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Summary

Title: Behavioural principles underlying navigational decision-making in Drosophila

melanogaster larvae

Author: Elise Colette Croteau-Chonka

An animal’s survival depends on timely decisions informed by sensory information.

Studies in humans and large model organisms have elucidated auxiliary roles of large

brain regions in the evolution of such perceptual decisions. What remains challenging is

acquiring a detailed understanding of the underlying neural mechanisms at a synaptic

level and across entire brain circuits.

The Drosophila melanogaster larva is an apt model system for probing the

mechanisms of decision-making given its rich behavioural repertoire, small nervous

system, genetic tractability, and available neuronal wiring diagrams. Taking inspiration

from the application of two-alternative forced choice (TAFC) tasks to study perceptual

decision-making in other model systems, I employed a closed-loop system to

optogenetically activate larval nociceptive neurons based on the direction of precisely

detected lateral head sweeps (i. e. casts). I sought to uncover the behavioural

computations driving the stereotyped larval navigation sequence comprising repeated

head casts followed by crawling in a new direction.

I found that in control conditions where stimulus intensity is identical between left

and right casts, the percentage of larvae that stop exploration and crawl in the direction

favourable for survival (i.e. toward the first stimulated direction) significantly increases

with number of casts. However, in experimental conditions where the aversive stimulus

differs between sides, the percentage that accept the correct side (i. e. lower intensity)

increases more significantly with cast number. When controlling for integrated intensity

across casts, I observe a higher fraction of larvae accepting the lower intensity stimulus

in experimental conditions compared to controls. These results suggest a mechanism of

side-to-side comparison and possible sensory evidence accumulation that facilitates

improved decision-making.
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In this thesis, I introduce the construction and implementation of two computational

models for comparison to the larval behaviour trajectories. Both models reflect features

of the experiment paradigm, though they differ in their assumptions about how the larva

uses information from its environment to guide the acceptance or rejection of a given

cast. The resulting predictions I generated about larval behaviour capture some, but not

all, qualitative signatures within both the experimental and control datasets. I explore

avenues for future model investigation and collection of additional behavioural data in

order to draw more definitive mechanistic conclusions.

While powerful, the closed-loop system I employed tracks only a single larva at a

time. Transitioning my sensory discrimination task to a high-throughput system would be

advantageous not only to expand the investigation of other stimulus levels but also to

screen stimuli of different valences or from other sensory modalities. In this thesis, I

detail my contributions to the development, validation, testing, and experimental

application of a new tracking system that is capable of behaviour detection and

closed-loop optogenetic and thermogenetic stimulation of 16 larvae simultaneously. This

facilitated the first observations of operant conditioning in the Drosophila larva in which

the animal successfully adapted its casting behaviour following repeated coupling with

reward presentation. Although operant learning occurs over a longer time scale than

perhaps what is required for perceptual decision-making, the two tasks are related in

creating an association between the animal’s body posture and available sensory

information. Together, my work on the sensory discrimination task, behavioural

modeling, tool development, and analysis of the operant learning results lays a

foundation for future investigation of decision-making behaviour in Drosophila larvae,

with implications for further understanding the circuit mechanisms underlying larval taxis,

learning, and memory.
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Chapter 1

Introduction

An animal’s survival depends on making informed decisions from sensory information.

One behavioural strategy for this perceptual decision-making could be strict

reinforcement of actions based on outcomes, but such highly strengthened associations

with stimuli can be maladaptive for learning in dynamic environments (Cohen et al.,

2007; Reitich-Stolero et al., 2019). Animals must be flexible enough to manage

inherently ambiguous sensory information that itself may change over time. Both

vertebrates (Brunton et al., 2013; Feng et al., 2009; Kira et al., 2015; Shadlen and

Shohamy, 2016) and invertebrates (DasGupta et al., 2014; Groschner and Miesenböck,

2019; Tanimoto and Kimura, 2019) repeatedly sample stimuli to reduce uncertainty

surrounding features of the environment. Top-down research facilitates translation of

these observations into testable predictions about the cognitive algorithms guiding

perceptual decisions and the neural mechanisms through which those computations

occur (Gerstner et al., 2012; Kriegeskorte and Douglas, 2018).

Alongside egg-laying and mate selection, foraging remains a prime context for

studying perceptual decision-making in naturalistic environments. Foraging studies span

animal taxa, from humans (Kolling et al., 2012) and various bird species (McNamara

et al., 2006; Valone, 2006), to bees (Foley and Marjoram, 2017) and the nematode

Caenorhabditis elegans (Calhoun et al., 2014; Flavell et al., 2013). Perceptual

decision-making is also probed through psychophysics, with a common assay being the

two-alternative forced choice (TAFC) task. Perhaps the most well-known formulation is

one in which a monkey must discriminate coherent motion within a visual field comprising

other randomly moving dots. The monkey reports its belief about which direction the

coherent group is moving by saccading to one of two targets (Feng et al., 2009; Shadlen

and Newsome, 1996). Variations include stimulus discrimination in visual (Kira et al.,
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2015) and vibrotactile (Romo et al., 2002) sequences. Rodent studies highlight TAFC

versatility across sensory modalities (Shadlen and Kiani, 2013) including olfaction (Gold

and Shadlen, 2007; Kepecs et al., 2008; Uchida and Mainen, 2003) and audition

(Brunton et al., 2013; Erlich et al., 2011; Marbach and Zador, 2016; Otazu et al., 2009).

Controlled laboratory experiments across model organisms have been integral to

advancing investigation of perceptual decision-making toward comparative study of

underlying neural mechanisms. In general, findings across large model organisms

suggest an auxiliary role of large brain regions in forming these decisions. In monkeys

performing TAFC, graded neuronal firing reflects decision formation dynamics for visual

(Smith and Ratcliff, 2004) and vibrotactile (Romo et al., 2002) stimuli. In both monkeys

and rodents, cortical activity in motor planning areas during TAFC is consistent with

evidence accumulation to a threshold (de Lafuente et al., 2015; Eckhoff et al., 2008;

Feng et al., 2009; Gold and Shadlen, 2001; Kira et al., 2015; Li et al., 2016; Li and

Krishnamurthy, 2015; Shadlen and Newsome, 1996). Relationships between smaller

neuron groups are, however, poorly understood at this scale (Hanks and Summerfield,

2017). A full mechanistic understanding of perceptual decision-making within a single

organism, from behaviour down to the synapse, has yet to be described (Tanimoto and

Kimura, 2019).

1.1 D melanogaster larval navigation

The Drosophila melanogaster larva is an apt model system for study given its rich

behavioural repertoire (Green et al., 1983; Lahiri et al., 2011; Ohyama et al., 2013;

Takagi et al., 2017), small nervous system (approximately 10,000 neurons), genetic

tractability for selective manipulation of individual neuron types (Brand and Perrimon,

1993; Duffy, 2002; Jenett et al., 2012; Klapoetke et al., 2014; Luo et al., 2008; Simpson

and Looger, 2018), and available brain synaptic-level wiring diagram (Berck et al., 2016;

Eichler et al., 2017; Fushiki et al., 2016; Ohyama et al., 2015; Schneider-Mizell et al.,

2016). These larvae also exhibit a stereotyped behavioural sequence as they navigate

their environment: periods of forward crawling (runs) are interrupted by reorientation

manoeuvres in which head sweeps (casts) once or more to either side of the body

precede crawling in a new direction (turns). Such changes in larval heading are

considered navigational decision points (Fig. 1.1; Lahiri et al., 2011; Luo et al., 2010;

Riedl and Louis, 2012), making reorientation manoeuvres ideally suited for investigating

perceptual decision-making. In homogeneous environments, the larval ventral nerve
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cord (VNC) is sufficient for executing and alternating between runs and reorientation

manoeuvres. In dynamic environments, the brain, subesophageal zone (SEZ), and VNC

modulate these behaviours to facilitate movement away from potential threats toward

more favourable living conditions (Berni et al., 2012).

5
4 3

2 1

turn

3
2 1

ca
st

run

Fig. 1.1 Time series of larval navigation. Periods of forward peristaltic motion (runs; green) are interrupted by reorientation
manoeuvres (casts followed by a turn; black). Arrows indicate direction of motion. Reorientation manoeuvres comprise one or
several head casts (annotated below the trajectory, with numbers corresponding to the first, second, etc. cast in the sequence),
followed by crawling in a new direction. Although both reorientation manoeuvres show the larva alternating sequential head casts
between the left and right sides of its body, larvae are also known to cast repeatedly to one side before sweeping their head to the
other (behaviour not shown). The heading direction set by the final cast in a reorientation manoeuvre dictates the direction of the
subsequent run, making this stereotyped behavioural sequence a form of navigational decision-making. Larva schematic inspired
by Gjorgjieva et al. (2013).

One such dynamic environment that has been carefully studied in Drosophila is the

smoothly varying sensory gradient. The success with which larval Drosophila traverse

these environments has encouraged further investigation into underlying

trajectory-guiding strategies. Consider three features of the stereotyped reorientation

behaviour sequence: the average duration of the run preceding a reorientation

manoeuvre (manoeuvre frequency), the magnitude of change in heading direction

between the start and end of a reorientation manoeuvre (manoeuvre size), and the
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acceptance of a head cast when oriented orthogonal to the gradient (manoeuvre

direction). Larvae have been shown to bias the frequency, size, and direction of

reorientation manoeuvres to navigate favourably in gradients of odour (chemo; Gershow

et al., 2012), temperature (thermo; Klein et al., 2015; Luo et al., 2010), light (photo;

Humberg et al., 2018; Kane et al., 2013), and wind (anemo; Jovanic et al., 2019).

Although Escherichia coli and C. elegans also modulate run length based on stimulus

intensity, this method alone results in indirect orientation toward attractants (kinesis).

Through the addition of head casting, Drosophila larvae take advantage of local sensory

information to orient themselves directly toward appetitive stimuli (taxis).

But what function, if any, do separated sensory organs serve in directed navigation?

Adult Drosophila appear to rely solely on simultaneous spatial comparison of bilateral

inputs (tropotaxis; Gomez-Marin and Louis, 2012). In the larva, this reliance seems to be

modality-dependent. In both chemotaxis and thermotaxis, larvae neither significantly

change their heading direction during runs nor bias the first head cast of a reorientation

manoeuvre to the favourable direction (Gershow et al., 2012; Luo et al., 2010). The

absence of steering or biased cast initiation suggests that larvae do not use tropotaxis to

spatially compare odour or temperature stimuli while crawling. Larvae instead move their

sensory organs through sequential head casts during reorientation manoeuvres,

enabling temporal stimulus comparison to drive navigational decisions (klinotaxis).

Successful larval chemotaxis and thermotaxis using unilateral sensory input further

supports this conclusion (Gershow et al., 2012; Gomez-Marin et al., 2011; Klein et al.,

2015; Louis et al., 2008). In contrast, the dynamics of larval phototaxis and anemotaxis

seem dependent on both temporal and spatial comparisons between stimuli. In wind

gradients, larvae do not steer but they do bias the first head cast of a reorientation

manoeuvre (Jovanic et al., 2019). In light gradients, binocularity provides spatial

information for steering (Humberg et al., 2018), though biased cast initiation appears

absent (Kane et al., 2013).

Despite detailed behavioural investigation of larval navigation strategies through

taxis behaviour, gaps remain in our knowledge of precisely how temporal information

acquisition leads to successful navigation. Notably, the function of repeated head casts

within a reorientation manoeuvre has not been well characterised. Previous work in taxis

has observed larvae casting as little as once and as often as seven times per

manoeuvre (Gomez-Marin and Louis, 2012; Luo et al., 2010). Despite this variability in

manoeuvre length, statistics describing the cast-to-run transition have, to my knowledge,

only focused on cast acceptance as a function of direction (to the favourable or
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unfavourable side) and not a cast’s numerical placement within the sequence (Gershow

et al., 2012; Kane et al., 2013; Luo et al., 2010). What behavioural algorithm mediates

transitions between repeated cast rejections leading to the final cast’s acceptance? It

has been proposed that sensory systems in insects may accumulate evidence for

different alternatives and use coupled inhibition to improve decision-making performance

(Barron et al., 2015). I hypothesise that larvae accumulate sensory information with each

successive head cast, reducing their uncertainty about stimulus intensities and

improving the likelihood that the direction in which they turn is associated with favourable

conditions. Such a strategy could also underlie the increased head casting observed

when stimulus contrast is low (Gomez-Marin et al., 2011). Such knowledge would have

implications for our understanding of the circuit mechanisms underlying not only larval

taxis but also decision-making associated with learning and memory.

1.2 Explanation of chapters

The aim of my thesis is to detail my investigation of the behavioural computations

underlying repeated head casts during stereotyped reorientation manoeuvres in

Drosophila melanogaster larvae. In Chapter 2, I detail all methodology I followed and

materials I required to conduct this research. In Chapter 3, I describe my design for a

sensory discrimination task to probe features of larval perceptual decision-making within

a single-larva closed-loop optogenetic activation system. In that same chapter, I

interrogate the data I acquired from larvae engaging with this task and propose an

underlying behavioural mechanism. In Chapters 4 and 5, I outline the conceptual

construction and mathematical implementation of two different computational models

and evaluate their ability to explain features of the larval behavioural data. Chapter 6 is

the preprint manuscript I co-authored with Kristina Klein (methods and materials moved

to latter half of Chapter 2) detailing how we built a multi-larva closed-loop system and

observed, for the first time, operant learning in the Drosophila larva. I begin the chapter

with a brief preamble outlining how this work complements the investigation I describe in

Chapters 3, 4, and 5. The final chapter of my thesis (Chapter 7) is a discussion of my

results and their contribution to our understanding of larval behaviour as a whole. I

outline limitations of my approach and suggest various avenues for future investigation.





Chapter 2

Methods and materials

2.1 Larval sensory discrimination task

2.1.1 Single-larva closed-loop stimulation system

Hardware and software frameworks

The single-larva tracker electronics and hardware were nearly identical to the tracker

described in Schulze et al. (2015), with notable exceptions to the camera and backlight

which I detail here. Engineers from Janelia Research Campus’ Instrument Design and

Fabrication team assembled this system. The behaviour arena comprised a layer of

agarose sitting atop a fixed 45 cm x 45 cm glass plate. Above and below the arena sat a

pair of motorised linear slides (#T-LSR450B, Zaber Technologies), with single slides

mounted perpendicular to one another. Units oriented along the same axis were

daisy-chained via a 6-pin mini din cable and shared the same power supply. This

arrangement enabled movement of mounted components to any (x, y) location within

both slides’ travel range specifications (total coverage area was 34 cm x 38 cm)

(Fig. 2.1a). The linear slides interfaced with the host computer via a USB connection and

received (x, y) position updates at a rate of 4 Hz (Fig. 2.1b).

Mounted to the slides above the behaviour arena was a 2048 x 2048 resolution

camera (Grasshopper3 #GS3-U3-41C6NIR-C, Point Grey Research) (Fig. 2.1a) that

captured images at 20 Hz (Fig. 2.1b). A long-distance microscope (Model KC/S

VideoMax with IF2 objective, Edmund Optics) was c-mounted to the camera. The

camera-to-arena coordinate relationships were -1132 pixels (x) / mm (x),

70.56 pixels (x) / mm (y), 71.45 pixels (y) / mm (x), and 2831 pixels (y) / mm (y). The camera
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interfaced with the host computer via a USB 3.0 connection and the aerial images were

displayed in real time on a web-based graphical user interface (GUI) (Fig. 2.1b).

control LED
(10 Hz)

classify
behaviour

extract
features

update linear
slide positions

(4 Hz)

calculate
spine

detect
head/tail

identify
object contour

acquire raw
camera image (20 Hz)

LED (617 nm)

camera

motorised
linear slide

agarose plate

infrared backlight

larva

b

a

Fig. 2.1 Single-larva closed-loop stimulation system. A camera and an infrared backlight, both mounted on motorised linear
slides, were used to track the real-time behaviours of a single larva moving along a stationary agarose plate. When a chosen
behaviour was detected, the red LED turned on, stimulating the larva. a. System hardware was nearly identical to that described in
Schulze et al. (2015) (see text for details). b. Software framework. Still images from the graphical user interface show aerial views
of a single Drosophila larva in the behaviour arena. Processing raw camera images included identifying and drawing a 200-point
contour (blue outline) around the larva’s body. This enabled tracking throughout the experiment. The larval spine was defined as
equally distributed landmarks along the larva’s midline between the head (green dot) and tail (red dot). Using the neck landmark
(dark blue dot) as a guide, the linear slides performed position updates to keep the larva centred in the camera’s field of view.
The motion of landmarks over time (both individually and with respect to one another) was the basis for extracting motion, shape,
and velocity features. Features were combined to train behaviour classifiers. Software protocols combined detected behaviours
(displayed in green words) with user-defined experiment parameters to control the timing and intensity of LED stimulation.

Also mounted to the slides above the behaviour arena was a 617 nm LED

(#PLS-0617-030-S, Mightex Systems) which I equipped with a neutral density 3.0 filter

(Fig. 2.1a). The LED was connected to a universal driver with a serial data connection to

the host computer and a 12 bit output driving current of up to 1000 mA (#SLC-xx04-US,

Mightex Systems) at an update rate of 10 Hz (Fig. 2.1b). The centre of the LED

projection was aligned with the centre of the camera image to facilitate targeted

optogenetic stimulus presentation. To maintain the integrity of behaviour detection,

stimulus presentation, and optogenetic experimentation, all hardware was housed inside

a light-tight enclosure. A 2 in x 2 in 880 nm LED backlight (#BL0202-880IC, Advanced
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Illumination) was mounted to the linear slides below the behaviour arena to allow the

camera to continuously track the larva in the dark (Fig. 2.1a).

Dr Peter Polidoro wrote the hardware communication and operation software of the

single-larva tracker using a Robot Operating System (ROS) framework. Running in an

Ubuntu Linux environment, the individual software modules communicated with one

another through a TCP connection. Custom experiment protocols written by myself and

Kristina Klein combined classified behaviour with user-defined stimulus parameters from

the web-based GUI to control LED timing, intensity, and duration. The tracker output files

contained frame-by-frame data associated with feature calculation, behaviour

classification, and stimulus presentation. I modified the operation software to save

experiment parameters and other metadata (e. g. larval genotype) as a header within

each output file. I also debugged and further developed the default user interface to

increase flexibility in choosing experiment protocols and recording metadata without

repeatedly needing to modify the software.

Object contouring, landmark detection, and behaviour classification

Dr Jean-Baptiste Masson wrote the software for object contouring, landmark detection,

and behaviour classification. Here I describe these components, emphasising the

modifications that I made to the software either by myself or in collaboration with Dr J-B

Masson and/or K Klein. The software processed the raw camera images with an inverse

binary threshold and then identified the largest visible contour (i. e. the larva) (Fig. 2.1b).

With the infrared backlight positioned beneath the behaviour arena, K Klein and I

established that the transparency of the glass plate together with the concentration of

the agarose substrate influenced contour detection stability. Together, we iteratively

tested different camera shutter speeds to determine which yielded contours that not only

accurately represented the larval outline and but also did not flicker between frames. Dr

J-B Masson’s software kept the number of contour points identical between frames using

online Fourier decomposition and reconstruction (Masson et al., 2020). Larval head and

tail positions were extracted from the reconstructed contour’s sharpest and

second-sharpest internal angles (Fig. 2.1b). These calculations alone were prone to

error, with false detection during the first frame or as a consequence of large-angle head

casts. Dr J-B Masson, K Klein, and I designed preventive proximity measures and a

corrective vote system to improve online head and tail detection accuracy between

image frames (for algorithm details, see Section 2.2.1 and Fig. 2.3).
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Dr J-B Masson’s software used head and tail positions to divide the contour in half

and calculate the larval midline (i. e. spine) as in Swierczek et al. (2011). Three

additional landmarks were isolated from equally spaced locations along the spine. The

neck landmark was used to update the linear slide positions, keeping the moving larva

centred within the camera’s field of view (Fig. 2.1b and Fig. 2.4). As in the

high-throughput tracker described in Section 2.2.1, the contour, spine, and landmarks

were used to calculate real-time larval motion, shape, and velocity features on each

camera image. Temporal smoothing and differentiation by convolution removed

high-frequency noise.

Together, Dr J-B Masson, K Klein, and I developed behaviour classifiers for this

single-larva tracker that consisted of linear thresholds on the feature space and/or

supervised machine learning with a neural network algorithm (Bishop, 2006; Hagan

et al., 2014) (Fig. 2.1b). I contributed to training classifiers and manually assessing their

performance using a custom MATLAB (MathWorks, Natick, Massachusetts) GUI

equipped with software functions from the Neural Network, Deep Learning, and

Statistics and Machine Learning toolboxes. This GUI was developed by Dr J-B Masson

with necessary modifications implemented by K Klein. Three classifiers integral to my

sensory discrimination task included cast, ball, and forward.

Dr J-B Masson’s existing cast classifier comprised a two-layer neural network

trained on two features that characterised larval body axis alignment and overall shape. I

empirically determined a strict threshold on the former to ensure sufficiently large head

cast amplitudes (s < 0.82; Section 2.2.1; Masson et al., 2020). Larval direction (left or

right) was computed using a single threshold on the angle between the head and lower

body (asymmetry; Section 2.2.1). If exponential smoothing of the resulting boolean left

and right values exceeded a predetermined threshold, the respective classifier was set

to true. This separate left or right classification was combined with the cast

classifier to detect either left cast or right cast. I manually assessed left cast

and right cast performance based on 358 events from 30 minutes of video data

across 46 larvae. Precision was 76.0% and recall was 97.2%. Online false positives

were largely attributed to cast flickering off after initial detection (3.0 flickers per minute).

These were manually aligned offline with the closest true positive cast event (see

Section 2.1.4).

A larva would occasionally make a high amplitude cast, touching its head to its tail.

This "ball" shape transiently warped the calculated contour and caused head and tail

detection to rapidly flicker (Fig. 2.3). This flickering often led to incorrect head tail



2.1 Larval sensory discrimination task 11

detection as the larva straightened. K Klein and I trained a two-layer neural network

classifier for ball behaviour based on features that defined body axis alignment, overall

shape, and ratios of the contour’s perimeter and enclosed area to those of its convex hull.

We established that when a ball was detected, the previous frame’s left cast or

right cast behaviour classifications must be maintained. We set these to update only

1.5 s after ball detection stopped. False head and tail detection tallies were also reset

during the ball to reduce flickering once real-time left and right detection resumed

(for details, see Section 2.2.1). I manually assessed the performance of this ball

classifier (produced 0.03 left/right cast errors per minute).

K Klein developed a forward crawl classifier with thresholds on larval body axis

alignment, overall shape, and tail movement. To reduce detection errors across larvae

that moved at different speeds, I added to this classifier a unique tail movement

threshold for each larva based on it’s average tail movement during the 30 s waiting

period preceding each stimulation protocol. I manually assessed this new forward

classifier’s performance based on 809 events from 30 minutes of video data across 46

larvae. Precision was 95.3% and recall was 90.7%.

2.1.2 Fly strains and larval rearing

All larvae I used for experimentation were early third instar (72-84 hours after egg laying)

Drosophila melanogaster with the CsChrimson transgene (Klapoetke et al., 2014)

expressed in nociceptive multidendritic class IV neurons (ppk1.9; Ainsley et al., 2003;

Hwang et al., 2007; Xiang et al., 2010) under the Gal4-UAS system (Brand and

Perrimon, 1993). Virgin adult females of the genotype 20xUAS-CsChrimson-mVenus

trafficked in attp18 (Stock Number 55134, Bloomington Drosophila Stock Center) were

crossed in a 3:1 ratio with healthy males of the genotype w1118; ppk1.9-Gal4 (Ainsley

et al., 2003). Monti Mercer and Dr Brandi Sharp occasionally helped set up crosses in

behavioural cages. I collected eggs in the dark for four hours at 25°C and 50% humidity

on fly food with dry yeast added to the surface to encourage egg laying. The food was

prepared by the Janelia Research Campus’ Media Prep Facility following the standard

cornmeal recipe detailed in Section 2.2.3. Following egg collection, I incubated plates in

the dark for three days at 25°C and 50% humidity. The short collection window ensured

that all larvae were stage-matched to early third instar.
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2.1.3 Experiment conditions and procedures

I conducted experiments at 25°C and 50% humidity. Prior to each day of experiments, I

poured 1% agarose (Fisher Scientific) (Apostolopoulou et al., 2014b) on the glass plate

and allowed it to harden . I left all larvae in the dark on the fly food until they were

needed for an experiment. To easily extract larvae for experiments, I immersed small

amounts of fly food in a separate petri dish of water. Using a brush, I lifted each larva out

of the water using a brush, then gently dried and placed them on a room-temperature

4% agar petri dish. I kept this dish in the dark to allow the larva to recover from

extraction for a minimum of five minutes. Just prior to the experiment, I gently picked up

the larva from the petri dish and placed in the centre of the behaviour arena on top of the

cooled and set agarose. I then closed the rig door.

I wrote the Python software code for my larval sensory discrimination task which

required triggering the presentation of different stimulus intensities as a function of

detected cast direction (Fig. 3.1a). 30 s without light preceded each experiment,

allowing for behaviour detection stability and larval acclimation to the substrate.

Immediately following this waiting period, light stimuli triggering was withheld until the

larva completed four consecutive forward crawls, each within 2 s of one another and

uninterrupted by a cast. I established this criterion to prevent partial stimulation of

casting events that started during the waiting period and continued into the experiment

window. This also distinguished larvae that may have been more motivated to solve the

task: if larvae were too sluggish and failed to meet the crawling criterion within the

experiment’s first minute, I discarded them.

Individual larvae were tested under one of five predetermined stimuli conditions,

each constituting a pair of 617 nm red light intensities. I measured the following

intensities with a Thorlabs digital optical power meter equipped with a compatible

photodiode sensor:

• EL,M (18.72 µW/cm2, 19.78 µW/cm2)

• EL,H (18.72 µW/cm2, 20.90 µW/cm2)

• CL,L (18.72 µW/cm2, 18.72 µW/cm2)

• CM,M (19.78 µW/cm2, 19.78 µW/cm2)

• CH,H (20.90 µW/cm2, 20.90 µW/cm2)
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EL,M and EL,H represent experimental conditions under which a different stimulus

intensity was triggered when the larva cast in one direction versus the other. Importantly,

the two conditions shared the same lower value. CL,L, CM,M , and CH,H represent

control conditions under which the same stimulus intensity was triggered regardless of

the direction in which the larva cast. These controls accounted for the three unique

stimulus values present in the experimental conditions (L: low, M : medium, H: high).

Irrespective of direction (left or right), I set each larva’s first head cast after

meeting the crawling criterion to trigger the presentation of the lower intensity stimulus in

the condition (Fig. 3.1a). By remembering the first cast’s direction, the software code

ensured that the larva casting to the alternate side would trigger presentation of the

higher intensity stimulus in the condition. Regardless of intensity, the red LED remained

on for the entirety of each detected left or right cast, including during ball

behaviour.

My criterion for a larva ending a reorientation manoeuvre was completion of two

forward peristaltic waves in the direction set by the last head cast, with neither wave

requiring tail movement nor motion along a straight body axis (for details, see Chapter 3).

I visually evaluated this criterion in real time and stopped the experiment manually after

the larva completed a single reorientation manoeuvre (Fig. 3.1a).

2.1.4 Assessing larval performance

All tracker output files were post-processed with a custom MATLAB pipeline built by Dr

J-B Masson that regenerated contour and spine data for subsequent visualisation in a

custom MATLAB user interface. This interface, initially designed by Dr J-B Masson and

modified by K Klein, supported playback of both the rendered larval images and the

associated time-series graphs of feature values and detected behaviours. For each larva,

the full experiment was visually validated and the number of casts the larva performed in

the reorientation manoeuvre, the direction (left or right) of the manoeuvre’s last cast,

and the image frame numbers corresponding to the beginning and end of the manoeuvre

were manually recorded in Excel. Because occasional flickering of the cast classifier

translated to ON/OFF flickering of the LED, visual validation and manual recording were

necessary to merge all LED signal events associated with the same larval head cast.

Image frame numbers corresponding to the beginning and end of the reorientation

manoeuvre (see criterion above) were also manually recorded for each larva. Larval data

were excluded from further analysis if they met any of the following criteria that I defined:
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• larva had a potential motor impairment exhibited while crawling (e. g. the larva

maintained an "S" body shape while crawling)

• larva exhibited rearing behaviour by lifting its head off the substrate

• larva did not appear to react to the first stimulus presentation (i. e. larva moved its

head such that a cast was detected, but the motion appeared associated with a

run rather than the beginning of a reorientation manoeuvre)

• direction of the reorientation manoeuvre’s last cast was ambiguous

• larva crawled straight at the end of the reorientation manoeuvre rather than

accepting a left or right cast

• LED stayed off or triggered improperly during a reorientation manoeuvre

• delays or unresolved flips in head and tail detection

The tracker output and manual review files were then post-processed through a

custom R pipeline that I wrote. The pipeline first selected larvae that alternated sides

with each successive head cast, excluding those that cast repeatedly to one side before

either casting again or ending the reorientation manoeuvre. The last head cast of a

reorientation manoeuvre determined the larva’s turn direction and I considered this to be

the larva’s decision (Fig. 3.1a).

For the larval populations within each stimuli condition, I calculated multiple

performance metrics which I detail in Section 3.2.2. In brief, the probability of accepting

a given head cast (P (accept)) equals the number of larvae that accepted that cast

conditioned on the number of larvae that performed that cast (whether or not they

accepted it). The probability of making the correct decision on a given head cast

(P (correct)) was calculated similarly, except a correct decision was defined as accepting

the less noxious stimulus or rejecting the more noxious stimulus. Because I designed the

experiment to start with the less noxious stimulus and selected larvae that performed

consecutive casts by alternating sides, a correct decision for each larva translated to

accepting odd-numbered casts and rejecting even-numbered casts. I applied the same

definition to control conditions for which the stimulus intensity was equivalent on both

sides.

I used the Clopper-Pearson Exact method to calculate 95% confidence intervals for

P (accept) and P (correct). This method is preferred over the normally distributed error
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approximation because it addresses the need for a more accurate binomial proportion

confidence interval. Although Clopper-Pearson is more conservative than other

approaches, it computes asymmetric intervals around the proportion, avoiding issues of

overshoot when the sample probability lies near zero or one. I used binary logistic

regression to quantitatively evaluate whether larvae are more likely to choose the less

noxious side following more head casts and compared the resulting predictor variable

coefficients between conditions (for details, see Section 3.2.2).

In my R pipeline, the duration of each cast within each larval manoeuvre was

calculated as the total time for which the LED stimulus was on during the cast. Using this

data and scaled values of the corresponding stimulus intensities on each cast, I worked

alongside Dr Ann Hermundstad to calculate three separate acceptance probabilities for

larvae that made more than one cast in their reorientation manoeuvre (for details, see

Fig. 3.4 and Section 3.2.2).

2.1.5 Bayesian inference model

In Chapter 4, I explicitly detail mathematics descriptions of the generative model,

inference calculation, decision process, and simplifying assumptions of a Bayesian

inference model for decision-making in my sensory discrimination task. The following

text outlines how the resulting model was implemented in MATLAB software code.

