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Abstract 

 

Fibre optic monitoring and finite element analysis of well integrity in 

methane hydrate reservoirs 

 

Tsubasa Sasaki 

 

Well integrity is crucial for sustainable hydrocarbon production from oil and gas reservoirs. The 

number of new wells can be minimized by maintaining the integrity of existing wells. Also, oil 

and gas leakage due to compromised well integrity can be curtailed through proactive well 

integrity management.  

 

The present research focuses on well integrity analysis and monitoring for methane hydrate 

reservoirs. Methane hydrate reservoirs are susceptible to large deformation due to their 

unconsolidated nature, which could substantially compromise well integrity during well 

construction as well as gas production periods. Therefore, in the present research, finite element 

analyses (FEA) and laboratory experiments of well integrity are carried out for the case of the 

Nankai Trough methane hydrate reservoir in Japan, in order to contribute to a better well integrity 

management. FEA on well construction and reservoir compaction processes as well as cement 

shrinkage process is conducted. Laboratory experiments are carried out with a distributed fibre 

optic monitoring technique called Brillouin optical time domain reflectometry/analysis 

(BOTDR/A) on the strain development of laboratory-scale well specimens subjected to tensile 

and bending loading.  

 

The primary contributions of the present research are as follows. First, cement shrinkage volumes 

for the Nankai Trough formation case are estimated to be up to 0.7%. Second, cement shrinkage 

of 0.7% during well construction induces stress concentrations in the high hydrate saturation 

layers of the Nankai Trough formation. Third, the well is found to become most vulnerable to 

damage in the initial stages of hydrate dissociation under large depressurisation. Forth, fibre optic 

cables with minimal number of coating layers and tight interlayer buffering will be effective for 

accurate in-well integrity monitoring with BOTDR/A. Fifth, fibre optic cables should be attached 

on the casing rather than in the cement in the well to facilitate accurate bending curvature 

monitoring with BOTDR/A. 
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1. Introduction 

 

 

1.1. Background 

 

Securing stable and reliable energy resources is crucial to nations’ prosperity. Having reliable 

energy resources not only helps to meet the energy demand of countries but also boosts their 

economy, especially for those who do not possess domestic energy resources such as Japan. 

 

In 2013, Japan completed world’s first offshore gas production test from methane hydrate 

reservoirs at the Nankai Trough (Yamamoto et al. 2014) (Figure 1-1). Methane hydrate is an 

unconventional natural gas resource, in which methane gas is trapped in ice cages. Methane gas 

can be extracted by destabilizing the ice cage by increasing the temperature and/or decreasing the 

pressure. For example, in the Nankai Trough case, the depressurization method (i.e., pore pressure 

decrease by water pumping) was employed to dissociate methane hydrate into methane gas and 

water in the formation. The pump then extracted methane gas (and water) to the surface 

production platform. The gas production test continued for six days until well failure occurred 

with abrupt sand production. The mechanism of the well failure remains unknown. 

 

 

(a) 
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(b) 

 

(c) 

Figure 1-1 World’s first offshore gas production from methane hydrate reservoirs at the Nankai 

Trough, Japan: (a) gas flare which signifies the successful gas production; (b) the location of the 

gas production test site; (c) the configuration of the production and monitoring wells [after 

Yamamoto et al. (2014)]. 

 

It is critical to maintain the integrity of wells, in order to achieve a sustainable long-term gas 

production from the Nankai Trough methane hydrate reservoir. As is mentioned earlier, the 

mechanism of the Nankai Trough well failure has not yet been discovered. One of the possible 

causes is reservoir compaction. If fact, reservoir compaction has induced numerous well failures 

in the conventional oil and gas reservoirs in the past (Nagel, 2001). Another possibility is 

formation damage incurred during well construction. The Nankai Trough formation is 

unconsolidated and is thus prone to significant stress/ strain changes due to external disturbances 
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(i.e., well construction processes). Cement shrinkage, which occurs during well construction 

processes, is often ignored because the level of cement shrinkage volume is believed to be 

negligible and to have no effect on well/formation integrity. However, cement shrinkage might 

have contributed to the Nankai Trough well failure by inducing loss of zonal isolation of the well 

from the formation. In order to mitigate well failure, it is also imperative to carry out real-time 

monitoring of well integrity to detect signs of impending well failure, in combination with 

numerical analysis of potential well failure mechanisms.  

 

Finite element analyses are viable approach towards the modelling of well-formation interaction 

which is key to characterise the response of wells to reservoir compaction. Not only reservoir 

compaction but also well construction and cement shrinkage can be modelled in finite element 

analyses. For the real-time monitoring of well integrity, a distributed fibre optic strain and 

temperature monitoring technique called Brillouin optical time domain reflectometry/analysis 

(BOTDR/A) (Horiguchi & Tateda 1989; Kurashima et al. 1993) is an ideal candidate. This is 

because of BOTDR/A’s long measurement distance (tens of kilometres), high spatial and 

temporal resolutions (e.g., 1 m and 5 min) and high strain and temperature precisions (e.g., ±50 

 and ±1 Co). BOTDR/A will enable real-time diagnosis of well integrity, which will facilitate 

timely countermeasures for mitigating well damage. 

 

It is envisaged that finite element modelling methodologies for simulating well integrity during 

the life of wells (i.e., well construction plus reservoir compaction processes) will be instrumental 

in interpreting the mechanism of well failures. Also, it is hoped that a careful evaluation of 

BOTDR/A’s capability to carry out distributed strain sensing (DSS) of wells will be beneficial 

for well integrity management not only for unconventional methane hydrate reservoirs but also 

for conventional oil and gas reservoirs.  

 

 

1.2. Scope and objectives 

The aims of this research are as follows: 

 

1. To assess a reasonable range of cement shrinkage volumes for the Nankai Trough case 

through finite element analysis. It is important to identify the range of possible shrinkage 

volume to evaluate formation integrity accurately during well construction. The mechanism 

of cement shrinkage is capillary pressure development during the cement hydration reaction 

and it is modelled as pore pressure decrease in a saturated porous material. A coupled hydro-

mechanical simulation is performed to simulate the water flow from the formation to 
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hydrating cement during cement shrinkage. 

 

2. To model the construction process of a well drilled at the Nankai Trough site through finite 

element analysis to assess formation integrity prior to gas production. The well construction 

process includes drilling, casing hanging, cementing, cement shrinkage and hardening and 

casing landing. The response of the formation is simulated through a calibrated constitutive 

model for methane hydrate-bearing soils. 

 

3. To investigate the development of stresses and strains in the well during reservoir compaction 

for the Nankai Trough case. Different compaction profiles are simulated to assess their effect 

on well integrity. The casing-cement-formation interaction is modelled through a calibrated 

interface friction constitutive model which facilitates an accurate well integrity modelling 

during reservoir compaction. 

 

4. To examine the effectiveness of BOTDR/A in monitoring the axial tensile deformation of 

wells through laboratory experiments. Fibre optic cables, which differ in the characteristics 

of coating layers, are employed to find key features of effective fibre optic cables for the 

strain monitoring. The development of axial tensile strain is also measured by a reference 

fibre Bragg grating (FBG) cable to evaluate the performance of the BOTDR/A measurement.   

 

5. To evaluate the effectiveness of BOTDR/A in monitoring the bending deformation of wells 

through laboratory experiments. Fibre optic cables are embedded in the cement sheath as 

well as on the steel box section which constitute the well specimen. Curvature profiles at 

different load levels during a three-point bending test are derived from BOTDR/A 

measurements which are compared with analytical curvature profiles to assess the 

effectiveness of BOTDR/A and the effect of cable location on the accuracy of bending 

curvature measurement. 

 

 

1.3. Thesis layout 

The thesis consists of eight chapters. A brief summary of each chapter is provided below: 

 

Chapter 2 

The literature review of the research is presented. The characteristics and spatial distribution of 

methane hydrate in the world are provided, followed by a summary of the recent field gas 

production trials. Well failures observed at conventional oil and gas fields are introduced to show 



1. Introduction 

5 

 

the mechanisms of well failures during reservoir compaction. Existing numerical models in the 

literature for well integrity assessments are summarised to ascertain the necessity for detailed well 

construction modelling and well integrity analysis with calibrated interface and formation 

constitutive models. Fibre optic monitoring techniques for oil and gas wells are reviewed to show 

that the potential of BOTDR/A to carry out DSS has not been fully examined yet neither at the 

laboratory- nor field-scale.  

 

Chapter 3 

Finite element analysis of the shrinkage behaviour of different types of cement is provided. 

Hydro-mechanical coupled behaviours of early-age cement during hydration and its interaction 

with the formation are simulated under the wellbore configuration and conditions. Due to the 

uncertainty of the effective stress and pore pressure conditions of early-age cement during the 

phase shift from slurry to solid cement (i.e., initial set), two different scenarios (consolidated and 

underconsolidated cement cases) are simulated to estimate a range of possible cement shrinkage 

volumes for the Nankai Trough case. 

 

Chapter 4 

Finite element analysis of well construction process is presented. The development of the radial, 

vertical and circumferential effective stresses as well as plastic deviatoric strain in the formation 

around the well at each well construction stage is computed for the Nankai Trough case. The 

modelled Nankai Trough formation consists of an overburden clay layer, methane hydrate 

reservoir layer and underburden sand layer. The relative impact of each well construction stage, 

with a particular emphasis on the cement shrinkage stage, on formation integrity is investigated.  

 

Chapter 5 

Finite element analysis of well integrity during depressurization-induced reservoir compaction is 

presented. A variety of compaction profiles are created by specifying different pore pressure 

distributions in the reservoir layer. The casing-cement-formation interaction was modelled 

through an interface friction constitutive model calibrated against laboratory test data obtained 

from Chapter 6. Well construction process described earlier in Chapter 4 is incorporated to 

encompass the entire period of the life of the well for the modelling of well integrity. 

 

Chapter 6 

Laboratory experiments on the axial tensile deformation of well specimens are described. BOTDR 

is employed to carry out distributed fibre optic strain measurements. Different types of fibre optic 

cables (e.g., different cable outer diameter (OD), number of coating layers, tight buffer between 
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coating layers, etc.) are employed to examine their strain monitoring performance with BOTDR. 

The identified key characteristics of fibre optic cables for an accurate strain monitoring are 

incorporated in the suggested design of a new fibre optic cable for the monitoring of new wells 

to be drilled in methane hydrate reservoirs in Alaska, USA.  

 

Chapter 7 

Results of laboratory experiments on the distributed strain monitoring of the bending deformation 

of well specimens are presented. The effectiveness of BOTDR in measuring the curvature 

distributions of the well specimen at different load levels under three-point bending loading is 

examined through comparison with the analytical curvatures calculated from the central 

deflection values obtained from displacement transducers. Fibre optic cables are installed in the 

cement sheath as well as on the surface of the steel box section of the specimen to evaluate the 

effect of cable location on the accuracy of bending curvature measurement by BOTDR. Digital 

image correlation measurement is also performed to corroborate the result of the BOTDR 

measurement.   

 

Chapter 8 

The primary findings from the present research on the integrity of wells in methane hydrate 

reservoirs with particular emphasis for the Nankai Trough case are presented. Suggestions on the 

areas of further research are also provided to indicate potential future directions of the present 

work.  
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2. Literature review 

 

 

2.1. Methane hydrate as an energy resource 

 

2.1.1. Exploratory surveys 

Figure 2-1 shows the distribution of methane hydrate around the world (Maslin et al. 2010). 

Methane hydrate is distributed over the continental margins under the ocean. This is because 

organic carbons, which supplies methane gas for methane hydrate generation, are readily 

available in the continental margins due to their proximity to the rivers with high plankton 

productivity (Maslin et al. 2010). It is also because methane hydrate is stable only under high-

pressure and low-temperature conditions as shown in Figure 2-2 (Kvenvolden 1993). If pressure 

decreases and/or temperature increases, methane hydrate disintegrates into mathane gas and water. 

Methane hydrate also exists in onshore formation such as under permafrost due to its low-

temperature and high overburden pressure environment.    

 

 

Figure 2-1 Confirmed (open dots) and inferred (solid dots) locations of methane hydrate [after 

Maslin et al. (2010)]. 

 

Maslin et al. (2010) estimated world’s total amount of methane gas in methane hydrate to be at 

least 500 gigatonnes carbon, which is equivalent to 1.6×1015 m3 of methane gas at 0 °C and 1 atm. 

This is more than 10 times the amount of world’s undiscovered conventional technically 

recoverable gas (U.S. Geological Survey 2012). Moreover, the energy density of methane hydrate 

(i.e., ratio of gas to host sediment volumes under the standard conditions) is higher than that of 
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other conventional and unconventional gas resources. This suggests that methane hydrate is an 

attractive source of natural gas.  

 

Figure 2-2 Pressure- and temperature-dependent stability curves of methane hydrate [after 

Kvenvolden (1993)]. 

 

2.1.2. Field gas production tests 

Field gas production tests from methane hydrate reservoirs have been carried out in different 

countries. Table 2-1 shows the details of the past field gas production tests (Yamamoto & 

Dallimore 2008; Moridis et al. 2008; Farrell et al. 2012; Boswell 2013).  

 

World’s first field test was carried out in the Mackenzie Delta, Canada (i.e., onshore location). 

During the five-day gas production period, the test yielded a total of 470 m3 of methane gas by 

the thermal stimulation method (i.e., hot fluid circulation). In the following test in the same 

location in 2007, the depressurization method (i.e., pore pressure decrease by pumping) was 

employed and the test generated 830 m3 of methane gas over 2.5 days before it was terminated by 

sand production. One more test was conducted in the Mackenzie Delta a year later, which 

produced approximately 13,000 m3 of methane gas in total over the 6-day production period. A 

similar field test was also conducted in Alaska, USA, in 2012 and a total amount of 28,000 m3 of 

methane gas was produced during the 30-day gas production period (Farrell et al. 2012).  
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Japan carried out world’s first offshore gas production test in the eastern Nankai Trough in 2013. 

The test continued for six days, yielding 120,000 m3 of methane gas in total, before the test was 

terminated by sand production. Another offshore field test was carried out at the Nankai Trough 

in 2017, in which two gas production wells were drilled (i.e., P2 and P3 wells). In the P2 well, 

the gas production continued for 24 days without sand production and generated a total of 

approximately 200,000 m3 of methane gas. In the P3 well, however, the test yielded only 

approximately 35,000 m3 of methane gas over 12 days before the test was discontinued due to 

sand production (Chen, Feng, Kogawa, et al. 2018). 

 

The sand production issue indicates that well integrity was compromised during the filed tests. 

Therefore, the following sections discuss well integrity studies in the literature in order to gain a 

deeper insight into well failure patterns in methane hydrate reservoirs. 

 

Table 2-1 Details of field gas production tests from methane hydrate reservoirs. 

Test 
program 

Test location Test 
dates 

Duration of 
gas 

production 
(day) 

Total gas 
production 

(m3) 

Gas 
production 

rate (m3/day) 

Gas production 
method 

Mallik-
2002 

Northwest 
Territories, 

Canada 

March, 
2002 

5 470 1,500 
Thermal 

stimulation 

Mallik-
2007 

Northwest 
Territories, 

Canada 

April, 
2007 

2.5 830 1,600 Depressurization 

Mallik-
2008 

Northwest 
Territories, 

Canada 

March, 
2008 

6 13,000 2,000-4,000 Depressurization 

Ignik 
Sikumi 

Alaska, USA 
March-
April, 
2012 

30 28,000 5,000 
CO2-CH4 
exchange, 

depressurization 

Nankai 
Trough-

2013 

Eastern 
Nankai 
Trough, 
Japan 

March, 
2013 

6 120,000 20,000 Depressurization 

Nankai 
Trough-

2017 

Eastern 
Nankai 
Trough, 
Japan 

May-
June, 
2017 

24 (P2 
well), 12 
(P3 well) 

200,000 
(P2 well), 
35,000 (P3 

well) 

8,000 (P2 
well), 3,000 

(P3 well) 
Depressurization 

 

 

2.2. Integrity of oil and gas wells 

 

Well integrity is critical for long-term sustainable gas production from methane hydrate reservoirs. 

This is because methane hydrate reservoirs are usually unconsolidated (i.e., formation consists of 

soil particles that are not consolidated into rocks) and the gas production by depressurization 

results in reservoir compaction. Below are examples of well failures due to reservoir compaction 

in conventional oil and gas fields. 



2. Literature review 

10 

 

 

 The Wilmington field  

This oilfield is located near the city of Long Beach, California, USA. It was discovered in 

1932 and the production was initiated in 1936. By the time the first subsidence measurement 

was carried out in 1940, the subsidence was clearly visible on the surface (Nagel, 2001). By 

1969, the total subsidence reached 9 m, which cost approximately a hundred million dollars 

for remedial operations (Mayuga & Allen 1969). Figure 2-3 shows a damaged well in this 

field. In total, more than 300 wells were damaged and approximately 40 % of the wells were 

terminated (Roberts 1953).  

 

 

Figure 2-3 Well damage at the Wilmington field [after Roberts (1953)]. 

 

 The Ekofisk field  

The Ekofisk field is located in the North Sea. Well failure was first noticed in 1978 in advance 

of subsidence which was detected later in 1984 (Yudovich et al. 1988). The total cost of 

remedial operations, such as jacking up the production platforms, reached nearly one billion 

dollars (Nagel 2001). The compaction of the weak reservoir chalk caused buckling failure of 

the wells. Tension and shear failures were also observed in the overburden layers (Schwall 

& Denney 1994).  

 

 The Belridge field 

The Belridge field is located in Kern County, California, USA. Since hydraulic fracturing 

was introduced to increase the production in 1970’s, the Belridge field experienced 

significant subsidence, which led to well damage of more than a thousand wells (Fredrich et 

al. 2000). The extensive well damage could be attributed to the high-porosity, low-strength 

reservoir layer. The observed well failure mechanisms were shear and compression failures 

(Dale et al. 1996).  

 

2.2.1. Well failure mechanisms at the Nankai Trough 

As is mentioned earlier, wells constructed in the Nankai Trough methane hydrate reservoir 
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became non-operational during gas production due to sand production, which could be caused by 

well failure. Figure 2-4 shows potential failure mechanisms of wells at the Nankai Trough: (i) 

well buckling due to uneven hydrate dissociation, (ii) axial tension and compression due to 

reservoir compaction, (iii) well bending due to deviation of the well and (iv) cement shrinkage-

induced well buckling and/or loss of zonal isolation. Uneven hydrate dissociation around the well 

could occur because of heterogeneous hydrate distributions and/or permeability profiles of the 

reservoir. As a result, methane hydrate in the reservoir layer on one side of the well dissociates 

faster than the other side, which leads to uneven stress distribution around the well and it could 

buckle accordingly. Axial tension and compression of the well are developed in the well during 

reservoir compaction in the overburden and reservoir layers, respectively. This is because the well 

in the reservoir layer is dragged downward by reservoir compaction whilst the top and bottom 

parts of the well are fixated in the overburden and underburden layers. Bending of the well is also 

caused by reservoir compaction, but it occurs to deviated wells where not only axial but also 

transverse displacements are developed by reservoir compaction. Finally, cement shrinkage could 

cause well failure by creating void between the formation and well, thereby decreasing the 

pressure support from the formation against buckling. Cement shrinkage could also induce cracks 

within the cement itself, potentially leading to loss of zonal isolation. These hypotheses on the 

Nankai Trough well failure have not been addressed in detail. Hence, there is a need for numerical 

and/or experimental investigations into the abovementioned potential failure mechanisms of the 

Nankai Trough well. 

 

 

Figure 2-4 Potential failure mechanisms of wells in the Nankai Trough. 
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In the following section, modelling techniques for well integrity analyses during reservoir 

compaction as well as well construction processes are introduced. 

 

 

2.3. Well integrity modelling 

 

There are a number of studies on the modelling of well integrity in the literature. The emphasis 

of each model varies as some are focused on individual casing, cement or formation integrity 

whereas others incorporate the interaction among them. Modelled processes (i.e., well 

construction and reservoir compaction processes) also vary. In the following sections, the existing 

models are categorized into different groups and their details are provided. 

 

2.3.1. No well construction and reservoir compaction modelling 

Table 2-2 gives a list of studies in which the finite element and difference models are used without 

consideration of well construction or reservoir compaction process. Such models primarily 

focused on well integrity during well operations (e.g., pressure test, hydraulic fracturing, steam 

injection, etc.).  

 

Table 2-2 Well integrity models with neither well construction nor compaction process. 

Authors Casing Cement Formation 
Well 

construction 

Reservoir 

Compaction 

Badakhshan Raz & Ghassemi 

(2011) 
No No Yes No No 

Kalil & Mcspadden (2012) Yes Yes No No No 

Jammer et al. (2015) Yes Yes No No No 

Thiercelin et al. (1998) Yes Yes Yes No No 

Philippacopoulos & Berndt (2002) Yes Yes Yes No No 

Rodriguez et al. (2003) Yes Yes Yes No No 

Berger et al. (2004) Yes Yes Yes No No 

Heathman & Beck (2006) Yes Yes Yes No No 

Freij-Ayoub, Clennell, et al. (2007) Yes Yes Yes No No 

Bui & Tutuncu (2013) Yes Yes Yes No No 

Jandhyala et al. (2013) Yes Yes Yes No No 

 

Some models analyse casing integrity. Kalil & Mcspadden (2012) investigated casing burst 

strength and found that thinner cement sheath would lead to a greater risk of casing burst failure. 

Jammer et al. (2015) analysed casing collapse strength and showed that cement void would 
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decrease the collapse strength if continuous void is present in the cement sheath. Rodriguez et al. 

(2003) asserted the importance of cement mechanical properties by showing that the stress 

development in the casing was affected by them. Berger et al. (2004) also highlighted the negative 

effect of cement void on the casing stress development. In summary, modelling of cement is found 

to be important in order to assess casing integrity. 

 

Some models assessed cement integrity. Thiercelin et al. (1998) found that cement would be more 

likely to suffer tensile failure during pressure change (i.e., hydraulic fracturing) than temperature 

change (i.e., steam injection). Pressure change-induced cement damage could be aggravated by 

well inclination and anisotropic horizontal stress field of the formation (Bui & Tutuncu 2013). In 

order to survive pressure and temperature changes, low-stiffness cement was found effective 

(Jandhyala et al. 2013; Philippacopoulos & Berndt 2002). In addition, low-shrinkage cement is 

also effective in preventing cement damage including interface debonding (Heathman & Beck 

2006).  
 

Some models simulated hydrate dissociation and well integrity. Freij-Ayoub, Clennell, et al. 

(2007) found that high-stiffness and high-interface bonding strength cement would increase the 

factor of safety of casing during hydrate dissociation in the formation. Badakhshan Raz & 

Ghassemi (2011) found that the tensile stress development of hydrate-bearing formation would 

increase with increasing gas production rate and period.  

 

In summary, modelling of cement sheath was found to be important in assessing not only cement 

integrity but also casing and formation integrities. However, all of the abovementioned models 

are 2D plane-strain models, which limits the relevance of these findings in analysing the entire 

well and formation system. Therefore, a model which incorporates the whole well as well as the 

surrounding formation needs to be developed to be able to assess well integrity holistically.  

 

2.3.2. Well construction modelling 

Table 2-3 lists well integrity models that incorporate well construction process. Hodge et al. 2006; 

Freij-Ayoub, Tan, et al. 2007 examined drilling operation and its effect on formation integrity. It 

was found that the borehole would be more likely to fail during drilling if the formation stress 

field is anisotropic and/or formation permeability is high.  
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Table 2-3 Well integrity models with well construction process only. 

Authors Casing Cement Formation 
Well 

construction 

Reservoir 

compaction 

Hodge et al. (2006) No No Yes Yes No 

Freij-Ayoub, Tan, et al. (2007) No No Yes Yes No 

Bosma et al. (1999) Yes Yes Yes Yes No 

Ravi et al. (2002a) Yes Yes Yes Yes No 

Ravi et al. (2002b) Yes Yes Yes Yes No 

Gray et al. (2007) Yes Yes Yes Yes No 

Saint-Marc et al. (2008) Yes Yes Yes Yes No 

Salehabadi et al. (2008) Yes Yes Yes Yes No 

 

Some models simulated cement volume change and its effect on well integrity. Results are mixed 

as some studies found that decreasing cement shrinkage is important to maintain cement integrity 

(Bosma et al. 1999; Ravi et al. 2002a; Ravi et al. 2002)) whereas others showed that slight cement 

expansion (e.g., 1.5%) would be beneficial to cement integrity (Saint-Marc et al. 2008). In 

addition, Gray et al. (2007) showed that the effect of cement volume change on well integrity is 

dependent on formation stiffness.   

 

Some models show that thermal properties of cement are important in assessing well integrity in 

methane hydrate-bearing formation. Salehabadi et al. (2008) found that low-thermal diffusivity 

cement would curtail shear stress development in the casing during hydrate dissociation. They 

also found that low-thermal diffusivity cement could enhance casing shear stress development if 

voids were present in the cement.  

 

In summary, it is found that the modelling of cement volume change is needed for well integrity 

analyses. Also, formation stress state might have significant impact on formation integrity during 

well construction processes. However, well construction processes simulated in these studies are 

rather oversimplified. The actual well construction processes include more than just drilling 

and/or cement shrinkage, which seem to be the only well construction stages modelled in these 

studies. Other essential well construction processes include, but are not limited to, casing hanging, 

cementing, cement hardening and casing landing. Unless the entire well construction processes 

are incorporated in the order of their implementation in the field, the effect of well construction 

processes on formation integrity cannot be assessed accurately. Therefore, more detailed 

construction processes need to be incorporated into the simulation to facilitate better formation 

integrity assessments.  
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2.3.3. Reservoir compaction modelling  

Table 2-4 lists finite element and difference models that simulate reservoir compaction process 

but not well construction process. Many well failures are caused by shear deformation of the 

overburden layer during reservoir compaction (Bruno & Bovberg 1992), especially in the form 

of weak layer slip (Hamilton et al. 1993; Furui et al. 2011). The overburden shear deformation 

could be enhanced by water injection (Fredrich et al. 2000), which is often implemented as a 

countermeasure against reservoir compaction.  

 

Table 2-4 Well integrity models with reservoir compaction process only. 

Authors Casing Cement Formation 
Well 

construction 

Reservoir 

compaction 

Bruno & Bovberg (1992) No No Yes No Yes 

Hamilton et al. (1993) No No Yes No Yes 

Fredrich et al. (2000) No No Yes No Yes 

Sayers et al. (2006)  No No Yes No Yes 

Furui et al. (2011) No No Yes No Yes 

Shin & Santamarina (2016) Yes No Yes No Yes 

Chia & Bradley (1988) Yes Yes Yes No Yes 

Yudovich et al. (1988) Yes Yes Yes No Yes 

Chia & Bradley (1989) Yes Yes Yes No Yes 

Li et al. (2003) Yes Yes Yes No Yes 

Li et al. (2005) Yes Yes Yes No Yes 

Jinnai & Morita (2009) Yes Yes Yes No Yes 

Yoneda et al. (2018) Yes Yes Yes No Yes 

 

Well integrity could be compromised by compressive deformation as well. Yudovich et al. (1988) 

showed that 5% axial strain would be the threshold value for compressive casing failure. This 

threshold could be met sooner with higher depressurization rates (Chia & Bradley 1989) and/or 

insufficient mechanical support by cement sheath (Sayers et al. 2006). Also, the compressive 

failure could be localized at casing connections (Li et al. 2003). Moreover, not only casing but 

also gravel pack could also fail during reservoir compaction (Yoneda et al. 2018). As to cement, 

it could be damaged at lithology interfaces (e.g., shale-sand interface, overburden-reservoir 

interface) (Li et al. 2005; Jinnai & Morita 2009). The compressive stress/strain development of 

the well are found dependent on formation permeability change caused by porosity change (Shin 

& Santamarina 2016) and interface friction strength between cement and formation (Chia & 

Bradley 1988). 
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In summary, it is found that well failures are closely linked with formation deformation, e.g., well 

could fail in shear if the shear deformation of formation becomes significant. The compressive 

well failure is controlled by depressurization rates as well as whether sufficient cement 

mechanical support is present in the well. The modelling of interface friction seems also important. 

However, one of the shortcomings of these studies is that well construction processes are not 

included prior to reservoir compaction process. As well construction precedes reservoir 

compaction, well construction processes could have critical effects on well/formation integrities 

during reservoir compaction. For example, reduction in the radial stress could occur due to cement 

shrinkage around the well, which affects shaft friction development of the well during reservoir 

compaction. Also, reduction in the formation stiffness due to plastic deformation of the formation 

during drilling could affect formation behaviour during reservoir compaction. Another limitation 

is that the interface friction constitutive model (i.e., Coulomb friction model) employed in these 

studies is not calibrated against laboratory test data. The deformation of the well during reservoir 

compaction is governed by shaft friction development between the well and formation, hence it 

is critical to model the interface friction behaviour accurately. Therefore, a model, which 

incorporates well construction processes prior to reservoir compaction process as well as a 

calibrated interface friction constitutive model, has to be developed, in order to assess well 

integrity accurately during reservoir compaction. 

 

2.3.4. Combination of well construction and reservoir compaction modelling 

Table 2-5 lists finite element and difference models that simulated both well construction and 

reservoir compaction processes. Klar et al. (2010) found that hydrate dissociation in a horizontal 

well could lead to the development of bending moment in the casing due to the stress relaxation 

in the formation in the horizontal direction, where hydrate initially bears part of the wellbore 

pressure (i.e., cement slurry pressure) prior to depressurization. Rutqvist et al. (2012) found that 

drilling pressure and quality of cement job (e.g., presence of void) are important in maintaining 

formation integrity. Qiu et al. (2015) found that the effect of methane hydrate on the mechanical 

properties of formation governs the timing of plastic strain development in the formation. In these 

simulations, however, only the drilling and/or completion stage is incorporated as the other well 

construction processes, such as cement shrinkage, which is found to have significant impact on 

well integrity from the literature introduced in the earlier sections, are ignored. 

 

At present, the model developed by Xu (2014) seems to be the only model which simulates casing-

cement-formation interaction during reservoir compaction process after detailed well construction 

processes. Xu (2014) conducted an axi-symmetric hydro-mechanical finite element analysis on 

well integrity in the Nankai Trough case. In his model, however, a realistic range of cement 
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shrinkage volume was not employed as it was unknown at that time. Also, the effect of different 

horizontal stress distributions of the formation on well integrity was not assessed. Moreover, the 

well-formation interface friction model was not calibrated through experimental data, as the 

simple Coulomb friction model was employed. Therefore, the work by Xu (2014) needs to be 

extended by new models which (i) quantify a reasonable range of cement shrinkage volume in 

the wellbore conditions, (ii) evaluate the effect of cement shrinkage and initial horizontal stress 

distributions of the formation on well integrity during well construction processes and (iii) assess 

the effect of reservoir compaction on well integrity by using a calibrated well-formation friction 

constitutive model. These extensions to the existing well integrity models will lead to an 

advancement of well integrity analysis in methane hydrate reservoirs in the Nankai Trough.  

 

Table 2-5 Well integrity models with both well construction and reservoir compaction processes. 

Authors Casing Cement Formation 
Well 

construction 

Reservoir 

compaction 

Klar et al. (2010) Yes No Yes Yes Yes 

Rutqvist et al. (2012) Yes No Yes Yes Yes 

Qiu et al. (2015) Yes Yes Yes Yes Yes 

Xu (2014) Yes Yes Yes Yes Yes 

 

2.3.5. Methane hydrate critical state model 

Details of the methane hydrate critical state (MHCS) constitutive model (Uchida 2012; Uchida et 

al. 2012), which is used to model the hydrate-bearing formation behaviour in this thesis, are 

provided herein. In the MHCS model employed in this thesis, the temperature terms are omitted 

due to their insignificant effects on the geomechanical behaviour of hydrate-bearing soil. The 

essential components of any constitutive models are (i) elastic properties, (ii) yield criterion, (iii) 

flow rule and (iv) hardening rule (Wood 2004), hence each of these characteristics of the MHCS 

model adopted in this research are described below. 

 

(i) Elastic properties 

The isotropic linear elastic stiffness matrix of hydrate-bearing soil (𝑫ℎ𝑠
𝑒  ) is assumed to be 

composed of those of soil skeleton and methane hydrate. The effective stress increment relative 

to the initial effective stress level (𝝈′ − 𝝈0
′ ) is calculated as the product of the stiffness matrix of 

hydrate-bearing soil and elastic strain vector (𝝐𝑒) as follows: 

 

 𝝈′ − 𝝈0
′ = 𝑫ℎ𝑠

𝑒 𝝐𝑒 (2-1) 

 

where 𝝈′ = effective stress, 𝝈0
′  = initial (reference) effective stress, 𝑫ℎ𝑠

𝑒  = stiffness matrix of 
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hydrate-bearing soil and 𝝐𝑒  = elastic strain. The initial effective stress level is considered 

because the stress state of hydrate-bearing soil changes not only with elastic strain increments but 

also with hydrate dissociation-induced softening. As a result, in order to calculate the effective 

stress increment (𝑑𝝈′), changes in the stiffness of hydrate-bearing soil due to hydrate dissociation 

(𝑑𝑫ℎ𝑠
𝑒 = (𝜕𝑫ℎ𝑠

𝑒 𝜕𝑆ℎ⁄ )𝑑𝑆ℎ) need to be considered in addition to the elastic strain increment (𝑑𝝐𝑒), 

which leads to the following equation: 

 

 𝑑𝝈′ = 𝑫ℎ𝑠
𝑒 𝑑𝝐𝑒 + 𝑑𝑫ℎ𝑠

𝑒 𝝐𝑒  

⇔ 𝑑𝝈′ = 𝑫ℎ𝑠
𝑒 (𝑑𝝐 − 𝑑𝝐𝑝) + 𝑑𝑫ℎ𝑠

𝑒 𝝐𝑒 (2-2) 

 

where 𝑑𝝈′  = effective stress increment, 𝑑𝝐𝑒  = elastic strain increment, 𝑑𝑫ℎ𝑠
𝑒  (=

(𝜕𝑫ℎ𝑠
𝑒 𝜕𝑆ℎ⁄ )𝑑𝑆ℎ)  = changes in stiffness matrix of hydrate-bearing soil due to hydrate 

dissociation and 𝑑𝝐𝑝 = plastic strain increment. The stiffness matrix of hydrate-bearing soil is 

defined as follows:  

 

 

𝑫ℎ𝑠
𝑒 =

[
 
 
 
 
 
 
 
 
4

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 −

2

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 −

2

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 0 0 0

−
2

3
𝐺ℎ𝑠 +𝐾ℎ𝑠

4

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 −

2

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 0 0 0

−
2

3
𝐺ℎ𝑠 +𝐾ℎ𝑠 −

2

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠

4

3
𝐺ℎ𝑠 + 𝐾ℎ𝑠 0 0 0

0 0 0 𝐺ℎ𝑠 0 0
0 0 0 0 𝐺ℎ𝑠 0
0 0 0 0 0 𝐺ℎ𝑠]

 
 
 
 
 
 
 
 

 (2-3) 

 

where 𝐾ℎ𝑠 = bulk modulus of hydrate-bearing soil and 𝐺ℎ𝑠 = shear modulus of hydrate-bearing 

soil, which are calculated by the following equations: 

 

 
𝐾ℎ𝑠 = 𝐾𝑠 + 𝐾ℎ ≈ 𝐾𝑠 =

𝑝′

𝜅(1 − 𝑛)
 (2-4) 

 

 
 𝐺ℎ𝑠 = 𝐺𝑠 + 𝐺ℎ =

3(1 − 2𝜈)

2(1 + 𝜈)
𝐾𝑠 +𝑚2𝜒𝑆ℎ (2-5) 

 

where 𝐾𝑠 = bulk modulus of the soil skeleton, 𝐾ℎ = enhancement of the bulk modulus of soil 

skeleton due to methane hydrate, 𝑝′ (= 𝑡𝑟(𝝈′)/3) = mean effective stress, 𝜅 = the gradient of 

swelling line as defined in Critical State Soil Mechanics (Schofield & Wroth 1968), 𝑛 = porosity, 
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𝐺𝑠 = shear modulus of hydrate-bearing soil, 𝐺ℎ = enhancement of the shear modulus of hydrate-

bearing soil due to methane hydrate, 𝜈  = Poisson’s ratio of soil skeleton, 𝑚2  = stiffness 

enhancement constant, 𝜒 = stiffness degradation constant and 𝑆ℎ = hydrate saturation. From 

the definitions of the stiffness matrix, bulk modulus and shear modulus of hydrate-bearing soil, 

changes in the stiffness matrix due to hydrate dissociation are derived as follows:  

 

 

𝑑𝑫ℎ𝑠
𝑒 =

𝜕𝑫ℎ𝑠
𝑒

𝜕𝑆ℎ
𝑑𝑆ℎ =

[
 
 
 
 
 
 
 
 
4

3
𝑚2 −

2

3
𝑚2 −

2

3
𝑚2 0 0 0

−
2

3
𝑚2

4

3
𝑚2 −

2

3
𝑚2 0 0 0

−
2

3
𝑚2 −

2

3
𝑚2

4

3
𝑚2 0 0 0

0 0 0 𝑚2 0 0
0 0 0 0 𝑚2 0
0 0 0 0 0 𝑚2]

 
 
 
 
 
 
 
 

𝜒𝑑𝑆ℎ (2-6) 

 

The 𝜒 parameter ranges from 1 (initial value) to 0 (ultimate value) depending on the accumulated 

plastic deviatoric strain which induces shear degradation of the stiffness contributed by hydrate.  

 

(ii) Yield criterion 

The yield surface of the MHCS model is defined as follows: 

  

 𝑓(𝑝′, 𝑞, 𝑝𝑐𝑠
′ , 𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ , 𝑅) = 𝑞2 +𝑀2(𝑝′ + 𝑝𝑐𝑐

′ )(𝑝′ − 𝑅(𝑝𝑐𝑠
′ + 𝑝𝑐𝑑

′ + 𝑝𝑐𝑐
′ )) = 0 (2-7) 

 

where 𝑞  (= 𝑞(𝝈′)  = √3𝐽2 ) = deviator stress (𝐽2 = the second invariant of deviatoric stress 

tensor), 𝑝′ (=  𝑝′(𝝈′)  = 𝑡𝑟(𝝈′)/3)  = mean effective stress, 𝑀  = critical state frictional 

constant, 𝑝𝑐𝑠
′  = preconsolidation stress, 𝑝𝑐𝑑

′  (= 𝐴(𝜒𝑑𝑆ℎ)
𝐵) = dilation enhancement parameter, 

𝑝𝑐𝑐
′  (= 𝐶(𝜒𝑑𝑆ℎ)

𝐷)  = cohesion enhancement parameter, 𝑅  = Hashiguchi subloading surface 

ratio. The subloading surface ratio, 𝑅, can take a positive value between 0 and 1, which indicates 

that when R = 1 the soil has reached the yield condition. The Hashiguchi subloading surface 

(Hashiguchi 1989) is an auxiliary yield surface within the yield surface which is designed to 

produce small plastic strains prior to yielding. The subloading surface thus helps introduce smooth 

transition from elastic constitutive behaviours to plastic ones. A schematic diagram of an MHCS 

yield surface and subloading surfaces is shown in Figure 2-5. 

 

The consistency condition adopted in this thesis is shown below: 

 

 𝑓(𝝈′ + 𝑑𝝈′, 𝑝𝑐𝑠
′ + 𝑑𝑝𝑐𝑠

′ , 𝑝𝑐𝑑
′ + 𝑑𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ + 𝑑𝑝𝑐𝑐

′ , 𝑅 + 𝑑𝑅) = 0  
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⇔ 𝑓(𝝈′ +𝑫ℎ𝑠
𝑒 𝑑𝝐+𝑑𝑫ℎ𝑠

𝑒 𝝐𝑒 , 𝑝𝑐𝑠
′ , 𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ , 𝑅) − (

𝜕𝑓

𝜕𝝈′
)
𝑇

𝑫ℎ𝑠
𝑒 𝑑𝝐𝑝 + (

𝜕𝑓

𝜕𝑝𝑐𝑠
′ )𝑑𝑝𝑐𝑠

′

+ (
𝜕𝑓

𝜕𝑝𝑐𝑑
′ )𝑑𝑝𝑐𝑑

′ + (
𝜕𝑓

𝜕𝑝𝑐𝑐
′ )𝑑𝑝𝑐𝑐

′ + (
𝜕𝑓

𝜕𝑅
)𝑑𝑅 = 0 

 

⇔ 𝑓𝑝𝑟𝑒𝑑 − (
𝜕𝑓

𝜕𝝈′
)
𝑇

𝑫ℎ𝑠
𝑒 𝑑𝝐𝑝 + (

𝜕𝑓

𝜕𝑝𝑐𝑠
′ )𝑑𝑝𝑐𝑠

′ + (
𝜕𝑓

𝜕𝑝𝑐𝑑
′ )𝑑𝑝𝑐𝑑

′ + (
𝜕𝑓

𝜕𝑝𝑐𝑐
′ ) 𝑑𝑝𝑐𝑐

′

+ (
𝜕𝑓

𝜕𝑅
)𝑑𝑅 = 0 

(2-8) 

 

where f pred = the value of the yield function at prediction stress state.  

 

Figure 2-5 A schematic diagram of an MHCS yield surface (R = 1) and subloading surfaces (0 < 

R < 1), which have a symmetric elliptic shape. 

 

(iii)  Flow rule 

Associated flow rule (i.e. plastic potential function (𝑔) = yield criterion (𝑓)) is employed in the 

MHCS model. Hence, the plastic strain increment is calculated as follows: 

 

 
𝑑𝝐𝑝 = 𝛬

𝜕𝑔

𝜕𝝈′
= 𝛬

𝜕𝑓

𝜕𝝈′
 (2-9) 

 

where 𝛬 = plastic multiplier. Plastic volumetric and deviatoric strain increments are calculated 

as below: 
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 𝑑𝜖𝑣
𝑝
= 𝛬

𝜕𝑓

𝜕𝑝′
 (2-10) 

 𝑑𝜖𝑑
𝑝
= 𝛬

𝜕𝑓

𝜕𝑞
 (2-11) 

 

(iv) Hardening rule 

There are four hardening parameters in the MHCS model (𝑝𝑐𝑠
′ , 𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ , 𝑅). Plastic volumetric 

hardening is used for the hardening of preconsolidation stress (𝑝𝑐𝑠
′ ) as follows: 

 

 
𝑑𝑝𝑐𝑠

′ =
𝑝𝑐𝑠
′

(𝜆 − 𝜅)(1 − 𝑛)
𝑑𝜖𝑣

𝑝
 (2-12) 

 

where 𝑝𝑐𝑠
′   = preconsolidation stress, 𝑑𝑝𝑐𝑠

′   = preconsolidation stress increment, 𝜆, 𝜅  = the 

gradient of compression line and swelling line as defined in Critical State Soil Mechanics, 

respectively (Schofield & Wroth 1968), 𝑛 = porosity, 𝑑𝜖𝑣
𝑝

 = plastic volumetric strain increment.  

