
Letters
https://doi.org/10.1038/s42255-021-00478-5

1Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 2Cambridge 
Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia. 3British Heart Foundation Cardiovascular 
Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 4British Heart Foundation Centre of Research 
Excellence, University of Cambridge, Cambridge, UK. 5Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, 
Cambridge, UK. 6Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 7Department of Medicine, Harvard Medical 
School, Boston, MA, USA. 8Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia. 
9Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia. 10Department of Clinical Pathology, 
University of Melbourne, Parkville, Victoria, Australia. 11Department of Haematology, University of Cambridge, Cambridge, UK. 12National Health Service 
Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK. 13Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK. 
14National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. 
15National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford and John Radcliffe Hospital, Oxford, UK. 16Central Clinical 
School, Monash University, Melbourne, Victoria, Australia. 17Centre for Health Data Science, Human Technopole, Milan, Italy. 18MRC Biostatistics Unit, 
University of Cambridge, Cambridge, UK. 19Verve Therapeutics, Cambridge, MA, USA. 20Center for Genomic Medicine, Massachusetts General Hospital, 
Boston, MA, USA. 21Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA. 22The Alan Turing Institute, London, UK.  
✉e-mail: sr827@medschl.cam.ac.uk; mi336@medschl.cam.ac.uk

Cardiometabolic diseases are frequently polygenic in archi-
tecture, comprising a large number of risk alleles with small 
effects spread across the genome1–3. Polygenic scores (PGS) 
aggregate these into a metric representing an individual’s 
genetic predisposition to disease. PGS have shown promise 
for early risk prediction4–7 and there is an open question as to 
whether PGS can also be used to understand disease biology8. 
Here, we demonstrate that cardiometabolic disease PGS can 
be used to elucidate the proteins underlying disease patho-
genesis. In 3,087 healthy individuals, we found that PGS for 
coronary artery disease, type 2 diabetes, chronic kidney dis-
ease and ischaemic stroke are associated with the levels of 49 
plasma proteins. Associations were polygenic in architecture, 
largely independent of cis and trans protein quantitative trait 
loci and present for proteins without quantitative trait loci. 
Over a follow-up of 7.7 years, 28 of these proteins associated 
with future myocardial infarction or type 2 diabetes events, 
16 of which were mediators between polygenic risk and inci-
dent disease. Twelve of these were druggable targets with 
therapeutic potential. Our results demonstrate the potential 
for PGS to uncover causal disease biology and targets with 
therapeutic potential, including those that may be missed by 
approaches utilizing information at a single locus.

Human genetic studies have identified numerous proteins 
involved in coronary artery disease (CAD), type 2 diabetes (T2D) 
and other cardiometabolic diseases through a combination of 
genome-wide association studies (GWAS), fine-mapping, colocal-
ization and Mendelian randomization by overlaying information at 

strong cardiometabolic disease loci9–12. However, cardiometabolic 
diseases are polygenic in architecture since they depend on many 
thousands of variants across the genome, nearly all exerting small 
lifelong effects13–17. These variants are spread across many different 
pathways and likely exert their effects through multiple levels of reg-
ulation, including gene expression, proteins and their interactions, 
cell morphology and higher-order physiological processes18–20. PGS 
aggregate these small effects into a single number for each individ-
ual that captures a fraction of their disease susceptibility. The use 
of PGS for risk stratification has shown potential clinical utility for 
disease prevention21, yet the specific molecular consequences that 
precede disease risk for these polygenic effects are unknown. For 
example, proteins that are pathway-level hubs through which poly-
genic effects converge could be particularly promising targets for 
pharmaceutical intervention22,23.

In this study, we demonstrated how PGS can be used to iden-
tify proteins with causal roles in disease aetiology. The INTERVAL 
cohort consists of approximately 50,000 adult blood donors in 
England24,25, of which 3,087 participants have linked electronic 
hospital records, imputed genome-wide genotypes and quantita-
tive levels of 3,438 plasma proteins26 (Supplementary Data 1 and 2).  
A schematic of the study is given in Extended Data Fig. 1. The 
characteristics of the participants are given in Extended Data  
Fig. 2; participants with a history of any cardiometabolic disease were 
excluded (Supplementary Table 1), reducing the potential for reverse  
causality in downstream analysis.

To quantify each participant’s relative polygenic risk of atrial 
fibrillation (AF), CAD, chronic kidney disease (CKD), ischaemic 
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stroke (IS) and T2D, we applied externally derived genome-wide 
PGS consisting of 1.8–3.2 million variants. Using PGS, we identi-
fied 49 proteins whose levels differed with respect to polygenic 
risk at a false discovery rate (FDR) of 5% (Fig. 1a,b, Extended Data 
Figs. 3 and 4 and Supplementary Tables 2 and 3): 31 proteins for 
the T2D PGS; 11 proteins for the CAD PGS; 8 proteins for the 
CKD PGS; and 1 protein for the IS PGS. PGS–protein associations 
included proteins previously associated with cardiometabolic dis-
ease, such as cystatin-C (CST3) and beta2-macroglobulin (B2M), 
which are biomarkers for CKD27, and fructose-1,6-bisphosphatase 
1 (FBP1), which plays a key role in glucose regulation and is 
a target of T2D drugs28. Associated proteins belonged to mul-
tiple non-overlapping pathways (Supplementary Information) 
and many are relatively understudied in the context of their 
respective diseases (Extended Data Fig. 5) thereby warranting  
future study.

PGS–protein associations were robust to technical, physiological 
and environmental confounding. We observed directional consis-
tency and strong correlation of effect sizes when utilizing an orthog-
onal proteomics technology in independent samples (Extended 
Data Fig. 6a–c and Supplementary Information). Protein levels 
and PGS–protein associations were also temporally stable over 2 
years of follow-up (Extended Data Fig. 6c,d and Supplementary 
Information). PGS–protein associations were also robust to circa-
dian and seasonal effects, inclusion of participants with any preva-
lent cardiometabolic disease and body mass index (BMI), with the 
exception of six T2D PGS–protein associations that were partially 
mediated by BMI (Extended Data Fig. 6f,g).