Together, Dr A Hermundstad and I iteratively implemented various aspects of the model

into a custom built MATLAB analysis pipeline. I performed all software refactoring,

validation, testing, and finalising by myself. The in silico ⟨P (correct)⟩ trajectory

calculated in the modeling code followed the closed-form solution described by

Eqn. 4.13, with variables defined by Eqn.’s 4.5, 4.9, and 4.10. The modeling code

employed MATLAB’s constrained minimisation solver, fmincon (Optimization Toolbox),

to find values for the parameters µL, µM , µH , and σ2 that generated the best fit of this

solution to user-supplied behavioural data. Each parameter’s lower bound was set to 0

and was unbounded above. The relationships between parameters were defined

through the inequalities shown in Section 4.7. µL was initialised by drawing a

pseudorandom number from a uniform distribution over the open interval (0, 1). µM was

initialised as µL plus another pseudorandom number. µH was initialised as µM plus

another pseudorandom number. This ensured that µL, µM , and µH were initialised in

accordance with the numerical relationship between them. σ2 was initialised by

multiplying another pseudorandom number by a factor of two.
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Generating the best fit of the model to the behavioural data required minimising the

weighted objective function I defined in Eqn. 4.20. The modeling code ran 1000 different

constrained optimisations following fmincon’s default interior-point algorithm. Each

returned optimised values for each parameter and the solution to the objective function

when evaluated at those values. Of the 1000 iterations, the optimised parameters that

yielded the smallest fit error were used to build ⟨P (correct)⟩ trajectories for qualitative

comparison to the behavioural data.

2.1.6 Acceptance pressure model

I explicitly detail mathematics descriptions of this model in Chapter 5. The following text

outlines how the resulting model was implemented in MATLAB software code.

Together, Dr A Hermundstad and I implemented various aspects of the model into

custom built MATLAB code. I performed all software refactoring, validation, testing, and

finalising by myself. The in silico P (accept) trajectory calculated in the modeling code

followed the form of either Eqn. 5.2, 5.3, or 5.4 depending on the user’s input

preferences. The modeling code employed MATLAB’s unconstrained minimisation solver,

fminunc (Optimization Toolbox), to find values for the parameters rM , rH , m, and b that

generated the best fit of the chosen equation to user-supplied behavioural data.

Although none of the parameter values were constrained, each was initialised by drawing

a pseudorandom number from a uniform distribution over the open interval (0, 1).

Generating the best fit of the model to the behavioural data required minimising the

weighted objective function I defined in Eqn. 5.5. The modeling code ran 1000 different

unconstrained optimisations following fminunc’s default interior-point algorithm. Each

returned optimised values for each parameter and the solution to the objective function

when evaluated at those values. Of the 1000 iterations, the optimised parameters that

yielded the smallest fit error were used to build in silico P (accept) trajectories for

qualitative comparison to the behavioural data.

2.1.7 Software availability

All software code is available upon request.
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2.2 High-throughput operant conditioning

This section is the methods and materials from the preprint manuscript ’Serotonergic

Neurons Mediate Operant Conditioning in Drosophila Larvae’ (Klein et al., 2021), for

which I am co-first author. I have modified the text to explicitly detail my contributions to

method design, development, and testing as well as data collection and analysis. For the

purposes of readability in relation to my sensory discrimination task (see Chapter 3), I

have changed written instances of ’bend’ to ’cast’. The remainder of the manuscript

resides in Chapter 6.

2.2.1 High-throughput closed-loop tracker

Hardware set-up

A high-resolution camera (3072 x 3200 pixels) (#TEL-G3-CM10-M5105, Teledyne

DALSA, Ontario, Canada) positioned above a 23 cm x 23 cm 4% agarose plate captured

8-bit greyscale images at 20 Hz. The agarose plate was illuminated from below by a

30 cm x 30 cm 850 nm LED backlight (#SOBL-300x300-850, Smart Vision Lights, Norton

Shores, Michigan) equipped with intensity control (#IVP-C1, Smart Vision Lights, Norton

Shores, Michigan). An 800 nm longpass filter (#LP800-40.5, Midwest Optical Systems,

Palatine, Illinois) mounted on the camera blocked all visible wavelengths, including those

used for optogenetics. When the agarose plate comprised most of the camera image,

each pixel corresponded to a 72.92 µm diameter section of the plate. Dr Lakshmi

Narayan and K Klein chose all hardware and performed the necessary functional testing

of each component.

Each camera image was processed in parallel on both the host computer (#T7920,

running Windows 10, Dell Technologies Inc, Round Rock, Texas) and an

field-programmable gate array (FPGA) device (#PCIe-1473R-LX110, National

Instruments, Austin, Texas), itself programmed by Dr L Narayan. LabVIEW 2017

(National Instruments, Austin, Texas) software extracted larval contours and interfaced

with C++ software that performed real-time behaviour detection. The LabVIEW software

controlled closed-loop optogenetic and thermogenetic stimulation in response to these

detected behaviours. K Klein wrote the C++ software and Dr L Narayan coded the

LabVIEW software.
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Multi-animal detection and tracking

K Klein designed and validated the following tracking algorithms. Dr L Narayan

implemented these algorithms in the LabVIEW code. Raw camera images were read by

the FPGA at 20 Hz and then sent to the host computer. The LabVIEW process on the

host computer then filtered out non-larval objects by combining background subtraction

and binary thresholding. The remaining objects were each enclosed in a rectangular box

of minimal size, with edges parallel to the camera image axes. The following criteria

were defined to detect third-instar larvae within these boxes:

• Pixel intensity range (default 25–170): the minimum and maximum brightness

values for pixels selected by binary thresholding (between 0 and 255 for an 8-bit

image).

• Box side length (pixels) (default 6–100): the range of eligible values for width and

height of each box.

• Box width + height (pixels) (default 12–200): the range of eligible values for the

sum of each box’s width and height.

• Box area (pixels) (default 300–900): the range of eligible values for the area of

each box.

To track larvae over time, the host computer assigned a numerical identifier to each

eligible object. Distance-based tracking with a hard threshold of 40 pixels maintained

larval ID based on centroid position. Although identity was lost when larvae touched or

reached the plate’s edge, new IDs were generated when larvae matched detection

criteria. For each of the largest 16 objects, the host computer sent a binary pixel pattern

and location (defined as the centre of the box) to the FPGA. Since the host computer

required more than 50 ms of run time for object detection, this process was not executed

in every frame. On average, the FPGA received updated objects and their locations

every three frames.

The FPGA extracted object contours in three steps. Within a 2 cm2 region of interest

around the object’s centre, the FPGA first applied a user-defined binary threshold, then

applied both vertical and a horizontal convolution with a 2 x 1 XOR kernel, and finally

generated edge pixels by combining the results of the two convolutions using an OR

operation. Contours were extracted from edge images using the Moore boundary tracing

algorithm (Gonzalez and Woods, 2018) with three added error capture procedures. First,
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if the algorithm yielded a contour that ended prematurely or contained small loops, the

construction process could be reversed by up to 16 contour points to find an alternative

contour. Second, 10,000 FPGA clock cycles (≈ 100 us) was the maximum allotted

execution time, with each pixel comparison occurring within one clock cycle. In the rare

event that this window was exceeded, the algorithm returned the already constructed

contour points. Third, a contour containing fewer than 63 points was rejected and the

FPGA returned the last valid contour detected for a given larva ID. The algorithm

stopped when none of the remaining neighbours were edge pixels (Fig. 2.2).

Fig. 2.2 Contour calculation on field-programmable gate array (FPGA). A simplified example is shown using a 10 x 10 pixel
box containing a small object. a. The object (black) was detected against the background (white) using binary thresholding. Edge
pixels were detected by combining the results of vertical and horizontal image convolution with a 2 x 1 XOR kernel using an OR
operator. b. The contour points were reconstructed in an iterative process, starting with the edge pixel closest to the centre of the
box. The next contour point was defined as the first neighbouring pixel that was found to be an edge pixel. Neighbouring pixels
were assessed clockwise from the pixel directly above the contour point. The process ended when no eligible edge pixels could be
found.

Contour processing and landmark detection

An undesired result of the FPGA contouring algorithm was the variable number of

contour points across larvae and frames. Detected behaviour was therefore based on a

smooth contour with a fixed number of 100 contour points. This contour regularization

was achieved inside the Behaviour Programme using Fourier decomposition and

reconstruction as in Masson et al. (2020).
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Dr L Narayan implemented the initial detection of head and tail on the FPGA. The

fundamental algorithm was developed and improved for the single-larva tracker by Dr J-B

Masson, K Klein, and myself (see Section 2.1.1). K Klein applied the algorithm to this

high-throughput system, iteratively adapting and testing the software to establish robust

detection across multiple larvae. This algorithm defined the larva’s head and tail as the

contour points with the sharpest and second-sharpest curvature, respectively (Fig. 2.3).

While correct in most cases, this calculation sometimes led to flipped detection of the

two body ends. The Behaviour Programme flagged and corrected these false detection

events at run time by calculating the distance head and tail traveled between frames and

tracking the number of correct versus flipped detection events. The vote system

correction commonly failed when the larva made large angle casts. The resulting

contour was nearly-circular and exhibited similar curvature across all points. The

solution required resetting the vote tallies when detecting these ball events (Fig. 2.3).

Fig. 2.3 Detecting head and tail. The larval contour (black outline) and head and tail (green) are shown. a. Initial detection of
head and tail. The head was the contour point with the sharpest curvature. The tail was the contour point with the next-sharpest
curvature which did not lie in close proximity to the head. b. The initial detection of head and tail was incorrect in some cases. False
detection could be corrected by swapping head and tail, thereby minimising the distances from head and tail in the current frame
(solid contour) to head and tail in the previous frame (transparent contour). c. The correction described in b failed if larvae curled up
such that the contour appeared circular ("ball"). To eliminate this source of false head and tail detection, these events were detected
using a ball classifier.

The larval spine was defined as 11 points running along the central body axis from

head to tail (Fig. 2.4; Swierczek et al., 2011). In addition to head and tail, the

Behaviour Programme calculated three equally distributed landmark points along the
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spine (neck_top, neck, and neck_down). A fourth landmark, the centroid, defined the

larva’s location. The six landmarks were collectively used to extract features for training

behaviour classifiers (Fig. 2.4).

The Behaviour Programme transformed the raw contour and spine from camera

coordinates (in pixels) to world coordinates (in mm). If stable larval detection criteria

were met, all spine points were temporally smoothed using exponential smoothing

(Fig. 2.4).

Fig. 2.4 Calculating a smooth spine and landmark points. The larval contour is shown (black outline). The spine S was
comprised of eleven points (black), including head and tail (green). a. The raw spine points were obtained by finding the centres
between equally spaced contour points on either half of the contour as defined by head and tail. The first spine point was the head,
the last spine point was the tail. b. The smooth spine was obtained by exponentially smoothing the raw spine. c. Four additional
landmark points, neck_top, neck, and neck_down (blue), and the contour centroid (grey), were calculated.

Feature extraction

Fig. 2.5 Calculating direction vectors. Three direction vectors were calculated based on head, tail, and the landmark points.
a. direction_vector was the normalised vector from neck_down to neck. b. direction_head_vector was the normalised
vector from neck_top to head. c. direction_tail_vector was the normalised vector from tail to neck_down.

A machine learning approach was developed to address the high deformability of

the larva shape, ensure live execution, reduce overfitting, and limit the volume of data

tagging. What follows is a brief summary of larval features describing motion direction,

body shape, and velocity that were calculated from the contour and spine data inside the

Behaviour Programme. Features were designed as in Masson et al. (2020), with notable



22 Methods and materials

modifications implemented on the high-throughout system by K Klein. These

modifications were based on work completed on the single-larva tracker by Dr J-B

Masson, K Klein, and myself, and were necessary to run the inference live:

Fig. 2.6 Features describing body shape. a. Outline of a larva with contour C (black) and its convex hull H (blue). b. Shown here
are the eigenvectors (blue) of the larval contour (black) structure tensor with respect to neck and their corresponding eigenvalues
λ1 and λ2. c. ϑi was defined as the angle between direction_vector (blue) and the vector a⃗i that passed through spine points
S i and S i+1 (black). d. ϑhead was defined as the angle between direction_vector and direction_head_vector. head and
tail are shown in green.

1. Motion Direction (Fig. 2.5)

• direction_vector: normalised vector describing the main body axis

• direction_head_vector: normalised vector describing the head axis

• direction_tail_vector: normalised vector describing the tail axis

2. Body Shape (Fig. 2.6)

• skeleton_length: summed distances between consecutive spine points

• perimeter: summed distances between neighbouring contour points

• larva_arc_ratio: ratio of contour perimeter to convex hull perimeter

(larva_arc_ratio ≥ 1 and was close to 1 when larva was in either straight

or ball-like shape)
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• larva_area_ratio: ratio of the areas enclosed by the contour and its

convex hull (0 ≤ larva_area_ratio ≤ 1 and was close to 1 when the larva

was in either straight, heavily curved, or ball-like shape)

• eig_reduced: eig_reduced = |λ1−λ2|
λ1+λ2

where λ1, λ2 were the eigenvalues of

the structure tensor of the larval contour with respect to the neck

(0 ≤ eig_reduced ≤ 1 and eig_reduced decreased as the cast amplitude

of the larva increased)

• s: normalised angle along the body (−0.5 ≤ s ≤ 1, was close to 1 when

larva was straight, and decreased with increasing cast amplitude)

• asymmetry: sine of the angle between direction_vector and

direction_head_vector (asymmetry > 0 when larva bent left and

asymmetry < 0 when larva bent right)

• angle_upper_lower: absolute angle between direction_vector and

direction_head_vector (despite similarity to asymmetry, this develops

different dynamics following temporal smoothing, which are valuable for

stable left and right cast detection)

3. Velocity (Fig. 2.7)

• Velocity of all six landmark points (head_speed, neck_top_speed,

neck_speed, neck_down_speed, tail_speed, and v_centroid) in mm/s

over interval dt = 0.2 s (four frames)

• v_norm: arithmetic mean of neck_top_speed, neck_speed, and

neck_down_speed, passed through a hyperbolic tangent activation function

to suppress excessively large values

• speed_reduced: relative contribution of neck_top_speed to v_norm, passed

through a hyperbolic tangent activation function to suppress excessively large

values (speed_reduced increased when the anterior larval body moved

quickly compared to the posterior, e. g. when a cast was initiated)

• damped_distance: distance (mm) travelled by neck, giving greater weight to

recent over past events

• crab_speed: lateral velocity (mm/s), defined as the component of

neck_speed orthogonal to direction_vector_filtered
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• parallel_speed: forward velocity (mm/s), defined as the component of

neck_speed_filtered parallel to direction_vector_filtered

• parallel_speed_tail_raw: tail’s forward velocity (mm/s), defined as the

component of tail_speed_filtered parallel to

direction_tail_vector_filtered

• parallel_speed_tail: similar to parallel_speed_tail_raw, with the

difference that tail_speed_filtered was normalised prior to calculating

the dot product (i. e. a measure of tail movement direction which took values

between -1 (backward) and +1 (forward))

Fig. 2.7 Velocity features. The larval contour is shown in black while head and tail are shown in green. a. crab_speed
(blue) was defined as the component of neck_speed (grey) that was orthogonal to direction_vector_filtered
(black). b. parallel_speed (blue) was defined as the component of neck_speed_filtered (grey) that was paral-
lel to direction_vector_filtered (black). c. parallel_speed_tail_raw (blue) was defined as the component of
tail_speed_filtered (grey) that was parallel to direction_tail_vector_filtered (black). d. ϑtail was defined as the
angle between tail_speed_filtered (grey) and direction_tail_vector_filtered (black).

Exponential smoothing was implemented to extract features in real time and

address various sources of noise. Smoothing is here defined for a given feature f

(Fig. 2.8):

f_filteredt = (1− α) · f_filteredt−∆t + α · ft

where t is unitless, but derived from the experiment time in seconds, α = ∆t
τ

with

∆t = 0.05 s and τ = 0.25 s. Features that had the potential to exhibit large value
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deviations (e. g. v_norm) were instead bounded using a hyperbolic tangent function.

Additionally, some features were exponentially smoothed over a longer time window

(where αlong =
∆t

τlong
with ∆t = 0.05 s and τlong = 5 s) (Fig. 2.8).

Fig. 2.8 Temporal smoothing of features. a-b. Example graphs of raw (dark blue) and filtered (mid blue) asymmetry (a) and
eig_reduced (b) values over time. c–d. Example graphs of raw (dark blue), filtered (mid blue), and long-time filtered (light blue)
v_norm values over a short (c) and a long (d) period of time.

Fig. 2.9 Differentiation by convolution. Example graphs of raw (dark blue) and convolved squared (green) asymmetry (a),
eig_reduced (b) and v_norm (c) values over time.

Convolution was used to approximate a smoothed squared derivative for each

feature (Fig. 2.9); useful for integrating information over time without needing to further

expand the feature space. The underlying mathematical concepts were motivated by

Masson et al. (2012). For a given feature f at time t, f_convolved_squared was
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calculated as follows:

f1t = (1− λ∆t) · f1t−∆t +
1

2
∆t · (ft−∆t + ft)

f2t = λ∆t · f1t−∆t + (1− λ∆t) · f2t−n∆t

f_convolved_squaredt = k · (f1t − f2t)2,

where ∆t = 0.05 s, λ = 1
τ
, τ = 0.25 s, and n = 5 s. k values were empirically chosen for

each feature.

Behaviour classifiers

Behaviour classifiers were developed using a user interface similar to JAABA (Kabra

et al., 2013). The underlying algorithms were initially developed by Dr J-B Masson, K

Klein, and myself for use on the single-larva tracker, combining trained neural networks

and empirically determined linear thresholds. K Klein performed the necessary updates

to utilise these classifiers on the high-throughput system. She also trained each

classifier and manually validated its performance on multi-larva data (Table 2.1). K Klein

also developed a MATLAB user interface with functions for data visualisation, manual

annotation, and machine learning using the Neural Network Toolbox, the Deep Learning

Toolbox, and the Statistics and Machine Learning Toolbox. Below is a brief description of

the behaviour classifiers and associated performance results.

The cast classifier was based on predefined thresholds for temporally smoothed

body shape features and was itself exponentially smoothed over time. Independent left

and right classifiers were used to initially detect cast direction. To detect left and right

casts, these classifiers were combined with the smoothed cast classifier using an AND

conjunction. The raw time series of left and right casts was further smoothed

post-acquisition using a custom MATLAB script: two casts to the same side separated by

less than 200 ms were combined into a single long cast, and short casts of less than

200 ms were removed from analysis.

To improve left and right detection performance, a classifier was developed for

circular larval contours. This ball classifier used a feed-forward neural network with a

single fully connected hidden layer whose inputs were normalised values of

eig_reduced, larva_arc_ratio, and larva_area_ratio. The hidden layer consisted

of five neurons with a hyperbolic tangent activation function. The output layer contained

a single neuron and used a sigmoid activation function. The neural network was trained
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Table 2.1 Manual quantification of behaviour detection performance

back (268 events from 24 larvae in 60 minutes of video data)

Precision 86.5%
Recall 88.4%

cast (714 events from 24 larvae in 60 minutes of video data)

Precision 95.6%
Recall 96.4%
Accuracy of left and right detection (true-positive casts) 97.3%

forward (425 events from 24 larvae in 60 minutes of video data)

Precision 97.8%
Recall 94.1%

forward_peristaltic (2954 events from 24 larvae in 60 minutes of video data)

Precision 99.5%
Recall 93.6%
Events which are falsely combined with another event 10.7%
Events which are detected as more than one event 1.2%

roll (240 events from 24 larvae in 60 minutes of video data)

Precision (rolls and roll-like events) 96.6%
Recall (rolls) 86.7%
Recall (roll-like events) 25.8%

in MATLAB on a manually annotated data set for 500 epochs using a cross-entropy loss

function and scaled conjugate gradient backpropagation. If a ball was detected within

the previous 1.5 s, left and right classifiers were overwritten to match the last

detected cast direction prior to the beginning of the ball.

The back classifier detected individual backward peristaltic waves based on

thresholds for smoothed tail velocity features combined with no ball detection within the

previous 1.5 s.

Two different classifiers were used to detect crawling. forward detected longer

forward crawl periods based on thresholds for smoothed tail velocity features combined

with no ball detection within the previous 1.5 s. forward_peristaltic detected

individual forward peristaltic waves based on the forward classifier and a threshold on

forward tail velocity.
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The roll classifier was based on thresholds for body shape and velocity combined

with no ball detection and was exponentially smoothed over time. If a roll was

detected within the previous 1.5 s, forward, forward_peristaltic, and back classifier

values were reset to reduce false-positive detection for these classifiers. Unusual

behaviour patterns such as rapid casting or twitching could be observed in addition to

true larval rolling. These behaviours were considered "roll-like" events during manual

validation of the roll classifier’s performance.

Optogenetic stimulation

Optogenetic stimulation was achieved using two digital micromirror devices (DMDs) to

project light patterns onto larvae on the agarose plate. During the hardware design

process, Dr L Narayan and K Klein tested two different DMD models. One contained an

integrated 613 nm LED (#CEL-5500-LED, Digital Light Innovations, Austin, Texas) and

the other (#CEL-5500-FIBER, Digital Light Innovations, Austin, Texas) received input

from an external 625 nm LED (#BLS-GCS-0625-38-A0710, Mightex Systems, Ontario,

Canada) controlled by a BioLED light source control module (#BLS-13000-1, Mightex

Systems, Ontario, Canada) and fed through an optic fibre (#LLG-05-59-420-2000-1,

Mightex Systems, Ontario, Canada). Both DMDs operated like a 768 x 1024 pixel

monochrome red light projector with numerous rotatable micromirrors used to modulate

the intensity of individual pixels. Each DMD pixel corresponded to a 291.7 µm diameter

section of the plate. Although both achieved similar light intensities, each DMD on its

own was insufficient for optogenetic stimulation of larvae. Dr L Narayan therefore

installed both devices on the system such that their projections each covered the entire

agarose plate. In this way, the summed light intensities of the two DMDs could be

achieved at all locations. Accurately aiming light at crawling larvae required spatial

calibration of each DMD. Dr L Narayan and K Klein developed a spatial calibration

procedure in which square spots were projected at fixed DMD pixel locations and the

corresponding camera coordinates were linearly fit. I performed validation and testing of

the spatial calibration output on live animals. Dr L Narayan updated the camera

coordinate mapping to address initial errors I identified in both the overlap of both DMD

projections and their centring over individual larvae.

K Klein determined that DMD illumination using the default light output was not

uniform at plate level, which could have resulted in variable optogenetic stimulation

depending on larval location. The maximum achievable light intensity at the plate’s edge

was approximately 40% of the peak value at its centre. The pixel intensity of the DMD
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image was therefore normalised to the highest intensity uniformly achievable at all plate

locations. A look-up table containing the normalisation factor for each DMD pixel was

then calculated using bi-linear interpolation with approximately 100 light intensity values

measured across the plate. To accommodate for possible differences in non-uniformity

between the two DMDs, this intensity calibration (developed by Dr L Narayan and K

Klein) was performed for both DMDs simultaneously following spatial calibration. When

fully calibrated, the system could achieve a uniform light intensity of 285 µW/cm2. I

performed all spatial and intensity calibrations for both DMDs preceding the collection of

behavioural data for larval operant learning experiments.

A user-defined Behaviour Programme protocol operated on the behaviour detection

output and sent 8-bit optogenetic stimulation instructions to the LabVIEW application. In

its final configuration, the LabVIEW application updated DMD projections at 20 Hz,

therefore the delay between behaviour detection and closed-loop optogenetic stimulation

of individual larvae did not exceed 50 ms. Furthermore, K Klein and I decided that if two

or more larvae were close enough such that their corresponding stimulation areas

overlapped, the light intensity in the overlapping region should be set to the smallest of

those values to avoid undesired stimulation.

I contributed to validating the high-throughput system’s capability for delivering

spatially accurate optogenetic stimulation with minimal temporal delay. I gathered

open-loop and closed-loop data on live larvae. I helped K Klein manually analyse these

data for preliminary readouts on larval responses to red light. K Klein also used the data

I collected to iteratively test calculations within the Behaviour Programme. Alongside K

Klein, I also debugged system crashes, data processing delays, data file writing errors,

and broken links between the GUI and the Behaviour Programme. While not detailed

here, it is important to emphasise that K Klein and I continued to improve the end user’s

experience of the high-throughput system. With such enhanced system capabilities

comes complexity in maintenance and daily operation. Our awareness of potential

sources of human error guided calibration procedures, user interface design, and data

output structure.

Thermogenetic stimulation

Thermogenetic stimulation was achieved by heating up larvae with a custom infrared (IR)

laser set-up built by Dr Chris McRaven and Dr Michael Winding. A 1490 nm laser diode

beam (#2CM-101, SemiNex, Peabody, Massachusetts) was fed into a two-axis

galvanometer system (#GVSM002, Thorlabs, Newton, New Jersey), both controlled by
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an analogue output device (#PCIe-6738, National Instruments, Austin, Texas). Two

mirrors inside the galvanometer were rotated around orthogonal axes to target the beam

spot to any user-defined location on the agarose plate. The beam spot measured

approximately 5 mm in diameter, depending on the beam’s angle of incidence to the

plate. Mirror positions were controlled by two integrated motors that received voltage

inputs. Each voltage pair clearly defined the laser beam’s position.

Spatially calibrating the galvanometer was necessary to obtain a map between

larval locations in world coordinates and the mirror motor input voltages. The procedure

for spatial calibration of the galvanometers was developed by Dr L Narayan, K Klein, and

myself. A visible aiming beam was scanned across the agarose plate using a fixed set of

voltage pair inputs to the galvanometer. With the optical filter removed from the camera,

the aiming beam’s location in camera coordinates was automatically extracted from the

image using binary thresholding. Two voltage-to-camera look-up tables were generated

through bi-linear interpolation of these measured coordinates. For accurately targeted

thermogenetic stimulation, the location of the larval centroid was first converted to

camera coordinates using the existing world-to-camera transform and was then mapped

to a pair of galvanometer input voltages using the look-up tables. I tested the spatial

accuracy of galvanometer positioning on live animals.

Laser intensity calibration was also necessary to ensure that all larvae received the

same stimulation regardless of their position on the agarose plate. The procedure for

laser intensity calibration was developed by Dr L Narayan, K Klein, and myself. A larva’s

location changed the laser beam’s angle of incidence, causing the illuminated spot at

plate level to take an elliptical shape with variable size. Although laser beam power was

constant, the changing spot area generated inconsistencies in the amount of IR light

covering each larva. Calibration was used to normalise the desired laser intensity to

achieve constant power per unit area. A visible aiming beam was scanned across the

plate and the camera image automatically measured the beam’s spot size at various

locations. Bi-linear interpolation was then used to generate a pixel-wise look-up table

containing the necessary scaling factors for the laser power. At the location where the

laser spot area was smallest, the maximum power was reduced to 67.3%. To account for

a nonlinear relationship between the laser source input voltage and the laser’s total

power output, a voltage-to-power map was generated from manual measurements I

acquired. With these transformations, the system could calculate the laser source input

voltage necessary to produce uniform, 5.26 W stimulation at any location. I performed
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spatial and intensity calibration for the laser preceding the collection of behavioural data

for proof-of-principle experiments.

A user-defined Behaviour Programme protocol operated on the 20 Hz behaviour

detection output and sent thermogenetic stimulation instructions to the LabVIEW

application which controlled the galvanometer and laser. Four centroid locations were

specified on every frame, enabling a single galvanometer to cycle the laser beam

between four individual larvae at 20 Hz. Although 80 Hz position updates are well within

the galvanometer’s mechanical capabilities, K Klein and I worked together to determine

a consistent intra-cycle stimulus exposure time for each larva. The primary constraint to

consider was the maximum likely travel time between detected objects. Using a thermal

sensor, K Klein and I observed temporal changes in power as the laser cycled between

four locations. We considered different path orders, including those over the maximum

possible travel distance when the locations resided at the four plate corners. Within the

available 50 ms time window, we therefore set the Behaviour Programme to heat each

larva for 11 ms. Switching off the laser input for 1.5 ms between larvae accounted for

small time fluctuations surrounding each new galvanometer position update and helped

avoid undesired stimulation of other plate areas (Fig. 6.2d). If fewer than four objects

were detected in a given frame, the remaining galvanometer target locations were set to

the plate’s centre and the corresponding laser intensity was set to zero. This temporal

pattern of galvanometer position updates yielded no more than 100 ms delay between

behaviour detection and closed-loop thermogenetic stimulation.

Three parameters influenced larval temperature increase following thermogenetic

stimulation with the IR beam: i) the laser power, ii) the total duration of the stimulus, and

iii) the order in which the galvanometer cycles between locations in its 80 Hz movement.

Preliminary experiments performed by myself and K Klein suggested that these

parameters could be adjusted to simultaneously stimulate eight or twelve larvae using a

single galvanometer. This could potentially eliminate the need to install three additional

laser sources to target all 16 larvae.

2.2.2 Software availability

All software code is available upon request.
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2.2.3 Fly strains and larval rearing

We used the following fly strains: 58E02-Gal4 (Bloomington stock 41347), 69F06-Gal4

(Bloomington stock 39497), 72F11-Gal4 (Bloomington stock 39786), attP2 (Pfeiffer et al.,

2008), Ddc-Gal4 (Li et al., 2000), SS01989 (own stock), TH-Gal4 (Friggi-Grelin et al.,

2003), Tph-Gal4 (Park et al., 2006), Trh-Gal4 (Alekseyenko et al., 2010),

UAS-CsChrimson (Bloomington stock 55134), UAS-CsChrimson; tsh-LexA,

LexAop-Gal80 (Dr Stefan Pulver, Dr Yoshinori Aso), UAS-dTrpA1 (Dr Paul Garrity),

UAS-GFP (Nern et al., 2015), and w1118 (Hazelrigg et al., 1984).

Fly stocks were maintained in vials filled with standard cornmeal food (Wirtz and

Semey, 1982; 49.2 ml of molasses, 19.9 g of yeast, 82.2 g of cornmeal, 7.4 g of agarose,

9.8 ml of 20% Tegosept solution in 95% ethanol and 5.2 ml of propionic acid in 1 litre of

water). For proof-of-principle and operant and classical learning experiments, eggs were

collected overnight for approximately 12–18 hours on standard cornmeal food plates with

additional dry yeast to increase laying. These experiments were performed using

foraging-stage third-instar larvae (72–96 hours after egg laying) reared at 25°C and 65%

humidity (Eschbach et al., 2020b; Jovanic et al., 2016, 2019; Ohyama et al., 2013, 2015).

Specifically for optogenetics experiments, larvae were raised in the dark and a 1:200

retinal solution (diluting 1 g of powdered all-trans-retinal (#R240000, Toronto Research

Chemicals, Ontario, Canada) in 35.2 ml of 95% ethanol) was added to the food unless

indicated otherwise. For immunohistochemistry, eggs were collected during daytime for

approximately four hours on standard cornmeal food plates with added yeast.

Dissections were performed using wandering-stage third-instar larvae (118–122 hours

after egg laying).

2.2.4 Immunohistochemistry and confocal imaging

Janelia Research Campus’ FlyLight team performed all dissections,

immunohistochemical stainings, and confocal imaging following a procedure adapted

from Jenett et al. (2012) and Li et al. (2014). Larval central nervous systems (CNSs)

were dissected in cold 1x phosphate buffer saline (PBS, Corning Cellgro, #21-040) and

transferred to tubes filled with cold 4% paraformaldehyde (Electron Microscopy Sciences,

#15713-S) in 1x PBS. Tubes were incubated for one hour at room temperature. The

tissue was then washed four times in 1x PBS with 1% Triton X-100 (#X100, Sigma

Aldrich St. Louis, Missouri) (PBT) and incubated in 1:20 donkey serum (#017-000-121,
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Jackson Immuno Research, West Grove, Pennsylvania) in PBT for two hours at room

temperature.

