

with DAKO solution (pH 6.0; DAKO #S1699) for 40 min using a steamer. Subsequently, the tissue was left in the same solution until

it reached room temperature. Next, three 10 min washes with TBS, followed by a 10 min TBS-Triton X-100 0.1% (v/v) and a final

10 min TBS were performed. The tissue was immersed in blocking solution (5% donkey serum in TBS-T 0.1%) for 1 h at room tem-

perature). The antibodies were diluted in blocking solution overnight at 4C. The next day the slides were washed 5 times in TBS, incu-

bated 1 h with the corresponding secondary antibodies, followed by five 10 min TBS washes. Finally, the tissue was processed

following manufacturer’s recommendation with Autofluorescence Eliminator Reagent (Millipore Catalogue number 2160) and

mounted with Mount slides in Fluoromount-G (AH Diagnostics #0100-01) for confocal microscopy analysis. Images were acquired

by Zeiss LSM700 confocal laser scanning microscope equipped with ZEN Zeiss software (version 14.0.18.201) and processed with

Photoshop CC 2017.

Fluorescent intensity (CTCF) of Tet2 staining was measured using Fiji ImageJ, as described previously (McCloy et al., 2014) with

modifications. In more details, single in-focus planes were captured using x 40 objective. Tet2 staining was converted to grayscale

using Photoshop. Using ImageJ, an outline was drawn around the soma of each microglia and values including area and mean in-

tensity were measured, along with 4 background readings from the same field of view. The corrected total cellular fluorescence

(CTCF) = Integrated Density – (Area of selected cell (x) Mean fluorescence of background readings). At least 5 different plaques

and at least 26 microglia from these plaques or 5 white matter single planes and at least 24 microglia per subject were scored for

intensity. All microglia found in the plaques or in the white matter plane were scored. Areas where chosen based on Ab staining in

random. Analysis and plot was performed using GraphPad Prism 7.

RNA-seq
mRNA-seq libraries were prepared from 1 mg of total RNA using the Dynabeads mRNA purification kit (ThermoFisher Scientific) and

the low input ScriptSeq Complete Gold Kit (Epicenter). Libraries were sequenced on an Illumina NextSeq 500 with single-end 75 bp

reads. Reads were trimmed using Trim_galore! v0.3.3 and mapped using Tophat v2.0.9 (Trapnell et al., 2009) to the mm9 genome

assembly. Raw read counts for each gene were generated in Seqmonk with the RNA-seq quantitation pipeline. DESeq2 was then

used for differential expression analysis and for generating normalized gene expression values. Gene ontology analysis was per-

formed using the R package topGO.
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OxBS-seq
Deep sequencing of PCR products from BS- and oxBS-converted DNA was performed as previously described (de la Rica et al.,

2016). Briefly, precipitated DNA (without glycogen) was resuspended in water and further purified using Micro Bio-Spin columns

(Bio-Rad), after which half of the DNA was oxidised with 15 mM KRuO4 (Alfa Aesar) in 0.5 M NaOH for 1 h. Following bisulfite con-

version of both DNA fractionswith the EpiTect Bisulfite kit (QIAGEN), a two-step PCR amplification was used: a first PCR amplifies the

region of interest and adds part of the sequencing adaptors; a second PCR on pooled amplicons then completes the adaptors and

adds sample barcodes, allowing for multiplexing. Paired-end sequencing of pooled samples was done using an IlluminaMiSeq. Data

were aligned using Bismark (Krueger and Andrews, 2011) to a custom genome containing the amplicon sequences; only CpGs

covered by at least 100 reads were used to calculate 5mC/5hmC levels.

Measurements of OCR and ECAR
Real-time measurements of oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were performed on a Sea-

horse XF-24 extracellular flux Analyzer (Seahorse Biosciences) according tomanufacturer’s instructions and as previously described

(Voloboueva et al., 2013). BV2 treated cells were detached with the pipette after treatment and re-seeded 30,000 cells/well to pre-

coated Seahorse XF-24 plates, are for metabolic analysis. The XF24 cell culture microplate was coated with BD Cell-Tak (BD Bio-

sciences, cat# 354240). The day before the metabolic assay, 1 mL of Seahorse Bioscience XF Calibrant (pH 7.4) was added to

each well of the XF-24 utility plate, position the sensor cartridge on top of the utility plate, and incubated at 37�C overnight. BD

Cell-Tak solution was prepared by adding 73 mL of 1.5 mg/ml stock concentration BD Cell-Tak to 1.1 mL sterile H2O into a final con-

centration of 0.1 mg/ml. After that, 20 mL of the VD Cell-Tak solution was added to each well of a XF-24 cell culture plate, followed by

