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Introduction
In biology, the localisation of a protein to its intended

sub-cellular niche is a necessary condition for it to assume

its biological function. Indeed, the localisation of a pro-

tein will determine its specific biochemical environment

and its unique set of interaction partners. As a result, the

same protein can assume different functions in different

biological contexts. Protein mis-localisations can lead to

adverse effects and have been implicated in multiple

diseases 23,5,24].

Spatial proteomics is the systematic and high-through-

put study of protein sub-cellular localisation. A wide

range of techniques (reviewed in 10,26]) and computa-

tional methods [11a] have been documented, that con-

fidently infer the localisation of thousands of proteins.

Most techniques rely on some form of sub-cellular

separation, many employing differential centrifugation

or separation along density gradients, and the subse-

quent quantitative assessment of relative protein occu-

pancy profiles in these sub-cellular fractions. Recipro-

cally, a broad array of computational methods have

been applied, ranging from unsupervised learning e.

g. clustering [28] and dimensionality reduction, and

supervised learning such as classification (reviewed in

[11a]), semi-supervised learning and novelty detection

[2] and, more recently, transfer learning [3] and Bayes-

ian modelling [6].

Despite these advances, there has been a surprising lack

of discussion in the community as to what constitutes a

reliable spatial proteomics experiment, i.e a dataset that
www.sciencedirect.com 
generates confident protein localisation results. It is how-

ever implicit that reliability and trust in the results is

dependent on adequate sub-cellular resolution, i.e. enough
separation between the different sub-cellular niches

being studied to be able to confidently discern protein

profiles originating from different sub-cellular niches.

There are however currently no tools that enable esti-

mating whether an experiment has been adequately

resolved, and that would help data producers and con-

sumers, to assess the adequacy of a dataset.

The importance of adequate sub-cellular resolution

reaches beyond the generation of reliable static spatial

maps. It is a necessary property of the data to consider

tackling more subtle sub-cellular patterns such as multi-

and trans-localisation, i.e. the localisation of proteins in

multiple sub-cellular niches and the relocation of proteins

upon perturbation [11a].

In this work, we first describe how to understand and

interpret widely used dimensionality reduction methods

and visualise spatial proteomics data to critically assess

their resolution. We then propose a simple, yet effective

method, to quantitatively measure sub-cellular resolution

and compare it across different experiments. We intro-

duce QSep, a tool to assess the resolution of sub-cellular

niches within spatial proteomics experiments, giving a

metric of success of desired sub-cellular separations. Our

approach fills an important gap in analysis of spatial

proteomics data and will be useful to spatial proteomics

practitioners to (1) assess the sub-cellular resolution of

their experiments, (2) compare it to similar studies, (3)

help set up and optimise their experiments, and addition-

ally (4) to aid biologists in critically assessing spatial

proteomics studies and their claims.

All the data and software used in this work are available in

the pRoloc and pRolocdata packages [11b]. The code

to reproduce all results and figures presented here is

available in the source of the reproducible document,

available in the manuscript’s public repository [9] avail-

able at https://github.com/lgatto/QSep-manuscript/.

Spatial proteomics datasets
For this meta-analysis, we make use of 29 spatial proteo-

mics datasets, summarised in Table 1. These data repre-

sent a diverse range of species, sample types, instruments

and quantification methodologies.

We have applied minimal post-processing to the data

and have used, as far as possible, the data and
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Table 1

Summary of the datasets used in this study. The percentage of variance along the principal components (PC) is related to the PCA plots in

Figure 14. All datasets are available in the pRolocdata package.

Data Proteins Fractions Clusters PC var (%) Title

hyperLOPIT2015 5032 20 14 72.26 Protein and PMS-level hyperLOPIT datasets on Mouse E14TG2a

embryonic stem cells from Christoforou et al. (2016). [4]

hyperLOPIT2015ms2 7114 10 14 74.72 Protein and PMS-level hyperLOPIT datasets on Mouse E14TG2a

embryonic stem cells from Christoforou et al. (2016). [4]

HEK293T2011 1371 8 12 65.04 LOPIT experiment on Human Embryonic Kidney fibroblast HEK293T

cells from Breckels et al. (2013) [2]

hirst2018 2046 15 12 82.50 Data from Hirst et al. 2018 [14]

hyperLOPITU2OS2017 5020 40 12 63.29 2017 and 2018 hyperLOPIT on U2OS cells [27] (all fractions)

hyperLOPITU2OS2017b 5020 37 12 67.68 2017 and 2018 hyperLOPIT on U2OS cells [27] (cleaned)

itzhak2016stcSILAC 5265 30 12 70.61 Data from Itzhak et al. (2016) [16]

itzhak2017 9201 30 12 31.39 Data from Itzhak et al. 2017 [17]

rodriguez2012r1 2215 11 12 38.95 Spatial proteomics of human inducible goblet-like LS174T cells from