The tissue was then incubated in the primary antibody solution, first for four hours at

room temperature and then for two nights at 4°C. This solution contained mouse

anti-Neuroglian (1:50, #BP104 anti-Neuroglian, Developmental Studies Hybridoma Bank,

Iowa City, Iowa), rabbit anti-green fluorescent protein (GFP) (1:500, #A11122, Life

Technologies, Waltham, Massachusetts) and rat anti-N-Cadherin (1:50, #DN-Ex #8,

Developmental Studies Hybridoma Bank, Iowa City, Iowa) in PBT. This solution was then

removed and the tissue washed four times in PBT. The tissue was then incubated in the

secondary antibody solution, first for four hours at room temperature and then for two

nights at 4°C. This solution contained Alexa Fluor 568 donkey anti-mouse (1:500,

#A10037, Invitrogen, Waltham, Massachusetts), FITC donkey anti-rabbit (1:500,

#711-095-152, Jackson Immuno Research West Grove, Pennsylvania) and Alexa Fluor

647 donkey anti-rat (1:500, #712-605-153, Jackson Immuno Research West Grove,

Pennsylvania) in PBT. After removal of the secondary solution, the tissue was washed in

PBT four times and mounted on a coverslip coated with poly-L-lysine (#P1524-25MG,

Sigma Aldrich, St. Louis, Missouri).

The coverslip with the CNSs was dehydrated by moving it through a series of jars

containing ethanol at increasing concentrations (30%, 50%, 75%, 95%, 100%, 100%,

100%) for ten minutes each. The tissue was then cleared by soaking the coverslip with

xylene (#X5-500, Fisher Scientific, Waltham, Massachusetts) three times for five minutes

each. Finally, the coverslips were mounted in dibutyl phthalate in xylene (DPX, #13512,

Electron Microscopy Sciences, Hatfield, Pennsylvania) with the tissue facing down on a

microscope slide with spacers. The DPX was allowed to dry for at least two nights prior

to confocal imaging with an LSM 710 microscope (Zeiss).

Details on the confocal imaging settings are provided in the respective figure

captions. Confocal images were analysed using Fiji (ImageJ). Neurons were counted by

specifying regions of interest around the cell bodies using raw image stacks.

2.2.5 Verification of optogenetic and thermogenetic stimulation

efficiency

K Klein assessed the multi-larva tracker’s optogenetic and thermogenetic stimulation

efficiency through open-loop experiments. The behavioural readout was rolling upon

exposure to stimulation. All larval handling and experiments were performed in the dark
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to avoid unintended optogenetic stimulation. The one-minute experiment protocol began

with a 15 s initialisation period in which larvae acclimated to the agarose plate and the

roll behaviour classifier stabilised. In three subsequent 15 s stimulation cycles, larvae

received 5 s of open-loop stimulation followed by 10 s without stimulation (Fig. 6.2b,

Fig. 6.2e). Optogenetics were performed with the maximum available red light intensity

of 285 µW/cm2. Thermogenetics were performed with 40% of the maximum available

laser intensity.

K Klein analysed both optogenetic and thermogenetic experiment data using

identical assessment and exclusion criteria. For each larva, the criterion for a single

roll was detection of the behaviour for at least 300 ms during a given 15 s stimulation

cycle. This threshold ensured true rolls were counted, as opposed to rapid larval casts

characteristic of aversion to light.

2.2.6 Operant conditioning

Experiment procedures

K Klein and I performed high-throughput operant conditioning experiments using our

multi-larva closed-loop tracker. All larval handling and experiments were performed in

the dark to avoid unintended optogenetic stimulation. We used water to wash

approximately 10–12 larvae out of their food. Using a brush, we immediately placed

these larvae into the centre of the agarose plate in such a way that they were not

touching each other. We placed the agarose plate inside the tracker on top of the

backlight and then shut the tracker door. Larvae were given at least 30 s to accustom to

their new environment before we started the experiment.

The experiment protocol (designed by K Klein) began and ended with a one-minute

test period without optogenetic stimulation. Between these test periods were four,

three-minute training sessions during which larvae received red light stimulation of

285 µW/cm2 for the entire duration of the detected cast. Which side received stimulation

was randomised across trials such that approximately 50% of larvae were trained to

develop a right cast preference and 50% a left cast preference. No stimulus was

triggered when the larva was casting right or when its body was straight. The test

periods were each separated by three-minute periods without stimulation. After the first

minute of this period, we used a brush to gently move all larvae back to the centre of the

plate and larvae were given time to recover before the beginning of the next training

session. This recentring addresses problems encountered when performing prolonged
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experiments with freely behaving larvae on a small agarose plate. The longer larvae are

left undisturbed, the more likely they are to touch the plate’s edge, causing tracking

disruption and temporary loss of valid objects. This shrinks sample size and reduces

training efficiency by decreasing the proportion of animals which are receiving the

stimulus.

K Klein designed control experiments so that valid objects received optogenetic

stimulation uncorrelated with behaviour. These control experiments were split into 60 s

time bins, during which each valid object was randomly assigned a stimulus train from

this same time bin, pulled from a prior experiment where stimulation correlated with

behaviour.

Data analysis

Data analysis was conducted using custom MATLAB software. To ensure high quality

data, it was necessary to remove invalid objects from the data set prior to behavioural

analysis. These included corrupted objects (e. g. scratches on the plate or residual food)

that the software mistook for larvae. They also included larvae that lost their object

identity and were consequently detected for only part of the experiment (e. g. after

temporarily reaching the plate’s edge or touching other larvae). After equally splitting

each experiment into 60 s time bins, we retained objects for analysis that fulfilled strict

criteria: i) the object must have been detected in every frame of the bin; ii) the object’s

initial detection must have occurred at least 20 s prior to the start of the bin; iii) at no

point during the bin did the smoothed velocity of the larval centroid exceed 1.5 mm/s;

and iv) the mean of the smoothed centroid velocity across the object’s detection period in

the bin was at least 0.5 mm/s. To quantify the accuracy of this method, K Klein manually

reviewed 350 videos of objects flagged as valid for a given 60 s bin. In this group, K Klein

observed no severely corrupted objects. In one case (0.3%), a larva briefly touched

another larva. In another case (0.3%), head and tail of a larva were falsely detected the

majority of the time, leading to flipped detection of left and right casts.

When analysing valid bin data for operant conditioning of cast direction preference,

we counted, for each larva, the numbers of left and right casts initiated within the bin.

This was defined as the cast rate towards the respective direction. The difference in cast

rate within the bin was defined, for each larva, as the number of casts towards the side

paired with the optogenetic stimulus minus the number of casts toward the unstimulated

side. We pooled together all larval data within each bin because casts to the left and

right were each paired with the optogenetic stimulus for approximately half of the larvae.
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Mean and standard error were calculated for cast rate to the stimulated side, cast rate to

the unstimulated side, and difference in cast rate. For the control condition in which

larvae received random stimulation during 50% of casts regardless of direction, we

calculated mean and standard error for cast rates to the left and right and the difference

in cast rate between left and right. Within a bin, cast rates to either side were compared

to each other using a paired, two-sided Wilcoxon signed-rank test. This statistical choice

was driven by the known pairing of these spatial observations for individual larvae and

the non-normality exhibited across distributions of differences between these paired cast

rates. Similar reasoning guided the usage of a two-sided Wilcoxon signed-rank test to

compare the difference in cast rate against 0. The behaviour characteristics of

experimental animals were compared to each control group using a non-parametric

analogue to the two-sample t-test, a two-sided Mann-Whitney U test. The Mann-Whitney

U test was also used to test for statistically significant differences in cast rate within a

group, from before training to after training. Loss of object identity contributes to

differences in number of larvae over time. Because of the resulting inability to pair

observations between bins, Mann-Whitney U was performed assuming that the

observations were independent from one another.

For all statistical comparisons described above, I performed a non-hierarchical

bootstrap analysis. The foundation of this analysis was sampling (with replacement)

from the observed behavioural data to build a bootstrap resample comprising the same

number of larvae as was in the observed data set. When sampling cast rate data within

a bin, I maintained the number of casts an individual larva made to the stimulated and

unstimulated sides to preserve the correlation between these spatial observations. Once

I constructed a bootstrap resample, I calculated the mean of the bootstrapped cast

direction preference measure (either #casts/min or difference in #casts/min) for this

resample. I wrote Matlab code to repeat this process of resampling and calculating the

mean 1000 times for both groups within a given statistical comparison. A one-sided

threshold test was then conducted across each of the 1000x1000 possible combinations

of the bootstrap resamples from both groups. The notable exception to this was

comparing the difference in cast rate against 0, for which there was only one group. The

bootstrap result was computed as the proportion of random resample combinations that

satisfied the threshold test.
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2.2.7 Classical conditioning

Experiment procedures

CsChrimson (Klapoetke et al., 2014) was expressed under the control of driver lines

targeting candidate valence-conveying neurons. These driver lines were classified based

on expression pattern and previous functional data and are known to drive expression in

larvae. K Klein paired optogenetic activation of neurons (unconditioned stimulus (US))

with odour presentation (conditioned stimulus (CS)) to induce olfactory memory

(Fig. 6.7a). For each driver line, data was acquired from at least two separate crosses.

K Klein followed a procedure for classical conditioning similar to those described in

Gerber and Hendel (2006), Saumweber et al. (2011) and Eschbach et al. (2020b).

Approximately 40 third-instar larvae were transferred onto a 4% agarose petri dish.

Larvae were presented with an odour (1:104 ethyl acetate in ddH2O) pipetted onto two

pieces of filter paper attached to the lid of the dish. This enclosed dish was exposed to

red light (630 nm, 350 µW/cm2) for three minutes. Larvae were then transferred to a new

agarose-filled petri dish with no odour on its lid (“air”) and placed in the dark for three

minutes. This training procedure was repeated three times, with alternating presentation

of odour/light and air/dark (paired group). An unpaired group receiving reciprocal

stimulus presentation (odour/dark, air/light) was trained simultaneously. This ensured

that any observed effects were attributable to learning rather than innate odour

preference or avoidance. The training trial order was reversed in half of the experiments,

starting with air instead of odour presentation.

After training, larvae of both paired and unpaired groups were immediately

transferred to a 1 cm middle zone in the centre of fresh agarose-filled petri dishes. A lid

was placed on each dish, with odour presented on one side (odour side) but not the

other (air side). After a three-minute test period in the dark, the number of larvae on the

odour side, the air side, and in the middle zone were manually counted and entered into

an Excel spreadsheet (Microsoft Corporation, Remond, Washington).

Data analysis

K Klein performed all data analysis for classical conditioning experiments. All data was

manually entered into MATLAB and analysed using custom software. For each
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experiment, a performance index (PI) was calculated as follows:

Prefpaired =
#(larvae on odour side) − #(larvae on air side)

#(larvae on plate)
(paired dish)

Prefunpaired =
#(larvae on odour side) − #(larvae on air side)

#(larvae on plate)
(unpaired dish)

PI =
Prefpaired − Prefunpaired

2
(combined)

PIs take values between -1 and +1, where a positive PI reflects appetitive learning

and a negative PI reflects aversive learning. Mean and standard error were calculated

for each condition. Statistical differences between two groups were tested using a

two-sided Mann-Whitney U test with Bonferroni correction. Significance compared to

zero was tested with a two-sided Wilcoxon signed-rank test with Bonferroni correction.



Chapter 3

Larval decision-making in a sensory

discrimination task

3.1 Introduction

A Drosophila larva’s innate navigation behaviour includes reorientation manoeuvres

during which a series of lateral head sweeps (casts) precedes turning in a new direction

(Fig. 1.1). Although previous research has shown that head casts can inform the turn

decision process through temporal comparison of sensory stimuli, the function of

increasing the number of head casts within a reorientation manoeuvre has not been

investigated. Larvae can form associative memories between punishment or reward and

previously neutral environmental stimuli (Eschbach et al., 2011; von Essen et al., 2011),

but whether they employ working memory to select turn direction during reorientation

manoeuvres is unknown. I hypothesise that larvae use repeated casts to accumulate

additional sensory information when stimuli are difficult to resolve, improving the

accuracy of their turn direction decision. To test this hypothesis, I investigated whether

larvae are more likely to turn toward the "better direction" following more head casts in a

reorientation manoeuvre. In this chapter, I describe the larval decision-making task I

designed, briefly summarise necessary improvements I made to experimental software

design, outline how I assessed larval performance in the task, and propose a

mechanism underlying the behaviour I observed.
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3.2 Results

3.2.1 Developing sensory discrimination task structure

Animal behaviour within a two-alternative forced choice (TAFC) task has long been

considered a readout for likely cognitive algorithms supporting perceptual

decision-making. The simple structure of TAFC is experimentally advantageous in

constraining both the time and information available to an animal without sacrificing

ecological relevance (Bogacz et al., 2006). Inspired by TAFC, I designed a sensory

discrimination task in which larval head cast direction (either left or right) during a

reorientation manoeuvre triggered differential presentation of 617 nm red light stimuli.

Within this closed-loop framework, I optogenetically activated nociceptive (pain-sensing)

neurons in transgenic ppk1.9-Gal4 x UAS-CsChrimson larvae for the entirety of each

detected head cast (Fig. 3.1a). Much research has concluded that the multidendritic

class IV sensory neurons targeted by this genetic driver are the primary nociceptive

neurons in the larva. They not only are necessary and sufficient for sensing noxious

thermal and mechanical stimuli (Hwang et al., 2007; Tracey et al., 2003), but also

mediate photoavoidance of noxious, high intensity light (Xiang et al., 2010). Given

nociception’s importance in warning animals of possible tissue-damaging stimuli, I

anticipated that differential activation of these polymodal nociceptors in my task would

encourage larvae to repeatedly head cast to determine which side is the less noxious,

more favourable direction in which to crawl (Hwang et al., 2007). In this way, larvae in

this task could be viewed as engaging in perceptual decision-making.

In identifying optimal intensity values for my sensory discrimination task, I aimed to

observe active larval exploration rather than reflexive responses or stereotypical

nocifensive escape behaviour. In this way, larval behaviour served as a proxy for neural

activity and was valuable in establishing a lower perceptual bound. What resulted from

my investigation were five possible fictive noxious stimuli conditions, of which individual

larvae were randomly assigned one (for measured intensity values, see Section 2.1.3).

In two of these conditions, EL,M and EL,H , I established a difference in light intensity

when the larva cast in one direction versus the other (as indicated by the subscripts). My

goal in having experimental conditions with differing contrast between stimulus

alternatives was to create behavioural tasks of varying difficulty. Results from olfactory

discrimination tasks in adult (DasGupta et al., 2014) and larval (Gomez-Marin et al.,

2011) Drosophila support the intuition that low stimulus contrast prompts increased

environment sampling. By assigning the same intensity to the less noxious side, I aimed
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to isolate whether any observed behavioural differences between the EL,M and EL,H

conditions could be attributed to attempts at resolving stimuli differences as opposed to

reflexive responses to overall higher intensities. The three remaining stimuli conditions

were controls, each defined by equal light intensity irrespective of cast direction (CL,L,

CM,M , and CH,H). Importantly, their intensities matched the three unique values

comprising the experimental conditions’ stimulus alternatives (see Section 2.1.3). These

control conditions provided baseline behavioral dynamics without sacrificing numerous

casts per reorientation manoeuvre.
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Fig. 3.1 Larval sensory discrimination task. Inspired by two-alternative forced choice (TAFC) task designs, my sensory discrim-
ination task necessitated using a closed-loop tracker to optogenetically activate larval nociceptive neurons based on the direction
of precisely detected lateral head sweeps (casts). a. (top) Side view schematic of a transgenic Drosophila larva with expression in
multidendritic class IV neurons driven by ppk-Gal4 (adapted from Yoshino et al. (2017)). Although only one hemisegment is shown,
these neurons’ naked dendrites completely cover the larval epidermis without overlap (Grueber et al., 2002; Xiang et al., 2010).
(middle) In my sensory discrimination task, larval head casting triggered a 617 nm red light stimulus (light bulbs), the amplitude of
which was predetermined and, in the case of the experimental stimuli conditions, direction-dependent (one light bulb versus two).
(bottom) Schematic depicting a series of head casts within a reorientation manoeuvre, with the larva viewed from above. Although it
is shown here pointed left, the larva’s first cast could be toward either the left or right side and it always triggered the lower intensity
stimulus in the condition. Larvae I selected for analysis alternated sides with each consecutive cast, as shown. I defined the last
cast of the reorientation manoeuvre (here, cast six) as the larva’s decision in the task. b. The correct decision on a given cast was
to crawl in the direction of the less noxious stimulus. Because the larva’s first cast decided the direction that always triggered the
lower intensity stimulus, a correct decision was for the larva to accept any one of the odd-numbered casts in the sequence, rejecting
all the evens. c. An incorrect decision was the reverse: accepting any one of the even-numbered casts to the high intensity side,
rejecting all the odds. d: dorsal, v: ventral, a: anterior, p: posterior.

Irrespective of direction (left or right), the first head cast of the larva’s reorientation

manoeuvre triggered presentation of the stimuli condition’s lower light intensity. By

programming the tracker’s stimulation protocol to remember the direction of this first cast,
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I ensured that subsequent casts to the alternate side triggered presentation of the stimuli

condition’s higher light intensity (Fig. 3.1a). Larvae rarely finish reorientation manoeuvres

by crawling straight, leaving two available decisions: crawl to the left or right (Fig. 3.1a). I

defined the last cast of the larva’s reorientation manoeuvre as the cast immediately

preceding the completion of two forward peristaltic waves. I observed that larvae often

initiated peristalsis from the bend in their body formed by this cast; a feature of the larval

motor program that has previously been documented and analysed (Lahiri et al., 2011).

This informed two additional criteria I established for visually evaluating peristalsis:

peristalsis neither had to originate at the larva’s tail nor had to occur along a straight

body axis. I stopped the experiment manually once I observed the larva complete a

reorientation manoeuvre. In a previous iteration of the experiment design, I afforded

each larva three minutes to perform several manoeuvres but was uncertain whether

larvae were transferring knowledge about the stimulus-cast direction relationship

between manoeuvres. The results I describe in this thesis are from experiments in which

I restricted the task to one reorientation manoeuvre per larva. This ensured all larvae

were naïve to the task and eliminated potential operant learning confounds.

I performed all experiments using a single-larva closed-loop tracker to precisely

couple real-time detection of larval behaviour with stimulus presentation (Fig. 2.1,

Section 2.1.1, Schulze et al., 2015). For further details about my experiment procedures,

see Section 2.1.3. In collaboration with Dr Jean-Baptiste Masson and Kristina Klein, I

made marked improvements to the tracker’s existing software framework. I helped

stabilise both larval contouring and head and tail detection using preventive proximity

measures and a corrective vote system. I also helped reduce high false positive and

false negative rates for behaviour classifiers by redefining their feature descriptors,

retraining them on newly acquired live data, and visually validating their performance

myself (for further details, see Section 2.1.1). K Klein and I worked to establish baseline

operations across all custom experiment protocols, but I wrote the software code specific

to my sensory discrimination task. I also debugged and developed the user interface and

data output structure beyond their default frameworks. My purpose in doing so was to

provide the end user with greater options when customising experiment protocols and

establish human-readable documentation of crucial experiment metadata.
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3.2.2 Analysing larval performance

Following experimentation, I post-processed the single-larva closed-loop tracker output

files in a custom MATLAB pipeline. This pipeline was written by Dr J-B Masson, with

necessary updates to accommodate experiment metadata and additional online feature

data by myself and K Klein. Following post-processing, I visually reviewed the resulting

reconstructed behavioural data in a custom MATLAB GUI, itself designed by K Klein. K

Klein kindly assisted me in reviewing a portion of the larval data I acquired. The review

process required assessing against exclusion criteria (see Section 2.1.4), validating

ON/OFF light signals against behaviour classification, and manually recording the

following larval metrics:

• number of casts in the reorientation manoeuvre

• direction (left or right) of the reorientation manoeuvre’s last cast (see criteria

above)

• image frame numbers for both the beginning and end of the reorientation

manoeuvre

I wrote a custom R pipeline to analyse this manual review data alongside each

output file’s metadata (e. g. stimulation protocol and light intensities defined via the GUI),

and time-series data (e. g. frame-by-frame feature values, classified behaviours, and

ON/OFF light signals). The first stage of my analysis pipeline filtered out larvae that cast

more than once to the same side before either casting to the alternate side or finishing

the reorientation manoeuvre. This enabled more direct comparison between larvae, as

those remaining strictly switched direction with each consecutive head cast

(schematised in Fig. 3.1a). Because the direction of the first cast always triggered the

stimuli condition’s lower light intensity, these larvae cast from the less noxious to the

more noxious side, back and forth until they accepted either of the two (i. e. crawled in

the direction set by this cast). Said another way, if a larva completed a reorientation

manoeuvre following an odd number of casts, it decided to accept the less noxious

stimulus (Fig. 3.1b). In contrast, if a larva completed a reorientation manoeuvre following

an even number of casts, it decided to accept the more noxious stimulus (Fig. 3.1c).

To assess larval decision-making in my sensory discrimination task, I considered

behavioural dynamics of the sample population within each stimuli condition. I describe

here a mathematical formulation to clearly illustrate these ideas. A stimuli condition
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contains a sample population of n larvae. A single larva j (j ∈ [1, .., n]) performed a

single reorientation manoeuvre under this stimuli condition. The result of this manoeuvre

was acceptance of one of k mutually exclusive cast outcomes. Said another way, k

represents the number of the last cast in the manoeuvre. I let the discrete random

variable Xj represent this number for the reorientation manoeuvre performed by larva j.

For this larva, each outcome k occurs with probability P (Xj = k) = rk where ri ≥ 0 and∑k
i=1 ri = 1. Based on my own empirical knowledge, I can claim that Xj has no bearing

on Xj+1. Furthermore, I assume that the probability distribution r1, ..., rk over the cast

accepted to end the reorientation manoeuvre does not differ from larva j to larva j + 1.

The behaviours of the n larvae in the sample population are therefore independent and

identically distributed. I let the discrete random variable Yi represent the number of

occurrences, in n larvae, of a reorientation manoeuvre comprising i casts (i ∈ [1, ..., k]).

In this way, Y ∼ Multinomial(n; r1, ..., rk).

Probability of acceptance

Within a stimuli condition, I defined the total number of larvae that accepted cast k as:

nacc
k =

n∑
j=1

I(Xj = k) (3.1)

with I representing the indicator function:

I =

1, ifXj = k

0, otherwise

Consequently,
∑k

i=1 n
acc
k = n. I also defined the total number of larvae that performed

cast k (whether or not they accepted it) as:

ntot
k =

n∑
j=1

I(Xj ≥ k) (3.2)

with I representing the indicator function:

I =

1, ifXj ≥ k

0, otherwise
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Fig. 3.2 Sensory discrimination task cast-by-cast decisions. Experiments were performed as described in Chapter 2 through
optogenetic stimulation of transgenic ppk1.9-Gal4 x UAS-CsChrimson larvae. Data are shown for experimental conditions in which
there is an intensity differential between the two stimulus alternatives (EL,M and EL,H ). Data are also shown for the associated
control conditions in which intensities are equivalent regardless of cast direction (CL,L, CM,M , and CH,H ). Individual larvae
belong to only one stimuli condition. By nature of the task design, the less noxious stimulus was presented on odd-numbered casts
and the more noxious stimulus was presented on even-numbered casts. a. Both graphs show the probability of accepting a cast
(ending the reorientation manoeuvre; P (accept)) after performing the number of casts indicated by the x-axis. b. Both graphs
show the probability of making the correct decision (acceptance of less noxious stimulus or rejection of more noxious stimulus;
P (correct)) after performing the number of casts indicated by the x-axis. Error bars in b and c represent the Clopper-Pearson
Exact 95% confidence interval. Data is jittered for easier visualisation. c. This table shows, for each condition, the number of larvae
that performed each cast (ntot

k , k ∈ [1, ...6]). Note that the greater the proportion of larvae that end a reorientation manoeuvre
following a given head cast, the fewer larvae remain to continue casting. d. This table shows, for each condition, the number of
larvae that made the incorrect (0) or correct (1) decision after performing the indicated cast. Within each condition, the column
totals match the values in panel c.
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I was interested in the probability of larvae accepting a head cast given how many

head casts they already performed. Combining Eqn.’s 3.1 and 3.2, this equates to:

P (accept)k = nacc
k /ntot

k

∼ Bernoulli ≡ P [Xj = k|Xj ≥ k]

=
rk∑

k′≥k rk′

Fig. 3.2a shows this metric plotted across casts one through six for both experimental

conditions and their associated controls. Although some larvae performed more than six

head casts, I restricted the data to this window to ensure that, within a condition, at least

ten larvae performed each cast (Fig. 3.2c).

Probability of correct decision

I developed a success probability metric, P (correct), to assess whether performing

more head casts in a reorientation manoeuvre improves the decision about the

manoeuvre’s final direction. In my sensory discrimination task, a correct decision is to

accept a cast and finish the reorientation manoeuvre on the side associated with less

noxious stimulus. By definition, this also requires rejecting casts to the side with the

more noxious stimulus by casting to the other side (Fig. 3.1b). Mathematically,

P (correct)k =

P (accept)k, if k is odd

1− P (accept)k, if k is even
(3.3)

While P (accept) measures when larvae ended their reorientation manoeuvre,

P (correct) tracks the action larvae made on each cast within the manoeuvre. Fig. 3.2b

shows the P (correct) metric plotted across casts one through six for both experimental

conditions and their associated controls. Although some larvae performed more than six

head casts, I restricted the data to this window to ensure that, within a condition, at least

ten larvae performed each cast (Fig. 3.2d).

Evolution of acceptance and correct decision

The errors surrounding the P (accept) and P (correct) data in Fig. 3.2 represent

Clopper-Pearson Exact 95% confidence intervals (for details on method selection, see
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Section 2.1.4). Visible overlap of these confidence intervals within and between

conditions raises uncertainty about whether a true, meaningful difference exists between

observed probabilities. This did not, however, preclude me from qualitatively analysing

the behaviour of these sample populations. It is also important to emphasise that

P (accept) and P (correct) results from my sensory discrimination task exhibit an

inherent dependence from one cast to the next, functioning like conditional probabilities

based on previous behavioural choices. An appropriate statistical test for quantitative

comparison within and between these conditions may therefore be one that considers

trends based on the totality of each condition’s data trajectory, rather than individual

casts. In the paragraphs that follow, I outline my qualitative observations and the

quantitative results I obtained in accordance with this thinking. I make specific reference

to Fig. 3.3 which shows the same P (accept) and P (correct) data as Fig. 3.2 but omits

the Clopper-Pearson confidence intervals so as not to confuse those error estimates

with my logistic regression analysis.

Notably, the P (accept) data show an inverse relationship between the probability of

accepting the first cast and the intensity of the associated noxious stimulus. For

conditions in which cast one triggered intensity L, acceptance probabilities lie around

0.335 (EL,M = 0.332;EL,H = 0.329;CL,L = 0.341). The acceptance probability on cast

one is smaller for CM,M (0.255) and smaller still for CH,H (0.204) (Fig. 3.3a). This graded

behavioural response is an important indicator that larvae can perceive stimuli at these

intensities. The low acceptance probabilities are also unsurprising, considering that cast

one is each larva’s first exposure to a noxious environmental stimulus.

Under the P (accept) metric, I hypothesised that experimental larvae would show

increased probability of acceptance of the less noxious side (k odd) with increased cast

number. I expected the converse over casts that triggered the more noxious stimulus (k

even): decreased probability of acceptance with increased reorientation manoeuvre

length. The EL,M condition exhibits this behaviour but the probability of acceptance on

cast two is greater than that of cast one despite the increase in noxious intensity. The

EL,H condition is almost identical to EL,M in its magnitude of P (accept) increase over

odd-numbered casts. EL,H , however, shows stable values of P (accept) over

even-numbered casts. What results in both experimental conditions is an oscillating

trajectory with an envelope that widens with increasing cast number (Fig. 3.3a). In each

control condition, I expected the probability of acceptance to lie close to 0.5 from cast

two onward. The P (accept) values in condition CL,L are nearly identical on casts two,

three, and four (close to 0.57) before peaking at 0.66 on cast five and dropping to 0.40 on
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cast six. Notably, the CL,L trajectory jumps much higher than CM,M and CH,H on cast

two and stays consistently above these other control conditions through cast five.

Conditions CM,M and CH,H show monotonic increases in P (accept) with the exception

of the value at cast five (Fig. 3.3a).

Under the P (correct) metric, I hypothesised that experimental larvae faced with a

differential between noxious stimulus alternatives would show increased probability of

correct decision with increased cast number. I further hypothesised that task difficulty

would alter the rate of this ascent. Specifically, the greater the separation between

stimulus intensities, the quicker the larva may resolve this difference and end the

reorientation manoeuvre with a cast toward the less noxious side. In agreement with my

hypothesis, condition EL,M shows an upward trend in P (correct) with increasing cast

number. Condition EL,H shows a faster plateau to nearly the same values of P (correct)

as EL,M , suggesting that larvae exposed to a larger stimulus differential need less

sensory information to reach the same level of performance (Fig. 3.3b).

Because in the control conditions neither stimulus alternative was better than the

other, I retained the P (correct) definition for the control conditions as in Eqn. 3.3. In

each control condition, I expected a flat P (correct) trajectory from cast two onward, with

values close to 0.5. Although both CM,M and CH,H show a spike in P (correct) values

above 0.5 at cast two, both hover at or below 0.5 from casts three through six. Condition

CL,L does not show a large spike in P (correct) at cast two and oscillates more widely

around 0.5 from casts three through six (Fig. 3.3b). This difference in behaviour between

CL,L and the remaining two controls may be a consequence of the smaller ntot
k values at

higher cast numbers (Fig. 3.3c), which itself may be due to limited perception of the L

noxious stimulus intensity. I confirmed that the exact P (correct) definition was irrelevant

for the control conditions by calculating, for each condition, an average P (correct) value

for each cast over 1000 separate analyses. In each analysis, I assigned a random half of

the larvae to have the correct side as the odd-numbered side and the other half to have

the correct side as the even-numbered side. The result (not shown) was all three control

conditions tightly oscillating around 0.5, beginning at cast one, with greater deviations

away from 0.5 as cast number increased (reflecting the decrease in ntot
k ).

The qualitative differences in P (correct) trajectories between the experimental

conditions and their respective controls suggest that the more larvae sample the

environment, the better their decision about the direction in which to crawl to end the

reorientation manoeuvre. I aimed to determine whether this was supported statistically

by a more significant rise in experimental P (correct) trajectories than those of the
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Fig. 3.3 Evolution of sensory discrimination task cast-by-cast decisions. Data in all panels is identical to that of Fig. 3.2, but
is shown here without confidence intervals. Instead, asterisks below the trajectories in panels a and b show whether the slope
of the logit regression is significantly different between the experimental condition and each of its respective controls (* p < 0.05,
** p < 0.01, *** p < 0.001; for exact values of the parameter β̂cast, see Table 3.1). a. Both graphs show the probability of
accepting a cast (ending the reorientation manoeuvre; P (accept)) after performing the number of casts indicated by the x-axis.
b. Both graphs show the probability of making the correct decision (acceptance of less noxious stimulus or rejection of more
noxious stimulus; P (correct)) after performing the number of casts indicated by the x-axis. c. This table shows, for each condition,
the number of larvae that performed each cast (ntot

k , k ∈ [1, ...6]). Note that the greater the proportion of larvae that end a
reorientation manoeuvre following a given head cast, the fewer larvae remain to continue casting. d. This table shows, for each
condition, the number of larvae that made the incorrect (0) or correct (1) decision after performing the indicated cast. Within each
condition, the column totals match the values in panel c.
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control conditions. In quantitatively comparing these behavioural trajectories, I

considered correctness as a categorical response variable with two possible values,

incorrect and correct (Y ∈ 0, 1; P (Y = 1) = p). I considered cast number as an

independent variable with a set upper limit (Xcast ∈ [1, 6]). In accordance with this view,

coordinate pairs (xcast, y) represent every decision made within a condition’s data set

(i. e. one for each rejected or accepted cast; for counts by condition and cast number,

see Fig. 3.3d). I sought advice from expert statistician Dr Carey Priebe, as I was

unfamiliar with available tests for trends in binary response variables. I directed our

conversations, combining my existing statistical knowledge with my experience in

designing my sensory discrimination task and P (correct) performance criterion to

effectively relay my analysis considerations and interpret Dr C Priebe’s suggestions.