Most PGS–protein associations were not explained by protein 
quantitative trait loci (pQTLs) (Supplementary Table 4); instead, 
they were highly polygenic (Fig. 1c). Each protein required a 
median 12% of the genome to explain its association with a PGS. 

Only 4 associations could be explained by pQTLs and contributing 
loci were spread across the genome for the remaining 46 associa-
tions (Extended Data Fig. 7).

Three possible scenarios could explain a PGS–protein associa-
tion29: (1) the protein plays a causal role in disease; (2) protein levels 
are changing in response to disease processes but are not themselves 
causal (reverse causality); and (3) protein levels are correlated with 
some other causal factor (confounding) (Fig. 2a). Utilizing a median 
of 7.7 years of follow-up in nationwide electronic hospital records, 
we examined whether levels of PGS-associated proteins were asso-
ciated with risk of onset of the respective cardiometabolic disease, 
then performed mediation analysis30–32 to identify the proteins that 
mediate the PGS–disease associations and thereby play causal roles 
in disease pathogenesis.

During follow-up of the participants with PGS and plasma 
proteomics, there were 27 incident T2D events and 15 incident 
CAD events, enabling us to evaluate the CAD and T2D PGS and 
their corresponding 42 associated proteins. Ten of 31 (32%) T2D 
PGS-associated proteins were significantly associated (P < 0.0012, 
Bonferroni correction for the 42 tested proteins) and a further 15 
proteins were nominally significantly associated (P < 0.05) with 
increased risk of T2D (Fig. 2b and Extended Data Fig. 3). For the 
CAD PGS, no proteins were Bonferroni significant and 3 of 11 
(27%) proteins were nominally significant. Notably, there was clear 
directional consistency between the effects of PGS on protein lev-
els and hazard ratios (HRs) for protein levels on incident disease 
risk (Fig. 2c). Using mediation analysis, we found one protein, 
insulin-like growth factor-binding protein 2 (IGFBP2), that was a 
significant mediator (P < 0.0012) of polygenic T2D risk (Fig. 2d and 
Extended Data Fig. 3), indicating a causal role in disease pathogen-
esis. A further 1 and 14 proteins were nominally significant media-
tors of polygenic CAD and T2D risk, respectively. Protein–disease 
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Fig. 1 | Proteins associated with polygenic risk for cardiometabolic disease. a, Quantile–quantile plots of two-sided P values from linear regression testing 
associations between PGS and protein levels in n = 3,087 INTERVAL participants across all 3,438 tested proteins. Each plot compares the distribution 
of observed two-sided P values (y axes) to the distribution of expected two-sided P values under the null hypothesis for 3,438 tests (x axes) on a −log10 
scale. Associations were fitted using linear regression adjusting for age, sex, ten genotype principal components, sample measurement batch and time 
between blood draw and sample processing. Full summary statistics including exact P values are provided in Supplementary Data 3a. The top five proteins 
by P value are labelled. b, Heatmaps showing the 49 proteins whose levels were significantly associated with at least one PGS after Benjamini–Hochberg 
FDR multiple-testing correction (FDR < 0.05) of the two-sided P values (statistical tests are as described in a). Each heatmap cell shows the s.d. change in 
protein levels per s.d. increase in PGS. Point estimates for the 49 FDR-significant proteins are detailed in Extended Data Fig. 3. Details about each protein 
are provided in Extended Data Fig. 4. c, Barplots showing the proportion of the genome (%) required to explain each PGS–protein association in n = 3,087 
INTERVAL participants (polygenicity). Proteins are ordered from left to right by strength of PGS–protein association. Highlighted in red are PGS–protein 
associations that were explained by singular variants regulating protein levels, pQTLs, rather than polygenic. Percentages are detailed in Extended Data Fig. 3.
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associations and causal mediation for IGFBP1 and IGFBP2 on poly-
genic T2D risk were replicated in independent samples where four 
PGS-associated proteins (IGFBP2, IGFBP1, progranulin (GRN) 
and tissue inhibitor of metalloproteinases 4 (TIMP4)) were mea-
sured with orthogonal proteomics technology (Supplementary 
Information and Supplementary Table 5).

Since polygenic disease risk is estimated from population-level 
data, it is unlikely that any single protein explains polygenic risk. In 
this study, we found that IGFBP2 explained 13.4% of the association 
between T2D PGS and incident T2D (Extended Data Fig. 3). Across 
all nominally significant mediators, proteins explained a median of 
6.6% of PGS–disease associations (Extended Data Fig. 3), with the 
1 CAD PGS mediator (apolipoprotein E (APOE)) explaining 5.4% 
of CAD polygenic risk–incident CAD association and the 15 T2D 
PGS mediators explaining 27% of the T2D polygenic risk–incident 
T2D association.

A complementary approach for causal inference, Mendelian ran-
domization33, also supported causal effects on T2D for one protein, 
sex hormone-binding globulin (SHBG) (Extended Data Fig. 9 and 
Supplementary Tables 6 and 7), which is consistent with our media-
tion analysis and previous Mendelian randomization analysis of 
SHBG on T2D34. Notably, only 11 (22%) of the proteins associated 
with PGS could be tested with Mendelian randomization due to a 
lack of cis-pQTLs as genetic instruments, highlighting the comple-
mentarity of our PGS–protein association and mediation approach 
for identifying causal proteins.

Our findings are also consistent with a previous observa-
tional study of plasma proteins and T2D risk in the Age, Gene/
Environment Susceptibility-Reykjavik Study (AGES-Reykjavik), 
a cohort of 5,438 older Icelanders with 654 prevalent T2D cases 
and 112 incident T2D cases in 2,940 participants with 5 years of 
follow-up and free of T2D at baseline35. Of the 31 proteins associ-
ated with the polygenic risk of T2D in our healthy, pre-symptomatic 
cohort, 23 were associated with prevalent T2D and 16 were asso-
ciated with incident T2D in the AGES-Reykjavik Study (Extended 
Data Fig. 10a and Supplementary Table 8). Notably, HRs for inci-
dent T2D in our INTERVAL analyses were directionally consistent 
and of similar magnitude to the odds ratios for incident T2D in the 
AGES-Reykjavik Study (Extended Data Fig. 10b), with a significant 
overlap between the significant proteins from our causal mediation 
analysis in INTERVAL and those previously associated with inci-
dent T2D (Extended Data Fig. 10a).