Rodriguez-Pineiro et al. (2012) [22]

tan2009r1 888 4 11 88.49 LOPIT data from Tan et al. (2009) [25]

E14TG2aS1 1109 8 10 65.98 LOPIT experiment on Mouse E14TG2a Embryonic Stem Cells from

Breckels et al. (2016) [3]

trotter2010 347 16 10 81.14 LOPIT data sets used in Trotter et al. (2010) [29]

beltran2016HCMV120 2045 6 9 79.36 Data from Beltran et al. 2016 [18] HCMV infection, 120 hpi (hours

post-infection)

beltran2016HCMV24 2196 6 9 77.18 Data from Beltran et al. 2016 [18] HCMV infection, 24 hpi

beltran2016HCMV48 2206 6 9 74.95 Data from Beltran et al. 2016 [18] HCMV infection, 48 hpi

beltran2016HCMV72 2062 6 9 75.32 Data from Beltran et al. 2016 [18] HCMV infection, 72 hpi

beltran2016HCMV96 1868 6 9 76.59 Data from Beltran et al. 2016 [18] HCMV infection, 96 hpi

beltran2016MOCK120 1757 6 9 71.84 Data from Beltran et al. 2016 [18] MOCK, 120 hpi

beltran2016MOCK24 2220 6 9 80.12 Data from Beltran et al. 2016 [18] MOCK, 24 hpi

beltran2016MOCK48 2181 6 9 68.90 Data from Beltran et al. 2016 [18] MOCK, 48 hpi

beltran2016MOCK72 2161 6 9 68.83 Data from Beltran et al. 2016 [18] MOCK, 72 hpi

beltran2016MOCK96 1748 6 9 73.24 Data from Beltran et al. 2016 [18] MOCK, 96 hpi

dunkley2006 689 16 9 86.70 LOPIT data from Dunkley et al. (2006) [7]

foster2006 1555 26 8 53.13 PCP data from Foster et al. (2006) [8]

nikolovski2014 1385 20 8 67.97 LOPIMS data from Nikolovski et al. (2014) [21]

groen2014cmb 424 18 7 64.30 LOPIT experiments on Arabidopsis thaliana roots, from Groen et al.

(2014) [12]

nikolovski2012imp 1385 32 7 77.82 Meta-analysis from Nikolovski et al. (2012) [20]

andreyev2010rest 2642 36 6 25.39 Six sub-cellular fraction data from mouse macrophage-like

RAW264.7 cells from Andreyev et al. (2009) [1]

hall2009 1090 16 5 63.45 LOPIT data from Hall et al. (2009) [13]
annotation provided by the original authors. The

data from Foster et al. [8] have been annotated using

the curated marker list from Christoforou et al. [4], as

only a limited number of markers were provided by the

authors.1 Marker proteins are well-known and

trusted, generally manually curated residents of sub-

cellular niches, for the species and condition of interest,

and are used to annotate the spatial proteomics experi-

ment. These annotations are then used for visualisation

and quality control (see Section ‘Dimensionality reduc-

tion and visualisation’) and supervised machine

learning.

We have also only considered sub-cellular niches (also

referred to as protein clusters, or clusters) that were
1 This results from the fact that they used a simple distance measure-

ment, termed x2, against very few markers to base their sub-cellular

localisation prediction.
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defined by at least 7 protein markers.2 Where studies

include multiple replicated experiments, we used the

combined dataset, rather than using the individual repli-

cates, as combining data often leads to better sub-cellular

resolution [29]. In addition, for dimensionality reduction

and visualisation, we have systematically replaced miss-

ing values by zeros. When calculating distances between

protein profiles (see Section ‘Quantifying resolution’),

however, missing values were retained.

