
Web Appendix

A1 Sample software code

We provide sample code written in R to perform the analyses described in this pa-

per. The associations of the genetic variants with the risk factors are denoted bXk

with standard error bXk se, where k = 1, ..., K. The associations of the genetic

variants with the outcome are denoted bY with standard error bYse. The code for

the multivariable models will be based on three risk factors and can be easily adapted

to include the appropriate number of risk factors. It will be assumed that the causal

effect of risk factor 1 on the outcome is of primary interest and all the genetic variants

are uncorrelated.

Inverse-variance weighted estimate:

The inverse-variance weighted (IVW) estimate using summary statistics (equation 2)

can be calculated by:

thetaUI = sum(bY*bX1*bYse^-2)/sum(bX1^2*bYse^-2)

se_thetaUI = 1/sqrt(sum(bX1^2*bYse^-2))

The same IVW estimate using summary statistics can be obtained using weighted

linear regression (equation 3):

thetaUI = summary(lm(bY~bX1-1, weights=bYse^-2))$coef[1]

se_thetaUI.fixed = summary(lm(bY~bX1-1, weights=bYse^-2))$coef[1,2]/

summary(lm(bY~bX1-1, weights=bYse^-2))$sigma

se_thetaUI.random = summary(lm(bY~bX1-1, weights=bYse^-2))$coef[1,2]/

min(summary(lm(bY~bX1-1, weights=bYse^-2))$sigma,1)

In the fixed-effect model we divide the standard error of the causal estimate by

the estimated residual standard error to force the residual standard error to be 1.

For the multiplicative random-effect model the standard error is divided by the esti-

mated residual standard error when the variability in the genetic associations is less

than expected by chance (underdispersion). When there is evidence of heterogeneity

between the causal estimates (overdispersion) the standard error is unaltered. The

multiplicative random-effects model will result in a larger standard error compared

to the fixed-effect model if there is heterogeneity between the causal estimates. The

causal estimate obtained from the fixed- and multiplicative random-effects models will

be the same.

29



Univariable MR-Egger:

The univariable MR-Egger method is the same as the IVW method using weighted

linear regression except the intercept term is estimated rather than being set to zero.

Testing whether the intercept term is equal to zero is equivalent to testing for direc-

tional pleiotropy and the validity of the InSIDE assumption. The genetic associations

with the risk factor bX1 and outcome bY must be orientated with respect to the risk

increasing or decreasing allele of the risk factor. Under the MR-Egger model, mul-

tiplicative random-effects should be used as the presence of pleiotropy will lead to

overdispersion. Since the residual standard error is estimated, we use the t-distribution

with J − 2 degrees of freedom for inference.

#Orientation of the genetic associations

bY<-ifelse(bX1>0, bY, bY*-1)

bX1<-abs(bX1)

#Causal estimate

thetaUE = summary(lm(bY~bX1, weights=bYse^-2))$coef[2]

se_thetaUE.random = summary(lm(bY~bX1, weights=bYse^-2))$coef[2,2]/

min(summary(lm(bY~bX1, weights=bYse^-2))$sigma,1)

lb_thetaUE = thetaUE - qt(0.975,df=length(bX1)-2)*se_thetaUE.random

ub_thetaUE = thetaUE + qt(0.975,df=length(bX1)-2)*se_thetaUE.random

p_thetaUE = 2*(1-pt(abs(thetaUE/se_thetaUE.random),df=length(bX1)-2))

#Test for directional pleiotropy

interUE = summary(lm(bY~bX1, weights=bYse^-2))$coef[1]

se_interUE.random = summary(lm(bY~bX1, weights=bYse^-2))$coef[1,2]/

min(summary(lm(bY~bX1, weights=bYse^-2))$sigma,1)

p_interUE = 2*(1-pt(abs(interUE/se_interUE.random),df=length(bX1)-2))

Multivariable IVW:

The multivariable IVW method expands the IVW method using weighted linear re-

gression by estimating the causal effects of the additional risk factors on the outcome.