Dr C Priebe’s first suggestion was the Cochran-Armitage trend test, which tests for

trends in proportions across an ordinal variable. In researching how Cochran-Armitage

could be applied to comparing trajectories of proportions to one another, I learned about

its similarities to hypothesis testing in binary logistic regression. Notably,

Cochran-Armitage provides similar results to the Wald test statistic for H0 : β = 0 in the

linear logit model, with β representing the coefficient of the independent variable

(Agresti, 2002). This discovery led me to utilise binary logistic regression for direct,

quantitative comparison of my observed P (correct) behavioural trajectories. Dr C Priebe

guided me on how to implement this statistical approach using the R programming

language, which was necessary for compatibility with my existing R analysis pipeline.

My first step in analysing the data was transforming P (correct). Because this

dependent variable (here denoted as Y ) is categorical, a log-odds (logit) transformation

makes it easier to interpret Y as a linear function of the predictor variable xcast:

logit(p) = ln(
p

1− p
) = βint + βcastxcast + ϵ (3.4)

I used logistic regression to estimate the βcast parameter from the data. The Wald

z-score is the ratio of this estimate, β̂cast, to its standard error and I used this ratio test

H0 : βcast = 0. Table 3.1 shows, for each condition, β̂cast, the standard error representing

the uncertainty surrounding β̂cast, and the two-sided p-value based on the Wald test. I

have ordered the table rows based on increasing β̂cast value. I visually assessed Q-Q

plots in R and observed approximate normality for all β̂cast values. All of the standard

errors are small, indicating that there is little variation in the estimate of the relationship

between cast number and correct decision. A notable disadvantage of employing logistic
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Table 3.1 Logistic regression results

Condition β̂cast s.e.(β̂cast) P(>|z|)

CM,M 0.186 0.0385 1.37 × 10-6

CH,H 0.206 0.0369 2.26 × 10-8

CL,L 0.288 0.0508 1.42 × 10-8

EL,M 0.392 0.0484 5.34 × 10-16

EL,H 0.460 0.0460 1.52 × 10-23

regression here is the assumption of a uniform relationship between the predictor and

response variables over a range of values. While this makes it difficult to capture a

potentially more complex relationship, I consider it to be a biologically feasible starting

point.

In all five stimuli conditions, p-values suggest rejection of the null hypothesis as cast

number appears to be a significant positive predictor of correct decisions. Knowing that

the standard errors are approximately the same across conditions, I investigated

significance between groups fit with different logit regressions by measuring the distance

between β̂cast coefficients based on standard error. Taking this approach, EL,H shows a

bigger effect than EL,M , supporting the qualitative observation of a faster plateau to

equivalently high levels of P (correct) (Fig. 3.3b). Together, these two experimental

conditions appear significantly larger than the three control conditions by, at minimum,

approximately two standard errors. Given the qualitative differences already observed in

the CL,L condition, it is unsurprising that CL,L shows a comparatively higher β̂cast value

than CM,M and CH,H .

Although the β̂cast coefficients neatly stratified the stimuli conditions into controls

(lower values) and experimentals (higher values), it was important to formally compare

the most ambiguous pair of conditions, EL,M and CL,L. I achieved this with a logistic

regression on the combined data from both conditions. This regression featured a

second covariate, xcond. This categorical variable represented the condition to which

each data point belongs. The corresponding β̂cond coefficient demonstrates significant

predictive power (z-score: 2.55; p = 0.0108), reinforcing the previously described

informal evaluation of a statistically significant difference in β̂cast values between

conditions EL,M and CL,L.

The quantitative assessment I have outlined has shown both that cast number is a

significant predictor of making the correct decision on a cast and that this predictive

power is significantly more pronounced in the experimental conditions than the controls.
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The improvement in larval performance with increasing head casts per reorientation

manoeuvre seems to suggest that that larvae accumulate evidence for each stimulus

alternative over repeated space samplings. In this way, repeated environmental

sampling may function to reinforce the larva’s association between its body position and

the intensity of sensory information it receives. This result appears inconsistent with

previous mechanistic explanations of navigational decisions during larval chemo- and

thermotaxis. Those results suggest that head casts serve to compute temporal,

derivative changes in sensory stimuli that, once having exceeded a threshold, trigger the

end of a reorientation manoeuvre (Gomez-Marin et al., 2011; Kane et al., 2013; Klein

et al., 2015). In Chapter 4 and Chapter 5, I explore two different computational models I

built in an effort to elucidate the mechanistic underpinning the sequential sampling

behaviour I observed in my sensory discrimination task.

3.2.3 Exploring cast duration data

A valuable metric I calculated for each larval reorientation manoeuvre was the duration

of individual casts. Although all analysis I have described thus far focused on casts as

the unit of sensory information, I thought it important to also consider whether the length

of time larvae spent performing a cast influenced their decision on which direction to end

the reorientation manoeuvre. I observed cast duration variability both within a single

manoeuvre and between larvae; the latter perhaps due to varying nociceptive sensitivity

across animals. This variability unfortunately precluded me from reasonably stratifying

larvae into groups, making it challenging to formulate informative duration data analyses

for individual casts. I discussed these challenges at length with Dr Ann Hermundstad,

emphasising the importance of leveraging my available cast duration data to explore a

continuous measure of head cast acceptance. Together, we settled on an approach that

considered the total duration of larval reorientation manoeuvres as a function of stimulus

intensity experienced over each cast. I wrangled all available duration data into the

appropriate input format for a prototype MATLAB script that Dr A Hermundstad wrote to

calculate integrated intensity for each larva. This calculation involved multiplying each

cast’s duration (in seconds) by the corresponding stimulus intensity for that cast (linearly

scaled relative to least noxious intensity L), and summing this value over all casts the

larva performed in its reorientation manoeuvre. Larvae that made a single cast were

excluded from this analysis. I meticulously validated this prototype code, auditing the

calculations for mathematical accuracy and biological relevance, and modifying various
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code elements to ensure reproducibility of function outputs and compatibility with my

existing analysis workflow.

Dr A Hermundstad and I calculated three separate metrics as a function of

integrated intensity over a sliding data window. The window was used to reduce high

frequency noise that otherwise may have occurred with non-overlapping data bins.

Fig. 3.4a shows the probability of accepting a reorientation manoeuvre within the window

centred at the indicated integrated intensity value. Because the probability is based on

the total number of larvae that made more than one cast, this metric functions similarly

to a probability density function of the data, though the sliding window means the

probabilities do not sum to one. All five conditions exhibit a similarly shaped trajectory,

with a peak occurring at approximately the same integrated intensity. This peak could

suggest the existence of an internal drive to accept a head cast following exploration up

to a specific "level" of integrated intensity. An opposing drive to find the "correct side"

may explain why some animals continue exploring and the distribution tails extend

toward higher integrated intensity values. If integrated intensity explained all the

variability between conditions, then the data from all five conditions would overlap. The

trajectories are, however, vertically translated from each other across much of the

integrated intensity values. This vertical translation exhibits a rank ordering based on the

summation of stimuli values within each condition, with the least noxious condition at the

top of the graph and the most noxious at the bottom. Together, these qualitative features

seem to suggest that larvae maintain a consistent baseline relationship between

nociceptive stimuli and the rate of behavioural response across different stimuli

conditions.

Two other duration data metrics further dissect the probability of acceptance across

integrated intensity. Conditional on having accepted the reorientation manoeuvre within

the integrated intensity window, Dr A Hermundstad and I calculated the probability that

that acceptance was of the less noxious stimulus (odd-numbered cast; Fig. 3.4b) or,

conversely, of the more noxious stimulus (even-numbered cast; Fig. 3.4c). Recall that

because the choice is binary, P (less noxious|accept) = 1− P (more noxious|accept). For

both conditional probabilities, each stimuli condition exhibits a similarly shaped trajectory

across integrated intensity. As before, this seems to suggest an element of behavioural

consistency irrespective of the noxious environment. The rank ordering of P (accept)

trajectories from Fig. 3.4a is not, however, preserved here. At any given integrated

intensity, the EL,H trajectory is positioned above that of EL,M which itself lies above the

three controls that eventually plateau near 0.5 (Fig. 3.4b). This pattern is understandably
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Fig. 3.4 Sensory discrimination task duration results. Experiments were performed as described in Chapter 2 through optoge-
netic stimulation of transgenic ppk1.9-Gal4 x UAS-CsChrimson larvae. Data are shown for experimental conditions in which there is
an intensity differential between the two alternatives (EL,M and EL,H ). Data are also shown for the associated control conditions
in which intensities are equivalent regardless of cast direction (CL,L, CM,M , and CH,H ). Individual larvae belong to only one con-
dition. For each larva, integrated intensity was calculated by multiplying the duration of each cast with its corresponding stimulus
intensity (linearly scaled relative to least noxious intensity L) and summing this value over all casts in the reorientation manoeuvre.
By nature of the task design, the less noxious stimulus in a condition was presented on odd-numbered casts and the more noxious
stimulus was presented on even-numbered casts. a. For larvae that made more than one cast, this is the probability of accepting
a reorientation manoeuvre within the sliding window centred at the indicated integrated intensity value. b. For larvae that made
more than one cast and accepted their reorientation manoeuvre within the indicated sliding window, this is the probability of that
manoeuvre ending on the side corresponding to the less noxious stimulus. Conditions as in the legend shown in a. c. For larvae
that made more than one cast and accepted their reorientation manoeuvre within the indicated sliding window, this is the probability
of that manoeuvre ending on the side corresponding to the more noxious stimulus. Conditions as in the legend shown in a.
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reversed in Fig. 3.4c. The near superposition of the three control conditions on one

another compared to the separation of the experimental groups suggests that an

intensity difference between the stimulus alternatives influences performance.

Specifically, the more difficult the task, the lower the rate of acceptance of the less

noxious stimulus. Simulated duration data sets could help predict what may be driving

not only the vertical translation of stimuli conditions across acceptance probabilities in

this larval data, but also the rate of change in acceptance over the sliding window.

Gathering more behavioural data could also aid in investigating whether correlations

exist between performing a particular cast within the reorientation manoeuvre and that

cast’s duration or duration of an individual cast and the continuous probability of its

acceptance.

These duration data metrics are an avenue for which different drivers of the

decision-making process can be explored. Sensory adaptation is one such driver. In the

most fundamental sense, adaptation is a manifestation of sensory fatigue. Repeated

stimulus exposure can cause neurons to adapt, calibrating their responses to

pre-exposure baseline levels. Although an animal may then be unresponsive to the

original stimulus, this gain modulation of the sensory system heightens the animal’s

sensitivity to novel stimuli (Rahnev and Denison, 2018). A notable behavioural

consequence of adaptation is a reduction in the time required to make a decision

(Theodoni et al., 2011). Any observed adaptation to noxious stimuli in my larval sensory

discrimination task would therefore call into question my proposed mechanism of

sensory evidence accumulation. Such an explanation is not without precedent, as

Drosophila larvae have been shown to exhibit adaptation to both visual and olfactory

stimuli (Cobb and Domain, 2000; Gepner et al., 2018). The results shown in Fig. 3.4b

begin to address this concern. The difference between experimental and control

conditions in the probability of accepting the less noxious stimulus seems to suggest that

adaptation is not occurring. Said another way, if larvae engaged with my task adapted to

the stimulus intensity they already experienced, then the probability of acceptance of the

less noxious stimulus would be equivalent between experimental and control conditions

across the range of integrated intensities. Further study is needed, however, to

definitively rule out an adaptation mechanism underlying the observed decision-making

process. My existing task design does not expose larvae in all conditions to persistent,

unwavering stimulation before presenting a novel stimulus intensity. In the first instance,

I would consider an alternative, adaptation-specific experiment paradigm that
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necessitates intentional prolonged exposure to an adaptor stimulus to determine that

stimulus’ impact on future perceptual decisions (Theodoni et al., 2011).



Chapter 4

Modeling with Bayesian inference

4.1 Introduction

The sensory discrimination task results show a significant positive correlation between

the number of head casts performed by larvae and the probability that those larvae end

their exploration on the side with the less noxious stimulus. I hypothesise that continually

gathering sensory evidence with each cast improves the larva’s understanding of each

side’s true nociceptive level and facilitates better decisions with time. Computational

models are one tool used to investigate such predictions about the decision rules that

govern a behavioural readout. In the case of my evidence accumulation hypothesis,

larvae may utilise the inherently noisy sensory information to update their internal beliefs

about the true external environment.

It is common to conceptualise such perceptual computations in a Bayesian

inference framework (Foley and Marjoram, 2017; Knill and Pouget, 2004; Ma et al.,

2008). Bayesian decision theory was formulated from the application of Bayesian

statistics to decision-making paradigms. A Bayesian observer infers the true value of

environmental parameters by updating their prior beliefs about the world (either

empirically derived or genetically encoded) based on newly acquired knowledge

(Körding, 2007; McNamara et al., 2006; Trimmer et al., 2011; Valone, 2006). Although

the parameters’ true value will always remain unknown to the observer, they can use

their inference results to inform a variety of task-dependent decisions.

A plethora of psychophysical experiments across various perceptual and motor

tasks have shown that humans and monkeys perform Bayesian behavioural

computations (Körding, 2007; Körding and Wolpert, 2004; Ma et al., 2008; Pouget et al.,

2013; Stengård and van den Berg, 2019). Foraging decisions and mate selection are the
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predominant ecological contexts in which other animals including various bird species

(McNamara et al., 2006; Valone, 2006), honey bees (Naug and Arathi, 2007) and

bumblebees (Foley and Marjoram, 2017), and tephritid fruit fly larvae (Morimoto, 2019)

have been shown to exhibit Bayesian behaviour. Such results have encouraged further

investigation into the underlying neuronal mechanisms (Ma et al., 2008). Although

Bayesian behaviour does not necessitate that neurons themselves implement Bayesian

algorithms (Ma and Jazayeri, 2014; McNamara et al., 2006; Trimmer et al., 2011),

neuronal populations in several animal taxa have been shown to encode features of

Bayesian inference calculations. Examples include sensory stimulus uncertainty in cue

localisation (Rich et al., 2015), belief distributions over stimulus values in perceptual

decision-making (Beck et al., 2008), and both the establishment and updating of

predictions about the external environment in goal-directed behaviour (Funamizu et al.,

2016). Computational modeling has also shed light on how single neurons can perform

inference computations (Deneve, 2008; Pouget et al., 2013).

Beginning my investigation of the sensory discrimination task decisions with

Bayesian inference is a reasoned approach given the vast space of models from which I

could choose. Bayesian inference models are conceptually straight forward, specifying

an optimal computation given assumptions about easily interpretable and separable

model parameters. They also serve as a broad computational tool that generalises well

across domains from perceptual decision-making to value-based decision-making,

sensorimotor tasks, learning, and cognition (Beck et al., 2008; Ma and Jazayeri, 2014;

Pouget et al., 2013). Arguments have been made, however, that classical Bayesian

inference models of the brain do not account for constraints on the observer’s time,

memory capacity, computational power (Körding, 2007; Pouget et al., 2013; Trimmer

et al., 2011), or fidelity in neurally encoding stimulus properties (Młynarski and

Hermundstad, 2018). Indeed it is true that real biological systems must balance

inference accuracy with the cost of such constraints (Tavoni et al., 2019), so neuronal

computations often deviate from optimality (Rahnev, 2019; Rahnev and Denison, 2018).

Even so, Bayesian inference models can provide insight into suboptimal (Młynarski and

Hermundstad, 2018; Stengård and van den Berg, 2019) and even non-Bayesian

algorithms. Furthermore, the availability of advanced genetic and imaging tools for

studying Drosophila larvae make it more feasible to investigate the neuronal

implementation of sensory inference and any subsequent behavioural decision rule.

I modeled the larval behaviour I observed as a Bayesian inference process, adapted

to accommodate the sensory discrimination task structure. In this chapter, I
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mathematically describe the model scenario (Section 4.2), the model observer’s

inferences about the true nociceptive stimulus levels (Section 4.3), and how the resulting

posterior distributions map to the decision process (Section 4.4). I then extend these

calculations through simplification of parameter values (Section 4.5) and consideration of

special cases dictated by the larval sensory discrimination task (Section 4.6).

Throughout the text, I describe how different model parameters, individually or in

combination, could drive the observed difference in larval-averaged P (correct)

trajectories between stimuli conditions. I end the chapter with a qualitative comparison of

the model predictions to my experiment data (Section 4.7).

I conceptualised and articulated the hypotheses and experiment quantities likely

relevant for the decision process and collaborated with Dr Ann Hermundstad whose

expertise was integral to mathematically translating those ideas into a Bayesian

inference framework. Together, we formalised the design and iteratively implemented

various aspects of the framework into software code. I validated all mathematical

derivations, derived model predictions, and tested and finalised all code

implementations.

4.2 The generative model

A generative model of Bayesian inference characterises how sensory observations are

generated from probabilistic relationships between stimuli and associated world states.

Features of my generative model mimic the larval sensory discrimination task in which

cast direction triggers differential stimulus presentation. We model the environment as

consisting of two sides (s ∈ {a, b}), each distinguished by a fixed nociceptive level, µs.

For the purposes of this mathematical formulation, side a has a low nociceptive level

(µa = µL) and side b has a high nociceptive level (µb = µH). Each nociceptive level is

corrupted by Gaussian noise of variance σ2
s , attributable to noise in the presentation of

the nociceptive stimulus and/or the sensing and processing of such information by the

larval central nervous system. The model observer’s goal in interacting with this

environment is to accept the less noxious side based on evolving beliefs about each

side’s true nociceptive level (Fig. 4.1a). To aid in its decision process, the observer

alternates sampling stimulus evidence, xs, from each side of the environment. The

existence of sensory measurement noise on both sides precludes the observer from

directly mapping xs to the true nociceptive level from which it came. The observer must

therefore estimate each side’s true nociceptive level before deciding which direction it
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believes to be less noxious. It performs this inference by combining incoming sensory

evidence with its existing beliefs about the world, first building and then iteratively

updating a posterior distribution over the possible stimulus levels.

We assume the observer knows each side’s stimulus distribution follows a Gaussian.

Additionally, we assume the observer knows the magnitude of the corresponding noise

σ2
s . The observer does not know the true nociceptive level for either side, which here is

equivalent to the mean of that side’s corresponding stimulus distribution (i. e. the specific

values µL and µH). As is standard in other Bayesian inference constructions, we

assume that the model observer enters the environment with a preestablished prior

belief about the true nociceptive level. We also assume that this prior distribution takes

the form N (µ0, σ
2
0). The observer maintains this prior for both sides of the environment

until it acquires stimulus evidence to update its beliefs (Fig. 4.1b).

4.3 Inferring the true nociceptive levels

Analogous to larvae that alternate cast direction in the sensory discrimination task, the

model observer alternates sampling the two sides of the environment. This is a

distinguishing feature of this framework, as the observer updates their belief distribution

over nociceptive levels for each side individually and sequentially (Fig. 4.1b). Because

the observer follows the same inference process on both sides, I generalise the following

formulation by using the subscript s where s ∈ {a, b}.

Let the observer acquire ns samples of stimulus evidence, Es = {xs1 , ..., xsns
}, from

side s of the environment. The observer calculates a posterior belief distribution about

all possible levels of nociception on side s, p (µs|Es), by combining two quantities:

• The likelihood of observing a specific series of stimulus evidence, Es, conditioned

on the belief that the true nociceptive level on that side equals µs. This takes the

form

p(Es|µs) ∝ exp

(
− ns

2σ2
s

(
Ēs − µs

)2) ∝ N
(
Ēs;µs,

σ2
s

ns

)
, (4.1)

where Ēs is the mean of ns samples of acquired evidence (i. e. Ēs =
∑ns

i=1 xsi/ns).

• The prior belief that the true nociception is µs:



4.3 Inferring the true nociceptive levels 61

expected value
(smaller separation)

expected value
(larger separation)

654321

cast

pr
ob
ab
ili
ty

of
co
rr
ec
td
ec
is
io
n

0

1

single trials
single trial (panel B)
expected value0

1

pr
ob
ab
ili
ty

of
co
rr
ec
td
ec
is
io
n

c

420-2
nociceptive level

1

0

side b sampling:

ca
st
4

0

1

side a sampling:

ca
st
3

0

1µa µb
side b sampling:

ca
st
2

0

1
inferred stimuli
distributions

side a sampling:

ca
st
1

0

1

pr
ob
ab
ili
ty

a < b b < a

belief about
less noxious side

posteriors

priors

belief distributions over nociceptive levels
P(μ | stimulus evidence)

b

0

1

a < b b < a

pr
ob
ab
ili
ty

less
noxious side

noxiousneutral
stimulus

40 2-2

µL µH

noxious stimuli distributions
P(stimulus evidence | side)

side bside a

a

Fig. 4.1 Bayesian inference model construction. a. The generative model. (left) The model environment is divided into two sides,
a and b, for comparison to the larval sensory discrimination task. (middle) Noxious stimuli on each side are Gaussian distributed
with equal variance. More noxious stimuli are numerically represented by increasingly positive values. The mean values of the two
distributions, µL and µH , are unknown to the observer and represent the true nociceptive level on each side. The close proximity
of the distributions makes it difficult for the observer to accurately attribute stimulus evidence samples (colored circles immediately
below the stimulus distributions) to the true nociceptive level that generated them. (right) In this framework, side a is defined as
the less noxious side. b. The inference and decision processes. (left) Before "casting", the model observer holds identical belief
distributions over the true nociceptive levels for each side of the environment (middle). (right) The means of both priors equal the
neutral value 0, and the observer believes they are equally noxious. The observer then alternates acquiring stimulus evidence
(colored circles) from one side at a time, beginning with a. The observer uses this information to derive a posterior probability
distribution over nociceptive levels for that side. Only one posterior is updated with each "cast" (solid colored outline). The mean
values of both posteriors (µ̂a and µ̂b, shown only in cast 2 for visual simplicity) represent the most likely nociceptive level for that
side. (middle inset) In this way, they also specify the observer’s inferred stimuli distributions with fixed variance. It is assumed that
the larva accepts a given side with the probability that that side is less noxious than the other. (right) The belief about the less
noxious side is calculated using the posterior distributions. The light pink dashed box around the a < b probability reflects the truth
that side a is less noxious than side b. c. Illustrating the model readout. The probability of correct decision equals the probability of
accepting side a. In the top graph, single trials represent the evolution of this probability as an individual observer casts, with the
observer from panel b highlighted specifically. The expected value of the probability of correct decision represents the behaviour of
a population of observers in the environment. A greater separation between µL and µH causes the probability of correct decision
to rise more quickly than if the separation were smaller. Smaller separation as in the solid gray line in the top graph.
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p(µs) ∝ exp

(
− 1

2σ2
0

(µs − µ0)
2

)
∝ N

(
µs;µ0, σ

2
0

)
(4.2)

Choosing a conjugate prior conveniently yields a posterior distribution of the same

Gaussian form when applying Bayes’ Rule (see Murphy (2007) for a detailed derivation

of this closed-form solution):

p (µs|Es) ∼ N
(
µs; µ̂s, σ̂

2
s

)
(4.3)

with mean µ̂s and variance σ̂2
s given by

µ̂s =
σ2
sµ0/ns + σ2

0Ēs
σ2
s/ns + σ2

0

(4.4)

σ̂2
s =

σ2
sσ

2
0

nsσ2
0 + σ2

s

(4.5)

Because this posterior has a Gaussian form, the most likely value equals the mean. In

this way, µ̂s is the observer’s estimate of the true nociceptive level on side s. Importantly,

σ̂2
s is not an estimate of the true variance but instead represents the observer’s

uncertainty over µ̂s. As the observer acquires more evidence, the posterior mean

approaches the sample mean (i. e. limns→∞ µ̂s = Ēs) and the uncertainty surrounding

this nociceptive level estimate decreases (i. e. limns→∞ σ̂2
s = 0) (Fig. 4.1b).

4.4 The decision process

The model observer relies on its inference of the nociceptive levels on each side to

assess which side of the environment is less noxious. In this framework, a nociceptive

level of 0 is neutral and increasingly positive values represent more nociception

(Fig. 4.1a). Without loss of generality, I detail calculations for the probability that side a is

less noxious than side b (i. e. P (µa < µb)) for all possible values of µb (Fig. 4.1b). I

assume that the observer makes an optimal decision by accepting side a with this

probability (Beck et al., 2008). Because I define side a as the less noxious side, the

probability of accepting side a equals the probability of a correct decision (Fig. 4.1c):
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P (accept state a) = P (correct)

=

∫
P (µa < µb)p (µb|Eb) dµb

=

∫
1

2

[
1 + erf

(
µb − µ̂a

σ̂a

√
2

)]
N
(
µb; µ̂b, σ̂

2
b

)
dµb

=

∫
1

2

[
1√
2πσ̂2

b

exp

(
−(µb − µ̂b)

2

2σ̂2
b

)]
dµb +∫

1

2

[
erf

(
µb − µ̂a

σ̂a

√
2

)(
1√
2πσ̂2

b

exp

(
−(µb − µ̂b)

2

2σ̂2
b

))]
dµb

=
1

2
+

∫
1

2

[
erf

(
µb − µ̂a

σ̂a

√
2

)(
1√
2πσ̂2

b

exp

(
−(µb − µ̂b)

2

2σ̂2
b

))]
dµb

(4.6)

Eqn. 4.6 is simplified by applying the following identity for the indefinite integral of an

error function multiplied by a Gaussian:

∫ ∞

−∞
erf (ax+ b)

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx = erf

(
aµ+ b√
1 + 2a2σ2

)
(4.7)

The resulting closed-form solution reveals each parameter’s contribution to a single

observer’s decision (Fig. 4.1c):

P (correct) =
1

2

(
1 + erf

(
(µ̂b − µ̂a)/σ̂a

√
2√

1 + σ̂2
b/σ̂

2
a

))

=
1

2

(
1 + erf

(
µ̂b − µ̂a√
2 (σ̂2

a + σ̂2
b )

))

=
1

2

(
1 + erf

(
γbĒb − γaĒa

β

))
(4.8)

with γ and β defined, for convenience, as follows:

γs =
σ2
0

σ2
s/ns + σ2

0

(4.9)

β =
√
2(σ̂2

b + σ̂2
a) (4.10)
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To describe P (correct) dynamics across a population of observers, we average

over the expected sampling variability in Ēa and Ēb. Notably γ and β depend only on the

known parameters σ2
0, σ2

a, σ2
b , na, and nb, so they do not contribute to variability between

observers. Within this model framework, I know that the evidence samples, xs, acquired

by the observer are Gaussian distributed with mean µs (hereafter representing the fixed,

true nociceptive level on side s) and variance σ2
s . The central limit theorem states that

the sampling distribution over the sample mean, Ēs, is Gaussian distributed with the

same mean µs and a scaled variance σ2
s/ns:

p(Ēs) = N
(
Ēs;µs,

σ2
s

ns

)
(4.11)

The expected value of P (correct), ⟨P (correct)⟩, equals the summation of P (correct)

over all possible series of evidence drawn from na and nb samples, weighted by the

probability of drawing each evidence series, p(Ēa) and p(Ēb):

⟨P (correct)⟩

=
1

2

∫∫ (
1 + erf

(
γbĒb − γaĒa

β

))
N
(
Ēa;µa,

σ2
a

na

)
N
(
Ēb;µb,

σ2
b

nb

)
dĒadĒb

=
1

2

∫ (
1 + erf

(
γbĒb − γaĒa

β

))
N
(
Ēa;µa,

σ2
a

na

)
dĒa

∫
N
(
Ēb;µb,

σ2
b

nb

)
dĒb

(4.12)

Applying the identity from Eqn. 4.7 to the integral over Ēa, with a = −γa/β and

b = γbĒb/β, yields:

∫ (
1 + erf

(
γbĒb − γaĒa

β

))
N
(
Ēa;µa,

σ2
a

na

)
dĒa

= 1 + erf

(
γbĒb/β − γaµa/β√
1 + 2γ2

aσ
2
a/β

2na

)

= 1 + erf

(
γbĒb − γaµa√
β2 + 2γ2

aσ
2
a/na

)

Eqn. 4.12 then simplifies to:

⟨P (correct)⟩ = 1

2

∫ (
1 + erf

(
γbĒb − γaµa√
β2 + 2γ2

aσ
2
a/na

))
N
(
Ēb;µb,

σ2
b

nb

)
dĒb
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Reapplying Eqn. 4.7, with a = γb/
√

β2 + 2γ2
aσ

2
a/na and

b = −γaµa/
√
β2 + 2γ2

aσ
2
a/na yields the following:

⟨P (correct)⟩ = 1

2

1 + erf

 γbµb − γaµa√
β2 + 2γ2

aσ
2
a/na

1√
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2γ2
bσ

2
b/nb

β2+2γ2
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2
a/na
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1

2
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1 + erf
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2
a/na
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2
a/na√

β2 + 2γ2
aσ

2
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bσ
2
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))

=
1

2

(
1 + erf

(
γbµb − γaµa√

β2 + 2γ2
aσ

2
a/na + 2γ2

bσ
2
b/nb

))
(4.13)

This analytic result reveals that the probability of a correct decision directly depends

on the separation between nociceptive levels µb and µa (Fig. 4.1c). Consider that any

overlap in the two stimulus distributions means that a single sample xs could have

originated from either nociceptive level, increasing the difficulty of the inference process

and lowering the probability of making the correct decision. This mirrors my hypothesis

that the magnitude of the stimulus differential impacts the probability of larvae making a

correct decision on a given head cast. Plugging in values for na and nb samples of

stimulus evidence into this closed-form solution yields an in silico ⟨P (correct)⟩ trajectory

that can be qualitatively compared to the larval behavioural data (Section 4.7).

4.5 Simplifying assumptions

Establishing reasonable assumptions about the numeric value of several model

parameters reduces the number of free parameters that an optimisation algorithm must

fit to available data. Here I detail these assumptions and show how they simplify the

⟨P (correct)⟩ result from Eqn. 4.13.

The first assumption is that each model observer holds a neutral expectation about

the nociceptive level prior to sampling (i. e. µ0 = 0) (Fig. 4.1b). Because the magnitude

of the surrounding variance, σ2
0, is encapsulated by both γ and β in Eqn. 4.13, I can

rearrange parameters within the related Eqn.’s 4.5 and 4.9 to obtain

σ̂2
s =

σ2
s/ns

1 + σ2
s/(nsσ2

0)
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γs =
1

1 + σ2
s/(nsσ2

0)
,

This reveals a consistent relationship between σ2
0, σs, and ns, with σ2

0 never appearing in

isolation. Therefore, without loss of generality, I can set σ2
0 = 1.

I constructed the model such that the number of stimulus evidence samples the

observer acquires on each side of the environment, ns, is equal to the number of "casts"

the observer makes to that side during the reorientation manoeuvre, Ns, each

comprising T samples:

ns = Ns ∗ T (4.14)

As in the larval sensory discrimination task, the global number of casts, N , is the

summation of casts to both sides:

N = Na +Nb (4.15)

In this way, T controls the sampling rate per cast, as it is independent of both cast

number and side. Although it is possible to make T a fittable parameter, I do not have

enough information about the timescale of sampling to explicitly constrain its value. For

numerical simplicity, I set T = 1. In this way, the resulting model approximates a

continuous stream of evidence acquisition as discrete.