It is important to highlight that not all experiments used

in this study have as a main goal the generation of a global

(or near global) sub-cellular map. While the works Chris-

toforou et al. [4] (A draft map of the mouse pluripotent stem
2 This number is relatively low, and we would typically recommend at

least 13 markers per class to perform cross-validation when optimising

classifier parameters. See Gatto et al. [11a] and the main pRoloc
tutorial for details.

www.sciencedirect.com
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cell spatial proteome) and Itzhak et al. [16] (Global, quanti-
tative and dynamic mapping of protein subcellular localiza-
tion) explicitly state such goal, other experiments such as

Groen et al. [12] (Identification of trans-golgi network proteins
in Arabidopsis thaliana root tissue) or Nikolovski et al. [21]

(Label free protein quantification for plant Golgi protein
localisation and abundance) have a more targeted goal

(identification of trans-Golgi -network and Golgi appara-

tus proteins, respectively). When an experiment is tar-

geted at resolving one or two particular niche, it is often

the case that other sub-compartments are less well-

resolved and hence, it is important to keep the overall

aim of the studies in mind when assessing their overall

resolution.

Assessment
While never performed in a systematic way as in the work

presented here, some authors have provided some metrics

to demonstrate the quality of their data. One such metric

is the macro-F1 score, calculated during classification

parameter optimisation (see the pRoloc [11b] documen-

tation or [11a] for details about this procedure). Briefly,

the macro-F1 is computed as the harmonic mean of the

precision (a measure of exactness) and recall (a measure of

completeness) on marker proteins to infer a set of good

model parameters to be used subsequently, when infer-

ring the localisation of proteins of unknown location. The

scores are computed during a number of iterations, where

some markers are used as part of a validation partition,

and others are used for parameter selection using cross-

validation. These optimisation metrics are computed over

a range of parameters on different subsets of marker

proteins, and optimal parameters are optimised for the

subset of markers used at each iteration, and hence are

likely to provide an over-fitted view of the data. Note that

while each iteration is over-fitted, the goal of the iterative

procedure is to identify recurring best parameters, in the

hope that these will subsequently generalise to new, non-

marker proteins.

One study [16] used the Pearson correlation between

replicates to demonstrate the replicability of their experi-

ments. While useful within an experiment, correlation

cannot be compared between experiments, as the corre-

lation values will depend on the number of proteins in the

experiment. More generally, correlation isn’t a good

measure of reproducibility [15]; it focuses on values

without context. A better here approach would be to

compare classification results and demonstrate that these

agree across different replicates.

Sub-cellular diversity

A first assessment that provides an important indication of

the resolution of the data concerns the number and

diversity of sub-cellular niches that are annotated. In

the 29 datasets used in this study, this number ranged

from 5 (dataset hall2009) to 14 (dataset hyperLOPIT2015).
www.sciencedirect.com 
These numbers should be assessed in the light of about

25 different sub-cellular niches that are documented in all

29 datasets, which are still underestimating the biological

sub-cellular complexity. The Human Protein Atlas [27]

(https://www.proteinatlas.org), for example, classified

33 sub-cellular organelles and fine structures.

Dimensionality reduction and visualisation

Principal component analysis (PCA) is a widely used

dimensionality reduction technique in spatial proteo-

mics. It projects the protein occupancy profiles into a

new space in such a way as to maximise the spread of all

points (i.e. marker proteins and proteins of unknown

localisation) along the first new dimension (principal

component, PC). The second PC is then chosen to be

orthogonal to the first one while still maximising the

remaining variability, and so on. Each PC accounts for a

percentage of the total variability and it is not uncom-

mon, in well executed experiments, that the two first

PCs summarise over 70% of the total variance in the

data, confirming that the resulting visualisation remains a

reliable and useful simplification of the original, multi-

dimensional data.

By firstly summarising the occupancy profiles along PC1

and PC2 (and, possibly, other PCs of interest if neces-

sary), it becomes possible to visualise the complete data-

set in a single figure (as opposed to individual sets of

profiles - see for example figure 5 in Gatto et al. [10]). In a

first instance, it is advised to visualise the data without

marker annotation to confirm the presence of discrete

clusters, i.e. dense clouds of points that are well separated

from the rest of the data (see for example data from

Christoforou et al.[4] in Figure 1, left). Such patterns

can further be emphasised by using transparency (Fig-

ure 1, centre) or binned hexagon plots (Figure 1, right) to

highlight density.

In Figure 2, three datasets are compared to illustrate

different levels of cluster density and separation. We

see areas of high density (many proteins per hexagon),

that are highlighted by dark blue bins, and less dense

areas, displayed as white/grey regions, as indicated by

the count key on the right-hand side of each plot. The

figure on the left is the hyperLOPIT data from Chris-

toforou et al. [4] (as in Figure 1) that used synchronous

precursor selection (SPS) MS3 on an Orbitrap Fusion.