Finally, we examined the druggability of proteins mediating 
polygenic disease risk using the druggable genome22. We found 
that 12 of the 16 proteins mediating the polygenic disease risk 
were also druggable targets (Table 1). Nine of these were targets 
of, or interacted with, 76 compounds in the DrugBank database36 
(Supplementary Table 9). These results suggest therapeutic poten-
tial for these proteins as modulators of risk for T2D or CAD and 
indicate high priority targets for further investigation.

Polygenic disease scores are explicitly constructed to maximize 
risk prediction, typically without consideration of the underlying 
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biology. However, PGS also hold additional promise for identify-
ing molecular pathways in the development and progression of 
disease8,29. In this study, we identified 49 plasma proteins signifi-
cantly associated with PGS for cardiometabolic disease in a healthy 
pre-disease cohort. Twenty-eight of these proteins were associated 
with increased risk of future disease and 16 were nominally signifi-
cant mediators of T2D or CAD, including 12 druggable targets, sug-
gesting that their modulation may potentially attenuate disease risk.

The vast majority of PGS–protein associations were highly poly-
genic, including for several well-known cardiometabolic disease 
proteins. This polygenicity was driven by aggregate modest poly-
genic effects on protein levels from across the genome, which were 
independent of cis- and trans-pQTLs and also present for proteins 
without pQTLs or for which sample sizes have not yet been suf-
ficient for pQTL detection. This highlights the complementar-
ity of PGS to established approaches that utilize information at a 
single locus, such as Mendelian randomization, colocalization and 
fine-mapping. However, it is important to recognize that mediation 
analysis provides weaker evidence of causality than these estab-
lished single-locus approaches since it is more difficult to rule out 
confounding (either from measured or unmeasured factors)37, espe-
cially since PGS by design capture horizontal pleiotropy.

Our findings identify new potential targets of cardiometabolic 
disease that both are supported by human genetic evidence of cau-
sality and may be amenable to pharmacological manipulation. Our 
strongest results were for IGFBP2, a druggable target22, as a replica-
ble mediator of polygenic risk and incident T2D. IGFBP2 is involved 
in the regulation of glucose uptake into adipocytes and is associated 
with increased insulin sensitivity and decreased adipogenesis38–41. 
Increased plasma IGFBP2 levels have been associated with lower 

T2D risk35,42,43; our findings are directionally consistent and indicate 
that this association is likely causal. Ten additional druggable pro-
teins were found to be new mediators between polygenic risk and 
incident T2D.

Twelve new protein associations were found for CAD, CKD or 
T2D. Among these, the strongest evidence was for alcohol dehy-
drogenase 4 (ADH4), which is involved in a number of metabolic 
pathways44 and was found to be both a mediator of polygenic risk 
and incident T2D and a druggable target. Furthermore, several 
new associations concerned proteins with sparse literature on their 
function; for example, crystallin zeta like 1 (CRYZL1) was associ-
ated with polygenic risk and incident CAD; however, little is known 
about CRYZL1 beyond its gene identification45.

Proteomic data are becoming increasingly available in cohorts of 
large sample sizes, such as the planned proteomic profiling of UK 
Biobank participants. Proteomic platforms are also increasing their 
coverage of the human proteome. Therefore, we anticipate that our 
PGS mediation analysis approach will enable the identification of 
further causal proteins for cardiometabolic and other polygenic dis-
eases in future studies.

Overall, this study demonstrates that PGS can be utilized to elu-
cidate new disease biology with therapeutic potential and provides 
a useful study design for future studies into the molecular drivers of 
polygenic disease.

Methods
INTERVAL cohort. INTERVAL is a cohort of approximately 50,000 participants 
nested within a randomized trial studying the safety of varying the frequency 
of blood donation24,25. Participants were blood donors aged 18 years and older 
(median 44 years of age; 49% women) recruited between June 2012 and June 2014 
from 25 centres across England. The collection of their blood samples for research 

Table 1 | Druggable proteins that were nominally significant mediators of polygenic risk

Protein PGS/ 
disease

Evidence tiera Small-molecule 
targetb

Biological 
targetc

ADMEd DrugBank 
compoundse

Summary of therapeutic uses for licensed 
drugs

ADH4 T2D Tier 1 Y N Y 3 Female reproductive disorders, infection 
control

GHR T2D Tier 1 N Y N 3 Acromegaly, dwarfism, idiopathic short 
stature, human immunodeficiency virus 
weight loss

PRCP T2D Tier 1 Y N N 0

SHBG T2D Tier 1 Y Y N 68 Fertility and reproductive treatments, 
cancers, mental health, developmental 
disorders, hypertension, high cholesterol

CPM T2D Tier 2 Y Y N 0

IGFBP1 T2D Tier 2 Y Y N 1 Growth failure due to insulin-like growth 
factor 1 deficiency

IGFBP2 T2D Tier 2 Y Y N 1 Growth failure due to insulin-like growth 
factor 1 deficiency

ADIPOQ T2D Tier 3A N Y N 0

APOE CAD Tier 3A N Y N 5 Zinc deficiency

CFH T2D Tier 3A N Y N 5 Zinc deficiency, malnutrition, ear and 
respiratory infections

CFI T2D Tier 3A N Y N 3 Zinc deficiency, malnutrition, ear and 
respiratory infections

