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Abstract

Density Functional Theory Study of Aromatic Adsorption on Iron Surfaces

Bianca Provost

This thesis studies the adsorption behaviour of aromatic molecules on iron surfaces

using density functional theory (DFT) calculations. The adsorbates studied are benzene

(C6H6), naphthalene (C8H10) and quinolinium (C7H10N+) as well as a molecule composed

of these fragments known to inhibit acid corrosion on steels used in the oil and gas industry

(naphthylmethylquinolinium, C20H16N+ or NMQ+). This work represents an effort towards

a mechanistic understanding of acid corrosion inhibition of steel as well the development

of a general understanding of aromatic adsorption on iron, which has rarely been studied

computationally or experimentally.

First, the results of a DFT study of benzene adsorption on the three most stable surface

facets of bcc iron, including flat {110}, kinked {100} and stepped {211} surfaces, are

presented. All stable adsorption sites are identified and the most energetically favourable

adsorption sites are compared across the three surfaces. In general, sites which appear

centered over hollow-like surface sites are preferred. The effect of van der Waals (vdW)

corrected DFT on binding site energetics and geometries has also been studied by way of

the Tkatchenko-Scheffler (TS) correction. It shows a strong influence on the adsorption

energies, some effect on the relative energetic ordering of sites and little to no effect on

adsorption geometries.

Second, the adsorption of naphthalene and quinolinium is studied on the most stable

surface of bcc iron, Fe{110}, using DFT. Quinolinium and naphthalene differ only by one

atom but their electronic structure differences result in significant changes in preferred
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adsorption site energetics and geometries. Quinolinium tends to adsorb preferentially

in geometries which allow its nitrogen atom to bind in an atop position on the Fe{110}

surface, in agreement with prior DFT work on NHx adsorbed on Fe{211} showing tetravalent

arrangements of adsorbed nitrogen are preferred. The preferred naphthalene adsorption

configuration presents the highest overall symmetry of all investigated naphthalene sites.

The adsorption energy for the top quinolinium geometry is 1.12 eV stronger than that found

for the best naphthalene adsorption geometry.

Finally, the adsorption behaviour of NMQ+ on the Fe{110} surface is studied using

DFT. Prior to the DFT adsorption study, a semi-empirical level conformational search on

the NMQ+ ion is conducted to identify preferred gas phase conformations of the ion.

Energetically favoured structures are optimised using DFT, which further refines the search

and identifies two different favourable gas phase NMQ+ conformations. Six different starting

NMQ+ geometries on the Fe{110} surface are tested based on the two favourable gas phase

conformations, and reveal a strongly favoured site (1.4 eV stronger adsorption than the next

best site) which presents double dehydrogenation of the quinolinium moiety. The next best

site also presents double dehydrogenation, but on the methyl linker and quinolinium moiety.

Beyond providing insight into the mode of action of molecules intended for corrosion

inhibition of steels, this work provides a fundamental understanding of the behaviour of

adsorbed aromatic molecules on iron surfaces, which can play a role in a number of industri-

ally relevant applications, including organic solar cells, transistors and LEDs, heterogeneous

catalysts and medical implants.
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Chapter 1

Introduction

1.1 Aromatic adsorption on metallic surfaces

Hybrid Inorganic-Organic Systems (HIOS) are central to a large number of industrially and

comercially relevant applications, including organic solar cells,1 molecular opto-electronics

(transistors and LEDs),2,3 medical implants,4 heterogeneous catalysts,5,6 molecular switches

and motors7 and corrosion protection8 among others. An interesting sub-category within

HIOS is the aromatic molecule/metal surface combination. The interaction of delocalised

aromatic π electrons with the metal surface, which allows for favourable flat-lying molecu-

lar adsorption, allows for a number of interesting applications.9 For substrates exhibiting

magnetism, typically metallic surfaces including Fe, Co, Mn and Ni, further interesting appli-

cations apply. One example is organic spintronics, where inexpensive, mechanically flexible

electronic devices benefit from spin-resolution, which allows for faster signal transmission

and reduced power consumption.10

The behaviour of small aromatic molecules such as benzene upon metal surfaces provides

key guidance in understanding the often much larger aromatic systems deployed in real

