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Liquid-phase parametrization and solidification in many-body dissipative particle dynamics
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Many-body dissipative particle dynamics (MDPD) is a mesoscale method capable of reproducing liquid-vapor
coexistence in a single simulation. Despite having been introduced more than a decade ago, this method remains
broadly unexplored, and as a result, relatively unused for modeling of industrially important soft matter systems.
In this work, we systematically investigate the structure and properties of an MDPD fluid. We show that, besides
the liquid phase, the MDPD potential can also yield a gas phase and a thermodynamically stable solid phase
with a bcc lattice, but lacking a proper stress-strain relation. For the liquid phase, we determine the dependence
of density and surface tension on the interaction parameters, and devise a top-down parametrization protocol for
real liquids.
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I. INTRODUCTION

In designing a new force field it is vital to understand
its phase diagram before applying it to real systems. It is
generally prohibitively expensive to derive the equation of
state (EOS), from which all the experimental observables
would follow, from a molecular dynamics force field due to
the many parameters that can be varied. However, the EOS can
be inferred for some mesoscale potentials which possess few
parameters. This is the case for dissipative particle dynamics
(DPD), for which the EOS can be easily reverse-engineered.

The standard DPD method was introduced by Hooger-
brugge and Koelman [1] and thoroughly explored by Groot
and Warren [2], who derived the EOS and linked it to the
Flory-Huggins theory for polymer mixtures. It was conse-
quently shown that this method can reproduce diblock copoly-
mer phases [3], vesicle formation [4], or the morphology of
ionomer membranes [5,6], among many other soft matter sys-
tems. Over the past 20 years, DPD has become an important
tool in gaining insight into soft matter structures on the scale
of 1–100 nm [7].

However, the standard DPD method has an important
drawback in that its purely repulsive force field

F (r ) =
{
A(1 − r ), r < 1,

0, r � 1,
(1)

with r being distance between two particles and parameter
A > 0, cannot support liquid-vapor coexistence. To overcome
this deficiency and retain the simplicity and other advantages
of the extremely soft potential, there have been several at-
tempts to generalize DPD and increase its scope of applica-
bility. A simple extension called many-body DPD (MDPD)
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adds a density-dependent repulsive term [8–10]

Frep(r ) =
{
B(ρ̄i + ρ̄j )(1 − r/rd ), r < rd,

0, r � rd,
(2)

where B > 0 is the repulsion parameter, rd < 1 a new, many-
body length scale, and ρ̄i a local density for ith particle [de-
fined below in Eq. (6)]. For some specific set of parameters,
this force field can simulate a water slab with correct surface
tension [11]. Since its introduction, MDPD has been linked to
Flory-Huggins theory [12,13] and tested on several simplified
models of pure liquids [13–15] or polymers [16]. However,
the scope of its applications is still limited, when compared to
standard DPD, and so far this method has not been applied to
more complex systems.

The first restriction on the applicability of MDPD is the
lack of a systematic protocol for generating the interaction
parameters that would reproduce the properties of real liquids.
For example, Ghoufi et al. [11] simulated pure water at a
coarse-graining (CG) degree of three molecules per bead, and
showed that their set of parameters leads to the correct density
and surface tension. However, they did not explain how they
generated these parameters, or how these should be modified
if one wanted to simulate water at a different CG degree.

Second, while the behavior of standard DPD controlled
by only one interaction parameter, A, is relatively well un-
derstood, MDPD has three: A,B, and rd. The two additional
parameters significantly increase the complexity of the phase
diagram and the risk of unexpected and unphysical behavior
if not chosen well.

The aim of this paper is to resolve these two problems. To
this end, we explore a large portion of the phase diagram of an
MDPD fluid by systematically varying the values of repulsion
B, attraction A, and many-body cutoff rd. By measuring the
density and the self-diffusion coefficient, we reveal the region
of the liquid-vapor coexistence as well as the gas phase, where
the particles homogeneously fill the whole simulation cell,
and a solid phase with a well-defined lattice and negligible
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particle diffusion, but lacking a proper stress-strain relation.
Having determined the phase boundaries, we then discuss
how these findings can be applied to define a top-down
parametrization protocol. Finally, we demonstrate how this
protocol can yield the interaction parameters for water at
varying CG degrees.