INHBC T2D Tier 3A N Y N 0

List of PGS-associated proteins with nominal evidence (P < 0.05) of causal disease effects in mediation analysis (Fig. 2d) that are part of the druggable genome. Full details of each drug and interaction are 
provided in Supplementary Table 9. Y, yes; N, no. aEvidence of druggability in Finan et al.22. Tier 1: targets of approved small molecules, biotherapeutic drugs and clinical-phase drug candidates. Tier 2: targets 
with known bioactive drug-like small-molecule binding partners as well as those with ≥50% identity (over ≥75% of the sequence) with approved drug targets. Tier 3A: secreted or extracellular proteins, 
proteins with more distant similarity to approved drug targets and members of key druggable gene families not already included in tier 1 or 2, with genes that were in proximity (±50 kb) to a GWAS SNP 
and had an extracellular location. bThe protein is targeted, or predicted to be targeted, by a small molecule. cThe protein is targeted, or predicted to be targeted, by a biotherapeutic (monoclonal antibody/
enzyme or other protein). dThe protein is involved in absorption, distribution, metabolism or excretion (ADME) of a compound. The information in these preceding columns was obtained from Table S1 in 
Finan et al.22.  eThe number of drugs or compounds in DrugBank database v.5.17 (https://go.drugbank.com/releases/5-1-7) that interact with the protein.
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purposes was done using standard protocols24: blood samples for research purposes 
were collected in 6-ml EDTA tubes using standard venepuncture protocols. The 
tubes were inverted three times and transferred at ambient temperature to the UK 
Biocentre for processing. Plasma was extracted into two 0.8-ml plasma aliquots 
by centrifugation and subsequently stored at −80 °C before use. Participants gave 
written informed consent and this study was approved by the National Research 
Ethics Service (no. 11/EE/0538).

Electronic health records were obtained for all INTERVAL participants 
from the January 2021 release of the National Health Service (NHS) Hospital 
Episode Statistics database (https://digital.nhs.uk/data-and-information/
data-tools-and-services/data-services/hospital-episode-statistics) for all events up 
to 8 February 2020, before the onset of the COVID-19 pandemic in England. The 
median and maximum follow-up times were 6.9 years and 7.7 years, respectively. 
The earliest available hospital record for any INTERVAL participant was from 25 
March 1999, with a maximum retrospective follow-up of 13.6 years. These records 
came in the form of International Statistical Classification of Diseases and Related 
Health Problems, 10th revision (ICD-10) codes46 and were subsequently made 
available to analysts after summarization into 301 end points using the CALIBER 
rule-based phenotyping algorithms47 (https://www.caliberresearch.org/portal). 
ICD-10 codes contributed to each event regardless of whether they coded for 
primary or non-primary diagnoses in the hospital records.

Genotyping, quality control and imputation of INTERVAL participants 
were performed as described previously48: participants were genotyped using 
the Affymetrix UK Biobank Axiom array in ten batches. Samples were removed 
if they had sex mismatch, had extreme heterozygosity, were of non-European 
ancestry or were duplicate samples. Related samples were removed by excluding 
one sample from each pair of close relatives (first- or second-degree; identity by 
descent π̂ > 0.187). Genotyped variants were removed if they were monomorphic, 
bi-allelic and had Hardy–Weinberg equilibrium P < 5 × 10−6 or call rate <99%. 
SHAPEIT3 was used to phase variants; imputation to the UK10K/1000 Genomes 
panel was performed using the Sanger Imputation Server (https://imputation.
sanger.ac.uk).

Protein levels in INTERVAL were quantified using SOMAscan assays, 
processed and quality-controlled as described previously26: relative concentrations 
of 4,034 SOMAscan aptamers were measured in 3,562 INTERVAL participants 
in two batches by SomaLogic using v.3 of the SOMAscan platform. Aptamer 
concentrations (relative fluorescence units) were natural log-transformed and 
then adjusted within each batch for participant age, sex, the first three genetic 
principal components and time between blood draw and sample processing (<1 or 
>1 day); the residuals were then inverse rank normal-transformed. In this study, 
we further adjusted the normalized protein levels used in previous studies for batch 
number and filtered to 3,793 high-quality aptamers targeting 3,438 proteins after 
obtaining the latest information about aptamer sensitivity and specificity from 
SomaLogic. Aptamers were excluded if, in v.4 of the SOMAscan platform, they (1) 
targeted non-human proteins, (2) measured the fusion construct rather than the 
target protein or (3) measured a contaminant. A curated information sheet for all 
4,034 aptamers is provided in Supplementary Data 1. The distributions of aptamer 
levels and associations with covariates before and after quality control are given in 
Supplementary Data 2.

In total, 3,087 INTERVAL participants, without prevalent cardiometabolic 
disease (see below) and with matched genotype, proteomic and electronic health 
record data available for the primary analyses, passed quality control.

Prevalent disease exclusion. The NHS Blood and Transplant blood donation 
eligibility criteria (https://www.blood.co.uk/who-can-give-blood/) meant that 
there were built-in exclusions for the INTERVAL cohort for people with a history 
of major diseases, recent illness or infection. Specifically, for cardiometabolic 
diseases, the blood donation eligibility criteria excluded individuals who had 
been diagnosed with AF, had a history of any stroke or a history of major heart 
disease, including heart failure, coronary thrombosis, myocardial infarction, 
cardiomyopathy, ischaemic heart disease and arrhythmia, or surgery for 
non-congenital heart conditions. Use of aspirin or other blood thinners to control 
elevated blood pressure (hypertension) also made people ineligible to donate blood 
and participate in the INTERVAL cohort. Individuals with T2D were ineligible 
unless their T2D was well controlled by diet alone, did not require regular insulin 
treatment and the individual had not required insulin treatment for at least 4 weeks 
before attempting blood donation. Extended details on the blood donation criteria 
eligibility for specific diseases, medications and lifestyle factors can be found at 
https://my.blood.co.uk/knowledgebase.

In addition to intrinsic exclusion due to the blood donation eligibility 
criteria, participants were excluded from the analyses if they had any events 
relating to cardiometabolic disease before baseline assessment. Among the 301 
CALIBER end points, we classified 48 as cardiometabolic disease or having 
potential to introduce reverse causality by modifying risk for incident AF, CAD, 
CKD, IS or T2D (Supplementary Table 1). In total, 87 participants (2.7%) were 
excluded, predominantly due to prevalent hypertension (n = 57 events; 66% of 
excluded participants) and prevalent diabetes (n = 11 events; 13% of excluded 
participants), with all others accounting for less than 5% of excluded participants 
(Supplementary Table 1).