HIOS-based applications. Fundamental experimental surface science has provided important

lessons in this area since the 1970s.9,11 A wide variety of experimental techniques have

been developed which allow for the study of many different aspects of adsorption, including

adsorption strength, heights, geometry, pattern, electronic structure and vibrational proper-
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ties.9,12,13 These experiments are complemented by computational approaches which can

provide a level of detail not easily achieved using experimental techniques.14,15 One metal

surface which has seldom been studied in this context is iron. Experimental Ultra High

Vacuum (UHV) adsorption studies carried out on iron surfaces are complicated by the metal’s

reactivity and strong tendency to passivate, which result in significant difficulty obtaining a

high purity metal surface. Still, iron is deserving of study as it is the major component of

steel and catalyses important industrial reactions such as the Fischer-Tropsch and Haber

processes.

This thesis aims to provide a fundamental understanding in the area of aromatic ad-

sorption upon iron surfaces. The research in this thesis is a result of a collaboration with

Schlumberger Ltd., the world’s largest oilfield services company. Specifically, the collabora-

tion is an effort towards understanding the mechanism underlying the protection of steel

surfaces found in oil wells from acid corrosion by Acid Corrosion Inhibitor (ACI) molecules.

This problem is introduced and discussed in the following sections. The findings from this

thesis are anticipated to be of a relatively fundamental nature, and will therefore also apply

to a number of other applications.

1.2 Corrosion

Corrosion, the deterioration of a metal/alloy and its properties when exposed to a corrosive

environment, costs the world over 3% of its GDP (2.2 trillion US dollars) every year.16

Although corrosion has serious consequences for a diverse range of products, services and

industries, petroleum and crude oil refining are particularly severely affected by the process.

Petroleum and natural gas production and processing are affected by corrosion in almost

all components and at all stages of production.17 Oil and natural gas use account for over

50% of all energy consumption worldwide, and the demand for energy is growing each

year.18 Corrosion in the fossil fuel industry will require attention for decades to come. A

particularly corrosion-prone fossil fuel industry scenario is oil well drilling. Petroleum is

recovered mostly through conventional oil drilling, where a carefully selected borehole is
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drilled into the Earth’s crust to bring crude oil to the surface. During the life of a well, it may

be necessary to use stimulation techniques to enhance the oil production rate. One such

technique is matrix acidisation, in which acidising fluids are pumped down the borehole.

The acidising fluid is mainly composed of highly concentrated acid.19 Acidising is used to

partially dissolve the rock matrix which improves the flow of oil through existing and new

flow channels. However, the injected acid tends to corrode many key steel components used,

including the well casing that maintains the shaft’s structural integrity, pipelines and drilling

equipment. The corrosion susceptibility is magnified due to high operational pressures and

temperatures as well as the presence of dissolved gasses including oxygen, carbon dioxide

and hydrogen sulphide which are known to promote corrosion (see section 1.2.1). 10 to 30%

of the budget attributed to oilfield plant maintenance is spent in some way on corrosion.20

Failure to mitigate corrosive processes can result in economic losses, environmental pollution,

negative public perception and, in extreme cases, loss of life.8,21

For these reasons, it is very important to employ a corrosion control strategy to prevent

premature degradation of the equipment. Prior to discussing the form and function of

protection methods, it is useful to more carefully explore the chemistry of corrosion found

in oil wells.

1.2.1 Chemistry of corrosion

The chemistry of corrosion in the context of oil and gas wells is highly complex. Figure

1.1 provides a general picture of a subset of important chemical reactions involved.17 As

mentioned, the complexity arises due to the high pressures and temperatures within the well

and the presence of species known to accelerate corrosion such as O2, CO2 (so-called sweet

corrosion) and H2S (so-called sour corrosion). Additional factors which affect the rate of

corrosion are the pH conditions present at different processing stages (from basic to highly

acidising), the wide array of compounds injected into the borehole for different purposes

(see table 1.1 for examples), the types of metal/alloy used throughout the well (carbon steels,

austenitic and duplex stainless steels, high-strength steels and other exotic alloys) as well as

the micro- and macroscopic surface morphology of the corroding surfaces. In addition to
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localised effects, corrosion propagation mechanisms have been observed which take place at

greater length and time scales. Mechanical corrosion represents an example of macroscopic

length-scale corrosion. This includes corrosion due to high-velocity fluid flow, erosion by

abrasive particles, or so-called stress corrosion, where reduced ductility due to hydrogen

embrittlement can result in surface cracks forming, especially in low ductility steels. Finally,

a very important consideration relates to the electrochemical nature of the corrosion process.