The middle figure represents the same experiment and

same proteins, analysed using conventional MS2, illus-

trating the effect of reduced quantitation accuracy.

Finally, on the right, an experiment with considerable

less resolution [13].

Considering that the aim of sub-cellular fractionation is to

maximise separation of sub-cellular niches, one would

expect sub-cellular clusters to be separated optimally in a

successful spatial proteomics experiment. In PCA space,
Current Opinion in Chemical Biology 2019, 48:123–149
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Figure 1

Unsupervised visualisation of spatial resolution using the plot2D function from the pRoloc package.

Figure 2

Comparing the cluster density and separation of experiments with excellent (left), intermediate (centre) and poor (right) resolution.
this would equate to the location of the marker clusters

along the periphery of the data points. In other words, the

maximum variability of a successful spatial proteomics

experiments should be reflected by the separation of

genuine (i.e. expected/annotated marker) spatial clusters,

as illustrated on Figure 3.

Another dimensionality reduction method of interest is

linear discriminant analysis (LDA). LDA will project the

protein occupancy profiles in a new set of dimensions

using as a criterion the separation of marker classes by

maximising the between class variance to the within

class variance ratio. As opposed to the unsupervised PCA,

the supervised LDA should not be used as an experiment

quality control, but can be useful to assess if one or more

organelles have been preferentially separated. LDA and

many other dimensionality reduction techniques (such
Current Opinion in Chemical Biology 2019, 48:123–149 
as t-SNE [30] for instance) are readily available in

pRoloc.

It is important to highlight that these representations,

while generally reflecting a major proportion of the vari-

ability in the data, are only a summary of the total

variability. Some sub-cellular niches that overlap in

2 dimensions can be separated along further components.

It is sometimes useful to visualise data in three dimen-

sions (using for example the plot3D function in the

pRoloc package), which still, however, only reflect part

of the total variability.

When assessing the resolution of some specific organelles

of interest, one should compare the full protein profiles of

the marker proteins as illustrated in Figure 4 (pRoloc’s
plotDist function can be used for this, or the
www.sciencedirect.com
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Figure 3

Annotated PCA plot of the hyperLOPIT2015 dataset.
interactive application pRolocVis in the pRolocGUI
package), or visualise a dendrogram representing the

average distance between cluster profiles (the

mrkHClust function from pRoloc offers this function-

ality). While detailed exploration of a dataset using these

and other visualisation approaches is crucial before ana-

lysing and interpreting a new spatial proteomics experi-

ment, a detailed exploration of each of the 29 datasets

used in this meta-analysis is out of the scope of the study

presented here.

Quantifying resolution

While visualisation of spatial proteomics data remains

essential to assess the resolution, and hence the suc-

cess, of a spatial proteomics experiment, it is useful to
www.sciencedirect.com 
be able to objectively quantify the resolution and

directly compare different experiments. Here, we pres-

ent a new infrastructure, termed QSep, available in the

pRoloc package [11b], to quantify the separation of

clusters in spatial proteomics experiments. It relies on

the comparison of the average Euclidean distance of

the full, n-dimensional protein profiles within and

between sub-cellular marker clusters. As illustrated on

the heatmaps in Figure 5 for the hyperLOPIT2015 data,

these distances always refer to one reference marker

cluster.

The raw distance matrix (Figure 5, top-left) is symmet-

rical (i.e. the distance between cluster 1 and 2 is the

same as between cluster 2 and 1). Within cluster
Current Opinion in Chemical Biology 2019, 48:123–149
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Figure 4

Marker proteins of the hyperLOPIT2015 data set along PC 1 and 2 (left), and visualising the full proteins profiles (right). We see that while the

mitochondrion and peroxisome clusters aren’t separated along the two first principal components (they are along PC 7), line plots displaying the

n-dimensional protein profiles show that while similar, these two compartments differ along fractions X129C.
distances, along the diagonal, are generally the smallest

ones, except when two clusters overlap, as the lysosome

and endosome in our example. To enable the compari-

son of these distances within and between experiments

(see Section Comparative study for the latter), we

further divide each distance by the reference within

cluster average distance (Figure 5, top-right). This thus

gives information about how much the average distance

between cluster 1 and 2 is greater than the average

distance within cluster 1 (i.e. the tightness of that

cluster). At this stage, the distance matrix is no longer

symmetrical. To facilitate the comparison of distances

between organelles, the distance distributions can also

be visualised as boxplots (Figure 5, bottom).