We will include additional two risk factors and assume the causal estimate of interest is

the effect of risk factor 1 on the outcome. Either fixed- or multiplicative random-effects

can be used to estimate the standard error of the causal effect.

theta1MI = summary(lm(bY~bX1+bX2+bX3-1, weights=bYse^-2))$coef[1]

se_theta1MI.fixed = summary(lm(bY~bX1+bX2+bX3-1, weights=bYse^-2))$coef[1,2]/

summary(lm(bY~bX1+bX2+bX3-1, weights=bYse^-2))$sigma

se_theta1MI.random = summary(lm(bY~bX1+bX2+bX3-1, weights=bYse^-2))$coef[1,2]/

min(summary(lm(bY~bX1+bX2+bX3-1, weights=bYse^-2))$sigma,1)

Multivariable MR-Egger:

The multivariable MR-Egger method is equivalent to the multivariable IVW method

using weighted linear regression except the intercept is estimated rather than being

set to zero. Testing whether the intercept term is equal to zero is equivalent to testing
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for directional pleiotropy and the validity of the InSIDE assumption. As with uni-

variable MR-Egger, the standard errors should be calculated from the multiplicative

random-effects model. The genetic associations should be orientated with respect to

the risk increasing or decreasing allele of the risk factor of interest. In this sample

code we will assume the causal effect of risk factor 1 is of primary interest. Since the

residual standard error is estimated for the multivariable MR-Egger model we use the

t-distribution with J − (K + 1) degrees of freedom for inference.

#Orientation of the genetic associations with respect to X1

clist<-c("bX2","bX3","bY")

for (var in clist){

eval(parse(text=paste0(var,"<-ifelse(bX1>0,",var,",",var,"*-1)")))

}

bX1<-abs(bX1)

#Causal estimate for X1

theta1ME = summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$coef[2]

se_theta1ME.random = summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$coef[2,2]/

min(summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$sigma,1)

lb_theta1ME = theta1ME - qt(0.975,df=length(bX1)-4)*se_theta1ME.random

ub_theta1ME = theta1ME + qt(0.975,df=length(bX1)-4)*se_theta1ME.random

p_theta1ME = 2*(1-pt(abs(theta1ME/se_theta1ME.random),df=length(bX1)-4))

#Test for directional pleiotropy

interME = summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$coef[1]

se_interME.random = summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$coef[1,2]/

min(summary(lm(bY~bX1+bX2+bX3, weights=bYse^-2))$sigma,1)

p_interME = 2*(1-pt(abs(interME/se_interME.random),df=length(bX1)-4))

31



A2 Comparison between the precision of the causal

estimates from univariable and multivariable

MR-Egger

In this section, we compare the precision of the causal estimates from the univariable

(θ̂1UE) and multivariable (θ̂1ME) MR-Egger models. For the multivariable model, we

consider the genetic associations βXk
with two risk factors (k = 2), where the variance

of the multivariable MR-Egger estimate θ̂1ME is given by:

var(θ̂1ME) =
φ2 var(βX2)

N(var(βX1) var(βX2)− cov(βX1 ,βX2)2)

∝ [var(βX1)(1− cor(βX1 ,βX2)2)]−1 (1)

Under a fixed-effect model, the variance of the univariable MR-Egger estimate is

proportional to the inverse of var(βX1).1 The estimate from the multivariable MR-

Egger model θ̂1ME will be more precise than its univariable counterpart θ̂1UE if:

1

var(βX1)
>

1

var(βX1)(1− cor(βX1 ,βX2)2)
(2)

From the above inequality, θ̂1UE will always be more precise than θ̂1ME when βX1 and

βX2 are correlated. Under a multiplicative random-effects model (used throughout this

paper), the variance of the residual error is estimated under the univariable MR-Egger

model (φ2
UE) and the multivariable MR-Egger model (φ2

ME). For θ̂1ME to be more

precise than θ̂1UE, we require:

φ2
UE

var(βX1)
>

φ2
ME

var(βX1)(1− cor(βX1 ,βX2)2)
(3)

If βX2 explains additional independent variability in the genetic associations with the

outcome βY , and βX1 and βX2 are independent, then the estimate from multivariable

MR-Egger will be more precise than the estimate from univariable MR-Egger. If βX1

and βX2 are correlated, then the precision of θ̂1ME will depend upon the strength

of the correlation between βX1 and βX2 , and the amount of additional independent

variability βX2 explains in βY . As the correlation between βX1 and βX2 increases,

and βX2 explains no additional independent variability in βY , the precision of the

multivariable MR-Egger estimate θ̂1ME will decrease.
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A3 Summary statistics from the simulation study

The IVW and MR-Egger methods do not account for uncertainty in the genetic asso-

ciations with the risk factor, referred to by Bowden et al as NO Measurement Error

(NOME).1 If there is substantial uncertainty in these association estimates and in a

two-sample setting, the causal effect estimate from univariable MR-Egger may be bi-

ased towards the null. Bowden et al have shown that the relative attenuation in the