 

Plastic deviatoric hardening along with hydrate dissociation-induced hardening are employed for 

the dilation enhancement parameter (𝑝𝑐𝑑
′ ) and cohesion enhancement parameter (𝑝𝑐𝑐

′ ) as follows: 

 

 𝑑𝑝𝑐𝑑
′ = 𝐴𝐵(𝜒𝑆ℎ)

𝐵−1(−𝑚1𝜒𝑆ℎ𝑑𝜖𝑑
𝑝
+ 𝜒𝑑𝑆ℎ) (2-13) 

 

 𝑑𝑝𝑐𝑐
′ = 𝐶𝐷(𝜒𝑆ℎ)

𝐷−1(−𝑚1𝜒𝑆ℎ𝑑𝜖𝑑
𝑝
+ 𝜒𝑑𝑆ℎ) (2-14) 

 

where 𝐴, 𝐵  = constants for the dilation enhancement parameter, 𝐶, 𝐷  = constants for the 

cohesion enhancement parameter, 𝑆ℎ  = hydrate saturation, 𝜒  = a parameter for shear 

degradation of hydrate, 𝑚1  = a constant for shear degradation of hydrate, 𝑑𝜖𝑑
𝑝
  = plastic 

deviatoric strain increment. A combination of plastic volumetric and deviatoric hardening (i.e., 

the L2 norm of plastic strain increments (|𝑑𝜖𝑝|)) is employed for the hardening of the subloading 

surface ratio (𝑅) as shown in the equation below: 

 

 
𝑑𝑅 = −𝑈(1 +

𝑝𝑐𝑑
′ + 𝑝𝑐𝑐

′

𝑝𝑐𝑠
′ ) ln 𝑅 |𝑑𝝐𝑝| (2-15) 

 

where 𝑈 = subsurface constant and |𝑑𝝐𝑝| = the L2 norm of the plastic strain increment vector. 
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By substituting Equation 2-9, 2-10, 2-11, 2-12, 2-13, 2-14 and 2-15 into Equation 2-8, the plastic 

multiplier (𝛬) is calculated as below: 

 

 

𝛬 =
𝑓𝑝𝑟𝑒𝑑 +

𝜕𝑓
𝜕𝑆ℎ

𝑑𝑆ℎ

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝)(

𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝)(

𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

 (2-16) 

 

It is noted that all the derivatives are evaluated at the stress level = 𝝈′ +𝑫ℎ𝑠
𝑒 𝑑𝝐+𝑑𝑫ℎ𝑠

𝑒 𝝐𝑒 . The 

advantage of calculating 𝛬 using 𝑓𝑝𝑟𝑒𝑑 is that iterations can be implemented to ensure 𝑓 = 0 

at the updated values of the parameters (i.e., 𝑝′ + 𝑑𝑝′, 𝑞 + 𝑑𝑞, 𝑝𝑐𝑠
′ + 𝑑𝑝𝑐𝑠

′ , 𝑝𝑐𝑑
′ + 𝑑𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ +

𝑑𝑝𝑐𝑐
′ , 𝑅 + 𝑑𝑅). For example, if 𝑓𝑖 ≠ 0 (𝑖 = 1,2,… ) after i-th iteration, another iteration can be 

conducted to calculate 𝛬𝑖+1  by substituting 𝑓𝑝𝑟𝑒𝑑 = 𝑓𝑖  (and 𝑑𝑆ℎ = 0  if 𝑑𝑆ℎ  for the 

increment is already applied in a previous iteration) in Equation 2-16. Also, all the partial 

derivatives have to be re-evaluated with the updated values of the parameters to obtain 𝛬𝑖+1. 

Consequently, the stress increment that satisfies 𝑓 = 0 is obtained as follows:  

 

 
𝑑𝝈′ = 𝑫ℎ𝑠

𝑒 (𝑑𝝐 −∑𝑑𝝐𝑖
𝑝

𝑖

) + 𝑑𝑫ℎ𝑠
𝑒 𝝐𝑒  

 
        = 𝑫ℎ𝑠

𝑒 𝑑𝝐 + 𝑑𝑫ℎ𝑠
𝑒 𝝐𝑒 −∑𝑫ℎ𝑠

𝑒 𝛬𝑖 (
𝜕𝑓

𝜕𝝈′
)
𝑖

𝑖

 (2-17) 

 

Finally, the constitutive Jacobian (𝜕𝑑𝝈′ 𝜕𝑑𝝐⁄ ) is calculated through the substitution of Equation 

2-9, 2-16 and 2-17 into Equation 2-2: 

 

 

𝑑𝝈′ = 𝑫ℎ𝑠
𝑒 𝑑𝝐 −

𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

𝑓𝑝𝑟𝑒𝑑

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

 

+

(

  
 
(
𝜕𝑫ℎ𝑠

𝑒

𝜕𝑆ℎ
)𝝐𝑒 −

𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

𝜕𝑓
𝜕𝑆ℎ

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

)

  
 
𝑑𝑆ℎ 

 = 𝑫ℎ𝑠
𝑒 𝑑𝝐 −

𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

(𝑓(𝑝′, 𝑞, 𝑝𝑐𝑠
′ , 𝑝𝑐𝑑

′ , 𝑝𝑐𝑐
′ , 𝑅)+ (

𝜕𝑓
𝜕𝝈′

)
𝑇

(𝑫ℎ𝑠
𝑒 (𝑑𝝐 − ∑ 𝑑𝝐𝑖

𝑝
𝑖 )+𝑑𝑫ℎ𝑠

𝑒 𝝐𝑒))

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|
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+

(

  
 
(
𝜕𝑫ℎ𝑠

𝑒

𝜕𝑆ℎ
)𝝐𝑒 −

𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

𝜕𝑓
𝜕𝑆ℎ

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′

|
)

  
 
𝑑𝑆ℎ 

 

=

(

 
 
𝑫ℎ𝑠
𝑒 −

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) (
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′

|
)

 
 
𝑑𝝐 

+

(

 
 
 

(
𝜕𝑫ℎ𝑠

𝑒

𝜕𝑆ℎ
)𝝐𝑒 −

𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

((
𝜕𝑓
𝜕𝝈′

)
𝑇

(
𝜕𝑫ℎ𝑠

𝑒

𝜕𝑆ℎ
) 𝝐𝑒 + (

𝜕𝑓
𝜕𝑆ℎ

))

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

)

 
 
 

𝑑𝑆ℎ

+
𝑫ℎ𝑠
𝑒 𝜕𝑓
𝜕𝝈′

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 ∑ 𝑑𝝐𝑖

𝑝
𝑖

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

 

 

As a result, 

 

∴ 
𝜕𝑑𝝈′

𝜕𝑑𝝐
= 𝑫ℎ𝑠

𝑒 −
𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) (
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒

(
𝜕𝑓
𝜕𝝈′

)
𝑇

𝑫ℎ𝑠
𝑒 (

𝜕𝑓
𝜕𝝈′

) − (
𝜕𝑓

𝜕𝜖𝑣
𝑝
𝜕𝑓
𝜕𝑝′

) − (
𝜕𝑓

𝜕𝜖𝑑
𝑝
𝜕𝑓
𝜕𝑞
) − (

𝜕𝑓
𝜕𝑅

𝑑𝑅
|𝑑𝝐𝑝|

) |
𝜕𝑓
𝜕𝝈′|

 (2-18) 

 

It is noted again that all the derivatives should be evaluated with updated values of the model 

parameters at the end of the final iteration where the convergence (𝑓 = 0) is considered to be 

established.  

 

 

2.4. Annular cement shrinkage 

 

In most well integrity models introduced in the preceding section, cement shrinkage was not 

incorporated because it was assumed insignificant for well integrity. However, if the cement is 

surrounded by low-permeability formation, significant cement shrinkage could occur due to 

insufficient water supply to the cement during its hydration reaction from the formation. Therefore, 

it is critical to investigate the shrinkage behaviour of cement in the wellbore conditions, especially 
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at its early age (i.e., a few days since the mixing of cement with water) as the majority of cement 

shrinkage occurs during this time period. In the following sections, the physics of cement 

shrinkage as well as laboratory tests and numerical simulations for the shrinkage behaviour of 

early-age cement are presented.  

 

2.4.1. The physics of cement shrinkage 

Cement shrinkage is characterized by the development of capillary suction pressure in the pores 

of cement during its hydration period where water is consumed by the cement particles. Hua et 

al. (1995) showed that the shrinkage volume of early-age cement after the initial set (i.e., phase 

shift from liquid to solid cement) could be estimated by applying capillary suction pressure 

change as confining pressure on a porous elastic material with time-varying stiffness. Lura et al. 

(2003) modelled capillary suction pressure development as a function of time-varying degree of 

water saturation, in order to calculate the confining pressure development and resulting cement 

shrinkage development accurately. By conducting a thermo-hydro-mechanical coupled finite 

element analysis, Zhen & Xiong (2013) found that the contribution of the thermal strain from 

cement hydration heat to cement shrinkage was pronounced only during the first 5 h since the 

initial set after which it decreased to a negligible level in 24 h. The capillary suction pressure 

concept for estimating the shrinkage volume of cement was found effective for post early-age 

cement as well (Coussy et al. 2004). Rougelot et al. (2009) also showed that the capillary suction 

pressure concept would be valid for hardened cement and argued that the effect of cement particle 

stiffness and cement bulk stiffness was significant.  

 

Considering the abovementioned findings on the physics of the shrinkage of cement, it is more 

effective to carry out a hydro-mechanical coupled numerical analysis on a porous elastic material 

with the capillary suction pressure concept than to carry out an uncoupled mechanical analysis in 

which cement shrinkage is modelled by specifying a uniform volume change as a boundary 

condition, in order to accurately estimate the shrinkage behaviour of early-age cement. By 

adopting the former approach, water flow from the formation to hydrating cement can be 

modelled, which reflects the actual shrinkage behaviour of cement under the wellbore conditions. 

An earlier attempt of such modelling was performed by Thiercelin et al. (1998), who utilized the 

fluid sink term in the hydro-mechnical coupled equations to model the water consumption within 

the cement which was modelled as a porous material. Bois et al. (2011) and Bois et al. (2012) 

employed a simpler approach to model the shrinkage behaviour of cement in which the pore 

pressure of the porous material (i.e., cement) was specified as an input parameter that changes 

with time. It is noted that capillary suction pressure (pg-pl) reduces to pore liquid pressure (pl) 

when the cement pore space is fully saturated (pg=0) and cavitation is unlikely to occur due to 



2. Literature review 

25 

 

high liquid pressure (e.g., deepwater cementing).  

 

Table 2-6 Shrinkage volume values of oil/gas well cements measured in laboratory. 

 Cement 
type 

Water-
to-

cement 
ratio 

Additives 
Temperature 

(oC) 
Pressure 
(MPa) 

Drainag
e 

Test 
duratio
n (h) 

Shrinkag
e volume 

(%) 

Backe et 
al. (1999) 

Class G 0.44 Retarder  90 0.0025 Open 20 3.92 

Chenevert 
& 
Shrestha 
(1991) 

Class H N/A Retarder  
37.8, 65.6, 

93.3 

8.27, 
24.1, 
35.9 

Closed 70 
4.3, 3.8, 

3.4 

Goboncan 
& 
Dillenbec
k (2003) 

Class G N/A 
Fluid loss 
control,  

dispersant 
149 19.3 Open 110 0.1 

Justnes et 
al. (1995) 

Class G 
0.3, 
0.4, 
0.5 

None 20 
Ambien

t 
pressure 

Closed 48 
2.2, 1.5, 

1.1 

Lyomov 
et al. 
(1997) 

N/A N/A Retarder  25, 60,  0.6~1.6 Open 24 3.7, 3.5 

Parcevaux 
& Sault 
(1984) 

Class G 0.44 
Dispersan

t,  
retarder  

20 
0.5, 4.0, 

10.0 
Closed 48 

7.15, 
6.30, 
4.30 

Reddy et 
al. (2009) 

N/A N/A Defoamer 26.7 
0, 6.89, 

13.8, 
20.7 

Closed 70 
1.3, 3.1, 
3.6, 3.8 

 

2.4.2. Laboratory tests on cement shrinkage  

Various shrinkage volume values of typical oil well cements are reported in the literature. As 

shown in Table 2-6, a wide range of shrinkage volume between 0.1% and 7.15% is reported. The 

shrinkage behaviour of cement is affected by many factors, including temperature and pressure 

conditions as well as test equipment and procedure (Reddy et al. 2009). For example, high-

temperature conditions cause the double-peak hydration temperature evolution of cement, which 

results in the S-shaped shrinkage development curves (Lyomov et al. 1997). Goboncan & 

Dillenbeck (2003) showed that under high-pressure and high-temperature conditions (20 MPa and 

150 oC) the shrinkage volume of Class G cement was 0.1% at 100 h since the mixing of cement 

powder with water. The shrinkage volume of Class G cement decreased with decreasing water-

to-cement ratio as well as increasing amount of calcium carbonate and polyvinyl alcohol (PVA) 

(Justnes et al. 1995). Also, lower cement powder contents (Backe et al. 1999) and higher bonding 

agent contents (Parcevaux & Sault 1984) resulted in smaller cement shrinkage volume. As for 

Class H cement, it was shown that the shrinkage volume decreased with increasing pressure and 

temperature as well as increasing amount of sodium chloride, silica flour, bentonite or sodium 

silicate (Chenevert & Shrestha 1991). This is because the amount of water available for cement 
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hydration was decreased by those conditions and additives. The shrinkage volume of Class H 

cement cured under 8.3 MPa and 38 oC reached its asymptotic value of 3.8% in 70 h (Chenevert 

& Shrestha 1987).  

 

Although a significant amount of studies on cement shrinkage in laboratory have accumulated in 

the literature, measured cement shrinkage volumes may not be representative under the wellbore 

conditions. It is not realistic to conduct a laboratory test in which the wellbore conditions are 

realized because casing and formation would have to be included to create the annulus for curing 

cement under high-pressure and/or high-temperature conditions. Therefore, it is more effective to 

carry out a numerical simulation which incorporates the aforementioned coupled hydro-

mechanical modelling framework on a porous material with the capillary pressure concept, in 

order to estimate the shrinkage volume of early-age cement. 

 

2.4.3. Cement shrinkage and well integrity  

Despite the uncertainty in the shrinkage behaviour of early-age cement in the actual wellbore 

conditions, the effect of cement shrinkage on well integrity has been examined in the literature. 

For example, Ravi et al. (2002) showed that, the smaller the cement shrinkage is, the smaller the 

risk of cement failure (i.e., cracking, plastic deformation and debonding) becomes. Oyarhossein 

& Dusseault (2015) reported that the shrinkage of cement surrounded by stiff formation would 

increase the risk of casing-cement interface debonding because stiff formation could not deform 

with the shrinking cement. They argued that cement shrinkage data under the wellbore conditions 

would be necessary, in order to conduct more accurate assessment. Gray et al. (2007) carried out 

a three-dimensional finite element analysis and showed that cement shrinkage could cause 

debonding at the casing-cement interface if anisotropic horizontal plastic strain development 

occurs in the formation.  

 

In these studies, however, a uniform shrinkage volume was specified in the cement as a boundary 

condition. Moreover, the values of cement shrinkage were radically different among the studies 

(i.e., 0% and 4% (Ravi et al. 2002), 0.5% (Oyarhossein & Dusseault 2015) and 5% (Gray et al. 

2007)). Saint-Marc et al. (2008) modelled cement shrinkage with more accurate underlining 

physics of cement shrinkage by incorporating a volumetric strain term in the constitutive 

equations which was correlated with change in the degree of cement hydration. However, pore 

fluid flow was not considered in their simulation. Therefore, there is a need for a coupled hydro-

mechanical simulation which incorporates the underlining physics of early-age cement shrinkage 

(i.e., capillary pressure decrease), in order to investigate the effect of cement shrinkage on well 

integrity under the actual wellbore conditions.  
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2.5. Well integrity monitoring  

 

The importance of numerical modelling of well integrity during well construction and reservoir 

compaction processes, as well as that of cement shrinkage, have been highlighted in the earlier 

sections. However, in order to make the best use of numerical models, it is necessary to provide 

feedback from field monitoring. Monitoring data can be used to calibrate model parameters and/or 

to verify/reject assumptions incorporated in numerical models, in order to gain deeper 

understanding of the phenomena that the models are attempting to capture. Monitoring data could 

also be used for judging the effectiveness of well operations (e.g., hydraulic fracturing) and/or the 

locations and timing of remedial operations against well failures. Therefore, it is crucial to carry 

out field monitoring of well integrity. In the following sections, conventional monitoring 

techniques and novel distributed fibre optic monitoring techniques are introduced.   

 

2.5.1. Conventional monitoring techniques 

Herein, conventional monitoring techniques for the assessment of well integrity are introduced. 

For the monitoring of formation compaction, radioactive bullets are used. Radioactive bullets, in 

which low-strength yet high-longevity radioactive material such as caesium is contained, are shot 

into the formation at known intervals (usually 10 m). Wireline logging tools are then lowered into 

the well to measure the change in the position of the bullets to estimate the compaction/elongation 

of the formation (Figure 2-6). A disadvantage of this monitoring technique is that it is applicable 

only to vertical wells as shooting bullets in deviated wells increases the uncertainty of bullet 

positions. Also, radioactive bullets may not be used in production wells either because bullet 

shooting might enhance sand production.  

 

Another monitoring technique is field seismic survey, in which seismic waves are transmitted 

through the formation and are then reflected back to receiver arrays installed on the formation 

surface. The seismic data taken at different times are analysed to calculate changes in the seismic 

velocities of the formation, which are correlated with formation compaction (i.e., seismic velocity 

increase) and elongation (i.e., seismic velocity decrease) (Figure 2-7).  

 

For the assessment of cement integrity, cement-bond-log (CBL) tools are used. CBL tools 

represent a small-diameter tubing equipped with acoustic or ultrasonic wave sources and receivers. 

The generated acoustic and ultrasonic waves respectively propagate through the bulk cement and 

casing-cement interface before they are detected by the receivers. Measured acoustic and 
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ultrasonic energy losses are correlated with the bulk cement and casing-cement bond quality, 

respectively. A drawback of CBL tools is that data interpretation is not straightforward as many 

factors including microannulus at the casing-cement interface, casing eccentricity and CBL tool 

eccentricity affect CBL measurements. As to casing integrity, callipers can be used to measure the 

diameter and shape of casing, from which casing deformation can be visualized.   

 

 

Figure 2-6 Formation compaction monitoring with the radioactive bullet technique [after 

Doornhof et al. (2006)]. 

 

Figure 2-7 An example of formation compaction monitoring by seismic survey in which seismic 

velocity changes are correlated with formation compaction [after Kristiansen et al. (2005)]. 

 

The primary limitation of the conventional monitoring techniques is that they require well 

intervention (i.e., temporary termination of oil/gas production to allow the entry of logging tools). 

Because well intervention is extremely expensive, measurements can only be taken once in 
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several years. However, such low temporal resolution may not be acceptable for the well integrity 

monitoring in unconsolidated formation, which could develop compaction in a short period of 

time. Also, the spatial resolution of the conventional techniques is also low (e.g., 10 m for the 

radioactive bullet technique), which might not capture localized well damage. Moreover, real-

time diagnosis of well integrity is difficult with the conventional techniques as time-consuming 

post-processing is necessary to convert raw data into relevant information, in addition to the fact 

that the measurement itself takes some time to complete.  

 

Therefore, new monitoring techniques with high spatial and temporal resolutions, which do not 

require well intervention, are needed to facilitate real-time well integrity assessment. Distributed 

fibre optic monitoring techniques are a promising candidate for achieving this goal. Hence, in the 

following sections, distributed fibre optic monitoring techniques are discussed in detail.  

 

2.5.2. Fibre optic monitoring techniques 

Fibre optic sensors are effective for oil and gas well monitoring due to their immunity to 

electromagnetic interreference and high resistance to harsh environments. There are two main 

fibre optic monitoring techniques: fibre Bragg grating (FBG)-based and backscatter-based 

techniques.  

 

The FBG-based technique is a semi-distributed monitoring technique as strain and/or temperature 

change is measured at discrete locations along fibre optic cables where FBG is imprinted. FBG is 

a periodic modulation of the refractive index of optical fibre core (i.e., red lines in Figure 2-8), 

which works as a mirror to reflect the input light. The wavelength of reflected light changes with 

strain and temperature changes, which is utilized to obtain semi-distributed strain and temperature 

profiles along fibre optic cables.   

 

The backscatter-based technique is a fully distributed monitoring technique. The basic principle 

of backscatter-based techniques is shown in Figure 2-9. There are three types of backscatters in 

optical fibres: Rayleigh, Raman and Brillouin backscatters. Rayleigh backscatter occurs due to 

the interaction of input light with microscopic random fluctuations of the refractive index of 

optical fibres. The frequency of backscattered Rayleigh light is identical to that of the input light. 

Raman backscatter is caused by the interaction of input light with molecules which consist optical 

fibres. The molecules absorb energy from the input light to shift their vibrational state to higher 

levels. The molecules then emit part of the absorbed energy via backscatter to shift back to lower 

vibrational states. The frequency of the backscattered Raman light is constant whereas the power 

changes with the temperature of fibre optic cables. Brillouin backscatter occurs due to the 
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interaction of input light with the acoustic wave generated by the thermal vibration of the fibre 

material (Zhang et al. 2015). The frequency of the backscattered Brillouin light changes with 

strain and temperature changes of fibre optic cables. In the following sections, details about the 

FBG- and backscatter-based fibre optic monitoring techniques are introduced.  

 

Figure 2-8 The principle of the FBG-based fibre optic monitoring technique [after Xu et al. 

(2013)].  

 

Figure 2-9 The principle of the backscatter-based fibre optic monitoring technique [after Soga & 

Schooling (2016)]. 

 

2.5.3. FBG-based technique 

The photosensitivity in optical fibres, which is the cornerstone for realizing the FBG-based 

techniques, was discovered in late 1970’s (Othonos 1997). Fabrication of FBG in optical fibres 

started to develop rapidly since late 1980’s and many studies on the FBG-based technique for 
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(semi-)distributed sensing purposes have been conducted. For example, the FBG-based technique 

was found applicable for the monitoring of strain and temperature (Liu et al. 2003) and humidity 

(Yeo et al. 2005). Due to its semi-distributed nature, the FBG-based technique was found 

particularly useful for the monitoring of large-scale structures such as civil infrastructure. For the 

monitoring of bridges, Maaskant et al. (1997) used the FBG-based technique to measure dynamic 

strain development due to traffic load as well as relaxation of prestresses in tendons. Schulz et al. 

(2000) measured macroscale strain distributions caused by traffic loading with the FBG-based 

technique. Gebremichael et al. (2005) utilized strain measurements from the FBG-based 

technique to facilitate the validation of the design codes for bridges. The FBG-based technique 

has also been used for other applications such as beam and pile monitoring as well acoustic and 

ultrasonic monitoring of rock mass (Majumder et al. 2008).  

 

 

(a) 

 

(b) 

Figure 2-10 (a) different deformation modes of the screen; (b) manifestations of these 

deformation modes in the RTCI measurement [after Pearce & Rambow (2009)].  
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The FBG-based technique is also utilized for the monitoring of oil and gas wells. Pearce & 

Legrand (2009) developed an FBG-based strain sensing system called Real-Time Compaction 

Imager (RTCI) where thousands of FBG were imprinted on a single optical fibre with a small 

spacing (~ 2 cm). The FBG optical fibres are helically wrapped around the screen (i.e., a type of 

casing) for deployment. The helical wrap configuration could identify different deformation 

modes of the screen such as tension, compression, bending and ovalization (Figure 2-10) through 

laboratory experiments (Earles et al. 2010). RTCI was employed for the monitoring of an actual 

gas well (Pearce & Rambow 2009). The strain development of casings during cementing, cement 

cure, hydraulic fracturing and gas production was captured by RTCI. A drawback of RTCI is that 

the measurement distance is limited up to 250 m per channel. This means that the maximum 

monitoring distance of RTCI is 1 km (i.e., the RTCI analyzer has four channels). Also, dynamic 

strain sensing with RTCI is currently difficult as scanning thousands of FBG is time-consuming. 

 

Therefore, it may be more advantageous to employ backscatter-based fibre optic monitoring 

techniques. In the following sections, the three different backscatter-based distributed fibre optic 

monitoring techniques are discussed.  

 

2.5.4. Rayleigh backscatter-based techniques  

Rayleigh backscatter-based techniques are mainly utilized for distributed acoustic sensing (DAS). 

However, it can also be used to detect strain/temperature changes by using a system called optical 

frequency domain reflectometry (i.e., OFDR) or another system called phase-sensitive optical 

time domain reflectometry ( OTDR). 

  

Froggatt & Moore (1998) hypothesized that random fluctuations of the refractive index of optical 

fibres form distributed FBGs and they employed OFDR to detect the strain development in optical 

fibres. The temperature development in a harsh environment (i.e., a nuclear reactor) was also 

captured by the Rayleigh backscatter-based OFDR system (Sang et al. 2007). In addition, FBG 

cables can be used with the OFDR system to obtain high-precision strain data (Kreger et al. 2016). 

As to  OTDR, which was first proposed by Choi & Taylor (2003), it has been utilized for the 

DAS measurement of broadband acoustic vibration such as pencil break at 1 kHz (Lu et al. 2010) 

as well as dynamic strain measurement at 5 kHz with the strain precision of better than 1  

(Masoudi et al. 2013). However, the main disadvantage of these systems is that the measurement 

distance is typically limited below a hundred metres.  

 

Specific to oil and gas well applications, the first DAS measurement was conducted by Molenaar 
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et al. (2012) in 2009 in tight gas wells for the monitoring of in-well operations such as perforations. 

DAS has also been shown applicable to well integrity monitoring. Hveding & Porturas (2015) 

employed DAS to detect gas leakage, in which the leakage was detected as acoustic noise from 

gas bubbles migrated upward in the well. Thiruvenkatanathan et al. (2016) employed DAS for 

sand production monitoring, where sand ingress log was created to identify the locations of sand 

production. Although the applicability of DAS to well integrity monitoring seems plausible, it is 

not suitable for well integrity monitoring at the Nankai Trough as the strain measurement range 

of DAS is limited to as low as just few micro strains, whereas significant static strain development 

(> 1,000 ) is expected to occur in the unconsolidated formation at the Nankai Trough.   

 

2.5.5. Raman backscatter-based techniques 

Raman backscatter is utilized for distributed temperature sensing (DTS) as it is only sensitive to 

the temperature change in optical fibres (i.e., insensitive to strains).  

 

Applications of DTS (i.e., Raman backscatter-based technique) for oil and gas wells began in 

mid-1990’s. Hurtig et al. (1994) employed DTS to derive the flow rate of injection fluid and the 

location of fractures in the borehole. Großwig et al. (1996) found that DTS was as precise in 

mesuring temperature change as a high-precision temperature logging tool. For high-temperautre 

DTS monitoring, it was found that special protection has to be implemented on optical fibres to 

mitigate hydragen darkening (i.e., optical power attenuation) and coating errosion (Williams et al. 

2000). Moreover, DTS has also been employed for pipeline leak detection, in-well monitoring of 

liquid flow and the optimization of gas lift operations (Baldwin 2018). 

 

Although the Raman backscatter-based technique (i.e., DTS) could supplement well integrity 

monitoring by providing potential oil/gas leakage locations, it cannot be used as the primary or 

standalone monitoring technique for well integrity assessment. Therefore, another fibre optic 

monitoring technique is needed, which is discussed in the following section.  

 

2.5.6. Brillouin backscatter-based techniques  

Brillouin backscatter-based techniques are primarily used for distributed strain sensing (DSS) as 

they are capable of measuring a wide range of strain levels of up to 1 ~ 2% for a distance of tens 

of kilometres. 
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(a) 

 

(b) 

Figure 2-11 BOTDR monitoring of a pile foundation: (a) the geometry of the pile, a tunnel to be 

constructed and soil strata; (b) the development of axial strain in the pile measured by BOTDR 

(left) and estimated shear stress development in the pile (right) before and after the tunnel 

construction [after Klar et al. (2006)].  

 



2. Literature review 

35 

 

The first Brillouin backscattering-based technique, which was termed Brillouin optical time 

domain analysis (BOTDA), was proposed as a non-destructive method to investigate the 

attenuation characteristics of optical fibres (Horiguchi & Tateda 1989). Horiguchi et al. (1989) 

first used BOTDA for DSS and measured the tensile strain development of optical fibres up to 

5,000 . BOTDA requires both ends of an optical fibre to be connected to the analyser, which is 

inconvenient if the optical fibre breaks in the middle of measurement. This is resolved by another 

Brillouin backscatter-based technique called Brillouin optical time domain reflectometry 

(BOTDR), which requires only one end of an optical fibre to be connected to the analyser to take 

measurement.  

 

BOTDR/A was initially utilized for the detection of strain development in telecommunication 

optical fibres (Horiguchi et al. 1995). The potential of BOTDR/A to monitor the integrity of 

structures such as a cantilever beam (DeMerchant et al. 1999), pipeline leakage (Nikles et al. 

2004), pipe inner-wall defects (Zou et al. 2004) and pipe buckling (Zou et al. 2006) was later 

investigated. The application of BODTR/A then advanced to the field monitoring of civil 

infrastructure such as tunnels (Gue et al. 2015), piles (Klar et al. 2006; Pelecanos et al. 2018; 

Pelecanos et al. 2017), concrete bridge girders (Butler et al. 2016), concrete beams (Klar, Goldfeld, 

et al. 2010) and ground settlement during tunnelling (Hauswirth et al. 2014). BOTDR/A was also 

used for the feasibility study of the detection of the construction of smuggling tunnels across 

borders (Klar & Linker 2010) and sink hole formation (Linker & Klar 2015). 

 

Figure 2-11 shows an example of BODTR monitoring of a pile foundation (Klar et al. 2006). The 

axial strain and shear stress development of the pile before and after the construction of a nearby 

tunnel was measured accurately by BOTDR. Another example is the monitoring of secant-piled 

wall (Mohamad et al. 2011) where the development of deflection and bending moment of the 

secant-piled wall in response to ground excavation was measured successfully. BOTDR was also 

applied for the monitoring of energy piles (i.e., a ground-source heat-pump system) constructed 

in London (Bourne-Webb et al. 2009), in which the development of mechanical and thermal 

strains in the piles during their cooling and heating cycles was accurately measured. Although 

these field implementations of BOTDR/A for the monitoring of pile integrity are relevant to the 

distributed fibre optic monitoring of oil and gas wells, the depth of oil and gas wells (~ 10,000 m) 

is considerably greater than that of piles (~ 100 m). As a result, oil and gas wells are often 

subjected to unique deformations such as shear/bending at geologic faults deep in the formation. 

Therefore, the feasibility of BOTDR/A for the monitoring of oil and gas wells needs to be assessed 

separately from that of pile foundations. 
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According to the latest literature on the fibre optic monitoring of oil and gas wells (Hveding et al. 

2018; Baldwin 2018; Baldwin 2015), BOTDR/A is employed only for pipeline monitoring in the 

field. This is because the advantage of BOTDR/A is considered to be merely the long 

measurement distance. However, a recent report from the MIGRATE project in Europe (Klar et 

al. 2019) summarises the potential of BOTDR/A to be employed for the monitoring of well 

integrity in methane hydrate reservoirs in both static and dynamic manners. In fact, it is 

advantageous to utilize BOTDR/A for well integrity monitoring during reservoir compaction 

considering BOTDR/A’s wide strain measurement range and long measurement distance. 

Moreover, oil and gas wells are drilled in challenging locations these days due to the depletion of 

conventional resources. The assessment of the integrity of such expensive wells will become 

critical to ensure their functionality over their lifetime and BOTDR/A will be instrumental in 

achieving this goal. Therefore, there is a need for investigating the potential of BOTDR/A to 

conduct well integrity monitoring.  

 

2.5.7. Principles of BOTDR/A and FBG measurements 

A schematic diagram of the principal of BOTDR measurements are illustrated in Figure 2-12. 

Incident light pulses at a certain wavelength (typically 1550 nm) are sent into a single-mode 

optical fibre. A fraction of the incident light pulses is backscattered due to the refractive diffraction 

grating induced by the acoustic wave generated within the fibre material (Zhang et al. 2015). The 

shift in the frequency of the backscattered light (i.e., Brillouin frequency shift) is linearly 

proportional to the external strain and temperature changes applied to the fibre, as shown in 

Equation 2-19: 

 

 𝛥𝜈𝐵 = 𝐶𝜖 𝛥𝜖 + 𝐶𝑇 𝛥𝑇 (2-19) 

 

where Δ𝜈𝐵  = Brillouin frequency shift; 𝛥𝜖  = change in mechanical strain; Δ𝑇  = change in 

temperature; 𝐶𝜖 = strain coefficient; 𝐶𝑇 = temperature coefficient.  

 

Regarding the FBG measurement, incident light pulses with broadband wavelengths are shot into 

such an optical fibre and a fraction of the incident light at a certain wavelength is reflected at the 

gratings. The wavelength shift of the reflected light is linearly related to changes in the mechanical 

strain and temperature along the FBG optical fibre as shown in Equation 2-20: 

 

 𝛥𝜆′ ⁄ 𝜆0  = (1 − 𝑝𝑒  )𝛥𝜖 + (𝛼𝑛 + 𝛼𝐿)𝛥𝑇 (2-20) 

 

where Δ𝜆′  = change in wavelength; 𝜆0  = baseline wavelength; 𝛥𝜖  = change in mechanical 
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strain; Δ𝑇  = change in temperature; 𝑝𝑒  = effective photo-elastic coefficient; 𝛼𝑛  = thermo-

optic coefficient; 𝛼𝐿 = linear thermal expansion coefficient.  

 

 

Figure 2-12 The principle of the BOTDR measurement [after Pelecanos et al. (2017)]. 

 

As shown in Equation 2-19 and 2-20, the frequency/wavelength shift in the BOTDR/A and FBG 

measurements is affected by both strain and temperature changes. Hence, the temperature term 

has to be compensated for to calculate strain changes from the measurement data. This can be 

performed by employing a temperature fibre optic cable, in which the fibre core is encased in an 

air- or gel-filled tube which helps isolate the fibre core from external strains, alongside a strain 

fibre optic cable in which the fibre core is tightly buffered to the outer layers of the cable. As a 

result, the entire frequency/wavelength shift measured along the temperature cable is converted 

into temperature change (i.e., 𝛥𝑇 = 𝛥𝜈𝐵 𝐶𝑇 ⁄  for BOTDR/A and 𝛥𝑇= (𝛥𝜆′ ⁄ 𝜆0 ) (𝛼𝑛 + 𝛼𝐿)⁄  

for FBG). This temperature change is then used to calculate the temperature term in the 

measurement data obtained from the strain cable to extract strain changes. 

 

 

2.6. Summary 

 

Methane hydrate reservoirs are potentially promising sources of unconventional natural gas. The 

uniqueness of offshore methane hydrate reservoirs at the Nankai Trough is that the formation is 

unconsolidated, which could cause significant reservoir compaction. Despite the fact that 

reservoir compaction has led to well failures in conventional oil and gas fields, sufficient 
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investigations into the effect of reservoir compaction on well integrity at the Nankai Trough have 

not been provided. The primary findings from the present literature review are presented below. 

 

(i) The mechanism of cement shrinkage is the development of capillary suction pressure in 

the pores of the cement. In the wellbore conditions, cement absorbs water from the 

formation due to the capillary pressure development, which results in complex 

interactions among casing, cement and formation. It is more effective to carry out 

hydromechanical simulations than laboratory experiments to model this process. 

 

(ii) Due to the unconsolidated nature of the Nankai Trough formation, formation integrity 

could be significantly affected by well construction process. The effect of cement 

shrinkage and horizontal stresses of the formation have been disregarded for the Nankai 

Trough case, although existing studies show these factors could affect well integrity 

significantly. 

 

(iii) There are only limited number of numerical models for well integrity analysis which 

incorporate all well components and simulate well construction and reservoir compaction 

processes. Detailed well construction process is not simulated in those models. Also, 

different reservoir compaction scenarios and their effect on well integrity are not 

modelled either.  

 

(iv) Currently, distributed strain sensing by BOTDR/A has been conducted solely for pipeline 

monitoring. However, due to the inability of Rayleigh and Raman backscatter-based 

distributed fibre optic monitoring techniques to obtain strain profiles over a wide dynamic 

range, BOTDR/A is best suited for well integrity monitoring during reservoir compaction. 

The effectiveness of BOTDR/A for in-well monitoring can be evaluated through 

laboratory experiments and/or field tests.  

 

These issues listed above are addressed in the following chapters. Finite element modelling of the 

interaction between early-age cement and formation in the well annulus is presented in Chapter 

3, in order to estimate realistic values of cement shrinkage volume for the Nankai Trough case. 

In Chapter 4, a finite element analysis of well construction process in the Nankai Trough 

formation is presented. Cement shrinkage volumes obtained in Chapter 3 are incorporated into 

the well construction finite element analysis to assess the effect of cement shrinkage on well 

integrity during well construction. In Chapter 5, another finite element modelling work is 

presented in which a parametric study on the effect of different reservoir compaction scenarios 
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on well integrity for the Nankai Trough case is carried out. In Chapter 6 and 7, the effectiveness 

of BOTDR/A in monitoring well integrity is evaluated through laboratory experiments. In Chapter 

6, BOTDR/A is used to measure the development of axial strain of a well specimen subjected to 

tensile loading, whereas in Chapter 7, BOTDR/A is used for the monitoring of bending 

deformation of another well specimen.   
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3. Water absorption and shrinkage behaviour of early-age cement in 

wellbore annulus 

 

 

3.1. Introduction 

 

Annular cement in oil and gas wells plays a crucial role in maintaining well integrity as the cement 

supports casing to enhance their mechanical stability as well as the zonal isolation of the formation 

by sealing the borehole. In the Nankai Trough methane hydrate reservoirs, the optimized particle 

size distribution (OPSD) cement was employed, which is characterised by its light weight 

compared to conventional cement such as Class G cement, to minimize formation disturbance 

during the cementing operation. Little attention was paid, however, to the shrinkage 

characteristics of the OPSD cement as the cement was considered to be zero-shrinkage cement 

by the cement manufacturer. However, it is not clear whether the zero-shrinkage actually means 

0% shrinkage, i.e., 0.5% maybe considered zero-shrinkage by some and not by the others. In 

addition, such small cement shrinkage might still have an impact on formation integrity during 

well construction. The accurate estimation of cement shrinkage volume is crucial as the potential 

cement defects, such as shrinkage-induced cracks and debonding at the cement-formation 

interface, might have induced well failure at the Nankai Trough. Hence, it is important to 

investigate the volume shrinkage behaviour of cement in the well annulus.   

 

In this study, a coupled hydro-mechanical finite element analysis is conducted to simulate the 

water migration, absorption and volume shrinkage behaviour of early-age cement in a wellbore 

configuration. The primary objectives of this study are as follows:  

 

(i) to determine the threshold permeability value of the formation below which the cement 

cannot absorb adequate water from the formation to compensate for the water 

consumption by the hydration reaction and  

(ii) to estimate a reasonable range of cement shrinkage volume in downhole conditions.  

 

The wellbore is modelled to be placed in the overburden of the Nankai Trough in Japan 

(Yamamoto et al. 2014), where the cement is surrounded by the low permeability clay formation 

on the outer boundary and by impermeable casing on the inner boundary. The mechanical and 

hydrological parameters of hardening cement paste are calibrated by utilizing laboratory test data 

on three different types of cement: Class G cement, rapid setting (RS) cement and OPSD cement.  
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3.2. Mechanism of cement shrinkage 

 

The bulk shrinkage of cement can occur by three different mechanisms: (i) capillary depression 

effect, (ii) surface tension effect, and (iii) disjoining pressure effect (Hua et al. 1995). One or more 

of these mechanisms are dominant over the others depending on the relative humidity of the 

cement. For example, the capillary depression effect is the dominant mechanism at high relative 

humidity (i.e. over 80%) whereas the other two mechanisms are activated at lower relative 

humidity levels (i.e. below 45%) (Rougelot et al. 2009; Lura et al. 2003; Hua et al. 1995). The 

relative humidity of early-age cement paste is known not to decease below 75% even though it is 

left in contact with the air (Lura et al. 2003). Therefore, in the wellbore condition where the 

cement is surrounded by water-saturated formation, the primary mechanism of cement bulk 

shrinkage volume is the depression of capillary suction pressure (i.e. pore pressure). Such 

phenomena can be simulated by the coupled hydro-mechanical equations for porous materials; 

the hydraulic part of the equations is derived from the conservation of fluid mass in a porous 

media, whereas the mechanical part is derived from the force equilibrium. 

 

The poromechanical approach to simulate the behaviours of cement paste has been found valid 

by Ulm et al. (2004). Unlike soils in which the bulk stiffness values of both soil grains and pore 

water are assumed to be very large relative to the stiffness of soil skeleton, the cement skeleton 

after hardening can be as stiff as the cement particles and pore water (Vu et al. 2012). Thus, the 

stiffness values of cement particles and pore water must be included in the constitutive equation. 

The modelling of cement bulk shrinkage is analogous to that of rocks, in which the stiffness of 

the solid phase in addition to that of the bulk porous material must be considered in the 

constitutive equations (Biot 1962; Nur & Byerlee 1971; Garg & Nur 1973). In addition, since the 

stiffness of early-age cement evolves with time, the volumetric shrinkage strain needs to be 

calculated in increments using Equation 3-1: 

 

 
𝑑𝜀𝑣 = ∫

(𝑑𝜎𝑚 − 𝛼𝑑𝑢)

𝐾
 (3-1) 

 

where 𝑑𝜀𝑣  is the volumetric strain increment, 𝑑𝜎𝑚  is the mean stress increment, 𝑑𝑢  is the 

pore pressure increment, 𝐾  is the time (or hardening) dependent bulk modulus of cement 

skeleton and 𝛼 is the Biot-Willis coefficient (Biot & Willis 1957). The cement placed in wellbore 

annulus is often surrounded by a water-saturated formation under high hydrostatic pressure, which 

prevents the cavitation of the pore water and keeps the cement fully saturated. Hence, the effect 
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of degree of saturation on the stress increment is not considered in this study. 

 

The incremental form of constitutive equation for the cement skeleton is also employed in Hua et 

al. (1995) and Zhen & Xiong (2013) to calculate the volumetric shrinkage strain. Experimental 

observations (Maharidge et al. 2016; Teodoriu et al. 2012) indicate that the stiffness of early-age 

cement increases significantly with time. In this study, the incremental stress-strain constitutive 

model with time-varying stiffness is employed to model the observed cement shrinkage behaviour. 

This allows the calculation of irreversible strains due to the evolution of the skeleton stiffness of 

the cement. Plasticity models could also be used to simulate the volumetric shrinkage behaviour 

(Thiercelin et al. 1998). However, the determination of plasticity model parameters for early-age 

cement is very difficult.  

 

The main model input is the sink term (i.e. volumetric strain of the pore fluid) in the fluid mass 

conservation equation. This term governs the loss of pore water due to the hydration reaction of 

cement particles, which leads to the depression of pore pressure and hence shrinkage volume. The 

stiffness and permeability of the cement are assumed to be time-dependent. Their time 

dependency changes are evaluated by laboratory test data available in literature, which is 

discussed in the next section.    

 

 

3.3. Modelling of laboratory tests on cement shrinkage 

 

3.3.1. Model dimensions and material parameters 

The poromechanical framework for modelling the shrinkage behaviour of early-age cement is 

validated against laboratory test data on three different cement types: Class G cement, rapid 

setting (RS) cement (Appleby & Wilson 1996) and OPSD cement (Thomas et al. 2015). These 

experiments are chosen for the model calibration because the bulk volume shrinkage and absorbed 

water volumes are measured in these experiments, which are essential for the model calibration. 

In the experiment on the Class G and RS cement, pore pressure data is also available. The material 

composition of RS cement is identical to that of Class G except for the extra amount of gypsum 

replacing cement particles to accelerate the initial set (i.e. the thickening time). OPSD cement is 

a light weight cement containing hollow fly ash particles and is designed for the cementing of 

shallow unconsolidated formation. OPSD cement was employed for the cementing operation of 

wellbores in the Nankai Trough in Japan (Taoutaou et al. 2014; Qiu et al. 2015).  
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Figure 3-1 Test setups of the laboratory tests on cement shrinkage: (a) Class G cement and RS 

cement [after Appleby & Wilson (1996)]; (b) OPSD cement [after Thomas et al. (2015)]. 