Finally, I assume that the nociceptive stimulus distributions from which the observer

alternates sampling have equivalent Gaussian variances (σ2
a = σ2

b = σ2).

Taken together, these four assumptions (µ0 = 0; σ2
0 = 1; T = 1; σ2

a = σ2
b = σ2)

allow me to further simplify Eqn. 4.13 to the following:

⟨P (correct)⟩ = 1

2

(
1 + erf

(
γbµb − γaµa√

2σ2 ((γb + γ2
b ) /nb + (γa + γ2

a) /na)

))
(4.16)

with γs =
1

1 + σ2/ns

This not only reemphasises that the difference in µb and µa drives ⟨P (correct)⟩, but also

reveals that σ2, the sensory measurement noise surrounding both nociceptive levels,

directly influences those trajectory dynamics.
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4.6 Model predictions and subtypes

Here, I analytically outline special cases of ⟨P (correct)⟩ (Eqn. 4.16) to illustrate

important model predictions at defined stages of the larval sensory discrimination task. I

also describe different model subtypes based on an observer’s evolving belief over a set

number of previous casts.

Consider the inference and decision processes immediately following the observer’s

first "cast" (i. e. N = 1). If this cast is to side a, the observer is naïve to side b.

Mathematically, this means that the observer’s posterior distribution for side b equals the

prior (i. e. setting nb = 0 in Eqn.’s 4.4 and 4.5 yields µ̂b = µ0 and σ̂2
b = σ2

0). Finding

⟨P (correct)⟩ following this first cast requires recalculating P (correct) from Eqn. 4.8 by

setting nb = 0:

P (correct) =
1

2

(
1− erf

(
γaĒa√

2 (σ2
0 + σ̂2

a)

))
then summing P (correct) over all possible series’ of evidence drawn from na samples in

this first cast, weighted by the probability of drawing that evidence series, p(Ēa):

⟨P (correct)⟩ = 1

2

∫ (
1− erf

(
γaĒa√

2 (σ2
0 + σ̂2

a)

))
N
(
Ēa;µa,

σ2
a

na

)
dĒa

Applying the identity in Eqn. 4.7, with a = γa/
√

2(σ2
0 + σ̂2

a) and b = 0 and further

simplifying with the assumptions I outlined in Section 4.5 yields:

⟨P (correct)⟩ = 1

2

1− erf

 γaµa√
2(σ2

0 + σ̂2
a)

1√
1 + 2γ2

aσ
2
a

2(σ2
0+σ̂2

a)na


=

1

2

(
1− erf

(
γaµa√

2(σ2
0 + σ̂2

a + γ2
aσ

2
a/na)

))

=
1

2

(
1− erf

(
γµa√

2 (1 + γσ2 + γ2σ2)

))
(4.17)

with γ =
1

1 + σ2
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Notably, this shows a direct influence of µa on ⟨P (correct)⟩ following the first cast. A

lower value of µa generates a greater probability of correct decision (i. e. a lower level of

nociception leads to a higher probability of accepting the first cast).

Now consider the dynamics that arise from casts beyond the first one, during which

the observer samples each side individually. If the observer’s first cast is to side a,

na = nb + Ta when N is odd. During these odd-numbered casts where na ̸= nb,

⟨P (correct)⟩ follows Eqn. 4.16. I observe a different special solution to ⟨P (correct)⟩
when na = nb = n (i. e. for all even-numbered casts). Substituting n for both n1 and n2 in

Eqn. 4.16, I obtain:

⟨P (correct)⟩ = 1

2

(
1 + erf

(
γ (µb − µa)√

(4σ2/n) (γ + γ2)

))
(4.18)

with γ =
1

1 + σ2/n

If the model observer accumulated evidence from both states simultaneously, one would

observe the trajectory mapped out by computing Eqn. 4.18 over all values of n. Because

the observer instead alternates sampling from each side individually, Eqn. 4.18 provides

a qualitative envelope for the ⟨P (correct)⟩ trajectory, with deviations caused by the

inherently asynchronous updates of each side’s posterior distribution.

I also consider the effect of the two nociceptive stimulus distributions being identical

(i. e. µa = µb = µ). In this control condition case, Eqn. 4.16 simplifies to:

⟨P (correct)⟩ = 1

2

(
1 + erf

(
(γb − γa)µ√

2σ2 ((γb + γ2
b ) /nb + (γa + γ2

a) /na)

))
(4.19)

with γs =
1

1 + σ2/ns

This analytic form predicts that when na = nb = n, ⟨P (correct)⟩ = 0.5.

The aforementioned special cases are derived from the default model framework

(i. e. all casts) in which each observer continues to update its posterior belief

distributions for each side with each newly acquired piece of evidence. In Section 4.7, I

also show results from other model subtypes in which we implemented an element of

forgetting. In these cases, the observer iteratively updates its posterior beliefs over a

select number of sequential casts before reverting to updating the original prior; as if it
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were experiencing the environment for the first time. In the two casts subtype, the

sequential casts include the current cast and the cast just before, occurring on the

opposite side. The two posterior distributions (one for each side) therefore revert back to

the prior with each cast. Under the three casts subtype, the three sequential casts

include the current cast and the two immediately preceding it. The resulting imbalance in

the number of updates to the posterior distribution before reverting to the prior persists

from N = 3 onward, favouring the side the observer is currently sampling.

4.7 Fitting the model

I have outlined a Bayesian inference model that closely mimics the larval sensory

discrimination task design. Although I have explored the predictions this model makes

about key features of the decision readout, these analytic solutions are not always easily

interpretable when viewed by themselves. An important next step is qualitative

evaluation of what the model can capture when fit to the behavioural data.

Fitting model-generated ⟨P (correct)⟩ trajectories to larval P (correct) trajectories

requires finding the best possible values for the unknowns, µs and σ2 (Eqn. 4.16). The

parameters µL, µM , and µH account for the three unique nociceptive levels

(Section 2.1.3) across all five possible sensory discrimination task stimuli conditions and

σ2 accounts for their equivalent Gaussian variance (Section 4.5). Informed by the task

design, the Bayesian inference framework dictates the following relationships between

these parameters:

µL, µM , µH < 0

µH − µM < 0

µM − µL < 0

σ2 > 0

My metric for assessing whether a set of parameter values produces a good model

fit to the behavioural data is the following calculated error:
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6∑
N=1

√
nLarvaeEL,M

∣∣
N

(
⟨P (correct)⟩|N, µL, µM , σ − P (correct)EL,M

∣∣
N

)2
+

6∑
N=1

√
nLarvaeEL,H

∣∣
N

(
⟨P (correct)⟩|N, µL, µH , σ − P (correct)EL,H

∣∣
N

)2 (4.20)

where EL,M and EL,H are the two experimental stimuli conditions, N is the cast number,

and nLarvae is the number of larvae that performed that cast (normalised by the total

number of larvae in the stimuli condition). Including the weighted sum of squared errors

for both experimental P (correct) trajectories increases the ratio of empirical data points

to free parameters and reduces over-fitting. Unlike a standard objective function, this

weighted alternative accounts for the decrease in total larvae with increasing cast

number and better balances the model fit between both conditions.

I evaluated the fit of Bayesian inference trajectories to the experimental conditions’

behavioural data under each of the three model subtypes outlined in Section 4.6. Using

MATLAB’s fmincon solver, I found numerical values for each of the four free parameters

that, together, minimise Eqn. 4.20, subject to the constraints outlined above. I randomly

initialised parameter values for 1000 separate optimisations to discourage trapping the

solution set in a single local minimum. For each model subtype, at least 89% of the 1000

separate optimisations yielded sum of squared error values within 10% of the smallest

calculated (Table 4.1). Because these results reveal strong consistency of the model

output across instantiations, I selected the solution parameters corresponding to that

with the smallest error. The differences in magnitude between these µL, µM , and µH

solutions (when normalised to µL for comparison) are neither equivalent across model

subtypes nor do they show a discernible monotonic relationship between model

subtypes (Table 4.1). Furthermore, none of the subtypes show an exact match between

these normalised µL, µM , and µH parameters and the true stimulus power values

(Section 2.1.3). These results, however, do not preclude the model from capturing

notable qualitative features of the behavioural data.

All three model subtypes predict the equivalent P (correct) value observed across

both experimental conditions, EL,M and EL,H , on the first cast and mimic the increased

probability of correct decision on cast two (Fig. 4.2a). Adjusting the amount that

individual observers forget does, however, impact the model output trajectories at later

casts. Notably, the probability of correct decision in the all casts subtype oscillates

between consistently lower values on odd-numbered casts compared to subsequent
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Table 4.1 Bayesian inference optimisation results

Model
Subtype

Number within
10% of Min

Error over
EL,M , EL,H

Solution Parameters

µL µM µH σ

all casts 966 0.0141 1.1119 1.7256 2.0951 0.9533
three casts 979 0.0249 0.5884 0.8136 0.9904 0.4277
two casts 891 0.0261 2.3624 3.7781 4.9792 1.6954

even-numbered casts. A function of the asynchronous updates of each side’s posterior

distribution, this model feature yields a close match the observed decrease in EL,M and

EL,H trajectories at cast three. The envelope of the model’s oscillation also decreases

with cast number (Fig. 4.2a), reflecting a decrease in uncertainty over the posterior

beliefs. Overall, the construction of the all casts model is guaranteed to show an

increase in the probability of correct decision over head casts when faced with a stimulus

differential between sides. Although this yields reasonable qualitative fits to the larval

behaviour trajectories, there is notable deviation between the model and the larval

behaviour at casts four and five in EL,M and cast six in EL,H . In contrast, the two casts

and three casts subtypes show a performance ceiling, where the probability of correct

decision does not increase beyond a set threshold. Under the three casts subtype,

⟨P (correct)⟩ consistently oscillates between the same two values from cast three

onward, with odd-numbered casts exhibiting lower probabilities than even-numbered. In

the model fit to EL,H , the bounds of the oscillation envelope are vertically shifted to

greater values of ⟨P (correct)⟩ than when fit to EL,M . Finally, the two casts subtype

reliably plateaus to the same probability value from cast two onward, with the plateau

reaching a higher value when fit to EL,H versus EL,M (Fig. 4.2a).

An additional point of comparison between the three model subtypes is the weighted

sum of squared error values (a goodness-of-fit measure) between the behavioural data

trajectories and their corresponding model trajectories. For EL,M and EL,H , all casts has

the lowest summed error of the model subtypes (Fig. 4.2a and Table 4.1).

Using the optimised parameters acquired from the model fits to the experimental

conditions, I generated ⟨P (correct)⟩ trajectories for comparison to the control data. In

this way, the control data is a test for whether the model under these parameters can

predict previously unseen data. As predicted by the inverse relationship between

⟨P (correct)⟩ and µa in Eqn. 4.17, all three model subtypes capture the decrease in

probability of correct decision on cast one from CL,L to CM,M to CH,H (Fig. 4.2b).



72 Modeling with Bayesian inference

model subtype
threetwoall

0.05

0.06

0.07

0.08

0.09

0.1

su
m
m
ed
er
ro
r

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

model: three casts (error = 0.052)
model: two casts (error = 0.054)
data: CH,H

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

model: three casts (error = 0.023)
model: two casts (error = 0.024)
data: CM,M

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ili
ty
of

co
rr
ec
td
ec
is
io
n

model: three casts (error = 0.02)
model: two casts (error = 0.015)
data: CL,L

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

model: all casts (error = 0.044)
data: CH,H

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

model: all casts (error = 0.019)
data: CM,M

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ili
ty
of

co
rr
ec
td
ec
is
io
n

model: all casts (error = 0.026)
data: CL,L

model fit to control datab

threetwoall

model subtype

0

0.01

0.02

0.03

0.04

0.05
su
m
m
ed
er
ro
r

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

model: three casts (error = 0.012)
model: two casts (error = 0.013)
data: EL,H

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ili
ty
of

co
rr
ec
td
ec
is
io
n

model: three casts (error = 0.013)
model: two casts (error = 0.013)
data: EL,M

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

model: all casts (error = 0.007)
data: EL,H

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ili
ty
of

co
rr
ec
td
ec
is
io
n

model: all casts (error = 0.007)
data: EL,M

model fit to experimental dataa

Fig. 4.2 Bayesian inference model fits to behavioural data. The in silico ⟨P (correct)⟩ population readouts (black traces),
evaluated at condition-specific solution parameters, are plotted against corresponding behavioural data (coloured traces, as in
Fig. 3.3b). The results from three different model subtypes are shown. Each subtype differs in the number of casts over which
the observer updates its posterior belief before it forgets the acquired evidence and reverts to the prior distribution (for details, see
Section 4.6). For each subtype, the sum of squared errors (shown in each plot legend) are themselves summed across conditions
and plotted on the bottom right of each panel. a. The solution parameters corresponding to these in silico ⟨P (correct)⟩ population
readouts were found by running 1000 optimisations to both experimental data traces and selecting the instantiation with the lowest
summed error (see Eqn. 4.20). b. Control data was used to test the solution parameters on previously unseen data.
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Irrespective of the control condition to which it is fit, the all casts subtype shows

oscillation in the probability of correct decision, with a maximum value of 0.5 on all

even-numbered casts (analytically predicted in Eqn. 4.19). While this model subtype

captures some of the oscillations in the behavioural data signatures, it misses peak

probability values that occur above 0.5 in all three control conditions. The three casts

subtype also oscillates when fit to each control, but does not max out at 0.5. The

envelope of this oscillation shows a small increase in size from conditions CL,L to CM,M

to CH,H . For all three control conditions, the two casts subtype plateaus at 0.5 from cast

two onward.

The weighted sum of squared error values between the control condition trajectories

and their corresponding model trajectories were higher than that of the experimental

conditions. I expected this result, given that I did not use the controls themselves to

optimise the model parameters. Notably, optimising the Bayesian inference parameters

to the controls (results not shown) yields nearly identical quantitative and qualitative fits

to that which I observe for all three control conditions under the experimental-optimised

all casts framework.

The all casts subtype qualitatively and quantitatively outperforms the three casts

and two casts subtypes when fit to all conditions, with the exception of CL,L. This

Bayesian inference framework well captures features of the experimental conditions

consistent with the significant increase I observe in P (correct) (see Chapter 3). It does

not, however, fully explain the control conditions; a shortcoming most apparent at low

cast numbers (Fig. 4.2b). If larvae rely solely on an optimal Bayesian strategy to guide

their performance in this sensory discrimination task, then this model would be capable

of better fits to previously unseen data, irrespective of the stimuli conditions under which

those data were generated. These results prompted me to consider whether behavioural

trajectory features could be fully captured by a computationally simpler model

construction in which the animal does not rely on comparison between the two sides but

still relies on information accumulation over time.





Chapter 5

Modeling with acceptance pressure

5.1 Introduction

While Bayesian inference was a principled framework to explore the behaviour strategy

in my larval sensory discrimination task, it did not explain notable features of the

probability of correct decision in the control conditions (Section 4.7). This encouraged

me to reevaluate whether the larval decision computation results from a comparison of

the estimated noxious intensity between both sides of the environment; a key

mechanistic assumption of my Bayesian inference construction. In this chapter, I

propose a simpler algorithmic process to explain the larval behaviour data. This process

still relies on information integration with time, but does not rely on the observer making

any comparison calculations. Features of this alternate model were derived from the

relationship between experimental and control conditions’ P (accept) values when

matched by both cast number and noxious stimulus intensity. For example, I compared

EL,M to CL,L on odd-numbered casts and EL,M to CM,M on even-numbered casts.

Similar behavioural readouts occur between these matched groups on early casts (but

not on later ones) despite larvae in the separate stimuli conditions being exposed to

different sequences of alternating noxious intensities (Fig. 3.3b). If the control data

explains the experimental data in this way, then perhaps a comparison between sides

does not influence the larva’s evaluation of the current cast. Following consultation with

Dr Ann Hermundstad, I explored whether larval behaviour in the sensory discrimination

task is driven by a combination of conflicting pressures: aversion to the current

nociceptive level and either constant or increasing pressure to end the reorientation

manoeuvre. Dr A Hermundstad’s expertise was integral to implementing this framework

into software code, which I tested and finalised.
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5.2 Model construction and predictions

The readout of this "acceptance pressure" model is the overall probability of acceptance

on a given cast, calculated as a combination of opposing pressures to accept and reject:

P (accept)in silico = (ax)− (rx)

= (mx+ b) + (rx)
(5.1)

In this general form, ax represents a pressure to accept a given cast, x ∈ [1, 6], and

takes the form of a linear polynomial with slope m and intercept b. Here, rx represents

an aversion to cast x based on its relative stimulus intensity (rx ∈
{
rL, rM , rH

}
where

the superscripts denote low, medium, and high intensities like those across the five

stimuli conditions outlined in Section 2.1.3).

Here, I outline three subtypes of this model. The defining feature for each subtype is

the form of the dependent variable within ax. The instant noci subtype is defined by a

constant value of ax, irrespective of cast number. Consequently, rx is the primary driver

of change in the calculated P (accept)in silico value:

P (accept)instant noci = (m+ b)− (rx) (5.2)

In the cast only subtype, ax linearly increases as a function of cast number, x.

P (accept)in silico is therefore influenced by both the noxious stimulus intensity and the

cast on which it is experienced:

P (accept)cast only = (mx+ b)− (rx) (5.3)

What is not captured by the use of cast number as a dependent variable is the notion

that any observed differences in stimulus acceptance may also be driven by the

sequence of intensities experienced up until the accepted cast. We formulated the third

model subtype in an attempt to disentangle the history of prior experience from cast

number itself. In this integ noci subtype, the dependent variable is the total summed

nociceptive stimulus intensity from the beginning of the reorientation manoeuvre through

the current cast, x. As with the cast only subtype, the pressure to end the manoeuvre,

ax, monotonically increases with time:
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P (accept)integ noci =

(
m

x∑
i=1

ri + b

)
− (rx) (5.4)

5.3 Fitting the model

Because we conceptualised this model based on whether the control conditions’ data

explain those of the experimental, I fit model-generated P (accept)in silico trajectories to

larval P (accept) trajectories across all three control stimuli conditions, CL,L, CM,M , and

CH,H . Using MATLAB’s fminunc solver, I found numerical values for each of the four

unknown model parameters m, b, rM , and rH that minimise the following weighted sum

of squared errors:

6∑
x=1

√
nLarvaeCL,L

∣∣
x

(
P (accept)in silico|x;m; b; rL − P (accept)CL,L

∣∣
x

)2
+

6∑
x=1

√
nLarvaeCM,M

∣∣
x

(
P (accept)in silico|x;m; b; rM − P (accept)CM,M

∣∣
x

)2
+

6∑
x=1

√
nLarvaeCH,H

∣∣
x

(
P (accept)in silico|x;m; b; rH − P (accept)CH,H

∣∣
x

)2
(5.5)

where x is the cast number and nLarvae is the number of larvae that performed that

cast (normalised by the total number of larvae in the stimuli condition). By nature of the

decrease in total larvae with increasing cast number, this weighted objective function

places greater emphasis on fitting earlier casts within each trajectory. To reduce the

number of unknown parameters, we set rL equal to 1 and assume it to be a baseline

against which the magnitudes of rM and rH are scaled. By fitting m and b across the

three control conditions, we assume that the mechanism of the pressure to accept is the

same regardless of the environment in which the larva is casting.

For each model subtype (Section 5.2), I performed 1000 separate optimisations

following Eqn. 5.5. At no point did I constrain parameters by upper or lower bounds or

linear relationships with other parameters. Instead, I randomly initialised m, b, rM , and

rH at the beginning of each optimisation to discourage trapping the solution set in a

single local minimum (see Chapter 2 for additional model implementation details). For

each subtype, all 1000 separate optimisations yielded error values within 10% of the

smallest calculated (Table 5.1). Because of this consistency in model output across
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Table 5.1 Acceptance pressure optimisation results

Model
Subtype

Number within
10% of Min

Error over
Controls

Solution Parameters

rM rH m b

instant noci 1000 0.1417 1.1036 1.1345 0.8529 0.6408
cast only 1000 0.0354 1.1243 1.1593 0.0646 1.3337
integ noci 1000 0.0334 1.1463 1.1912 0.0579 1.3515

optimisations, I selected for subsequent analysis the solution parameters corresponding

to that with the smallest error (Table 5.1). Although the scaling of the rx parameters to

each other does not precisely match that of the stimulus intensities I set in my sensory

discrimination task, their rank ordering (rL < rM < rH) matches that of the true

intensities (see Section 2.1.3). This occurs across model subtypes and is especially

notable since the model parameters were unconstrained during optimisation.

The P (accept)in silico trajectories resulting from these optimised parameters are

plotted against each control conditions’ behavioural data in the bottom row of Fig. 5.1b.

As was predicted mathematically, the instant noci model subtype produces an

unchanging probability of acceptance when fit to any of the control data trajectories. The

observed difference in the y-intercept of this model fit between CL,L, CM,M , and CH,H is

solely caused by the rL, rM , and rH values, respectively. The high error values (see plot

legends in Fig. 5.1b) further emphasise this model subtype’s poor goodness-of-fit to the

larval control data. The cast only and integ noci model subtypes exhibit near-identical

performance against the control data (Fig. 5.1b, top row). This is not surprising when

one considers that the optimised rx values over which integ noci is integrating are close

to 1. The fit of their model trajectories to condition CL,L is qualitatively poor, with the

larval behavioural data deviating from the model’s linear increase at casts two, three,

and (most notably) six. This translates to a nearly ten-fold increase in computed error

compared to these models’ fits against CM,M and CH,H . In these latter cases, both

model subtypes yield near matches to the behavioural data on the probability of

accepting cast one. The linear increase in P (accept)in silico characteristic of both model

subtypes explains almost all of the data in these two control conditions, with the

exception of cast five in CM,M and cast four in CH,H . In the case of the integ noci

subtype, this suggests larvae follow a mechanism of "giving up" in which they accept a

cast after exceeding a threshold of integrated stimulus intensity.



5.3 Fitting the model 79

instant nocicast onlyinteg noci
0

0.05

0.1

0.15

su
m
m
ed

er
ro
r

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1
model: instant noci (error = 0.063)
data: CH,H

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1
model: instant noci (error = 0.039)
data: CM,M

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili
ty
of

ac
ce
pt
an

ce

model: instant noci (error = 0.04)
data: CL,L

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
model: integ noci (error = 0.003)
model: cast only (error = 0.004)

data: CH,H

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
model: integ noci (error = 0.003)
model: cast only (error = 0.003)

data: CM,M

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili
ty
of

ac
ce
pt
an

ce

model: integ noci (error = 0.027)
model: cast only (error = 0.028)

data: CL,L

model fit to control datab

instant nocicast onlyinteg noci
0

0.05

0.1

0.15

su
m
m
ed

er
ro
r

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1
model: instant noci (error = 0.071)
data: EL,H

1 2 3 4 5 6
cast

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili
ty
of

ac
ce
pt
an

ce

model: instant noci (error = 0.055)
data: EL,M

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1
model: cast only (error = 0.038)
model: integ noci (error = 0.033)
data: EL,H

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili
ty
of

ac
ce
pt
an

ce

model: cast only (error = 0.04)
model: integ noci (error = 0.04)
data: EL,M

model fit to experimental dataa

Fig. 5.1 Acceptance pressure model fits to behavioural data. The in silico P (accept) population readouts (black traces),
evaluated at condition-specific solution parameters (Table 5.1), are plotted against corresponding behavioural data (coloured traces,
as in Fig. 3.3a). The results from three different model subtypes are shown, each differing by the dependent variable driving the
pressure to accept a given cast (for details, see Section 5.2). Each plot legend details the normalised sum of squared errors
between the model-generated data and that of the displayed stimuli condition. The plot in the bottom right of each panel displays
the summation of these errors across either both experimental conditions (as in a) or the three control conditions (as in b). a. Data
from the experimental conditions was used to test the solution parameters on previously unseen data. b. The solution parameters
were found by running 1000 optimisations over all three control condition data traces and selecting the run with the lowest summed
error (see Eqn. 5.5).

Using the optimised parameters from the best model fits to the control conditions, I

generated condition-specific P (accept)in silico trajectories for comparison to the

experimental data (Fig. 5.1a). These served as test cases, as the experimental data

were unseen by the model subtypes during optimisation. In each model subtype, the

probability of acceptance predictably oscillates up and down as a function of the

alternating value of rx from one cast to the next. As was the case when fit to the control

data, the instant noci subtype does not exhibit a global increase in the probability of

acceptance with casts, making it a poor fit to the experimental conditions’ data (Fig. 5.1a,

bottom row). The trajectories formed by the cast only and integ noci subtypes are nearly

identical to one another, both globally increasing with cast number. When fit to the
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experimental data, these subtypes explain the oscillatory behaviour in the larval

population but fall short of capturing some of the highest and lowest probability values

(e. g. casts two and six in EL,M and casts four and six in EL,H). Both the integ noci and

cast only model subtypes qualitatively and quantitatively outperform instant noci when fit

to any of the five sensory discrimination task conditions.
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Fig. 5.2 Best Bayesian inference and acceptance pressure model fits. The in silico population readouts (black traces) for
probability of correct decision from the all casts Bayesian inference model subtype and the integ noci acceptance pressure model
subtype plotted against corresponding behavioural data (coloured traces, as in Fig. 3.3b). Bayesian inference model data as in
Fig. 4.2. Acceptance pressure model data translated from that shown in Fig. 5.1 using Eqn. 3.3.

I pursued the formulation and investigation of this acceptance pressure model in

response to the shortcomings of my Bayesian inference mechanism in fully explaining

the larval control data (for details, see Chapter 4). I have included Fig. 5.2 for visual

comparison of the best performing Bayesian inference fits to those of the acceptance

pressure model. As per the relationship defined in Eqn. 3.3, I translated the integ noci

model results from probability of acceptance to probability of correct decision. While the

mechanism of Bayesian inference shows qualitatively better fits to the experimental data

trajectories than acceptance pressure (Fig. 5.2a), acceptance pressure is a better fit to

the control stimuli conditions than Bayesian inference (Fig. 5.2b). To favour one model

framework over the other would necessitate that all five experimental and control

conditions be well explained through the associated mechanism. Although I cannot

accept either my Bayesian inference or acceptance pressure model based on this

criterion, I take the beginning of Chapter 7 to speculate on what their contrasting model
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results may suggest about the larval behavioural strategy employed during this sensory

discrimination task.





Chapter 6

High-throughput operant conditioning

6.1 Preamble

The closed-loop system I employed to study larval decision-making behaviour in my

sensory discrimination task was low-throughput, tracking only a single larva at a time.

Expanding the functionality of this system design to simultaneously track and stimulate

several larvae would facilitate efficient and thorough investigation of other nociceptive

stimulus intensities, genetic lines, and sensory modalities. Such a high-throughput

system would also enable development of other behavioural tasks requiring closed-loop

stimulation in response to larval action, furthering investigation of working memory in

larvae. In close collaboration with Kristina Klein, I developed a novel tracking system

capable of closed-loop optogenetic and thermogenetic stimulation of up to 16 freely

behaving larvae. Proof-of-principle experiments highlighted the capabilities of this

high-throughput system and we observed, for the first time, reward-driven operant

conditioning in the Drosophila larva. Foundational to operant learning is the learned

association between an animal’s self-directed behaviour and an external stimulus. A

similar action-outcome principle may apply to larval decision-making behaviour in my

sensory discrimination task, albeit on a much shorter time scale. The neural circuits

supporting behaviour in these separate paradigms may themselves be shared, making

the results from operant conditioning experiments valuable for guiding future exploration

of the sensory discrimination task mechanism.

My role in this collaboration was shepherding the development of the

high-throughput system from the last stages of proof-of-principle prototyping through to

the final product and subsequent behavioural experiments. The larval features and

behaviour algorithms employed on this multi-larva closed-loop system were originally
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developed by Dr Jean-Baptiste Masson, K Klein, and myself for use on the single-larva

closed-loop tracker (Fig. 2.1). K Klein updated these techniques and developed the

multi-larva Behaviour Programme software (Fig. 6.1e), with the intention of performing

high-throughput larval operant conditioning through a paradigm of her own design

(Fig. 6.3a). Given my expertise in operating and maintaining the single-larva tracker

hardware and software, I was best suited to efficiently and effectively manifest

developments on the multi-larva system. My role was especially critical given K Klein’s

physical absence from the Janelia Research Campus and the timeline of project

deadlines prior to physically moving the system to our new lab space at the University of

Cambridge. I worked alongside K Klein to debug and test software code components,

validate the stability and reproducibility of optogenetic and thermogenetic stimulation

procedures on live animals, develop the laser stimulus calibration pipeline, run operant

conditioning experiments (Fig. 6.3), and analyse data for manuscript preparation. I was

solely responsible for performing spatial and intensity calibration of both the optogenetic

and thermogenetic stimulation systems, validating their accuracy prior to all data

collection. I also led efforts to address underlying hardware processing delays and

improve the integrity of data backup and storage. For more granular detail on my

contributions, see Section 2.2.

Achieving project deliverables necessitated regular, in-depth, long-distance

communication between myself and K Klein. In these discussions, I provided

observational feedback on design implementations, often suggesting additional software

or hardware modifications based on observed system operation with live animals. I also

drew upon my extensive knowledge of closed-loop larval experiment considerations

during in-person conversations that I facilitated with our engineering project collaborator,

Dr Lakshmi Narayan. Dr L Narayan worked alongside K Klein throughout the prototyping

phase to choose and quality control test all hardware components for image processing,

behaviour detection, and optogenetic stimulation. He had also programmed the FPGA to

work together with the host computer to read the raw camera images, detect eligible

objects, and extract and process object features (Fig. 6.1e). When I joined the project, I

was responsible for relaying many of my and K Klein’s design goals to Dr L Narayan and

confirming that his resulting software modifications met our collective experimental

needs. I also led in-person consultations with Dr Michael Winding on thermogenetic

stimulation dynamics, given his work with Dr Chris McRaven in designing the housing

and control mechanisms for the laser light source.
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K Klein and I deposited a version of this work on bioRxiv as co-first authors

(’Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae’, Klein et al.

(2021)), with Dr L Narayan, Dr M Winding, Dr J-B Masson, and Dr Marta Zlatic listed as

contributing authors. I contributed to the writing, editing, and revision of this preprint text.

Within this thesis Chapter 6, I enclose a modified version of the preprint, with revised

conclusions I have written in accordance with additional tests I performed including

bootstrap statistical sensitivity analyses and analysis of larger data sets reflecting fewer

larval exclusion criteria. For the purposes of readability in Chapter 6, I have changed the

instances of ’bend’ in the preprint to ’cast’ and moved the associated methods and

materials text to Chapter 2 of this thesis.

6.2 Introduction

Animals must rapidly alter their behaviour in response to environmental changes. An

important adaptation strategy is associative learning (Dickinson, 1981; Rescorla, 1988),

in which an animal learns to predict an US by the occurrence of a CS. The US is often a

punishing or rewarding event such as pain or the discovery of a new food source (Pavlov,

1927). The nature of the CS distinguishes two major associative learning types: classical

conditioning (Pavlov, 1927) and operant conditioning (Skinner, 1938; Thorndike, 1911).