We note that there is an extension generalizing both DPD
and MDPD called smoothed DPD (SDPD). This method
corrects for the problems with transport and an inability to
simulate nonisothermal settings based on discretizing Navier-
Stokes equations [17,18]. However, the simplicity and ver-
satility of MDPD makes the effort of parametrizing it a
worthwhile pursuit before considering a more general SDPD.

Section II reviews the MDPD force field. In Sec. II, we
present tools used for determining the phase behavior, namely
the density profile, self-diffusivity, surface tension, and coor-
dination number, and determine the lattice of the solid phase.
In Sec. IV, we present the top-down parametrization protocol
for the liquid phase and derive the interaction parameters for
water and some other solvents.

II. METHOD

Adopting a set of reduced units such that particle size
rc = 1, mass m = 1, and temperature kBT = 1 in the spirit of
the original DPD paper [2], the full form of the MDPD force
field is

Fij (r) = Aw(r )r̂ + B(ρ̄i + ρ̄j )wd(r )r̂, (3)

where A and B are interaction parameters, r = |r|, the weight
functions are

w(r ) =
{

1 − r, r < 1,

0, r � 1,
(4)

wd(r ) =
{

1 − r/rd, r < rd,

0, r � rd,
(5)

and the local density ρ̄i around particle i is defined as

ρ̄i =
∑
j �=i

15

2πr3
d

wd(rij )2, (6)

Warren showed that for A < 0 and B > 0 this force
field leads to the liquid-vapor coexistence, and derived the
EOS [10]

p = ρkBT + αAρ2 + 2αBr4
d (ρ3 − cρ2 + d ), (7)

with fitting constants α = 0.1, c = 4.16, and d = 18. This
EOS was revisited by Jamali [12], who came with a slightly
different and arguably more precise form

p = ρkBT + αAρ2 + 2αBr4
d (ρ3 − c′ρ2 + d ′ρ) − αBr4

d

|A|1/2
ρ2,

(8)

where c′ = 4.69 and d ′ = 7.55. In practice, the difference
between these two EOS’s is small for typical liquid densities,
e.g., at A = −40, B = 25, ρ = 6 it is about 5%.

In the simulation, the system temperature is controlled by
the DPD thermostat introduced by Español and Warren [19]

via a dissipative and random force

F D(r) = −γ w(r )(v · r̂)r̂, (9)

F R(r) =
√

2γ kBT w2(r )
θ√
�t

r̂, (10)

where γ is the friction parameter, θ is a Gaussian random
number with zero mean and unit variance, and �t is the
simulation timestep.

In the standard DPD, the simulation density is decided a
priori, and most often is equal to 3, which is the lowest possi-
ble number at which the EOS is still quadratic. This value then
remains fixed throughout the simulation by the constraint of
constant volume. However, the density in an MDPD liquid can
arise naturally by choosing the right interaction parameters A,
B, and rd at which the liquid forms a droplet with a surface. In
this sense, it resembles a classical molecular dynamics force
field.

In varying A,B, rd there are several obvious constraints.
First, we choose 0 < rd < 1, A < 0, B > 0 to make the
interaction attractive near r = 1 and repulsive at the core near
r = 0. In fact, to ensure that F (0) > 0, it follows from Eq. (3)
that B > −A2πr3

d /15. Even values close to this boundary
might lead to poor temperature conservation. Henceforth we
will call this a no-go region.

Simulation details

Following Ghoufi et al. [11], we use a simulation cell size
of 22 × 5 × 5 (in reduced units), with one dimension signifi-
cantly larger than the others. This asymmetry forces the liquid
to form a rectangular slab instead of a spherical droplet, which
facilitates calculation of the surface tension. The simulation
step �t is set to 0.01, which is significantly lower than the one
used in standard DPD simulations (0.05). The MDPD force
field is not strictly linear and so one should expect the need
to lower the simulation step to keep the temperature within
manageable limits. On several occasions, especially at lower
values of rd, the temperature in our simulations diverged by
more than 10%, which is considered undesirable [10]. While
this problem can be generally ameliorated by further lowering
the timestep, this creates a penalty in the form of decreased
simulation speed and undermines the main advantage of DPD
and MDPD as a mesoscale method. For this reason, we did
not use timesteps below 0.01 and many-body cutoffs below
rd = 0.55.