Figure 1.1 shows the anodic and cathodic regions which form within the metal surface due

to potential difference between dissimilar microstructural islands upon the surface, called

galvanic corrosion. At the anode surface, dissolved Fe2+ ions react with nearby ions to form

corrosion products, while at the cathode, the accumulation of electrons can reduce H+ ions

to form H2. This thesis cannot provide an exhaustive overview of corrosion chemistry and

mechanisms; other references should be consulted for this purpose.17,22–24

Figure 1.1. Typical chemical reactions and products from acidic steel corrosion. Taken
from Ref. 17 (D. Brondel et al., Oilfield Review, 1994, 6, 4-18)

Focusing more on surface structure which is of relevance for this thesis, low-carbon steels

have been found to adopt oxide, oxy-hydroxide, hydroxide, sulphide, carbide and carbonate
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surface structure under different conditions relevant to oil and gas processing.25 Under highly-

acidising conditions, bare metal surfaces have been observed.25 This is supported by the

Pourbaix diagram for iron (figure 1.2), which provides information on the thermodynamics

of iron within the aqueous electrochemical environment. Figure 1.2 shows that, across

a wide range of applied potential values, iron can be found in Fe0, Fe2+ or Fe3+ states at

pH ≤ 2 , which influences the metastable states which can be found at the metal surface.26

The Pourbaix diagram does not account for kinetic effects, and as a result passivity has

also been studied within kinetic stability diagrams, which are beyond the scope of this

work.26 As another example of surface structure greatly differing from bulk metal/alloy

structure, stainless steels containing above 10% Cr are known to have a nanometer-scale

Cr2O3 top surface layer, which provides improved corrosion resistance.27 Aside from chemical

composition, the texture of the surface is also known to affect the corrosion rate significantly.

Crevices, pits and other surface imperfections are especially common at drillpipe joints and

tubing collars, and usually show oxygen depletion. This results in anodic surfaces which

show increased iron cation dissolution, which can in turn be accelerated by the presence of

Cl– ions.17 Finally, the corrosion process itself can dramatically change the surface structure

due to reprecipitatation of corrosion products which form thin films upon these surfaces.

These examples support the complex nature of metal surface structure in oil and gas wells,

as it is highly dependant on temperature, pressure, pH, electrochemical potential, alloy

preparation method, solvation and solvated species.17 A body of work has evolved which

studies the surface chemistry of corrosion processes, see the review of Maurice and Marcus 28

for surface science techniques, both experimental and computational, applied in this context.

The review of Wood and Clarke 29 also more specifically outlines the role in situ neutron

reflectometry has played in elucidating corrosion-related morphological changes at metal

surfaces. Theoretical studies have been carried out to build a complementary understanding

of the corrosion process at an atomistic level, see the reviews of Taylor 30 and Costa and

Marcus 31 as well as some more recent works in this area.32

It is difficult to generalise findings in oil well corrosion research because the corrosion

mechanisms are highly dependant on a multitude of system-specific conditions, some of
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Figure 1.2. Pourbaix (potential-pH) diagram for iron. Diagram shows active dissolution
region (A) metastable oxides (B and C) and stable oxide phase (D). Reprinted from
Ref.26, Corrosion Science 99, Obot, I.B., Macdonald, D.D., Gasem, Z.M., Density functional
theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An
overview, 30 pages, Copyright (2015), with permission from Elsevier.

which are difficult to reproduce in a laboratory setting. In any case, as mentioned previously,

it is of paramount importance to limit the degradation of oil and gas well metallic substrates.