MR-Egger estimate is approximately equal to the I2 statistic from the meta-analysis

of the weighted associations with the exposure β̂Xj se(β̂Y j)
−1, with standard errors

se(β̂Xj) se(β̂Y j)
−1.1 The I2 statistic lies between 0 and 1, with smaller values corre-

sponding to more biased MR-Egger estimates. If the I2 statistic is close to 1, then

there should be little or no attenuation of the causal estimate from the univariable MR-

Egger method. Bowden et al recommend that methods to account for this uncertainty

be considered if the I2 statistic is less than 90%.1

The F-statistic is often reported in Mendelian randomization studies as a mea-

surement of the strength of the instrumental variables, with larger values represent-

ing stronger instruments. For a two-sample Mendelian randomization analysis with

summarized data, the F-statistic for each genetic variant j can be approximated by

Fj = β̂2
Xj
/ se(β̂Xj

)2. We use this approximation below.

The data-generating model used in the simulation study did not provide the stan-

dard errors of the genetic associations with the three risk factors se(β̂Xk
), as they

were not required for the methods considered. To estimate the mean values of the

F-statistics and I2 statistics, we must make assumptions about the values of these

standard errors. We assume that the genetic associations with the risk factors are

provided on the standard deviation scale. If the associations were estimated from a

sample size of 10 000, this results in a standard error of 0.01. Assuming that the stan-

dard errors of the genetic associations with the three risk factors are 0.01 across the

185 genetic variants, we obtain the mean F-statistics and I2 statistics displayed in Ta-

ble A1 and Table A2. The I2 statistics (reported as a %) are close to 100% across the

different scenarios. These results are consistent with the simulation study where the

causal estimates from the univariable and multivariable MR-Egger methods showed no

attenuation towards the null.
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Table A1: Mean F-statistic and I2 statistic (reported as a %) for a null (θ1 = 0) and positive (θ1 = 0.3)
causal effect where βXk are generated independently for all k.

β̂X1j β̂X2j β̂X3j

F-statistic I2 statistic F-statistic I2 statistic F-statistic I2 statistic

Null causal effect: θ1 = 0
1. No pleiotropy, InSIDE satisfied

363.3 99.5 208.8 99.2 425.7 99.6

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 364.3 99.5 209.1 99.2 425.6 99.6

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 364.4 99.5 208.9 99.2 425.6 99.6

α′j ∼ N (0.05,0.004) 363.5 99.5 209.6 99.2 424.9 99.6

α′j ∼ N (0.1,0.004) 364.0 99.5 209.2 99.2 425.5 99.6

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 364.1 99.5 208.8 99.2 425.4 99.6

α′j ∼ N (0.05,0.004) 364.4 99.5 208.7 99.2 425.4 99.6

α′j ∼ N (0.1,0.004) 363.8 99.5 209.1 99.2 425.1 99.6

Positive causal effect: θ1 = 0.3
1. No pleiotropy, InSIDE satisfied

363.9 99.5 209.2 99.2 424.7 99.6

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 363.7 99.5 209.1 99.2 425.0 99.6

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 364.1 99.5 209.0 99.2 425.2 99.6

α′j ∼ N (0.05,0.004) 364.3 99.5 208.6 99.2 425.5 99.6

α′j ∼ N (0.1,0.004) 363.8 99.5 209.1 99.2 424.7 99.6

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 363.6 99.5 209.1 99.2 424.8 99.6

α′j ∼ N (0.05,0.004) 364.6 99.5 208.9 99.2 424.8 99.6

α′j ∼ N (0.1,0.004) 364.0 99.5 208.9 99.2 425.9 99.6
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Table A2: Mean F-statistic and I2 statistic (reported as a %) for a null (θ1 = 0) and positive (θ1 = 0.3)
causal effect with βXk being correlated for all k.