In classical conditioning, the CS is an inherently neutral environmental stimulus

such as a sound, odour, or visual cue. Pairing with an appetitive or aversive US leads to

learned approach or avoidance of the CS in the future. Many vertebrates (Andreatta and

Pauli, 2015; Braubach et al., 2009; Brown et al., 1951; Jones et al., 2005) and

invertebrates (Alexander et al., 1984; Cognigni et al., 2018; Davis, 2005; Scherer et al.,

2003; Takeda, 1961; Vinauger et al., 2014; Vogt et al., 2014; Wen et al., 1997) can make

these associations. Across the animal kingdom, neural circuits have been identified as

convergence sites for the external CS and the rewarding or punishing US (Caroni, 2015;

Gründemann and Lüthi, 2015; Hawkins and Byrne, 2015; Heisenberg et al., 1985;

Owald and Waddell, 2015; Tonegawa et al., 2015). In classical conditioning of both larval

and adult Drosophila, the mushroom body (MB) brain area serves this purpose

(Cognigni et al., 2018; Heisenberg, 2003; Heisenberg et al., 1985; Owald and Waddell,

2015; Rohwedder et al., 2016; Saumweber et al., 2018; Vogt et al., 2014). In each larval

brain hemisphere, the CS is encoded by a subset of the approximately 110 Kenyon cells

(KCs) (Aso et al., 2014a; Berck et al., 2016; Campbell et al., 2013; Eichler et al., 2017;

Honegger et al., 2011; Lin et al., 2014; Owald and Waddell, 2015; Turner et al., 2008),
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which synapse onto 24 MB output neurons (MBONs) driving approach or avoidance

(Aso et al., 2014b; Eichler et al., 2017; Owald et al., 2015; Perisse et al., 2016; Plaçais

et al., 2013; Saumweber et al., 2018; Séjourné et al., 2011; Shyu et al., 2017). KC to

MBON connection strength is modulated by dopaminergic and octopaminergic neurons,

which represent the rewarding or punishing US (Honjo and Furukubo-Tokunaga, 2009;

Saumweber et al., 2018; Schroll et al., 2006; Schwaerzel et al., 2003; Vogt et al., 2014;

Waddell, 2013). Activation of the MB-innervating PAM cluster dopaminergic neurons

serves as both a necessary and sufficient reward signal in classical conditioning

(Cognigni et al., 2018; Liu et al., 2012; Rohwedder et al., 2016; Vogt et al., 2014;

Waddell, 2013).

In operant conditioning, the CS is an animal’s own action (Skinner, 1938; Thorndike,

1911). After memory formation, the animal can predict the outcome of its behaviour and

bias future action selection accordingly, usually to maximise reward and avoid

punishment (Skinner, 1938). This behavioural adaptation can facilitate novel action

sequences (Fee and Goldberg, 2011; Nottebohm, 1991; Topál et al., 2006) and, in some

cases, repetitive, high-frequency motor activity (Corbett and Wise, 1980; Jin and Costa,

2010; Lovell et al., 2015; Olds and Milner, 1954). Such observations have wider

implications for understanding diseases including obsessive-compulsive disorder and

addiction (Balleine et al., 2015; Everitt et al., 2018; Joel, 2006). Invertebrates are also

capable of operant conditioning (Abramson et al., 2016; Booker and Quinn, 1981;

Brembs, 2003; Hoyle, 1979; Nuwal et al., 2012). Despite countless operant conditioning

experiments across species using various CS–US combinations, the underlying neural

mechanisms remain poorly understood. For an animal to associate an action with its

outcome, behavioural information must converge with circuits encoding positive or

negative valence. Although vertebrate basal ganglia-like structures exemplify this

(Balleine et al., 2009; Fee and Goldberg, 2011; Redgrave et al., 2011), some learned

action-outcome associations do not require the brain (Booker and Quinn, 1981; Grau

et al., 1998; Horridge, 1962). Operant conditioning may hence occur in more than one

area of the CNS. It is also unclear to what extent learning at these sites is mediated by

synaptic plasticity (Gómez-Pinilla et al., 2007; Joynes et al., 2004; Lovinger, 2010;

Reynolds and Wickens, 2002; Surmeier et al., 2007) versus changes in the intrinsic

excitability of individual neurons (Brembs et al., 2002; Dong et al., 2006; Nargeot et al.,

1997, 2009; Shen et al., 2005). We aim to establish the Drosophila larva as a tractable

model system for studying the neural circuit mechanisms underlying operant

conditioning.
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Drosophila melanogaster larvae perform various different actions. Typically, when

exploring an environment, a larva alternates between crawling via forward peristalsis

(Heckscher et al., 2012) and casting its head once or more to the left or right

(Gomez-Marin et al., 2011; Kane et al., 2013; Luo et al., 2010; Fig. 6.1a). In the

presence of nociceptive stimuli, larvae exhibit escape behaviour. While the most

common response is an increase in head casting away from undesirable conditions,

including extreme temperature (Lahiri et al., 2011; Luo et al., 2010), light (Kane et al.,

2013), or wind (Jovanic et al., 2019), larvae also retreat from aversive sources using

backward peristalsis (Heckscher et al., 2012; Kernan et al., 1994; Masson et al., 2020;

Vogelstein et al., 2014; Fig. 6.1a). The fastest escape response is rolling, where the

larva moves laterally by curling into a C-shape and quickly turning around its own body

axis (Hwang et al., 2007; Ohyama et al., 2013; Robertson et al., 2013; Fig. 6.1a). In

nature, rolling is only observed after exposure to a strong noxious stimulus, such as heat

or a predator attack (Ohyama et al., 2015; Robertson et al., 2013; Tracey et al., 2003).

Powerful genetic toolkits have advanced the observation and manipulation of larval

behaviour at the cellular level, making Drosophila larvae particularly well-suited for

studying the neural mechanisms underlying learning. In Drosophila, individual neurons

are uniquely identifiable, with morphology and function preserved across animals

(Jefferis et al., 2007; Marin et al., 2002; Skeath and Thor, 2003; Wong et al., 2002).

Together with tissue-localised protein expression afforded by the GAL4-UAS binary

expression system (Brand and Perrimon, 1993; Fischer et al., 1988), this has yielded

neuron-specific GAL4 drivers (Jenett et al., 2012; Luan et al., 2006; Pfeiffer et al., 2010)

that reproducibly target the same group of cells in each individual. Adding fluorescent

markers helps pinpoint a neuron’s location and reveal its anatomical features (Lee and

Luo, 1999), while producing light-sensitive channelrhodopsins and temperature-sensitive

ion channels facilitates optogenetic (Lima and Miesenböck, 2005; Zemelman et al.,

2002) or thermogenetic (Hamada et al., 2008; Kitamoto, 2001) modulation of neural

activity. Furthermore, the larva’s compact CNS has made it feasible to manually

reconstruct neurons and their synaptic partners from a larval electron microscopy (EM)

volume (Berck et al., 2016; Eichler et al., 2017; Fushiki et al., 2016; Jovanic et al., 2016,

2019; Larderet et al., 2017; Ohyama et al., 2015; Schlegel et al., 2016), giving rise to a

full wiring diagram of the MB (Eichler et al., 2017; Eschbach et al., 2020a,b).

There is overwhelming evidence that larvae are capable of classical conditioning.

They can be trained to approach an odour paired with a gustatory reward (Hendel et al.,

2005; Kudow et al., 2017; Niewalda et al., 2008; Schleyer et al., 2011), or avoid an odour
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paired with light (von Essen et al., 2011), electric shock (Aceves-Piña and Quinn, 1979;

Tully et al., 1994), heat (Khurana et al., 2012), vibration (Eschbach et al., 2011), or the

bitter compound quinine (Apostolopoulou et al., 2014b; Gerber and Hendel, 2006). Light

can also be a CS: innate avoidance of light and preference for darkness

(Sawin-McCormack et al., 1995) can be modulated when paired with reward or

punishment (Gerber et al., 2004; von Essen et al., 2011). It has remained an open

question, however, whether Drosophila larvae can form action–outcome associations

and where in the CNS these memories are formed.

Conducting operant conditioning with larvae requires real-time behaviour detection

such that reward or punishment can be administered with minimal delay (Fig. 6.1b).

Single-animal closed-loop trackers have recently been developed (Schulze et al., 2015;

Tadres and Louis, 2020). However, the efficiency of training paradigms would improve

with automated US delivery and simultaneous conditioning of multiple animals.

Therefore, we here introduce a high-throughput tracker for Drosophila larvae with

real-time behaviour detection and closed-loop stimulation. Efficiency of the setup stems

from the simultaneous, real-time, behaviour detection for up to 16 freely moving larvae,

and targeted closed-loop optogenetic and thermogenetic stimulus delivery with full

intensity control and minimal delay.

6.3 Results

6.3.1 High-throughput closed-loop tracker

Hardware design

Designing an automated operant conditioning protocol for the Drosophila larva was

challenging due to the larva’s physical characteristics. We excluded partial

immobilisation protocols similar to the ones used to condition adult Drosophila navigation

through virtual environments (Brembs, 2011; Nuwal et al., 2012; Wolf and Heisenberg,

1991; Wolf et al., 1998). We instead built a high-throughput multi-larva tracker combining

live computer vision behaviour detection with closed-loop control of US delivery in

response to unrestricted larval behaviour.

All hardware resided within an optically opaque enclosure to ensure experiments

were performed without environmental light. Larvae moved freely on an agarose plate,

backlit from below by an infrared LED and observed from above through a
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high-resolution camera (Fig. 6.1c). A Camera Link communication protocol interfaced

with a high-performance FPGA, which itself interacted with the host computer. The

FPGA and the host computer performed image processing, behaviour detection, and

stimulus calculation (Fig. 6.1d).

Our operant conditioning paradigm targeted individual larvae performing specific

behaviours. Optogenetic stimulation was achieved by directing red light through two

DMDs which were programmed to project small 1 cm2 squares at the location of

individual larvae. Both DMDs, which were positioned to project over the entire plate area,

were operated simultaneously (Fig. 6.1c).

Thermogenetic stimulation of individual larvae was achieved by directing a 1490 nm

IR laser beam through a two-axis scanning galvanometer mirror positioning system

(Fig. 6.1c), a technique previously used to stimulate single adult flies (Bath et al., 2014;

Wu et al., 2014). Because the 1490 nm wavelength is well-absorbed by water (Curcio

and Petty, 1951), larvae exposed to the IR beam were rapidly heated. We took

advantage of the galvanometer’s high scanning velocity to rapidly cycle the beam

between four larvae (Fig. 6.1d).

Software architecture

Several computer vision algorithms exist for real-time tracking of freely behaving animals.

Stowers et al. (2017) and Krynitsky et al. (2020) developed software for tracking mice,

and Mischiati et al. (2015) developed high-speed tracking of single dragonflies in

three-dimensional space. There are numerous tracking frameworks for adult Drosophila,

some requiring the flies to move within a two-dimensional plane (Donelson et al., 2012;

Straw and Dickinson, 2009) while others detect the three-dimensional position of single

(Fry et al., 2008) or multiple (Grover et al., 2008; Straw et al., 2011) flies. The

Multi-Worm Tracker (MWT) software developed by Swierczek et al. (2011) is suitable for

simultaneously tracking a large number of C. elegans and has been adapted to analyse

Drosophila larvae reactions in response to various stimuli (Jovanic et al., 2019; Masson

et al., 2020; Ohyama et al., 2013; Vogelstein et al., 2014).

Operant conditioning requires live behaviour detection to trigger delivery of reward

or punishment. Numerous algorithms have been developed to analyse offline

behavioural recordings of animals such as C. elegans (Gupta and Gomez-Marin, 2019;

Huang et al., 2006; Stephens et al., 2008), zebrafish larvae (Mirat et al., 2013; Reddy

et al., 2020), adult Drosophila (Berman et al., 2014; Branson et al., 2009; Dankert et al.,

2009; Katsov and Clandinin, 2008; Klibaite et al., 2017; Robie et al., 2017), bees
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Fig. 6.1 High-throughput operant conditioning in Drosophila larvae. a. Behavioural repertoire of Drosophila larvae. Schematics
show the four most prominent actions displayed by Drosophila larvae (crawl, left and right cast, back-up and roll). The larval
contour is displayed as a black outline with a green dot marking the head. b. In fully automated operant conditioning, an action of
interest was reinforced by coupling real-time behaviour detection with optogenetic activation of reward circuits. c. High-throughput
tracker schematic showing the relative positions of the agarose plate, backlight, camera, digital micromirror devices (DMDs), and
galvanometers. IR: infrared. d. Block diagram of hardware components. AO: analogue output, FPGA: field-programmable gate
array. e. Data flow between software elements.
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(Veeraraghavan et al., 2008), and mice (Luxem et al., 2020; Mathis et al., 2018; van Dam

et al., 2020). The Drosophila larva has also attracted attention due to analytical

challenges surrounding its deformable body and limited set of distinguishing features

(Denisov et al., 2013; Gershow et al., 2012; Gomez-Marin et al., 2011; Luo et al., 2010;

Masson et al., 2020; Ohyama et al., 2013, 2015; Vogelstein et al., 2014). Most of these

approaches are not ideal to run in real time or require a mix of past and future

information to provide reliable behaviour detection (Gomez-Marin et al., 2011; Masson

et al., 2020). More generally, machine learning based methods have gained momentum

in providing both supervised and unsupervised approaches to behaviour analysis. It is

worth noting a recent trend in developing unsupervised learning methods (e. g. Graving

and Couzin, 2020; Luxem et al., 2020).

While real-time behaviour detection of casts and runs has been developed for a

single animal (Schulze et al., 2015), our study of operant conditioning in freely behaving

Drosophila larvae required efficient, real-time behaviour detection of multiple animals.

We built a system to simultaneously track up to 16 larvae in real time, using LabVIEW for

the user interface and algorithm implementation (Fig. 6.1e). Instrumental to this software

architecture was the fast image processing speed afforded by FPGA-based

parallelisation (Li et al., 2011; Soares dos Santos and Ferreira, 2014; Zhang et al., 2017).

Neuroscientists have adapted FPGA’s real-time analysis capabilities (Chiuchisan, 2013;

Shirvaikar and Bushnaq, 2009; Uzun et al., 2005; Yasukawa et al., 2016) to track rats

(Chen et al., 2005), zebrafish larvae (Cong et al., 2017), and fluorescently labelled

neurons in freely behaving Drosophila larvae (Karagyozov et al., 2018). In our system,

the FPGA and host computer worked together to read the raw camera images, detect

eligible objects, and extract and process object features (i. e. contour, head and tail

position, and body axis) (Fig. 6.1e). Larval body shape, velocity, and direction of motion

facilitated robust behaviour detection which, in turn, drove closed-loop optogenetic and

thermogenetic stimulation. All relevant experiment parameters and time-series data

were output for offline analysis through a custom MATLAB framework (see Chapter 2).

Optogenetic and thermogenetic stimulation efficiency verified by behavioural

readout

We conducted proof-of-principle experiments to ensure that our set-up could be

successfully used for optogenetic stimulation (Fig. 6.2a). Ohyama et al. (2015) have

identified two GAL4 lines expressed in neurons whose activation triggers strong rolling

behaviour. 69F06-Gal4 drives expression in command neurons for rolling, whereas
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Fig. 6.2 Optogenetic and thermogenetic stimulation with the high-throughput tracker. a. Hardware design schematic for
optogenetic stimulation. Although the high-throughput tracker included two digital micromirror devices (DMDs), only one is shown
for simplicity. b. Proof-of-principal experiment protocol for optogenetic stimulation. c. The fraction of larvae for which a roll
was detected in each stimulation cycle. 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae (CsChrim-
son expressed in neurons triggering roll behaviour; experiment groups) were compared to attP2 x UAS-CsChrimson larvae (no
CsChrimson expression; control group). Fisher’s exact test was used to calculate statistical differences between the experiment
and control groups (*** p < 0.001). d. Hardware design schematic for thermogenetic stimulation. Although the high-throughput
tracker included four two-axis galvanometers, only one is shown for simplicity. IR: infrared. e. Proof-of-principal experiment protocol
for thermogenetic stimulation. f. The fraction of larvae for which a roll was detected in each stimulation cycle. 69F06-Gal4 x
UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae (dTrpA1 expressed in neurons triggering roll behaviour; experiment groups)
were compared to attP2 x UAS-dTrpA1 larvae (no dTrpA1 expression; control group). Fisher’s exact test was used to calculate
statistical differences between the experiment and control groups (*** p < 0.001).
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72F11-Gal4 drives expression in the Basin neurons, which integrate mechanosensory

and nociceptive stimuli. Klapoetke et al. (2014) have developed the red-shifted

channelrhodopsin CsChrimson, which can be expressed under GAL4 control. We tested

whether 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae

rolled upon exposure to red light (Fig. 6.2b, see also Chapter 2). In each stimulation

cycle, we observed above-threshold rolls in over 40% of 69F06-Gal4 x UAS-CsChrimson

larvae and over 70% of 72F11-Gal4 x UAS-CsChrimson larvae. This behaviour

significantly contrasted with that of attP2 x UAS-CsChrimson control larvae (Fig. 6.2c),

suggesting that the DMDs could be used for optogenetic stimulation without activating

the animals’ photoreceptors.

We also verified the efficacy of the galvanometer set-up for thermogenetic

stimulation (Fig. 6.2d). We tested whether 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x

UAS-dTrpA1 larvae rolled upon exposure to the IR laser (Fig. 6.2e, see also Chapter 2).

In each stimulation cycle, we observed above-threshold rolls in over 70% of 69F06-Gal4

x UAS-dTrpA1 larvae and over 35% of 72F11-Gal4 x UAS-dTrpA1 larvae; a significant

contrast to the attP2 x UAS-dTrpA1 control larvae whose roll rate was close to zero. We

concluded that these heating conditions were effective for targeted Trp channel

activation without larvae perceiving strong pain (Fig. 6.2f).

6.3.2 Operant conditioning of larval cast direction

We chose optogenetic activation of reward circuits as a US for automated operant

conditioning. The main challenge was determining which neurons could convey a

sufficient reinforcement signal, especially as the capacity for Drosophila larvae to exhibit

operant learning was not yet demonstrated. Across the animal kingdom, it has been

observed that biogenic amine neurotransmitters can provide such a signal (Fee and

Goldberg, 2011; Giurfa, 2006; Hawkins and Byrne, 2015; Meneses and Liy-Salmeron,

2012). It is also conceivable that the Drosophila PAM cluster dopaminergic neurons that

can signal reward in classical conditioning (Cognigni et al., 2018; Liu et al., 2012;

Rohwedder et al., 2016; Vogt et al., 2014; Waddell, 2013) may perform similarly in

operant conditioning. We therefore aimed to induce operant conditioning by stimulating a

broad set of dopaminergic and serotonergic neurons. If valence signalling relevant for

operant conditioning is mediated by one of these two neurotransmitters, activation of this

large set of neurons paired with behaviour should be sufficient to induce learning.
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We expressed UAS-CsChrimson under the control of the Ddc-Gal4 driver, which

covers a large set of dopaminergic and serotonergic neurons in the CNS (Li et al., 2000;

Lundell and Hirsh, 1994; Sitaraman et al., 2008), including the PAM cluster (Aso et al.,

2012; Liu et al., 2012). Although the function of most Ddc neurons is unknown, their

collective activation can substitute for an olfactory conditioning reward in adult flies (Aso

et al., 2012; Liu et al., 2012; Shyu et al., 2017). The goal of our paradigm was to

establish a learned direction preference for casting, conditioning Ddc-Gal4 x

UAS-CsChrimson larvae to cast more often to one side than the other. Although

stimulation side was randomized across trials, we describe (for simplicity) the experiment

procedure where this predefined side was the left. Each experiment began with a

one-minute test period where no light was presented. What followed were four training

sessions, each three-minutes long, in which larvae received optogenetic stimulation

when casting to the left. Between training sessions, larvae experienced three minutes

without stimulation. Larvae were periodically brushed back to the centre of the agarose

plate to mitigate the experimental side effects of reaching the plate’s edge (see

Chapter 2 for more details). Following the fourth training session was a one-minute test

period without stimulation (Fig. 6.3a).

For each larva, cast rate, measured as the number of casts per minute performed

towards a given side, served as a read-out for cast direction preference. Within a given

one-minute time bin, the statistical test comparing cast rates to each other is

mathematically equivalent to the difference in cast rates compared to 0. However,

computing the difference in cast rate facilitated comparison across time and between

genotypes that themselves may differ in basal cast rate. This difference was calculated

as the number of casts per minute to the stimulated side minus the number of casts per

minute to the unstimulated side. In the one-minute test prior to the first training session,

we observed no significant difference in Ddc-Gal4 x UAS-CsChrimson larval cast rate to

either side (Fig. 6.3b, Fig. 6.3c). Close investigation of larval cast rate during training

revealed a significantly greater number of casts to the stimulated side throughout each of

the four training sessions, with the exception of the final minute of session three. Notably,

the observed difference in cast rate between stimulated and unstimulated sides tended

to increase over the course of each training session (Fig. 6.4a). Together, these findings

suggested that activation of Ddc neurons can serve as a rewarding stimulus that larvae

increasingly seek with time. A direct comparison of individual cast rates from before

training to after training showed a significant decrease in casts to both the stimulated

and unstimulated sides (Fig. 6.3b). Because the experiment protocol exceeded 17
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Fig. 6.3 Operant conditioning of cast direction in Drosophila larvae requires the ventral nerve cord. a. Experiment proto-
col using the high-throughput closed-loop tracker. Behaviours are depicted as larval contours (black) with head (green). During
training, the larva received an optogenetic stimulus (red light bulb) whenever it cast to one predefined side (here depicted as the
left for simplicity), and light was switched off during all other behaviours (grey light bulb). b–e. Gal4 expression depicted as color-
coded CNS. The effector for all genetic lines, UAS-CsChrimson, is omitted from the figure for visual clarity. All data is shown as
(mean ± s. e. m.). b, d. Larval cast rate shown as the number of casts per minute, grouped by cast direction. The cast rate to
the stimulated side (depicted as a left cast with a red light bulb for simplicity) is shown in red and the cast rate to the unstimulated
side (depicted as a right cast with a grey light bulb for simplicity) is shown in grey. For larvae that received random, uncorrelated
stimulation during 50% of casts, the cast rates to the left and right are shown in black. Data in b is shown from the test period
before the first training session and the test period after the fourth training session. Data in d is the same after training data as in
b, but cast rate for uncorrelated training group was calculated without stratification by cast direction. Statistical differences within
groups (i. e. within before training time bin or within after training time bin) were tested with a two-sided Wilcoxon signed-rank test.
Statistical differences between two groups (e. g. stimulated side before training versus stimulated side after training or stimulated
side after training between genotype conditions) were tested with a two-sided Mann-Whitney U test. n. s. p ≥ 0.05 (not significant),
* p < 0.05, ** p < 0.01, *** p < 0.001. c, e. Difference in cast rate between stimulated and unstimulated sides. Grey dashed
line at 0 indicates equal cast rates to either side. c. Within-group statistics calculated from a two-sided Wilcoxon signed-rank test.
Between-group statistics calculated from a two-sided Mann-Whitney U test. n. s. p ≥ 0.05 (not significant), *** p < 0.001. e. Same
after training data as in c, with statistical comparisons to Ddc-Gal4 x UAS-CsChrimson calculated using a two-sided Mann-Whitney
U test with Bonferroni correction. * p < 0.05/3, ** p < 0.01/3.
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minutes (including recovery periods following recentring larvae), this may reflect general

larval fatigue. In the one-minute test following the fourth training session, larvae showed

a preference for casts towards the side paired with red light stimulation during training

(Fig. 6.3b, Fig. 6.3c), though directly comparing this difference to that observed before

training did not reveal a statistically significant increase (Fig. 6.3c).

To confirm that the cast preference we observed in the after training period was

attributable to pairing light with casts solely in one direction, we conducted another

control experiment in which larvae received random, uncorrelated stimulation during

50% of casts regardless of direction. Before, during, and after training, larvae showed no

difference in absolute left and right cast rates (with the exception of the first minute of the

fourth training session, see Fig. 6.3b, Fig. 6.3c, and Fig. 6.4c). These larvae did,

however, show a significantly lower cast rate to the left side after training compared to

before; a trend that appears to reflect larval fatigue as also observed with the

experimental larvae (Fig. 6.3b). These larvae also showed a significantly lower

difference between cast rates after training compared to pair-trained larvae (Fig. 6.3e).

Further dissection of cast rates to each side showed that the after training cast rates

averaged together for larvae that received uncorrelated training were indistinguishable

from the rate of pair-trained larvae casting to the previously stimulated side. However,

larvae that received uncorrelated training showed a significantly higher cast rate overall

compared to pair-trained larvae casting to the previously unstimulated side (Fig. 6.3d).

This raised the question whether pair-trained Ddc-Gal4 x UAS-CsChrimson larvae were

learning to prefer the side paired with the rewarding US, or rather to avoid the side

without the stimulus.

A bootstrap sensitivity analysis was also performed on these data to assess the

robustness of the observed statistical inference results. There may exist systematic,

non-randomly distributed measurement error not modeled within the existing experiment

design that could improperly suggest a statistically significant difference between

experimental conditions of interest. A primary benefit of this approach is the ability to

model such measurement error without needing to perform further laboratory

experiments. Table 6.1 displays the bootstrap results for all statistical comparisons within

Fig. 6.3 (for details on bootstrap methodology, see Section 2.2.1). In short, we asked

what proportion of bootstrapped data sets reproduce the hypothesised relationship

between the original, non-bootstrapped groups? Consider taking two groups of

comparative interest and introducing principled variability in their measurement

distributions by sampling observations (with replacement) from each group. Repeating
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Fig. 6.4 Drosophila larvae show cast direction preference during operant paradigm training sessions. Gal4 expression
depicted as color-coded CNS. All fly lines contained the UAS-CsChrimson effector, which is omitted from the figure for visual clarity.
Experiments followed the protocol depicted in Fig. 6.3a. Data is shown in one-minute time bins (separated by vertical dashed
lines) across the entire experiment, beginning with the test period before the first training session and ending with the test period
after the fourth training session. Larval cast rate is shown as the number of casts per minute, grouped by cast direction. The
cast rate to the stimulated side (depicted as a left cast with a red light bulb for simplicity) is shown in red and the cast rate to the
unstimulated side (depicted as a right cast with a grey light bulb for simplicity) is shown in grey. For larvae that received random,
uncorrelated stimulation during 50% of casts (panel c), the cast rates to the left and right are shown in black. All data is shown as
(mean ± s. e. m.). Number of larvae in each time bin is written just above the x-axis. Statistical differences within bins were tested
with a two-sided Wilcoxon signed-rank test; n. s. p ≥ 0.05 (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001.
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this process 1000 times for both groups yields 1000x1000 "experiments", representing

all possible combinations of bootstrapped observations across the comparison.

After calculating the mean of each group within these 1 million experiments, our

goal was to calculate the proportion of these bootstrapped data sets that satisfy a

specific threshold criterion on the relationship between means. This criterion matched

the original biological comparison. This proportion was then interpreted in the context of

whether it supports the original experimental finding. In other words, for each

experimental comparison, we defined an arbitrary threshold for the bootstrap proportion

to assess its consistency with the observed result. This required assessing whether the

direction (above or below 0.5) and magnitude (greater than 0.95 or less than 0.05) of a

bootstrap proportion was consistent with the effect direction and significance of the

original statistical test.

Bootstrap analysis revealed that the original statistical testing framework was

broadly robust for the comparisons described thus far. Bootstrap proportions were

consistent with effect direction and significance in all Ddc-Gal4 x UAS-CsChrimson and

Ddc-Gal4 x UAS-CsChrimson (uncorrelated training) tests with the exception of

comparing Ddc-Gal4 x UAS-CsChrimson (uncorrelated training) cast rates to the right

side after training to those on the right side before training (Table 6.1). Bootstrap

analysis of this comparison indicates that a significant proportion of the time

(probability = 0.9593), the cast rate to the right side is lower after training than before.

This is inconsistent with the inference conducted on the original, non-bootstrapped data

set that showed no significant difference in cast rates to the right side from before

training to after (Fig. 6.3b). In other words, the original statistical inference is not robust

to measurement error and perhaps less weight should be given to the resulting

conclusion. This inconsistency is informative because it lends further biological

consideration to the observed significant decreases in cast rates on both sides following

training for pair-trained larvae (Fig 6.3b).

It was also explored whether relaxing object inclusion criteria impacted the

observed behavioural outcomes in the conservative data set. The data set shown in

Fig. 6.5 included all larvae even if they lost their object identity and were therefore only

detected for part of the experiment. This can be viewed as an alternative method to

assess the robustness of an observed statistical inference result following the

introduction of additional measurement error. For larvae that were tracked for less than

the full one-minute duration of a given time bin, the number of casts that they performed

on both sides in the period they were tracked was scaled up to reflect cast rate
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Table 6.1 Bootstrap sensitivity analyses of data in Fig. 6.3. Each statistical inference is denoted by genotype and Comparison. The
associated Bootstrap Test is defined by a threshold criterion on the relationship between means. The Bootstrap Proportion reflects
the proportion of all bootstrapped data sets that satisfied the Bootstrap Test. Consistency with Observed P-value indicates whether
the direction and magnitude of the Bootstrap Proportion supports the original experimental finding. Inconsistencies are highlighted
in grey.

Comparison Bootstrap Test Bootstrap
Proportion

Consistency with
Observed P-value

Fig. 6.3b – #casts/min

Ddc-Gal4

before training p(stimulated > unstimulated) 0.7469 consistent
after training p(stimulated > unstimulated) 0.9966 consistent
stimulated side p(after < before) 0.9986 consistent
unstimulated side p(after < before) 1.000 consistent

Ddc-Gal4 (uncorrelated training)

before training p(left > right) 0.5298 consistent
after training p(left > right) 0.1402 consistent
left side p(after < before) 0.9956 consistent
right side p(after < before) 0.9593 inconsistent

Ddc-Gal4, tsh-LexA, LexAop-Gal80

before training p(stimulated > unstimulated) 0.2227 consistent
after training p(stimulated > unstimulated) 0.5379 consistent
stimulated side p(after < before) 0.9997 consistent
unstimulated side p(after < before) 1.000 consistent

58E02-Gal4

before training p(stimulated > unstimulated) 0.7500 consistent
after training p(stimulated > unstimulated) 0.2769 consistent
stimulated side p(after < before) 1.000 consistent
unstimulated side p(after < before) 1.000 consistent

Fig. 6.3c – Difference in #casts/min

Ddc-Gal4
before training p(before > 0) 0.7710 consistent
after training p(after > 0) 1.000 consistent
after vs before training p(after > before) 0.9447 consistent

Ddc-Gal4 (uncorrelated training)
before training p(before > 0) 0.5310 consistent
after training p(after > 0) 0.0930 consistent
after vs before training p(after > before) 0.2114 consistent

Ddc-Gal4, tsh-LexA, LexAop-Gal80
before training p(before > 0) 0.1600 consistent
after training p(after > 0) 0.5570 consistent
after vs before training p(after > before) 0.8151 consistent

58E02-Gal4
before training p(before > 0) 0.7800 consistent
after training p(after > 0) 0.2350 consistent
after vs before training p(after > before) 0.1528 consistent

Fig. 6.3d – #casts/min after training

Ddc-Gal4 vs Ddc-Gal4 (uncorrelated training) stimulated side p(Ddc > Ddc uncorrelated) 0.5576 consistent
Ddc-Gal4 vs Ddc-Gal4 (uncorrelated training) unstimulated side p(Ddc < Ddc uncorrelated) 0.0021 consistent

Fig. 6.3e – Difference in #casts/min after training

Ddc-Gal4 vs Ddc-Gal4 (uncorrelated training) p(Ddc > Ddc uncorrelated) 0.9997 consistent
Ddc-Gal4 vs Ddc-Gal4, tsh-LexA, LexAop-Gal80 p(Ddc > Ddc tsh) 0.9939 consistent
Ddc-Gal4 vs 58E02-Gal4 p(Ddc > 58E02) 0.9763 consistent

per-minute. Notably, this scaling assumed that larval cast rate does not change with time.