There are different ways of achieving this, but the most cost-effective strategy is the coupled

use of lower-grade carbon steels and ACI.8

1.3 Acid corrosion inhibition

Arsenic salts were in common use as ACI until the 1960s.33 Once it was discovered these

salts could leach into groundwater, the resulting toxic effects on human health served to

advance chemical research on safer ACI. Research into organic chemicals as ACI provided

many viable candidates for inhibiting the corrosion of well components. Many of the ACI in

use today are aromatic molecules containing hetero atoms such as N, S and O.
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Table 1.1. Common acidising fluid componentsa

Component wt % Function Sample Compounds

Acid 10-28 Acidised oil well stimulation HCl, organic acids
Inhibitor 6 5 Inhibition of acid corrosion alkenylphenones,

derivatives of pyri-
dinium & quinolinium
salts

Intensifier 0.5-5 Ensures adequate steel protection at
high temperature and long exposure
times

KI, formic acid

Surfactant 0.5-15 Improve dispersability of ACI, wets
metal surface

formic acid

Solvent - Reduce viscosity, stabilise formulation
for variety of environments, can act
as surfactant

methanol, ethanol

Other - Prevent formation of ferric iron plug,
prevent formation acid-promoted hy-
drocarbon sludge, prevent oil-acid
emulsions, reduce precipitation of ACI
on rocks, increase viscosity of fluid

a Data taken from Ref. 8 (M. Finšgar and J. Jackson, Corrosion Science, 2014, 86, 17-41).

An ACI which is effective in one environment tends not to be as successful in a dissimilar

environment. Even small changes in alloy composition, acid concentration, pressure, tem-

perature and exposure time all have been shown to significantly change the effectiveness

of a given ACI.8,34 Additionally, although ACIs alone do provide corrosion resistance in

oil well drilling, they are significantly more effective when combined with a slew of other

compounds. Table 1.1 lists commonly included components which forms the acidising

fluid or Acid Corrosion Inhibition Package (ACIP). The determination of an effective ACIP

composition is very environment-dependant and selection is mostly based on trial and error.

Broadly, ACI being used today can be divided among three different categories: ph-

ysisorbed cationic molecules, chemisorbed molecules and surface-initiated polymerisation.

The choice of method depends on the drilling conditions, such as well temperatures and

pressures. In this work, mainly chemisorbed-type systems will be addressed. This is because

it is the system most amenable to the type of approach to be carried out in this thesis and
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may provide insight in the study of other system types. A number of reviews study specific

subcategories of compounds which function according to one of the three ACI mechanisms,

but broadly speaking this includes surfactants, polymers, ionic liquids and natural products

among other compound types.8,35–37

1.3.1 Mode of action

Figure 1.3. Summary of interactions involved in adsorption of ACI at the atomistic scale.
Reproduced from Ref. 25 (C. D. Taylor et al., Faraday Discussions, 2015, 180, 459-477)
with permission from The Royal Society of Chemistry.

Figure 1.3 shows the numerous interactions which must be accounted for at the atomic

scale to fully understand ACI-afforded corrosion inhibition.25 This includes considerations

which relate to corrosion chemistry as discussed in section 1.2.1 such as metal surface

structure (including surface morphology and solvation) and electrochemical effects. In

addition to the specific interaction of ACI with the surface, the interactions of ACI with the

solvent/oil as well as solubilised compounds/ions are of critical importance. Figure 1.3

demonstrates that the corrosion inhibition process is a competition between ACI-surface,
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ACI-solvent, and surface-solvent interactions (where solvent incorporates oil, water, and

solubilised species able to interact with either surface or ACI). Several papers25,38,39 advo-

cate for the use of interdisciplinary multiscale and multiphysics models to incorporate the

computational and experimental results of different ACI interaction domains and processes.

This would require individual contributions from scientists working within domains using

atomistic techniques all the way to kilometer-scale methodology, for example techniques in

engineering or geosciences.

Focusing more on ACI-surface interactions, the mechanism of corrosion inhibition by

organic inhibitors is generally poorly understood. This is due to considerations described

prior to this paragraph, including the sensitivity to the environment of ACI function as well

as the complexity of the corrosion process itself (see section 1.2.1). Based on experimental

evidence, certain hypotheses regarding the mechanism of action of chemisorbed ACI can be

drawn. It is generally accepted that ACI of the chemisorbed-type can produce protective

films over steel surfaces. This film prevents corrosion through reactive site blockage as well

as through disruption of cathodic and anodic reactions at the steel surface (see figure 1.1

for these reactions).33 Depending on whether an adsorbate inhibits cathodic, anodic or both

types of corrosive surface chemistry, it is denoted as being a cathodic, anodic or mixed-