In each simulation we used 1000 particles, equilibrated for
500 k steps and measured during the following 5 k steps, a
long enough interval to capture mass transport since a bead
with average speed would be displaced by 50 length units.
The dissipation parameter γ was set to 4.5, a value commonly
used in the literature. We note that varying γ would change the
diffusive behavior, but it would not influence the position of
phase boundaries or equilibrium behavior in general. To per-
form the simulations we used the DL_MESO software package
version 2.6 [20].

We explore a wide range of values A and B. We also note
that A should always be negative to create van der Waals
loop [10] and the liquid-vapor interface, whereas values of B
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FIG. 1. Representative density profiles of the MDPD depicting (a) gas phase at rd = 0.75, A = −5, B = 25; (b) liquid phase at rd =
0.75, A = −45, B = 65; and (c) solid phase at rd = 0.75, A = −95, B = 100. From the similarity of (b) and (c) it follows that the solid phase
cannot reliably be identified by its density profile.

should always be positive to keep the core of the force field
repulsive. We chose the range [−100, 0] for A and [0, 100]
for B and henceforth refer to them as attraction and repulsion,
respectively. In Sec. IV, we will show that a real liquid can
fall into this range for a wide number of CG degrees.

III. MEASUREMENT OF PROPERTIES

A. Density

Our first tool in describing the properties of MDPD fluid
is density, which arises naturally as a function of the re-
pulsion, attraction, and many-body cutoff rd and not due to
the constraints of the simulation cell as in case of standard
DPD. Figure 1 shows typical density profiles in a cell of size
22 × 5 × 5 for rd = 0.75 and 0.65. For low values of both
|A| and B, we observe homogeneously dispersed particles
signaling the gas phase. For intermediate values between 0
and 100, there is a liquid phase with a well-defined interface.
Finally, the periodic variation of zero and very high density at
rd = 0.65 indicates a lattice of a solid phase.

To quantify these observations we fitted the density profiles
with a symmetrised hyperbolic tangent

ρA,B (x) = c1[tanh(c2|x − c3| + c4) + 1]/2 + c5, (11)

where c1 is the excess density of the liquid phase; c5 is the
density of the gas phase; c3 and c4 are the center and
the half-width of the liquid droplet, respectively; and c2 is
the steepness of the interface. The resulting liquid density is
then ρ = c1 + c5.

Figure 2 shows heat maps of the computed densities
ρ = c1 + c5, with each subfigure representing a specific

many-body cutoff. At rd = 0.85, the gas phase (dark blue
color) occupies almost one half of the phase diagram, indi-
cating that at higher values of rd there would be no space for
the liquid phase within a reasonable range of repulsions and
attractions. On the other hand, at low values of rd, such as
0.55, the gas phase is limited to very low values of |A|, and
most of the region is occupied by the solid phase, as will be
confirmed by self-diffusivity measurements in Sec. III B.

We now determine how the liquid or solid density vary
with the force field parameters. For simplicity, we perform
this fitting separately for each value of rd. In principle it is
possible to obtain such dependence by analytically finding
the roots of the EOS at zero pressure. However, our attempt
to solve Warren’s EOS [Eq. (7)] analytically resulted in an
expression that was too long and intractable for further use.
Our aim is instead to produce a density function which is more
empirical but at the same time more practical for subsequent
applications. This can be achieved using only a few fitting
parameters and simple polynomial, power law, or exponential
functions.