β̂X1j β̂X2j β̂X3j

F-statistic I2 statistic F-statistic I2 statistic F-statistic I2 statistic

Null causal effect: θ1 = 0
1. No pleiotropy, InSIDE satisfied

364.1 99.5 208.5 99.2 424.5 99.6

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 363.8 99.5 209.4 99.2 424.4 99.6

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 363.5 99.5 208.8 99.2 424.6 99.6

α′j ∼ N (0.05,0.004) 364.3 99.5 209.0 99.2 425.1 99.6

α′j ∼ N (0.1,0.004) 364.3 99.5 208.9 99.2 424.7 99.6

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 364.0 99.5 208.9 99.2 425.0 99.6

α′j ∼ N (0.05,0.004) 364.0 99.5 209.4 99.2 425.2 99.6

α′j ∼ N (0.1,0.004) 364.3 99.5 209.1 99.2 425.2 99.6

Positive causal effect: θ1 = 0.3
1. No pleiotropy, InSIDE satisfied

364.0 99.5 208.9 99.2 425.2 99.6

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 364.0 99.5 208.8 99.2 425.1 99.6

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 363.5 99.5 209.1 99.2 425.5 99.6

α′j ∼ N (0.05,0.004) 363.9 99.5 209.1 99.2 424.6 99.6

α′j ∼ N (0.1,0.004) 364.0 99.5 209.1 99.2 425.8 99.6

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 364.1 99.5 208.8 99.2 425.3 99.6

α′j ∼ N (0.05,0.004) 364.7 99.5 208.8 99.2 425.4 99.6

α′j ∼ N (0.1,0.004) 363.7 99.5 208.9 99.2 424.5 99.6
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A4 Details and results from the simulation study

investigating causal relationships between risk

factors

To investigate the behaviour of the multivariable MR-Egger method when causal rela-

tionships between risk factors exist, additional simulations were performed where X2

was causally dependent on X1. We assume that X2 is causally dependent on X1, and

the causal effect of X1 on X2 is γ. The total causal effect of X1 on Y is θ1 + γθ2;

consisting of the direct effect (θ1) and the indirect effect via X2 (γθ2). The simulations

outlined in Section 4 were repeated with the second line in the data generating model

replaced with:

βYj = α′j + θ1|βX1j
|+ θ2(βX2j

+ γ|βX1j
|) + θ3βX3j

+ εj (4)

The causal effect of X1 on X2 (γ) was set to 0.5. All other parameters were taken as

in the original simulation study. |βX1j
|, (βX2j

+ γ|βX1j
|), and βX3j

were the covariates

included in the multivariable IVW and multivariable MR-Egger models. Note that the

functional relationship between X1 and X2 induces a correlation structure between the

covariates |βX1j
| and (βX2j

+ γ|βX1j
|) included in the multivariable models, even when

βX1 and βX2 are generated independently. To account for the additional uncertainty in

βYj , the weights for univariable MR-Egger are given by equation 5, while the weights

for multivariable IVW and multivariable MR-Egger were the same as the original

simulation study (equation 15).

se(βYj)
−2 = (εj

2 + σα′
2 + θ2

2σ2
2 + (θ2γ)2σ1

2 + 2θ2γρ12σ1σ2 + θ3
2σ3

2)
−1

(5)

Results

The results from the simulations that included a causal relationship between X1 and

X2, using 10 000 simulated datasets, are presented in Web Table A3 (βXk
generated

independently, with the functional relationship between X1 and X2 inducing a correla-

tion structure between |βX1j
| and (βX2j

+γ|βX1j
|)) and Web Table A4 (βXk

correlated).

βXk
generated independently, with a correlation structure between the

covariates |βX1j
| and (βX2j

+ γ|βX1j
|): In scenarios where there was no bias in the

original set of simulations, the multivariable IVW and multivariable MR-Egger meth-

ods consistently estimated the direct effect of X1 on Y (θ1), whilst the univariable

MR-Egger method consistently estimated the total causal effect of X1 on Y (θ1 +γθ2).
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Bias for the multivariable IVW method was present in scenarios 3 and 4 only, as in

the original simulation study (Tables 3 and 4). Compared to the results in Table 3,

precision and power to detect a causal effect were reduced for the multivariable IVW

and multivariable MR-Egger methods. This reduction in power may be due to the

correlation structure between |βX1j
| and (βX2j

+γ|βX1j
|), and the multivariable models

conditioning on a mediator. Univariable and multivariable MR-Egger methods pro-

duced biased estimates of the total and direct causal effects in scenario 4 (InSIDE

violated) only. Unlike the original simulation study, precision and power to detect a

causal effect were always better for the univariable MR-Egger method.