type inhibitor respectively. Other plausible effects upon the corrosion rate via ACI include

interaction of the ACI with surface-adsorbed corrosion reaction intermediates or adsorption-

induced modification of the surface potential (workfunction).40,41 It is also possible that

any number of these proposed modes of action could be in effect at once, and different

inhibitors which may have very different functionality are unlikely to act in the same way. It

has been suggested that the binding strength of an inhibitor to the steel surface could be a

measure of its ability to provide corrosion protection, but evidence in recent years suggests

a more complex picture, for example that some strongly bound adsorbates could enhance

the corrosion rate.39

The focus of this thesis work is on the inhibitor-surface interactions, which as described

represent a small fraction of the interactions involved in determining the inhibitory action

of ACI and corrosion inhibitors more generally. Decoupling these interactions from the
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multitude of other interactions present within corrosion inhibition can provide fundamental

insight into one aspect of inhibitor action, which in turn can shed light on other aspects.42,43

As was also mentioned previously, this thesis work aims to shed more fundamental insight

on aromatic adsorption upon metal surfaces which can also be applied to a number of other

systems external to the corrosion space.

1.4 Computational studies of corrosion inhibition

Experimental surface chemistry methods can provide sub-nanometer resolution, however

it is uncommon to uncover atomic-resolution information. Even when such resolution is

achieved, it can often not provide the level of detail which offers insight on mechanisms.

Finally, while experiments can provide important insight on realistic systems, the complexity

of such systems can make the interpretation of data rather difficult. Atomistic simulation

techniques can be used in this context to provide supporting results on model systems.

To date, the study of ACI using atomistic computational methods has been achieved using

computational methods within the realm of molecular chemistry and the solid state molecule-

surface interface.44 Methods within both subcategories rely upon Density Functional Theory

(DFT) for results. Within computational chemistry, physics and materials science, DFT has

become the most widely used quantum mechanical technique to study the electronic structure

of many-body systems.45 Indeed, a 2014 account of the top 100 most-cited scientific papers

of all time features twelve papers related to DFT.46 Several reviews outline the successes

of DFT applied to ACI behaviour and corrosion science more generally; these should be

consulted for a more thorough overview.26,28,30,31,47,48 For more information on the theoretical

underpinnings of DFT which is used throughout this thesis, see chapter 2.

The following sections outline the different approaches used to study corrosion inhibition

afforded by chemisorbed-ACI. Alongside a general description for each method, the method’s

strengths and limitations are outlined.
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1.4.1 Molecular computational chemistry

An approach which is widespread throughout the computational corrosion inhibition litera-

ture is the use of chemoinformatics to correlate molecular properties with corrosion inhibition.

Two widely used techniques are Quantitative Structure-Activity Relationship (QSAR) and

Quantitative Structure-Property Relationship (QSPR), which differ mainly in their mathe-

matical implementations as well as whether biological (QSAR) or non-biological properties

(QSPR) are of interest.49 Briefly, the QSPR and QSAR approaches define a mathematical

relationship between a desired property (for example, the corrosion rate) and relevant

structural and chemical properties of a set of molecules, called molecular descriptors. Once

the relationship between the property and molecular descriptors is established, the model

can be used to predict the property quantitatively for molecules outside the set used to

create the model. Additionally, the model can provide insight into which descriptors are

most important in determining the property or activity. The range of molecular descriptors

which have been used to generate QSAR/QSPR models is extremely diverse; dipole moment,

polarisability, electronegativity, specific atom-atom type distances, atomic charges, HOMO

and LUMO energies and band gap energy are but a few. Certain descriptors can be derived

from experiment, but many of the descriptors mentioned can only be derived from methods

in computational quantum chemistry. The bulk of QSPR studies within the corrosion inhibi-

tion space make use of DFT-derived molecular descriptors. The works of Gece 47 and Obot

et al. 26 should be consulted for a full overview of the studies in this space.