Visually observing the cuts through the phase diagram
and exploring several candidate functions we arrived at a
simple three-parameter fit suitable for all considered many-
body cutoffs:

ρ(A,B ) = d1 + d2(−A)Bd3 , (12)

with fitting coefficients di, i ∈ {1, 2, 3}. Their values and
associated errors are shown in Table I. We did not fit
the lowest explored value of the cutoff rd = 0.55 due to
its very small liquid phase, but, in principle, this can be
done as well as for any other cutoff. A more detailed
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FIG. 2. Density heat maps for (a) rd = 0.55, (b) rd = 0.65, (c) rd = 0.75, and (d) rd = 0.85. Dark regions at low values of |A| show the
gas phase, and yellow regions of high density shown at the top left corner reveal the no-go region with attractive force at zero interparticle
distance.
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TABLE I. Fitting coefficients for liquid and solid density
[Eq. (12)] as a function of A, B, and rd.

rd d1 d2 d3

0.65 5.01 ± 0.03 2.11 ± 0.05 −0.870 ± 0.01
0.75 3.01 ± 0.03 1.21 ± 0.03 −0.856 ± 0.01
0.85 1.50 ± 0.05 0.60 ± 0.02 −0.756 ± 0.01

analysis, including the model selection, is provided in the
Appendix.

B. Self-diffusivity

To reliably identify the boundary between solid and liquid
phase for rd ∈ {0.65, 0, 75, 0.85}, we investigate the dynamic
properties of MDPD. The self-diffusivity of an unknown
material is an important signature differentiating between
liquid, solid, and gas phases. We expect this quantity to be
negligible in solids, while in pure liquids or gases it should
follow the Einstein regime marked by the linear dependence
of the mean-square displacement on time.

We measure the self-diffusion coefficient for every config-
uration via the mean-square displacement (MSD)

D = lim
t→∞

〈|r(t ) − r(0)|2〉
6t

, (13)

where the average 〈.〉 is over all the particles.
Typical MSDs are shown in Figs 3. The scale on the y

axis demonstrates a clear difference between solids, liquids,
and gases. The solid phase poses a limit to the beads in how
far they can diffuse. The liquid phase allows only the linear
regime, whereas the gas phase contains a polynomial transient
response and then gradually becomes linear.

Plotting all the self-diffusivities in a heat map (Fig. 4)
enables us to distinguish the different phases. Dark blue
regions corroborate the existence of the solid phase, whereas
the yellow regions show the gas phase. The region in between
is liquid.

We also briefly probe the nature of the boundary between
the liquid and the gas phases. Having chosen several values
of the repulsion B and finely varying the attraction A, we
monitored the points at which the denser liquid droplet started
to rise from a homogeneous gas. For B > 20, the liquid-gas
boundary is well captured by a line: Alg = ω1B + ω2. For

example, at rd = 0.75, the fitting constants are (ω1, ω2) =
(−0.13, 15.3).

C. Lattice of the solid phase

Having located the whereabouts of the solid phase in the
phase diagram via the self-diffusion coefficient, we now deter-
mine its lattice. There are, in fact, two lattice types, implying
two different phases. Starting with rd = 0.75, we observe
the first type occurring at large values of both repulsion and
attraction, around (A,B ) = (−100, 100). The density of this
configuration is ρ ≈ 5. Another phase, which is formed at
high repulsions A < −80 and intermediate attractions B =
30–50, is more closely packed, with a typical density of ρ ≈ 8
at rd = 0.75.

To identify these phases, we plot the radial distribution
functions (RDF) and compared them to a set of RDFs of
several Bravais lattices smeared by temperature fluctuations.
The first phase was identified with the body-centered cubic
(bcc) lattice (Fig. 5), and the second one with the hexagonal
(hex) lattice with an interlayer distance lower than the in-plane
lattice constant.

As another verification, we compute the coordination num-
bers (CN) for all the solid configurations (A,B, rd ), which we
chose by their self-diffusivity. CN is defined as the number of
nearest neighbors of a particle, which can be computed by
integrating the RDF g(r ):

z(r ) = ρ

∫ r

0
g(r ′)4πr ′2 dr ′. (14)

In a lattice, neighboring particles reside in so-called co-
ordination shells, which give rise to local maxima in the
RDF. Separating the adjoining coordination shells can be
realized by identifying the plateaus in the CN as a function
of the distance, i.e., the minima in the first derivative of z(r ).
Figure 6 unambiguously shows that all the solid configura-
tions (A, B, rd ) indeed fall into two groups: the bcc phase
with a plateau value of z ≈ 14, which includes first two
coordination shells, and the hex phase with a first plateau
z = 2, which captures out-of-plane vertically aligned atoms,
followed by z ≈ 20, which comprises two hexagons above
and below and one in the plane of any particle.