PGS. PGS were derived in a consistent manner by linkage disequilibrium (LD) 
thinning, at an r2 threshold of 0.9, the latest GWAS summary statistics for each 
respective disease (Supplementary Information). The GWAS summary statistics 
used to derive the AF, CKD and T2D PGS were those published by Nielsen et al.13 
(GCST006414), Wuttke et al.14 (GCST008065) and Mahajan et al.15 (GCST007517), 
respectively. The PGS for CAD and IS used in this study were our previously 
published CAD49 and stroke50 meta-PGS. The CAD PGS was derived from the 
meta-analysis of three PGS for CAD, including a PGS derived as described above 
from the GWAS summary statistics published by Nikpay et al.51. The IS PGS was 
derived from the meta-analysis of PGS for IS and its risk factors, including a PGS 
derived as described above from the GWAS summary statistics for IS published 
by Malik et al.16. Each PGS comprised 1.75–3.23 million single-nucleotide 
polymorphisms (SNPs) genome-wide and is available to download through 
the Polygenic Score Catalog52 (https://www.pgscatalog.org/) with accession 
nos PGS000727 (AF), PGS000018 (CAD), PGS000728 (CKD), PGS000039 
(IS) and PGS000729 (T2D). All PGS were derived from the GWAS summary 
statistics including only individuals with European ancestry. See Supplementary 
Information and Extended Data Fig. 8 for details on PGS validation.

The levels of each PGS (sum of dosages × weights) were computed in 
INTERVAL from probabilistic dosage data using PLINK v.2 (ref. 53) after mapping 
PGS variants to those available in the INTERVAL genotype data (Supplementary 
Information). The levels of each PGS were adjusted for the first ten principal 
components of the imputed genotype data and standardized to have mean of 0 and 
s.d. of 1 before downstream statistical analyses.

PGS–protein associations. Each of the five PGS was tested for association with 
each of the 3,793 aptamers using linear regression (Fig. 1a,b and Extended Data 
Fig. 3). PGS and proteins were adjusted for covariates and normalized before 
model fitting (see above). Linear regression coefficients were averaged where 
multiple high-quality aptamers targeted the same protein (Supplementary 
Information). FDR correction was subsequently applied across the 3,438 P 
values (1 per protein) for each PGS separately. Details on aptamer specificity and 
sensitivity are given in Supplementary Table 2 for the 54 aptamers targeting the 49 
PGS-associated proteins; aptamer-specific estimates of PGS on protein levels are 
detailed in Supplementary Table 3 for the 5 PGS-associated proteins targeted by 
more than one aptamer (WFIKKN2, GPD1, IGFBP1, IGFBP2 and SHBG).

Polygenicity of PGS–protein associations. To quantify the polygenicity of 
PGS–protein associations (Fig. 1c and Extended Data Fig. 7), we performed a 
multistep experiment to determine the proportion of the genome required to 
explain that association. First, we split the given PGS into separate scores for each 
of the 1,703 approximately independent LD blocks estimated in Europeans from 
the 1000 Genomes reference panel by Berisa and Pickrell54 (https://bitbucket.org/
nygcresearch/ldetect-data/src/master/EUR/fourier_ls-all.bed). Next, we tested 
each of these 1,703 scores for association with the given protein (Supplementary 
Data 3e). Then, we retested the PGS to protein association, progressively removing 
independent LD blocks, at each step removing the LD block whose score had the 
strongest association with the protein. From this, we quantified polygenicity (Fig. 
1c) based on the LD blocks needed to be removed from the given PGS to attenuate 
the PGS–protein association (so that association P > 0.05; Supplementary Data 
3f) as the sum of removed LD block sizes/sum of all LD block sizes (that is, the 
proportion of the genome removed). Extended Data Fig. 7 shows the independent 
LD blocks contributing to the polygenicity of each PGS–protein association.

Independent contributions of PGS and pQTLs to protein levels. Multivariable 
linear regression models were fitted for each protein on PGS levels and 
pQTL dosages to estimate their independent contributions to protein levels 
(Supplementary Table 4). The pQTLs used for each protein were (1) conditionally 
independent pQTLs mapped in INTERVAL and published by Sun et al.26, which 
included both cis-pQTLs (within 1 Mb of the encoding gene) and trans-pQTLs 
passing the trans significance threshold of P < 1.5 × 10−11; (2) trans-pQTLs with 
P < 1.5 × 10−11 (lead variant only) for proteins not published in Sun et al.26 (B2M, 
DUSP26 and FTMT); and (3) hierarchically significant55,56 cis-pQTLs (lead 
variant only) mapped in this study (Supplementary Data 4 and Supplementary 
Information) for proteins without cis-pQTLs passing the trans-pQTL significance 
threshold above (ACY1, ADIPOQ, APOE, CST3, GPD1, PTPRU, SHBG and UST).

Incident disease associations. PGS and protein levels were tested for association 
with incident disease using Cox proportional hazards models adjusting for age 
and sex (Fig. 2b and Extended Data Fig. 8) using the survival package (version 
3.2-7) in R. The timescale used was time from baseline to first event of the relevant 
disease or to the latest available date in the hospital records (8 February 2020). 
PGS and proteins were adjusted for covariates and normalized before model fitting 
(see above). Cox model coefficients were averaged where multiple high-quality 
aptamers targeted the same protein (Supplementary Information).

Incident disease events for AF, CAD, CKD, IS and T2D were defined as the 
first hospital episode for the closest matching CALIBER phenotype47. Incident AF 
events were defined as any hospital episode with the ICD-10 code I48. Incident 
IS events were defined as any hospital episode with the ICD-10 code I63 or I69.3. 
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Incident CAD events were defined as any hospital episode with ICD-10 code 
I21–I23, I24.1 or I25.2 (CALIBER end point myocardial infarction). The closest 
matching CALIBER phenotype for T2D was for diabetes more broadly, including 
ICD-10 codes for any hospital episode for T1D or T2D or complications thereof: 
E10–E14, G59.0, G63.2, H28.0, H36.0, M14.2, N08.3 or O24.0–O24.3. However, 
we note that individuals with T1D are not eligible to donate blood and adult onset 
of T1D is relatively rare compared to T2D57. The closest matching CALIBER 
phenotype for CKD was for end-stage renal disease more broadly, defined as any 
hospital episode with the ICD-10 codes N16.5, N18.5, T82.4, T86.1, Y60.2, Y61.2, 
Y84.1, Z49.1, Z49.2, Z94.0 and Z99.2.