 

In this study, the experimental work of Appleby & Wilson (1996) and Thomas et al. (2015) are 

simulated. The test setups of the cement specimens simulated in this study are shown in Figure 3-

1. Two types of tests are usually conducted to examine the shrinkage behaviour of early-age 

cement; (i) drainage valve open (drained) and (ii) drainage value closed (undrained). In the former 

test, water is provided from the bottom port to the specimen and the amount of water absorbed 

into the specimen is recorded. In the latter test, the bulk shrinkage volume of the specimens is 

recorded instead of the absorbed water volume. The pore pressure data were available only for 

the Class G and RS cement tests. The applied pressure for the Class G and RS cement tests was 

2 MPa whereas that for the OPSD cement test was 10 MPa. The temperature was maintained at 

approximately  20oC for the Class G and RS tests and 12oC for the OPSD cement test.  

 

The ABAQUS finite element (FE) analysis software package is employed to carry out the coupled 

transient fluid flow and stress analysis. Since the geometry of the cement specimen is cylindrical 

(i.e. 45 mm×150 mm for the Class G and RS cement tests and 45 mm×25 mm for the OPSD 

cement test), axi-symmetric analysis is conducted. The finite element models (FEM) are shown 

in Figure 3-2. The models are discretized into 2250 axi-symmetric eight-node biquadratic 

displacement, bilinear pore pressure elements. For the boundary conditions, the constant pore 
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pressure equal to the initial pore pressure is specified at the bottom boundary nodes to simulate 

the open valve tests, whereas no fluid flux is specified to simulate the closed valve tests.  

 

(a) 

 

(b) 

Figure 3-2 Finite element models (FEM) for the laboratory tests on cement shrinkage: (a) Class 

G cement and RS cement tests (enlarged three times in the horizontal direction); (b) OPSD 

cement test (to scale). 



3. Water absorption and shrinkage behaviour of early-age cement in wellbore annulus 

 

45 

 

 

The bulk modulus of cement particles and water are 21 GPa, and 2.2 GPa, respectively. As 

described earlier, the calibrated model parameters are the time-dependent values of sink rate (i.e. 

the rate of volumetric strain change of the pore water), permeability and Young’s modulus. A 

constant Poisson’s ratio of 0.20 is adopted. Although it may be argued that the cement at its fluid-

like stage is in close to incompressible condition, it is assumed that the shear resistance develops 

rapidly prior to the initial set. The porosity is set to be constant at 0.25. This assumption is 

employed because the porosity parameter in the simulation does not affect the amount of water 

consumption by the cement; the sink rate determines it. Porosity does not affect the mechanical 

behavour, either, because Young’s modulus and Poisson’s ratio are specified independently of 

porosity in this study. These input parameters for the FEM for laboratory cement shirnkage tests 

are summarized in Table 3-1. 

 

Table 3-1 Hydromechanical input parameters for the FEM for the laboratory tests on cement 

shrinkage. 

Bulk modulus of cement particles 21 GPa 

Bulk modulus of water 2.2 GPa  

Poisson's ratio 0.2 

Porosity 0.25 

Sink rate Figure 3-3a 

Permeability  Figure 3-3b 

Young's modulus Figure 3-3c 

 

3.3.2. Calibrated time-dependent sink rate, permeability and stiffness 

The calibrated time-dependent sink rate, permeability and Young’s modulus are shown in Figure 

3-3a, 3b and 3c, respectively. An exponential function is employed to model the time variations 

of these parameters. The origin of the time corresponds to the time of the initial set of cement. 

The equations used to model the time-dependent sink rate, permeability and Young’s modulus are 

shown in Equation 3-2, 3-3 and 3-4, respectively. 

 

 𝑠(𝑡)  =  (𝑠𝑖𝑛𝑖 − 𝑠𝑢𝑙𝑡)𝑒
−𝛿𝑠 𝑡 + 𝑠𝑢𝑙𝑡   (3-2) 

 

 
𝐸(𝑡)  =  {

𝐸𝑖𝑛𝑖                                      (0 ≤ 𝑡 ≤ 𝑡0)

(𝐸𝑖𝑛𝑖 − 𝐸𝑢𝑙𝑡)𝑒
−𝛿𝐸 (𝑡−𝑡0) + 𝐸𝑢𝑙𝑡  (𝑡 > 𝑡0)

 (3-3) 
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𝑘(𝑡)  =  {

𝑘𝑖𝑛𝑖                                      (0 ≤ 𝑡 ≤ 𝑡0)

(𝑘𝑖𝑛𝑖 − 𝑘𝑢𝑙𝑡)𝑒
−𝛿𝑘 (𝑡−𝑡0) + 𝑘𝑢𝑙𝑡  (𝑡 > 𝑡0)

 (3-4) 

 

where 𝑠𝑖𝑛𝑖 = initial sink rate, 𝑠𝑢𝑙𝑡 = ultimate sink rate at 𝑡 → ∞, 𝛿𝑠 = time constant for sink 

rate, 𝐸𝑖𝑛𝑖 = initial Young’s modulus, 𝐸𝑢𝑙𝑡 = ultimate Young’s modulus at 𝑡 → ∞, 𝛿𝐸  = time 

constant for Young’s modulus, 𝑘𝑖𝑛𝑖 = initial permeability, 𝑘𝑢𝑙𝑡 = ultimate permeability at 𝑡 →

∞, 𝛿𝑘 = time constant for permeability, 𝑡 = elapsed time since the initial set of cement, 𝑡0 = 

elapsed time since the initial set of cement where cement hydration reaction accelerates. The 

exponential function is chosen because the experimental data on the OPSD cement shows 

exponential decay/increase of absorbed water volume and ultrasonic transit time (i.e., stiffness). 

Although the change in permeability was not measured, it is reasonable to assume that it follows 

the trend of sink rate and stiffness and decreases exponentially with time. Note that the t0 

parameter is relevant only to the RS cement in which the initial ettringite formation hinders the 

hydration reaction until a certain time since the initial set of cement. The sink rate is defined as 

the rate of volumetric strain increment of pore water in this simulation, as shown in Equation 3-

5: 

 

 
𝑠 =  

∆𝜀𝑣,𝑤𝑎𝑡𝑒𝑟
∆𝑡

 (3-5) 

 

where ∆𝜀𝑣,𝑤𝑎𝑡𝑒𝑟 = volumetric strain increment of pore water (positive values for compression). 

The value of ∆𝑡 is set to 1,800 seconds. The calibrated values of the parameters for the sink rate, 

Young’s modulus and permeability are listed in Table 3-2. 

 

Table 3-2 The calibrated values of the model parameters for Class G, RS and OPSD cements. 

 Class G cement RS cement OPSD cement 

sini (/h) 6580 
21200 (𝑡 ≤ 18 h) 
6580 (𝑡 > 18 h) 

2070 

sult (/h) 80 
1200 (𝑡 ≤ 18 h) 
80 (𝑡 > 18 h) 

110 

s 0.1 
1.0 (𝑡 ≤ 18 h) 
0.1 (𝑡 > 18 h) 

0.075 

Eini (GPa) 0.05 0.05 0.02 
Eult (GPa) 16 16 3.81 
E 0.005 0.005 0.02 
kini (mD) 1 0.1 1 
kult (mD) 0.001 0.001 0.004 
k 0.5 0.25 0.4 
t0 (h) 0 15 0 
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The sink rate is assumed to monotonically decrease from its maximum value at t = 0 to an 

asymptote value at 𝑡 → ∞. A large initial sink rate is assigned for RS cement reflecting the fast 

reaction of gypsum. The sink rate of RS cement intersects with that of Class G cement at t = 18 

h, after which the sink rates of Class G and RS cements are set to be identical. OPSD cement has 

an initial sink rate smaller than that of Class G and RS cements because OPSD cement has less 

amount of cement clinkers in the mix. The asymptotic sink rate of OPSD cement is larger than 

those of the other two cements because of the slow reaction of fly ash particles included in the 

mix. It is noted that the values of 𝑠𝑖𝑛𝑖 and 𝑠𝑢𝑙𝑡 are dependent on the initial porosity of the cement 

(i.e., set to 0.25 in this simulation). For instance, if the initial porosity doubles, the values of the 

initial and ultimate sink rates need to be reduced by half, in order to achieve the same amount of 

water consumption in the cement pore space. 

 

The initial permeability is set to 1 mD for Class G cement and OPSD cement, whereas it is set to 

0.1 mD for RS cement to reflect the early ettringite formation. The final permeability is 1 D for 

Class G and RS cements and 4 D for OPSD cement.  

 

Due to limited data on the initial Young’s modulus measurement of early-age cement, the initial 

values are set to be roughly one hundredth of the final values for all cements. The Young’s 

modulus values of Class G and RS cements change from the initial value of 50 MPa to the final 

value of 16 GPa, whereas the Young’s modulus value of OPSD cement changes from 20 MPa to 

3.81 GPa. The development of permeability and Young’s modulus for RS cement is assumed to 

be delayed until t = 15 h due to the delayed hydration reaction of cement clinkers caused by the 

early formation of ettringite (Appleby & Wilson 1996).  

 

The calibration of these model parameters was carried out in the following manner. First, the time-

dependent sink rate was calibrated to match the computed absorbed water volume to the 

experimental result, as the change in the permeability and Young’s modulus had little effect on 

the computed absorbed water volume. Next, time-dependent Young’s modulus was calibrated to 

match the computed bulk shrinkage volume (OPSD cement) or pore pressure change (Class G 

and RS cements) under the undrained condition (i.e., closed valve) with the experimental result 

due to the insensitivity of the permeability on the computed bulk shrinkage volume and pore 

pressure change under the undrained condition. Finally, the time-dependent permeability was 

calibrated to match the computed pore pressure change under the drained condition (i.e., open 

valve) with the experiment data. Since pore pressure data were not available for the OPSD cement 

test, a reasonable initial value and the rate of permeability decrease were assumed for OPSD 

cement. The ultimate permeability value of OPSD cement (0.04 mD) was taken from Thomas et 
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al. (2015). 

 

 

Figure 3-3 Calibrated changes of the (a) sink rate, (b) permeability and (c) Young’s modulus of 

each cement with time. 

 

3.3.3. Sensitivity analysis of the calibrated parameters 

The calibrated values of the parameters for the sink rate, Young’s modulus and permeability are 

not determined through rigorous optimisation (e.g., least square method), but they are rather 

obtained through trial and error until satisfactory match between the experimental and 

computational results are obtained by visual inspection. Therefore, there could be other 

combinations of parameter values that achieve a satisfactory match. In this section, a sensitivity 

analysis of the model parameters on the computed absorbed water volume and pore pressure 
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changes for RS cement is carried out, in order to evaluate how the computed outputs change with 

increasing or decreasing input parameter values.  

 

 

(a) 

 

(b) 
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(c) 

Figure 3-4 The sensitivity analysis of the cement model parameters (RS cement): (a) sensitivity 

of absorbed water volume to the sink rate parameter values; (b) sensitivity of pore pressure 

under the undrained (closed valve) condition to the Young’s modulus parameter values; (c) 

sensitivity of pore pressure under the drained (open valve) condition to the permeability 

parameter values. 

 

Figure 3-4a shows the effect of the sink rate parameters (sini, s and sult) on the computed absorbed 

water volume. The value of one parameter is changed by either twice or half of the calibrated 

values listed in Table 3-2 (shown as 2x and 0.5x) while the values of the other two parameters are 

fixed at the calibrated values. It is found that the increase in the initial sink rate (sini) and the 

decrease in the time constant (s) has a similar effect as they both increase the absorbed water 

volume by approximately 2%. The increase in the ultimate sink rate (sult) also increases the 

absorbed water volume, but the initial slope of the curve (0 < t/tset < 0.5) remains unchanged. 

Therefore, the values of the initial sink rate and time constant should be adjusted to match the 

initial slope, whereas the ultimate sink rate should be adjusted to match the rest of the curve.  

 

Figure 3-4b shows the effect of the Young’s modulus parameters (Eini, E and Eult) on the computed 

pore pressure change under the undrained (closed valve) condition. It is found that the match in 

the first half of the curve (0 < t/tset ≤ 3) is governed by the initial Young’s modulus, whereas the 

time constant (E) and the ultimate Young’s modulus (Eult) only affect the second half of the curve 

(3 < t/tset < 6). This is because the Young’s modulus of RS cement is fixed at the initial Young’s 
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modulus until t/tset = 3 to reflect the early ettringite formation. Therefore, it is the initial Young’s 

modulus that should be adjusted to match the first half of the curve. To match the second half of 

the curve, the values of the time constant and ultimate Young’s modulus could be modified 

interchangeably. However, the value of the ultimate Young’s modulus of cement can be 

constrained by experimental data in the literature (e.g., Teodoriu et al. 2012). Hence, the time 

constant should primarily be adjusted to match the second half of the curve. 

 

Figure 3-4c shows the effect of the permeability parameters (kini, k and kult) on the computed pore 

pressure change under the drained (open valve) condition. Similar to the Young’s modulus 

calibration process, the permeability of RS cement is fixed at the initial permeability (kini) until 

t/tset = 3 to take into account the ettringite formation. As a result, the first half of the curve is not 

affected by changes in the values of the time constant (k) or ultimate permeability (kult). The time 

constant and ultimate permeability start to have an effect in the second half of the curve but in 

slightly different ways, as the former affects the entire second half of the curve (3 < t/tset < 6) 

whereas the latter alters only the end part of the second half of the curve (4.5 < t/tset < 6). Therefore, 

the first half of the permeability curve can be matched by adjusting the initial permeability value, 

whereas the early and late second halves of the curve should be matched by changing the time 

constant and ultimate permeability values, respectively.  

 

3.3.4. Results 

The model calibration results for the three cement tests are shown in Figure 3-5. The time axis 

indicates the time after the initial set of the cement. The data from the period from the mixing of 

the cement to the initial set, tset, (i.e. the thickening time) are removed. The shrinkage before the 

initial set is compensated for by the drop of the cement slurry column in the annulus (Thiercelin 

et al. 1998; Backe et al. 1999). Hence, the shrinkage after the initial set is relevant in this study.  

 

As shown in Figure 3-5, there is good agreement between the experiments and simulations. The 

time-dependent behaviours of the absorbed water and shrinkage volumes are captured adequately 

for all cement types. The time scale of the Class G cement data is limited to a short period of 

several hours after the initial cement set. Hence it is not possible to calibrate beyond this time. As 

a result, the calculated bulk shrinkage volume of Class G cement seems to slightly overestimate 

its typical shrinkage volume (Reddy et al. 2009) (see Figure 3-5a). The agreement in the pore 

pressure curves (Figure 3-5c) is satisfactory until the simulation calculates pore water pressure 

much smaller than the experiment near the end of the time scale. This is probably due to the 

formation of air bubbles in the cement pores in the experiment which decreases pore pressure 

levels. The produced air is initially dissolved in the pore water under high pore pressure. Also, the 
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rebound of the computed pore pressure of Class G cement at the normalised time of approximately 

2.6 (Figure 3-5d) is calculated because the sink rate of Class G cement decreases to the asymptote 

value and the permeability decrease due to cement hydration also stops by this time, allowing 

external water to migrate into the pores of cement to increase the pore pressure. 

 

Figure 3-5 Finite element model (FEM) calibration results of the laboratory tests on cement 

shrinkage: (a) bulk shrinkage volume; (b) absorbed water volume; (c) pore pressure (drainage 

valve closed); (d) pore pressure (drainage valve open). tset = 7.85 h and 5.0 h for the Class G and 

RS cement tests, respectively, while tset = 12.0 h and 8.8 h for the bulk shrinkage volume and 

absorbed water volume of the OPSD cement test, respectively. 

 

3.3.5. Effect of temperature 

The temperature change of cement during hydration may have affected the experimental results 

through the thermal expansion of cement particles and pore water. To investigate this issue, a 

semi-coupled thermo-hydro-mechanical simulation was conducted with the FE model shown in 

Figure 3-2b. In this simulation, the temperature of cement was calculated by an independent 

thermal conduction analysis using the laboratory measured heat rate of OPSD slurry as shown in 

Figure 3-6.  
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Figure 3-6 Hydration heat rate of OPSD slurry measured at 12oC and ambient pressure (Thomas 

et al. 2015) and its numerical approximation by three curves. 

 

The experimental heat rate curve is approximated by a series of equations shown below: 

 

 

Heat rate (mW g paste⁄ ) =  {

0.1𝑒0.184𝑡 − 0.1 (0 h ≤ 𝑡 < 16 h)

−0.5(𝑡 − 16) + 1.8 (16 h ≤ 𝑡 < 18 h)

0.7𝑒−0.05(𝑡−18) + 0.1 (18 h ≤ 𝑡)

  (3-6) 

 

where t = time since cement mixing in hours. The axi-symmetric eight-node biquadratic 

displacement, bilinear temperature element was used. The employed thermal properties are shown 

in Table 3-3. Because thermal properties of OPSD slurry are not reported, two different values of 

thermal conductivity were assigned. A reasonable value of the thermal conductivity of Portland 

cement would be 1.0W/m/K (Zhen & Xiong 2013) (the upper bound). However, OPSD cement 

contains hollow fly ash particles, which may decrease the bulk thermal conductivity by a couple 

of orders of magnitude. As the thermal conductivity of air is about 0.025 W/m/K at 12oC, this 

value is used as the lower bound. The specific heat capacity was assigned as 1.0 J/g/K because 

the values for Portland cement (Zhen & Xiong 2013) and air are similar to this input value. The 

thermal expansion coefficient of early-age cement varies with moisture content (Sellevold & 

Bjøntegaard 2006) and temperature (Cruz & Gillen 1980). In this study, a constant value of 10 

/oC, which is the mean value of oil well cements (Loiseau 2014), was employed. The model 

also considered the temperature-dependent thermal expansion coefficient of pore water (13.41T-

3717)/106 (1/K)). Because the laboratory test was conducted at a constant temperature of 12oC, 
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the initial temperature was set to 12oC and the temperature on the model boundaries was specified 

to a constant value of 12oC. The simulation period was 160 h.  

 

Table 3-3 Thermal properties of cement, formation and pore water assigned to the FEM. 

Thermal conductivity of cement 1.0, 0.025 W/m/K 

Thermal conductivity of formation 2.0 W/m/K 

Specific heat capacity of cement 1.0 J/g/K 

Specific heat capacity of formation 2.0 J/g/K 

Thermal expansion coefficient of cement 10 /K 

Thermal expansion coefficient of formation 1.77  /K 

Thermal expansion coefficient of pore water 13.41T-3717  /K 

 

Results from the thermal analysis of the OPSD cement test are shown in Figure 3-7. The 

maximum average temperature increase is 2.3oC with the lower bound thermal conduction 

coefficient (i.e. 0.025W/m/K) and is less than 0.1oC with the upper bound value (i.e. 1.0W/m/K). 

The computed temperature distributions are fed into the coupled hydro-mechanical simulation. 

Figure 3-8 shows that the effect of temperature change (up to 2oC increase) on the water 

absorption and shrinkage behaviour of OPSD cement is negligible. During the Class G and RS 

cement tests (Appleby & Wilson 1996), the maximum temperature changes were measured to be 

roughly 2oC, which is similar to the value computed for this OPSD cement case. Based on this 

finding, the effect of temperature change on water absorption and shrinkage behaviour is assumed 

to be insignificant.  

 

 

(a) 
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(b) 

Figure 3-7 Results of the thermal analysis on OPSD slurry: (a) average cement temperatures; (b) 

spatial distribution of cement temperature at 16 h (c = 1.0 J/g/K and  = 0.025 W/m/K). 

 

 

Figure 3-8 Results of the coupled hydro-mechanical cement shrinkage analysis of the OPSD 

cement with different temperature inputs from the thermal analysis: (a) bulk shrinkage volume; 

(b) absorbed water volume. 
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3.4. Modelling of cement shrinkage in a wellbore annulus 

 

3.4.1. Model dimensions and material parameters 

The dimensions of the axi-symmetric FEM are shown in Figure 3-9. The model represents a thin 

layer of cement and formation, which are assumed to be located at 100 m below the seafloor at 

the Nankai Trough in Japan (Yamamoto et al. 2014). The water depth of the seafloor is 1002 m. 

The inner and outer radius of the cement is set to 0.122 m and 0.156 m, corresponding to the outer 

diameter of the 9 5/8-in. casing and the diameter of a 12 1/4-in. borehole, respectively. The radial 

length of the formation model is set to 10 m. For both cement and formation, no vertical 

displacement is allowed (i.e., plane strain condition), assuming radial deformation is dominant. 

 

 

 

Figure 3-9 The dimensions of the axi-symmetric FEM for the wellbore model simulation. 

 

Table 3-4 Material properties of the cement and formation. 

 Cement Formation  

Sink rate Figure 3-3a N/A 

Permeability Figure 3-3b 1 mD-0.1 D 

Young's modulus Figure 3-3c N/A 

Swelling gradient N/A 0.03 

Poisson's ratio 0.20 0.25 

Porosity 0.25 0.57 

Bulk modulus of solid phase 21 GPa Incompressible 

Bulk modulus of fluid phase 2.2 GPa Incompressible 

 

The ABAQUS finite element software package was employed to carry out the coupled transient 

fluid flow and stress analysis. The cement and formation are discretised into 20 and 5000 axi-

symmetric eight-node biquadratic displacement, bilinear pore pressure elements, respectively. 
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The length and height of each cement element are 1.67 mm and 1 mm, whereas those of each 

formation element are 2 mm and 1 mm, respectively.  

 

The model properties for the cement and formation are listed in Table 3-4. For the cement, the 

incremental stress-strain constitutive model with time-dependent properties evaluated earlier are 

adopted. The calibrated sink rate, permeability, and Young’s modulus (Figure 3-3) are employed. 

For the formation, the pressure-dependent elastic bulk modulus K as shown in Equation 3-7 is 

used to calculate the stiffness of the unconsolidated formation at a given depth: 

 

 𝐾 = 𝑣𝑝′ 𝜅⁄  (3-7) 

 

where p’ is the mean effective stress, v is the specific volume (=1+e), e is the void ratio and  is 

the swelling gradient. A value of  = 0.03 is used based on the calibration results for this formation 

(Uchida 2012; Zhou 2015). It is noted that as the formation is assumed to be elastic, the mean 

effective stress does not change during cement shrinkage (i.e., cavity contraction). The pressure-

dependent bulk modulus is used not for taking into account effective stress changes during cement 

shrinkage but for assigning the initial stiffness value appropriate to the depth (i.e., effective stress 

level) of the unconsolidated formation. A constant permeability is assigned to the formation within 

the range of 1 mD to 0.1 D as part of parametric study.  

 

3.4.2. Simulation process 

The simulation process was divided into three stages: drilling stage, cement pumping stage, and 

cement shrinkage stage. The formation and cement were separately modelled in the first two 

stages, whereas the two were interacting in the final stage.  

 

In the initial state (Figure 3-10a), the cement elements are not active. For the formation, the initial 

pore pressure and effective stresses are applied to reach geostatic equilibrium. The total vertical 

stress at a given depth of the Nankai Trough is given by the sum of the weight per unit area of the 

seawater with the density of 1.030 g/cm3 and that of the formation with the bulk density of 1.750 

g/cm3 (Suzuki et al. 2015). The vertical effective stress is then calculated by subtracting the 

hydrostatic pore pressure from the total vertical stress. The initial horizontal effective stress is 

calculated using Equation 3-8: 

 

 𝜎′ℎ = (1 − sin𝜙
′)OCRsin𝜙

′
𝜎′𝑣 (3-8) 

 

where 𝜎′ℎ  is the horizontal effective stress; 𝜎′𝑣  is the vertical effective stress; 𝜙′  is the 
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internal effective friction angle of the formation and OCR  is the ratio of the past maximum 

vertical effective stress to the current vertical effective stress. This formula for calculating the 

horizontal effective stresses is employed in soil mechanics. Because the modelled formation is 

unconsolidated clayey overburden at the Nankai Trough, this equation is suitable. The internal 

effective friction angle and OCR value of the Nankai Trough formation is obtained from Nishio 

et al. (2011). The horizontal pressure corresponding to the initial total horizontal stress of the 

formation is applied onto the right-hand side boundary of the formation. The pore pressure is 

fixed to the hydrostatic pressure on the right-hand side boundary, whereas it is free (zero-flux) on 

the left-hand side boundary. 

 

Figure 3-10 The three-stage process of the wellbore model simulation: (a) initial state; (b) 

drilling stage; (c) cement pumping stage; (d) cement shrinkage stage 

 

In the drilling stage (Figure 3-10b), the formation elements located inside the borehole radius are 

removed to simulate the drilling process. The surface pressure corresponding to the hydrostatic 

pressure of seawater is applied on the left-hand side boundary surface. The pore pressure on the 

left-hand side boundary nodes is specified to hydrostatic seawater pressure to simulate drilling 

with seawater (i.e. drained condition).  

 

In the cement pumping stage (Figure 3-10c), the cement elements are activated. The radial 
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displacement on the left-hand side boundary of the cement is constrained to simulate the casing 

wall. The slurry pressure is applied on the right-hand side surface of the cement. The slurry 

pressure is evaluated by the weight per unit area of the seawater (1002 m) and cement (100 m). 

The slurry density used to calculate the slurry pressure is 1900 kg/m3 for Class G and RS cements 

and 1200 kg/m3 for OPSD cement. Two possible scenarios are considered for the initial effective 

stress and pore pressure. Figure 3-11a shows one scenario where the effective stress (i.e. 

interparticle stress) of the cement is zero (’ = 0) and the entire slurry pressure is converted into 

pore pressure (u = cgz + pw) (i.e. underconsolidated cement case). Figure 3-11b shows the other 

scenario where pore pressure becomes the hydrostatic pressure of the formation (u = wgz + pw) 

and the effective stress is generated as the difference between the weight of the cement slurry and 

formation water (’ = (c-w)gz) (i.e. consolidated cement case). In both cases, the total stress of 

the cement remains identical to the slurry pressure ( = ’+u = cgz + pw). These two cases for 

the initial effective stress and pore pressure levels at the onset of cement initial set are two extreme 

scenarios and the reality should lie somewhere in between them.  

 

 

Figure 3-11 Assumed effective stress and pore pressure levels of the cement at the onset of 

cement initial set: (a) underconsolidated cement case; (b) consolidated cement case 

(’=effective stress, u=pore pressure, c=cement slurry density, w=water density, g=gravity 

acceleration, z=depth below seabed, pw=seawater pressure at seabed). 

 

For the formation, the cement slurry pressure is applied at the left-hand side boundary of the 

formation, resulting in radial deformation. Zero fluid flux condition is also applied. In response 

to the total radial stress change, the radial effective stress changes due to the cavity expansion 

process. The excess pore pressure is zero because the formation is modelled as an isotropic elastic 

material. Hence the pore pressure remains the same as the initial condition. 
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In the shrinkage stage (Figure 3-10d), the surface pressures on the contacting boundaries of the 

cement and formation are removed and the contact interaction between the right-hand side 

boundary surface of the cement and the left-hand side boundary surface of the formation is 

activated. The positions of the corresponding cement and formation nodes are adjusted before the 

simulation is submitted such that at the onset of the shrinkage stage these nodes are just in contact 

with each other without penetration or separation. The augmented Lagrange method in ABAQUS 

is used to enforce the contact interaction between the surfaces. In this contact model, the contact 

pressure is augmented in direct proportion to the penetration of the surfaces so as to prevent 

excessive penetration. No tangential friction is assumed as the vertical displacements of the 

cement and formation are both specified to be zero. Fluid flow across the contact interface is 

allowed and pore water moves between the formation and cement. The cement shrinkage is 

initiated by applying the calibrated time-varying sink rate (Figure 3-3a), permeability (Figure 3-

3b), and Young’s modulus (Figure 3-3c) to the cement. The period of this stage is set to 150 h 

with the time increment of 0.5 h.  

 

3.4.3. Results from the consolidated cement case 

When the cement is assumed to be consolidated at the onset of the initial set of cement (i.e. 

consolidated cement case), the pore pressure in the cement is the same as that of the formation. 

The pore water movement is therefore governed by the suction pressure development within the 

cement as well as the permeability contrast between the cement and formation during the 

hardening process. Figure 3-12 shows the changes in the absorbed water volume with time for the 

three cements. The largest absorbed water volume is calculated for Class G cement, whereas it is 

the lowest for OPSD cement. This trend can be explained by the water-to-cement ratio of each 

cement, i.e., the lower the ratio the larger the amount of cement particles that reacts and absorbs 

water. Although the ratios used for Class G and RS cement are not disclosed in Appleby & Wilson 

(1996), the standard water-to-cement ratio of Class G cement is 0.44. A higher water-to-cement 

ratio is usually adopted for RS cement as a portion of cement particles is replaced by gypsum to 

accelerate the initial set (i.e. thickening time). The water-to-cement ratio of OPSD cement is not 

disclosed in Thomas et al. (2015). However, since hollow fly ash particles represent 50% of the 

mass of dry ingredients and 41% of total slurry volume, a higher water-to-cement ratio than the 

other two cements is expected.  
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Figure 3-12 Absorbed water volume of cements since the initial set in the consolidated cement 

case. 

 

For a given cement, the absorbed water volume is in direct proportion to the formation 

permeability as expected. When the formation permeability is greater than 0.1 mD, the absorbed 

water volume is the maximum (5.6% for Class G, 4.4% for RS cement and 3.0% for OPSD cement 

at 150 h). As the formation permeability decreases below 0.1 mD, the absorbed water volume 

becomes smaller due to limited water supply from the low permeability formation. The absorbed 

water volume still increases toward the end of the simulated period (150 h) because the asymptotic 

values of the calibrated sink rates are not zero. Under this condition, the absorbed water volume 

will keep increasing at a constant rate beyond the simulation period, which is unrealistic. 

Experimental data sets for longer periods of cement hydration are necessary, with which the sink 
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rate is calibrated to reach zero, to model long-term water absorption behaviours.  

 

 

Figure 3-13 Pore pressure decrease in cements in the consolidated cement case at the contact 

surface with casing since the initial set. 

 

The computed time-dependent pore pressure in the cement at the contact surface with casing is 

given in Figure 3-13 for different formation permeability values and different cements. When the 

formation permeability is greater than 0.1 mD, the pore pressure remains close to hydrostatic. 

However, as the formation permeability decreases, the pore pressure reduces due to suction 

pressure developing in the cement during the initial hydration process. The suction development 

is greater when water supply from the formation is more restricted. As the hydration continues, 

the suction pressure development decreases and the cement stiffness increases. Consequently, the 
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pore pressure recovers back to the hydrostatic condition. The pore pressure does not recover to 

hydrostatic when the formation permeability is lower than 0.01 mD. This is because the cement 

hydration process continues under restricted water supply from the formation. Pore pressure is 

stabilized below hydrostatic as the cement suction pressure is balanced with the limited water 

supply from the formation. In a long term, it is expected that pore pressure will go back to the 

hydrostatic pressure. To model such pore pressure change, experimental data sets for longer 

periods of cement hydration are necessary. 

 

Figure 3-14 Bulk shrinkage volume of cements since the initial set in the consolidated cement 

case. 

 

The bulk shrinkage behaviour with time is shown in Figure 3-14. When the formation 

permeability is greater than the threshold value of 0.1 mD, the amount of shrinkage is very small 
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because the cement is absorbing water from the surrounding formation during hydration. The 

amount of shrinkage increases as the formation permeability decreases and the amount of 

absorbed water during hydration decreases. The total shrinkage volume under the formation 

permeability of 0.1 D is 1.3%, 1.8%, and 0.5% for Class G cement, RS cement, and OPSD 

cement, respectively. The behaviour of RS cement shows initial shrinkage immediately after the 

initial set but then swells back with time when the formation permeability is greater than 0.01 mD. 

This is because of the large initial sink rate of RS cement, which generates large temporal pore 

pressure decrease. However, the pore pressure quickly recovers by the flow of formation pore 

water into the cement. When the permeability is less than 0.01 mD, the flow from the formation 

is not fast enough and shrinkage increases with time. In all cases, the shrinkage process completes 

after certain time even though the absorbed water volume and pore pressure keep changing. This 

is because stiffness values of the cements become high enough that any additional cement volume 

change by any pore pressure change is negligible. 

 

3.4.4. Results from the underconsolidated cement case 

It is possible that the cement is not consolidated when the initial set of cement occurs. In this 

section, an extreme case of underconsolidated cement with zero effective stress is considered. 

Because the pore water in the cement is greater than that of the formation, the water flows from 

the cement to the formation initially. However, as the cement hydrates, water then starts to flow 

back into the cement as is observed in the consolidated cement case. Hence, complex water 

movement is expected in this case.  

 

The computed absorbed water volume changes with time are shown in Figure 3-15 for the three 

cements. Different from the consolidated cement case, the amount of absorbed water volume is 

not in direct proportion to formation permeability. This is because the pressure difference across 

the cement-formation interface causes the outflux of cement pore water, resulting in negative 

values of absorbed water volume. As the formation permeability increases, the outflux becomes 

greater. However, as the hydration progress, the cement starts to absorb water from the formation. 

The water influx to the cement increases with increasing formation permeability. This competing 

water movement causes complex absorbed water volume changes. For example, in case of Class 

G cement, the absorbed water volume in the 0.1 mD case is the largest compared to the other 

cases with the formation permeability greater or less than 0.1 mD. In case of OPSD cement, the 

differences in absorbed water volume are small within the cases of different formation 

permeability values. In reality, the cement would be partially consolidated or the pore pressure of 

the formation around the cement would be greater than the hydrostatic condition due to infiltration 

of the slurry into the formation. Thus, the calculated cement pore water outflux may be somewhat 
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exaggerated.  

 

Figure 3-15 Absorbed water volume of cements since the initial set in the underconsolidated 

cement case. 

 

The changes in the cement pore pressure at the interface with casing are shown in Figure 3-16. 

When the formation permeability is greater than 0.1 mD, the pore pressure decreases to the 

formation pressure of 11.14 MPa at the initial stage of hydration. When the formation 

permeability is less than 0.1 mD, the pore pressure decreases further with decrease in formation 

permeability as capillary suction pressure increases. However, pore pressure recovers back to the 

hydrostatic state with time as the hydration process progresses. A similar trend is observed in the 

consolidated cement case. 
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Figure 3-16 Pore pressure decrease in the cement at the contact surface with casing since the 

initial set in the underconsolidated cement case. 

 

Figure 3-17 shows the bulk shrinkage behaviour of Class G cement, RS cement and OPSD cement, 

respectively. The trend observed here is inverse to what is observed in absorbed water volume. 

The total bulk shrinkage volume can be divided into two parts: (i) initial shrinkage due to the 

outflux of cement pore water and (ii) primary shrinkage due to cement water absorption. The 

initial shrinkage increases with increasing formation permeability, whereas the primary shrinkage 

decreases with increasing formation permeability. Because of the opposite trends of the initial 

shrinkage and primary shrinkage with respect to formation permeability, the total shrinkage does 

not correlate well with formation permeability.  
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Figure 3-17 Bulk shrinkage volume of cements since the initial set in the underconsolidated 

cement case. 

 

3.4.5. Effect of cement hydration heat 

As was performed for the calibration simulation, a semi-coupled thermo-hydro-mechanical 

analysis on the water absorption and shrinkage behaviour of the annular cement was carried out 

to assess the effect of temperature change. First, a thermal analysis was conducted to compute the 

temperature distribution of the cement. The axi-symmetric eight-node biquadratic displacement, 

bilinear temperature element was assigned to the identical FEM shown in Figure 3-9. The thermal 

properties of the cement (i.e., OPSD cement) and formation are listed in Table 3-3. The initial 

temperature was set to 12oC. The model boundary was specified with a constant temperature of 

12oC. The simulation period was set to 160 h. The computed average temperatures within the 
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cement with time are shown in Figure 3-18 for two different thermal conductivity values. The 

temperature increase of the cement is greater in the wellbore configuration compared to the 

laboratory test configuration. This is because in the wellbore configuration the radial dimension 

of the cement is larger than that in the laboratory test configuration, and it is also because no 

thermal conduction in the vertical direction is allowed in the wellbore configuration.  

 

The computed temperatures were applied to the coupled hydro-mechanical simulations. The 

formation permeability was set to 0.1 D. The results shown in Figure 3-19 indicate that the effect 

of temperature changes on the hydration of OPSD cement on the absorbed water and bulk 

shrinkage behaviour is found to be insignificant for this wellbore geometry, similar to what was 

found in the laboratory cases.  

 

   

Figure 3-18 Changes in the average cement temperature of OPSD slurry computed in the 

thermal analysis in the wellbore configuration. 
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Figure 3-19 Result of the semi-coupled thermo-hydro-mechanical analysis on OPSD cement in 

the wellbore configuration: (a) absorbed water volume; (b) pore pressure; (c) bulk shrinkage 

volume. 

 

 

3.5. Discussion 

 

Figure 3-20 shows the correlation between cement bulk shrinkage volume at the end of the 

simulation period (150 h) and formation permeability for both consolidated and 

underconsolidated cement cases. The shaded area shows the uncertainty of bulk shrinkage volume 

due to the uncertainty in the initial pore pressure and effective stress levels of cement at its initial 

set. It is found that larger shrinkage values are calculated for the underconsolidated cement case 

than for the consolidated cement case in the formation permeability range examined in this study. 
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This is due to the initial outflux of cement pore water into the formation (i.e. initial shrinkage), 

which occurs because the initial pore pressure is assumed to be equal to the slurry pressure (> 

formation pore pressure) in the underconsolidated cement case. As a result, the uncertainty of 

bulk shrinkage volume increases with increasing formation permeability. At the formation 

permeability of 1 mD, for example, the bulk shrinkage volume could vary between 0.02% and 

1.16% (Class G cement), 0.01% and 1.27% (RS cement) and 0.01% and 0.71% (OPSD cement). 

The uncertainty decreases with decreasing formation permeability. Whilst the uncertainty of bulk 

shrinkage volume decreases with decreasing formation permeability, the value of bulk shrinkage 

volume itself increases with decreasing formation permeability, as the formation water could not 

migrate to the cement pores to compensate for the shrinkage at lower formation permeability. 

 

Figure 3-20 Correlations between bulk shrinkage volume of cements at 150 h and formation 

permeability. 
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Based on the pore pressure changes of the cements (see Figure 3-13 and Figure 3-16), the 

threshold formation permeability, above which the provision of sufficient formation water into 

the cement is guaranteed, appears to be between 0.01 mD and 0.1 mD for the cement types 

examined in this study under both consolidated and underconsolidated cases. The minimum 

permeability in the methane hydrate concentrated layer in the Nankai Trough seems to be 0.01 

mD based on the formation core analysis (Konno et al. 2015) and wireline logging data (Fujii et 

al. 2015). Therefore, water provision to the hardening cement could be limited in the reservoir 

layer. In addition, the overburden layer is composed of clayey material, which is likely to have 

permeability values lower than 0.01 mD. In this case, insufficient water provision to the cement 

could cause larger-than-expected cement shrinkage volume. At the formation permeability value 

of 0.01 mD, the computed bulk shrinkage volume at 150 h varies between 0.25% and 1.14% 

(Class G cement), 0.25% and 1.50% (RS cement) and 0.11% and 0.52% (OPSD cement), 

respectively.  

 

It is noted that the temperature and pressure conditions in the actual wellbore are different from 

those of the laboratory shrinkage test performed for Class G and RS cements. In the actual 

wellbore, typical temperature and pressure values are approximately 12oC and 12 MPa 

(Yamamoto et al. 2017), whereas the laboratory shrinkage test was conducted at approximately 

20oC and 2 MPa. The literature shows that cement shrinkage volume increases with increasing 

temperature and pressure levels (Backe et al. 1998; Reddy et al. 2009). Hence, the shrinkage 

volume measured for Class G and RS cements might have been underestimated. Moreover, one 

of the modelling assumptions is that the formation remains poro-elastic during cement shrinkage. 

In reality, the stress distribution in the formation around the wellbore could change in a complex 

manner due to potential plastic strain development in the formation. Shear stress could also be 

generated at the cement-formation interface due to cement shrinkage, which was not considered 

in this study. The cement permeability could increase significantly if cracks are generated in the 

cement due to shrinkage. In this case, cracks would predominantly form radially from the casing-

cement interface (Bois et al. 2012). These points may have to be addressed to improve the 

accuracy of the simulation of the annular cement shrinkage volume.  

 

 

3.6. Summary  

 

In this study, the coupled hydro-mechanical finite element analysis was carried out to simulate 

the migration and absorption of water and the bulk shrinkage behaviour of early-age cement in 
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the wellbore annulus. The main objectives of this study are (i) to assess the threshold value of 

formation permeability, below which the water supply to the hardening cement becomes 

important, and (ii) to estimate the bulk shrinkage volume of cements in the wellbore annulus for 

such cases. The water absorption characteristics of cements were calibrated based on the 

laboratory shrinkage test data on three different cement types found in the literature: Class G 

cement, rapid setting (RS) cement, and OPSD cement. The calibrated cement shrinkage 

parameters were incorporated into the wellbore cement shrinkage simulation where the 

interaction between the hardening cement and the formation was simulated. The simulation of the 

wellbore cement shrinkage yielded the following findings. 

 

(i) The threshold permeability value of the formation for providing sufficient water to hardening 

early-age cements is found to be between 0.01 mD and 0.1 mD for the Nankai Trough 

scenario. Since the formation permeability near the reservoir layer at this site could be as low 

as 0.01 mD, the formation might not be capable of providing sufficient water to hydrating 

early-age cements. 

(ii) The bulk shrinkage volume of OPSD cement at the Nankai Trough case could be in a range 

of 0.01% to 0.71%, if formation permeability varies between 1 mD and 0.01 mD. If Class G 

or RS cement were used, the bulk shrinkage volume could vary from 0.02% to 1.16% (Class 

G cement) and from 0.01% to 1.50% (RS cement) in the same formation permeability range.  

(iii) Whether the cement is consolidated or underconsolidated at the onset of cement initial set 

has a significant impact on the bulk shrinkage volume of the cements. In the 

underconsolidated cement case, the outflux of cement pore water into the formation occurs 

in the initial stage which increases the bulk shrinkage volume.  

 

This study identified a reasonable range of cement bulk shrinkage volumes expected at the Nankai 

Trough, owing to the availability of the shrinkage test data of OPSD cement, which was actually 

used for the cementing operation at the Nankai Trough. The simulation cases of Class G and RS 

cements are carried out for comparison purposes. To extend the applicability of the proposed 

methodology to estimate the water migration/absorption and the bulk shrinkage behaviour of 

early-age cements to be used in different formation conditions, cement shrinkage tests need to be 

conducted under pressure and temperature conditions tailored to those at the target depths of the 

formation such that the model parameters are calibrated accurately.  
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4. Simulation of wellbore construction in offshore unconsolidated 

methane hydrate-bearing formation 

 

 

4.1. Introduction 

 

Field trials of gas production from methane hydrate reservoirs in the Mackenzie Delta in Canada 

(Yamamoto & Dallimore 2008) and in the Nankai Trough in Japan (Boswell 2013; Yamamoto et 

al. 2014) have shown that the control of formation integrity is crucial for sustainable gas 

production. For instance, the sand production issue was encountered in the Nankai Trough field 

trial (Yamamoto 2015) due to the unconsolidated nature of the methane hydrate-bearing formation, 

which terminated gas production by clogging the well.  