The rational behind these measures is as follows. Intui-

tively, we assess resolution by contrasting the separation

between clusters (formalised by the average distance

between two clusters) and the tightness of single clusters

(formalised by the average within cluster distance). Ideal

sub-cellular fractionation would yield tight and distant

clusters, represented by a large normalised between

cluster distances in Figure 5.

Application of the assessment criteria

To further demonstrate the interpretation of these reso-

lution metrics, we directly compare the two recent global

cell maps from [4] (dataset hyperLOPIT2015) and [16]

(dataset itzhak2016stcSILAC). Both feature high protein
Current Opinion in Chemical Biology 2019, 48:123–149 
coverage (7114 and 5265 proteins respectively) and good

sub-cellular diversity (14 and 12 annotated clusters

respectively). The former contains duplicated experi-

ments, each made of 10 fractions and the latter contains

6 replicates with 5 fractions each. The itzhak2016stcSILAC
dataset has been produced using the Dynamic Organellar
Maps design, which goes some way to also determine

relative abundances across proteins, an important feature

that is however not considered here, when computing the

QSep scores.

Figure 6 shows the PCA plots applying transparency to

identify the underlying structure in the quantitative data

and the annotated versions using the markers provided by

the respective authors.

Figure 7 illustrates the normalised distance heatmaps and

boxplots for the two datasets (itzhak2016stcSILAC at the

top and hyperLOPIT2015 at the bottom). The two heat-

maps, that have been rendered using the same colour-

scale, display strikingly different colour patterns. The top

heatmap shows a majority of small normalised distances

(dark blue cells) and with only a limited number of large

distances (red cells), along the mitochondrial reference

cluster. Conversely, the bottom heatmap displays a major-

ity of average (light blue and white cells) and larger

distances (red cells) across all sub-cellular clusters. The

boxplots allow a more direct comparison of the distances

across the two datasets. On the top boxplot, we detect
www.sciencedirect.com
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Figure 5

Quantifying resolution of the hyperLOPIT2015 data Christoforou et al. [4]. The heatmaps at the top illustrate the raw (left) and average normalised

(right) within (along the diagonal) and between euclidean cluster distances. The boxplots at the bottom summarise these same values (raw on the

left, normalised on the right) to enable easier comparison between clusters, where the within distances are highlighted in red.

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 48:123–149



130 Omics

Figure 6

PCA plots for itzhak2016stcSILAC (left) and hyperLOPIT2015 (right). Here, we display PC 1 and 2 for both datasets for comparability. The original

authors displayed PC 1 and 3 for the itzhak2016stcSILAC data (see Figures 13 and 14).
relatively short distances for most clusters, with most

large distances stemming from the mitochondria, leading

to a median distance of 2.48. The distributions on the

bottom boxplot show larger distances, equally spread

among all clusters, with an median distance of 4.91.

Comparative study
We next apply the quantitative assessment of spatial

resolution described in section 3.3 to compare the

29 experiments presented in Section 2. Figure 8 shows,

for each dataset, a boxplot illustrating the distribution of

the global average normalised distances for all spatial

clusters. The datasets have been ordered using the

experiment-wide median between distance. It is impor-

tant to always refer back to the original data when

considering summarising metrics like these, to put the

resolution into context. In particular, while high global

resolution is essential for experiments that aim for a cell

wide exploration, it will not be a useful metric in

experiments that focus on a limited sub-cellular niches.

The density and annotated PCA plots discussed in

section 3.2 are provided in Figures 13 and 14 and the

quantitative assessment boxplots and heatmaps are

shown in Figures 15 and 16.

The individual LOPIT-based experiments from

Jean Beltran et al. [18] and the embryonic mouse stem

cell [4] and U2OS [27] hyperLOPIT experiments (using

SPS MS3 and conventional MS2) show the best experi-

ment-wide resolution. The next set of experiment are

tan2009r1, trotter2010, dunkley2006, hall2009 and

E14TG2aS1. It is important to highlight that most of

the datasets (as well as HEK293T2011, discussed later)

have either been directly re-analysed using a semi-

supervised novelty detection algorithm phenoDisco [2]

(the only exception here being hall2009), or, in the case

of trotter2010, have been annotated using markers based
Current Opinion in Chemical Biology 2019, 48:123–149 
on the phenoDisco re-analysis. The novelty detection

algorithm, phenoDisco, searches for new clusters of unla-

belled proteins, using the marker proteins to guide the

clustering of unlabelled features. These new clusters,

termed phenotypes, are then validated by the user for

coherence with known sub-cellular niches. This re-anal-

ysis has proven successful [2] and has identified previ-

ously undetected sub-cellular niches that form tight and

well-resolved clusters (see for example ribosomial and

trans-Golgi network (TGN) in dunkley2006, or protea-

some and nucleus in tan2009r1 to cite only a few), which

in turn favour good resolution scores. The hall2009
dataset is relatively poorly annotated (only 5 sub-cellular

clusters, which is the lowest in all test datasets). As long

as these few clusters are well separated, poor annotation

will however not negatively influence the resolution

scoring.