Mediation analysis. Mediation analysis was used to identify causal proteins by 
identifying the PGS-associated proteins that partially mediate the association of 
PGS on disease (Fig. 2d). This approach uses the counterfactual framework to infer 
causal effects30–32 and can be adapted to this setting because the arrow of causality 
between PGS and any associated phenotype can only flow in one direction since 
the PGS is fixed at conception (that is, the underlying alleles in each person cannot 
be modified later in life by protein levels or the development of cardiometabolic 
disease). In this study, we used the natural effects model developed by Vansteelandt 
et al.58, which is available in the medflex R package (version 0.6-7 used in this 
study)59, to estimate natural indirect effects (effects of PGS on disease through 
protein levels) on the log odds scale by imputing unobserved counterfactuals. 
Standard errors were computed using the robust sandwich estimator60, from which 
95% confidence intervals (CIs) and P values were calculated. The percentage of 
PGS–disease associations mediated by each protein and 95% CIs were subsequently 
computed as the natural indirect effect and its 95% CI was divided by the total 
effect estimated by each mediation test. Multiple mediation analysis61 was 
performed using the R package mma (version 10.3.2)62 to quantify the proportion 
of PGS–disease association mediated by the 15 causal T2D proteins.

Mendelian randomization. Two-sample Mendelian randomization33 was 
also performed as an orthogonal approach to identify proteins that may play a 
causal role in disease (Extended Data Fig. 9 and Supplementary Tables 6 and 7). 
PGS-associated proteins were tested provided they had three or more independent, 
as determined by LD (r2 < 0.1), hierarchically significant cis-pQTLs after mapping 
cis-pQTLs to the GWAS summary statistics (Supplementary Information) using 
five different Mendelian randomization methods63–66, each of which makes use of 
information across three or more instruments to estimate causal effects, with each 
method differentially robust to different sources of bias, to obtain a consensus 
(median) estimate of causal effects of protein levels on disease risk (Supplementary 
Information). Hierarchically significant cis-pQTLs and tagging variants (LD 
r2 > 0.1) were excluded where they encoded changes to protein structure67 (for 
example, missense mutations) and therefore potentially reflected differences in 
aptamer binding affinity rather than regulation of protein levels (Supplementary 
Information). Aptamers were also excluded if they had similar affinity for/
comparable binding to multiple proteins or differential binding to specific isoforms 
(Supplementary Table 3 and Supplementary Information).

In total, 11 of the 49 PGS-associated proteins could be tested. GWAS summary 
statistics were obtained from Nelson et al.17 for CAD (GCST004787), Wuttke et al.14 
for CKD (GCST008065), Malik et al.16 for IS (GCST006906) and Mahajan et al.15 
for T2D (GCST007518). In all cases, we used the GWAS summary statistics for the 
samples of recent European ancestry. For T2D, we used the BMI-adjusted GWAS 
summary statistics to avoid false positive causal estimates arising where pQTLs 
influence T2D risk through BMI rather than through the tested protein (horizontal 
pleiotropy). We considered there to be a significant causal effect where P < 0.05 
along with no significant evidence that causal effects were due to associations of the 
pQTLs with some other causal risk factor (horizontal pleiotropy; Egger intercept66 
P > 0.05). Analysis was performed using the R package MendelianRandomization 
(version 0.5.0)68. Colocalization analysis69 was also performed where the cis-pQTL 
instruments had P < 1 × 10−6 in the respective GWAS (Supplementary Table 7 and 
Supplementary Information).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available or deposited in a public repository. 
The INTERVAL cohort data are available via the European Genome-phenome 
Archive with study accession no. EGAS00001002555. Dataset access is subject 
to approval by an independent data access committee since the data contain 
potentially identifying and sensitive patient information. Response times from the 
data access committee are typically within 1 week. All other data used in this study 
are publicly available without restriction. The PGS used in this study are available 
to download through the Polygenic Score Catalog (https://www.pgscatalog.org/) 
with accession nos PGS000727 (AF), PGS000018 (CAD), PGS000728 (CKD), 
PGS000039 (IS) and PGS000729 (T2D). The GWAS summary statistics used to 
generate new PGS for CKD, T2D and AF in this study are available to download 
through the GWAS Catalog (https://www.ebi.ac.uk/gwas/) with study accession 
nos GCST008065 (for the CKD GWAS published by Wuttke et al.14), GCST007517 

(for the T2D GWAS published by Mahajan et al.15) and GCST006414 (for the AF 
GWAS published by Nielsen et al.13). The additional GWAS summary statistics 
used for Mendelian randomization analysis are also available through the GWAS 
Catalog with study accession nos GCST004787 (for the CAD GWAS published 
by Nelson et al.17), GCST006906 (for the IS GWAS published by Malik et al.16) 
and GCST007518 (for the T2D GWAS adjusted for BMI published by Mahajan 
et al.15). Full pQTL summary statistics published by Sun et al.26 for all SomaLogic 
SOMAscan aptamers are available to download from https://www.phpc.cam.ac.uk/
ceu/proteins/. The DrugBank database is publicly available to download at https://
www.drugbank.ca/releases/latest. Summary statistics for all statistical tests are 
available in Supplementary Data 3; the additional cis-pQTLs mapped in this study 
are provided in Supplementary Data 4.