From Fig. 6 it is also clear that the solid phase occupies
a major part of the phase diagram at rd = 0.55, rendering
the usefulness of this value of this many-body cutoff rather
limited for simulations of liquids. On the opposite end, at
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FIG. 3. Mean-square displacements for the representative density profiles observed in many-body DPD, depicting typical behavior of
(a) gas phase at rd = 0.75, A = −5, B = 25; (b) liquid phase at rd = 0.75, A = −45, B = 65; and (c) solid phase at rd = 0.75, A = −95,

B = 100.
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FIG. 4. Self-diffusivity heat maps for (a) rd = 0.55, (b) rd = 0.65, (c) rd = 0.75, and (d) rd = 0.85. Yellow regions at the top reveal the
solid phase; dark regions at the bottom show the gas phase.

rd = 0.85, the solid phase is nonexistent within the explored
range of repulsions and attractions. From these observations
it follows that most practical for simulation of multiphase
systems, as well as richest in terms of the number of phenom-
ena to capture, are simulations at rd = 0.75, which has already
been widely employed in the literature, as well as 0.65.

We further investigate the stability of both phases, per-
forming simulations in multiple orthorhombic simulation cells
of varying degree of asymmetry, between 16 × 4 × 4 up to
the cubic shape, 16 × 16 × 16, and for a range of densities.
For the bcc phase, we took the configurations (A, B, rd ) =
(−100, 100, 0.75), at which the equilibrium density was
ρbcc ≈ 5.5. When setting the initial density to around 5.5, the
randomly initialized particles indeed formed a bcc lattice for
every cell box shape, implying a stable minimum.

To reproduce the hex phase, we chose the configuration
(−100, 40, 0.75) leading to the equilibrium density ρhex =
8.5. Starting again from randomly initialized positions, the
hex phase formed only when the initial density was set below
ρhex, and only in the more asymmetric cells. This suggests that
the hex phase is stabilized by the negative pressure.
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r
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3

g
(r

)

(a)

FIG. 5. (a) Radial distribution function of the bcc phase for
parameters rd = 0.75, A = −100, B = 100. (b) and (c) show lattice
visualisations of the bcc phase.

Further investigation by measuring excess chemical poten-
tial via the Widom particle insertion method [21] revealed that
the bcc phase is significantly more stable than the hex phase at
both (A,B, rd ) = (−100, 100, 0.75) and (−100, 40, 0.75).
We can hence safely conclude that the hex phase is metastable
and cannot be considered as a true bulk phase of the MDPD
force field.

Finally, to estimate the stress-strain relation of the solid
phase, we put an already solid cuboid into a larger simulation
cell. After a short simulation period, its shape became spheri-
cal. Hence, the true stress-strain relationship of the solid phase
cannot be captured by MDPD [22].

D. Liquid phase and surface tension

We now return to the examination of the liquid phase by
excluding solid and gas regions. We compute the surface
tension for each configuration as follows [23,24]:

σ = Lx

2

(
〈pxx〉 − 〈pyy〉 + 〈pzz〉

2

)
, (15)

where pββ are the diagonal components of the pressure tensor.
As in the case of density, we obtain the functional dependence
of the surface tension by fitting over the measured points
for each many-body cutoff rd. Visual observation of the cuts
through the phase diagram at constant A or B and trial of
several functions revealed that different many-body cutoffs
rd are best fit by different functions with varying number
of parameters. Table II summarizes these functions and their
coefficients. We explain the reasoning for the model selection
more fully in the Appendix.

IV. CONNECTION TO REAL LIQUIDS

Having described the phase diagram of an MDPD fluid and
determined the dependence of density and surface tension on
the force field parameters A,B, and rd, we now discuss how
these findings can be used in parametrizing real liquids. In the
standard DPD, the simulation of a pure fluid is controlled by
one parameter A > 0, and hence only one physical quantity
is needed to bridge the simulation with the experiment. Groot
and Warren chose compressibility [2], but, in principle, many
other experimental properties could be used.