All statistical results show the same direction of effect, but noticeably the operant

learning effect previously observed after pair-trained Ddc activation is less pronounced

(Fig. 6.5a, Fig. 6.5b). Furthermore, all statistically significant relationships previously

observed between Ddc-Gal4 x UAS-CsChrimson larvae and the controls or 58E02-Gal4

x UAS-CsChrimson larvae are abolished (Fig. 6.5d). While absence of the observed

effect does not serve as direct evidence that larvae are not capable of operant learning

following Ddc neuron activation, these results suggest that the statistical inference and

its underlying assumptions may not be robust when additional noise is added to the

measurement. Further analysis of the behavioural data and perhaps modeling of
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underlying larval dynamics and biases may elucidate how best to interpret results

following inclusion of all data in this way. An important consideration is that, by including

larvae that have not been tracked for the full duration of a given one-minute time bin,

there is a risk that larvae may be detected more than once within the bin and therefore

contribute multiple cast rate values to the data set. There is currently no framework to

determine whether a given larva was previously detected and therefore larva IDs cannot

be associated across time with individual larvae. Future software development could aim

to fill this knowledge gap.

6.3.3 The mushroom body is not sufficient to mediate operant

conditioning in larvae

Our experiments showed that activation of Ddc neurons is a sufficient US for operant

conditioning. While we did not identify which individual neurons mediate the observed

effect, we hypothesised that not all Ddc neurons are involved. Some prior work in adult

flies suggests that the MB is involved in operant conditioning (Sun et al., 2020), while

other studies in the adult suggest that operant conditioning does not require the MB

(Booker and Quinn, 1981; Colomb and Brembs, 2010, 2016; Wolf et al., 1998) and may

instead involve motor neuron plasticity (Colomb and Brembs, 2016). The extent to which

the MB is dispensable in larval operant conditioning is unknown. We investigated

whether smaller subsets of Ddc neurons in the brain and SEZ could support memory

formation in our cast direction paradigm.

GAL80 under control of the tsh promoter suppresses GAL4 expression in the VNC,

but not in the brain or SEZ (Clyne and Miesenböck, 2008; Fig. 6.6). Prior to training

under our operant conditioning protocol (Fig. 6.3a), Ddc-Gal4 x UAS-CsChrimson;

tsh-LexA, LexAop-Gal80 larvae showed no directional bias in cast rate (Fig. 6.3b,

Fig. 6.3c). Observations of larval cast rates during training revealed a persistent, and in

some cases statistically significant, direction preference to the unstimulated side,

suggesting perhaps a mild aversion to optogenetic stimulation in the paradigm

(Fig. 6.4d). Following training, these larvae were equally likely to cast towards the side

where they had previously received the optogenetic stimulus as they were to cast

towards the unstimulated side (Fig. 6.3b, Fig. 6.3c). As we observed in all genotype

conditions described thus far, these larvae showed significantly lower cast rates to both

sides after training compared to before training (Fig. 6.3b). Together, these results

suggested that activating these neurons was a seemingly insufficient rewarding US in
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Fig. 6.5 Ddc and 58E02 data sets including all larvae regardless of tracking. Experiments were conducted following the protocol
outlined in Fig. 6.3a. Gal4 expression depicted as color-coded CNS. The effector for all genetic lines, UAS-CsChrimson, is omitted
from the figure for visual clarity. Criteria to retain objects for analysis is identical to that described in Section 2.2.1 with the exception
that larvae detected for only part of each bin were also included. All data is shown as (mean ± s. e. m.). a, c. Larval cast rate shown
as the number of casts per minute, grouped by cast direction. The cast rate to the stimulated side (depicted as a left cast with a red
light bulb for simplicity) is shown in red and the cast rate to the unstimulated side (depicted as a right cast with a grey light bulb for
simplicity) is shown in grey. For larvae that received random, uncorrelated stimulation during 50% of casts, the cast rates to the left
and right are shown in black. Data in a is shown from the test period before the first training session and the test period after the
fourth training session. Data in c is the same after training data as in a, but cast rate for uncorrelated training group was calculated
without stratification by cast direction. Statistical differences within groups (i. e. within before training time bin or within after training
time bin) were tested with a two-sided Wilcoxon signed-rank test. Statistical differences between two groups (e. g. stimulated side
before training versus stimulated side after training or stimulated side after training between genotype conditions) were tested with a
two-sided Mann-Whitney U test. n. s. p ≥ 0.05 (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001. b, d. Difference in cast rate
between stimulated and unstimulated sides. Grey dashed line at 0 indicates equal cast rates to either side. b. Within-group statistics
calculated from a two-sided Wilcoxon signed-rank test. Between-group statistics calculated from a two-sided Mann-Whitney U test.
n. s. p ≥ 0.05 (not significant), *** p < 0.001. d. Same after training data as in b, with statistical comparisons to Ddc-Gal4 x
UAS-CsChrimson calculated using a two-sided Mann-Whitney U test with Bonferroni correction. n. s. p ≥ 0.05/3 (not significant).
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Fig. 6.6 Ddc-Gal4 expression pattern without and with tsh-Gal80 restriction. Maximum intensity projections of confocal images
obtained after immunohistochemical staining. a, e; green in d and h. Targeting a green fluorescent protein (GFP) antibody to the
mVenus tag of CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d and h. Staining against N-cadherin. a–
d. Ddc-Gal4 x UAS-CsChrimson larvae. Manually counting the cell bodies in the image stacks revealed more than 200 GFP-positive
neurons located in the brain, subesophageal zone (SEZ), and ventral nerve cord (VNC), including the PAM cluster dopaminergic
neurons innervating the mushroom body (n = 2). This confirmed that Ddc-Gal4 drives broad expression across the central
nervous system (CNS) (Li et al., 2000; Lundell and Hirsh, 1994). e–h. Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80
larvae. As expected, no GFP-positive neurons were found in the VNC (n = 6). Ddc-Gal4 brain and SEZ expression remained
largely unaffected by GAL80, as the GFP-positive neurons in both areas that could be consistently identified in Ddc-Gal4 x UAS-
CsChrimson larvae (n = 3) were also present in Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae (n = 3). a–
h. Plan-Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar: 100 µm. Images courtesy of the HHMI Janelia FlyLight
team.
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this paradigm. A direct comparison of the after training difference in cast rate between

these larvae and the Ddc-Gal4 x UAS-CsChrimson group showed a significantly lower

difference in cast rate for Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae

(Fig. 6.3e). The loss of the operant conditioning effect we otherwise observed in after

training cast rates of Ddc-Gal4 x UAS-CsChrimson larvae highlighted that dopaminergic

or serotonergic neurons in the VNC are necessary for the formation of a learned cast

direction preference. Their sufficiency was inconclusive, however, since perhaps two or

more distinct groups of Ddc neurons needed collective activation in order to form a

memory. Bootstrap proportions were consistent with each of these results (Table 6.1).

We then assessed whether exclusively activating the PAM cluster dopaminergic

neurons innervating the MB could induce operant conditioning, as is the case for

classical conditioning. 58E02-Gal4 drives expression in the majority of these neurons

(Rohwedder et al., 2016). In the test period before training, 58E02-Gal4 x

UAS-CsChrimson larvae did not exhibit a cast direction preference (Fig. 6.3b, Fig. 6.3c).

During training, however, these larvae showed a significant cast direction preference to

the unstimulated side (Fig. 6.4d). These preference results contrast the appetitive

behaviour observed when activating 58E02 neurons in classical conditioning. They may

be partly a consequence of these neurons’ role in motor control, as 58E02 neurons are

known to form synaptic connections to aversive MBONs that promote turning (Eichler

et al., 2017). Following training, 58E02-Gal4 x UAS-CsChrimson larvae did not exhibit a

learned direction preference for casts to either side (Fig. 6.3b, Fig. 6.3c), though they did

show a significant decrease in cast rates to both sides after training compared to before

(Fig. 6.3b). These larvae also exhibited a significantly lower difference in cast rate

between sides after training compared to Ddc-Gal4 x UAS-CsChrimson larvae

(Fig. 6.3e). Bootstrap proportions were consistent with each of these results (Table 6.1).

It is unsurprising that activation of 58E02 neurons alone could not act as a rewarding US

in this paradigm, given our finding that Ddc neurons in the brain and SEZ are insufficient.

It is remarkable, however, because it suggests that the neural circuits signalling reward

in operant conditioning differ from those of classical conditioning. Although it remains to

be seen whether these PAM cluster neurons contribute to memory formation by

interacting with other Ddc neurons, these results further supported the idea that operant

conditioning in Drosophila may not be mediated by the MB.
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6.3.4 Serotonergic neurons in brain and SEZ are a sufficient

reward signal in classical conditioning

Pairing an action with activation of numerous dopaminergic and serotonergic neurons

across the CNS was sufficient to induce operant conditioning of cast direction

preference. Furthermore, our results indicated that the VNC subset of these neurons

was essential for memory formation in the paradigm. It was an open question, however,

whether this learning was mediated by dopamine, serotonin, or both. Dopamine and

serotonin receptors are necessary for different classical conditioning tasks in honeybees,

suggesting that the two neurotransmitters may carry out separate functions (Wright et al.,

2010). We conducted a high-throughput classical conditioning screen of sparser

dopaminergic and serotonergic driver lines to identify US candidates for comparison with

our operant conditioning paradigm.

We expressed CsChrimson under the control of different GAL4 driver lines and

tested whether pairing optogenetic activation of these neurons (US) with odour

presentation (CS) could induce olfactory memory. Conditioning was performed using a

similar procedure to those described in Gerber and Hendel (2006), Saumweber et al.

(2011) and Eschbach et al. (2020b). In the paired group, larvae were exposed to

alternating three-minute presentations of ethyl acetate with red light and air with no light.

To ensure that any observed effects were a result of learning rather than innate odour

preference or avoidance, an unpaired group was trained simultaneously with reciprocal

stimulus presentation (odour/dark, air/light). Following training, larvae in both groups

were tested on their preference for the odour in the absence of light (Fig. 6.7a). All

learning scores were compared to a negative control containing no GAL4 driver, w1118 x

UAS-CsChrimson, which did not exhibit a learning phenotype (Fig. 6.7b). Consistent

with prior study results (Almeida-Carvalho et al., 2017; Eichler et al., 2017; Rohwedder

et al., 2016), 58E02-Gal4 x UAS-CsChrimson larvae showed appetitive olfactory

learning with a significantly higher performance index than w1118 x UAS-CsChrimson

larvae and so were used as a positive control (Fig. 6.7b). Ddc-Gal4 x UAS-CsChrimson

larvae exhibited appetitive memory comparable to 58E02-Gal4 (p = 0.1304, two-sided

Mann-Whitney U test); an unsurprising result since the Ddc-Gal4 expression pattern

includes the PAM cluster neurons. Consistent with previous studies in the larva (Schroll

et al., 2006) and adult (Aso et al., 2012; Claridge-Chang et al., 2009; Liu et al., 2012),

TH-Gal4 x UAS-CsChrimson larvae exhibited significant aversive olfactory learning.

TH-Gal4 covers most dopaminergic neurons, excluding the PAM cluster (Rohwedder
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et al., 2016). The effect we observed may be mediated by punishment-signalling

dopaminergic neurons that project to the MB vertical lobes (Eschbach et al., 2020b;

Selcho et al., 2009). Isolating the locus of this effect may prove challenging, given the

dearth of larval driver lines targeting dopaminergic neurons without MB innervation.

Serotonergic signalling is required for associative learning in both larval (Huser

et al., 2017) and adult (Johnson et al., 2011; Sitaraman et al., 2012) Drosophila. We

tested Trh-Gal4 and Tph-Gal4, two driver lines that target the majority of serotonergic

neurons and no dopaminergic neurons across the CNS of third-instar larvae (Huser

et al., 2012). Consistent with previous reports (Ganguly et al., 2020), larvae expressing

CsChrimson under either driver line formed strong appetitive olfactory memory,

highlighting the sufficiency of serotonin as a US in associative learning. Tph-Gal4

targets fewer serotonergic neurons than Trh-Gal4, making it valuable for narrowing down

which serotonergic neurons serve as a relevant reward signal. We eliminated all

Tph-Gal4 expression in the VNC using tsh-Gal80 (Fig. 6.8). Activating the remaining

Tph neurons in the brain and SEZ was sufficient to induce strong appetitive memory

(Fig. 6.7b). This result was notable and raised further questions: are serotonergic

neurons in the brain and SEZ indirectly connected to MB-innervating dopaminergic

neurons or do alternative learning circuits exist that altogether bypass the MB?

The contralaterally projecting serotonin-immunoreactive deutocerebral (CSD)

neuron (Roy et al., 2007) is one previously described serotonergic brain neuron within

the Tph-Gal4 expression pattern (Huser et al., 2012) that innervates the antennal lobe

and only has a few indirect connections to the MB (Berck et al., 2016). Combining

anatomical features from existing EM reconstruction (Berck et al., 2016) with available

lineage information facilitated identification of a split-GAL4 line (SS01989) that drives

expression exclusively in the CSD neuron (Fig. 6.9). Pairing activation of SS01989 with

ethyl acetate was insufficient for inducing olfactory memory (Fig. 6.7b), suggesting that

the classical conditioning phenotype we observed under Tph-Gal4 x UAS-CsChrimson;

tsh-LexA, LexAop-Gal80 was mediated by at least one other group of serotonergic

neurons in the brain or SEZ.

6.3.5 Serotonergic neurons in VNC may play a role in operant

conditioning of cast direction

Given their strong associative learning phenotypes, we used the TH-Gal4 and Tph-Gal4

drivers to investigate whether operant conditioning of cast direction could be induced
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Fig. 6.7 Different serotonergic neurons may mediate classical and operant conditioning. All fly lines contained the UAS-
CsChrimson effector, which is omitted from the figure for visual clarity. Gal4 expression depicted as color-coded CNS. a. Olfactory
conditioning experiment protocol. During training, larvae in the paired group received three minutes of optogenetic red light stimu-
lation (solid red circles) paired with the odour (white cloud) followed by three minutes of darkness (solid white circles) paired with
air (no cloud). The unpaired group received reciprocal stimulus presentation (dark paired with odour, light paired with air). This pro-
cedure was repeated three times. In half of the experiments, the order of training trials was reversed, starting with air presentation
instead of odour presentation. Both groups were then tested for learned odour preference in the dark with odour presented on one
side of the plate and no odour on the other (PI = performance index). b. Performance indices following olfactory conditioning, plotted
as raw data points and mean. w1118 x UAS-CsChrimson was the negative control (grey, n = 8), 58E02-Gal4 x UAS-CsChrimson
was the positive control (blue, n = 8). Statistical comparisons to w1118 x UAS-CsChrimson were calculated using a two-sided
Mann-Whitney U test with Bonferroni correction; n. s. p ≥ 0.05/7 (not significant), ** p < 0.01/7. Statistical comparisons to Tph-
Gal4 x UAS-CsChrimson were calculated using a two-sided Mann-Whitney U test with Bonferroni correction; n. s. p ≥ 0.05/2 (not
significant), *** p < 0.001/2. c–e. All data is shown as (mean ± s. e. m.). Experiments followed the protocol depicted in Fig. 6.3a.
c. Larval cast rate shown as the number of casts per minute, grouped by cast direction. The cast rate to the stimulated side is shown
in red and the cast rate to the unstimulated side is shown in grey. Data is shown from the test period before the first training session
and the test period immediately following the fourth training session. Statistical differences within groups (i. e. within before training
time bin or within after training time bin) were tested with a two-sided Wilcoxon signed-rank test. Statistical differences between
two groups (e. g. stimulated side before training versus stimulated side after training) were tested with a two-sided Mann-Whitney
U test. n. s. p ≥ 0.05 (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001. d. Difference in cast rate between stimulated and
unstimulated sides. Grey dashed line at 0 indicates equal cast rates to either side. Data is shown from the test period before the
first training session and the test period immediately following the fourth training session. Within-group statistics calculated from a
two-sided Wilcoxon signed-rank test. Between-group statistics calculated from a two-sided Mann-Whitney U test. n. s. p ≥ 0.05
(not significant), * p < 0.05. e. Same after training data as in d, with statistical comparisons to Tph-Gal4 x UAS-CsChrimson
calculated using a two-sided Mann-Whitney U test with Bonferroni correction. n. s. p ≥ 0.05/2 (not significant), * p < 0.05/2.
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Fig. 6.8 Tph-Gal4 expression pattern without and with tsh-Gal80 restriction. Maximum intensity projections of confocal images
obtained after immunohistochemistry. a–d. Tph-Gal4 x UAS-CsChrimson larvae, e–h. Tph-Gal4 x UAS-CsChrimson; tsh-LexA,
LexAop-Gal80 larvae. a, e; green in d and h. Staining against green fluorescent protein (GFP) antibody targeting the mVenus tag of
CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d and h. Staining against N-cadherin. a–h. Plan-Apochromat
20x objective, resolution: 592 x 800 pixels, scale bar: 100 µm. Image courtesy of the HHMI Janelia FlyLight team.

Fig. 6.9 SS01989 exclusively drives expression in the CSD neuron. a. Confocal image of a third-instar SS01989 x UAS-GFP
larva CNS, derived from maximum intensity projections, obtained after immunohistochemical staining against GFP. C-Apochromat
40x objective, resolution: 975 x 651 pixels, scale bar: 100 µm. Image courtesy of the HHMI Janelia FlyLight team. b. Electron
microscopy reconstruction of the contralaterally projecting serotonin-immunoreactive deutocerebral (CSD) neuron from the central
nervous system of a first-instar larva (Berck et al., 2016), scale bar: 50 µm.
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exclusively by dopaminergic or serotonergic neurons, respectively. Under our

high-throughput training protocol (Fig. 6.4a), TH-Gal4 x UAS-CsChrimson larvae showed

no difference in cast rate between the previously stimulated and unstimulated sides in

the one-minute test periods either before training or after training (Fig. 6.7c, Fig. 6.7d).

Larval fatigue also seemed to occur in these larvae, suggested by the significant

decrease in cast rate to both stimulated and unstimulated sides after training (Fig. 6.7c).

While the cast rate after training was distinctly higher than before training, this increase

was not statistically significant (Fig. 6.7d). Based on these results, activating these

dopaminergic neurons appeared to be an insufficient substitute for reward or punishment

in operant conditioning. Bootstrap analyses, however, were inconsistent with the

statistical inference results associated with the difference in cast rate (Table 6.2).

Bootstrap analysis showed a significant proportion of bootstrap comparisons in which

the mean difference in cast rate after training is greater than 0 (probability = 0.9610).

Furthermore, bootstrap analysis showed a significant proportion of bootstrap

comparisons in which the mean difference in cast rate after training is higher than that

before training (probability = 0.9827). Inclusion of larvae tracked for less than a minute

also revealed a statistically significant difference in cast rates to either side after training

(Fig. 6.10a, Fig. 6.10b). Together these inconsistencies suggest that the original

statistical inference is not robust to measurement error. Consequently, we cannot

exclude the possibility that activation of these dopamine neurons can serve as a US in

operant conditioning.

Before training, Tph-Gal4 x UAS-CsChrimson larvae showed no difference in cast

rate between sides (Fig. 6.7c, Fig. 6.7d). Paired activation of Tph-Gal4 neurons during

casts to one side resulted in a significantly higher cast rate to the stimulated side relative

to the unstimulated side during the test period after training (Fig. 6.7c, Fig. 6.7d), though

the elevated difference in cast rate after training was not significantly higher than that

observed before training (Fig. 6.7d). In accordance with all other genotypes described

so far, cast rate comparison between the before training and after training periods

showed a significant decrease in cast rate to both sides following training (Fig. 6.7c),

suggesting a common behavioural outcome within this operant conditioning paradigm.

No statistically significant difference was observed when directly comparing the

difference in cast rate between TH-Gal4 x UAS-CsChrimson and Tph-Gal4 x

UAS-CsChrimson larvae after training (Fig. 6.7e). Bootstrap analysis was, however,

inconsistent with both statistical results in the period after training (Table 6.2). This

analysis showed a large, but not significantly large, proportion of bootstrap comparisons
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Table 6.2 Bootstrap sensitivity analyses of data in Fig. 6.7. Each statistical inference is denoted by genotype and Comparison. The
associated Bootstrap Test is defined by a threshold criterion on the relationship between means. The Bootstrap Proportion reflects
the proportion of all bootstrapped data sets that satisfied the Bootstrap Test. Consistency with Observed P-value indicates whether
the direction and magnitude of the Bootstrap Proportion supports the original experimental finding. Inconsistencies are highlighted
in grey.

Comparison Bootstrap Test Bootstrap
Proportion

Consistency with
Observed P-value

Fig. 6.7c – #casts/min

TH-Gal4

before training p(stimulated > unstimulated) 0.1061 consistent
after training p(stimulated > unstimulated) 0.9338 consistent
stimulated side p(after < before) 0.9985 consistent
unstimulated side p(after < before) 1.000 consistent

before training p(stimulated > unstimulated) 0.7930 consistent
after training p(stimulated > unstimulated) 0.8703 inconsistentTph-Gal4
stimulated side p(after < before) 0.9999 consistent
unstimulated side p(after < before) 1.000 consistent

Tph-Gal4, tsh-LexA, LexAop-Gal80

before training p(stimulated > unstimulated) 0.1159 consistent
after training p(stimulated > unstimulated) 0.3022 consistent
stimulated side p(after < before) 1.000 consistent
unstimulated side p(after < before) 1.000 consistent

Fig. 6.7d – Difference in #casts/min

before training p(before > 0) 0.0870 consistent
after training p(after > 0) 0.9610 inconsistentTH-Gal4
after vs before training p(after > before) 0.9827 inconsistent

before training p(before > 0) 0.8570 consistent
after training p(after > 0) 0.9320 inconsistentTph-Gal4
after vs before training p(after > before) 0.4375 consistent

before training p(before > 0) 0.0270 inconsistent
after training p(after > 0) 0.2230 consistentTph-Gal4, tsh-LexA, LexAop-Gal80
after vs before training p(after > before) 0.9040 consistent

Fig. 6.7e – Difference in #casts/min after training

Tph-Gal4 vs TH-Gal4 p(Tph > TH) 0.4097 consistent
Tph-Gal4 vs Tph-Gal4, tsh-LexA, LexAop-Gal80 p(Tph > Tph tsh) 0.9430 inconsistent

in which the mean cast rate to the stimulated side was greater than that to the

unstimulated side after training (probability = 0.8703). Bootstrap analysis of the

difference in Tph-Gal4 x UAS-CsChrimson larval cast rate after training also showed a

large, and nearly significant, proportion of bootstrap comparisons in which the mean

difference in cast rate was greater than 0 (probability = 0.9320). Inclusion of larvae

tracked for less than a minute also showed no significant difference in cast rates to either

side after training (Fig. 6.10a, Fig. 6.10b). Together, these results suggest caution when

interpreting the Tph-Gal4 x UAS-CsChrimson cast rate results. Activation of Tph-positive

serotonergic neurons paired with casts to one side may contribute to the formation of a

learned direction preference, though further data acquisition and analysis of the

underlying measurement distributions is necessary to have more confidence in this

conclusion. Knowing that operant conditioning was impaired following restriction of

Ddc-Gal4 x UAS-CsChrimson expression to the brain and SEZ suggests that the

serotonergic neurons of the VNC are perhaps contributors to memory formation in this

paradigm. Because Tph-Gal4 is a broad driver line, it is possible that its expression

pattern contains brain or SEZ neurons outside of those in Ddc-Gal4. The existence of
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these neurons may have induced the observed learning in the non-bootstrapped data

set through an alternate mechanism independent from that which drove memory

formation following Ddc neuron activation.

To assess whether VNC serotonergic neurons were necessary for the observed

operant conditioning effect, we used tsh-Gal80 to restrict the Tph-Gal4 expression

pattern to the brain and SEZ. Although these larvae appeared to show no direction

preference prior to training (Fig. 6.7c, Fig. 6.7d), bootstrap analysis of the difference in

cast rates shows a significant proportion of bootstrap comparisons for which this

difference was less than 0 (proportion above 0 was 0.0270; Table 6.2). Further

investigation either through additional data collection or analysis is required to determine

whether this inconsistency is of biological relevance. Paired optogenetic activation of

Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 with larval casts to one side was

insufficient to induce a learned direction preference consistent with operant conditioning

(Fig. 6.7c, Fig. 6.7d). Consistent with all other tested genotypes, cast rate to both the

stimulated and unstimulated sides was significantly lower after training compared to

before (Fig. 6.7c). A direct comparison of the difference in cast rate after training

between Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 and Tph-Gal4 x

UAS-CsChrimson larvae showed a significant difference between groups (Fig. 6.7e),

though bootstrap analysis was inconsistent with this finding (Table 6.2). The proportion

of bootstrap comparisons in which the difference in cast rate for Tph-Gal4 x

UAS-CsChrimson larvae exceeded that of Tph-Gal4 x UAS-CsChrimson; tsh-LexA,

LexAop-Gal80 larvae was 0.9430. Because this falls just short of the 0.95 threshold for

significance, the original statistical inference is not robust enough to measurement error

and caution should be used in interpreting the associated comparison. The Tph-Gal4

expression pattern contains two neurons per VNC hemisegment (with the exception of a

single neuron in each A8 abdominal hemisegment), all of which are serotonergic (Huser

et al., 2012). Future experimentation exclusively targeting VNC serotonergic neurons

could be valuable in not only determining whether these neurons are sufficient to

establish operant learning like that observed following Ddc activation, but also give

insight into whether synergistic activity of serotonergic neurons from both the VNC and

the brain or the SEZ may mediate the observed effect.

Under a classical conditioning paradigm, we have confirmed that there exist

learning pathways in Drosophila that rely on serotonergic neurons. We have also shown

that serotonergic neurons may serve as a sufficient US for operant conditioning, though

we cannot exclude the possibility that dopaminergic neurons may themselves be
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Fig. 6.10 TH and Tph operant conditioning data sets including all larvae regardless of tracking. Experiments were conducted
following the protocol outlined in Fig. 6.3. Gal4 expression depicted as color-coded CNS. All fly lines contained the UAS-CsChrimson
effector, which is omitted from the figure for visual clarity. Criteria to retain objects for analysis is identical to that described in Sec-
tion 2.2.1 with the exception that larvae detected for only part of each bin were also included. All data is shown as (mean ± s. e. m.).
a. Larval cast rate shown as the number of casts per minute, grouped by cast direction. The cast rate to the stimulated side is shown
in red and the cast rate to the unstimulated side is shown in grey. Data is shown from the test period before the first training session
and the test period immediately following the fourth training session. Statistical differences within groups (i. e. within before training
time bin or within after training time bin) were tested with a two-sided Wilcoxon signed-rank test. Statistical differences between
two groups (e. g. stimulated side before training versus stimulated side after training) were tested with a two-sided Mann-Whitney
U test. n. s. p ≥ 0.05 (not significant), * p < 0.05, *** p < 0.001. b. Difference in cast rate between stimulated and unstimulated
sides. Grey dashed line at 0 indicates equal cast rates to either side. Data is shown from the test period before the first training
session and the test period immediately following the fourth training session. Within-group statistics calculated from a two-sided
Wilcoxon signed-rank test. Between-group statistics calculated from a two-sided Mann-Whitney U test. n. s. p ≥ 0.05 (not signifi-
cant), * p < 0.05. c. Same after training data as in b, with statistical comparisons to Tph-Gal4 x UAS-CsChrimson calculated using
a two-sided Mann-Whitney U test with Bonferroni correction. n. s. p ≥ 0.05/2 (not significant).
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sufficient. Future experimentation is necessary to form more robust conclusions, which

themselves may have implications for whether classical and operant conditioning are

mediated by different circuit mechanisms.

6.4 Discussion

Due to available genetic tools and the emerging connectome, the Drosophila larva is a

uniquely advantageous model organism for neuroscience. We explored whether

classical and operant associative learning share neurotransmitters or circuit components.

Future experimentation will help uncover whether there exist fundamental differences in

connectivity, function, and underlying neural mechanisms between these learning

paradigms. Notably, the experimental system we built was instrumental in investigating

the neural circuits of operant conditioning, as it combined FPGA-based real-time tracking

of multiple larvae with robust online behaviour detection and closed-loop stimulus

presentation. This system could facilitate further research in taxis (Gomez-Marin et al.,

2011; Jovanic et al., 2019; Kane et al., 2013; Luo et al., 2010), decision-making

(DasGupta et al., 2014; Krajbich, 2019), and spatial navigation and memory (Haberkern

et al., 2019; Neuser et al., 2008). While further work is necessary, our cast direction

paradigm provides a strong foundation for continued study of the circuit and cellular

mechanisms underlying operant conditioning.

6.4.1 High-throughput operant conditioning in Drosophila larvae

We have shown that Drosophila larvae are capable of operant conditioning and that

optogenetic activation of Ddc neurons serves as a rewarding US during this learning

process. With training, larvae formed an association between the presence or absence

of this US and the direction in which they were casting. During testing, in the absence of

any stimulation, larvae showed a significant learned preference for casting towards the

previously stimulated side. This learned modification of future behaviour was only

observed when the CS and US were paired during training; a hallmark of operant

conditioning. Because Ddc-Gal4 drives expression in dopaminergic and serotonergic

neurons (Li et al., 2000; Sitaraman et al., 2008), we concluded that one or both

neurotransmitters are involved in memory formation under these experiment conditions.

Strong parallels exist between our operant learning paradigm and those employed

for conditioning direction preference in adult Drosophila. Consider the work of Nuwal
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et al. (2012), in which tethered flies walked on a rotating ball and were rewarded with

optogenetic activation of sugar-sensing neurons upon turns to one direction. As a

consequence of this pairing, the flies learned to increase the number of turns to this side.

Notably, the nature of the US remains an important difference between these paradigms.

Our initial attempts to operantly condition larvae using activation of sugar-sensing

neurons as a rewarding US were unsuccessful. These neurons, defined by two different

Gr43a-Gal4 drivers, were also insufficient for memory formation when activated with a

paired odour in an olfactory conditioning screen. This was surprising, considering

extensive evidence that natural sugar can serve as a rewarding US for classical

conditioning in larvae (Apostolopoulou et al., 2013; Honjo and Furukubo-Tokunaga,

2005; Neuser et al., 2005; Rohwedder et al., 2012; Scherer et al., 2003; Schipanski

et al., 2008; Schleyer et al., 2015; Weiglein et al., 2019). One possible explanation for

these discrepancies is that multiple groups of sensory neurons must be co-activated in

order to relay a meaningful reward signal. Alternatively, it may be necessary to adjust the

temporal pattern or intensity of optogenetic stimulation.

It remains to be seen whether operant learning can occur by pairing roll or back-up

behaviour with reward or punishment. Conditioning these actions is challenging given

their infrequency in naïve, freely behaving animals. Rolls only occur in response to

noxious stimuli (Ohyama et al., 2013, 2015; Robertson et al., 2013; Tracey et al., 2003).

Back-ups also occur at very low rates (Masson et al., 2020). Consequently, the amount

of US which larvae would receive during paired training would be very small, making

observable memory formation more difficult. Our high-throughput tracker could

potentially address this challenge with probabilistic, thermogenetic activation of roll or

back-up command neurons (Carreira-Rosario et al., 2018; Ohyama et al., 2015) and

optogenetic reward when performing the desired action.