βXk
correlated: The multivariable IVW and multivariable MR-Egger methods

estimated the direct effect of X1 on Y , as in the independently generated setting. As

with the original simulations (Tables 3 and 4), the InSIDE assumption for univariable

MR-Egger was violated for all four scenarios, resulting in biased point estimates. How-

ever, as with the original simulation study, the multivariable InSIDE assumption was

satisfied for scenarios 1,2 and 3, and so causal estimates from multivariable MR-Egger

were unbiased. There was a more noticeable reduction in the precision and power to

detect a causal effect for the multivariable IVW and multivariable MR-Egger methods

under the correlated setting.
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Table A3: Performance of multivariable IVW, univariable MR-Egger and multivariable MR-Egger
with respect to θ̂1 for a null (θ1 = 0) and positive (θ1 = 0.3) causal effect where βXk are generated
independently for all k (with a correlation structure between the covariates |βX1j

| and (βX2j
+γ|βX1j

|)),
with a causal effect of X1 on X2 (γ = 0.5). All tests were performed at the 5% level of significance.

Multivariable IVW Univariable MR-Egger Multivariable MR-Egger

Mean θ̂1 Power, Mean θ̂1 Power, % Mean θ̂1 Power, %
(mean SE) % (mean SE) Intercept Causal (mean SE) Intercept Causal

Null causal effect: θ1 = 0
1. No pleiotropy, InSIDE satisfied

0.000 (0.057) 3.5 0.051 (0.158) 8.9 5.8 0.001 (0.090) 4.5 4.2

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 0.001 (0.127) 4.4 0.049 (0.187) 7.6 5.6 0.001 (0.178) 4.6 4.2

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 0.041 (0.127) 6.0 0.049 (0.187) 12.3 5.4 0.000 (0.178) 5.8 4.8

α′j ∼ N (0.05,0.004) 0.195 (0.128) 34.4 0.048 (0.187) 50.1 5.3 -0.001 (0.178) 36.6 4.6

α′j ∼ N (0.1,0.004) 0.393 (0.130) 82.3 0.052 (0.187) 91.4 5.6 0.002 (0.178) 88.4 4.7

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 0.076 (0.127) 9.8 0.138 (0.187) 6.4 11.6 0.088 (0.178) 4.3 7.6

α′j ∼ N (0.05,0.004) 0.231 (0.127) 45.2 0.137 (0.187) 34.4 11.9 0.088 (0.178) 21.7 8.2

α′j ∼ N (0.1,0.004) 0.426 (0.129) 88.3 0.141 (0.187) 83.7 11.9 0.089 (0.178) 78.2 8.1

Positive causal effect: θ1 = 0.3
1. No pleiotropy, InSIDE satisfied

0.301 (0.057) 96.3 0.353 (0.158) 9.3 62.3 0.301 (0.090) 3.9 84.6

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 0.298 (0.127) 65.4 0.350 (0.187) 7.4 47.8 0.298 (0.178) 4.4 41.2

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 0.338 (0.127) 75.5 0.352 (0.187) 11.8 48.3 0.300 (0.178) 6.1 41.1

α′j ∼ N (0.05,0.004) 0.494 (0.128) 95.2 0.348 (0.188) 49.2 46.9 0.298 (0.179) 36.8 40.3

α′j ∼ N (0.1,0.004) 0.689 (0.130) 99.6 0.347 (0.188) 91.5 47.1 0.296 (0.178) 88.2 39.6

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 0.375 (0.127) 82.6 0.440 (0.187) 6.6 65.7 0.390 (0.178) 4.7 60.1

α′j ∼ N (0.05,0.004) 0.530 (0.128) 97.0 0.438 (0.187) 34.7 65.5 0.386 (0.178) 21.7 59.9

α′j ∼ N (0.1,0.004) 0.728 (0.129) 99.7 0.441 (0.187) 83.6 65.8 0.390 (0.178) 78.5 60.1

Abbreviations: MR, Mendelian randomization; SE, standard error; IVW, inverse-variance weighted;
InSIDE, Instrument Strength Independent of Direct Effect.
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Table A4: Performance of multivariable IVW, univariable MR-Egger and multivariable MR-Egger
with βXk being correlated for all k, and a causal effect of X1 on X2

Multivariable IVW Univariable MR-Egger Multivariable MR-Egger

Mean θ̂1 Power, Mean θ̂1 Power, % Mean θ̂1 Power, %
(mean SE) % (mean SE) Intercept Causal (mean SE) Intercept Causal

Null causal effect: θ1 = 0
1. No pleiotropy, InSIDE satisfied

0.000 (0.062) 4.1 0.146 (0.158) 3.9 15.6 0.000 (0.097) 4.0 4.0

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 0.000 (0.137) 4.5 0.146 (0.188) 4.1 11.9 0.000 (0.190) 4.6 4.7