40 mL of 0.1MNaHCO3 (pH 8.0) to each well to neutralize and promote BD Cell-Tak adsorption to the microplate. The microplate was

incubated at 37�C minimum for 1 hour. Seahorse XF assay media (supplemented with 25 mM glucose, 2 mM glutamine and 1 mM

sodium pyruvate) was prewarmed to 37�C prior to use. After cell count, cells were centrifuged at 300 g for 5 min and resuspend in the

supplemented XF assay media at 3000 cells/ml. Each well of the Cell-Tak coated XF-24 cell culture microplate was washed with

200 mL of sterile water and 100 mL of cell suspension added, followed by centrifugation of themicroplate at 700 g for 5min to facilitate

cell attachment. Cells were incubated at 37�C for at least 1 h to allow cell attachment. The different drugs were added automatically

during measurement, after establishing baseline of oxygen consumption rates. We measured the OCR and ECAR in response to

sequential treatment with the ATPase inhibitor oligomycin (2.5 mM), the uncoupling agent FCCP (1 mM) and the electron-trans-

port-chain inhibitors rotenone (2 mM) and Antimycin A (1 mM).

Measurement of extra-cellular glucose
Glucose measurement was determined in the Department of Clinical Biochemistry, Royal London Hospital, UK. Briefly, medium

from BV2 siControl and siTET2 cells alone or after LPS treatment was centrifuged and the supernatant was analyzed using the

Accutrend�Plus System (Roche) according to the manufacturer’s instructions.

Preparation of a-synuclein and Ab-oligomers
For the preparation of a-synuclein fibrils, a-synuclein monomers were purchased from (Alexo Tech AB, Sweden). Briefly, a stock

solution of a-synuclein (140 mM final concentration) was incubated for 6 days at 37�C, under continuous agitation as described pre-

viously in Hornedo-Ortega et al. (2016). For the preparation of Ab oligomers, 1mg of HFIP-Ab 1-42 (Bachem, H7442.1000) was care-

fully mix through pipetting in 200 mL of DMSO. Later on, 9800 mL of PBS was added to get a final concentration of 22 mM and it was

aliquoted in siliconized Low-Retention Microcentrifuge Tubes (FisherbrandTM) and incubated at 37�C for 3h. After that aliquots were

kept frozen at�80�C. Cells were incubated in the presence of a-synuclein fibrils and Ab-oligomers to a final concentration of 5mMand

2mM respectively.

Immunoblotting
All cell extracts were processed for immunoblotting with a SDS-polyacrylamide gel electrophoresis as described previously (Burguil-

los et al., 2015). Briefly, Laemmli’s loading buffer (100 ml/106 cells) was added to harvested cells and samples were boiled for 3 min.

Thirty ml of protein extracts were resolved on 8, 0r 12% SDS polyacrylamide gel at 150 V and transblotted onto nitrocellulose mem-

branes (0.2 mm) for 2 h at 200 mA. Membranes were blocked overnight in a buffer (50 mM Tris, pH 7.5, 500 mM NaCl) supplemented

by 5% non-fat milk powder and probed with primary antibody for overnight, in blocking solution with 1% Bovine serum albumin, fol-

lowed by the incubation with secondary antibody for 1 h at room temperature. After repeated washing in PBS bands were visualized

by ECL according to the manufacturer’s instruction. A complete list of primary antibodies can be found in the Key resources table.

b-actin antibody (Sigma-Aldrich) was used to verify equal loading of the gel. Secondary horseradish peroxidase-conjugated anti-rab-

bit and anti-mouse antibodies were obtained from Dako.

Microglia cell counting
BV2 cell number quantification was performed using a NucleoCounter� NC-100 (Chemometec) according to manufacturer’s

instructions.
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Apoptosis determination
Apoptosis was quantified using the Annexin V-FITC Determination Kit (eBioscience) according to the manufacturer’s instructions.

Briefly, cells medium and the cells were collect in a FACS tube. Annexin V-FITC (25 mg/ml) was added to the cell suspension. The

cells were incubated for 10 min in darkness at RT. 1 mg/ml propidium iodide staining solution was then added and FACS was carried

out using a BD FACS CANTO II flow cytometer.

Cell viability
Cell viability was quantified by CellTiter-Glo� Luminescent Cell Viability Assay according to the manufacturer’s instructions.

Detection is based on using the luciferase reaction to measure the amount of ATP from viable cells. The plate used was opaque

to limit interference from external light. The intensity of the emitted light due to the degradation of D-Luciferin and ATP by the enzyme

Luciferase is proportional to the amount of free ATP present at that moment in the cells.