One possible side effect of the multi-larva system design is unintended optogenetic

stimulation of nearby larvae. Visual inspection of the behaviour arena during DMD

calibration and stimulation protocol testing revealed scattering of visible light on the

agarose plate around each projected 1 cm2 square. It is therefore possible that red light

projected at target larvae during closed-loop experiments may activate neurons in

nearby larvae that themselves are not performing the behaviour of interest. Although the

intensity of scattered red light is markedly lower than that within a given target square,

further investigation is needed to measure and mitigate the behavioural impact of any

stimulus cross-talk. We programmed the existing multi-larva software to account for any

overlap of 1 cm2 stimulation areas between proximate larvae by projecting the lowest
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stimulus intensity to the overlapping region (see Section 2.2.1). The scattered light of

greatest concern may therefore exist outside of any possible overlapped region

(i. e. more than 1 cm away from a target larva). One approach for measuring the effect of

ambient light is to project a DMD stimulation square at least 1 cm away from a larva’s

location and observe any coincident larval behaviour. Behavioural responses can also

be recorded as a function of distance from the projected light source. In an attempt to

quantify any stimulus cross-talk, it would be fitting to consider the rolling phenotypes

from 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae. Their

behaviour was noticeably robust in the proof-of-principle optogenetic stimulation

experiments (Fig. 6.2c). To address any concerns that high intensity basal stimulation is

required to evoke energy-intensive rolling behaviour, a more sensitive effector could also

be explored. Optogenetic activation of OK6-Gal4 x UAS-CsChrimson larvae at lower

light intensity than the maximum available on our system (see Chapter 2) has been

shown to temporarily paralyse larvae via simultaneous muscle contraction

(Hernandez-Nunez et al., 2015). Such a distinct behavioural phenotype could help in

determining whether scattered light from DMD projections is sufficient to activate

neurons in nearby non-targeted larvae. It may be possible to mitigate any observed

cross-talk by adjusting the agarose plate concentration so the surface is less reflective

and more absorptive. The effects of changing agarose concentration on baseline larval

behaviour must, however, be considered (Apostolopoulou et al., 2014a). Other mitigation

strategies include reducing the size of the stimulation square or shutting off all DMDs

projections for larvae within activation distance of one another.

6.4.2 Neural circuits of operant conditioning

From the available data, it cannot be concluded that the brain and SEZ are dispensable

for operant conditioning in Drosophila larvae. Examples from both vertebrates (Grau

et al., 1998) and invertebrates (Booker and Quinn, 1981; Horridge, 1962) show the

spinal cord or VNC as sufficient for learning, suggesting that conserved mechanisms

exist for brain-independent operant conditioning across species. This does not, however,

exclude the possibility that there exist alternative learning pathways using the brain. In

mammals (Balleine et al., 2009; Redgrave et al., 2011) and birds (Fee and Goldberg,

2011), brain correlates of operant conditioning have been identified. It is unclear where

such pathways would be located in the insect brain. Previous adult fly studies (Booker

and Quinn, 1981; Colomb and Brembs, 2010, 2016; Wolf et al., 1998) support the idea
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that operant conditioning can occur independently of the MB, such that other learning

centres might exist. To determine whether larval operant conditioning can be fully

mediated by the VNC or whether the brain or SEZ are necessary, new driver lines must

be created. A collection of sparse split-GAL4 lines could help identify the minimum

subset of neurons necessary for conveying a US in our cast direction paradigm.

Even if the learning signal for operant conditioning can be mapped to a few neurons,

there remain several open questions regarding the neuronal mechanisms underlying this

learning. Locally, neurons could drive synaptic plasticity or modulate the intrinsic

excitability of their postsynaptic partners. Alternatively, the learning signal could

propagate further downstream, yielding learning correlates elsewhere in the network.

Furthermore, memory formation requires integrating the US with information about the

occurrence of the reinforced action. Motor feedback (e. g. efference copy, Fee, 2014;

Webb, 2004) or proprioceptive input could be used to transmit this movement signal to

higher-level circuits for convergence with the valence-encoding US. However, if memory

formation occurred at a lower level, the action-specific signal and associated valence

could be locally integrated inside the motor or premotor neuron without the need for

feedback loops.

Lorenzetti et al. (2008) proposed intracellular mechanisms for modulating the

intrinsic excitability of the Aplysia premotor neuron B51 during operant conditioning,

mediated by the highly conserved protein kinase C (PKC) gene. PKC signalling is also

essential for operant conditioning in Lymnaea (Rosenegger and Lukowiak, 2010) and

adult Drosophila (Brembs and Plendl, 2008; Colomb and Brembs, 2016). If the

Drosophila larva showed evidence of PKC-induced motor neuron plasticity, EM

reconstruction of the pathways between neurons mediating operant learning and the

PKC-positive motor neurons could further elucidate the mechanisms of memory

formation and retrieval. A similar investigation of the Drosophila gene FoxP may also be

informative, as its mutation in the adult results in impaired operant self-learning

(Mendoza et al., 2014). The vertebrate homologue FOXP2 is associated with deficits in

human speech acquisition (Lai et al., 2001), song learning in birds (Haesler et al., 2007),

and motor learning in mice (Groszer et al., 2008).

It remains unclear to what extent dopaminergic and/or serotonergic neurons are

involved in the operant conditioning effect we observed. Further investigation is

necessary to better understand the function of these neurotransmitters in operant

learning memory formation. It is possible that even a single instance of learning leads to

a variety of changes across the nervous system. In the case of operant conditioning,
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higher brain centres, motor command neurons, premotor circuits and motor neurons

would all qualify as potential learning sites. In addition to thoroughly analysing the

expression patterns of driver lines used in our classical conditioning screen, developing

new, sparse driver lines targeting dopaminergic and serotonergic neurons would be

valuable for identifying the minimal subset of neurons which provide the learning signal.

The larval connectome could be used to subsequently trace the paths from these

neurons to the MB. One could then test whether learning remains intact when these

connections are silenced. The expression pattern of dopamine and serotonin receptors

could also provide clues about whether and how these signals trigger learning. One

should certainly consider the possibility that learning is not induced by dopamine and/or

serotonin themselves, but by other coexpressed neurotransmitters.



Chapter 7

Discussion

7.1 Larval sensory discrimination task

In this thesis, I have introduced a sensory discrimination task to investigate navigational

decision-making behaviour in Drosophila larvae. Given the necessity of larval head casts

to local sensory information acquisition, I aimed to closely investigate the influence of

increased head casting on larval performance in reorientation manoeuvres. I asked for

the first time whether and how larvae improve their decision about which direction to turn

the longer they spend casting (see Chapter 3).

It is known that the larval nervous system is highly sensitive to changes in stimuli as

opposed to static stimulus values. Research in CO2, odour, temperature, and light

gradients has revealed how the derivative of stimulus intensity can drive transitions

between navigation behaviours (Gershow et al., 2012; Gomez-Marin et al., 2011; Kane

et al., 2013; Klein et al., 2015; Schulze et al., 2015). In each of these environments,

larvae bias the initiation of a reorientation manoeuvre based on derivative changes that

increasingly signal movement toward unfavourable conditions. The reverse occurs to

end a manoeuvre: larvae are more likely to turn in the direction set by a head cast if that

head cast coincided with a derivative change signaling movement toward favourable

conditions. These observations emphasise that larvae can make accurate decisions

about where to end a reorientation manoeuvre based on sensory information from their

environment. Nearly all of this investigation, however, focused on either the first or last

cast individually or all casts irrespective of their numerical placement in the manoeuvre.

In my analysis of larval behaviour, I found a significant positive correlation between

head cast number and the likelihood that larvae choose to end the reorientation

manoeuvre on the less noxious side. This increase in probability of correct decision is
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significantly more pronounced for conditions in which a stimulus differential exists

between sides compared to control conditions in which the stimulus is the same on both

sides. This difference is qualitatively apparent in the divergence of P (correct) values

between experimental and control conditions at higher cast numbers. My findings from

larval behaviour within the experimental conditions are consistent with increased

environmental sampling possibly facilitating evidence accumulation that improves

decision-making.

These results appear to contradict a prevailing view in the field that larval navigation

is based on the derivative change computed immediately prior to a behaviour transition

(Wystrach et al., 2016). Some studies of larval taxis have sought to better characterise

the sensory history preceding the end of a reorientation manoeuvre. A common analytic

approach for relating sensory cell activity to observed behaviour is reverse-correlation

statistics. Experiments involve supplying random trains of stimuli to sensory cells.

Reverse-correlation performed on larval behaviour traces reveals the stimulus history

that triggered the behaviour transition of interest. These results are then used to build

parameters for linear-nonlinear models (LNMs) that predict navigation decision dynamics

in response to novel sensory information. LNMs have been shown to successfully

predict these larval behavioural transitions in response to fictive olfactory (Gepner et al.,

2015; Hernandez-Nunez et al., 2015) and gustatory (Hernandez-Nunez et al., 2015)

stimuli in addition to naturally aversive blue light (Gepner et al., 2015). These studies

have been inspired by the observation that stimulus derivatives monotonically increase

to a peak just prior to the acceptance of a cast (Gomez-Marin et al., 2011; Kane et al.,

2013; Klein et al., 2015). Researchers have interpreted this finding as evidence for a

sensorimotor algorithm in which sensory integration dictates the transition into or out of a

reorientation manoeuvre. Wystrach et al. (2016) observed similar sensorimotor

interactions in their own computational model of larval chemotaxis. At the same time,

however, their model recapitulates larval behaviour in an odour gradient based on the

perceived stimulus change from only the immediately preceding time step. My sensory

discrimination task results are unique in suggesting that larvae rely on sensory

information acquired over each successive cast to better inform their decision about

which direction to end the reorientation manoeuvre.

It has been speculated that larvae rely on short term memory to successfully

compare computed changes in sensory stimuli during a reorientation manoeuvre

(Gomez-Marin et al., 2011). I take this a step further by speculating that short term

memory aids in the improvement of decisions over multiple casts in my sensory
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discrimination task. In other words, larvae may use short term memory to relate

proprioceptive information to perceived sensory stimuli, continuing to improve their

understanding of that relationship over several casts. Despite originating from an

appetitive conditioning paradigm and over a longer time scale, we have shown that

larvae are capable of relating body position to sensory stimuli through operant

conditioning of cast direction (see Chapter 6). Further investigation into the larval

sensory discrimination task can help elucidate whether larvae have the capacity for short

term memory.

7.1.1 Varying task design

Deciphering larval behaviour in my sensory discrimination task remains a complex

problem. Additional experimentation with other task designs will not only broaden our

understanding of larval decision-making but also inform the extent to which my current

interpretation of evidence accumulation holds across different environments.

A logical first approach will be to consider other light intensity combinations for the

noxious stimulus alternatives, the most notable being the experimental condition EM,H

that I was unable to test. Another modification could include depriving larvae of food for

a longer period. Research in both adult Drosophila (Corrales-Carvajal et al., 2016) and

honeybees (Katz and Naug, 2015) emphasises the importance of an animal’s internal

state on foraging decisions. Nutrition is perhaps the most relevant internal state to

consider for Drosophila larvae. Evidence from foraging adult Drosophila shows that

starved individuals exhibit greater local exploration of single food patches compared to

satiated flies that perform a wider search between patches (Corrales-Carvajal et al.,

2016). In a similar way, greater food deprivation for larvae may encourage greater

numbers of head casts per reorientation manoeuvre in my sensory discrimination task.

Future investigation could also include more precise timing of larval acclimation to the

agar petri dish (see Section 2.1.3) so that individuals are more precisely matched

according to satiety.

Transitioning to high-throughput experimentation will be advantageous for future

exploration of larval behaviour within the various aforementioned sensory discrimination

task designs. The existing hardware framework and software design of our multi-larva

closed-loop system facilitate fast tracking of larval behaviour and precise targeting of

optogenetic stimuli (see Chapter 6). Before this system is ready to run simultaneous

sensory discrimination tasks across several larvae, a few software elements need to be
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developed. The first is a custom stimulation protocol following each task design.

Specifying the relationship between detected behaviour and presented stimulus in the

written software code is standard for all experiment protocols implemented by this

system. The second necessary software element involves robust detection of both the

start and end of a reorientation manoeuvre. The former can be easily implemented

based on automated detection of forward crawls in accordance with my design on the

single-larva system (see Section 2.1.3). The latter will require a combination of larval

motion, shape, and velocity features that capture two forward peristaltic waves

regardless of the larva’s tail movement or alignment along a straight body axis (see

Section 2.1.3). As with other forms of behaviour detection, the system’s analysis of the

start and end of reorientation manoeuvres will require human validation prior to

widespread use. Once finalised, this addition to the system’s behaviour detection

software will eliminate any need for the manual online validation and offline analysis that

I performed on the existing larval behavioural data (see Sections 2.1.3 and 2.1.4). The

increased efficiency of data analysis will encourage greater and more varied testing of

different experimental hypotheses.

7.1.2 Considering other larval genotypes

An important caveat to my sensory discrimination task results is the relationship of the

fictive noxious stimulus to the larva’s body position. In the task I designed, larval head

casting triggers differential presentation of red light stimuli that physically envelop the

whole larva. Because ppk1.9-Gal4 dendrites span the entire larval body wall, such

optogenetic stimulation during head casting also differentially excites all ppk1.9 neurons

in the abdominal and tail segments despite those areas of the larval body remaining

stationary. This mismatch between noxious information and postural feedback posterior

to the head and thoracic segments is a key limitation to effective analysis of larval

decision-making behaviour in my existing closed-loop sensory discrimination task.

Future experiments using the multi-larva closed-loop system can help address this

concern. One approach could be to reduce the size of the projected stimulus area and

reposition the projection to target ppk1.9-Gal4 activation solely within the larva’s head.

Any head casts would thus be strictly correlated with changes in sensory information

detected via the head. The multi-larva closed-loop system is well-equipped to implement

this approach. Not only does the software algorithm already localise the head landmark

(see Section 2.1.1), but the DMDs operate with a spatial resolution of 291.7 µm/pixel
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(see Chapter 2). This resolution is small enough to pinpoint optogenetic stimuli to

anterior thoracic segments T1-T3 of third instar Drosophila larvae, which together

measure approximately 600 µm in length (Berni et al., 2012).

Future experiments could also involve investigating other genetic lines in the context

of this larval sensory discrimination framework. It is unknown whether larval

decision-making in response to nociception manifests differently compared to other

sensory information. Investigating other information processes within the larva’s head

(e. g. taste or odour discrimination) may elucidate whether the larval behaviour strategy I

observed occurs regardless of the sensory landscape. It is also worth considering

whether changing the valence of the incoming sensory information influences head

casting dynamics. We have shown that larvae are capable of operant learning following

reward-based conditioning of cast direction (see Chapter 6). Perhaps larvae will be

motivated to continue exploring their environment following either differential activation of

the same dopaminergic Ddc-Gal4 neurons or fictive presentation of innately rewarding

gustatory or olfactory stimuli. Other candidate genetic lines include those that

consistently evoke appetitive memory in larval associative learning tasks. Larval MBONs

are notably strong candidates for study, given their role in instructing approach or

avoidance behaviour as a function of previously learnt stimuli valences. MBON-m1 and

MBON-i1 are two MBONs whose distinct structural and functional relationships with a

shared dopaminergic MB input neurons (MBINs) have been characterised (Eichler et al.,

2017; Eschbach et al., 2020b). It would be informative to explore whether the activity of

these MBONs biases head casting dynamics in accordance with evidence accumulation

in my sensory discrimination task.

7.2 Larval behaviour models

7.2.1 Bayesian inference and acceptance pressure

My goal in formulating the Bayesian inference and acceptance pressure models was to

computationally elucidate the underlying behavioural process that leads larvae to

choose the less noxious of two stimuli. I conclude based on their fits to the larval data

that I cannot accept either model as the governing behavioural mechanism for my

sensory discrimination task. Neither model explains notable qualitative features of both

the experimental and control conditions. Instead, Bayesian inference better fits the

experimental conditions while acceptance pressure better fits the controls (see
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Chapters 4 and 5). This difference prompts me to speculate whether a combination of

processes described by each model underlies the larval behavioural readout.

Recall that in the case of all casts Bayesian inference, the decision surrounding final

cast direction results from direct comparison of the most likely nociceptive level based on

continually evolving posterior beliefs. In the integ noci subtype of the acceptance

pressure model, ending a reorientation manoeuvre could be interpreted as a larva

"giving up" after exceeding a threshold of accumulated stimulus intensity. Now consider

the possibility that larvae detect differences in noxious stimulus intensity, regardless of

their magnitude of separation, within the first two casts of a reorientation manoeuvre. In

this way, context may drive larvae to select between the Bayesian inference and

acceptance pressure strategies beginning on cast three. This scenario is supported by

the similarity in P (correct) between each experimental condition and its high intensity

control (EL,M and CM,M ; EL,H and CH,H) on casts one and two, followed by divergence

between these experimentals and their controls beginning on cast three and continuing

over higher cast numbers (Fig. 3.3b). Perhaps Drosophila larvae in my sensory

discrimination task detect a stimulus difference (or lack thereof) within the first two casts

of a reorientation manoeuvre that biases them to adopt a particular behavioural strategy

across the remaining casts? While I am not aware of evidence for whether or how the fly

brain chooses between competing strategies, there is literature describing how

vertebrates engage in strategy switches based on environmental context. A recently

described example is that of larval zebrafish switching from active to passive swimming

behaviour. Notably, this switch occurs after rigorous attempts to move through their

environment fail to resolve a mismatch between their motor pattern and external visual

cues (Mu et al., 2019).

7.2.2 Related formulations based on evidence accumulation

In developing and analysing the Bayesian inference and acceptance pressure models, I

established a valuable reference point for future modeling pursuits. The best performing

subtype of each model construction is contingent on evidence accumulation with time. In

the case of all casts Bayesian inference, this manifests as two posterior belief

distributions, one for each side’s true nociceptive level, updated by newly acquired

stimulus samples on each cast. The integ noci acceptance pressure model equates

accumulated information to the summed total noxious stimulus experienced by the larva.

I prioritised the evidence accumulation principle in accordance with my observation that
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repeated head casts significantly improved decision-making in both experimental

conditions. This remains a viable hypothesis for the observed larval behaviour,

supported, in part, by the existence of sensory evidence accumulation mechanisms in

adult Drosophila. Biophysical properties of the fly’s αβ core (αβc) Kenyon cell (KC)

dendrites enable the integration of sequential samples of olfactory information during

perceptual decision-making tasks. These samples take the form of subthreshold

changes in membrane potential. Membrane depolarisations contribute to an evolving

decision variable, changing magnitude and speed in accordance with the difference in

contrast between odourants. Any evoked action potential thereby represents the

decision bound; a conclusion further supported by its closely timed relationship to the

fly’s behavioural decision (Groschner et al., 2018; Groschner and Miesenböck, 2019).

My larval evidence accumulation hypothesis also helps parse the vast space of

models that could be explored in the context of my sensory discrimination task.

Considering that sensory discrimination is itself a form of perceptual decision-making, it

may be advantageous to direct future investigation toward computational models derived

from known perceptual decision-making tasks. One such task is two-alternative forced

choice (TAFC) (see Chapter 1). Of available computational frameworks, the drift diffusion

model (DDM) represents the optimal solution for reaction time and response accuracy in

TAFC (Bitzer et al., 2014; Bogacz et al., 2006; Eckhoff et al., 2008; Tajima et al., 2016).

The DDM is an integrator model where, at each time step, the animal accumulates

evidence for one of the two choice alternatives. A phenomenon known as the

speed-accuracy trade-off is reflected in the magnitude of evidence required to favor one

choice over the other. While noise disturbance contributes to the random walk of

accumulated evidence, a decision is made either when one of the two choice thresholds

is reached or evidence runs out (Bitzer et al., 2014; Bogacz et al., 2006; de Lafuente

et al., 2015; Gold and Shadlen, 2007; Li and Krishnamurthy, 2015; Shadlen and Kiani,

2013). Recent work in adult Drosophila has shown successful application of the DDM to

a small, neurally tractable model organism. Specifically, the behavioural choices

displayed by adult flies in an odour discrimination task follow drift diffusion dynamics

(DasGupta et al., 2014). Consider, also, that DDM has been applied to studies of

foraging behaviour (Calhoun et al., 2014). It is therefore logical to question whether the

DDM can also explain the larval behavioural signatures in my sensory discrimination

task. Results from such investigation could reveal a common decision-making

mechanism in Drosophila, shared across distinct developmental stages and/or sensory

modalities.
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In light of ongoing debate over the generalisability of drift diffusion models to other

decision-making tasks, research has been directed toward model constructions with

broader applicability. Bitzer et al. (2014) developed a Bayesian inference formulation of

TAFC and mathematically demonstrated how the inference results are equivalent to

those of the DDM. In doing so, the researchers emphasise inherent advantages of

Bayesian inference over the DDM. These include explicitly defining the model observer’s

prior knowledge and its perceptual uncertainty (Bitzer et al., 2014). Research on

foraging behaviour has simultaneously considered the performance advantages of the

Upper-Confidence-Bound (UCB) algorithm over Bayesian inference (Audibert et al.,

2009; Morimoto, 2019). An observer following the UCB algorithm chooses an action that

has the highest upper bound over its estimated value. The observer is optimistic in this

choice, following through regardless of whether the magnitude of uncertainty

surrounding the action’s value estimate is large. Even if the resulting choice outcome is

not equal in value to the upper confidence bound, the observer can still use the

experience to reduce its uncertainty over the action’s value (Morimoto, 2019). Whether

the DDM or UCB algorithm could elucidate the mechanism underlying my observations

of larval evidence accumulation remains an open question. It is indeed possible that

either could yield a better fit to the larval sensory discrimination data than my Bayesian

inference and acceptance pressure model constructions. Importantly, the applicability of

both DDM and UCB to evidence accumulation processes across taxa makes them

appealing and logical alternatives to consider in future modeling of my larval sensory

discrimination task.

Future experimentation and modeling of larval decision-making behaviour in my

sensory discrimination task could also include consideration of a foraging phenomenon

known as the exploration-exploitation trade-off. Repeatedly sampling stimuli in the

environment comes at the cost of energy resources and, in some circumstances, leaves

animals vulnerable to predation. This conflict results in a trade-off between exploring

unknown alternatives that may reap greater benefits or exploiting those for which some

information is already known. Perhaps Drosophila melanogaster larval head casts can

be viewed as a behavioural mechanism for assessing outcome value, estimating

outcome uncertainty, and selecting a subsequent action. If so, then variable head

casting sequences like those in my sensory discrimination task may reflect a

decision-making process akin to the exploration-exploitation trade-off (Cohen et al.,

2007). Animal behaviour researchers have found the well-known "n-armed bandit"

problem especially conducive to investigating explore-exploit behaviour dynamics. With
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origins in statistical decision theory and practical applications to machine learning,

economics, and medicine (Steyvers et al., 2009), the bandit problem is a

decision-making task with a structure analogous to a gambler playing casino slot

machines (i. e. bandits). The player’s goal is to maximise the total financial payout across

a sequence of arm pulls from several slot machines. When they pull an arm, a payout is

drawn from the machine’s own reward distribution. While each machine’s reward is often

fixed, its value is always initially unknown to the player. This uncertainty forces the player

to search among the machines, pulling arms and learning reward distributions to make

the most informed decision. But continued search comes at the cost of losing additional

money. What results is a trade-off between continuing to play the current best choice

arm based on existing knowledge of the reward distributions (exploitation) or testing

other unknown arms to potentially improve the long-term payout (exploration) (Audibert

et al., 2009; Reid et al., 2016). In primates and rodents, recording neural activity and

manipulating neurotransmitter concentration during bandit tasks has implicated large

subcortical structures in regulating the balance between exploration and exploitation

(Cinotti et al., 2019; Costa et al., 2019). Investigation in insects has been largely centred

around in silico modeling (Morimoto, 2019) or testing learning rules or search algorithms

against observed behavioural data (Keasar et al., 2002; Naug and Arathi, 2007). It will

be interesting to develop a bandit task for Drosophila larvae under which different, yet

fixed, probabilistic stimulus patterns are linked to cast direction. This would contrast my

all-or-nothing stimulus protocol by closely mimicking reward distributions characteristic of

multi-armed bandit problems. This addition of uncertainty in stimulus presentation may

have interesting ramifications for larval decision-making behaviour. If, for example,

larvae in a nociceptive bandit paradigm show continued casting, perhaps the benefit of

greater certainty about which direction to choose outweighs the environmental risks and

energetic costs associated with repeated exposure to noxious stimuli.

7.3 Investigating underlying neuronal circuitry

7.3.1 Identifying candidate regions or neurons

My sensory discrimination task comprised low-level, cast direction-dependent

stimulation of larval nociceptive neurons during a reorientation manoeuvre. The

observed improvement in navigational decisions with increasing cast number suggests

an underlying sensory evidence accumulation mechanism. My existing data set does
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not, however, purport a specific region of the Drosophila larval CNS as the locus for such

computations.

Future investigation of underlying neuronal circuitry could be guided by existing

knowledge of the sensorimotor transformations underlying nocifensive rolling behaviour.

Although rapid, energy-intensive rolling is biomechanically distinct from head casting, it

is partly triggered by activating multidendritic class IV sensory neurons (mdIVs); the

same nociceptive neuronal population I stimulated in my sensory discrimination task.

Research on rolling has been extensive, with at least three neuronal circuits found to

relay primary sensory information from polymodal mdIVs. In the first of these circuits,

mdIVs in each larval hemisegment target two of four Basin neurons. These Basins also

receive mechanosensory information from upstream chordotonal neurons. From this

first-order multisensory layer stems a local VNC pathway via the A05q neuron and a

global ascending brain pathway via A00c. Both paths end by targeting Goro, a command

neuron for rolling. This circuit also comprises SEZ feedback neurons that target Basins,

A05q, and A00c (Ohyama et al., 2015). Yoshino et al. (2017) identified a second circuit

comprising medial clusters of mdIV second-order interneurons (mCSIs) sufficient to

trigger rolling independently of Basins and Goro. Hu et al. (2017) identified additional

candidate interneurons downstream of mdIV: DP-ilp7 triggered the C-shape bend

formed by larvae just prior to a roll, while A08n was sufficient to induce rolling (Hu et al.,

2017). By virtue of their motor output, these circuits are unlikely to fully overlap those

that drive continued head casting in my sensory discrimination task. But such work

remains foundational to locating sites of convergence between mild nociceptive

sensation and either proprioceptive information or motor commands.

Candidate regions or neurons implicated in larval taxis may also be a reasonable

starting point to identify the sensory discrimination task’s neuronal substrate. In

homogeneous environments, transitions between runs and reorientation manoeuvres

occur independently of the brain and SEZ. In some heterogeneous environments,

sensory information processing localised to the VNC modulates larval navigation. In

anemotaxis, silencing the thoracic ladder projection neuron significantly decreases the

probability of ending a reorientation manoeuvre with a head cast directed downwind

(Jovanic et al., 2019). Larval phototaxis can proceed unimpeded by the absence of brain

or SEZ activity (Berni et al., 2012). Despite these findings, higher order centres also

contribute to the modulation of larval behaviour that improves navigation (Berni et al.,

2012). The SEZ has been implicated as a critical premotor centre in which odour, light,

and temperature information converge to trigger the run-to-reorientation manoeuvre
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transition (Tastekin et al., 2015). As it relates to chemotaxis, identification of the

upstream PDM descending neuron has elucidated a functional sensorimotor connection

between lateral horn interneurons, SEZ interneurons, and central pattern generators in

the VNC (Tastekin et al., 2018). Neuronal circuits involved in navigating down wind

gradients have also been discovered in the brain. Silencing the MB-innervating PAM

cluster dopaminergic neurons causes larvae to adversely bias the first cast of a

reorientation manoeuvre upwind (Jovanic et al., 2019).

The aforementioned circuits implicated in both larval rolling and taxis span the

entirety of the CNS, with local loops in the nerve cord and/or additional sensory

convergence centres in higher order regions. A rudimentary first approach may be

necessary to narrow the field of candidates potentially responsible for improved

perceptual decision-making over noxious stimulus alternatives. For example, inactivating

proprioceptive projection neurons and their downstream targets during my sensory

discrimination task could elucidate the role of VNC circuitry in improved decision-making.

It will be crucial to confirm that these candidate neurons are not required to maintain

baseline locomotor coordination. If the targeted ascending pathways are deemed

necessary for sensory discrimination task behaviour, then subsequent inactivation

experiments could involve higher order brain centres. FoxP-GAL4-positive αβc KCs have

been implicated in adult flies’ ability to accumulate odourant information to a response

threshold (DasGupta et al., 2014). Given their role in perceptual decision-making, MB

KCs may serve a sensory integration role in my task. Results from future operant

learning experiments could also suggest possible candidate circuits that relate valence

signals with larval body position. A second approach to further narrow the field of

candidates could be the application of reverse-correlation analysis to data from an

unbiased optogenetic behaviour screen of GAL4 driver lines. Computational modeling

work in Drosophila larval taxis has emphasised the utility of this statistical approach in

identifying neurons responsible for behaviour state transitions and attributing valence to

their activity (Gepner et al., 2015; Hernandez-Nunez et al., 2015; Klein et al., 2015).

7.3.2 Exploring connectomic data sets

Serial section electron microscopy (EM) volumes of the larval nervous system remain a

valuable tool for elucidating how observed behaviour is supported by neuronal circuit

architecture. Reconstructing neurons from these images can reveal important details

about cellular morphology and synaptic connectivity. Our understanding of neuronal
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functionality can be attributed, in part, to knowledge of such features. EM data have

revealed highly stereotyped synaptic connectivity in sensory systems across individual

larvae (Gerhard et al., 2017). Exploring available connectomic data downstream of

mdIVs will undoubtedly complement experiment-based understandings of how and

where noxious information in my sensory discrimination task combines with

proprioceptive and/or motor signals.

7.3.3 Quantifying neuronal activity

Future investigations will also benefit from quantifying neuronal activity. In establishing

stimuli conditions for the sensory discrimination task, I relied on larval behaviour

readouts as a proxy for larval sensory perception. Measuring downstream intracellular

calcium transients upon activation of mdIVs would not only confirm that larvae are

sensing each stimulus but also quantify the magnitude of perceived stimulus contrast in

the experimental conditions. This knowledge may then inform future model constructions

by improving fundamental assumptions about the observer and its environment.

Neuronal activity traces can also supplement larval connectomic data by elucidating

whether sites of structural connectivity between candidate neurons are themselves

functional. Such measurements will also reveal whether neuronal circuit activity reflects

observed behavioural decision dynamics in my sensory discrimination task. Recording

neuronal activity in unrestrained larvae is preferable to fictive behaviour preps that

preclude proprioceptive feedback. Karagyozov et al. (2018) developed a system that

combines closed-loop stimulus presentation with calcium imaging in freely behaving

larvae. Usage of this system will enable observation of real-time calcium dynamics as

larvae perform the sensory discrimination task. This simultaneous collection of

behavioural and functional data will permit verification of candidate regions responsible

for improvement of decisions with head casts.

Functional data has the added benefit of informing better assumptions within

computational models of both behaviour and neural processing. Work by Schulze et al.

(2015) is exemplary of this experimental approach. Their model relied on results from a

combination of electrophysiology and behaviour experiments which revealed that a

single olfactory sensory neuron, Or42a, responds to both stimulus intensity as well as

concentration changes computed via its first derivative. Models at both the behavioural

and circuit levels have the potential to yield experimentally testable predictions about

larval decision-making under different conditions.
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7.4 Concluding remarks

My work designing the larval sensory discrimination task, building behavioural models,

and developing high-throughput tools lays the foundation for understanding navigational

decision-making during Drosophila larval reorientation manoeuvres. My efforts also

carry wide implications for how sensory processing by the larval nervous system

supports learning and memory formation.
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