These studies have received criticism for several reasons.49–51 First, from a more tech-

nical standpoint, the experimental corrosion rate data sets used in the majority of studies

are too small and lacking in chemical diversity to provide statistically valid correlations,

discrediting any relationships identified between molecular descriptors and corrosion inhibi-

tion.49 This is being addressed in more recent works which make use of a combination of

robust experimental data sets, machine learning approaches to develop the mathematical

model and reduced reliance on quantum chemically-derived molecular descriptors.49,52,53

Second, almost all QSPR works fail to account for the role of the solvent and especially the

surface in predicting properties relevant to corrosion inhibition. Recent experimental and

11



computational works have shown that traditional QSPR strategies fail to correctly predict

corrosion inhibition behaviour due to these omissions.50,51 More recent QSPR models have

included qualitative solvation effects as well as surface specific parameters,54 but a final

concern with QSPR approaches more generally is that they provide little to no insight on the

actual mechanism of inhibition.50 Although QSPR can provide clues as to which molecular

features/physicochemical properties are in some way linked to corrosion inhibition, they

provide no information on reactivity at the metal interface, or indeed any information on the

effect of varying the alloy surface, solvent or co-adsorbing species, all of which are known to

affect the corrosion rate. This is why a large part of the work presented in this thesis relies

on techniques developed in the area of computational surface science, which is described in

the next section.

1.4.2 Computational surface science

The coupling of experimental and computational surface science has led to a wide variety

of insights which have made important contributions to fundamental and applied science,

from characterising surface structures and dynamics to the development of new, higher-

efficiency heterogeneous catalysts.55,56 Computational surface science incorporates methods

developed in computational condensed-matter physics and computational chemistry. Since

the 1970s, DFT has been the method of choice for quantum mechanical simulations in the

solid-state.45 The application of solid state DFT calculations to study corrosion inhibitor

action is a more recent development.39 Recent reviews28,30 and a book chapter31 provide

an overview of exisiting studies in this area. Some specific recent examples include works

on the adsorption of organic ACI upon pure copper and copper oxide surfaces;,43,57–61

pure aluminium and aluminium oxides;59,62–64 pure zinc and zinc oxides65,66 and pure iron

and iron oxide surfaces.59,67–71 Insights these calculations have provided are varied, for

example calculations have shown that for stepped surfaces, strong covalent binding of

organic inhibitors is responsible for corrosion protection while upon close packed surfaces,

homogeneous inhibitor thin films are responsible for inhibiting corrosion.31 Recent works

aim to include the effects of solvation, co-adsorbed species and variable electrochemical
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potential alongside the traditional adsorption studies carried out within DFT.31

A major criticism of the existing solid state DFT ACI-surface literature to date has been

that its models do not account for realistic surface structure.26 Many of the studies so far have

concentrated on pure metallic surfaces, when in reality surface structure in concentrated

acid or exposed to solvent and ionic species is likely to differ from a pure metal as already

mentioned in section 1.2.1.39,72 Additionally, to date corrosion studies have focused mainly

on single-inhibitor surface systems, and work including solvents and/or co-adsorbates is

still lacking. Finally, most calculations fail to account for the electrochemical nature of the

corrosion process, and recent calculations have shown that the applied potential can have

an important effect of the adsorption mode of organic molecules upon metal surfaces.73

Some of the aforementioned issues are not unique to computations, and are also concerns

within experimental corrosion surface science, see section 1.2.1. These issues are beginning

to be addressed as expertise in this area develops, and continuing efforts in this area will

enable parallels to be drawn more readily between computational results and real systems.

Aside from the setup of simulations, DFT itself has certain limitations. One of the most

important in terms of the adsorption of aromatic molecules upon metal surfaces is that

standard DFT lacks description of long-range van der Waals (vdW) interactions due to the

local nature of the technique.74 This results in significant under-estimates of adsorption

strength where vdW interactions dominate. vdW-corrected DFT methods have evolved

enormously over the past decade, such that computed results for HIOS are now in excellent

agreement with experimental results.75 Progress in this important area is reviewed and

discussed in this thesis, see chapter 2.