The next set of experiments that show comparable reso-

lution profiles are HEK293T2011, itzhak2016stcSILAC and

nikolovski2012imp. Note that the quantitative separation

measurement is robust to questionable marker annota-

tion. For example, the Large Protein Complex class defined

by the original authors in the itzhak2016stcSILAC data

could be dropped as it loosely defines many niches and

thus lacks resolution. This omission only marginally

influences the overall assessment metrics as only the

distances to/from that class are affected (i.e. 23 out of

144 distances) and as such it would not change its rank

among the test datasets.

As mentioned earlier, the groen2014cmb and niko-
lovski2014 datasets are targeted experiments, focusing

on the trans-Golgi-network and Golgi niches respec-

tively. Such experiments do not aim for the best global

resolution, which is reflected by relatively low global

resolution.
www.sciencedirect.com
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Figure 7

Contrasting quantitative separation assessment between the itzhak2016stcSILAC [16] (top) and hyperLOPIT2015 [4] (bottom) datasets. The dashed

vertical lines on the boxplots represent the overall media between cluster distance, 2.48 and 4.91 for itzhak2016stcSILAC and hyperLOPIT2015

respectively.

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 48:123–149
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Figure 8

Quantitative separation assessment using experiment-wide normalised distances between cluster distances. The vertical line represents the

normalised intra-cluster distance of 1.

Current Opinion in Chemical Biology 2019, 48:123–149 www.sciencedirect.com
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Figure 9

Effect of removing sub-cellular clusters on the resolution metric for the E14TG2aD1 (left) and hyperLOPIT2015 experiments (right). Each dot

represents a median resolution score for the experimental setting (i.e missing n classes). The horizontal lines represents the median resolution

metrics for the complete dataset. Note the overall higher median assessment scores for the better hyperLOPIT2015 experiment

Figure 10

Marker transfer between hyperLOPIT2015 and itzhak2016stcSILAC. On the left, the 4 data/marker combinations are displayed on PCA plots: the

top and bottom row contains the hyperLOPIT2015 and itzhak2016stcSILAC data respectively, while the left and right columns display the markers

from hyperLOPIT2015 and itzhak2016stcSILAC respectively. On the right, the resolution scores have been calculated for the same markers (along

the x axis) data (left and right panels). The respective median scores are, from left to right, 4.91, 2.15, 2.71 and 2.48.

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 48:123–149
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Figure 11

Resolution of spatial proteomics experiments over time. The assigned dates match either the original publication or, when know, the actual date

the data was generated. For publications that re-analysed data, the date of the original publication of generation was used. When publications

used several datasets, the date of the most recent one was used.
The foster2006 experiment displays relatively poor sep-

aration. This might be due to the relatively high num-

ber of missing values (42.4 %). Finally, the

andreyev2010rest dataset suffers from very broad sub-

cellular clusters (compared to separation between

clusters).

The PCA plots and QSep heatmaps for all datasets are

provided in the appendix, section A.
Current Opinion in Chemical Biology 2019, 48:123–149 
Assessing the resolution metric
Next, we assess the resolution metric, and how the

annotation of the spatial proteomics data influences the

metric itself.

We find that the number of classes does not have any

effect on the resolution assessment scoring. Indeed,

dropping any class will result in a sub-sample of normal-

ised inter-cluster distances, with random variations
www.sciencedirect.com
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Figure 12

Resolution of spatial proteomics experiments over time (top panels), as presented in Figure 11. Experiments are colour-coded based on the

quantitation methodology (left) and species (right). The bottom panels show the median QSep resolutions for the quantitation technology (left) and

species (right) respectively.
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Figure 13

Density PCA plots for the 29 experiments used in this study. PC 1 and 2 were used except for itzhak2016stcSILAC, where PC 1 and 3 were used

to conform to the original authors figures. The experiments are ordered according to the median average between cluster distance (see Figure 8).