 

During well construction, the integrity of unconsolidated formation is affected significantly near 

the wellbore, which in turn complicates the interpretation of downhole tests. For example, at the 

A1-E1 well in the Nankai Trough site, mini-frac tests were conducted to estimate the minimum 

horizontal stress after well construction, but it was found difficult to interpret the result 

(Matsuzawa et al. 2006; Yamamoto et al. 2005; Yamamoto et al. 2006). Figure 4-1a shows the 

estimated minimum horizontal stress values of the formation at the Nankai Trough site. The 

symbols indicate the estimations by the mini-frac tests (i.e., closure pressure and propagation 

pressure) whereas the lines show theoretical estimations calculated with the formation density of 

1.75 g/cm3 and seawater density of 1.027 g/cm3 by Equation 4-1: 

 

 𝜎ℎ = 𝐾0(𝜎𝑣 − 𝑢) + 𝑢 (4-1) 

 

where 𝜎ℎ  = horizontal total stress; 𝜎𝑣  = vertical total stress; 𝑢  = pore pressure; 𝐾0  = ratio 

between the vertical and horizontal effective stresses (as in 𝐾0 consolidation test). Figure 4-1a 

shows that the estimated values of the minimum horizontal stress from the mini-frac tests are 

scattered over a larger error range. 

 

Figure 4-1b shows a borehole radius measurement of the A1-W well (Takahashi & Tsuji 2005), 

which was located approximately 50 m in the north from the A1-E1 well. The borehole radius is 

normalized by the radius of the drill bit. Considerable borehole enlargement was observed in the 

overburden and underburden layers of the unconsolidated Nankai Trough formation. This 

indicates that the formation was significantly disturbed by well construction process.  
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Therefore, it is hypothesized in this study that well construction process has an impact on 

formation integrity in a way that well construction-induced formation disturbance could 

potentially cause subsequent formation and/or well failures during hydrate dissociation. A finite 

element analysis was carried out to assess the effect of wellbore construction on the integrity of 

the unconsolidated Nankai Trough formation in Japan. The main objectives are as follows:  

 

(i) to assess the zone and magnitude of well construction-induced disturbance in the 

formation and  

(ii) to evaluate relative impact of each well construction stage on the integrity of the 

formation.  

 

 

Figure 4-1 In situ measurements of wellbores at the Nankai Trough: (a) Estimated 

values of the minimum horizontal stress; (b) borehole enlargement after the drilling. 

 

The geometry of the axi-symmetric finite element model was based on that of an experimental 

wellbore (i.e., the A1-E1 well) constructed in 2004 in the Nankai Trough. The methane hydrate 

critical state (MHCS) model (Uchida et al. 2012), which incorporates the effect of methane 

hydrate on the formation mechanical properties, such as strength, stiffness and dilation 
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enhancement (Hyodo et al. 2014; Hyodo et al. 2013; Masui et al. 2005; Masui et al. 2007; Yoneda 

et al. 2015; Miyazaki et al. 2011), was employed. The MHCS model was calibrated against triaxial 

test data of in situ formation samples recovered from the Nankai Trough (Yoneda et al. 2015; 

Nishio et al. 2011).  

 

 

4.2. Finite element modelling 

 

4.2.1. Model geometry 

A two-dimensional axi-symmetric finite element model was constructed. The model geometry 

was designed by Xu (2014) and it was based on the A1-E1 well drilled in 2004 at the Atsumi No.2 

knoll in the Nankai Trough (Takahashi & Tsuji 2005). The A1-E1 well was constructed as part of 

the multi-well exploration program implemented in 2004 at the Nankai Trough and it was 

organized by Japan Oil, Gas and Metals National Corporation (JOGMEC). In total, 32 wells were 

drilled at 16 locations by the drill ship “JOIDES Resolution” over a 122-day period. The main 

objectives of the exploration program were (i) to assess suitable drilling technologies for future 

exploration and (ii) to obtain accurate temperature profiles of the formation.  

 

Figure 4-2 shows the dimensions of the two-dimensional axi-symmetric model with the boundary 

conditions. The seafloor was 1,002 m below the sea surface and the depth of the well was 404 m 

from the seafloor. The depth of the formation in the model was set to 430 m from the seafloor. 

The methane hydrate-bearing interval (i.e., 277 m-339 m) was overlaid by a clayey layer (0 m-

277 m) and was underlain by a sandy layer (i.e., 339 m-430 m). In order to avoid any boundary 

effects, the radial length of the formation was set to 50 m, which was greater than 200 times the 

radius of the 17 1/2-in. borehole for the conductor casing. The wellbore was comprised of a 

conductor casing (0 m-53 m) and a surface casing (0 m-404 m) with cement in the annuli. The 

outer diameter of the conductor was 0.340 m (13 3/8-in.) which was placed in a 0.445 m (17 1/2-

in.) diameter borehole. The diameter of the surface casing was 0.244 m (9 5/8-in.) and it was 

placed in a 0.311 m (12 1/4-in.) diameter borehole. The wall thicknesses of the conductor and 

surface casing were 0.00965 m and 0.0100 m, respectively. A constant formation/water pressure 

boundary was applied on the outer radial boundary of the model.  

 

A finite element code, ABAQUS, was used for the simulations. The model was discretized into 

eight-node quadratic-displacement elements (casing and cement) and eight-node quadratic-

displacement bilinear-pore pressure elements (formation). In total, the model was discretized into 

37,051 elements and 112,250 nodes. The spatially-varying mesh size of the elements (Figure 4-3) 
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was designed by Xu (2014). The vertical mesh size of the methane hydrate-bearing interval was 

set to be finer (0.400 m) than that of the overburden and underburden layer (1.17 m). The radial 

mesh size of the formation was gradually varied from fine mesh near the symmetric axis (2.32 

mm) to coarse mesh at the outer radial boundary of the model (4.72 m). 

 

Figure 4-2 Geometry of the 2D axi-symmetric finite element model [after Xu (2014)]. 

 

 

Figure 4-3 Mesh of the 2D axi-symmetric model around the wellbore and reservoir layer [after 

Xu (2014)]. 

 

4.2.2. Constitutive models 

Methane hydrate critical state (MHCS) model (Uchida et al. 2012) was employed to simulate the 

behavior of the formation. The MHCS model is selected for the modelling of the formation 

behaviour because it is capable of simulating the enhancement of stiffness, strength and dilation 

of the formation due to the presence of methane hydrate in the soil pores (Miyazaki et al. 2007; 
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Masui et al. 2007; Masui et al. 2005). Also, in order to estimate formation damage during well 

construction process, it is critical to use a constitutive model which can simulate the plastic strain 

development of formation accurately. As the strength of the MHCS model is the accurate 

computation of plastic volumetric deformation of methane hydrate-bearing soil, the MHCS model 

is chosen to model the formation behaviour in this study. The subloading surface (Hashiguchi 

1989) is incorporated to facilitate a smooth transition from the elastic to plastic behaviour. The 

model parameters of the MHCS model were calibrated against the triaxial test data on the core 

samples recovered from the Nankai Trough (Nishio et al. 2011; Yoneda et al. 2015).  

 

Table 4-1 Calibrated MHCS model parameters for the formation. 

 Overburden clay 
Methane hydrate 

reservoir 
Underburden 

sand 

Depth (m) 0~277 277~339 339~430 

Saturated bulk density (kg/m3) 1750 1750~2000 2000 

Initial void ratio 1.31 1.31~0.717 0.717 

Gradient of compression line,  0.18 0.10 0.10 

Gradient of swelling line,   0.03 0.02 0.02 

Critical state frictional constant,  1.30 1.37 1.37 

Poisson’s ratio,  0.25 0.35 0.35 

Subsurface constant, U 15 8 8 

Stiffness enhancement constant, m2  0 200 0 

Hydrate degradation constant, m1 0 2.0 0 

Dilation enhancement constant, A 0 20 0 

Dilation enhancement constant, B 0 1.4 0 

Cohesion enhancement constant, C 0 0.5 0 

Cohesion enhancement constant, D 0 1.4 0 

 

The values of the bulk density, initial void ratio and critical state frictional constant (i.e., internal 

friction angle) are taken from the literature (Yoneda et al. 2015; Suzuki et al. 2015; Nishio et al. 

2009), whilst the values of the other parameters are calibrated to match the experimental results. 

For example, the initial slope of the deviator stress-axial strain curve is matched by adjusting the 

value of , while the magnitude of plastic strains (i.e., strain hardening/softening and 

dilation/compaction) is controlled by adjusting the value of  . The rate of transition from elastic 

to plastic deformations is adjusted by changing the value of U. Typical values of Poisson’s ratio 

for clay and sand are assumed. After matching the clay and sand with zero hydrate saturation data, 

the values of m1, m2, A, B, C and D are adjusted from the values provided in Uchida (2012) to 

match the computed results for the sand with non-zero hydrate saturation values with the 

experimental data. The match is judged visually and no optimisations of the parameter values 

(e.g., least square method) are carried out. The calibration results are demonstrated in Figure 4-4. 
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The calibration error for the excess pore pressure of the clayey overburden (Figure 4-4b) at the 

depth of 115.2 m and 240.1 m seems relatively large at large axial strain levels. However, this 

might be due to the poor quality of the samples taken at depths below 40 m as Nishio et al. (2011) 

pointed out in his paper. The calibrated parameters for the clayey overburden layer, methane 

hydrate reservoir and sandy underburden layer are shown in Table 4-1. The density and void ratio 

of the formation were determined from the logging data given in Suzuki et al. (2015). The hydrate 

saturation and permeability distributions were also obtained from the logging data (Figure 4-5). 

Details of the MHCS model and its parameters are provided in the Appendix of this paper.  

 

 

Figure 4-4: Calibration result of the MHCS model: (a) deviatoric stress vs. axial strain(clay); (b) 

excess pore pressure vs. axial strain (clay); (c) deviatoric stress vs. axial strain (sand); (d) 

volumetric strain vs. axial strain (sand). 

 

The casings and cement were assumed to be isotropic linear elastic materials. The Young’s 

modulus and Poisson’s ratio of the casings are set to 200 GPa and 0.27, respectively. For the 

cement, the model parameters were varied with time during the hardening stage. The transition 

from slurry to hardened cement was modeled by linearly changing the Young’s modulus and 

Poisson’s ratio with time. The Young’s modulus and Poisson’s ratio for the slurry cement were 

0.131 GPa and 0.49, while they were 3.81 GPa and 0.21 for the hardened state. The densities of 
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the casing and cement were set to 8000 kg/m3 and 1370 kg/m3, respectively.  

 

Figure 4-5: Distributions of (a) hydrate saturation and (b) permeability in the formation. 

 

Table 4-2 The modeled construction stages. 

Construction activity Duration (hour) 

1. Drilling (17 1/2-in.) 14.4 

2. Casing hanging (13 3/8-in.) Immediate 

3. Cementing Immediate 

4. Cement hardening/shrinkage 40.8 

5. Casing landing (13 3/8-in.) Immediate 

6. Drilling (12 1/4-in.) 30.2 

7. Casing hanging (9 5/8-in.) Immediate 

8. Cementing Immediate 

9. Cement hardening/shrinkage 40.8 

10. Casing landing (9 5/8-in.) Immediate 

 

4.2.3. Construction processes of the wellbore 

The construction process of the A1-E1 well was modelled in ten separate stages. The schematic 

diagrams of the construction stages are shown in Figure 4-6. Table 4-2 illustrates the modeled 

construction stages and their durations. It starts from (i) drilling, followed by (ii) casing hanging, 

(iii) cementing, (iv) cement hardening/shrinkage and finishes with (v) casing landing. These five 

stages were applied first for the conductor casing placement and then repeated for the surface 

casing placement. It is noted that hydrate dissociation or reformation was not simulated in this 

study as the pressure and temperature conditions of the A1-E1 well was maintained during well 

construction process by using in situ seawater as drilling fluid. Also, any thermal stress 

development in the formation was not considered for the same reason. The details of each 
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construction stage are described below.  

 

                      (a)                               (b)                     

 

                       (c)                              (d)                     

 

(e) 

Figure 4-6 The simulated construction processes of wellbore: (a) drilling; (b) casing hanging; 

(c) cementing; (d) cement hardening/shrinkage; (e) casing landing. 
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(i) Drilling  

The drilling process was modelled by removing the formation elements located inside the 

borehole. Upon the removal of the elements, the forces on the nodes of the neighboring elements 

along the borehole were linearly decreased with time from the values before the element removal 

to zero. The hydrostatic pore fluid pressure boundary condition was specified on the nodes of the 

borehole surface to model the drilling with seawater, which was actually performed for the A1-

E1 well. Also, hydrostatic surface pressure boundary condition was implemented on the surface 

of the borehole. Figure 4-6a shows the modelling process of the drilling stage. 

 

The load due to weight on bit (WOB) at the bottom of the borehole was not considered in this 

study by assuming that WOB was not significant during the drilling of the unconsolidated 

formation. This assumption could be validated by the speed of drilling which was 197 ft/h (60 

m/h) for the overburden and underburden layer and 66 ft/h (20 m/h) for the methane hydrate-

bearing layer (Takahashi & Tsuji 2005). Such a high drilling speed indicates the ease of drilling 

the unconsolidated formation. Also, the nozzle hydraulic jet during drilling and potential shaft 

friction between the drilling string and borehole wall were not considered. Thus, results of the 

simulation would indicate a lower-bound estimate for the disturbance of the formation during 

drilling.  

 

(ii) Casing hanging  

The casing elements, which had been deactivated at the start of the simulation, were activated in 

this stage. Zero vertical displacement boundary condition was enforced at the top nodes of the 

casing to simulate the hanging operation. Hydrostatic surface pressure boundary condition was 

applied on the surface of the casing. The hydrostatic surface pressure and pore pressure boundary 

condition on the borehole surface and nodes were maintained in this stage. The details of the 

casing hanging stage are illustrated in Figure 4-6b. 

 

(iii) Cementing  

To simulate the cementing stage, the hydrostatic surface pressure boundary condition on the 

casing outer surface and borehole surface was replaced by a new surface pressure boundary 

condition whose magnitude corresponded to the density of the cement slurry. The density of 

cement slurry employed for the A1-E1 well was 1370 kg/m3 (Takahashi & Tsuji 2005). The 

hydrostatic surface pressure boundary condition was maintained on the inner surface of the casing 

to simulate the pressure from the drilling fluid (i.e., seawater), whereas the hydrostatic pore 

pressure boundary condition on the borehole surface was removed (i.e., pore pressure boundary 
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condition was left unspecified). Figure 4-6c depicts the boundary conditions of the cementing 

stage.  

 

(iv) Cement hardening and shrinkage 

The cement elements, which had been deactivated at the start of the simulation, were activated in 

the annulus and the surface interaction with the casing and formation were initiated. All the 

surface pressure boundary conditions in the wellbore were removed except for the hydrostatic 

surface pressure boundary condition on the inner surface of the casing.  

 

To simulate cement hardening, the values of Young’s modulus and Poisson’s ratio were linearly 

varied with time from those of the slurry (0.131 GPa and 0.49) to those of the hardened cement 

(3.81 GPa and 0.21). In addition, the interface friction angle was linearly increased from 0o to 30o, 

which is an average friction angle of the cement interface to the casing and soil (Kakumoto et al. 

2012; Yoneda et al. 2014). The interface friction stress was computed by the Coulomb friction 

model. To model cement shrinkage, the volume of the cement was linearly decreased with time 

through fictitious thermal contraction. Due to the simultaneous development of the cement 

interface friction and shrinkage, the compressive vertical stress in the cement decreases as the 

cement column was restrained from displacing downward. 

 

The interface pressure was calculated by the penalty method with an augmentation iteration 

scheme (i.e., augmented Lagrange method). In this method, contact pressure is calculated by 

multiplying surface penetration distance by the stiffness of representative underlining elements. 

The contact pressure is then augmented through an iterative scheme to reduce the surface 

penetration below a limit value, which is based on a characteristic element length of the finite 

element model. Surface separation was allowed (i.e., zero contact stiffness in tension) even though 

surface separation never occurred in the simulation due to high initial contact pressure. Figure 

4-6d shows the details of the cement hardening/shrinkage stage. 

 

It is noted that the generation of cement hydration heat and resultant heat conduction was not 

simulated in this study. If the temperature increase due to cement hydration heat was large, 

methane hydrate would dissociate and the integrity of the formation would be affected. However, 

a cement hydration analysis in a well annulus at the Nankai Trough (Sasaki, Soga & Abuhaikal 

2018) shows that the temperature increase due to cement hydration heat would be less than 0.5 

oC. As a result, the assumption of negligible cement hydration heat and no hydrate dissociation is 

valid for this study.   
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(v) Casing landing 

The zero vertical displacement boundary condition at the top nodes of the casing was removed in 

this stage to release the casing from hanging. The hydrostatic surface pressure boundary condition 

on the inner surface of the casing was maintained. These procedures are illustrated in Figure 4-6e. 

 

4.2.4. Cement volume shrinkage 

Cement volume shrinkage occurs due to cement hydration process. The volumes of cement 

shrinkage reported in the literature varies from 0.1% to 4.5% (Goboncan & Dillenbeck 2003; 

Backe et al. 1998; Justnes et al. 1995; Chenevert & Shrestha 1991; Chenevert & Shrestha 1987). 

This large variance is not only because the cement volume shrinkage is significantly affected by 

the temperature and pressure conditions and the employed test method (Reddy et al. 2009), but 

also because the reported values often include shrinkage before the initial set of cement (i.e., 

shrinkage within the thickening time). In actual cementing operations, shrinkage before the initial 

set is usually compensated by the drop of slurry column in the annulus (Thiercelin et al. 1998; 

Backe et al. 1999). On the other hand, shrinkage after the initial set cannot be compensated in the 

same way due to the development of friction and cohesion at the cement interface to casing and 

formation (Chenevert & Jin 1989). Therefore, shrinkage after the initial set is the relevant 

parameter for the simulation. Also, due to the vertical frictional resistance, shrinkage after the 

initial set occurs predominantly in the radial direction (Zhou & Wojtanowicz 2000).  

 

The shrinkage volume of a typical oil well cement after the initial set is smaller than 1% according 

to the laboratory cement shrinkage experiments (Reddy et al. 2009; Appleby & Wilson 1996). 

However, cement shrinkage in laboratory conditions may differ from that in downhole conditions 

where the cement is surrounded by casing and formation. A numerical simulation on cement 

shrinkage in the downhole condition at the Nankai Trough was conducted by Sasaki et al. (2018) 

and they found that the shrinkage volume of cement employed at the Nankai Trough could reach 

up to 0.75%. Therefore, the shrinkage volume was varied between 0 to 0.75% in the simulation. 

 

4.2.5. Initial horizontal stress of the formation 

The initial horizontal stress of the formation was calculated through the lateral earth pressure 

coefficient, K0 as shown in Equation 4-2: 

 

 𝜎′ℎ = 𝐾0𝜎′𝑣 (4-2) 

 

where 𝐾0 = lateral earth pressure coefficient; 𝜎′ℎ = horizontal effective stress; 𝜎′𝑣 = vertical 

effective stress. 



4. Simulation of wellbore construction in offshore unconsolidated methane hydrate-bearing 

formation 

 

84 

 

 

The effective stress in the equation refers to the Terzaghi effective stress, which is the total stress 

subtracted by pore fluid pressure (𝜎′ = 𝜎 − 𝑝). Three different formulations for K0 were used in 

this study. Equation 4-3 is the one frequently employed in the field of soil mechanics. This 

formulation takes into account the stress history of the formation on the current horizontal stress. 

The over-consolidation ratio (OCR) was calculated by dividing the maximum vertical effective 

stress experienced by the formation in the past by the current vertical effective stress. The past 

maximum vertical effective stress was estimated from the triaxial test data (Nishio et al. 2011; 

Yoneda et al. 2015) whereas the current vertical effective stress was obtained from the density 

data of the formation (Suzuki et al. 2015).  

 

 𝐾0 = (1 − sin𝜙
′)OCRsin𝜙

′
 (4-3) 

 

where 𝜙′  = internal friction angle of the formation; OCR  = overconsolidation ratio, i.e., the 

ratio of the past maximum vertical effective stress to the current vertical effective stress.  

 

Equation 4-4 is another formula for K0 which is often employed in the field of rock mechanics. It 

calculates K0 assuming that the formation is an elastic material. 

 

 
𝐾0 =

𝜈

1 − 𝜈
 (4-4) 

 

where 𝜈 = Poisson’s ratio of the formation.  

 

A series of mini-frac test was performed at the Nankai Trough to estimate the minimum horizontal 

stress of the formation (Yamamoto et al. 2006; Yamamoto et al. 2005). The result suggested K0 = 

0.40 at 310 m below seafloor, which is approaching the active pressure coefficient of the 

formation (Ka = (1-sin’)/(1+sin’)). It was also found through the anelastic strain recovery 

method that the difference between the maximum and minimum horizontal stress magnitudes 

would be small (Nagano et al. 2015). Accordingly, K0 = 0.40 was also employed to calculate the 

initial horizontal stress of the formation. The three different K0 profiles employed in this study are 

compared in Figure 4-7. 
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Figure 4-7 Three different distributions of the lateral earth pressure coefficient, K0, employed to 

calculate the initial horizontal stress of the formation. 

 

4.2.6. Initial conditions 

The initial vertical effective stress was calculated based on the density distribution of the 

formation in the Nankai Trough (Suzuki et al. 2015). The initial horizontal effective stresses were 

assumed to have identical magnitudes. This assumption is considered to be valid for the formation 

in the Nankai Trough based on the anelastic strain recovery analysis on core samples (Nagano et 

al. 2015). The hydrostatic pore pressure was assigned as the initial pore pressure, which was 

calculated from the seawater density of 1027 kg/m3. The initial porosities of the formation were 

determined from the in situ logging data (Suzuki et al. 2015). 

 

4.2.7. Numerical solution scheme of the analysis 

The simulation was performed by applying external load, which was induced by well construction 

process, as boundary conditions on the wellbore region of the model. In response to the input 

external load, displacement was calculated. Stress and strain were then calculated from the 

displacement through the constitutive model. Finally, internal load was calculated from the stress, 

which was then compared with the applied external load.  

 

The solution was obtained iteratively by employing Newton’s method. The convergence was 

considered to be satisfied if the load residual (i.e., difference between the external and internal 

load) at the end of an iteration in an increment was smaller than 0.5% of the time- and spatially-
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averaged load of the entire model. If the load residual was greater than the tolerance value, another 

iteration was performed until the load residual was decreased below the tolerance value at all 

nodes in all degrees of freedom. In addition to the load convergence criterion, a displacement 

convergence criterion was specified such that the displacement calculated in the latest iteration 

(i.e., displacement correction) must be smaller than 1% of the total displacement calculated for 

the increment.  

 

If the behavior of the model was found to be unstable due to material softening and/or buckling 

(i.e., negative stiffness), volume-proportional damping was applied to stabilize the model and to 

find a converged solution. The values of the damping factor were chosen in such a way that the 

incremental dissipated energy due to damping in an increment was smaller than 0.02% of the total 

strain energy of the model. Also, the cumulative dissipated energy due to damping was enforced 

to be smaller than 5% of the total strain energy of the model to make sure that the accuracy of the 

solution was not compromised due to damping.  

 

 

4.3. Results and discussion  

 

4.3.1. Effective stress and plastic strain in the formation during wellbore construction 

The effective stresses, pore pressure and plastic deviatoric strain in the formation generated during 

the wellbore construction stages along the 12 1/4-in. dimeter borehole are presented in Figure 4-8. 

Positive effective stresses indicate compression using the traditional soil mechanics convention. 

The cement volume shrinkage was set to 0.75% while the initial horizontal stress of the formation 

was calculated with K0 = (1-sin’)OCRsin’.  

 

The formation behavior during wellbore construction was dictated by the cavity 

contraction/expansion mechanism around the wellbore, i.e., an increase in the radial effective 

stress is accompanied by a decrease in the circumferential effective stress, and vice versa. During 

the drilling stage, the radial effective stress at the wellbore surface decreased to zero (Figure 4-8b) 

because pore pressure and surface pressure are equal to each other at the hydrostatic pressure 

along the borehole, simulating the drilling with seawater as the drilling fluid. In the meantime, 

the circumferential effective stress increased according to the cavity contraction mechanism. The 

vertical effective stress decreased because the formation developed plastic strain during the 

drilling stage, causing stress redistribution around the wellbore.  
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Figure 4-8: Changes in stress and strain levels of the formation along the 12 1/4-in. diameter 

borehole wall surface during well construction stages: (a) vertical effective stress; (b) radial 

effective stress; (c) circumferential effective stress; (d) pore pressure; (e) deviatoric plastic 

strain. 

 

During the cementing stage, the borehole was enlarged because the pressure of the cement slurry 

was greater than that of seawater. As a result, the cavity expansion mechanism occurred. The 

radial effective stress increased while the circumferential effective stress decreased. The vertical 
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effective stress did not change significantly, which were consistent with the insignificant 

additional plastic strain development during this stage (Figure 4-8e).  

 

During the cement hardening/shrinkage stage, the borehole contracted as the cement shrank in the 

radial direction, which rendered the formation to behave in the cavity contraction mechanism. At 

0.75% shrinkage, the inward radial displacement of the borehole wall was calculated less than 

1mm. Even at such small displacement the change in the radial and circumferential effective stress 

was approximately 0.2 MPa in the overburden/underburden and up to 1 MPa in the hydrate-

bearing layer.  

 

During the casing landing stage, the stresses along the borehole surface did not change 

substantially because the weight of the casing was primarily supported at the bottom of the 

borehole.  

 

The pore pressure did not change significantly throughout the whole wellbore construction stages, 

even though small excess pore pressure was generated during the cementing stage. The majority 

of the plastic deviatoric strain was developed during the drilling stage, whereas the cement 

shrinkage stage developed minor additional plastic deformation. The oscillatory responses in the 

depths between 277 m and 339 m were due to steep changes in the formation mechanical 

properties arising from the highly heterogeneous distribution of hydrate saturation as shown in 

Figure 4-5a. Due to the bonding effect of methane hydrate, the formation in this interval can 

sustain tensile stress.  

 

4.3.2. Zone of stress disturbance in the formation   

Figure 4-9, 4-10 and 4-11 show the effective stress contours at the end of wellbore construction 

near the 12 1/4-in. diameter borehole computed with different cement shrinkage volumes and 

initial horizontal stresses. The horizontal axes are denoted by the normalized radial distance, 

which was calculated by dividing the radius from the axi-symmetric axis by the radius of the 12 

1/4-in. diameter borehole. For example, the normalized radial distance of seven corresponds to 

1.09 m or 42.9 in. from the centre of the wellbore.  
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(a) 

 

(b) 

Figure 4-9 Effective stress distributions near the borehole: (a) K0 = (1-sin’)OCRsin’, cement 

shrinkage = 0%; (b) K0 = (1-sin’)OCRsin’, cement shrinkage = 0.75%. 
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(a) 

 

(b) 

Figure 4-10 Effective stress distributions near the borehole: (a) K0 = /(1-), cement shrinkage = 

0%; (b) K0 = /(1-), cement shrinkage = 0.75%. 
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(a) 

 

(b) 

Figure 4-11 Effective stress distributions near the borehole: (a) K0 = , cement shrinkage = 

0%; (b) K0 = , cement shrinkage = 0.75%.  
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Figure 4-9a and b show the effective stress contours with the cement shrinkage of 0% and 0.75%, 

respectively, with the initial horizontal stress calculated by K0 = (1-sin’)OCRsin’. Although the 

vertical effective stress recovered to the geostatic levels within the normalized radial distance of 

two, the disturbance to the radial and circumferential stresses propagated much further. With the 

cement shrinkage of 0%, the horizontal stresses were affected up to the normalized radial distance 

of three. In the clayey overburden layer, the radial effective stress around the borehole decreased 

while the circumferential effective stress increased with respect to their geostatic levels. The 

decrease in the vertical effective stress near the borehole was due to the development of plastic 

strain which caused the redistribution of vertical effective stress levels in the formation.  

 

When the cement shrinkage was set to 0.75%, the zone of horizontal stress disturbance did not 

change at the normalized radial distance of three but the magnitudes increased. The stress 

disturbance in the reservoir and sandy underburden layer was less pronounced than that in the 

clayey overburden layer. This was because in these layers the initial horizontal stress levels were 

similar to the cement slurry pressure levels, which recovered to the geostatic stress levels during 

the cementing stage after they were disturbed by the drilling. Also, the spiky stress response in 

the methane hydrate reservoir (i.e., 277 m to 339 m) became apparent during the cement shrinkage 

stage. This is caused by the difference in the stiffness values between the high and low hydrate 

saturation layers. A greater stress disturbance is incurred to the stiffer layer (i.e., high hydrate 

saturation layer) by the cement shrinkage-induced cylindrical cavity contraction of the wellbore.  

 

Figure 4-10a and b show the effective stress contours with the initial horizontal stress calculated 

by K0 = /(1-), and with the cement shrinkage of 0% and 0.75%, respectively. Both the area and 

the magnitude of the vertical effective stress decrease in the clayey overburden layer were smaller 

than those calculated in the case of K0 = (1-sin’)OCRsin’. This was because the initial horizontal 

stresses calculated by K0 = /(1-) were smaller than those by K0 = (1-sin’)OCRsin’, resulting in 

smaller stress changes and hence less plastic deformation during drilling. In fact, in the reservoir 

and sandy underburden layers, where K0 = /(1-) resulted in larger initial horizontal stress levels 

than K0 = (1-sin’)OCRsin’, the area and magnitude of the vertical effective stress decrease were 

greater than those calculated under K0 = (1-sin’)OCRsin’. The disturbance in the radial and 

circumferential effective stresses was also affected by the initial horizontal stress levels. When 

the initial horizontal stresses in the overburden layer were calculated by K0 = (1-sin’)OCRsin’, 

the radial effective stress decreased while the circumferential effective stress increased from their 

geostatic levels at the end of the entire construction processes. When K0 = /(1-) was employed, 

the opposite response was obtained, i.e., the radial effective stress increased while the 

circumferential effective stress decreased around the borehole. This was because the initial 
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horizontal stresses calculated by K0 = (1-sin’)OCRsin’were greater than the cement slurry 

pressure, leading to the cavity contraction of the wellbore after the installation of casing and 

cement, whereas the initial horizontal stress levels computed by K0 = /(1-) were smaller than 

the cement slurry pressure, resulting in the cavity expansion of the wellbore.  

 

Figure 4-11a and b show the cases where the initial horizontal stresses were calculated by K0 = 

 with the cement shrinkage of 0% and 0.75%, respectively. The area and the magnitude of the 

vertical effective stress decrease were comparable to those computed in the other two cases, while 

the disturbance in the radial and circumferential effective stresses was smaller. This was because 

the initial horizontal stresses calculated by K0 =  were comparable to the cement slurry 

pressure. The horizontal stress levels, which were disturbed in the drilling stage, recovered to the 

geostatic levels during the cementing stage. In the methane hydrate layer, the horizontal stresses 

were significantly disturbed as was the case for the other initial horizontal stress cases.  

 

 

Figure 4-12 Deviatoric stress-strain changes in the formation (MHCS model, K0 = 0.4, cement 

shrinkage = 0.75%): (a) low hydrate saturation layer; (b) high hydrate saturation layer; (c) 

underburden sand; (d) overburden clay. 
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Figure 4-13 Stress paths in the formation (MHCS model, K0 = 0.4, cement shrinkage = 0.75%): 

(a) low hydrate saturation layer; (b) high hydrate saturation layer; (c) underburden sand; (d) 

overburden clay. 

 

Figure 4-12 and Figure 4-13 show the deviator stress-strain and deviator stress-mean effective 

stress changes (i.e., stress paths) of formation near the wellbore during well construction 

processes in the case of K0 = 0.4 and cement shrinkage volume = 0.75%. The following four 

formation sections were selected: (i) methane hydrate reservoir layer with low hydrate saturation 

value (Sh = 1.0%), (ii) methane hydrate reservoir layer with high hydrate saturation value (Sh = 

78.3%), (iii) underburden sand layer and (iv) overburden clay layer.  

 

The changes in the deviator stress levels of the formation near the wellbore are found to be 

governed by the cement shrinkage stage, as the methane hydrate layer with a high hydrate 

saturation value (Figure 4-12b) exhibits stiffer response than the other layers with low or zero 

hydrate saturation values (Figure 4-12a, c and d) during the cement shrinkage stage, inducing the 

concentration of deviator stress in the reservoir layer with a high hydrate saturation value. This is 

because the reservoir layer with a high hydrate saturation value remains elastic during the entire 

well construction processes. In fact, the stress path of the high hydrate saturation layer (Figure 

4-13b) shows that the stress level remains afar from the yield surface, whereas in the low or zero 

hydrate saturation layers (Figure 4-13a, c and d), the stress path is initially on or near the yield 

surface, which then approaches the yield surface during the drilling stage while accumulating 
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some plastic strains. The plastic strain development causes the vertical effective stress to decrease, 

which hinders the development of deviator stress in the low or zero hydrate saturation layers. The 

R values shown in Figure 4-13 indicate the ratio of the current stress to yield stress levels.  

 

Also, it is found that changes in the deviator and mean effective stress levels due to the well 

construction processes are limited within the normalized radial distance of three, i.e. 0.467 m or 

18.4 in. from the centre of the wellbore. Hence, the disturbance of these stresses due to well 

construction processes, which is primarily caused by the cylindrical cavity expansion/contraction 

of the wellbore, occurs only in limited areas just near the wellbore.  

 

4.3.3. Effect of formation constitutive models 

In order to validate the simulation results with the MHCS model, the simulation case for K0 = 0.4 

and cement shrinkage = 0.75% is re-run with the Mohr-Coulomb model with enhancement for 

soil strength, stiffness and dilation due to methane hydrate. ABAQUS’ inbuilt Mohr-Coulomb 

model is used and its parameter values are correlated with hydrate saturation, to create a methane 

hydrate Mohr-Coulomb (MHMC) model.  

 

The MHMC model was calibrated against the same experimental dataset that are used for the 

calibration of the MHCS model, and the calibration result is shown in Figure 4-14. The values of 

the model parameters determined through the calibration are listed in Table 4-3. It is evident that 

the MHCS model is a much simpler model than the MHCS model as the number of parameters 

are only five compared to eleven for the MHCS model. The bulk density and void ratio 

distributions in the formation are kept identical between the simulation cases with the MHCS and 

MHMC models. The well construction simulation results with the MHMC model are shown in 

Figure 4-15 and Figure 4-16, which are respectively deviatoric stress-strain changes and stress 

paths.  

 

Table 4-3 The calibrated parameter values of the MHMC model. 

 Overburden clay 
Methane hydrate 

reservoir 
Underburden sand 

Young's modulus 3(1-2)(1+1.31)p’/0.03 360Sh +43.9 3(1-2)(1+0.717)p’/0.02 
Poisson's ratio 0.25 0.30 0.30 
Friction angle (o) 23 26 26 
Dilation angle (o) 0.1 12.6Sh 0.1 
Cohesion (MPa) 0.2 2.54Sh +0.3 0.3 

NB:  = Poisson’s ratio and p’ = mean effective stress. 
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Figure 4-14 The calibration result of the methane hydrate Mohr-Coulomb (MHMC) model: (a) 

deviator stress-axial strain (clay); (b) excess pore pressure-axial strain (clay); (c) deviator stress-

axial strain (sand); (d) volumetric strain-axial strain (sand).  

 

Figure 4-15 Deviatoric stress-strain changes in the formation (MHMC model, K0 = 0.4, cement 

shrinkage = 0.75%): (a) low hydrate saturation layer; (b) high hydrate saturation layer; (c) 

underburden sand; (d) overburden clay. 
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Figure 4-16 Stress paths in the formation (MHMC model, K0 = 0.4, cement shrinkage = 0.75%): 

(a) low hydrate saturation layer; (b) high hydrate saturation layer; (c) underburden sand; (d) 

overburden clay. NB: deviator stress is normalised to take into account the Lode angle. 

 

It is found that the deviator stress concentration in the high hydrate saturation reservoir layer is 

even more enhanced by the use of the MHMC model, as the high hydrate saturation layer remains 

fully elastic during the construction processes (Figure 4-15b and Figure 4-16b) whilst the other 

layers with low to zero hydrate saturation layers go through yielding and plastic softening. The 

magnitudes of accumulated plastic deviatoric strain are, however, on the same order with those 

calculated with the MHCS model (< 2%) (see Figure 4-12), which is relatively small to cause 

formation failure. This is consistent with the field observation at the Nankai Trough that the 

borehole after the drilling stage was stable, even though the drilling was carried out with seawater 

and no special stabilisation measure was implemented to protect the borehole. Therefore, the 

simulation results with the MHMC model validate those with the MHCS model in terms of the 

borehole behaviour during the construction processes. 
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Figure 4-17 Cavity expansion/contraction of an elastic cylinder. 

 

4.3.4. Elastic cylindrical cavity expansion/contraction analysis  

In order to analyse the deviator stress changes calculated by the finite element analysis along the 

wellbore surface during well construction processes in the previous sections, an elastic cylindrical 

cavity expansion/contraction analysis is carried out. Assuming that the formation is originally in 

the isotropic horizontal stress state, the changes in the radial and circumferential effective stresses 

in response to cylindrical cavity expansion/contraction as shown in Figure 4-17 is calculated by 

Equation 4-5: 

 

 
𝜎′𝜃 = 𝜎′ℎ − (𝜎′𝑟 − 𝜎′ℎ) (

𝑟0
𝑟
)
2

 (4-5) 

 

where 𝜎′𝑟  = radial effective stress,  𝜎′𝜃  = circumferential effective stress, 𝜎′ℎ  = horizontal 

(either radial or circumferential) effective stress in the geostatic state, 𝑟0 = radius of the wellbore 

(=0.156 m) and 𝑟 = radius from the centre of the wellbore. The corresponding deviator stress is 

calculated by Equation 4-6: 

 

 

𝑞 =  √
3

2
√(𝜎′𝑟 − 𝑝

′)2 + (𝜎′𝜃 − 𝑝
′)2 + (𝜎′𝑣 − 𝑝

′)2 (4-6) 

 

where 𝜎′𝑣 = vertical effective stress and 𝑝′ = mean effective stress (= (𝜎′𝑣 + 𝜎
′
𝑟 + 𝜎

′
𝜃) 3⁄ ). 

The change in the radial effective stress during cement shrinkage can be calculated by Equation 
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4-7: 

 

 
𝜎′𝑟 =

2𝐺

𝑟0
∆𝑟𝑠ℎ𝑟𝑖𝑛𝑘 + 𝜎′ℎ (4-7) 

 

where 𝐺  = shear modulus of the formation (calculated by Equation 2-5 in Chapter 2) and 

∆𝑟𝑠ℎ𝑟𝑖𝑛𝑘  = radial displacement of the wellbore perimeter during cement shrinkage, which is 

calculated by Equation 4-8: 

 

 

∆𝑟𝑠ℎ𝑟𝑖𝑛𝑘 = √(𝑟0
2 − 𝑟𝑐

2) (
100 − ∆𝑉𝑐𝑒𝑚𝑒𝑛𝑡

100
) + 𝑟𝑐

2 − 𝑟0 (4-8) 

 

where 𝑟𝑐  = radius of the casing (= 0.122 m) and ∆𝑉𝑐𝑒𝑚𝑒𝑛𝑡  = cement shrinkage volume in 

percent (= 0.75%). This equation assumes that cement shrinkage occurs only in the radial 

direction and there is no shrinkage in the vertical direction.  

 

Figure 4-18 shows deviator stress values of the formation, which are calculated from the elastic 

cylindrical cavity expansion/contraction theory described above, along the wellbore surface (i.e., 

r = r0) at different depths and hydrate saturation values during well construction processes. The 

formation parameter values listed in Table 4-1 are used to calculate the values of initial vertical 

and horizontal effective stresses and shear modulus of the formation at different depths and 

hydrate saturation values. It is found that the deviator stress levels increase by more than 50% in 

all depth and hydrate saturation cases after the drilling stage but they decrease to approximately 

the initial geostatic deviator stress values after the cementing stage. The cement shrinkage stage 

does not change the deviator stress levels significantly in the low or zero hydrate saturation layers 

(i.e., the blue, red and pink bars in the figure). However, in the high-hydrate saturation layer (i.e., 

the green bars), the deviator stress level increases to approximately the same level generated after 

the drilling stage (2 MPa). This is because of the high stiffness of the high hydrate saturation layer. 

As a result, the deviator stress concentration is developed in the high-hydrate saturation layer 

relative to the low or zero hydrate saturation layers. This is consistent with the results of the finite 

element analysis shown in the previous sections. Therefore, the deviator stress concentration in 

the high hydrate saturation layer is found to be caused by the cylindrical cavity contraction of the 

wellbore induced by the cement shrinkage process. 
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Figure 4-18 Elastic cylindrical cavity expansion/contraction analysis of the wellbore. 

 

4.3.5. Zone of plastic deviatoric strain development in the formation  

4.3.5.1. Effect of cement volume shrinkage 

Figure 4-19 show the effect of cement shrinkage on the plastic deviatoric strain development in 

the formation near the 12 1/4-in. diameter borehole. Three cement volume shrinkage values (0%, 

0.5% and 0.75%) are considered. The horizontal axis is the normalized radial distance, i.e., radial 

coordinates normalized by the radius of the 12 1/4-in. diameter borehole. The vertical coordinate 

covers the depths along the 12 1/4-in. diameter borehole. The initial horizontal stress was 

calculated by K0 = (1-sin’)OCRsin'.  

 

Results show that the cement shrinkage stage would have minor effects on the plastic deviatoric 

strain development in the formation compared to the drilling stage, as the variation of cement 

shrinkage volume between 0% and 0.75% only slightly increased the area and magnitude of the 

plastic deviatoric strain in the formation. This is in contrast with the cement shrinkage-induced 

stress changes in the formation described in the previous section. The stress changes were caused 

by the stiffness contrast between the high hydrate saturation layers (elastic) and low/zero hydrate 

saturation layers (plastic) induced during the drilling stage. In other words, cement shrinkage 

converted the stiffness contrast into stress contrast without accumulating extra plastic strain. This 

is why the stress state was significantly affected by cement shrinkage whereas the plastic strain 

development was not influenced by it. The maximum magnitude of plastic deviatoric strain was 

approximately 1% at 60 m below seafloor in the clayey overburden layer. A comparable 
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magnitude of plastic deviatoric strain was also developed in the sandy underburden layer. In the 

methane hydrate reservoir, however, the magnitude of plastic deviatoric strain was much smaller 

than in the overburden and underburden layers due to the reinforcement effect of methane hydrate.  

 

(c) 

Figure 4-19 Effect of different volumes of cement shrinkage on the zone and magnitude of 

plastic deviatoric strain in the formation near the 12 1/4-in. diameter borehole. 

 

The trend of plastic deviatoric strain development shown in Figure 4-19 could be related to the 

borehole radius measurement data obtained from wireline logging in the A1-W well (Figure 4-1b). 

The radial extent of the computed deviatoric plastic strain is in agreement with the borehole radius 

data. The small deviatoric plastic strain levels in the methane hydrate reservoir (277 m-339 m) 

coincide with the minimal borehole enlargement, while the large plastic strain magnitudes in the 

overburden and underburden layers match well with the significant borehole enlargement. 