In developing the parametrization for MDPD, we first
assume that rd is fixed. There remain two free parameters,
repulsion and attraction, and so two physical quantities are
needed. Having obtained functional relations for density and
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FIG. 6. Heat maps of the coordination numbers for various many-body cutoffs (a) rd = 0.55, (b) rd = 0.65, (c) rd = 0.75, which contain a
solid phase, with the lattice denoting a specific phase type.

surface tension over a wide range of configurations (A,B, rd ),
we now understand how the behavior of the liquid, gas,
or solid varies with the interparticle potential. Furthermore,
compressibility is readily available as a function of density
and (A,B, rd ) from the EOS [Eq. (8)]:

κ−1 = ρ
∂p

∂ρ
= ρ + 2αAρ2

+ 2αBr4
d (3ρ3 − 2c′ρ2 + d ′ρ) − αBr4

d

|A|1/2
2ρ2, (16)

where kBT was set to unity.
Starting from the interaction parameters in reduced units,

we can verify that the relations for density, surface tension,
and compressibility yield meaningful liquid properties. As
an example, let us take (A,B, rd ) = (−40, 25, 0.75), which
were first used by Warren to demonstrate the MDPD capabil-
ities by forming a pendant drop [10], and later by Ghoufi and
Malfeyt to prove that MDPD is capable of simulating liquid
water [11]. Using the values from Table I we obtain the den-
sity 6.09, which is almost equal to the simulation value 6.08
(also obtained by Arienti [25]). Employing the appropriate
equation and coefficients from Table II, the surface tension
is 7.01 in reduced units.

To convert these numbers into experimental values, we
need to define the reduced units. Following Groot and
Rabone’s definition of the units in standard DPD simula-
tions [26], these depend on the simulated liquid and are
based on the average volume per molecule V0, the number
of molecules in a bead (CG degree) Nm, and the target
density ρ:

rc = (ρNmV0)1/3. (17)

Having determined ρ from (A, B, rd ) and taking Nm = 3, the
length scale rc is 0.818 nm. The experimental observables are

summarized in Table III. The density in SI units is trivially
997 kg/m−3, as this is the value on which the parametrization
was based in the form of the volume per molecule V0.

To convert the compressibility and surface tension to SI
values, we first need to understand how these quantities scale
with the CG degree. Following Füchslin [27], we note that
the kBT varies linearly with Nm. Since rc ∼ N

1/3
m , it follows

that κ−1,real = κ−1kBTc/r3
c ∼ 1 is scale-invariant. However,

σ real = σkBTc/r2
c ∼ N

1/3
m . We elaborate further on these is-

sues in a different publication [28].
The resulting bulk modulus, which is the inverse of the

compressibility, is about three times the experimental value
(2.15 × 109 Pa) and the surface tension is about twice as high
as the real value for water (71.5 mN/m). Compared to more
precise, atomistically resolved water models such as SPC,
which yield about 50 mN/m [29], this is not an unreasonable
agreement, so we can say that these interaction parameters
yield meaningful, if not accurate quantities of interest. How-
ever, we now show that there is space for fine-tuning, which
would achieve considerably improved precision.

Usually, in simulating new materials, one desires to go
the opposite way, that is start from experimental data and
obtain the interaction parameters in reduced units to pre-
pare the material for simulation. Having four equations of
four unknowns for the compressibility [Eq. (16)], cutoff rc

[Eq. (17)], density ρ(A,B ) [Eq. (12)], and surface tension
σ (A,B ) (Table II), we can solve these numerically to obtain A

and B. With resolution �A = 0.1, �B = 0.1, it is possible to
search through the whole parameter space in reasonable time
and choose the configuration with the lowest absolute error
defined as follows:

Err = w

∣∣∣∣1 − σ

σL

∣∣∣∣ +
∣∣∣∣1 − κ−1

κ−1
L

∣∣∣∣, (18)

TABLE II. Fitting functions and their coefficients for the surface tension dependence on A and B.

rd Function Coefficients

0.65 (f1A
2 + f2A + f3)(B − f4 + f5A)f6 (0.0592, −4.77, −66.8, −1.62, 0.146, −0.665)

0.75 (f1A
2 + f2A)(B + f3A)f4 (0.0807, 0.526, 0.0659, −0.849)

0.85 (f1A
2 + f2A)(B − f3)f4 (0.0218, 0.591, 7.52, −0.803)
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TABLE III. Predicted physical properties of a typical MDPD
liquid with configuration (A, B, rd ) = (−40, 25, 0.75). These can
be compared to experimental values 2.15 × 109 Pa and 71.5 mN/m
for bulk modulus and surface tension, respectively.