Figures have been generated using the plot2D function from the pRoloc package.
around the overall median inter-cluster distance. In

Figure 9, we show the distribution of the resolution

metrics when removing all possible combinations of

1 to 3 sub-cellular classes for the E14TG2aS1 dataset,

that displays an average overall resolution, and hyperLO-
PIT2015, that has among the highest resolution. In both

cases, we see that the number of removed classes does not

influence the overall score distributions. When modelling

the linear relation between the median scores and the
Current Opinion in Chemical Biology 2019, 48:123–149 
number of removed classes, the slopes are 0.036 and

0.01 respectively.

The definition of marker proteins has of course an effect

on the assessment metric. Tighter clusters will result in

smaller intra-class distances and, as a result, in larger

normalised inter-class distances. To illustrate the

effect of marker definition, we transferred the marker

annotation between the hyperLOPIT2015 and
www.sciencedirect.com
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Figure 13

(Continued ).
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Figure 13

(Continued ).
itzhak2016stcSILAC datasets (see PCA plots on Figure 10,

left) and calculated the quantitative resolution metrics

(see boxplots in Figure 10, right).

As expected from the PCA plots in Figure 10 and the

diffuse Large Protein Complex cluster, and as can be seen

on QSep distribution boxplots, transferring the itz-
hak2016stcSILAC markers to the hyperLOPIT2015 dataset

(distributions in the left panel) has a detrimental effect on

the separation (testing the log-transformed distributions

with a t-test produces a p-value of 4.3 � 10�32). Annotat-

ing itzhak2016stcSILAC with the hyperLOPIT2015 markers

(distributions in the right panel) hardly improves its

resolution metric (p-value of 0.0015, log-transformed
Current Opinion in Chemical Biology 2019, 48:123–149 
QSep scores). The main effect here is to emphasise

the separation between the mitochondrion and other

spatial niches, in particular the very tight 40S and 60S

ribosomal clusters. These examples illustrate the impor-

tance and impact of marker curation and annotation for

individual experiments. In particular, the Large Protein
Complex cluster from itzhak2016stcSILAC, while also dif-

fuse in its original dataset, has a severe effect on a dataset

that it was not curated for.

Conclusions
In this manuscript, we have described in detail how to

assess and quantify the resolution of spatial proteomics

experiments. We have applied dimensionality reduction
www.sciencedirect.com
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Figure 14

PCA plots for the 29 experiments used in this study. PC 1 and 2 were used except for itzhak2016stcSILAC, where PC 1 and 3 were used to

conform to the original authors figures. The experiments are ordered according to the median average between cluster distance (see Figure 8).

The percentage of variance explained along the 2 PCs on the plots can be found in Table 1. Figures have been generated using the plot2D
function from the pRoloc package.
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Figure 14

(Continued ).
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Figure 14

(Continued ).
and visualisation, as well as a simple and intuitive quan-

titative metric to explore and compare a variety of pub-

licly available spatial proteomics datasets using the anno-

tation provided by the original authors. We have also

assessed the resolution metric itself and observed that it

was immune to the number of clusters used for its

computation and showed the possible influence of differ-

ent marker annotation on the metric itself.

The ordering of the quantitative resolution detailed in

section 4 should not be taken as absolute. Its main

purpose is to provide a guide to compare different experi-

ments. It will be useful for laboratories that do spatial

studies on different models and with different fraction-

ation and/or quantitation methods, to assess the impact of

these variables. It is also useful to compare resolution

between different labs, as demonstrated in our compara-

tive study (section 4). We anticipate that it will also prove

useful for the researcher wanting to assess the resolution

of newly published studies, and put them into a wider

context. It is necessary to emphasise the importance and

effect of marker definition and curation on estimating and

assessing the resolution of spatial proteomics experiments

(section 5) and, of course, the impact of markers on the

subsequent assignment of proteins to their most likely

sub-cellular compartments. Sub-cellular resolution is of

course only one aspect of spatial proteomics, albeit an
www.sciencedirect.com 
important one, that critically determines the reliability of

protein assignments to spatial niches as well as the

identification of multi- and trans-localisation events.

Finally, we reflect on the implications of this work on the

spatial proteomics community, and more generally the

cell biology community that relies on protein localisation

data. We have assessed dataset spanning 12 years of

spatial proteomics. Since 2006, the community has seen

many important improvements: significant advances in

mass spectrometry quantification methodologies (see

Figure 2 comparing SPS MS3 and conventional MS2

for an example), improvements in biochemical fraction-

ation methods and spatial proteomics designs (as exem-

plified by the substantial improvement obtained by

hyperLOPIT [4]), careful data annotation and marker

curation, as well as considerable breakthroughs in data

analysis (for example using semi-supervised learning [2]

or a Bayesian spatial proteomics framework [6]). One

might then wonder to what extend benefits have lead

to tangible improvements in resolution over time?