Although this qualitative comparison between the computed plastic strain distribution and 

measured borehole enlargement does not directly demonstrate the accuracy of the simulation, it 

indicates that the essential aspects of the formation behavior during well construction are captured 

in the constitutive model. It is noted that the A1-W well was dedicated for wireline logging to 

probe formation properties, one of which was borehole radius, and was thus not constructed with 

casing and cement (Takahashi & Tsuji 2005). In fact, the A1-E1 well was the only vertical well 

that was constructed with casing and cement during the 2004 drilling campaign.  
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Figure 4-20 Effect of different initial horizontal stresses of the formation on the zone and 

magnitude of plastic deviatoric strain development in the formation near the 12 1/4-in. diameter 

borehole.  

 

4.3.5.2. Effect of initial horizontal stress of the formation  

Figure 4-20 shows the effect of different initial horizontal stress formula on the plastic deviatoric 

strain development in the formation around the 12 1/4-in. diameter borehole. The initial horizontal 

stress of the formation was found to have an impact on the plastic deviatoric strain development 

compared to the effect of cement volume shrinkage discussed earlier. When K0 = (1-sin’)OCRsin’ 

was employed, the maximum plastic deviatoric strain was developed at approximately 60 m 

below seafloor in the overburden layer, while it was in the underburden layer when K0 = /(1-) 

was employed. When  = 0.40 was used, the magnitude of the plastic deviatoric strain gradually 

increased with depth intermitted by the reservoir where the plasticity was minimal. The magnitude 

of plastic deviatoric strain can be related to the magnitude of initial horizontal effective stress. 

For instance, when K0 = /(1-) was employed, the largest initial horizonal effective stress 

occurred in the underburden layer. When  = 0.40 was used, the initial horizontal effective stress 

linearly increased with depth. These trends of the initial horizontal effective stress corresponded 

well to those of the plastic deviatoric strain. This is because deviatoric stress development was 

proportional to the difference between the initial horizontal stress and drilling fluid (seawater) 

pressure (i.e., initial horizontal effective stress). The plastic deviatoric strain propagated to the 
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normalized radial distance of approximately one and a half among the examined simulation cases 

with different K0 distributions. 

 

Chen et al. (2018) showed that the change in hydrate saturation caused by well construction in 

the near-wellbore region would significantly affect the short-term gas production rate. The 

discrepancy between the simulation and field data on the short-term gas production rate at the 

Nankai Trough (Chen, Feng, Kogawa, et al. 2018) could also be due to well construction-induced 

complex initial permeability, gas and water saturation conditions around the wellbore prior to gas 

production. The result of this study on the plastic strain development in the methane hydrate-

bearing layer in the near-wellbore region suggests that the effect of well construction-induced 

disturbance could indeed be complex yet limited within a very small radius from the centre of the 

well. Therefore, the discrepancy between the predicted and actual short-term gas production rate 

might be due to other factors such as hydrate reformation during initial gas production.  

 

 

4.4. Summary 

 

In this study, a finite element analysis of the effect of well construction on the integrity of the 

Nankai Trough offshore unconsolidated formation is presented. The modelled well construction 

processes are drilling, casing hanging, cementing, cement hardening/shrinkage and casing landing. 

The effects of key well construction stages, including the drilling and cement volume shrinkage 

stage, as well as the effect of initial horizontal stress of the formation on the formation integrity 

were assessed. The primary findings from the present study are provided below.  

 

(i) In the Nankai Trough methane hydrate reservoir case, the well construction-induced 

stress disturbance in the formation extended to the normalized radial distance of 

approximately three, whereas plastic deviatoric strain development extended to that of 

one and a half. The volume of formation where plastic deviatoric strain develops might 

become vulnerable to sand production during gas production. 

(ii) Because of the difference between the stiffness values of the high hydrate saturation 

layers (high stiffness) and the low to zero hydrate saturation layers (low stiffness), the 

decrease in the radial effective stress and the corresponding increase in the deviator stress 

occurrs in the high hydrate saturation layers during cement shrinkage-induced wellbore 

contraction (i.e., cylindrical cavity contraction). The radial stress relaxation during 

cement shrinkage in the high hydrate saturation layers could cause loss of confining 

pressure from the formation for the well, potentially leading to localised buckling of the 
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well.  

(iii) The key well construction process for estimating plastic strain development in the 

formation was found to be the drilling stage, whereas it was the cement shrinkage stage 

that was essential to predict formation stress changes.  

 

From the above findings, it is recommended that the cement shrinkage during well construction 

is reduced below 0.75% so that radial effective stress relaxation, which is localised in the high 

hydrate saturation layers, can be minimised. Also, low to zero hydrate saturation layers in the 

reservoir, where plastic strain develops during the drilling stage, might have to be stabilised prior 

to hydrate dissociation to prevent potential sand production. It is noted, however, that the 

simulations results are dependent on the initial horizontal stress distributions of the formation, 

which have impact on both stress changes and plastic strain development in the formation during 

well construction processes. Hence, accurate estimation and/or measurement of the in situ 

horizontal stress distributions of the formation would have to be carried out to improve the 

accuracy of the well construction simulation.   
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5. Simulation of well integrity in offshore unconsolidated methane 

hydrate-bearing formation during reservoir compaction 

 

 

5.1. Introduction 

 

In this chapter, well integrity in methane hydrate reservoirs during reservoir compaction is 

analysed for the Nankai Trough case. Earlier attempts to investigate well integrity in methane 

hydrate-bearing formation was performed by Freij-Ayoub et al. (2007a&b). They assessed well 

integrity during heating-induced hydrate dissociation. However, well integrity against reservoir 

compaction was not assessed. Subsequently, well integrity in methane hydrate reservoirs during 

reservoir compaction were investigated by Rutqvist et al. (2012), Qiu et al. (2015), Shin & 

Santamarina (2016) and Yoneda et al. (2018). For example, Shin & Santamarina (2016) state 

that well integrity is affected by the change in formation permeability during compaction. 

However, the actual mechanism might be that different reservoir compaction profiles are 

developed depending on the parameter values for the coupling between permeability and 

volumetric compaction of the formation, and hence well integrity is affected differently.  

 

In this study, it is hypothesized that different compaction profiles affect well integrity 

differently. To examine the effect of reservoir compaction characteristics on well integrity, a 

parametric study is carried out with an axi-symmetric finite element model for the case of the 

Nankai Trough methane hydrate reservoir. The cement sheath around the casing is incorporated 

into the model as the integrity of cement in the well annulus is crucial in maintaining zonal 

isolation of the formation as well as in preventing oil/gas leakage, even though the model 

developed by Shin & Santamarina (2016) does not include the cement. Also, well construction 

processes, especially cement shrinkage stage, are incorporated prior to reservoir compaction 

stages as it is found to affect formation stress state significantly in Chapter 4. The objectives of 

this study are as follows: 

 

(i) to evaluate the effect of different reservoir compaction cases on the stress and strain 

development of the casing and cement,  

(ii) to evaluate the effect of cement shrinkage volume and different horizontal stress states 

of the formation (i.e., overconsolidated or normally consolidated) on well integrity 

during reservoir compaction, and  

(iii) to assess the correlations between the stress and strain development of the casing and 

cement during reservoir compaction and depressurization/hydrate dissociation patterns 
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in the reservoir.  

 

The Cambridge Methane Hydrate Critical State model (MHCS) model (Uchida et al. 2012) is 

employed as the formation constitutive model. The MHCS model parameters are calibrated 

against the triaxial test data on formation samples taken from the Nankai Trough (Nishio et al. 

2011; Yoneda et al. 2015). Also, an interface friction model between the casing and cement is 

developed and verified against laboratory test data on well specimens which is presented in 

Chapter 6. The details of the methodology of the finite element analysis are provided in the 

following sections. 

 

 

5.2. Finite element modelling 

 

5.2.1. Model geometry 

Figure 5-1 shows a schematic diagram of the axi-symmetric finite element model used in this 

study. The total depth and radius of the model are 650 m and 600 m, respectively. The thickness 

of the methane hydrate reservoir layer (MH reservoir layer) is 50 m, whereas the thicknesses of 

the overburden and underburden layers are 300 m. The well is drilled in the overburden layer 

and the borehole radius is 0.312 m (12 1/4 in.). The outer diameter and wall thickness of the 

casing are 0.122 m (9 5/8 in.) and 0.01 m (0.4 in.), respectively. The roller boundary constraint 

is applied at the left and bottom edges of the model whereas constant distributed pressure load is 

applied at the top (i.e., hydrostatic pore pressure) and right (i.e., total horizontal stress) edges. 

The model is assumed to be 1,000 m below sea surface at the top of the model. 

 

The ground formation is discretized into 55,250 eight-node displacement four-node pore 

pressure elements, whereas the casing and cement are discretized into 600 and 1,800 eight-node 

displacement elements, respectively. Figure 5-2 shows the mesh of the model near the bottom of 

the wellbore. The vertical length of the mesh is set to 1 m throughout the model. The horizontal 

length of the casing and cement elements is set to be 5.010-3 m and 6.310-3 m, respectively. 

The horizontal length of the formation elements increases with increasing radius from the 

wellbore, i.e., 5.310-2 m at the cement-formation interface. The mesh size exponentially 

increases to 53 m at the right edge of the model.  
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Figure 5-1 The geometry of the axi-symmetric finite element model. 

 

 

Figure 5-2 The mesh of the axi-symmetric finite element model near the bottom of the wellbore 

(horizontally enlarged a hundred times). 

 

5.2.2. Constitutive models 

The methane hydrate critical state model (MHCS model) (Uchida et al. 2012) is employed to 

simulate the mechanical behaviours of methane hydrate-bearing formation. The model 

parameters are calibrated against the triaxial test data of formation samples taken from the 

Nankai Trough (Yoneda et al. 2015; Nishio et al. 2009). The calibration results are presented in 

Figure 4-4 in Chapter 4. The values of the density and void ratio of each layer of the formation 

are chosen based on the in situ measurement data at the Nankai Trough (Suzuki et al. 2015). 
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Table 5-1 shows the values of the MHCS model parameters used in the simulation. The MHCS 

parameters for the hydrate effect (i.e., m1, m2, a, b, c, d) are set to zero in the MH reservoir layer. 

This is because it is assumed that methane hydrate is fully dissociated in the MH reservoir layer 

and the pore pressure distribution has reached the steady-state conditions.  

 

For the casing and cement elements, a model of linear isotropic elasticity with a Mises yield 

surface with associated flow rule (casing) and with a Mohr-Coulomb yield surface with non-

associated flow rule (cement) is employed to simulate their mechanical behaviours. The values 

of the constitutive mode parameters are shown in Table 5-2. These values are relevant to the 

casing and cement employed at the Nankai Trough (Qiu et al. 2015).  

 

Table 5-1 The parameter values of the MHCS model for the formation. 

 Overburden clay 
Methane hydrate 

reservoir 
Underburden 

sand 

Depth from seafloor (m) 0~300 300~350 350~650 

Saturated bulk density (kg/m3) 1,750 1,750~2,000 2,000 

Initial void ratio 1.31 1.31~0.717 0.717 

Gradient of compression line,  0.18 0.10 0.10 

Gradient of swelling line,   0.03 0.02 0.02 

Critical state frictional constant,  1.30 1.37 1.37 

Poisson’s ratio,  0.25 0.35 0.35 

Subsurface constant, U 15 8 8 

Stiffness enhancement constant, m2  0 0 0 

Hydrate degradation constant, m1 0 0 0 

Dilation enhancement constant, A 0 0 0 

Dilation enhancement constant, B 0 0 0 

Cohesion enhancement constant, C 0 0 0 

Cohesion enhancement constant, D 0 0 0 

 

Table 5-2 The parameter values of the constitutive models for the casing (von Mises) and 

cement (Mohr-Coulomb). 

 Casing Cement 

Density (kg/m3) 7,897 1,198 

Young's modulus (GPa) 200 
0.131 (slurry) 
3.81 (solid) 

Poisson's ratio (-) 0.28 
0.49 (slurry) 
0.20 (solid) 

Yield stress (MPa) 379.5 NA 

Friction angle (o) NA 30 

Dilation angle (o) NA 0 

Cohesion (MPa) NA 2.72 

 



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

109 

 

5.2.3. Modelling of interface behaviours  

Although the ABAQUS software does have a constitutive model for interface friction behaviour, 

it does not include the interface cohesion term, which is essential for the modelling of cement-

steel (casing/pipes) interfaces. Therefore, an interface friction constitutive model incorporating 

the interface cohesion term is developed to simulate the interaction between cement and casing 

as well as between well and formation during reservoir compaction. Details of the interface 

friction model are described below. 

 

(i) Elastic properties 

Recoverable (elastic) tangential interface displacement is allowed in the developed friction 

constitutive model as below: 

 

 𝜏 =  𝑘𝛾𝑒 (5-1) 

 

where 𝜏 = interface shear stress, 𝑘 = shear stiffness of the interface, 𝛾𝑒 = elastic tangential 

displacement of the interface. The incremental form of Equation 5-1 is shown below: 

 

 𝑑𝜏 =  𝑘(𝑑𝛾 − 𝑑𝛾𝑝) (5-2) 

 

where 𝑑𝛾 = total tangential interface displacement increment and 𝑑𝛾𝑝 = plastic tangential 

interface displacement increment. The value of 𝑘 is determined by the equation below: 

 

 
𝑘 =  

𝜏𝑢𝑙𝑡
𝛾𝑢𝑙𝑡
𝑒  (5-3) 

 

where 𝛾𝑢𝑙𝑡
𝑒  = ultimate elastic tangential displacement of the interface, 𝜏𝑢𝑙𝑡 = ultimate interface 

shear stress, which is the shear stress level where irrecoverable tangential interface displacement 

starts to occur (i.e., yielding). Therefore, 𝜏𝑢𝑙𝑡 is determined through a yield function which is 

described next. 

 

(ii) Yield criterion  

The yield criterion for the tangential interface displacement is specified by the yield function, 

𝑓, as shown below: 

 

 𝑓 =  𝜏 − 𝜇𝑝 − 𝑐′ (5-4) 
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where  𝑝 = interface contact pressure, 𝜇 = interface friction coefficient and 𝑐′ = interface 

cohesion. Yielding is judged if the value of 𝑓 > 0.  

 

(iii) Flow rule 

The associated flow rule is employed to calculate the irrecoverable tangential interface 

displacement as follows: 

 

 
𝑑𝛾𝑝 = Λ

𝜕𝑓

𝜕𝜏
 (5-5) 

 

where 𝑑𝛾𝑝 = plastic tangential interface displacement increment and Λ = plastic multiplier. 

 

(iv) Hardening rule 

The values of friction coefficient and cohesion in the yield function are set to constant values 

and no plastic hardening/softening was considered.  

 

In order to obtain the interface shear stress increment, the plastic tangential interface 

displacement increment has to be calculated. This is done by satisfying the consistency 

condition shown below: 

 

 𝑓(𝜏 + 𝑑𝜏, 𝑝 + 𝑑𝑝, 𝜇, 𝑐) =  0  

⇔ 𝑓(𝜏 + 𝑘(𝑑𝛾 − 𝑑𝛾𝑝), 𝑝 + 𝑑𝑝, 𝜇, 𝑐) =  0  

⇔ 𝑓(𝜏 + 𝑘𝑑𝛾, 𝑝 + 𝑑𝑝, 𝜇, 𝑐) −
𝜕𝑓

𝜕𝜏
𝑘𝑑𝛾𝑝 =  0 

 

⇔ 𝑓𝑝𝑟𝑒𝑑 −
𝜕𝑓

𝜕𝜏
𝑘Λ
𝜕𝑓

𝜕𝜏
=  0 

 

∴ Λ = 
𝑓𝑝𝑟𝑒𝑑

(
𝜕𝑓
𝜕𝜏
) 𝑘 (

𝜕𝑓
𝜕𝜏
)
 (5-6) 

 

where 𝑓𝑝𝑟𝑒𝑑 = 𝑓(𝜏 + 𝑘𝑑𝛾, 𝑝 + 𝑑𝑝, 𝜇, 𝑐) is the value of the yield function at prediction stress 

state. Substituting Equation 5-5 and 5-6 into Equation 5-2 yields the following: 
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 𝑑𝜏 =  𝑘 (𝑑𝛾 −
𝑓𝑝𝑟𝑒𝑑 (

𝜕𝑓
𝜕𝜏
)

(
𝜕𝑓
𝜕𝜏
) 𝑘 (

𝜕𝑓
𝜕𝜏
)
)  

 

=  𝑘 (𝑑𝛾 −
(𝑓(𝜏, 𝑝, 𝜇, 𝑐) + (

𝜕𝑓
𝜕𝜏
) 𝑘𝑑𝛾 + (

𝜕𝑓
𝜕𝑝
)𝑑𝑝) (

𝜕𝑓
𝜕𝜏
)

(
𝜕𝑓
𝜕𝜏
)𝑘 (

𝜕𝑓
𝜕𝜏
)

) 

 

 

=  𝑘(
−𝑓𝑛𝑜𝑤 (

𝜕𝑓
𝜕𝜏
) − (

𝜕𝑓
𝜕𝑝
) (
𝜕𝑓
𝜕𝜏
)𝑑𝑝

(
𝜕𝑓
𝜕𝜏
) 𝑘 (

𝜕𝑓
𝜕𝜏
)

) (5-7) 

 

Expanding the derivatives in Equation 5-7 by substituting the yield function shown in Equation 

5-4 yields the interface shear stress increment as follows: 

 

 𝑑𝜏 =  𝜇𝑑𝑝 − 𝑓𝑛𝑜𝑤 (5-8) 

 

where 𝑓𝑛𝑜𝑤 = 𝑓(𝜏, 𝑝, 𝜇, 𝑐) is the value of the yield function at the current stress state. 

Equation 5-8 shows that the interface shear stress increment when yielding is judged is a 

combination of how much of an increase in the ultimate shear stress is obtained though 𝑑𝑝 and 

the difference between the current and yield stress levels (it is noted that 𝑓 ≤ 0 before 

yielding). It might be noteworthy that the constitutive Jacobian 𝜕𝑑𝜏 𝜕𝑑𝛾⁄ = 0 upon yielding 

because no plastic hardening is considered (i.e., perfectly plastic yielding). It is also noteworthy 

that no interface dilation or compaction due to plastic tangential interface displacement is taken 

into account in the developed friction constitutive model. Hence, caution should be exercised 

when applying this model to interfaces where interface dilation/compaction may become 

significant.  

 

The ABAQUS subroutine, Fric, is employed to implement this interface friction model. As 

shown in the next section, the subroutine was verified through performance comparison with the 

ABAQUS inbuilt Coulomb friction model. The difference between the developed subroutine 

friction model and ABAQUS inbuilt friction model is that the latter does not incorporate the 

cohesion term. In order to model the interface cohesion (i.e., non-zero frictional resistance at 

zero interface confining pressure) between casing and cement, the abovementioned subroutine 

model, which incorporates the cohesion term, was developed. 

 

The normal interface behaviour (i.e., interface pressure) is modelled by the augmented Lagrange 

method, which is a combination of the linear penalty method and an augmentation iteration 
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scheme. In the augmented Lagrange method, contact pressure is calculated by multiplying the 

stiffness of the representative underlying elements with the interface penetration distance. The 

interface penetration is maintained below 0.1% of the characteristic element length of the model 

by iteratively augmenting the contact pressure.  

 

5.2.4. Verification of the interface model 

In order to verify the performances of the developed interface friction model, a simulation that 

compares the model against the ABAQUS inbuilt interface function model is performed. Figure 

5-3 shows the schematic diagram of the plane-strain finite element model created for the 

verification simulation. In this model, a cement block is pressed against a steel plate. The steel 

plate is then displaced downward while the cement block is fixed to induce interface slippage.  

 

 

Figure 5-3 The plane-strain finite element model for the verification of the developed interface 

friction model. 

 

The width and height of the steel plate are set to 5 mm and 100 mm, respectively, while those of 

the cement block are 9 mm and 50 mm. The steel plate is discretized into 20 eight-node 

biquadratic displacement elements (5 mm by 5 mm) and the cement into 75 eight-node 

biquadratic displacement elements (3 mm by 2 mm). The steel plate and cement block are both 

modelled as linear isotropic elastic material. The Young’s modulus and Poisson’s ratio are set to 

200 GPa and 0.27 for the steel plate and 12 GPa and 0.21 for the cement block, respectively. For 

the interface, the friction coefficient, cohesion and ultimate elastic interface displacement are set 

to 0.55, 0 MPa and 0.25 mm, respectively, for both the ABAQUS inbuilt model and the 
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developed subroutine interface model.  

 

Figure 5-4 Comparison of the performances between the ABAQUS inbuilt and developed 

subroutine interface friction models: (a) force vs. displacement; (b) tangential interface 

displacement; (c) interface shear stress; (d) interface pressure; (e) interface penetration distance; 

(f) interface shear stress vs. interface pressure. 

 

Figure 5-4 shows the results of the comparison simulation. Figure 5-4a shows the development 

of the force required to displace the steel plate. Figure 5-4b, c, d and e show the distribution of 

tangential interface displacement, shear stress, contact pressure and penetration distance, 
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respectively, along the steel plate-cement block interface at the end of the steel plate 

displacement (i.e., 10 mm). The performance of the developed subroutine model is in good 

agreement with that of the ABAQUS inbuilt model. Figure 5-4f shows that the computed 

interface shear stress and contact pressure values lie exactly on the yield surface. In the 

following section, the parameters of the verified interface model are calibrated for the casing-

cement interface.  

 

5.2.5. Calibration of the interface model and model parameter setting 

To calibrate the parameters of the interface model, a finite element analysis of a laboratory 

experiment, where a well specimen is subjected to tensile loading (Figure 5-5a), is carried out. 

The simulated axial strain development of the well specimen during tensile loading is compared 

with the experimental data. The details of the experiments are given in Chapter 6. 

 

 

(a) 

 

(b) 

Figure 5-5 The laboratory experiment on the well specimen: (a) an overview of the specimen in 



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

115 

 

loading apparatus; (b) a cross section of the well specimen. 

 

The cross-section of the well specimen is illustrated in Figure 5-5b. The specimen consists of 

inner casing, cement sheath and outer casing. Fibre optic cables for distributed axial strain 

monitoring are embedded in the cement, whereas strain gauges are attached the inner and outer 

casings.  

 

Figure 5-6 shows the axi-symmetric finite element model used in this study. The inner casing, 

cement and outer casing are modelled with the eight-node biquadratic displacement element. 

The inner and outer casings are discretized into 600 elements each whereas the cement is 

discretized into 12,000 elements. To apply a tensile load, the displacements of the bottom nodes 

of the inner and outer casing are fixed and a distributed load is applied on the top nodes of the 

outer casing in the vertical direction. 

 

 
Figure 5-6 The axi-symmetric finite element model of the well specimen (left) and the model 

mesh (right). 

 

The inner and outer casings are modelled isotropic linear elastic. The Young’s modulus and 

Poisson’s ratio are set to 200 GPa and 0.26, respectively, which correspond to the typical values 

of A36 steel which comprises the casings. The cement is modelled isotropic linear elastic with 

the Mohr-Coulomb yield surface. The Young’s modulus and Poisson’s ratio of the cement are 

set to 8.3 GPa and 0.10, which are taken from the literature (Bosma et al. 1999). The values of 

the internal friction angle and cohesion of the Mohr-Coulomb yield surface for the cement are 

also taken from the literature (Bosma et al. 1999) and are set to 17.1o and 21.6 MPa, 



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

116 

 

respectively. The dilation angle is assumed to be 0o. For the casing-cement interface, the values 

of the friction coefficient and cohesion are respectively set to 0.8 (i.e., friction angle of 38.7o) 

and 3.0 MPa. These values are based on the experimental result of the pushout test of a steel rod 

embedded in cylindrical cement sheath (Yoneda et al. 2014). The remaining parameter is the 

ultimate elastic interface displacement and a typical value for the casing-cement interface could 

not be obtained from the literature. Hence, this value is calibrated to match the simulation with 

the experimental data. The match between the simulation and experiment is judged visually and 

no proper optimisation such as the least square method is performed.  

 

The model calibration result is shown in Figure 5-7. The numbers in the figures indicate the 

axial load increments (1 kips = 4.45 kN). It is found that a good match between the simulation 

and experiment is obtained with the value of ultimate elastic interface displacement = 0.5 mm. 

To validate the calibration result, an analytical solution for the casing-cement shaft friction 

problem is provided in Chapter 6 (Section 6.4.2.), which shows that the choice of 0.5 mm is 

appropriate as the numerical and analytical results match satisfactorily, including the gradient of 

axial strain at the top and bottom of the specimen, at small load levels (< 125 kips) where the 

cement is still elastic. Once the cement develops plastic strains after mid-load levels (> 175 

kips), the gradient of axial strain increases significantly. The sharp strain gradient after the 

cement yield is dependent on the plastic parameters of the cement (i.e., friction angle, dilation 

angle and cohesion) and hence it could not be matched by changing solely the value of the 

ultimate elastic interface displacement.  

 

For the cement-formation interface of the reservoir compaction simulation, it is assumed that 

the interface friction coefficient is identical to that of the underlying formation. The friction 

coefficient of the overburden layer is 0.67 (i.e., friction angle of 33.9o) whereas that of the MH 

reservoir and underburden layers is 0.63 (i.e., friction angle of 32.3o). As the difference is small, 

the mean value of 0.65 is used for the entire cement-formation interface. For the interface 

cohesion at the cement-formation interface, it is assumed negligible as soil particles of the 

unconsolidated formation do not resist friction at zero interface confining pressure, which is 

experimentally validated in the literature (Yoneda et al. 2014). The value of the ultimate elastic 

interface displacement is set to 0.25 mm for the cement-formation interface. This is determined 

by varying the value of ultimate elastic interface displacement between 0.25 mm and 2.5 mm 

and carrying out the reservoir compaction simulation which is presented in the following 

sections. Results show negligible differences in the development of stresses and strains of the 

casing and cement during reservoir compaction. Therefore, the value is set to 0.25 mm. To 

support this, an experimental study by Uesugi et al. (1990), where a sand specimen prepared 
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inside a stack of rectangular frames is sheared against a mortar plate placed beneath the sand 

while vertical confining pressure is maintained, shows that the value of ultimate elastic interface 

displacement between the sand and mortar is approximately 0.3 mm. 

 

Figure 5-7 Comparisons of the axial strain development of the well specimen between the 



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

118 

 

simulation and experiment: (a) inner casing; (b) cement; (c) outer casing. 

 

It is noted that the level of interface confining pressure between the laboratory experiment 

(Figure 5-5) (atmospheric pressure) and the actual wellbore in the Nankai Trough (~10 MPa) is 

significantly different. Although a better calibration of the friction model parameters could have 

been performed if the experiment had been conducted under the actual confining pressure 

conditions, the application of ~10 MPa confining pressure over the 3 m-long specimen was not 

feasible in the laboratory.  

 

5.2.6. Initial conditions 

For the Nankai Trough case, the initial vertical stress distribution of the formation is derived 

from the in suit density measurement at the site (Suzuki et al. 2015). The initial void ratio 

distribution is also obtained from the same in situ density measurement. For the initial pore 

pressure distribution, the hydrostatic pore pressure distribution with the seawater density of 

1.027 g/cm3 is employed.  

 

Figure 5-8 Initial horizontal effective stress distributions of the formation. 

 

Two different initial horizontal effective stress distributions are employed as shown in Figure 

5-8. The overconsolidated distribution is calculated via Equation 5-9: 

 

 𝜎′ℎ = (1 − sin𝜙
′)OCRsin𝜙

′
𝜎′𝑣 (5-9) 

 

where 𝜎′ℎ = horizontal effective stress, 𝜎′𝑣 = vertical effective stress, 𝜙′ = internal friction 
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angle, OCR = overconsolidation ratio. This formula is often employed in the soil mechanics. 

The OCR values of the overburden layer is derived from triaxial test data of formation core 

samples retrieved from the Nankai Trough (Nishio et al. 2011). Hence, the overconsolidated 

formation case is more representative of the actual Nankai Trough formation. For the normally 

consolidated case, the initial horizontal effective stress is calculated via 𝜎ℎ
′ = 0.4𝜎𝑣

′ . The effect 

of initial lateral pressure will be examined in Section 5.3.6. 

 

5.2.7. Well construction process 

The construction process of the well is incorporated in the simulation. The modelling 

methodology of the well construction process is identical to the one employed in Sasaki et al. 

(2018a) and are described in Chapter 4. The modelled construction stages are presented in Table 

5-3. The shrinkage volume of 0.75% is employed in the cement shrinkage stage for the Nankai 

Trough scenario (Sasaki et al. 2018b), which is determined through finite element modelling 

described in Chapter 3.  

 

Table 5-3 The well construction processes incorporated in the simulation. 

Construction process Duration (hour) 

1. Drilling  14.4 

2. Casing hanging Immediate 

3. Cementing Immediate 

4. Cement hardening/shrinkage 40.8 

5. Casing landing Immediate 

 

5.2.8. Depressurization and hydrate dissociation process 

The depressurization stage is simulated by specifying the pore pressure distribution in the 

reservoir layer, rather than simulating the actual depressurization and dissociation processes. 

The analytical steady-state pore pressure distribution as shown below is employed to specify the 

pore pressure distribution in the reservoir layer:   

 

 𝑢 = 𝐶1ln 𝑟 + 𝐶2 (5-10) 

 

where 𝑢 = pore pressure and 𝑟 = radius from the centre of the well. It is assumed that the 

permeability of hydrate dissociated zone (0 ≤ 𝑟 ≤ 𝑟𝑓) is higher than that of the undissociated 

zone (𝑟 > 𝑟𝑓). Therefore, the above equation is applied to each zone separately while satisfying 

that the radial flow velocities at the boundary between the dissociated and undissociated zones 

are equal. By applying the other boundary conditions (𝑢 =  𝑃𝑖 at 𝑟 =  𝑟𝑜 , 𝑢 =  𝑃𝑜 at 𝑟 =

 𝑅𝑜), the values of the coefficients (C1 and C2) are obtained as follows: 
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𝐶1 = {
(𝑃𝑜 − 𝑃𝑖) ln (𝑟𝑓

1−𝛼𝑝𝑅𝑜
𝛼𝑝  𝑟𝑜⁄ )⁄    (0 ≤ 𝑟 ≤ 𝑟𝑓)

𝛼𝑝(𝑃𝑜 − 𝑃𝑖) ln (𝑟𝑓
1−𝛼𝑝𝑅𝑜

𝛼𝑝  𝑟𝑜⁄ )⁄    (𝑟 > 𝑟𝑓)
  

 
𝐶2 = {

𝑃𝑖 − 𝐶1 ln 𝑟𝑜    (0 ≤ 𝑟 ≤ 𝑟𝑓)

𝑃𝑜 − 𝐶1 ln 𝑅𝑜    (𝑟 > 𝑟𝑓)
  

 

where 𝑃o = hydrostatic pore pressure, 𝑃𝑖 = pore pressure at the well-formation interface, 𝑟𝑓 = 

radius of the hydrate dissociation front, 𝑟𝑜 = radius of the well-formation interface, 𝑅𝑜 = 

radius where hydrostatic pore pressure is recovered and 𝛼𝑝 = ratio of the permeability values 

of the dissociated and undissociated hydrate-bearing formation. According to the literature, the 

value of 𝛼𝑝 is dependent on the hydrate saturation and it could be ~100 or greater (Kumar et 

al. 2010; Hou et al. 2018; Delli & Grozic 2014). In this study, it is set to a constant value of 100. 

As to the value of 𝑟𝑓, coupled simulations in the literature (Sun et al. 2016; Chen, Feng, 

Kogawa, et al. 2018; Klar, Soga, et al. 2010) suggest that it is a fraction of 𝑅𝑜 and increases 

with increasing 𝑅𝑜. In this study, it is assumed that R0 = 2rf. 

 

To model the progress of depressurization and hydrate dissociation, the values of Pi and rf are 

linearly varied with time by -Pi and rf at each of the 14 depressurization and dissociation 

stages from the initial values of Pi = Po and rf = 0. In the field, the rate of decrease in Pi depends 

on the speed of depressurization specified by the operator, whereas the rate of increase in rf 

depends on the speed of hydrate dissociation, which is governed by the permeability field of the 

reservoir as well as heat supply from the far field. As changes of the formation permeability 

field in response to hydrate dissociation are complex, the rate of rf increase may not be constant 

as assumed in this study. In order to estimate the rate of rf increase more accurately, it would be 

necessary to carry out thermo-hydro-mechanical coupled simulations similar to the ones 

presented in the literature (Kimoto et al. 2007; Kakumoto et al. 2011; Klar et al. 2013; Gupta et 

al. 2017; Sun et al. 2005; Moridis et al. 2012; Sun et al. 2018; Uchida 2012). Figure 5-9 shows 

the simulated pore pressure profiles at the top of the reservoir layer in the case of localized 

(Pi= -0.3 MPa and rf = 0.5 m) and distributed (Pi = -0.3 MPa and rf = 3 m) hydrate 

dissociation cases. To create various depressurization and hydrate dissociation profiles, different 

combinations of Pi and rf values were employed (i.e., Pi = -0.1, -0.2, -0.3, -0.4, -0.5, -0.6 

MPa and rf = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 m). In total, 36 different depressurization and hydrate 

dissociation cases are simulated, which are listed in Table 5-4. 
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Figure 5-9 Simulated depressurization and hydrate dissociation (pore pressure) profiles in the 

MH reservoir layer (localized depressurization and dissociation case (Pi = -0.3 MPa and rf = 

0.5 m) (left) and distributed depressurization and dissociation case (Pi = -0.3 MPa and rf = 3 

m) (right)). 

 

Table 5-4 The depressurization and hydrate dissociation cases simulated in this study. 

Case# 
Pi 

(MPa) 
rf  
(m) 

Case# 
Pi 

(MPa) 
rf  
(m) 

Case# 
Pi 

(MPa) 
rf  
(m) 

1 

-0.1 

0.5 13 

-0.3 

0.5 25 

-0.5 

0.5 
2 1.0 14 1.0 26 1.0 
3 1.5 15 1.5 27 1.5 
4 2.0 16 2.0 28 2.0 
5 2.5 17 2.5 29 2.5 
6 3.0 18 3.0 30 3.0 
7 

-0.2 

0.5 19 

-0.4 

0.5 31 

-0.6 

0.5 
8 1.0 20 1.0 32 1.0 
9 1.5 21 1.5 33 1.5 

10 2.0 22 2.0 34 2.0 
11 2.5 23 2.5 35 2.5 
12 3.0 24 3.0 36 3.0 

 

 

5.3. Results 
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5.3.1. Formation deformation patterns 

Figure 5-10 shows the reservoir compaction profiles developed under the two different 

depressurization/hydrate dissociation patterns. The one on the left-hand side shows the localized 

dissociation case (rf = 0.5 m), whereas the right-hand side one shows the distributed dissociation 

case (rf = 3 m). It is noted that the depressurization level is identical between these two cases 

(Pi = -0.3 MPa). The values of the maximum subsidence (Smax) and the subsidence radius (Rs), 

which is defined as a radial distance where the curvature of the subsidence distribution becomes 

maximum, are shown in the figures as circular and square dots, respectively. It is found that the 

more the depressurization/hydrate dissociation is localized, the smaller the maximum subsidence 

and subsidence radius values become. 

 

Figure 5-10 Reservoir subsidence along the top of the reservoir layer (localized dissociation 

case (Pi = -0.3 MPa and rf = 0.5 m) (left) and distributed dissociation case (Pi = -0.3 MPa 

and rf = 3 m) (right)). 

 

Figure 5-11 shows the displacement patterns of the reservoir layer in the two different 

depressurization/hydrate dissociation cases mentioned above. It is noted that the magnitudes of 

the displacement vectors in these figures are normalised and scaled to increase their visibility. It 

is found that the reservoir layer deformation is concentrated near the wellbore in the localised 

dissociation case, whereas the reservoir layer deformation is radially distributed and developed 

primarily in the vertical direction in the distributed dissociation case.  
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Figure 5-11 Deformation patterns of the reservoir layer (localized dissociation case (Pi = -0.3 

MPa and rf = 0.5 m) (top) and distributed dissociation case (Pi = -0.3 MPa and rf = 3 m) 

(bottom)). 

 

Figure 5-12 Deformation patterns of the overburden layer (localized dissociation case (Pi = -

0.3 MPa and rf = 0.5 m) (top) and distributed dissociation case (Pi = -0.3 MPa and rf = 3 m) 

(bottom)). 

 

Figure 5-12 shows the overburden layer deformation patterns corresponding to the reservoir layer 
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deformation patterns. It is evident that the overburden layer deformation is localised near the 

bottom of the overburden layer when the reservoir deformation is localised near the wellbore (i.e., 

localised dissociation case), whereas it is more evenly spread vertically and horizontally in the 

overburden layer when the reservoir deformation is likewise (i.e., distributed dissociation case). 

The difference in reservoir/overburden deformation patterns is found to have significant effects 

on well integrity during depressurization/hydrate dissociation, which is described in the following 

sections.  

 

Figure 5-13 Axial strain profiles of the casing (localized dissociation (Pi = -0.3 MPa and rf = 

0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

5.3.2. Axial strain development 

Figure 5-13 shows the axial strain development of the casing. It is found that in both cases the 

maximum axial strain level in the casing is developed near the bottom of the overburden layer 

(approximately 290 m) and the value is roughly 5,000  at the depressurization/hydrate 

dissociation stage 14. However, the average axial strain level along the depth of the casing is 

greater in the distributed dissociation case than in the localised dissociation case. This corresponds 

to the overburden layer deformation pattern where the vertical displacement is more evenly spread 

over the depth and radius of the overburden layer in the distributed dissociation case than in the 

localised dissociation case.  
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Figure 5-14 Axial strain profiles of the cement (localized dissociation (Pi = -0.3 MPa and rf = 

0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

Figure 5-14 shows the axial strain development of the cement. It is found that they are identical 

to those of the casing, which indicates that the interface slippage at the casing-cement interface 

does not occur under the simulated reservoir subsidence cases. This also suggests that the axial 

strain distribution of the casing could be estimated from that of the cement, which can be 

measured by strain sensors embedded in the cement. Distributed monitoring of the axial strain 

development of the well with fibre optic sensing techniques might be applicable for such 

measurement. Experimental studies on the potential of distributed fibre optic monitoring of well 

integrity are presented in Chapter 6 and 7 of this thesis. 

 

It is noted that the small compressive strain (i.e., negative strain values) developed at the top of 

the well is caused by the casing landing stage, where the casing is released from hanging and 

compressed in the upper part of the well. In the experiments of fibre optic monitoring of well 

specimens described in Chapter 6 and 7, this compression effect is not incorporated during the 

specimen preparation. Hence, those test results are relevant to the middle and/or bottom depths 

of the well. Based on the depth of the initial compressive strain zone at depressurization/hydrate 

dissociation stage 0, the depth of the well affected by the casing landing stage is estimated to be 

approximately between 0 m and 30 m (approximately 10% of the well length).  
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Figure 5-15 Axial stress profiles of the casing (localized dissociation (Pi = -0.3 MPa and rf = 

0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

5.3.3. Axial stress development  

Figure 5-15 shows the axial stress development of the casing. The effect of 

depressurization/hydrate dissociation cases on the axial stress development of the casing is similar 

to that on the axial strain development of the casing: the average axial stress value of the casing 

is greater in the localised dissociation case than in the distributed dissociation case. The maximum 

axial strain level is developed near the bottom of the overburden layer, as it is the case for the 

maximum axial strain level. The difference, however, is that the axial stress level reaches its 

plateau once the deviator stress level exceeds the yield stress level of the casing (379.5 MPa) and 

the area of the axial stress plateau expands upward with the progress of depressurization/hydrate 

dissociation stages. The area of axial stress plateau indicates the area of plastic strain development 

and it covers the depths between 180 m and 290 m (i.e., 37% of the casing length) at the 

dissociation stage 14 in the distributed dissociation case. The plastic strain development is 

discussed later in the following section.  
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Figure 5-16 Axial stress profiles of the cement (localized dissociation (Pi = -0.3 MPa and rf = 

0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

Figure 5-16 shows the axial stress development of the cement. Due to the smaller stiffness of the 

cement than that of the casing, the axial stress increase (in tension) in the cement is found to be 

much smaller than that in the casing. In fact, the axial stress level in the cement does not become 

tensile (i.e., positive axial stress values) throughout the simulated depressurization/hydrate 

dissociation stages. The axial stress plateau is also developed in the cement at the bottom of the 

overburden layer in compressive axial stress values (approximately -2 MPa). This is because the 

stress level in the cement in this area has reached its yield stress level governed by the Mohr-

Coulomb yield criteria. This indicates that the cement fails in shear but tensile failure is unlikely 

to occur in the simulated depressurization/hydrate dissociation stages as the axial stress level 

remains in compression. It is noted, however, that if the depth of the well from the sea surface 

decreases, the initial compressive axial stress levels in the cement also decrease. This could lead 

to the development of tensile axial stress with or prior to the shear failure. In such cases, the 

cement might fail in tension and tensile cracks could develop in the cement. Hence, the 

consideration of the depth of the well from the sea surface would be important in assessing the 

cement integrity.  

 



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

128 

 

5.3.4. Plastic deviatoric strain development 

Figure 5-17 shows the plastic deviatoric strain development of the casing. It is found that the area 

of the casing plastic deviatoric strain development is greater in the distributed dissociation case 

than in the localised dissociation case, whereas the magnitude of the maximum plastic deviatoric 

strain is greater in the letter case than in the former case. The area of plastic deviatoric strain 

development corresponds to the area of the axial stress plateau (i.e., area of yielding) described 

earlier. Regarding the magnitude of the maximum plastic deviatoric strain, it is found that the 

increase in the area of the casing stress plateau (i.e., casing yield) helps distribute the development 

of plastic deviatoric strain over that area. As a result, smaller levels of the maximum plastic 

deviatoric strain are developed in the casing in the distributed dissociation case (2,900 ) than 

in the localised dissociation case (4,000 ). 

 

 

Figure 5-17 Plastic deviatoric stress profiles of the casing (localized dissociation (Pi = -0.3 

MPa and rf = 0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

The above trends are found to be true in the development of plastic deviatoric strain in the cement 

as well (Figure 5-18). The difference is that the magnitude of the plastic deviatoric strain is much 

greater in the cement than in the casing (7,400  in the distributed dissociation case and 13,000 

 in the localised dissociation case). This is because the area of yielding in the cement is localised 

within a smaller area than that in the casing. It also indicates that the cement is a brittle material 
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as opposed to the casing which is ductile. 

 

Figure 5-18 Plastic deviatoric stress profiles of the cement (localized dissociation (Pi = -0.3 

MPa and rf = 0.5 m) (left) and distributed dissociation (Pi = -0.3 MPa and rf = 3 m) (right)). 

 

5.3.5. Effect of cement shrinkage 

Cement shrinkage occurs due to the capillary pressure development in the cement pores during 

cement hydration process. In the Nankai Trough formation case, cement shrinkage volume could 

potentially reach 0.75% (Sasaki et al., 2018). Therefore, the cement shrinkage volume in the 

cement shrinkage stage is increased from 0% to 0.75% to assess its effect on well integrity.  

 

Figure 5-19 shows the axial stress development of the cement with the cement shrinkage volume 

of 0% and 0.75%. It is found that the cement has yielded extensively and developed stress plateau 

over the entire length of the cement prior to the depressurization/hydrate dissociation (i.e., 

reservoir subsidence) stages in the 0.75% cement shrinkage case. The axial stress level in the 

cement in the 0.75% shrinkage case remains constant at approximately -2 MPa throughout the 

reservoir subsidence stages. The negative axial stress value shows that the plastic deformation of 

the cement occurs in shear but not in tension.  



5. Simulation of well integrity in offshore unconsolidated methane hydrate-bearing formation 

during reservoir compaction 

 

130 

 

 

Figure 5-19 Axial stress profiles of the cement with the cement shrinkage volume of 0% and 

0.75% (Pi = -0.3 MPa and rf = 3 m). 