Code availability
The code used to generate the results of this study, along with a detailed list of 
software and versions, is available on GitHub (https://github.com/sritchie73/
cardiometabolic_prs_plasma_proteome/), which is permanently archived by 
Zenodo70 at https://doi.org/10.5281/zenodo.4762747.
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Extended Data Fig. 1 | Study schematic. Overview of the study design.
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Extended Data Fig. 2 | Cohort characteristics. IQR: interquartile range. Body mass index (BMI) was computed from self-reported height and weight.
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Extended Data Fig. 3 | Summary statistics for PGS to protein to disease associations. Beta: standard deviation change in protein levels per standard 
deviation increase in PGS (from Fig. 1b) in linear regression adjusting for age, sex, 10 genotype PCs, sample measurement batch, and time between 
blood draw and sample processing. FDR: Benjamini-Hochberg false discovery rate corrected P-value. FDR correction was applied separately for each 
PGS to all 3,438 P-values from linear regression of each of the 3,438 measured proteins on the respective PGS. Polygenicity: proportion of the genome 
(%) required to explain the PGS to protein association (from Fig. 1c). HR: hazard ratio for 7.7 year risk of hospitalisation with the respective disease 
conferred per standard deviation increase in protein levels (from Fig. 2b) in cox proportional hazard models using follow-up as time scale and adjusting 
for age, sex, sample measurement batch, and time between blood draw and sample processing. Associations highlighted in red indicate significant 
associations after Bonferroni correction for the 42 tests (P < 0.0012). Associations dulled in grey indicate P > 0.05. % PGS Mediated: Percentage of total 
association between the respective PGS and 7.7 year risk of hospitalisation with the respective disease mediated by the respective protein (from Fig. 2d). 
Highlighted in red indicates mediation was significant after Bonferroni correction for the 42 tests (P < 0.0012). Entries dulled in grey indicate P > 0.05. 
Linear regression, polygenicity, cox proportional hazard models, and mediation analysis were all performed in the same n = 3,087 independent INTERVAL 
participants. In each instance, 95% CI corresponds to the 95% confidence interval of the respective point estimate. All P-values are two-sided. 95% 
confidence intervals and P-values could not be formulated for the polygenicity tests. For proteins measured by more than one SomaLogic aptamer (GPD1, 
IGFBP1, IGFBP2, SHBG, and WFIKKN2) effect sizes were averaged and two-sided P-values were obtained from averaged Z-scores, and aptamer-specific 
summary statistics are detailed in Supplementary Table 3.
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Extended Data Fig. 4 | Information about each PGS associated protein. Aptamer: Sequence ID for the SomaLogic aptamer(s) targeting the protein. A * 
next to the protein name indicates the aptamer(s) binds to specific isoforms of the listed protein or binds to multiple proteins; see Aptamer target column. 
Extended details on aptamer sensitivity and specificity can be found in Supplementary Table 2.
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Extended Data Fig. 5 | Previous evidence for PGS-associated proteins in disease. Citations provided where association with the respective disease has 
been previously observed71–97.
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Extended Data Fig. 6 | Robustness of PGS to protein associations. a-c) Robustness and longitudinal stability of PGS to protein associations to 
proteomics technology. d-e) Robustness and longitudinal stability of protein levels to proteomics technology. f) Robustness of PGS-protein associations 
to environmental and physiological confounding. g) Mediation of PGS-protein associations through body mass index (BMI) for six proteins associated 
with T2D PGS. a) Compares PGS-protein associations from Fig. 1b in n = 3,087 INTERVAL participants in which protein levels were measured with the 
SomaLogic platform (x-axis) to PGS-protein associations tested in an independent set of n = 418 INTERVAL participants in which protein levels were 
measured with the Olink Explore platform (y-axis). In total 1,463 proteins were quantified by the Olink Explore platform, including 907 quantified by the 
SomaLogic platform, and among these 16 of the 49 PGS-associated proteins from Fig. 1b. b) Compares PGS-protein associations from Fig. 1b (x-axis) to 
PGS-protein associations tested in an independent set of n = 3,848 INTERVAL participants in which protein levels were measured with the Olink T96 
platform (y-axis). In total 265 proteins were quantified by the Olink T96 platform, including 224 quantified by the SomaLogic platform, and among these 
4 of the 49 PGS-associated proteins from Fig. 1b. c) Compares PGS-protein associations tested in n = 646 INTERVAL participants in which protein levels 
were measured with both the SomaLogic platform (x-axis) and, after two-years of follow-up, the Olink T96 platform (y-axis). a-c) Data shown correspond 
to the beta estimates from linear regression (points) and their 95% confidence interval (bars), indicating standard deviation change in protein levels 
per standard deviation increase in the respective PGS (denoted by colour). Solid points indicate two-sided P-value < 0.05 for the test on the y-axis. 
Linear regression on both axes were adjusted for age (at protein measurement), sex, 10 genotype PCs, and platform-specific technical covariates. Full 
summary statistics including exact P-values are detailed in Supplementary Data 3,b for linear regression tests on y-axes, and in Supplementary Data 3,a 
for linear regression tests on x-axes. d) Compares protein levels quantified by the SomaLogic platform (x-axes) to protein levels quantified by the Olink 
T96 platform (y-axes) after two years of follow-up in n = 646 INTERVAL participants. e) Compares protein levels quantified by the Olink T96 platform 
(x-axes) to protein levels quantified by the Olink Explore platform (y-axes) in n = 418 INTERVAL participants. f) Compares PGS-protein associations from 
Fig. 1b in n = 3,087 INTERVAL participants (x-axes) to PGS-protein associations (1) additionally adjusted for circadian effects (time of day of blood draw), 
(2) additionally adjusted for seasonal effects (date of blood draw), (3) when including 87 additional participants with prevalent cardiometabolic disease 
(n = 3,174 on y-axis), and (4) when adjusting for BMI (n = 3,072 participants with non-missing BMI on y-axis). All associations were testing using linear 
regression adjusting for age, sex, 10 genotype PCs, sample measurement batch, and time between blood draw and sample measurement in addition 
to the covariates noted above. Data shown correspond to the beta estimates from linear regression (points) and their 95% confidence interval (bars), 
indicating standard deviation change in protein levels per standard deviation increase in the respective PGS (denoted by colour). Full summary statistics 
including exact P-values in these sensitivity analyses are detailed in Supplementary Data 3,c. g) For the six proteins whose association with T2D PGS was 