In Figure 11, we have ordered the datasets’ resolution

metric according to their publication year. We can see that

a set of recent datasets, including the mouse stem cell [4]

and U2OS [27] hyperLOPIT experiments (published in

2016 and 2017 respectively), and [18] (published in 2016),
Current Opinion in Chemical Biology 2019, 48:123–149
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Figure 15

Quantitative separation boxplot for the 29 experiments used in this study. The experiments are ordered according to the median average between

cluster distance (see Figure 8).
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Figure 15

(Continued ).
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Figure 15

(Continued ).
a variation of the LOPIT experiment, show a superior

resolution.

While the definition of sub-cellular resolution, as defined

by the QSep measure, is only one aspect of spatial

proteomics, one could argue that the community at large

would benefit from a more systematic approach when

considering the resolution of spatial proteomics experi-

ments. It is however difficult to draw general conclusions

whether any experimental properties correlate with bet-

ter resolution due to the limited number of datasets

(29 dataset, out of 18 individual publications, some

including data re-analyses), as well as confounding factors

such as the laboratory of origin and time of publication. As

an example of the latter (Figure 12, left panels), the

distinction between iTRAQ and TMT tagging would

falsely suggest that the latter (used in the high-perform-

ing beltran and hyperLOPIT experiments) is better,

when this trend is purely the result of the field moving

towards isobaric systems with more tags to quantify more

fractions along the gradient (leading to better resolution

[11a]) irrespective of the quantitation technology. Simi-

larly, no pattern based on the species is visible (Figure 12,

right panels). In our experience, sample-specific factors

such as the heterogeneity of cells or tissue (such as for

example the U2OS or HeLa cell lines used in [27] or [16]

vs. Drosophila embryos in [25] or Arabidopsis root tissue in
Current Opinion in Chemical Biology 2019, 48:123–149 
[12]), the efficiency of cell harvesting (in suspension vs.

adherent cells) and membrane fractionation (requiring

careful sample-specific optimisations) will have a crucial

effect of the final resolution of the data. The species will

however play an important role in the availability of

reliable marker proteins: well annotated species (for

example human and mouse vs. chicken in our study) will

be easier to find markers for. We provide the markers for

all the experiments available in pRolocdata as well as

curated sets for 7 species, based on these same experi-

ments (available in the pRoloc package [11b]) to help

researchers with their annotation. While we have shown

that QSep is robust to different marker sets (Figure 10),

the availability of markers is a pre-requisite, and auto-

mated (i.e. that do not rely on visualising individual

datasets such as documented in Figure 2) and unsuper-

vised (i.e. that do not rely on any annotation) methods,

would be welcome.

We anticipate that many laboratory-specific best prac-

tices, including various data processing and analysis steps,

will influence the overall quality of the MS data and,

ultimately, the resolution of the spatial proteomics exper-

iment. As long as some best practice principles are applied

(such as, for spatial proteomics in particular, adequate

classification hyper-parameter optimisation and data nor-

malisation [11a]), the exact software shouldn’t matter. We
www.sciencedirect.com
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Figure 16

Quantitative separation heatmaps for the 29 experiments used in this study. The experiments are ordered according to the median average

between cluster distance (see Figure 8).
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Figure 16

(Continued ).
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Figure 16

(Continued ).
however recommend the use of pRoloc [11b] for robust

and reproducible spatial proteomics data analysis, as it is

thoroughly tested and documented, and offers a growing

set of state-of-the-art visualisation and machine learning

functions.

As already suggested by Lund-Johansen et al. [19], there

is arguably a need for standardisation, or for general

guidelines in assessing spatial proteomics data in the

community? As interest in the spatial organisation of

the proteome is increasing, it is imperative for the com-

munity to better define and assess the quality of spatial

proteomics experiments and the reliability of protein sub-

cellular assignments? The latter can be assessed using

improved probabilistic classifiers such as the Bayesian

mixture modelling approach proposed by Crook et al. [6].

In this work, we propose the QSep metric to assess the

former. Future improvements in the quality of spatial

proteomics data and more reliable interpretation will be

of direct benefit to the spatial proteomics researchers

themselves, and will increase the usefulness of the data

to the cell biology community.
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