 

Figure 5-20 Plastic deviatoric strain profiles of the cement with the cement shrinkage volume of 

0% and 0.75% (Pi = -0.3 MPa and rf = 3 m). 
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Figure 5-20 shows the corresponding plastic deviatoric strain development of the cement. The 

average plastic strain level of approximately 6,600  is already developed in the cement due to 

the cement shrinkage volume of 0.75% prior to reservoir subsidence and it increases with the 

progress of reservoir subsidence to the maximum value of 24,000  at the bottom part of the 

well. Compared to the 0% cement shrinkage case, the maximum plastic deviatoric strain in the 

0.75% cement shrinkage case is found to increase by more than 200% at the reservoir subsidence 

stage 14 (7,400  vs. 24,000 ). 

 

Figure 5-21 shows the axial strain development of the casing and cement with the cement 

shrinkage volume of 0% and 0.75%. It is found that unlike the axial stress development, the axial 

strain development of the cement is not affected by the cement shrinkage volume of 0.75%. Also, 

the axial strain profiles of the casing and cement are found to be identical to each other. These 

results suggest that the interface slippage at the formation-cemet or cement-casing interface is not 

induced by the cemet shrinakge volume of 0.75%.  

 

In order to confirm this, a back-of-the-envelope calculation is performed with the analytical 

solution for the cavity expansion/contraction of an elastic cylinder presented in Section 4.3.4. in 

Chpter 4. The decrease in the radial effective stress at the cement-formation interface due to 

cement shrinkage is obtained by substituting Equation 4-8 into 4-7: 

 

 

∆𝜎′𝑟 = 2𝐺 [√(1 − (
𝑟𝑐
𝑟𝑜
)
2

)(
100 − ∆𝑉𝑐𝑒𝑚𝑒𝑛𝑡

100
) + (

𝑟𝑐
𝑟𝑜
)
2

− 1] (5-11) 

 

where ∆𝜎′𝑟 = change in the radial effective stress, 𝐺 = shear modulus of the formation, 𝑟𝑐 = 

outer radius of the casing, 𝑟𝑜 = radius of the wellbore and ∆𝑉𝑐𝑒𝑚𝑒𝑛𝑡 = volume change of the 

cement in percent. The value of shear modulus of the overburden layer at 200 m below the seafloor 

is approximately 40 MPa and the value of 𝑟𝑐 𝑟𝑜⁄  is 0.7857. By setting the value of ∆𝑉𝑐𝑒𝑚𝑒𝑛𝑡 to 

0.75%, the decrease in the radial effective stress is calculated to be ∆𝜎′𝑟 = -0.115 MPa. The 

corresponding decrease in the ultimate interface shear stress at the cement-formation interface is 

∆𝜏𝑢𝑙𝑡 = 𝜇∆𝜎𝑟
′ = -0.092 MPa ( = 0.8). This decrease in the interface shear resistance is too small 

to induce interface slippage. Also, at the casing-cement interface, the radial confining stress 

increases due to cement shrinkage, which prevents the slipplage from occuring. Therefore, the 

cement shrinkage volume of 0.75% does not affect the axial strain development of the casing and 

cement through the reduction in the radial confining stress from the formation.  
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(a) 

 

(b) 

Figure 5-21 Axial strain profiles of (a) the casing and (b) the cement with the cement shrinkage 

volume of 0% and 0.75% (Pi = -0.3 MPa and rf = 3 m). 
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5.3.6. Effect of the initial horizontal stress of the formation  

The simulation results presented in the earlier sections are computed on the assumption that the 

formation is initially overconsolidated, because the triaxial tests on the formation samples taken 

from the Nankai Trough site shows that this is the case (Nishio et al. 2011). However, there are 

uncertainties over the actual stress state of the Nankai Trough formation due to its complex 

geologic conditions as it is located near the subduction zone. Also, the formation samples were 

found to be significantly disturbed prior to the triaxial tests, which decreases the accuracy of the 

estimation of the stress state of the formation. Therefore, additional simulations for the normally 

consolidated formation case are conducted. The difference in the horizontal stress profiles of the 

consolidated and normally consolidated cases are shown earlier in Figure 5-8. It is noted that the 

cement shrinkage volume is set to 0% in these simulations. 

 

 

Figure 5-22 Reservoir subsidence along the top of the reservoir layer in the overconsolidated 

and normally consolidated cases (Pi = -0.3 MPa and rf = 3 m). 
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Figure 5-22 shows the reservoir subsidence profiles for the overconsolidated and normally 

consolidated formation cases. It is found that the reservoir subsidence is enhanced if the formation 

is assumed to be normally consolidated. The maximum reservoir subsidence at the 

depressurization/hydrate dissociation stage 14 increases from 0.85 m (overconsolidated case) to 

1.4 m (normally consolidated case). This is because the ratio of vertical effective stress to 

horizontal effective stress (i.e., K0 value) in the reservoir layer is smaller in the normally 

consolidated formation case (0.40) than in the overconsolidated case (0.44), which increases the 

magnitude of volumetric compaction per unit increase in mean effective stress in the e-logp’ space. 

In other words, soil becomes stiffer against volumetric compaction with increasing initial mean 

effective stress level.  

 

The increase in reservoir subsidence due to normally consolidated formation is found to induce 

increase in the axial and plastic deviatoric strain development of the casing and cement. Figure 

5-23 shows the axial strain development of the casing and cement. The maximum axial strain 

level in the casing increases from approximately 4,700  (overconsolidated formation case) to 

7,100  (normally consolidated formation case) and so does the maximum axial strain level in 

the cement. The axial strain profiles of the casing and cement are identical regardless of the 

overconsolidated or normally consolidated formation cases, showing that the reduction in the 

radial effective stress (K0 value change from 0.44 to 0.40) does not induce interface slippage at 

the casing-cement interface. Hence, the axial strain development of the casing could still be 

monitored regardless by measuring the axial strain development of the cement by, for example, 

fibre optic cables embedded in the cement. Figure 5-24 shows the plastic deviatoric strain 

development of the casing and cement. It is found that the maximum plastic deviatoric strain 

levels in the casing and cement (at stage 14) increase from 2,900  (casing) and 7,400  

(cement) (overconsolidated formation case) to 5,300  (casing) and 18,000  (cement) 

(normally consolidated formation case). Therefore, the initial horizontal stress levels of the 

formation have significant effects on the well integrity during reservoir compaction. 
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(a) 

 

(b) 

Figure 5-23 Axial strain profiles of (a) the casing and (b) the cement in the overconsolidated and 

normally consolidated cases (Pi = -0.3 MPa and rf = 3 m). 
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(a) 

 

(b) 

Figure 5-24 Plastic deviatoric strain profiles of (a) the casing and (b) the cement in the 

overconsolidated and normally consolidated cases (Pi = -0.3 MPa and rf = 3 m). 
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5.4. Discussion 

 

(a) 

 

(b) 

Figure 5-25 Effect of different depressurization/hydrate dissociation patterns on reservoir 

subsidence characteristics: (a) simulated pore pressure profiles; (b) consequent reservoir 

subsidence profiles. 

 

In the preceding sections, well integrity analyses for two depressurization and hydrate 

dissociation scenarios (i.e., localized and distributed depressurization/hydrate dissociation) are 

presented to show their effect on the distributions of stresses and strains in the casing and 

cement. In this section, results from all the simulated 36 depressurization/hydrate dissociation 

cases are compiled to create the colour maps of maximum axial and plastic deviatoric strains 

developed in the casing and cement at different pressure drawdown (∑∆𝑃𝑖) and radius of 

hydrate dissociation front (∑∆𝑟𝑓) values.  

 

It is found that different depressurization/hydrate dissociation patterns create varied reservoir 
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subsidence profiles. Figure 5-25 shows a schematic diagram depicting how different hydrate 

dissociation patterns (at the same pressure drawdown) affect the consequent reservoir 

subsidence profiles. The localized hydrate dissociation induces smaller values of maximum 

reservoir subsidence and subsidence radius than the distributed hydrate dissociation. This is 

because when the radius of hydrate dissociation front (rf) is small, the pressure drawdown does 

not propagate afar in the reservoir in the radial direction from the centre of the wellbore, 

resulting in smaller compacted reservoir volume.  

 

Figure 5-26 Correlations between depressurization/hydrate dissociation patterns and reservoir 

subsidence characteristics: (a) maximum reservoir subsidence; (b) radius of reservoir 

subsidence. 

 

Figure 5-26 shows the maximum reservoir subsidence and subsidence radius correlated with 

pressure drawdown and radius of hydrate dissociation. One data point is extracted from each of 

the 14 depressurization/hydrate dissociation stages in each of the 36 simulation cases (i.e., 504 

data points in total). It is found that the maximum reservoir subsidence increases with increasing 

pressure drawdown and radius of hydrate dissociation front. For example, if the pressure 

drawdown is 8 MPa and hydrate dissociation front reaches approximately 25 m from the centre 

of the wellbore, the maximum reservoir subsidence would approach 1.0 m. It is also found that 

the reservoir subsidence radius, which indicates the lateral spread of reservoir subsidence, 

increases with increasing radius of hydrate dissociation front but not with increasing pressure 

drawdown. This is because when the radius of hydrate dissociation front does not increase, the 
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pore pressure decrease and compacted volume of the reservoir are localised near the wellbore 

regardless of the magnitude of pressure drawdown.  

 

Figure 5-27 The effect of depressurization/hydrate dissociation patterns on well integrity: (a) 

casing axial strain; (b) cement axial strain; (c) casing plastic deviatoric strain; (d) cement plastic 

deviatoric strain. 

 

Figure 5-27 shows the change in the maximum axial and plastic deviatoric strain levels in the 

casing and cement in response to different depressurization/hydrate dissociation patterns. It is 

found that the larger the pressure drawdown and the smaller the radius of hydrate dissociation 

front are, the greater the maximum axial strain levels in the casing and cement become (Figure 

5-27a and b). For example, if the radius of hydrate dissociation front is only 5 m when the 

pressure drawdown of 8 MPa is achieved, the maximum axial strain levels in the casing and 

cement could both reach 10,000  (i.e., 1%). This level of strain does not cause failure in the 

casing, which is ductile enough to withstand up to several tens of percent strain, but not in the 

cement which is a much more brittle material than the casing. Figure 5-27c and d show the 

maximum plastic deviatoric strain levels in the casing and cement. It is found that the casing 

develops plastic deviatoric strain gradually due to its ductility. The cement, however, develops 

large values of plastic deviatoric strain rapidly as the plastic strain level suddenly jumps once 

the values of pressure drawdown and radius of hydrate dissociation front exceed the dashed line 

shown in Figure 5-27d. This shows that the cement failure could be localized in the form of, for 
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example, cracks. 

 

The result also indicates that, in order to avoid the development of high axial strain levels in the 

casing and cement, pressure drawdown might have to be kept at low levels while the radius of 

hydrate dissociation front increases above certain values. For instance, if the axial strain level of 

10,000  needs to be avoided to ensure that the fibre optic cables installed in the well survive 

the initial hydrate dissociation process, pressure drawdown could be temporarily stopped and 

held at 6 MPa until the radius of hydrate dissociation front reaches 25 m. After that, further 

pressure drawdown could be performed without exceeding the strain limit of the well or 

instrument installed in the well. It is noted, however, that the simulated pressure drawdown and 

radius of hydrate dissociation front increase linearly with time simultaneously, which may not 

be realistic considering that the usual field practice is to perform quick pressure drawdown, 

which would not cause any increase in the radius of hydrate dissociation front, and maintain the 

pressure drawdown (i.e., no increase in pressure drawdown) so that the radius of hydrate 

dissociation front increases to produce gas from the hydrate reservoir. Hence, the effect of the 

path of pressure drawdown and radius of hydrate dissociation front changes on the stress/strain 

development in the well has to be examined carefully. 

 

Figure 5-28 The effect of reservoir subsidence characteristics on well integrity: (a) casing axial 

strain; (b) cement axial strain; (c) casing plastic deviatoric strain; (d) cement plastic deviatoric 

strain. 
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Figure 5-28 shows the change in the maximum axial and plastic deviatoric strain levels in the 

casing and cement with changing reservoir subsidence characteristics. It is found that the larger 

the maximum reservoir subsidence and the smaller the subsidence radius are, the greater the 

maximum axial strain levels in the casing and cement become (Figure 5-28a and b). This is 

because when the subsidence radius is small, the development of overburden layer deformation 

is localised near the bottom of the overburden layer (see Figure 5-12). As a result, the axial 

strain development in the casing and cement is concentrated near the bottom of the overburden 

layer. The maximum plastic deviatoric strain level in the casing changes gradually with changes 

in the reservoir subsidence characteristics. This is because the casing (i.e., steel) is a ductile 

material as is mentioned earlier as opposed to the cement which develops large plastic 

deviatoric strain levels abruptly due to its brittleness. As a result, there are two distinctive areas 

in Figure 5-28d separated by the dashed line: damaged (below the line) and undamaged (above 

the line) cement areas. The line can be approximated by the following equation:  

 

 Rs = 175 Smax (5-12) 

 

where Rs = radius of formation subsidence and Smax = maximum formation subsidence. Although 

the line separates the damaged and undamaged cement areas clearly, the position and shape of 

the line could be affected significantly by the initial hydrate distribution in the reservoir, which 

could potentially be highly heterogeneous in the field. In this study, the effect of hydrate 

saturation distributions on the reservoir behaviour is not considered (i.e., hydrate saturation 

values in the reservoir are set to zero). This might be acceptable because it is assumed that 

hydrate saturation has negligible effects on the bulk modulus of the hydrate-bearing soil in the 

MHCS model employed in this study. However, the shear modulus is enhanced by the presence 

of hydrate, which helps the reservoir resist inward displacement during depressurization/hydrate 

dissociation through cavity contraction mechanism. Therefore, the effect of hydrate saturation 

distributions on the characteristics of reservoir subsidence and well integrity have to be 

examined carefully. A fully-coupled thermo-hydromechanical simulation would have to be 

performed to calculate accurate deformations in the reservoir with complex hydrate saturation 

distributions to assess their effect on well integrity.  

 

 

5.5. Summary 

 

In this study, a parametric study of well integrity under different reservoir subsidence patterns is 
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carried out using finite element analysis for the case of the Nankai Trough methane hydrate 

reservoir. Well construction processes are incorporated prior to the reservoir subsidence stages 

to investigate the effect of well construction processes, such as cement shrinkage, on well 

integrity during reservoir compaction. Also, the effect of the initial horizontal stress profile of 

the formation (i.e., overconsolidated and normally consolidated formation cases) on well 

integrity is assessed. The MHCS model is used to model the formation behaviour, whereas an 

interface friction constitutive model is developed to model the behaviour of the casing-cement 

and cement-formation interfaces. The MHCS and interface friction models are calibrated against 

relevant laboratory test data. The primary findings of this study are presented below: 

 

(i) The maximum axial strain and plastic deviatoric strain levels in the casing and cement 

are found to increase with increasing maximum reservoir subsidence and decreasing 

radius of formation subsidence (i.e., lateral extent of the subsidence). The computed 

maximum reservoir subsidence and radius of formation subsidence varies between 0.01 

m to 1.42 m and 10.5 m to 125 m, respectively, and the largest maximum axial strain 

levels developed in the casing and cement are both 9,500 , whereas the largest plastic 

deviatoric strain levels developed in the casing and cement are significantly different 

(7,700  (casing ) vs. 29,000  (cement)). With these levels of strains, the casing is 

still far from failure (which requires ~30% strain), whereas the cement might already 

develop localised failures such as cracks. 

 

(ii) Cement shrinkage volume of 0.75% is found to develop approximately 6,600  plastic 

deviatoric strain in the cement prior to the reservoir subsidence stages and it increases to 

the maximum value of 24,000  by the time the reservoir subsidence reaches 0.85 m. 

Compared to the 0% shrinkage case, the maximum plastic deviatoric strain after the 

reservoir subsidence of 0.85 m increases by more than 200% (7,400  vs. 24,000 ) 

due to the cement shrinkage of 0.75%. The slight change in the initial horizontal stress 

levels of the formation (K0 = 0.40 ~ 0.44) is also found to affect the maximum plastic 

deviatoric strain level in the cement by more than 100%. These effects are less 

pronounced in the casing plastic deviatoric strain development as the casing is ductile 

whereas the cement is brittle. Therefore, cement shrinkage and initial horizontal stress 

levels of the formation are both found important in assessing cement integrity and they 

might have affected the well failure at the Nankai Trough by, for example, inducing 

fluid flow from the overburden layer through cement cracks. 

 

(iii) Large pressure drawdown combined with small radius of hydrate dissociation front are 
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found to induce the largest levels of axial and plastic deviatoric strain development in 

the casing and cement. This indicates that the well integrity would become most 

vulnerable in the initial stages of hydrate dissociation after rapid depressurization, 

which is the case in the gas production tests at the Nankai Trough in 2013 and 2017 

where the well failure occurred with sand production. In order to circumvent this, the 

pressure drawdown might have to be kept at a low level (several MPa) until hydrate 

dissociation front advances to a certain radius. 
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6. Distributed fibre optic strain monitoring of axial tensile 

deformation of laboratory-scale well specimens 

 

 

6.1. Introduction 

 

In the offshore gas production test from methane hydrate reservoirs at the Nankai Trough in 2013, 

distributed temperature sensing (DTS) with fibre optics was carried out in order to detect the 

endothermic hydrate dissociation (i.e., temperature decrease is detected if methane hydrate is 

dissociated). The DTS measurement provided rich datasets for the analysis of flow and hydrate 

dissociation characteristics of the Nankai Trough formation (Yamamoto et al. 2017). Distributed 

strain sensing (DSS), however, was not implemented because the risk of well failure during the 

gas production test was considered insignificant. 

 

However, the gas production test was terminated due to the sand production issue six days after 

the start of the test. One of the possible causes of the sand production is well failure in the reservoir 

layer as reservoir compaction, which was described in the previous chapter, might have crashed 

the screen segment of the well to allow the ingress of formation materials into the well. If DSS 

had been deployed to monitor the strain development of the well during the gas production test, 

it could have provided critical information about the initiation of sand production to carry out 

prompt remedial operations to avert the issue.   

 

In this study, the potential of the BOTDR/A technique to implement the strain monitoring of 

oil/gas wells was explored in the monitoring of axial tensile deformation of laboratory-scale well 

specimens. The objectives of this study are as follows: 

 

(i) to examine the effectiveness of BOTDR/A in detecting axial tensile deformation of the 

well specimen,  

(ii) to identify key characteristics of fibre optic cables for monitoring the axial strain 

development of oil/gas wells and 

(iii) to suggest the design of a new fibre optic cable for effective strain BOTDR/A 

measurements based on (ii).  

 

The tested well specimens consisted of concentric double casings. Fibre optic cables were 

cemented in the annular gap along the axis of the specimen. The tensile deformation of the 

specimen was induced by stretching the outer casing, which in turn propagated to the cement and 
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to the inner casing. A commercial BOTDR/A analyser called Omnisens VISION Dual was 

employed to carry out BOTDR/A measurements. An FBG analyser from an oil and gas service 

company was also employed to provide reference strain measurements. Details about the 

specimen preparation and loading test are provided below.  

 

 

6.2. Methodology 

 

6.2.1. Design of the specimen 

As discussed in the previous chapter, the axial tensile deformation of wells in response to reservoir 

compaction occurs in the overburden layer of the formation. The overburden layer near the top of 

the compacting reservoir stretches in the vertical direction while it also compresses toward the 

well in the horizontal direction (Kristiansen et al. 2005; Li et al. 2003). This overburden 

movement firmly grabs and pulls the well downward, which gives rise to the tensile strain 

development of the well, in which the tensile strain propagates from the formation, to the cement 

and to the casing. To model this axial tensile strain development mechanism of wells, a laboratory-

scale specimen was designed as shown in Figure 6-1. The outer casing of the specimen is welded 

to the top and bottom plate while the inner casing is welded only to the bottom plate. Hence, 

stretching the specimen results in the tensile strain development first in the outer casing, which 

then propagates to the cement and to the inner casing, resembling the actual tensile strain 

development mechanism of wells mentioned earlier. After the design concept of the laboratory-

scale specimen was verified by testing of a small-scale specimen of similar design, a 3m-long 

large-scale specimen was prepared, whose casing diameters corresponded to those of a 9 5/8-in. 

casing in a 12 1/4-in. borehole, to assess the abovementioned objectives of this study.  

 

Figure 6-1 A schematic diagram of the configuration of the laboratory-scale specimen. 
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6.2.2. Fibre optic analysers 

The analyser used for the BOTDR/A measurement is shown in Figure 6-2a, which is called 

Omnisens Vision Dual. The Omnisens analyser is a commercial analyser from a Swiss company 

of the same name. The analyser employed for the FBG measurement is shown in Figure 6-2b, 

which is owned and operated by an oil and gas service company. The primary measurement 

characteristics of the two analysers are provided in Table 6-1.   

 

 

(a) 

 

(b) 

Figure 6-2 The fibre optic analysers employed for the BODTR/A and FBG measurement: (a) 

Omnisens BOTDR/A analyser; (b) FBG analyser from an oil and gas service company. 
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Table 6-1 The primary measurement characteristics of the Omnisens (BOTDR) and FBG 

analysers. 
 Omnisens FBG 
Spatial resolution (m) 1.0 0.005 
Data sampling interval (m) 0.25 0.02 
Axial strain measurement precision () 30 10 
Maximum fibre length per channel (km) 15 0.250 

Measurement duration per channel (min) 5 3.5 

 

 

6.3. Tensile loading experiment  

 

6.3.1. Specimen configuration 

Figure 6-3 shows the cross section of the large-scale specimen. The outer diameter of the inner 

casing is 9 5/8 in. (0.24 m) and the inner diameter of the outer casing is 12 1/4 in. (0.31 m). 

These dimensions corresponds to the diameter of a casing and borehole deployed at the Nankai 

Trough (Yamamoto et al. 2014). The height of the specimen is approximately 3.0 m, which is 

three times the spatial resolution of the BOTDR measurement with the Omnisens analyser 

(BOTDR). To prepare the large-scale specimen, the inner and outer casing subassemblies were 

first fabricated (Figure 6-4) and they were assembled at the laboratory.  

 

 

Figure 6-3 The cross sections of the large-scale specimen with types and locations of the 

instrumented sensors. 
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Figure 6-4 The inner casing (left) and the outer casing (right) subassemblies of the large-scale 

specimen. 

 

6.3.2. Sensor instrumentation 

The types, locations and number of the instrumented sensors are illustrated in Figure 6-3. Eight 

strain gauges were attached to the inner casing whereas twelve strain gauges were attached to 

the outer casing. Wire gauges, which consisted of a piano wire attached to position transducers, 

were also instrumented on the outer casing.  

 

The fibre optic cables for the BOTDR/A measurement were put through Hole #1 to #6 and they 

were then spliced with each other to form a connected fibre optic cable (Figure 6-5). The FBG 

cables were installed in Hole # 7 and #8.  

 

The cross sections of the fibre optic cables employed for the BOTDR/A measurement are 

illustrated in Figure 6-6. The cables differ significantly in their coating layer characteristics. For 

example, the Strain-B cable has multiple (excessive) coating layers which makes it robust 

enough to survive oil and gas well installation. The strain sensitivity of this cable, however, is 

expected to be low due to increased possibility of slippage between the coating layers. The 
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Strain-A1, -A2, -C and -D cables, in contrast, have much simpler cross-sections. Therefore, 

there is in general a trade-off between robustness and strain sensitivity of commercially-

available fibre optic cables, which necessitates the identification of key characteristics of fibre 

optic cables which achieve high robustness and strain sensitivity simultaneously. The values of 

the strain and temperature coefficients of these cables for BOTDR/A measurements are listed in 

Table 6-2. 

 

The FBG cable consists of a stainless inner rod and outer tube. Two optical fibres are installed 

in the gap between the inner rod and outer tube with an adhesive. The Temp-A cable is for 

temperature measurement as the optical fibres in this cable are encased in a gel-filled tube 

which isolates the fibres from external strains. The values of the strain and temperature 

coefficients of the FBG cables are listed in Table 6-3.  

 

Fibre breakage was detected in the BOTDR/A fibre optic cable loop during specimen 

preparation, which could not be fixed within the timeframe of the test. Therefore, it was decided 

to employ only BOTDR and to take measurements from both ends of the fibre optic cable loop 

(i.e., Fibre end 1 and 6 in Figure 6-5).  

 

 

Figure 6-5 The configuration of the fibre optic cables installed in the specimen. 
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Figure 6-6 The cross sections of the fibre optic cables.  

 

Table 6-2 The values of the BOTDR strain and temperature coefficients of the cables. 
 Strain coefficient, C (MHz/%) Temperature coefficient, CT (MHz/oC) 

Strain-A1 468 1.03 
Strain-A2 468 1.03 
Strain-B 500 1 
Temp-A N/A 1 
Strain-C 450 1.1 
Strain-D 499.8 1.775 
Strain-E 500 1 
Temp-B N/A 1 

 

Table 6-3 The values of the strain and temperature coefficient of the FBG cables. 

 Strain coefficient, 1 - pe 
(1/) 

Temperature coefficient, n + L 
(1/oC) 

FBGstrain 0.7874×10-6 19.05×10-6 
FBGtemp 0.7874×10-6 9.15×10-6 

 

6.3.3. Monitoring of cement cure process 

Class G cement, tap water and the shrinkage reducing admixture (ASTM C494 Type S) were 

mixed together to prepare cement slurry. The water-to-cement ratio was set to 0.44 and the volume 

ratio of the admixture was set to 0.75% of the volume of the slurry. The mixing was carried out 

in four separate batches. The entire cement pour was completed in approximately an hour and the 

fibre optic monitoring of the temperature change of the cement was initiated with the FBG and 

Omnisens analyser (BOTDR). Their baseline measurement was taken prior to the cement pour.  

 

Figure 6-7a and b show the temperature change along the Temp-A cable (Hole #4) and FBGtemp 

cable (Hole #8) measured by the BOTDR analyser and FBG analyser, respectively. The averaged 

nature of the BOTDR measurement can be observed by comparing Figure 6-7a and b. The FBG 

measurement detected localized high temperature zone between 0 m to 1.0 m whereas it could 

not be clearly seen in the BOTDR measurement. This is because the BOTDR measurement 

calculates an average temperature change over the special resolution (i.e., 1 m in this test). The 
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FBG measurement, in contrast, could capture the localized temperature change with the densely 

distributed sensing gratings along the FBG cable. The temperature anomaly was generated 

because the second batch of cement slurry was inadvertently mixed at a lower mixing speed than 

the other batches. Insufficient mixing resulted in subdued cement hydration reaction and hence 

the lower temperature increase.  

 

 

Figure 6-7 Temperature change of the specimen during cement cure: (a) BOTDR measurement; 

(b) FBG measurement. 

 

6.3.4. Loading test 

Six days after the start of cement pour, the tensile loading test was carried out (Figure 6-8). Figure 



6. Distributed fibre optic strain monitoring of axial tensile deformation of laboratory-scale well 

specimens 

 

152 

 

6-9 shows the time series of the load increments as well as the ambient temperature change during 

the loading test. Each load increment was held for approximately 15min to allow the period for 

the BOTDR and FBG measurements. Cyclic loading was carried out to assess potential hysteretic 

strain transfer characteristics of the fibre optic cables. Before and after the cyclic loading, the load 

was increased monotonically. The load was increased until the specimen failed at the top part of 

the outer casing (Figure 6-10)  

 

 

Figure 6-8 The large-scale specimen set up in a loading frame. 

 

 

Figure 6-9 The time series of the tensile axial load and temperature change during the loading 

test. 
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Figure 6-10 Failure of the specimen at the top part of the outer casing. 

 

Figure 6-11 shows the result of the BOTDR and FBG strain measurement. The effect of 

temperature change is ignored. It can be seen that the measured strain levels increase with 

increasing load levels. The strain profiles from the FBGstrain cable (Figure 6-11g) shows that the 

strain distributions from 0.5 m to 2.5 m are relatively uniform. It is assumed that the FBG strain 

profiles are representative of the real strain profiles of the specimen and they are thus used for 

the performance evaluation of the fibre optic cables employed for the BOTDR measurement.   

 

Figure 6-11a and b show the strain profiles along the Strain-A1 and Strain-A2 cable, 

respectively. Similar strain profiles are obtained between the Strain-A cables regardless of the 

diameter of the cable. The maximum strain magnitude of the Strain-A cables is approximately 

1200  at 625 kips (2,780 kN), which compares favourably with that of the FBGstrain cable (i.e., 

roughly 1100  at 625 kips). No strain hysteresis is observed in the Strain-A cables during the 

cyclic loading.  

 

Figure 6-11c shows the strain profiles along the Strain-B cable. The calculated strain 

magnitudes are slightly smaller than those of the Strain-A cables and FBGstrain cable. Also, the 

strain distributions are not symmetric. This is because of ineffective strain transfer within the 

coating layers of the Strain-B cable as the number of coating layers of the Strain-B cable are 

significantly greater than that of the Strain-A cables.  
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Figure 6-11 Axial strain profiles obtained from the BOTDR and FBG measurements: (a) Strain-

A1 (BOTDR); (b) Strain-A2 (BOTDR); (c) Strain-B (BOTDR); (d) Strain-C (BOTDR); (e) 

Strain-D (BOTDR); (f) Temp-A (BOTDR); (g) FBGstrain (FBG); (h) FBGtemp (FBG). 
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Figure 6-11d and e show the strain profiles along the Strain-C and Strain-D cable, respectively. 

Both profiles are symmetric with the peak strain measured at the centre of the specimen. 

However, the maximum strain magnitudes at each load increment are larger in the Strain-C 

cable than in the Strain-D cable. This is mainly because the coating layers of the Strain-C cable 

are tightly buffered by mechanical compression and chemical adhesion whereas the Strain-D 

cable relies on the mechanical compression through the steel wire layer which are prone to 

slippage. As a result, slippage within the coating layers might have accumulated during the 

cyclic loading in the Strain-D cable. It suggests the importance of tightly buffered coating layers 

to achieve better strain sensitivity. 

 

It is noted that no axial strain development was detected in the Temp-A and FBGtemp cables 

(Figure 6-11f and h) as the optical fibres in these cables were isolated form external strains by 

the gel- and air-filled annulus, respectively. 

 

 

6.4. Discussion 

 

6.4.1. Comparison between BOTDR and FBG measurements  

The BOTDR profiles are calculated from the convolution of the real strain profile (real) and a 

convolution function such as the Gaussian function as shown in Equation 6-1: 

  

 
𝜖𝐵𝑂𝑇𝐷𝑅(𝑥)  = 𝜖𝑟𝑒𝑎𝑙(𝑥)⊗

1

√2𝜋𝜎2
𝑒
−(

𝑥2

2𝜎2
)
 (6-1) 

 

where x = cable distance; 𝜖𝐵𝑂𝑇𝐷𝑅(𝑥)  = BOTDR profile; 𝜖𝑟𝑒𝑎𝑙(𝑥)  = real strain profile; 𝜎  = 

standard deviation of the Gaussian distribution. The spatial resolution of the BOTDR 

measurement is defined as the full width at half maximum (FWHM) of the frequency-power 

spectrum of the incident light pulse, which is assumed to follow the Gaussian distribution herein. 

The FWHM of the Gaussian distribution is equal to 2.36 and equating it with the spatial 

resolution of the BOTDR measurement (i.e., 1.0 m) yields  = 0.424 m. This value of the standard 

deviation was used in Equation 6-1 to convolute the FBG strain profiles (i.e., assumed to be real) 

to produce pseudo BOTDR profiles, which are then compared with the actual BOTDR profiles to 

evaluate the strain sensitivity of the fibre optic cables.  

 

The comparison between pseudo and actual BOTDR strain profiles are shown in Figure 6-12. The 

pseudo and actual BOTDR strain profiles are in general in good agreement, which shows that the 
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strain sensitivity of the fibre optic cables employed for the BOTDR measurement was sufficient. 

The exception is the Strain-B cable, which highlights the necessity to simplify the coating layers 

of this cable by, for example, reducing the number of coating layers. Applying mechanical 

compression and/or chemical adhesion between the coating layers might also improve the strain 

sensitivity of the Strain-B cable.  

 

Figure 6-12 Comparison between the strain profiles calculated by the convolution of the FBG 

strain profiles (i.e., solid lines) and the actual BOTDR strain profiles (i.e., dashed lines): (a) 

Strain-A1; (b) Strain-A2; (c) Strain-B; (d) Strain-C; (e) Strain-D. 
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6.4.2. Pipe shaft friction analysis of the specimen 

Analytical strain distributions in the outer pipe and cement are derived analytically herein to 

compare the experimental results against the analytical estimations. Figure 6-13 shows a 

schematic diagram of a segment of the well model under force equilibrium. The axial stress (a) 

is applied at the bottom of the outer pipe while the displacement at the top of the outer and inner 

casing is constrained. The annular cement is constrained only by friction at the interface with the 

outer pipe. The inner pipe is not applied with any axial load at the bottom.  

 

 

 

Figure 6-13 The assumed force equilibrium condition of the well specimen under tensile loading 

for the shaft friction analysis. 

 

The force equilibrium equations for the outer pipe, cement and inner pipe are as follows: 

 

 

{
  
 

  
 𝐸𝑜𝐴𝑜

𝜕2𝑦𝑜
𝜕𝑧2

+ 2𝜋𝑟𝑐𝑜𝑘(𝑦𝑐 − 𝑦𝑜) = 0

𝐸𝑐𝐴𝑐
𝜕2𝑦𝑐
𝜕𝑧2

− 2𝜋𝑟𝑐𝑜𝑘(𝑦𝑐 − 𝑦𝑜) + 2𝜋𝑟𝑖𝑐𝑘(𝑦𝑖 − 𝑦𝑐) = 0

𝐸𝑖𝐴𝑖
𝜕2𝑦𝑖
𝜕𝑧2

− 2𝜋𝑟𝑖𝑐𝑘(𝑦𝑖 − 𝑦𝑐) = 0

 

 

(6-2) 

 

where 𝐸𝑜 = Young’s modulus of the outer pipe, 𝐴𝑜 = cross-sectional area of the outer pipe, 𝐸𝑐 

= Young’s modulus of the cement, 𝐴𝑐  = cross-sectional area of the cement, 𝐸𝑖  = Young’s 

modulus of the inner pipe, 𝐴𝑖 = cross-sectional area of the inner pipe, 𝑦𝑜 = axial displacement 
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of the outer pipe,  𝑦𝑐 = axial displacement of the cement, 𝑦𝑖 = axial displacement of the inner 

pipe, 𝑘 = shear stiffness of the cement-steel interface (unit is stress/length), 𝑟𝑐𝑜 = radius from 

the longitudinal axis of the model to the cement-outer pipe interface, 𝑟𝑖𝑐  = radius from the 

longitudinal axis of the model to the inner pipe-cement interface. The above simultaneous 

equations can be arranged in the matrix form as follows: 

 

 

𝜕2

𝜕𝑧2
[

𝑦𝑜
𝑦𝑐
𝑦𝑖
] = 2𝜋𝑘

[
 
 
 
 
 
𝑟𝑐𝑜
𝐸𝑜𝐴𝑜

−𝑟𝑐𝑜
𝐸𝑜𝐴𝑜

0

−𝑟𝑐𝑜
𝐸𝑐𝐴𝑐

𝑟𝑐𝑜 + 𝑟𝑖𝑐
𝐸𝑐𝐴𝑐

−𝑟𝑖𝑐
𝐸𝑐𝐴𝑐

0
−𝑟𝑖𝑐
𝐸𝑖𝐴𝑖

𝑟𝑖𝑐
𝐸𝑖𝐴𝑖 ]

 
 
 
 
 

[

𝑦𝑜
𝑦𝑐
𝑦𝑖
] (6-3) 

 

Equation 6-3 can be solved via diagonalization of the matrix, which yields the following 

equations: 

 

 
𝜕2

𝜕𝑧2
[

𝑌𝑜
𝑌𝑐
𝑌𝑖

] = [

𝜆𝑜 0 0
0 𝜆𝑐 0
0 0 𝜆𝑖

] [

𝑌𝑜
𝑌𝑐
𝑌𝑖

] (6-4) 

 

where 𝜆𝑜, 𝜆𝑐 , 𝜆𝑖 are the eigenvalues of the matrix and 

 

 

[

𝑌𝑜
𝑌𝑐
𝑌𝑖

] = [(
|
𝑝𝑜
|
) (

|
𝑝𝑐
|
) (

|
𝑝𝑖
|
)]

−1

[

𝑦𝑜
𝑦𝑐
𝑦𝑖
] = [

𝑝𝑜1 𝑝𝑐1 𝑝𝑖1
𝑝𝑜2 𝑝𝑐2 𝑝𝑖2
𝑝𝑜3 𝑝𝑐3 𝑝𝑖3

]

−1

[

𝑦𝑜
𝑦𝑐
𝑦𝑖
] (6-5) 

 

where 𝑝𝑜, 𝑝𝑐 , 𝑝𝑖 are orthonormal vectors corresponding to the respective eigenvalues. For the 

parameter values listed in Table 6-4, the eigenvalues of the matrix are calculated to be 𝜆𝑜 =

47.41, 𝜆𝑐 = 3.862, 𝜆𝑖 = 0 . Therefore, the general solutions for Equation 6-4 are given by the 

following equations: 

 

 

[

𝑌𝑜
𝑌𝑐
𝑌𝑖

] = [

𝐶𝑜1𝑒
√𝜆𝑜𝑧 + 𝐶𝑜2𝑒

−√𝜆𝑜𝑧

𝐶𝑐1𝑒
√𝜆𝑐𝑧 + 𝐶𝑐2𝑒

−√𝜆𝑐𝑧

𝐶𝑖1𝑧 + 𝐶𝑖2

] (6-6) 

 

By substituting Equation 6-6 into Equation 6-5, the general solutions are obtained as follows: 
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 [

𝑦𝑜
𝑦𝑐
𝑦𝑖
] =

[
 
 
 
 𝑝𝑜1 (𝐶𝑜1𝑒

√𝜆𝑜𝑧 + 𝐶𝑜2𝑒
−√𝜆𝑜𝑧) + 𝑝𝑐1 (𝐶𝑐1𝑒

√𝜆𝑐𝑧 + 𝐶𝑐2𝑒
−√𝜆𝑐𝑧) + 𝑝𝑖1(𝐶𝑖1𝑧 + 𝐶𝑖2)

𝑝𝑜2 (𝐶𝑜1𝑒
√𝜆𝑜𝑧 + 𝐶𝑜2𝑒

−√𝜆𝑜𝑧) + 𝑝𝑐2 (𝐶𝑐1𝑒
√𝜆𝑐𝑧 + 𝐶𝑐2𝑒

−√𝜆𝑐𝑧) + 𝑝𝑖2(𝐶𝑖1𝑧 + 𝐶𝑖2)

𝑝𝑜3 (𝐶𝑜1𝑒
√𝜆𝑜𝑧 + 𝐶𝑜2𝑒

−√𝜆𝑜𝑧) + 𝑝𝑐3 (𝐶𝑐1𝑒
√𝜆𝑐𝑧 + 𝐶𝑐2𝑒

−√𝜆𝑐𝑧) + 𝑝𝑖3(𝐶𝑖1𝑧 + 𝐶𝑖2)]
 
 
 
 

 (6-7) 

 

The boundary conditions of the well model under tensile loading are (i) zero axial displacement 

in the outer and inner pipes at z = 0, (ii) zero axial strain in the cement at z = 0, L and in the inner 

pipe at z = L and (iii) constant axial stress in the outer pipe at z = L. The zero strain boundary at z 

= 0 in the cement would be valid assuming that the cohesion at the cement-top plate interface (z 

= 0) in the normal direction is negligible compared to the interface cohesion against shearing at 

the inner and outer pipe-cement interfaces. The aforementioned boundary conditions are 

expressed as follows: 

 

 

𝑦𝑜|𝑧=0 = 0,   𝑦𝑖|𝑧=0 = 0,    
𝜕𝑦𝑐
𝜕𝑧
|
𝑧=0

= 0,  

𝜕𝑦𝑜
𝜕𝑧
|
𝑧=𝐿

=
𝜎𝑎
𝐸𝑜
,    
𝜕𝑦𝑖
𝜕𝑧
|
𝑧=𝐿

= 0,    
𝜕𝑦𝑐
𝜕𝑧
|
𝑧=𝐿

= 0 

(6-8) 

 

By applying these boundary conditions, the coefficients in Equation 6-7 are obtained as follows: 

 

 

[
 
 
 
 
 
𝐶𝑜1
𝐶𝑜2
𝐶𝑐1
𝐶𝑐2
𝐶𝑖1
𝐶𝑖2 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑝𝑜1𝑒

√𝜆𝑜𝐿 𝑝𝑜1𝑒
−√𝜆𝑜𝐿 𝑝𝑐1𝑒

√𝜆𝑐𝐿 𝑝𝑐1𝑒
−√𝜆𝑐𝐿 𝑝𝑖1𝐿 𝑝𝑖1

𝑝𝑜3𝑒
√𝜆𝑜𝐿 𝑝𝑜3𝑒

−√𝜆𝑜𝐿 𝑝𝑐3𝑒
√𝜆𝑐𝐿 𝑝𝑐3𝑒

−√𝜆𝑐𝐿 𝑝𝑖3𝐿 𝑝𝑖3

𝑝𝑜2√𝜆𝑜𝑒
√𝜆𝑜𝐿 −𝑝𝑜2√𝜆𝑜𝑒

−√𝜆𝑜𝐿 𝑝𝑐2√𝜆𝑐𝑒
√𝜆𝑐𝐿 −𝑝𝑐2√𝜆𝑐𝑒

−√𝜆𝑐𝐿 𝑝𝑖2 0

𝑝𝑜1√𝜆𝑜 −𝑝𝑜1√𝜆𝑜 𝑝𝑐1√𝜆𝑐 −𝑝𝑐1√𝜆𝑐 𝑝𝑖1 0

𝑝𝑜3√𝜆𝑜 −𝑝𝑜3√𝜆𝑜 𝑝𝑐3√𝜆𝑐 −𝑝𝑐3√𝜆𝑐 𝑝𝑖3 0

𝑝𝑜2√𝜆𝑜 −𝑝𝑜2√𝜆𝑜 𝑝𝑐2√𝜆𝑐 −𝑝𝑐2√𝜆𝑐 𝑝𝑖2 0 ]
 
 
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
0
0
0
𝜎𝑎
𝐸𝑜
0
0 ]
 
 
 
 
 
 

 (6-9) 

 

Figure 6-14 shows the analytical axial strain distributions of the inner casing, cement and outer 

pipe obtained from Equation 6 presented earlier, which are compared with the strain distributions 

obtained from the strain gauges and FBG cable. The values of the parameters used in the equations 

are listed earlier in Table 6-4. It is found that the match between the analytical and experimental 

axial strain distributions is satisfactory, proving that the theoretical concept of the tensile axial 

deformation of the well model is properly implemented in the design of the specimen and loading 

scheme. This shaft friction analysis has thus verified that the axial tensile deformation of the well 

is simulated successfully in the laboratory.  

 

The errors between the analytical and experimental strain values in the cement after 225 kips are 
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caused by plastic deformation of the specimen. In fact, the strain distributions of the FBG cables 

start to oscillate from this load level. Since the strain distributions of the FBG and other fibre 

optic cables show larger values than the analytical strain distributions, potential fibre optic cable 

slippage at the interface between the cables and cement and/or between the fibre core and its 

coating layers is not induced within the strain range examined in this experiment (~ 1,250 ).  