Nm = 3 Reduced units Real units

Length scale rc 1 0.818 nm
Density 6.09 997 kg/m3

Surface tension 7.01 130 mN/m
Bulk modulus 294 6.67 × 109 Pa

where κL and σL are experimental compressibility and sur-
face tension, respectively, and parameter w = 5 was chosen
to put more weight on the contribution due to the surface
tension.

The resulting parameters A,B for water for rd = 0.75
are summarized in Table IV. At CG degrees Nm = 1 and
2 the density is relatively high, which implies poor sim-
ulation efficiency, but other options yield more reason-
able values as well as accurate liquid representations. To
demonstrate the robustness of this parametrization method,
Table V shows the interaction parameters derived for ethanol
and benzene, respectively, as examples of chemically dif-
ferent solvents. These two liquids have several times lower
surface tension (22.3 mN/m for ethanol and 28 mN/m
for benzene) and compressibility than water, which leads
to lower and thus more efficient simulation densities. The
PYTHON script to generate these parameters for any cho-
sen liquid and CG degree Nm and one of the investi-
gated many-body cutoffs rd is provided in the Supplemental
Material [30].

V. CONCLUSION

In this work we demonstrate the richness of many-body
dissipative particle dynamics and established its suitability
for simulating a wide range of mesoscale systems. By sys-
tematic variation of the force field parameters we uncover
the regions of liquid, gas, and solid phase. We identify one
thermodynamically stable solid phase with the bcc lattice,
but lacking the proper stress-strain relation. For the liquid
phase, we fitted the density and surface tension as a function
of the force field parameters and demonstrate how these

TABLE IV. Interaction parameters for water at rd = 0.75 for a
range of CG degrees derived from the fits of density, surface tension,
and compressibility.

Nm ρ A B σ real (mN/m) κ−1,real (109 Pa)

1 9.99 −18.5 3.9 71.6 2.23
2 8.63 −18.1 4.9 71.5 2.16
3 7.76 −18.2 6.0 71.5 2.19
4 7.23 −18.2 6.9 71.3 2.22
5 6.94 −18.0 7.4 71.4 2.20
6 6.70 −17.9 7.9 71.6 2.20
7 6.55 −17.7 8.2 71.5 2.18
8 6.39 −17.6 8.6 71.4 2.18
9 6.23 −17.6 9.1 71.5 2.20
10 6.12 −17.5 9.4 71.5 2.20

functional relations can serve to generate the interaction pa-
rameters for real liquids. We prove that the resulting top-down
parametrization approach yields reasonable prediction of the
force field parameters for water, ethanol, and benzene, and, in
principle, can be applied to any other liquid.

This parametrization enables to apply many-body dissipa-
tive particle dynamics to solid–liquid or liquid–gas interfaces
of soft matter systems, or porous structures in general. Hence,
previously inaccessible environments, such as the catalyst
layer of fuel cells, can now be explored [31].
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APPENDIX: FITTING

Here we describe in more detail the fitting procedure for
the densities and surface tensions as functions of interaction
parameters A,B discussed in the main paper. For all the fits,
we use the function curve_fit from the Scipy library [32].

TABLE V. Interaction parameters for ethanol and benzene at rd = 0.75 for a range of CG degrees derived from the fits of density, surface
tension, and compressibility.

Ethanol Benzene

Nm ρ A B σ real (mN/m) κ−1,real (109 Pa) Nm ρ A B σ real (mN/m) κ−1,real (109 Pa)

1 6.63 −20.9 9.7 22.3 0.84 1 6.17 −33.2 19.6 28.0 1.05
2 5.86 −20.3 12.4 22.3 0.84 2 5.48 −32.3 25.2 28.0 1.05
3 5.49 −19.9 14.2 22.3 0.85 3 5.18 −28.3 28.3 28.0 1.05
4 5.31 −19.5 15.2 22.3 0.84 4 5.00 −30.7 30.7 28.0 1.05
5 5.16 −19.2 16.1 22.3 0.84 5 4.87 −32.6 32.6 28.0 1.05
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FIG. 7. Example density surface cuts at rd = 0.75 (in reduced
units), suggesting linear and power law variation with A and B,
respectively.