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 0.041 (0.137) 5.7 0.151 (0.187) 5.4 12.8 0.003 (0.189) 5.7 4.4

α′j ∼ N (0.05,0.004) 0.209 (0.138) 34.2 0.148 (0.187) 32.8 12.6 0.000 (0.190) 36.9 4.7

α′j ∼ N (0.1,0.004) 0.422 (0.140) 82.2 0.151 (0.188) 83.0 12.9 0.004 (0.190) 89.0 4.8

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 0.053 (0.137) 6.2 0.235 (0.188) 4.3 25.7 0.069 (0.189) 4.9 6.4

α′j ∼ N (0.05,0.004) 0.218 (0.137) 37.2 0.235 (0.188) 20.3 26.4 0.067 (0.189) 21.8 6.7

α′j ∼ N (0.1,0.004) 0.429 (0.139) 84.3 0.238 (0.188) 71.3 26.7 0.071 (0.189) 79.2 6.6

Positive causal effect: θ1 = 0.3
1. No pleiotropy, InSIDE satisfied

0.299 (0.062) 94.7 0.446 (0.158) 4.1 79.7 0.300 (0.096) 4.0 81.3

2. Balanced pleiotropy, InSIDE satisfied

α′j ∼ N (0,0.004) 0.301 (0.137) 60.5 0.445 (0.187) 4.5 66.6 0.300 (0.189) 4.6 37.0

3. Directional pleiotropy, InSIDE satisfied

α′j ∼ N (0.01,0.004) 0.339 (0.137) 69.9 0.443 (0.188) 5.7 66.1 0.296 (0.190) 6.0 36.1

α′j ∼ N (0.05,0.004) 0.510 (0.138) 94.2 0.449 (0.188) 32.6 67.7 0.302 (0.190) 37.3 37.2

α′j ∼ N (0.1,0.004) 0.715 (0.140) 99.2 0.445 (0.187) 83.4 66.9 0.298 (0.189) 89.4 36.8

4. Directional pleiotropy, InSIDE violated

α′j ∼ N (0.01,0.004) 0.353 (0.137) 73.1 0.534 (0.188) 4.4 79.4 0.367 (0.189) 4.6 50.6

α′j ∼ N (0.05,0.004) 0.519 (0.138) 95.1 0.534 (0.188) 20.3 79.6 0.366 (0.190) 21.7 50.5

α′j ∼ N (0.1,0.004) 0.728 (0.139) 99.5 0.533 (0.188) 72.5 79.6 0.368 (0.189) 80.1 51.0

Abbreviations: MR, Mendelian randomization; SE, standard error; IVW, inverse-variance weighted;
InSIDE, Instrument Strength Independent of Direct Effect.
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A5 Correlated genetic variants

The methods discussed in this article have assumed that the genetic variants are un-

correlated (not in linkage disequilibrium). There may, however, be cases where using

multiple correlated variants from the same gene region will be more efficient than using

uncorrelated variants from different gene regions.2 If the genetic variants are in par-

tial linkage disequilibrium, and each variant explains independent variation in the risk

factor, then the inclusion of these variants will increase the power of the MR study.

The precision of a MR study will not increase, however, if the variants are perfectly

correlated.

If correlated variants are included in an MR study, using summarized level data, the

analysis should account for the correlation structure of the variants. If the correlation

of the variants is not taken into consideration, the causal estimate will be too precise

and this may lead to inappropriate inferences. To account for the correlation between

the genetic variants for the univariable and multivariable IVW methods, we can use

generalized weighted linear regression of the genetic associations, where the correlations

of the variants are included in the weighting matrix, with the intercept set to zero.2,3

If Ωst = se(β̂Ys) se(β̂Yt)ρst, where ρst is the correlation between variants s and t,

then the causal estimate from a weighted generalised linear regression for univariable

MR is:

θ̂UIC = (β̂TXj
Ω−1β̂Xj

)−1β̂TXj
Ω−1β̂Yj (6)

with the standard error of the causal estimate:

θ̂UIC =
√

(β̂TXj
Ω−1β̂Xj

)−1 (7)

Whilst the univariable MR-Egger estimates can be obtained by fitting the same general-

ized weighted linear regression model, but allowing the intercept term to be estimated,

the effect of using correlated genetic variants in the univariable MR-Egger method has

not been considered in detail. Further investigation into the impact correlated vari-

ants may have on the interpretation of the direct effect, and the InSIDE assumption,

must be considered at the univariable level first, and then expanded to multivariable

MR-Egger.
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