 

Table 6-4 The values of the parameters of the shaft friction model. 

L (m) 3.1 
Eo (GPa)  200 
Ao (m2) 6.33410-3 
Ec (GPa)  8.3 
Ac (m2) 2.91010-2 
Ei (GPa)  200 
Ai (m2) 7.03110-3 
rco (m) 0.1556 
ric (m) 0.1222 
k (GPa/m) 6.0 

a (MPa) 

17.6, 52.7, 
87.8, 122.9, 

158.0, 
228.2, 298.5 

 

 
Figure 6-14 Comparison between the analytical solution and experimental result on the axial 

strain distributions of inner pipe, cement and outer pipe. 

 

In addition, the value of the interface shear stiffness used in the analytical solution to obtain the 

satisfactory match is 6.0 GPa/m, which is approximately the same value used in the finite element 
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analysis of the well specimen presented in Chapter 5 (𝑘 = 𝜏𝑢𝑙𝑡 𝛿𝑢𝑙𝑡
𝑒⁄ ~ 𝑐′ 𝛿𝑢𝑙𝑡

𝑒⁄ = 3.0 MPa/0.5 

mm = 6.0 GPa/m). Therefore, the calibration of the interface shear stiffness performed for the 

simulation of well integrity during reservoir compaction in Chapter 5 has been validated by this 

elastic cylindrical shaft friction analysis. 

 

6.4.3. Comparison between BOTDR/FBG and strain gauge measurements 

Figure 6-15 show the comparison between the fibre optic (i.e., BOTDR and FBG) and the strain 

gauge measurements. BOTDR and FBG strain data were extracted from a readout point of the 

fibre optic cables at approximately middle height of the specimen (i.e., 1.5m). The operational 

strain gauges located near the readout points were selected for the comparison.  

 

 

Figure 6-15 Comparison between the fibre optic sand strain gauge measurement. 

 

BOTDR and FBG measurements are in good agreement with the strain gauge data. However, 

there was discrepancy between the Strain-B cable and the other cables/strain gauges. The 

difference is again attributed to the ineffective strain transfer between coating layers of the 

Strain-B cable as the coating layers are not tightly buffered through mechanical compression or 

chemical adhesion and the number of coating layers was excessive. Therefore, it is argued that 

key to accurate strain monitoring with BOTDR/A is to employ fibre optic cables which possess 

a simple yet robust cross-sectional structure with a small number of coating layers that are 

tightly buffered to each other. One way to achieve such fibre optic cables is to encase an 

existing tightly buffered strain cable such as the Strain-C cable in a metal tube and fill the gap 
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with a filler material. The filler material should be chosen such that it does not develop 

excessive or localized deformation (i.e., too elastic or brittle) in response to external strains as it 

hinders effective strain transfer to the inner optical fibre cable.  

 

 

6.5. Summary  

 

In this study, laboratory-scale well specimens were prepared to simulate compaction-induced 

tensile strain development of wells in the laboratory. The well specimen consisted of an inner and 

outer casing with cemented annulus. Different types of fibre optic cables were instrumented in 

the annulus of the specimens. Strain gauges and wire gauges were also instrumented on the 

casings to evaluate the accuracy of the BOTDR and FBG measurements. The primary findings 

form this study with regard to its objectives are as follows: 

 

(i) The effectiveness of the BOTDR/A measurement was comparable to that of the FBG and 

strain gauge measurements in detecting the axial strain development of the well specimen 

subjected to tensile loading. 

(ii) Key to accurate strain measurements by BOTDR/A is to employ fibre optic cables whose 

cross-sectional structure is simple yet robust with less number of coating layers which 

are tightly buffered to each other through mechanical compression and/or chemical 

adhesion.  

(iii) A suggested development strategy of such effective fibre optic cables is to encase a 

commercially available tightly buffered fibre optic cable (e.g., the Strain-C cable) in a 

metal tube and fill the gap with an adhesive or polymer which should neither be too brittle 

or elastic to ensure effective strain transfer from the metal tube to the inner fibre optic 

cable. 
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7. Distributed fibre optic strain monitoring of bending deformation of 

laboratory-scale well specimens 

 

 

7.1. Introduction 

 

In the previous chapter, the axial tensile strain development of oil and gas wells was modelled 

through laboratory experiments. This is applicable mainly for the Nankai Trough case where 

wells were constructed vertical to the formation. In such a configuration, the well is likely to 

compress in the reservoir layer and elongates in the overburden layer in response to reservoir 

compaction.  

 

A field test is expected in 2020 in methane hydrate reservoirs in Alaska where wells will be 

drilled at an angle (e.g., ~30o) to the formation. This is because the drilling equipment has to be 

set up on existing roads, which are thermally insulated to avoid thawing the permafrost of the 

Alaska formation, and drill sideways into the formation. The response of deviated wells to 

reservoir compaction is different from that of vertical wells in that bending deformation occurs. 

This is due to the vertical gradient of the vertical strain in the overburden layer (e.g., greater 

tension at the bottom than at the top). Hence, it is important that DAS monitoring system can 

measure the bending deformation of wells in order to assess the integrity of deviated wells at the 

Alaska site.  

 

In this study, laboratory monitoring of bending deformation of well specimens was carried out 

with BOTDR. The objectives of the study are as follows: 

 

(i) to assess the potential of BOTDR measurements to capture the bending deformation of 

the well specimen and 

(ii) to investigate the effect of installation location of fibre optic cables on the accuracy of 

bending curvature distributions measured by BOTDR. 

 

A model well specimen was fabricated with a steel box section and cement sheath. A box 

section, rather than a circular section, was selected to assure the monitoring of composite 

bending deformation of the specimen in the laboratory conditions. In other words, the 

application of the high confining pressure levels of the actual wellbore conditions, which would 

keep the casing (steel) and cement together during bending, is not feasible at laboratory. As 

design codes for assuring the composite bending deformation of square-section structures (e.g., 
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bridges) are well established in the construction industry, they were referred to for the 

preparation of the specimen. Details about the specimen preparation, sensor instrumentation and 

loading test are provided in the following sections. 

 

 

7.2. Methodology 

 

7.2.1. Specimen design 

Figure 7-1 shows the cross-sections of the specimen. The specimen consists of three main 

components: steel box section, shear studs and cement sheath. The shear studs consist of bolts 

and nuts which are fixed to the steel box section. The role of shear studs, which is specified in 

the Eurocode 4 (European Commitee for Standardization 2005), is to prevent slippage at the 

steel-cement interface so that the specimen bends as a composite material under ambient 

pressure conditions.  

 

 

Figure 7-1 Cross-sections of the specimen. 

 

7.2.2. Fibre optic monitoring techniques 

Neubrex’s NuebreScope NBX-5000 (Figure 7-2) was employed for BOTDR measurements 

whereas Micron Optics’ Optical Sensing Interrogator | sm130 (Figure 7-3) was employed for FBG 

measurements. The FBG measurement employed in this experiment is different from the one used 

in the experiment for the axial deformation of the well specimen described in Chapter 6. Hence, 

the FBG system employed for this experiment (i.e., the Micron Optics’ FBG) is referred to as 

FBGS to distinguish it from the special FBG system offered by an oil and gas service company 

(see Chapter 6). The main characteristic of the FBGS analyser is that dynamic measurements at 

hundreds of Hz are feasible. Table 7-1 shows the measurement characteristics of the BOTDR and 

FBGS analysers.  
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Figure 7-2 The NeubreScope NBX-5000 analyser for BOTDR measurements [After Chunge 

(2014)]. 

 

 

Figure 7-3 The Optical Sensing Interrogator | sm130 for FBGS measurements. 

 

Table 7-1 Measurement characteristics of the BOTDR and FBGS analysers. 
 BOTDR FBGS 
Spatial resolution (m) 0.5 <0.01 
Data sampling interval (m) 0.05 NA 
Axial strain measurement precision () 10 1 

Measurement duration per channel (min) 5 2×10-5 

Measurement frequency (Hz) 3×10-3 1000 

 

 

7.2.3. Fibre optic cables 

Figure 7-4 shows the cross-section of the fibre optic cables employed for the BOTDR and 
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FBGS measurements in this experiment. The Excel cable (Figure 7-4a) and Fujikura cable 

(Figure 7-4b) are used for the BOTDR measurement. The Excel cable is a temperature cable as 

the fibres are enclosed in a gel-filled tube which insolates the fibres from external strains. The 

Fujikura cable is a strain cable as the coating layers around the fibres are tightly buffered 

through mechanical compression. The FBGS cable used for FBGS measurements is also a strain 

cable as the coating layers are tightly buffered. The strain and temperature coefficients of these 

fibre optic cables are provided in Table 7-2. 

 

 

Figure 7-4 The cross-section of the fibre optic cables. 

 

Table 7-2 The strain and temperature coefficients of the fibre optic cables. 
 Strain coefficient Temperature coefficient 
 C (MHz/%) CT (MHz/oC) 

Excel 0 1.17 
Fujikura 493 2.10 

 1 - pe (1/) n + L (1/oC) 
FBGS 0.7874×10-6 9.15×10-6 

. 

 

7.3. Specimen preparation 

 

7.3.1. Steel box section and shear studs 

Figure 7-5 shows the steel box section used for the specimen preparation. The length is 3 m and 

the width is 0.25 m with 8 mm wall thickness. Shear studs were installed in the holes on the 

steel box section. The number of shear studs, and their length and diameter were determined 

according to the Eurocode 4 (European Commitee for Standardization 2005).  

 



7. Distributed fibre optic strain monitoring of bending deformation of laboratory-scale well 

specimens 

 

167 

 

 
Figure 7-5 The steel box section used for the specimen preparation. 

 

7.3.2. Sensor instrumentation 

First, the Fujikura fibre optic cable was installed on the upper and lower surface of the steel box 

section with glue while the cable was pretensioned by approximately 3000  (Figure 7-6). 

After the steel box section was placed in the mould, additional fibre optic cables (Fujikura and 

Excel cable) were installed. The fibre optic cables were then spliced for BOTDR measurements. 

The location and type of fibre optic cables installed to the specimen are shown in Figure 7-7. 

Strain gauges were also installed on the steel box section. In total, ten strain gauges were 

attached on the upper and lower surface of the steel box section (Figure 7-7). FBGS cables and 

wire gauges were also installed on the cement sheath after specimen preparation (Figure 7-8).  

 

In addition, a digital image correlation technique was employed to capture the deformation of 

the cement sheath. In this technique, a series of photos of the specimen are taken at each load 

increment. The surface of the cement sheath is painted in plain white background with black 

dots, of which movement a digital image correlation software tracks to calculate displacement 

and strain fields. The Optecal software which was developed at the University of California, 

Berkeley, by Dr Clement B. Barthes, was employed. The test setup for the digital image 

correlation technique is shown in Figure 7-9. 
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Figure 7-6 A fibre optic cable (Fujikura cable) and a strain gauge installed to the steel box 

section. 

 

(a) 

 

(b) 

Figure 7-7 The location of fibre optic cables, strain and wire gauges in the specimen: (a) cross-

sectional view; (b) plan view from top of specimen.  
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Figure 7-8 The FBGS cables and wire gauges attached on the cement sheath at the bottom 

centre part of the specimen. 

 

    

  (a)                                 (b) 

Figure 7-9 The test setup for the digital image correlation technique: (a) overview of the 

equipment; (b) cement sheath surface painted in white background with black dots. 

 

7.3.3. Cement pour and cure processes 
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  (a)                                 (b) 

    

(c)                                 (d)   

Figure 7-10 The process of cement pour and cure processes : (a) installation of the steel box 

section in the mould; (b) cement slurry pour; (c) demoulding after cement set; (d) cement cure 

in the water bath. 

 

Figure 7-10 shows the process of cement pour and cure during specimen preparation. First, the 

steel box section was placed in the mould (Figure 7-10a). After installing the rest of the fibre 
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optic cables, cement slurry was poured into the mould (Figure 7-10b). The cement slurry was 

prepared by mixing Class G oil well cement with water at the water-to-cement ratio of 0.44. 

After 48 h the mould was detached from the specimen (Figure 7-10c). The specimen was then 

placed in a water bath for cement cure (Figure 7-10d). The specimen was cured in the water 

bath under room temperature and pressure conditions for 20 days. Finally, the specimen was 

removed from the water bath and set up in the loading apparatus for the loading test.  

 

 

7.4. Three-point bending test 

 

Three-point bending was implemented on the specimen in the loading apparatus shown in 

Figure 7-11. Spacer plates were placed between the specimen and loading apparatus to avoid 

stress concentration and localized failure in the cement sheath. Plaster was applied between the 

spacer plates and cement sheath to connect them together. The width, length and thickness of 

the spacer plate were 90 mm, 330 mm and 10 mm, respectively. 

 

 

Figure 7-11 An overview of the specimen setup for the three-point bending test. 

 

Figure 7-12a and b show the time series of the loading and the load vs. central deflection 

diagram, respectively. The step loading was carried out where the load level was held constant 

at each load increment for approximately 10 min (Figure 7-12a) to allow the period for BOTDR 

measurements. The load was maintained manually by adjusting the displacement, which 

resulted in the fluctuation of the load increments. The loading rate between each load increment 

was set to approximately 10 kN/min. 
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Figure 7-12 The development of load and displacement in the specimen during bending test: (a) 

time vs. load; (b) central deflection vs. load. 

 

    

  (a)                                 (b) 

Figure 7-13 Overviews of the specimen after failure: (a) upper right part; (b) lower centre part. 
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The specimen failed at approximately 330 kN. Overviews of the specimen after the failure are 

shown in Figure 7-13. The upper section of the specimen developed cracks in the cement sheath 

in the longitudinal direction. This is because of the compressive stress concentration between 

the shear studs. In the bottom centre section of the specimen, a major crack was formed in the 

cement in the transverse direction. This is due to the tensile stress development in this specimen 

section during bending.  

 

7.4.1. Strain gauge data 

Figure 7-14 shows the longitudinal strain development of the steel box section during loading 

obtained from the strain gauges. The positive values indicate tensile strain. Six of the ten strain 

gauges were not operational at the time of the loading test. The functional strain gauges were 

the strain gauge #2 and #3 (i.e., SG2 and SG3), which were attached on the upper part of the 

steel box section, and the strain gauge #7 and #10 (i.e. SG7 and SG10), which were installed on 

the lower part of the specimen.  

 

Figure 7-14 Longitudinal strain development of the steel box section during the bending test 

obtained from the strain gauges.  

 

The response of the strain gauge #2, #7 and #10 was linear with increasing load levels. The 

strain magnitude became larger toward the centre of the specimen. This is because the 

maximum bending moment in three-point bending occurs at the centre of beam. The response of 

the strain gauge #3 at small load levels was not linear. This is because the steel spacer plate, 
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which was placed on the cement surface above this strain gauge, constrained the development of 

compressive strain. After a certain load level (e.g., 50 kN), slippage occurred between the spacer 

plate and cement sheath, which reduced the constraining effect and the compressive strain 

development started to pick up as expected. The strain gauge #2 and #7 were located at the same 

longitudinal position (i.e., 1.0 m). The magnitude of longitudinal strain from these strain gauges 

were identical up to a load level of 100 kN, after which the tensile strain from strain gauge #7 

became larger than the compressive strain from strain gauge #2. This suggests that the specimen 

started to fail at 100 kN and the neutral axis of the specimen started to shift upward.  

 

Figure 7-15 Longitudinal strain development of the cement sheath during the bending test 

obtained from the FBGS measurement. 

 

7.4.2. FBGS 

Figure 7-15 shows the development of the longitudinal strain of the cement sheath obtained 

from the FBGS measurement. The FBGS cables were attached on the cement sheath surface 

with epoxy and their location is indicated in the insert of the figure. The strain levels of FBGS3 

and 4, which were located at the lower centre of the specimen, were smaller than that of the 

strain gauge #7, which was located near these FBGS cables. A reason why these FBGS cables 

measured smaller strain levels than the strain gauge is the tensile crack development at the 

lower centre part of the specimen in the cement sheath (Figure 7-13b). The crack development 

decreased the tensile strain levels of the nearby cement sections. It seems that the initial crack 

occurred at a load level of approximately 50 kN where the strain levels measured by FBGS3 



7. Distributed fibre optic strain monitoring of bending deformation of laboratory-scale well 

specimens 

 

175 

 

and 4 started to decrease. The response of FBGS1 and 2 was more linear than that of FBGS3 

and 4 because cracks did not develop near FBGS1 and 2 until the failure load level (330 kN) 

was reached.  

 

Figure 7-16 Longitudinal strain distributions in the lower section of the specimen obtained from 

the BOTDR measurement: (a) Cable1; (b) Cable2; (c) Cable7. 

 

7.4.3. BOTDR 

Figure 7-16 shows the longitudinal strain distributions at different load levels on the lower 

section of the specimen obtained from the BOTDR measurement. Cable1 and 2 were embedded 

in the cement sheath and their strain distributions thus provide those of the cement sheath, 

whereas the data along Cable7 give strain distributions of the steel box section as Cable7 was 
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directly attached on it. As such, strain distributions along Cable 1 and 2 were compared with 

FBGS strain data whereas those along Cable 7 was compared with strain gauge data. The 

temperature effect was ignored due to the minimal temperature change of less than ±0.5oC 

during the bending test.  

 

Figure 7-17 Longitudinal strain distributions in the upper section of the specimen obtained from 

the BOTDR measurement: (a) Cable5; (b) Cable6; (c) Cable8. 

 

Theoretically, three-point bending produces triangular longitudinal strain distributions. This was 

captured by the BOTDR measurement. The agreement between the BOTDR measurement along 

Cable 7 and strain gauge measurement was satisfactory (Figure 7-16c) whereas the FBGS 

measurement did not match well with the BOTDR measurement along Cable 1 and 2 (Figure 7-
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16a and b). This indicates the difference between distributed (BOTDR) and localized (FBGS) 

strain measurements. The FBGS measurements were affected by the stress relaxation induced 

by cement cracking whereas such localized strain change was averaged out to provide an overall 

strain distribution in the BOTDR measurement. Although localized and distributed 

measurements are complementary to each other, localized measurements could be misleading if 

the number of sensors is insufficient.  

 

Figure 7-18 Longitudinal strain distributions in the side section of the specimen obtained from 

the BOTDR measurement: (a) Cable3; (b) Cable4. 

 

Figure 7-17 shows the longitudinal strain distributions in the upper part of the specimen 
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obtained from the BOTDR measurement. The triangular strain distribution in the compression 

side (upper part) is captured as was the case for the tension side (lower part) of the specimen. 

The comparison among BOTDR measurements shows that the cement sheath (Cable5 and 6) 

developed smaller compressive strain levels than the steel box section (Cable8), which is 

counterintuitive. This was because the cement around the upper centre part of the specimen 

elongated laterally due to Poisson’s effect by the point loading. Distributed (BOTDR) and 

localized (FBGS and strain gauges) measurements were in agreement except for the strain 

gauge attached at the centre of the specimen (Figure 7-17c). The mismatch was probably caused 

by the point load from the loading apparatus which generated longitudinal elongation of the 

specimen due to Poisson’s effect.  

 

Figure 7-18 shows the longitudinal strain distributions in the side section of the specimen 

obtained from the BOTDR measurement. As Cable3 and 4 were installed along the neutral axis 

of the specimen, negligible longitudinal strain levels were measured up to the load level of 100 

kN. Above this load level, tensile longitudinal strain started to develop because of the upward 

shift of the neutral axis following the crack development in the cement sheath at the lower part 

of the specimen. At the load level of 300 kN, Cable3 and 4 broke at approximately 1.2 m from 

the left edge of the cement sheath. As a result, strain distributions beyond 1.2 m along Cable3 

and 4 could not be obtained.  

 

7.4.4. Digital image correlation 

Figure 7-19 shows longitudinal strain distributions of the cement sheath on the right-hand side 

of the specimen obtained from the digital image correlation technique. The digital image 

correlation technique shows the locations of cracks propagating in the cement sheath with 

increasing load levels. It also shows that tensile strain developed at the lower part of the cement 

whereas compressive strain developed at the upper part, which is consistent with the 

deformation of the specimen inferred from the BOTDR measurement. It is found that the neutral 

axis was located in the middle height of the cement sheath at small load levels (Figure 7-19a 

and b) and it gradually moved upward at higher load levels (Figure 7-19c and d). This is 

consistent with the BOTDR measurement along Cable3 and 4 (Figure 7-18). It was also found 

that tensile strain developed at the upper centre part of the specimen, which corroborates the 

observation from the BOTDR measurement that the lateral elongation of the cement sheath 

occurred in response to the vertical compressive point load from the loading apparatus due to 

Poisson’s effect (Figure 7-17a and b).  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7-19 Longitudinal strain distributions in the cement sheath during loading test obtained 

from the digital image correlation analysis at different load levels: (a) 50 kN; (b) 150 kN; (c) 

250 kN; (d) 300 kN. 
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7.5. Discussion 

 

The potential of BOTDR measurements to monitor the bending curvature development of the 

well specimen is examined in Figure 7-20. It shows the curvature distributions derived 

analytically with the central deflection data obtained from the wire gauges (black solid lines) as 

well as the ones calculated from the BOTDR measurements (red dashed and blue dotted lines).  

 

The analytical curvature distribution was derived in the following manner. First, the flexural 

rigidity (EI) of the specimen under three-point bending was calculated via Equation 7-1: 

 

 
𝐸𝐼 =  

𝑃𝐿3

48𝛿𝑚𝑎𝑥
 (7-1) 

 

where 𝑃 = point load at the centre of the specimen; 𝐿 = distance between the bottom supports; 

𝛿𝑚𝑎𝑥 = deflection at the centre of the specimen. The flexural rigidity was updated at each load 

level with increasing P and 𝛿𝑚𝑎𝑥 values. The value of L was measured as 3.4 m. Second, the 

bending moment (M) was derived via Equation 7-2: 

 

 
𝑀 =  

𝑃

2
〈𝑥〉 − 𝑃 〈𝑥 −

𝐿

2
〉 (7-2) 

 

where 𝑥 = distance from the left hand-side support. The 〈 〉 operator is the Macaulay brackets 

which converts negative values into zero and leave positive values unmodified. Finally, the 

curvature (') was derived via Equation 7-3: 

 

 
𝜅′  =  

𝑀

𝐸𝐼
 (7-3) 

 

To calculate empirical curvature from BOTDR measurements, Equation 7-4 was used: 

 

 
𝜅′  =  

𝜖

𝑦
 (7-4) 

 

where 𝜖 = longitudinal strain; 𝑦 = distance from the neutral axis to the location of fibre optic 

cables in the cross-section. The longitudinal strain was calculated by averaging the absolute 

difference between strain distributions along pairs of cables embedded at symmetric locations 



7. Distributed fibre optic strain monitoring of bending deformation of laboratory-scale well 

specimens 

 

182 

 

across the neutral axis (i.e., a cable pair of Cable7 and 8 and of Cable1 and 6) (ϵ =  (𝜖𝑙𝑜𝑤𝑒𝑟 −

𝜖𝑢𝑝𝑝𝑒𝑟 )/2). The values of y = 0.125 m and 0.145 m were used for the cable pair of Cable 1 and 

6 and of Cable 7 and 8, respectively.  

 

Figure 7-20 Development of bending curvature derived analytically from the central deflection 

data and calculated empirically from the BOTDR measurement. 

 

It was found that the curvature values estimated from the BOTDR measurement were in good 

agreement with the analytical values derived with the central deflection data over a wide range 

of load levels. The values obtained from the BOTDR measurement were smaller than the 

analytical values. This is mainly due to the averaged nature of BOTDR measurements where the 

strain values are averaged over the spatial resolution of the BOTDR measurement (i.e., 0.5 m in 

this test), which makes it difficult to capture the peak value of the curvature distributions. 

Another reason might be that the specimen was no longer elastic at large load levels as the 

digital image correlation results showed extensive crack development in the cement sheath. It 

was also found that the curvature values calculated from the cables embedded in the cement 

(Cable1 and 6) (blue dotted lines) were smaller than those obtained from the cables attached on 

the steel box section (Cable7 and 8) (red dashed lines). This is in part caused by the lateral 

elongation of the cement sheath due to Poisson’s effect at the point where the point load was 

applied from the loading apparatus. The strain distribution along the steel box section was not 

affected because Poisson’s effect (i.e., the effect of the point load) did not propagate to the steel 

box section. Therefore, the fibre optic cables attached on the steel box section (i.e., on casing 

surface in the case of oil/gas wells) would be more advantageous than the ones embedded in the 
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cement in capturing the bending curvature distributions accurately.  

 

 

7.6. Summary 

 

In this study, distributed fibre optic monitoring of the bending deformation of well specimens 

was carried out at laboratory. The specimen consisted of a steel box section and cement sheath. 

To prevent interface slippage between the steel box section and cement sheath at room pressure 

conditions, shear studs were installed on the steel box section. Fibre optic cables were installed 

in the longitudinal direction on the steel box section as well as in the cement sheath to measure 

the longitudinal strain development of the specimen with BOTDR. Localized strain monitoring 

was performed by the FBGS and strain gauge measurement. The following findings have been 

obtained from this study: 

 

(i) BOTDR measurements captured the theoretical triangular longitudinal strain 

distributions of the specimen under three-point bending. The bending curvature 

development of the specimen was also captured by BOTDR measurements and it was in 

good agreement with the analytical bending curvature distributions derived from the 

central deflection of the specimen measured by the wire gauges. 

(ii) The curvature distributions calculated from BOTDR measurements along fibre optic 

cables embedded in the cement sheath had smaller peak values than those along cables 

attached on the steel box section. The longitudinal strain distributions in the cement 

sheath were significantly affected by Poisson’s effect as the cement elongated in the 

lateral direction near the point load location. Therefore, fibre optic cables attached on 

the steel (e.g., casing) would produce more accurate bending curvature distributions 

from BOTDR measurements.  
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8. Conclusions and recommendations for future work 

 

 

8.1. Conclusions 

 

The research described in this thesis has contributed to the advancement of well integrity 

analyses in methane hydrate reservoirs, with particular emphasis on the Nankai Trough case, in 

the following areas described below. 

 

8.1.1. Cement shrinkage in deepwater well annuli 

There are a number of studies on laboratory measurements and numerical simulations of cement 

shrinkage. However, the inflow of water from the formation to hydrating cement was rarely 

incorporated. Also, the underlying physics of cement shrinkage (i.e., capillary pressure 

development) was ignored in the existing numerical simulations. 

 

In the finite element modelling work, cement shrinkage process was modelled through capillary 

pressure development in a porous material with time-varying pore fluid contraction rate (i.e., 

sink rate), stiffness and permeability, which accurately represents the underlying physics of the 

shrinkage behaviour of early-age cement. Also, the simulation was carried out in a hydro-

mechanically coupled manner to facilitate the interaction between the cement and formation 

during cement shrinkage. The model parameters (i.e., sink rate, stiffness and permeability) were 

calibrated against laboratory cement shrinkage tests performed under the pressure and 

temperature conditions representative of the Nankai Trough conditions.  

 

Results show that cement shrinkage volume is dependent on the formation permeability because 

the rate of water supply from the formation to cement controls the negative pore pressure (i.e., 

capillary pressure) development of the cement. In general, it is found that cement shrinkage 

volume increases with decreasing formation permeability. However, cement shrinkage volume 

is also affected by the initial effective stress state of the cement at the initial set (i.e., the time 

where the phase change from liquid slurry to solid cement occurs). For the Nankai Trough case, 

it is found that the upper range of cement shrinkage volume is approximately 0.5% to 0.7% for 

the formation permeability between 0.1 D to 1 mD. 

 

8.1.2. Well integrity during well construction 

Due to the unconsolidated nature of the Nankai Trough formation, well construction process 

could negatively affect formation integrity prior to gas production. In the previous well 
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construction modelling work in the literature, only certain construction stages such as drilling 

and completion stages were modelled. More detailed well construction processes were modelled 

by Xu (2014). However, the cement shrinkage stage was not modelled appropriately in his work 

because reasonable values of cement shrinkage volume for the Nankai Trough case were 

unknown. Therefore, the present work extends the work of Xu (2014) by incorporating the 

result of the cement shrinkage analysis described earlier.  

 

It is found that the drilling stage has the largest impact among all construction stages on the 

plastic strain development of the formation around the wellbore. However, when it comes to 

stress changes of the formation, it is not the drilling stage but the cement shrinkage stage that 

has significant effects. This is because of the following mechanism (Figure 8-1). First, the 

drilling stage imposes a constant pressure decrease on the wellbore surface, which generates a 

larger horizontal strain change in the low stiffness (low hydrate saturation) layer than in the high 

stiffness (high hydrate saturation) layer (Figure 8-1b). In this process, the low hydrate saturation 

layer accumulates some plastic strains, which induce vertical stress decrease (stress 

redistribution) and hence smaller deviator stress changes occur in the low hydrate saturation 

layer than in the high hydrate saturation layer (∆𝑞 ~∆𝜎𝑣
′ − ∆𝜎ℎ

′ ). Second, the cementing stage 

imposes a constant pressure increase on the wellbore surface, which brings the deviator stress 

levels in each layer back close to their initial levels (Figure 8-1c). It is noted that the deviator 

stress levels after the cementing process are slightly lower than the initial deviator stress levels 

due to the aforementioned vertical effective stress decrease in the low hydrate saturation layer. 

Finally, the cement shrinkage stage imposes a constant radial displacement on the wellbore 

surface, which generates greater horizontal stress changes in the high stiffness (high hydrate 

saturation) layer than in the low stiffness (low hydrate saturation) layer (Figure 8-1d). As a 

result, a significant difference in the final deviator stress levels in each layer is developed due to 

the cement shrinkage stage. The point is that the cement shrinkage stage imposes displacement 

boundary conditions on the wellbore surface, whereas the drilling and cementing stages impose 

pressure boundary conditions. The plastic strain development in the low hydrate saturation layer 

during the drilling stage contributes to the deviator stress concentration in the high hydrate 

saturation layer, but the difference in the initial stiffness of each layer has greater impact. This is 

demonstrated through the elastic cylindrical cavity expansion/contraction analysis described in 

Chapter 4. Therefore, it is crucial to incorporate the cement shrinkage stage into well 

construction processes of the well integrity simulation, in order to accurately estimate the stress 

state of the formation prior to gas production.  
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Figure 8-1 Stress and stiffness changes in the formation during well construction processes: (a) 

initial state; (b) after drilling stage; (c) after cementing stage; (d) after cement shrinkage stage. 

 

8.1.3. Well integrity during reservoir compaction 

Well integrity analyses against reservoir compaction is critical for sustainable oil/gas 

production. Well integrity simulations in the literature typically ignores one or more of the 

primary model components (i.e., casing, cement and formation). In addition, well construction 

processes prior to reservoir compaction are usually disregarded. A reservoir compaction model 

which incorporates all model components as well as well construction process was developed 

by Xu (2014). The present study extends his work by modelling different reservoir compaction 

profiles, which vary in their maximum subsidence magnitude and radial extent of subsidence, to 

assess their effect on the development of well integrity parameters such as axial stress, strain 

and plastic deviatoric strain of the casing and cement. 

 

Results show that the maximum axial strain and plastic deviatoric strain levels in the casing and 

cement during reservoir compaction stages develop just above the reservoir layer and their 

magnitudes increase with increasing maximum reservoir subsidence and decreasing radius of 

reservoir subsidence. This indicates that the casing and cement are more likely to be damaged if 

the reservoir subsidence is more radially localised. Cement shrinkage is found to have a 

significant effect on the plastic deviatoric strain development in the cement as the maximum 
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plastic deviatoric strain level in the cement developed during reservoir compaction could triple 

due to the cement shrinkage volume of 0.75%. Also, small changes in the initial horizontal 

stress levels in the formation (K0 = 0.40 ~ 0.44) (i.e., 10% change in effective stress) are found 

to cause a twofold increase in the maximum plastic deviatoric strain level in the cement. 

Therefore, cement shrinkage and the initial horizontal stress levels in the formation are 

important factors affecting cement integrity during reservoir compaction. The effect of cement 

shrinkage and initial horizontal stress levels in the formation is not pronounced in the plastic 

deviatoric strain development in the casing due mainly to its ductility (as oppose to cement’s 

brittleness). Also, the cement shrinkage volume of 0.75% does not induce significant radial 

stress decrease at the cement-formation interface to induce interface slippage during reservoir 

compaction, and this is validated by a back-of-the-envelope calculation on the elastic cylindrical 

cavity contraction of the formation due to cement shrinkage. 

 

Finally, it is found that the maximum axial strain and plastic deviatoric strain levels in the 

cement and casing increase with increasing pressure drawdown and decreasing radius of hydrate 

dissociation front. This indicates that the well might become most vulnerable during the initial 

periods of hydrate dissociation following rapid and large depressurization (~ 8 MPa). In order to 

maintain well integrity, it would be advisable to keep the depressurization to a low level (~ 

several MPa) until hydrate dissociation front advances to a certain radius.  

 

8.1.4. Distributed strain sensing of well integrity with BOTDR/A 

In order to accurately assess well integrity, it is imperative to carry out field monitoring. The 

conventional monitoring techniques typically lack spatial and/or temporal measurement 

resolutions. Distributed fibre optic monitoring techniques, on the other hand, facilitate real-time 

distributed monitoring with high spatial resolution and data accuracy. Distributed temperature 

sensing (DTS) and distributed acoustic sensing (DAS) with fibre optics have been deployed in 

oil and gas wells for approximately 20 and 10 years, respectively. On the other hand, distributed 

strain sensing (DSS) has not been utilized as much as DTS and DAS and its application has 

been limited to pipeline monitoring despite its potential to carry out real-time distributed well 

integrity monitoring.  

 

The present work employed Brillouin optical time domain reflectometry/analysis (BOTDR/A) 

in laboratory experiments to evaluate its potential to carry out axial and bending deformation 

monitoring of well specimens. Results show that BOTDR/A captures the actual axial strain and 

bending curvature development of the well specimen subjected to axial tensile loading and 

three-point bending loading, respectively. From the tensile loading test, it is found that fibre 
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optic cables with a small number of coating layers, which are tightly buffered through 

mechanical compression and/or chemical bonding, could lead to accurate strain measurement 

with BOTDR. From the bending test, it is shown that cables attached on the casing would 

provide more accurate bending curvature distributions than cables embedded in the cement 

sheath due to cement’s deformation in response to bending loads could be significantly affected 

by Poisson’s effect.  

 

 

8.2. Recommendations for future work 

 

Recommended future work includes, but are not limited to, the ones which could advance the 

studies presented in this dissertation by addressing their limitations. Therefore, potential future 

research for the well integrity simulations and monitoring is suggested as below. 

 

8.2.1. Cement shrinkage simulation 

In the calibration of the cement shrinkage model, the sink rate, stiffness (Young’s modulus) and 

permeability are assumed to be exponential functions of time since the initial set of cement slurry. 

As there probably are other combinations of parameter values that match the simulation results 

with the laboratory cement shrinkage test data, the sink rate, stiffness and permeability changes 

with time should be directly measured during laboratory shrinkage tests so that the parameter 

values can be determined without calibration. The sink rate, for example, is the rate of pore water 

consumption via cement hydration reaction, which generates proportional amounts of hydration 

heat. Hence, the measurement of heat output from hydrating cement samples should be taken by, 

for instance, isothermal calorimetry, in order to determine the change in sink rate with time. The 

rate of change in Young’s modulus can be measured by measuring the development of shear wave 

velocity of hydrating cement samples. As to the measurement of change in permeability values 

with time, it might be difficult as the permeability of cement is initially low from the start of the 

hydration process and it decreases to even lower values as the hydration reaction proceeds. 

However, if changes in the sink rate and stiffness with time are determined through measurements, 

permeability change can be calibrated to match the pore pressure change of cement samples in an 

open-valve shrinkage test with pore pressure measurement. This will reduce the uncertainty of 

the model parameter determination significantly and hence it will lead to more accurate 

predictions of the behaviour of early-age cement and its interaction with the formation in the well 

annulus during cement shrinkage process.  

 

In addition, another source of uncertainty in the wellbore cement shrinkage simulation is that the 
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initial pore pressure level in the cement at the onset of its initial set (i.e., transition from fluid 

slurry to solid cement) remains unknown. In this thesis, two extreme conditions, where the initial 

cement pore pressure is set equal to either the slurry pressure or formation pore water pressure, 

are considered to estimate the upper and lower boundaries of possible cement shrinkage volumes 

in well annuli. This uncertainty can be eliminated if precise measurements on the pore pressure 

development of cement samples during their transition period from fluid slurry to solid cement 

are taken. Therefore, laboratory tests with instrumentation for precise pore pressure measurements 

of cement samples during their transition from slurry into solid states would have to be carried 

out in the future.  

 

8.2.2. Well construction simulation  

The effect of formation constitutive models on the simulation results needs to be investigated 

carefully. In this thesis, the MHCS model is primarily used after being calibrated against 

laboratory triaxial shear test data on in situ formation samples. Hence, the simulated formation 

behaviour would be accurate as long as the loading conditions in the field during well construction 

processes are identical or similar to those in the laboratory tests. However, the actual loading 

conditions (e.g., stress paths) could differ between the field and laboratory tests and hence 

inaccurate prediction of the stress and strain development of the formation could be computed. 

Therefore, the values of the constitutive model parameters might have to be matched through 

small-scale laboratory tests, in which well construction processes such as drilling is carried out 

and the deformation of the formation is monitored by, for example, particle image velocimetry 

(PIV), to ensure that the parameter values are calibrated for the expected loading conditions in 

the field during well construction processes. Also, the choice of constitutive models could affect 

the simulation results. For instance, the Mohr-Coulomb model could be used to simulate the 

formation behaviour, as the formation compaction process, which is better modelled by critical 

state soil models such as the MHCS model, would not be the main deformation mechanism during 

well construction processes.   

 

8.2.3. Well subsidence simulation 

In this thesis, the pore pressure change in the reservoir layer is specified directly with the 

analytical steady-state pore pressure distributions in which the hydrate dissociated (high 

permeability) and undissociated (low permeability) zones are considered. Although this might be 

an acceptable approximation of the pore pressure distributions in the hydrate reservoir during 

hydrate dissociation, the actual pore pressure development is highly complex which involves 

thermo-hydro-mechanically coupled processes. Therefore, a separate thermo-hydromechanical or 

thermo-hydro coupled simulation on hydrate dissociation would have to be performed to calculate 
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accurate pore pressure distributions in the hydrate reservoir layer during hydrate dissociation. The 

computed pore pressure distributions can then be used as inputs for the hydromechanical 

simulation specializing in the well-formation interaction analysis. This will add relevant timelines, 

such as elapsed time since the start of depressurization, to changes in well integrity, which are 

ignored in the simulation presented in this thesis as steady-state pore pressure distributions are 

directly applied in arbitrary time intervals.  

 

In addition, the interface friction model, which is employed for the modelling of shaft friction 

development in the well during reservoir subsidence, should be enhanced by incorporating the 

interface dilation/contraction. This is because interface dilation/contraction will change the 

interface pressure, which then changes the interface tangential displacement stiffness as well as 

the ultimate interface shear stress, affecting the development of shaft friction in the well during 

reservoir subsidence. Laboratory test data is necessary to validate and calibrate the enhanced 

interface friction model. Such data should be available in the literature, but for the calibration of 

specific interfaces, tailored laboratory tests might have to be designed and carried out. 

 

 
Figure 8-2 The schematic diagram of the cross section of a robust fibre optic cable for in-well 

distributed strain and temperature monitoring. 

 

8.2.4. Well integrity monitoring  

The fibre optic cables examined in the present laboratory tests have been found unsuitable for 

field deployment in oil and gas wells due to their insufficient robustness and/or low strain 

sensitivity. Therefore, a new fibre optic cable has been designed so as to achieve high robustness 

and high strain sensitivity simultaneously (Figure 8-2). The structure of this cable is that one tight-

buffered fibre optic strain cable and one gel-filled fibre optic temperature cable, both of which 

are off-the-shelf products, are encased in a 1/4-in. stainless tube with polymer filling in the gap. 