1. Density profiles

By visually inspecting the cuts of the density surface
ρ(A,B ) it is possible to guess several trial functions. At
constant B, the density varies linearly in the liquid and solid
regime for A < −20, whereas at constant A, the variation
follows the power law: (B − β1)β2 . Example cuts are shown
in Fig. 7.

We applied two versions of the fitting function, composed
as the linear combination of the line and the power law, one
containing three and the other four parameters. To gauge
their relative performance, we randomly split the data into
training and validation sets with 80/20 ratio, respectively. We
carried out 500 such splits and estimated the average root-
mean-square error (RMSE) in the validation set. For further
certainty, we also computed the median RMSE to verify that
the distribution of the RMSEs is normal. This turned out to
be the the case, which was marked by the similar values of
median and average RMSE.

The results shown in Table VI reliably conclude that the
four-parameter fit performs better for all of the many-body
cutoffs rd. However, considering the similarity of the RMSEs
and the fact that later, in Sec. IV of the paper, we would
use this fit for deriving the interaction parameters A,B via
minimization, we decided to proceed with the three-parameter
fit. The parameters for each of the explored values of rd are
summarized in Table I.

2. Surface tension profiles

Visual inspection of the surface tension as a function of
A,B (Fig. 8) suggested further candidates for fitting func-

TABLE VI. Attempted fitting functions for density ρ(A,B ) and
their respective average RMSEs vs rd’s.

Avg RMSE (rd)

ρ(A,B ) Nparam 0.65 0.75 0.85

1. c1 + c2(−A)(B − c3)c4 4 0.20 0.16 0.13
2. c1 + c2(−A)Bc3 3 0.21 0.18 0.16
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FIG. 8. Examples of surface tension surface cuts for rd = 0.75
(in reduced units).

tions. The cuts at constant B seemed to indicate a quadratic
dependence on A, whereas the cuts at constant A gave a power
law, as in case of density.

We tried ten linear combinations of these two functions.
In each case, we follow the protocol outlined above: splitting
the data 500 times into training and validation sets with
80/20 ratio, and for each split fitting on the training set and
computing the RMSE on the points from the validation set.

The average and median RMSEs showed a nonnegligible
difference. In such a case, we considered the median to be a
more appropriate measure of the quality of a fitting function.
The trial fitting functions and their respective median RMSEs
are summarized in Table VII. Each rd is best represented by a
different function. Deciding between functions with very sim-
ilar values of median RMSEs, which happened at rd = 0.85,
we chose the one with the lower number of parameters. The
resulting function choices for each value of rd are summarized
in Table II.

TABLE VII. Attempted fitting functions for surface tension
σ (A,B ) and their respective median RMSEs vs rd. The numbers
in bold point at the best-fitting functions given the number of
parameters.

Median
RMSE (rd)

σ (A,B ) Nparam 0.65 0.75 0.85

1. (c1A
2 + c2A + c3)(B − c4)c5 5 3.64 1.80 0.34

2. (c1A
2 + c2A + c3)(B − c4 + c5A)c6 6 2.09 NA 0.34

3. (c1A
2 + c2A + c3)(B − c4)c5+c6A 6 3.76 1.66 0.33

4. (c1A
2 + c2A)(B − c3)c4 4 3.65 1.76 0.34

5. (c1A
2 + c2)(B − c3)c4 4 3.65 1.67 0.39

6. (c1A
3 + c2A

2 + c3A + c4)(B − c5)c6 6 3.39 1.90 0.34
7. (c1A

3 + c2A
2 + c3A)(B − c4)c5 5 3.49 1.86 0.34

8. (c1A
2 + c2A)Bc3 3 3.91 1.74 0.51

9. (c1A
2 + c2A + c3)Bc4 4 3.88 1.78 0.51

10. (c1A
2 + c2A)(B + c3A)c4 4 2.33 1.47 0.43
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