Chromatin Immunoprecipitation
BV2 cells were treated with 1mg/ml of LPS during 6h. For each histone modification ChIP, the cells were washed with PBS and fixed

by 1% formaldehyde for 12 min at RT. For NF-kB ChIP, the cells were first fixed with 2 mM DSG in PBS for 45 min at RT followed by

1% of formaldehyde fixation for 12 min. After stopping the fixation with 0.125 M glycine, the cells were washed with cold PBS and

collected by centrifugation. Subsequently, the cells were washed with wash buffer (10 mMHEPES/KOH at pH 7.9, 85 mM KCl, 1mM

EDTA, 0.5% IGEPAL) once, lysed with lysis buffer (50 mM Tris at pH 7.4, 1% SDS, 0.5% Empigen, 10 mM EDTA, 1mM PMSF) sup-

plemented by protease inhibitors for 30 min on ice and the chromatin was sonicated to an average size of 300-700 bp. For immu-

noprecipitation, the soluble chromatin was diluted ten times in dilution buffer (50 mM Tris at pH 8.0, 0.5% NP-40, 0.2 M NaCl and

0.5 mM EDTA) and incubated with 5 mg of antibodies selective for NF-kB p65, H3K27ac, H3K4me1 or TET2 overnight at 4�C. The
immune complexes were collected with protein G beads for 2 h at 4�C, washed with low salt buffer (50 mM Tris at pH 8.0, 0.1%

SDS, 1% NP-40, 2 mM EDTA, 0.5% Deoxycholate and 0.15 M NaCl), high salt buffer (50 mM Tris at pH 8.0, 0.1% SDS, 1%

NP-40, 2 mM EDTA, 0.5% Deoxycholate and 0.5 M NaCl) and LiCl buffer (50 mM Tris at pH 8.0, 1% NP-40, 2 mM EDTA, 0.5%

Deoxycholate and 0.25 M LiCl), respectively. Immunoprecipitates were eluted in 1% SDS and 0.1 M sodium bicarbonate and the

crosslinks were reversed overnight. After proteinase K digestion, DNA was extracted using GeneJET PCR purification kit. Immuno-

precipitated DNA was analyzed by real time PCR using specific primers

Liquid chromatography-mass spectrometry
20-deoxycytidine (dC), 20-deoxyguanosine (dG) and C5-hydroxymethyl-20-deoxycytidine (5-hmC) were purchased from Berry & As-

sociates; C5-methyl-20-deoxycytidine (5-mC) was purchased from CarboSynth. Genomic DNA was digested to nucleosides for a

minimum of 9 h at 37�C using a digestion enzymatic mix (kind gift from NEB). All samples and standard curve points were spiked

with a constant amount of isotope-labeled synthetic nucleosides: 100 fmol of dC* (13C,15N-dC) and dG* (13C,15N-dG) purchased

from Silantes, 5 fmol of 5-mC* (d3-5-mC) and 250 amol of 5-hmC* (d2,15N2-5-hmC) obtained from T. Carell (Center for Integrated

Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität M€unchen, M€unchen, Germany). The nucleosides

were separated on an Agilent RRHD Eclipse Plus C18 2.1 3 100 mm 1.8u column by using the HPLC 1290 system (Agilent) and

analyzed using Agilent 6490 triple quadrupole mass spectrometer. To calculate the concentrations of individual nucleosides, stan-

dard curves representing the ratio of the peak response of known amounts of synthetic nucleosides and the peak response of the

isotope-labeled nucleosides were generated and used to convert the peak-area values to corresponding concentrations. The

threshold for peak detection is a signal-to-noise (calculated with a peak-to-peak method) above 10.

Microglia morphology
The proportion of the different microglial morphology was estimated according with the follow classification (see Figure 6, insets): (1)

Quiescent microglia with small cell bodies, fine cytoplasmic ramifications, and low to moderate Iba1 expression; (2) microglia with

early-stage activation characterized by increased ramification of cytoplasmic processes and cell size, and enhanced Iba1 labeling;

(3) Microglia corresponding to next step of activation is characterized by further thickening of processes and retraction of the thinest

ones, as well as increased cell body size and Iba1 expression; and finally, (3) amoeboid cells, showing complete retraction of

cytoplasmic processes with maintained high levels of Iba1 expression.

Images quantification
The proportion of microglia in the SN in each LPS experiment experimental group was estimated using cell counter plugin included in

Fiji ImageJ (W. Rasband, National Institutes of Health) software. In the SN of the different experimental groupswemeasured themean

intensity of the specific fluoresce markers (TET2 and COX-2), in Iba1 positive cells. To do that, we performed mask outlined of Iba1

area using exactly the same value of threshold in each image and then, wemeasured automatically the mean intensity inside of these

areas using, again, the Fiji software.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of experiments, including statistical tests used, number of experiments, and dispersion and precision

measures, can be found in the figure legends. The differences between control and experimental groups were evaluated with either

two-tailed Student’s t test, one way or two-way ANOVA with different corrections depending on the experiment. We used Stat-

graphics Centurion XVII (64-bit) for PC (http://www.statgraphics.com/centurion-xvii) and R software for Mac (https://www.

r-project.org/) for the statistical analyses. p < 0.05 was considered as statistically significant.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is NCBI GEO: GSE105155.
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