The cable robustness is enhanced by the stainless steel coating whereas the strain sensitivity is 

relied upon the bonding between the polymer layer and the tight-buffered strain cable. The main 
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concern is that the polymer layer might hinder the strain transfer from the outermost steel coating 

to the tight-buffered strain cable. Therefore, the performance of the new fibre optic cable needs 

to be examined in a laboratory test. The polymer material might have to be modified in case the 

strain sensitivity of the cable is found to be insufficient.  
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Appendix A 

 

ABAQUS user subroutine codes for the MHCS model 

 
c     SDVINI code for Modified Cam Clay 
      subroutine sdvini(statev,coords,nstatv,ncrds,noel,npt,layer,kspt) 
      include 'aba_param.inc' 
      dimension statev(nstatv),coords(ncrds),YR(336),SAT(336) 
      double precision rhoB,h 
c 
       YR=0 
       SAT=0 
       c1=1 
       h=70-coords(2) 
c 
       do i = 1,150 
           statev(i)=0.0 
       end do 
c 
c      Model parameters to get initial values 
       if(h.lt.277)then 
           statev(113) = 0.18 !cil 
           statev(114) = 0.03 !sik 
           statev(115) = 1.30 !rM 
           statev(116) = 15.0 !u 
           statev(117) = 0.25 !pnyu 
           statev(118) = 0 !rM2 
           statev(119) = 0 !eM 
           statev(120) = 0 !a 
           statev(121) = 0 !b 
           statev(122) = 0 !c 
           statev(123) = 0 !d 
       else 
           statev(113) = 0.10 !cil 
           statev(114) = 0.02 !sik 
           statev(115) = 1.37 !rM 
           statev(116) = 8.0 !u 
           statev(117) = 0.35 !pnyu 
           statev(118) = 200E3 !rM2 
           statev(119) = 2.0 !eM 
           statev(120) = 20.0E3 !a 
           statev(121) = 1.4 !b 
           statev(122) = 0.5E3 !c 
           statev(123) = 1.4 !d 
       end if      
c 
c      Initial void ratio 
       if(h.lt.277)then 
           statev(2)=1.311203320 
       elseif(h.ge.277.and. h.lt.339)then 
           rhoB=1.750+0.004032258*(h-277) 
           statev(2)=(rhoB-2.698)/(1.027-rhoB) 
       elseif(h.ge.339)then 
           statev(2)=0.717368962 
       endif 
C 
c      Degragation factor 
       statev(3)=1.0  
c 
c      Preconsolidation pressure 
       If (h.lt.277) then 
           statev(9)=6.8275*h+581.1 
       elseif(h.ge.277.and. h.lt.339)then 
           statev(9)=632.6*exp(0.0038*h) 
       elseif(h.ge.339)then 
           statev(9)=8.7514*h-694.7 
       end if 
C 
c      Calculate initial stresses 
       if (h.lt.277) then 
           ratio=0.40 
           porep = ((1030*h*9.81)/1000)+10124.50860 
           Total=((1750*h*9.81)/1000)+10124.50860 
           statev(102) = Total - porep 
            statev(103) = statev(102) * ratio 
       elseif(h.ge.277.and. h.lt.339) then 
           ratio=0.40 
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           porep = ((1030*h*9.81)/1000)+10124.50860 
           Total=9.81*(1750+2.016129032*(h-277))*(h-277)/1000+14879.90610  
           statev(102) = Total - porep 
           statev(103) = statev(102) * ratio 
       elseif(h.ge.339) then 
           ratio=0.40     
           porep = ((1030*h*9.81)/1000)+10124.50860 
           Total=((2000*(h-339)*9.81)/1000)+16020.31860  
           statev(102) = Total - porep 
           statev(103) = statev(102) * ratio 
       end if 
c 
c      Calculate pc and qc  
       statev(6)=(statev(102)+2.0*statev(103))/3.0 
       statev(7)=statev(102)-statev(103)  
c      
c       
       YR=(/0.0 ,-207.34 , 
     +  -207.51 ,-207.66 ,-208.03, 
     +  -208.48 ,-208.67 ,-208.78 ,-208.92 ,-209.1 ,-209.37 ,-209.83 , 
     +  -210.19 ,-210.37 ,-210.49 ,-210.56 ,-210.69 ,-210.87 ,-210.99 , 
     +  -211.12 ,-211.24 ,-211.35 ,-211.47 ,-211.7 ,-211.95 ,-212.06 , 
     +  -212.19 ,-212.4 ,-212.7 ,-213.01 ,-213.17 ,-213.29 ,-213.77 , 
     +  -214.24 ,-214.38 ,-214.54 ,-214.91 ,-215.29 ,-215.41 ,-215.61 , 
     +  -215.81 ,-215.91 ,-216.14 ,-216.45 ,-216.64 ,-216.77 ,-216.87 , 
     +  -216.93 ,-217.01 ,-217.14 ,-217.26 ,-217.38 ,-217.5 ,-217.58 , 
     +  -217.67 ,-217.76 ,-217.84 ,-217.93,-218. ,-218.16,-218.4 ,-218.57 
     +   ,-218.74 ,-218.98 ,-219.1 ,-219.2 ,-219.31 ,-219.37 ,-219.44 , 
     +    -219.52 ,-219.6 ,-219.66 ,-219.71 ,-219.75 ,-219.78 ,-219.84 , 
     +   -219.95 ,-220.04 ,-220.12 ,-220.21 ,-220.36 ,-220.48 ,-220.61 , 
     +   -220.77 ,-220.86 ,-220.94 ,-221.16 ,-221.41 ,-221.52 ,-221.57 , 
     +  -221.75 ,-221.95 ,-222.15 ,-222.33 ,-222.45 ,-222.67 ,-222.84 , 
     +  -222.94 ,-223.17 ,-223.37 ,-223.42 ,-223.54 ,-223.84 ,-224.14 , 
     +   -224.33 ,-224.48 ,-224.58 ,-224.68 ,-224.74 ,-224.79 ,-224.86 , 
     +    -224.91 ,-224.98 ,-225.17 ,-225.33 ,-225.45 ,-225.66 ,-225.88, 
     +   -226. ,-226.09 ,-226.21 ,-226.3 ,-226.42 ,-226.55 ,-226.61 , 
     +  -226.7 ,-226.82 ,-226.95 ,-227.08 ,-227.14 ,-227.21 ,-227.34 , 
     +   -227.46 ,-227.57 ,-227.73 ,-227.85 ,-227.91 ,-228.03 ,-228.18 , 
     +   -228.34 ,-228.5 ,-228.67 ,-228.97 ,-229.19 ,-229.34 ,-229.64 , 
     +   -229.98 ,-230.32 ,-230.97 ,-231.5 ,-231.64 ,-232.1 ,-232.74 , 
     +   -233.03 ,-233.23 ,-233.49 ,-233.79 ,-234.02 ,-234.12 ,-234.24 , 
     +   -234.41 ,-234.6 ,-234.79 ,-234.9 ,-234.97 ,-235.04 ,-235.11 , 
     +   -235.18 ,-235.39 ,-235.62 ,-235.74 ,-235.82 ,-235.89 ,-236.12 , 
     +   -236.41 ,-236.64 ,-236.85 ,-237.16 ,-237.46 ,-237.58 ,-237.66 , 
     +   -237.76 ,-237.9 ,-238.21 ,-238.48 ,-239.19 ,-240. ,-240.95 , 
     +   -241.81 ,-241.94 ,-242.09 ,-242.17 ,-242.24 ,-242.34 ,-242.46, 
     +   -242.55 ,-242.7 ,-242.87 ,-242.99 ,-243.12 ,-243.25 ,-243.33 , 
     +  -243.49 ,-243.69 ,-243.81 ,-243.9 ,-243.96 ,-244.06 ,-244.35 , 
     +  -244.77 ,-245.03 ,-245.12 ,-245.27 ,-245.53 ,-245.71 ,-245.8 , 
     +   -245.92 ,-246.01 ,-246.18 ,-246.37 ,-246.43 ,-246.53 ,-246.63 , 
     +   -246.66 ,-246.75 ,-246.87 ,-246.94 ,-247.12 ,-247.34 ,-247.45 , 
     + -247.51 ,-247.57 ,-247.61 ,-247.7 ,-247.79 ,-247.88 ,-247.96 , 
     +  -248. ,-248.06 ,-248.12,-248.2 ,-248.3 ,-248.49,-248.67,-248.75, 
     +   -248.85 ,-248.95 ,-249.06 ,-249.21 ,-249.34 ,-249.46 ,-249.61 , 
     +   -249.87 ,-250.12 ,-250.2 ,-250.26 ,-250.37 ,-250.48 ,-250.53 , 
     +   -250.57 ,-250.85 ,-251.14 ,-251.2 ,-251.27 ,-251.34 ,-251.41 , 
     +   -251.5 ,-251.63 ,-251.78 ,-251.91 ,-252.01 ,-252.17 ,-252.29 , 
     +   -252.42 ,-252.56 ,-252.8 ,-253.02 ,-253.1 ,-253.32 ,-253.49 , 
     +  -253.55 ,-253.72 ,-253.88 ,-254.16 ,-254.45 ,-254.58 ,-254.72 , 
     +   -254.83 ,-255.03 ,-255.21 ,-255.27 ,-255.56 ,-255.95 ,-256.54 , 
     +   -257.04 ,-257.1 ,-257.32 ,-257.59 ,-257.68 ,-257.76 ,-257.86 , 
     +   -258.67 ,-259.43 ,-259.61 ,-259.88 ,-260.05 ,-260.14 ,-260.34 , 
     +   -260.57 ,-260.84 ,-261.06 ,-261.17 ,-261.37 ,-261.53 ,-261.99 , 
     +   -262.46 ,-262.58 ,-262.83 ,-263.06 ,-263.14 ,-263.29 ,-263.43 , 
     +  -264.23 ,-265.07 ,-265.31 ,-265.64 ,-265.88 ,-266.03 ,-266.17 , 
     +   -266.3 ,-266.37 ,-266.46 ,-266.63 ,-266.91 ,-267.22 ,-267.46/) 
c     
       SAT=(/0.00000 ,0.00000 ,0.14458 ,0.36295 ,0.3418 ,0.61196 , 
     & 0.56277 ,0.00000 ,0.19596 ,0.17561 ,0.00000 ,0.58844 ,0.26251 ,0.00000 ,0.04663, 
     & 0.00000, 
     & 0.02339 ,0.00000 ,0.3181,0.45953 ,0.33911 ,0.00000 ,0.34258 ,0.00000 ,0.25609 , 
     & 0.00000, 
     & 0.10518 ,0.00000 ,0.16705 ,0.05795 ,0.05849 ,0.0812,0.32033 ,0.00000 , 
     & 0.55364 ,0.77874 ,0.37003 ,0.00000 ,0.39255 ,0.00000 ,0.48902 ,0.68256 , 
     & 0.48051 ,0.00000 ,0.56655 ,0.70202 ,0.43452 ,0.00000 ,0.26558 ,0.00000 ,0.38004, 
     & 0.71712 ,0.52794 ,0.00000 ,0.45273 ,0.00000 ,0.47713 ,0.76745 ,0.66253 ,0.00000 , 
     & 0.42304 ,0.19709 ,0.00000 ,0.37125 ,0.00000 ,0.27577 ,0.27149 ,0.11948 ,0.00000 , 
     & 0.43313 ,0.73695 ,0.65244 ,0.00000 ,0.18494 ,0.10459 ,0.34962 , 
     & 0.74801 ,0.52668 ,0.00000 ,0.55398 ,0.75093 ,0.47009 ,0.00000 ,0.58854 , 
     & 0.69377 ,0.47352 ,0.00000 ,0.60823 ,0.72542 ,0.64923 ,0.00000 ,0.47925 , 
     & 0.754 ,0.50781 ,0.00000 ,0.50723 ,0.00000 ,0.52267 ,0.74891 ,0.60149 ,0.00000 , 
     & 0.25917 ,0.00000 ,0.50768 ,0.77168 ,0.30597 ,0.00000 ,0.10427 ,0.00000 ,0.55586 , 



Appendix A 

ABAQUS user subroutine codes for the MHCS model 

194 

 

     & 0.78226 ,0.77752 ,0.71061 ,0.39131 ,0.5805 ,0.58297 ,0.00000 ,0.45288, 
     & 0.75398 ,0.50475 ,0.00000 ,0.70358 ,0.00000 ,0.52833 ,0.69773 ,0.39834 ,0.00000 , 
     & 0.46034 ,0.71502 ,0.50422 ,0.00000 ,0.48412 ,0.60042 ,0.00000 ,0.48005 , 
     & 0.74645 ,0.49663 ,0.00000 ,0.5457 ,0.77428 ,0.60206 ,0.00000 ,0.5045 , 
     & 0.64725 ,0.6294 ,0.66872 ,0.46426 ,0.00000 ,0.58732 ,0.78337 ,0.71101 , 
     & 0.00000 ,0.62937 ,0.00000 ,0.51633 ,0.00000 ,0.61127 ,0.7159 ,0.54398 ,0.00000, 
     & 0.41505 , 
     & 0.00000 ,0.51752 ,0.74322 ,0.76902 ,0.76431 ,0.75119 ,0.58331 ,0.00000 , 
     & 0.50445 ,0.65421 ,0.77432 ,0.79747 ,0.83423 ,0.43389 ,0.00000 ,0.41096, 
     & 0.00000 ,0.51375 ,0.64605 ,0.6343 ,0.67262 ,0.75764 ,0.76861 ,0.71947 , 
     & 0.41391 ,0.55049 ,0.41993 ,0.34623 ,0.33171 ,0.26036 ,0.00000 ,0.20616, 
     & 0.22357 ,0.19394 ,0.77805 ,0.76577 ,0.00000 ,0.55034 ,0.00000 ,0.55567 ,0.00000 , 
     & 0.48432 ,0.00000 ,0.62864 ,0.00000 ,0.46365 ,0.81756 ,0.60301 ,0.77533 , 
     & 0.42136 ,0.66651 ,0.59518 ,0.60866 ,0.67401 ,0.69011 ,0.71775 , 
     & 0.74395 ,0.49358 ,0.5694 ,0.00000 ,0.47692 ,0.52612 ,0.54901 ,0.73134 , 
     & 0.61077 ,0.58083 ,0.51368 ,0.67945 ,0.68911 ,0.76453 ,0.68416 , 
     & 0.52516 ,0.7227 ,0.64475 ,0.72011 ,0.78875 ,0.52931 ,0.68586, 
     & 0.50977 ,0.00000 ,0.55483 ,0.00000 ,0.32354 ,0.00000 ,0.693 ,0.72135 ,0.4735, 
     & 0.74949, 
     & 0.68879 ,0.79019 ,0.59773 ,0.51374 ,0.49226 ,0.00000 ,0.47245 ,0.50104, 
     & 0.00000 ,0.57874 ,0.48172 ,0.53124 ,0.55259 ,0.45112 ,0.73623 ,0.53675, 
     & 0.68487 ,0.7119         ,0.71878 ,0.57726 ,0.70184 ,0.4481 ,0.80921 , 
     & 0.60982 ,0.72346 ,0.40428 ,0.79296 ,0.41893 ,0.73095 ,0.64739 , 
     & 0.77266 ,0.53706 ,0.73922 ,0.58102 ,0.72107 ,0.6254,0.00000 ,0.61026 , 
     & 0.00000 ,0.49962 ,0.62972 ,0.3712 ,0.00000 ,0.57286 ,0.00000 ,0.57 ,0.70676, 
     & 0.54237, 
     & 0.70601 ,0.44232 ,0.63096 ,0.38387 ,0.77746 ,0.54744 ,0.00000 ,0.51382, 
     & 0.67764 ,0.513,0.7292 ,0.48387 ,0.73199 ,0.4716 ,0.44696 ,0.00000 , 
     & 0.42365 ,0.71752 ,0.41728 ,0.68478 ,0.59422 ,0.73123 ,0.50268 ,0.00000 ,0.46104, 
     & 0.00000 ,0.51579 ,0.00000 ,0.4612 ,0.00000 ,0.44903 ,0.00000 ,0.46086 ,0.75098,  
     & 0.63522, 
     & 0.68747 ,0.62945 ,0.73049 ,0.00000/) 
c 
c     Assign hydrate saturation at each integration point 
      do while (c1.LE.335) 
          flag1=(COORDS(2)-YR(c1))*(COORDS(2)-YR(c1+1)) 
          if(flag1.LE.0)then 
              statev(112)=(COORDS(2)-YR(c1))*(-SAT(c1)+SAT(c1+1)) 
              statev(112)=statev(112)/(-YR(c1)+YR(c1+1))+SAT(c1) 
          endif 
          c1=c1+1 
      enddo 
c 
c     pcd(i.e. 82) and pcc(i.e. 81) 
      statev(82)=statev(120)*(statev(3)*statev(112))**statev(121) 
      statev(81)=statev(122)*(statev(3)*statev(112))**statev(123) 
c 
c     Subloading ratio, R 
      statev(75)=(statev(7)**2+statev(115)**2*statev(6)* 
     1   (statev(6)+statev(81)))/((statev(115)**2)*(statev(6)+ 
     2   statev(81))*(statev(9)+statev(82)+statev(81))) 
c      
      return 
      end 
c 
c 
c     UMAT code for Cambridge Methane Hydrate Critical Model 
      subroutine umat(stress,statev,DDSDDE,sse,spd,scd, 
     1 rpl,ddsddt,drplde,drpldt, 
     2 stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname, 
     3 ndi,nshr,ntens,nstatev,props,nprops,coords,drot,pnewdt, 
     4 celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc) 
      include 'aba_param.inc' 
      character*80 cmname 
      dimension stress(ntens),statev(nstatev), 
     1 DDSDDE(ntens,ntens),ddsddt(ntens),drplde(ntens), 
     2 stran(ntens),dstran(ntens),time(2),predef(1),dpred(1), 
     3 props(nprops),coords(3),drot(3,3),dfgrd0(3,3),dfgrd1(3,3) 
c       
c     define internal variables as double precision 
      double precision stress1(4,1),strain1(4,1),dstress(4),DeINV(4,4), 
     1 dstress1(4,1),dstrain1(4,1),Dsp1(4,1),DShe(4,1),Dsp2(4,1), 
     2 dFds(4,1),dFdst(1,4),dlamda0(1,4),dlamda1(1,4),Dp11(4,1), 
     3 DHSDDE(4,1),Dp12(4,4),Dp1(4,4),Dp(4,4),ee(4,1),Dhe(4,4), 
     4 De(4,4),Dsp(4,1),dstress2(4,1),Dsp22(4,1),DShe1(4,1),Dsp3(4,1), 
     5 stress2(4,1),Total,porep,ratio,h,dev,ded,dlamda2,dlamda3,dlamda4, 
     6 dlamda5,dlamda6,dlamda7,dlamda,BKS,GS0,GS,depv,depd,void,p1,X,Sh, 
     7 pcc,pcd,pc,qc,R,dSh,iter 
c  
c   
      h=70-coords(2) 
   iter = 0 
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c    
c    
c     Initialise local variables 
      dlamda2=0.0 
      dlamda3=0.0 
      dlamda4=0.0 
      dlamda5=0.0 
      dlamda6=0.0 
      dlamda7=0.0 
      dlamda=0.0 
      do i=1,4 
          stress1(i,1)=0.0 
          strain1(i,1)=0.0 
          dstress(i)=0.0 
          dstress1(i,1)=0.0 
          dstress2(i,1)=0.0 
          dstrain1(i,1)=0.0 
          dFds(i,1)=0.0 
          dFdst(1,i)=0.0 
          dlamda0(1,i)=0.0 
          dlamda1(1,i)=0.0 
          Dp11(i,1)=0.0 
          ee(i,1)=0.0 
          DShe(i,1)=0.0 
          DShe1(i,1)=0.0 
          DHSDDE(i,1)=0.0 
          Dsp(i,1)=0.0 
          Dsp1(i,1)=0.0 
          Dsp2(i,1)=0.0 
          Dsp3(i,1)=0.0 
          Dsp22(i,1)=0.0 
          stress2(i,1)=0.0 
      end do       
      do i=1,4 
          do j=1,4 
              De(i,j)=0.0 
              Dp12(i,j)=0.0 
              Dp1(i,j)=0.0 
              Dp(i,j)=0.0 
              Dhe(i,j)=0.0 
              DeINV(i,j)=0.0 
          end do 
      end do 
c      
c   
      do i=1,ntens 
c     Get stress tensor from Abaqus  
          stress1(i,1)=-stress(i) 
      end do 
c     stress2 seems to be stress changes from the initial state  
          stress2(1,1)=stress1(1,1)-statev(103) 
          stress2(2,1)=stress1(2,1)-statev(102) 
          stress2(3,1)=stress1(3,1)-statev(103) 
          stress2(4,1)=stress1(4,1) 
c 
c     Get strain tensor from abaqus (change sign) 
      do i=1,ntens 
          strain1(i,1)=-stran(i) 
      end do 
c  
c     Get strain increment tensor from abaqus (change sign) 
      do i=1,ntens 
          dstrain1(i,1)=-dstran(i) 
      end do  
c  
c     Calculate dSh 
      dSh=0 
c 
c     Get material parameters 
      cil = statev(113) 
      sik = statev(114) 
      rM = statev(115) 
      u = statev(116) 
      pnyu = statev(117) 
      rM2 = statev(118) 
      eM = statev(119) 
      a = statev(120) 
      b = statev(121) 
      c = statev(122) 
      d = statev(123)     
c    
c     Get plastic volumetric strain 
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      epv=statev(1) 
c 
c     Get plastic deviator strain 
      epd=statev(4) 
c 
c     Get void ratio 
      void=statev(2) 
c 
c     Get preconsolidation pressure 
      p1=statev(9) 
c      
c     Get degradation factor  
      X=statev(3) 
c 
c     Get plastic strain  
      ep1=statev(89) 
      ep2=statev(90) 
      ep3=statev(91) 
      ep4=statev(92)      
c 
c     Get total volumetric and deviatoric strain 
      ev=statev(100) 
      ed=statev(101)    
c 
c     Get hydrate saturation 
      Sh=statev(112) 
c 
c     Get the enhancement of strength due to hydrate  
      pcc=statev(81) 
c 
c     Get the enhancement of dilatancy  due to hydrate  
      pcd=statev(82) 
c      
c     Get mean and deviator stresses  
      pc=statev(6) 
      qc=statev(7) 
c 
c     Get the subloading ratio of R 
      R=statev(75) 
c 
c     Calculate elastic stifness 
c     The expressions below are all correct 
      BKS=(1.0+void)/sik*pc 
      GS0=3.0*BKS/2.0*(1.0-2.0*pnyu)/(1.0+pnyu)  
      GS=GS0+rM2*X*Sh 
c     The components of the stiffness matrix are all correct 
      do i=1,3 
          do j=1,3 
              if (i==j) then 
                  De(i,j)=BKS+4./3.*GS 
              else 
                  De(i,j)=BKS-2./3.*GS 
              end if 
          end do 
      end do 
      De(4,4)=GS  
c    
      call MATINV(1,4,De,DeINV) 
c 
c 
      do i=1,4 
          do j=1,4 
c             ee is the elastic strain generated since the initial state 
              ee(i,1)=ee(i,1)+DeINV(i,j)*stress2(j,1) 
          end do 
      end do  
c     Calculate elastic stifness changes due to hydrate dissociation 
c     The componets of Dhe below are all correct 
      do i=1,3 
          do j=1,3 
              if (i==j) then 
                  Dhe(i,j)=4./3.*rM2 
              else 
                  Dhe(i,j)=-2./3.*rM2 
              end if 
          end do 
      end do 
      Dhe(4,4)=rM2  
       do i=1,4 
           do j=1,4 
               DShe1(i,1)=DShe1(i,1)+Dhe(i,j)*ee(j,1) 
           end do 
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       end do        
c 
       do i=1,4 
           DShe(i,1)=X*DShe1(i,1) 
       end do                       
c 
c 
c     Update new stresses 
      do i=1,4 
          do j=1,4 
              dstress2(i,1)=dstress2(i,1)+De(i,j)*dstrain1(j,1) 
          end do 
      end do  
c 
      do i=1,4 
          dstress1(i,1)=dstress2(i,1)+DShe(i,1)*dSh  
          dstress2(i,1)=0.0      
      end do  
c 
      do i=1,4 
          stress1(i,1)=stress1(i,1)+dstress1(i,1) 

dstress1(i,1)=0.0  
      end do 
c 
c     Update mean stress 
      pc=(stress1(1,1)+stress1(2,1)+stress1(3,1))/3.0 
c 
c     Update deviatoric stress 
      qc=sqrt(3.0/2.0)*sqrt((stress1(1,1)-pc)**2+ 
     1 (stress1(2,1)-pc)**2+(stress1(3,1)-pc)**2+ 
     2 2.0*stress1(4,1)**2) 
c 
c 
c     Define yield function 
      fs=qc**2+(rM**2)*(pc+pcc)*(pc-R*(p1+pcc+pcd)) 
c 
c 
c     Judge yielding 

if (fs .le. 0.0) then 
do i=1,4 

              do j=1,4 
                  DDSDDE(i,j)=De(i,j) 
                  DHSDDE(i,1)=DShe(i,1) 
                  depv=0.0 

depd=0.0 
                  yjudge=0.0 
              end do 
          end do 
c 
c 
      do i=1,4 

stress(i)=-stress1(i,1) 
      end do 
c 
c     Update plastic volumetric strain 
      epv=epv+depv 
c 
c     Update plastic deviatoric strain 
      epd=epd+depd 
c 
      dep1=0.0 
      dep2=0.0 
      dep3=0.0 
      dep4=0.0  
      ep1=ep1+dep1 
      ep2=ep2+dep2 
      ep3=ep3+dep3 
      ep4=ep4+dep4 
c 
c     Update the void ratio 
      void=void+(dstran(1)+dstran(2)+dstran(3))*(1.0+void) 
c 
c     Update R 
      R=(qc**2+rM**2*pc*(pc+pcc))/((rM**2)*(pc+pcc)*(p1+pcd+pcc)) 
c 
c     Update volmetric strain and deviatoric strain 
      dev=dstrain1(1,1)+dstrain1(2,1)+dstrain1(3,1) 
      ded=sqrt(2.0/3.0)*sqrt((dstrain1(1,1)-dev/3.0)**2+ 
     1 (dstrain1(2,1)-dev/3.0)**2+(dstrain1(3,1)-dev/3.0)**2+ 
     2 0.5*dstrain1(4,1)**2) 
      ev=ev+dev 

ed=ed+ded 
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c 
c 
c     Judge yielding 

else 
c 
 800  continue 
c     Calulate the dFdq 
      dFdq=2.0*qc 
c             
c     Calculate the dFdS 
      do i=1,3 
c         ###pc is mean stress and p1 is preconsolidation stress  
          dFds(i,1)=(rM**2)*(2.0*pc-R*(pcd+pcc+p1)+pcc)/3.0 
     1    +3.0*(stress1(i,1)-pc) 
      end do 
      dFds(4,1)=6.0*stress1(4,1) 
c       
c     Calculate the dFdPcc and dFdPcd 
      dFdPcc=(rM**2)*(pc-R*(pc+pcc+pcd+p1+pcc)) 
      dFdPcd=-R*(rM**2)*(pc+pcc) 
c 
c     Calculate the dlamdah 
      dlamdah=dFdPcd*a*b*(X*Sh)**b+dFdPcc*c*d*(X*Sh)**d    
c  
c      
c     Calculate plastic stiffness matrix 
      dFdsii=dFds(1,1)+dFds(2,1)+dFds(3,1) 
c 
      do i=1,4 
          dFdst(1,i)=dFds(i,1) 
      end do 
      do i=1,4 
          do j=1,4 
              dlamda1(1,i)=dlamda1(1,i)+dFdst(1,j)*De(j,i) 
          end do 
      end do 
c 
c 
      rMODU=sqrt(dFds(1,1)**2+dFds(2,1)**2+dFds(3,1)**2+dFds(4,1)**2) 
c      
c 
      dlamda2=-R*(rM**2)*(pc+pcc)*(1+void)*p1/(cil-sik)*dFdsii 
     1     +rM**2*(pc+pcc)*(p1+pcd+pcc)*u*(1+(pcc+pcd)/p1) 
     2     *log(R)*rMODU-eM*dlamdah*dFdq 
c 
      do i=1,4 
          dlamda3=dlamda3+dlamda1(1,i)*dFds(i,1) 
      end do   
c 
      do i=1,4 
          dlamda0(1,i)=dlamda1(1,i) 
      end do 
c 
c 
      do i=1,4 
          dlamda4=dlamda4+dfdst(1,i)*DShe(i,1) 
      end do 
c 
c     Calculate the dfdsh 
      dpcddsh=X*a*b*(X*Sh)**(b-1) 
      dpccdsh=X*c*d*(X*Sh)**(d-1) 
      dfdsh=dfdpcd*dpcddsh+dfdpcc*dpccdsh 
      do i=1,4 
          do j=1,4 
              Dsp22(i,1)=Dsp22(i,1)+De(i,j)*dFds(j,1) 
          end do 
      end do 
c 
      do i=1,4 
          Dsp2(i,1)=dfdsh*Dsp22(i,1) 
      end do            
c 
c 
      dlamda6=dSh*dfdsh   
      dlamda=(dlamda6+fs)/(-dlamda2+dlamda3) 
c 
      do i=1,4 
          do j=1,4 
              Dp11(i,1)=Dp11(i,1)+De(i,j)*dFds(j,1) 
          end do 
      end do 
c  
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      do i=1,4 
          do j=1,4 
              Dp12(i,j)=Dp12(i,j)+Dp11(i,1)*dFdst(1,j) 
          end do 
      end do 
c 
      do i=1,4 
          do j=1,4 
              do k=1,4 
                  Dp1(i,j)=Dp1(i,j)+Dp12(i,k)*De(k,j) 
              end do 
          end do 
      end do           
c 
      do i=1,4 
          do k=1,4 
              Dsp1(i,1)=Dsp1(i,1)+Dp12(i,k)*DShe(k,1) 
          end do 
      end do           
c  
c 
      do i=1,4 
          do j=1,4 
              Dp(i,j)=Dp1(i,j)/(-dlamda2+dlamda3) 
          end do 
      end do     
c 
c 
      do i=1,4 
c         Dsp is plastic stiffness for the hydrate term 
          Dsp(i,1)=Dsp2(i,1)/(-dlamda2+dlamda3)         
      end do    
c  
c 
      do i=1,4 
          do j=1,4 
              DDSDDE(i,j)=De(i,j)-Dp(i,j) 
              DHSDDE(i,1)=DShe(i,1)-Dsp(i,1) 
              depv=dlamda*dFdsii 
              depd=dlamda*dFdq 
              yjudge=1.0 

end do 
end do 

c 
      if (abs(fs) .le. 0.001 .and. iter .gt. 0) goto 810 
c 
c     Update new stresses 
      do i=1,4 
          stress1(i,1)=stress1(i,1)-dlamda*Dp11(i,1) 

stress(i)=-stress1(i,1) 
      end do 
c 
c     Update mean stress 
      pc=(stress1(1,1)+stress1(2,1)+stress1(3,1))/3.0 
c 
c     Update deviatoric stress 
      qc=sqrt(3.0/2.0)*sqrt((stress1(1,1)-pc)**2+ 
     1 (stress1(2,1)-pc)**2+(stress1(3,1)-pc)**2+ 
     2 2.0*stress1(4,1)**2) 
c 
c     Update plastic volumetric strain 
      epv=epv+depv 
c 
c     Update plastic deviatoric strain 
      epd=epd+depd 
c 
c     Update plastic strain 
      dep1=dlamda*dFds(1,1)  
      dep2=dlamda*dFds(2,1) 
      dep3=dlamda*dFds(3,1) 
      dep4=dlamda*dFds(4,1)    
      ep1=ep1+dep1 
      ep2=ep2+dep2 
      ep3=ep3+dep3 
      ep4=ep4+dep4 
c 
c 
c 
c     Update preconsolidation pressure 
      p1=p1+(1+void)*p1/(cil-sik)*depv 
      if (p1.le.0) p1=0 
c 
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c 
c     Update degradation factor 
      dX=-eM*X*depd 
      X=X+dX 
      if (X.le.0) X=0 
c 
c 
c     Update pcc and pcd 
      pcc=c*(X*Sh)**d 
      pcd=a*(X*Sh)**b 
c 
c     Update R 
      dR=-u*(1+(pcd+pcc)/p1)*log(R)* 
     1   sqrt(dep1**2+dep2**2+dep3**2+dep4**2) 
      R=R+dR 

if (R .gt. 1.0) R=1.0 
c 
c     Define yield function 
      fs=qc**2+(rM**2)*(pc+pcc)*(pc-R*(p1+pcc+pcd)) 
c 
c!    Initialize variables for next iteration 
      dlamda3 = 0.0 

dlamda4 = 0.0 
      do i=1,4 

dlamda1(1,i) = 0.0 
Dsp22(i,1) = 0.0 
Dp11(i,1) = 0.0 
Dsp1(i,1) = 0.0 

enddo 
      do i=1,4 
          do j=1,4 
              Dp12(i,j) = 0.0 

Dp1(i,j) = 0.0 
enddo 

enddo 
c 
      iter = iter + 1 
      goto 800 
c 
 810  continue 
c     Update hydrate saturation 
      Sh=Sh+dSh 
      if (Sh.le.0) Sh=0 
c 
c     Update the void ratio 
      void=void+(dstran(1)+dstran(2)+dstran(3))*(1.0+void) 
c 
c     Update volmetric strain and deviatoric strain 
      dev=dstrain1(1,1)+dstrain1(2,1)+dstrain1(3,1) 
      ded=sqrt(2.0/3.0)*sqrt((dstrain1(1,1)-dev/3.0)**2+ 
     1 (dstrain1(2,1)-dev/3.0)**2+(dstrain1(3,1)-dev/3.0)**2+ 
     2 0.5*dstrain1(4,1)**2) 
      ev=ev+dev 

ed=ed+ded 
c 
      endif 
c 
c 
c     Update solution dependent state variable (SDV) 
      statev(1)=epv 
      statev(2)=void 
      statev(3)=X 
      statev(4)=epd 
      statev(5)=dX 
      statev(6)=pc 
      statev(7)=qc 
      statev(8)=GS 
      statev(9)=p1 
      statev(10)=yjudge 
      statev(11)=dlamda 
      statev(12)=fs 
      statev(13)=dFdsii 
      statev(14)=dFdq 
      statev(15)=De(1,1) 
      statev(16)=De(2,2) 
      statev(17)=De(3,3) 
      statev(18)=De(1,2) 
      statev(19)=De(1,3) 
      statev(20)=De(2,3) 
      statev(21)=De(4,4) 
      statev(22)=De(5,5) 
      statev(23)=De(6,6) 
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      statev(24)=Dp(1,1) 
      statev(25)=Dp(2,2) 
      statev(26)=Dp(3,3) 
      statev(27)=Dp(1,2) 
      statev(28)=Dp(1,3) 
      statev(29)=Dp(2,3) 
      statev(30)=Dp(4,4) 
      statev(31)=Dp(5,5) 
      statev(32)=Dp(6,6) 
      statev(33)=DDSDDE(1,1) 
      statev(34)=DDSDDE(2,2) 
      statev(35)=DDSDDE(3,3) 
      statev(36)=DDSDDE(1,2) 
      statev(37)=DDSDDE(1,3) 
      statev(38)=DDSDDE(2,3) 
      statev(39)=DDSDDE(4,4) 
      statev(42)=Dp1(1,1) 
      statev(43)=Dp1(2,2) 
      statev(44)=Dp1(3,3) 
      statev(45)=Dp1(1,2) 
      statev(46)=Dp1(1,3) 
      statev(47)=Dp1(2,3) 
      statev(48)=Dp1(4,4) 
      statev(49)=Dp1(5,5) 
      statev(50)=Dp1(6,6) 
      statev(51)=Dp11(1,1) 
      statev(52)=Dp11(2,2) 
      statev(53)=Dp11(3,3) 
      statev(54)=Dp11(1,2) 
      statev(55)=Dp11(1,3) 
      statev(56)=Dp11(2,3) 
      statev(57)=Dp11(4,4) 
      statev(58)=Dp11(5,5) 
      statev(59)=Dp11(6,6) 
      statev(60)=Dp12(1,1) 
      statev(61)=Dp12(2,2) 
      statev(62)=Dp12(3,3) 
      statev(63)=Dp12(1,2) 
      statev(64)=Dp12(1,3) 
      statev(65)=Dp12(2,3) 
      statev(66)=Dp12(4,4) 
      statev(67)=Dp12(5,5) 
      statev(68)=Dp12(6,6) 
      statev(69)=dstran(1) 
      statev(70)=dstran(2) 
      statev(71)=dstran(3) 
      statev(72)=dstran(4) 
      statev(75)=R 
      statev(76)=depv 
      statev(77)=depd 
      statev(78)=dFds(1,1) 
      statev(79)=dFds(2,1) 
      statev(80)=dFds(3,1) 
      statev(81)=pcc 
      statev(82)=pcd 
      statev(83)=dlamda2 
      statev(84)=dlamda3 
      statev(85)=dlamda4 
      statev(86)=dlamdah 
      statev(87)=dFdPcc 
      statev(88)=dFdPcd 
      statev(89)=ep1 
      statev(90)=ep2 
      statev(91)=ep3 
      statev(92)=ep4 
      statev(93)=ep5 
      statev(94)=ep6 
      statev(96)=MODI 
      statev(97)=dFds(4,1) 
      statev(98)=dFds(5,1) 
      statev(99)=dFds(6,1) 
      statev(100)=ev 
      statev(101)=ed 

statev(111)=iter 
      statev(112)=Sh 
c       
      return 
      end 
c     
c   
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      subroutine sdvini(statev,coords,nstatv,ncrds,noel,npt,layer,kspt) 
      include 'aba_param.inc' 
      dimension statev(nstatv),coords(ncrds) 
      double precision rhoB,h 
!  
      statev(201)=0   !frictional stiffness (MPa/mm) 
      statev(202)=0   !initial cohesion(MPa) 
      statev(203)=0   !initial friction coefficient(-) 
      statev(204)=0   !storage for cohesion  
      statev(205)=0   !storage for friction coefficient  
      statev(206)=0   !softening scaler for cohesion       
      statev(207)=0   !softening scaler for friction coefficient 
      statev(208)=0   !cumulative dlamda  
      statev(209)=0   !the numerator for dlamda 
      statev(210)=0   !the denominator for dlamda 
      statev(211)=0   !directionless cumulative plastic slip 
      statev(212)=0   !residual cohesion flag 
      statev(213)=0   !residual friction coefficient flag 
      statev(214)=0   !the alpha coefficient for cohesion softening(positive value for softening) 
      statev(215)=0   !the beta coefficient for cohesion softening(positive value for softening) 
      statev(216)=0   !residual cohesion 
      statev(217)=0   !residual friction coefficient 
      statev(218)=0   !shear stress increment, dtau=slipstiffness*dgamma 
      statev(219)=0   !temporary updated shear stress 
      statev(220)=0   !value of yield function 
      statev(221)=0   !value of the PRESS 
      statev(222)=0   !value of (PRESS + DPRESS) 
      statev(223)=0   !storage for cumulative dlamda up to the previous iteration 
      statev(224)=0   !the alpha coefficient for friction softening(positive value for softening) 
      statev(225)=0   !the beta coefficient for friction softening(positive value for softening) 
!     
      return 
      end 
! 
! 
!     ###Constitutive model for interfacial frictional behaviour### 
!     ########Don't use this subroutine with the small sliding method!####### 
      SUBROUTINE FRIC(LM,TAU,DDTDDG,DDTDDP,DSLIP,SED,SFD, 
     +DDTDDT,PNEWDT,STATEV,DGAM,TAULM,PRESS,DPRESS,DDPDDH,SLIP, 
     +KSTEP,KINC,TIME,DTIME,NOEL,CINAME,SLNAME,MSNAME,NPT,NODE, 
     +NPATCH,COORDS,RCOORD,DROT,TEMP,PREDEF,NFDIR,MCRD,NPRED, 
     +NSTATV,CHRLNGTH,PROPS,NPROPS) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CINAME,SLNAME,MSNAME 
C 
      dimension TAU(NFDIR),DDTDDG(NFDIR,NFDIR),DDTDDP(NFDIR), 
     +DSLIP(NFDIR),DDTDDT(NFDIR,2),STATEV(*),DGAM(NFDIR), 
     +TAULM(NFDIR),SLIP(NFDIR),TIME(2),COORDS(MCRD), 
     +RCOORD(MCRD),DROT(2,2),TEMP(2),PREDEF(2,*),PROPS(NPROPS) 
! 

IF (CINAME == 'GENERAL-1') THEN !CINAME needs to be given in capital letters.   
          statev(202)=3.0  
          statev(203)=0.8  
          statev(201)=(statev(203)*(PRESS+DPRESS)+statev(202))/(0.5*1E-3)    
          statev(204)=0         
          statev(205)=0          
          statev(206)=0         
          statev(207)=0    
          statev(208)=0     
          statev(209)=0    
          statev(210)=0    
          statev(211)=0    
          statev(212)=0    
          statev(213)=0    
          statev(214)=0 
          statev(215)=0 
          statev(216)=3.0 
          statev(217)=0.8 
          statev(218)=0     
          statev(219)=0     
          statev(220)=0    
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          statev(221)=0     
          statev(222)=0    
          statev(223)=0     
          statev(224)=0 
          statev(225)=0    
      ELSE  
          statev(202)=0.0  
          statev(203)=0.65  
          statev(201)=(statev(203)*(PRESS+DPRESS)+statev(202))/(0.25*1E-3)    
          statev(204)=0         
          statev(205)=0          
          statev(206)=0         
          statev(207)=0    
          statev(208)=0     
          statev(209)=0    
          statev(210)=0    
          statev(211)=0    
          statev(212)=0    
          statev(213)=0    
          statev(214)=0 
          statev(215)=0  
          statev(216)=0.0 
          statev(217)=0.65 
          statev(218)=0     
          statev(219)=0     
          statev(220)=0    
          statev(221)=0     
          statev(222)=0    
          statev(223)=0     
          statev(224)=0 
          statev(225)=0     
      END IF 
! 
!     Initialize cumulative dlamda 
      statev(223)=0.0 
!     Get the trial contact shear stress 
      statev(219) = TAU(1) + statev(201)*DGAM(1) 
!     Get the current and trial contact pressure 
      statev(221) = PRESS 
      statev(222) = PRESS + DPRESS 
!     Duplicate the current cohesion and friction coefficient  
      statev(204) = statev(202)  
      statev(205) = statev(203)  
    
!     Assign the softening scalar for cohesion 
      IF(statev(212).EQ.1)THEN  !check the residual cohesion flag                 
          statev(206) = 0  !if yes set the scalar to zero 
      ELSE 
          statev(206) = statev(214)*(1+statev(211))**(-statev(215))  
      End IF 
    
!     Assign the softening scalar for friction coefficient 
      IF(statev(213).EQ.1)THEN  !check the residual friction coefficient flag 
          statev(207) = 0  !if yes set the scalar to zero 
      ELSE 
          IF(statev(221).LE.1.0)THEN 
              statev(207) = statev(224)*(1+statev(211))**(-statev(225)) 
          ELSE 
              statev(207) = statev(224)*(1+statev(211))**(-statev(225)) 
              statev(207) = statev(207)/statev(221) 
          ENDIF 
      End IF 
C 
!     Check if contact pressure is negative 
      IF(statev(222).LT.0.0)THEN  
          statev(203)=0.0  !eliminate friction coefficient from yield function, dlamda, and 
Jacobians  
          statev(221)=0.0  !eliminate current contact pressure from yield function, dlamda, and 
Jacobians   
          statev(222)=0.0  !eliminate updated contact pressure from yield function, dlamda, and 
Jacobians  
      END IF  
C 
!     Calculate the current value of yield function   
      statev(220) = abs(statev(219))-statev(203)*statev(222)-statev(202) 
C   
!     Judge yielding      
      IF(statev(220).LE.0.0)THEN  !In case the stress is within yield surface 
          TAU(1) = statev(219) 
          DDTDDG(1,1) = statev(201) 
          DDTDDP(1) = 0 
          DSLIP(1) = 0 
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          statev(202)=statev(204)  !cohesion 
          statev(203)=statev(205)  !friction coefficient 
          LM = 0  !set LM to zero to allow the call for this subroutine in the next increment 
      ELSE  !In case the stress is outside the yield surface    
!         Check the direction of contact shear stress 
          IF(statev(219).LT.0.0)THEN  !If negative, use negative cohesion and friction coefficient 
              statev(202)=-statev(202) 
              statev(203)=-statev(203) 
              statev(204)=-statev(204) 
              statev(205)=-statev(205) 
              statev(216)=-statev(216) 
              statev(217)=-statev(217) 
          ENDIF 
  
!         Backward Euler method with Newton iteration 

DO WHILE (abs(statev(220)).GT.0.001)  !check if the gap is within tolerance (i.e. 1kPa) 
              statev(210) = statev(201)-statev(206)-statev(207)*statev(222) 
              statev(209) = statev(219)-statev(205)*statev(222)-statev(204) 
              statev(208) = statev(209)/statev(210)  !calculate dlamda 
              statev(223) = statev(223)+statev(208)  !update cumulative dlamda 
              statev(204) = statev(204)-statev(206)*statev(208) !updated cohesion 
              statev(205) = statev(205)-statev(207)*statev(208) !updated friction coefficient 
!        Check if updated cohesion and friction coefficient is less than the respective residual 
values 

IF(abs(statev(204)).LT.abs(statev(216)))THEN 
                  statev(204) = statev(216) 
                  statev(206) = 0.0 
                  statev(212) = 1 
              ENDIF 
 

IF(abs(statev(205)).LT.abs(statev(217)))THEN 
                  statev(205) = statev(217) 
                  statev(207) = 0.0 
                  statev(213) = 1 
              ENDIF 
              statev(219) = statev(219)-statev(201)*statev(208)  !update contact shear stress 
              statev(220) = statev(219)-statev(205)*statev(222)-statev(204)  !get the gap from the 
updated yield surface 
          ENDDO     
     
!         Update shear stress, cohesion, friction coefficient, and Jacobians 
          TAU(1) = statev(219)  !contact shear stress 
          DDTDDG(1,1) = -statev(201)*(statev(206)+statev(207)*statev(221))  
          DDTDDG(1,1) = DDTDDG(1,1)/(statev(201)-statev(206)-statev(207)*statev(221))  !Jacobian 
          DDTDDP(1) = statev(201)*statev(203)   
          DDTDDP(1) = DDTDDP(1)/(statev(201)-statev(206)-statev(207)*statev(221))  !Jacobian   
          DSLIP(1) = statev(223)  !plactic cumulative slip 
          statev(211) = statev(211)+abs(statev(223))  !absolute plastic cumulative slip 
          statev(202)=abs(statev(204))  !cohesion 
          statev(203)=abs(statev(205))  !friction coefficient 
          statev(216)=abs(statev(216))  !residual cohesion 
          statev(217)=abs(statev(217))  !residual friction coefficient 
          LM = 0  !set LM to zero to allow the call for this subroutine in the next increment 
      End IF  
C                       
C 
C 
C 
      RETURN 
      END 
! 
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