attenuated by adjustment for BMI (P > 0.05; Extended Data Fig. 6f) gives, from mediation analysis, the estimated effect of T2D PGS on the protein levels 
through BMI (standard deviation change in protein levels through BMI per standard deviation increase in T2D PGS), percentage of T2D PGS to protein 
levels mediated by BMI, and the estimated effect of T2D PGS on protein levels independent of BMI in n = 3,072 INTERVAL participants. All P-values are 
two-sided.
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Extended Data Fig. 7 | Polygenicity of PGS to protein associations. Linkage disequilibrium (LD) blocks contributing to each PGS to protein association 
in polygenicity tests. Briefly, each PGS was partitioned into 1,703 approximately independent LD blocks54 then tested for association with each protein 
in linear regression adjusting for age, sex, 10 genotype PCs, sample measurement batch, and time between blood draw and sample processing in 3,087 
INTERVAL participants. Full summary statistics including exact two-sided P-values for these tests are detailed in Supplementary Data 3,e. Next, to obtain 
the set of LD blocks contributing to each PGS to protein association, LD blocks were sequentially removed from the PGS in ascending order by association 
P-value (two-sided) until the association between resulting PGS and protein levels were attenuated (two-sided P > 0.05). Full summary statistics including 
exact two-sided P-values for these tests are detailed in Supplementary Data 3,f. The polygenicity of PGS to protein association (% of genome) shown 
on the left (and in Fig. 1c) was subsequently computed based on the sum of lengths of all contributing LD blocks (in base pairs) as a proportion of the 
genome. Here, associations (−log10 two-sided P-values) between protein levels and LD blocks contributing to the PGS to protein association are shown. 
Regions in white contain LD blocks that did not contribute to the PGS to protein association. PGS to protein associations listed in red are those explained 
by pQTLs (cis and/or trans) rather than polygenic.
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Extended Data Fig. 8 | Incident disease and PGS validity. a) Incident disease events over the 7.7 year of follow-up in the n = 3,087 INTERVAL participants. 
Endpoint: incident disease definition available in INTERVAL for the relevant PGS, as defined by CALIBER phenotyping algorithms. Age of onset: median age 
of first hospitalisation with the respective endpoint. Numbers in brackets gives the interquartile range. b) Hazard ratio (HR) (points) and 95% confidence 
interval (95% CI) (horizontal bar) for 7.7 year risk of hospitalisation with the respective endpoint per standard deviation increase in the respective PGS 
in cox proportional hazards models using follow-up as time scale and adjusting for age, sex, 10 genotype PCs, sample measurement batch, and time 
between blood draw and sample processing in n = 3,087 INTERVAL participants. P-values are two-sided. c) Association between CKD PGS with estimated 
glomerular filtration rate (eGFR), a marker of renal function used in chronic kidney disease diagnosis: decreased eGFR is indicative of reduced renal 
function98. EGFR was computed from serum creatinine in n = 3,307 participants using the CKD-EPI equation99. Association was fit with linear regression 
adjusting for age and sex, and 10 genotype PCs. The point corresponds to the change in eGFR per standard deviation increase in CKD PGS, and the 
horizontal bar corresponds to the 95% CI. P-values are two-sided.
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Extended Data Fig. 9 | Mendelian randomisation analysis. a) Causal effects of protein levels on disease risk estimated through two-sample Mendelian 
randomisation analysis of pQTL summary statistics and disease GWAS summary statistics. OR: consensus estimate of the odds ratio conferred per 
standard deviation increase in protein levels across five Mendelian randomisation methods. * Estimated causal effect is directionally consistent with 
PGS-protein associations in Fig. 1b. 95% CI: 95% confidence interval. P-value: Two-sided P-value obtained by averaging Z-scores across five Mendelian 
randomisation methods. Entries are greyed out where P > 0.05, and red where P < 0.0038 (Bonferroni correction for 13 tests). Pleiotropy P-value: 
two-sided P-value for the intercept term in Egger regression, indicating where P < 0.05 confounding of the causal estimate by horizontal pleiotropy. Full 
summary statistics including exact P-values are detailed in Supplementary Table 6. b) Dose response curves showing the estimated causal effect of 
changes in protein levels on disease risk for each protein and disease. Points on each plot show the cis-pQTLs used as genetic instruments for each test. 
On the x-axes, points show the standard deviation change in protein levels per copy of the minor allele in the pQTL summary statistics, and horizontal 
bars show + /- the standard error. On the y-axes, points show odds ratio conferred per copy of the minor allele in the GWAS summary statistics, and 
vertical bars indicate show + /- the standard error. Effect sizes, standard errors, and exact two-sided P-values from pQTL and GWAS summary statistics 
are detailed in Supplementary Table 7. The slope of the orange dashed line corresponds to the estimated causal effect (consensus Odds Ratio from a). The 
yellow ribbon shows the 95% confidence interval for the estimated causal effect (slope), accounting also for the 95% confidence interval for the intercept 
term in Egger regression.
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Extended Data Fig. 10 | Overlap of results with proteome-wide T2D associations in AGES-Reykjavik. a) Contingency table tabulating the overlap 
in results from our study detailed in Extended Data Fig. 3 (rows) with proteome-wide significant associations with incident and prevalent T2D in 
AGES-Reykjavik in Gudmundsdottir et al. 202035 (columns). One-sided P-values from Fisher’s exact tests are given in each cell testing whether the overlap 
is greater than expected by chance. Row totals and column totals indicate the number of proteins in each row and column group, and the total overlap in 
proteins present in both studies (3,250) is given in the bottom right. b) For the 16 of 31 proteins nominally associated with T2D PGS in INTERVAL  
(Fig. 2b) and proteome-wide significant for incident T2D in AGES-Reykjavik, compares hazard ratios (points; x-axis) for incident T2D in INTERVAL (N = 27 
cases over 7.7 years of follow-up in 3,087 participants) to odds ratios (points; y-axis) for incident T2D in AGES-Reykjavik (N = 112 cases after 5 years of 
follow-up in 2,940 participants). Cox proportional hazards models in INTERVAL were fit with follow-up as time scale, adjusting for age, sex, 10 genotype 
PCs, sample measurement batch, and time between blood draw and sample processing. Logistic regression in AGES-Reykjavik were fit adjusting for age 
and sex35. Horizontal and vertical bars correspond to the 95% confidence intervals of the hazard ratios and odds ratios respectively. Two-sided P < 0.0012 
indicates association with incident T2D in INTERVAL from Fig. 2b was significant after Bonferroni correction for the 42 tested protein to disease 
associations. Summary statistics including exact two-sided P-values from both analyses are given in Supplementary Table 8.
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