Another DFT-related limitation is the high computational expense of the calculations

needed to study typical ACI-surface interactions. Modern computational architectures and

state of the art DFT packages allow for treatment of systems containing several hundred

atoms. Beyond this, calculations become prohibitively expensive. This is problematic given

that many of the high performing ACI are relatively large molecules, and once metal surface,

co-adsorbates and solvent molecules are also included within the system, traditional DFT

approaches become computationally intractable. More recently, approaches which make use
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of Density Functional based Tight Binding (DFTB), which allow for much larger system sizes

while maintaining treatment of electrons, are being used to study corrosion inhibition.76,77

A final limitation is that standard DFT calculations provide a static, thermodynamic

description of a system, but kinetics are likely to play an important role in the corrosion

inhibition mechanism. Dynamics can be probed using techniques which propagate a system

through time, for example Molecular Dynamics (MD) and Monte Carlo (MC) approaches. It

is possible to couple MD/MC with DFT, but these approaches can be prohibitively expensive,

though some examples do exist.78 More recently MD and MC approaches which rely on

inexpensive force field methods to evaluate the total energy and forces of the system have

been used to study corrosion inhibitor adsorption and kinetics, see the review of Verma

et al. 79 Force field methods make use of inexpensive interatomic potentials to approximate

the interactions between atoms. Although their low computational cost makes these methods

attractive, charge and spin transfer occurs regularly at the aromatic molecule-metallic surface

interface and is not captured using standard force field methods.14 Unless sophisticated and

potentially computationally expensive force fields are used, quantum mechanical techniques

such as DFT provide a more accurate picture of surface chemical phenomena.

The study of acid corrosion inhibitor chemistry using solid state DFT calculations is still

at a relatively early stage.39 This area of research is expected to grow significantly thanks to

the development of more accurate quantum chemical methods, the increased availability

of powerful parallel computer networks and further guiding experimental insights into

inhibitory phenomena and metal surface structure.

1.5 Objective

This work aims to better understand the mechanism of inhibitory action of a known ACI

molecule (Naphthylmethyl Quinolinium ion (NMQ+)) on an iron surface. This is achieved

using computational analysis, specifically DFT is used to study the gas-phase inhibitor-surface

interaction. The NMQ+molecule is relatively large on the scale of DFT calculations, therefore

studies of the interactions of key components of the molecule (benzene, naphthalene and
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quinolinium) will first be carried out to better direct the study. In addition to providing

preliminary insight on the mechanism of action of NMQ+ as well as other ACI which share

these building blocks, simulation of smaller molecular building blocks will enable validation

of the selected models, as surface studies of smaller components have already been carried

out. Finally, a secondary aim of the thesis is to provide a fundamental understanding

in the area of aromatic adsorption upon iron surfaces, which is currently limited in the

computational and experimental surface science literature.

1.6 Overview

Chapter 2 outlines the theory and methods used throughout this work. Chapter 3 presents

convergence testing and results for the bulk and surface models of bcc iron used throughout

this thesis. Chapter 4 presents the results and accompanying discussions of DFT study of

benzene adsorption of the Fe{110}, Fe{100} and Fe{211} surfaces. Chapter 5 compares the

results of DFT study of naphthalene and quinolinium adsorption on the Fe{110} surface.

Chapter 6 presents DFT results for NMQ+ both gas-phase and surface-adsorbed (on the

Fe{110} surface) states, and these results are compared to those obtained previously in

chapters 4 and 5. Final conclusions and future work directions are presented in chapter 7.
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Chapter 2

Theory and Methods

2.1 The Schrödinger equation

Because electrons have wave-particle duality, they cannot be described by classical mechanics,

and instead must be described by quantum mechanics. Central to the study of quantum

mechanics is the time-independent many-body Schrödinger equation,

Ĥ(r1, r2, r3, ..., rN)Ψ(r1, r2, r3, ..., rN) = EΨ(r1, r2, r3, ..., rN) (2.1)

where Ĥ is the Hamiltonian operator, rN is the three dimensional position vector for particle

N , Ψ is the many-electron wavefunction and E is total energy. The Hamiltonian operator Ĥ

represents the sum of kinetic (T̂) and potential (V̂ ) energy operators, which can each be

expressed as,

T̂ = −
1
2

∑

i

∇2
i (2.2)

where ∇2
i is the Laplacian operator for electron i in Cartesian coordinates, and

V̂ =
1
2

∑

i 6= j

1
|ri − rj|

(2.3)

where t is time, and V̂ accounts for Coulomb interactions between electrons i and j. The 1
2
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terms eliminate double counted interactions.

A major difference between classical and quantum mechanics is that quantum mechanics

is probabilistic, and only provides a probability of where the particles are located. The

probability of finding all N particles simultaneously in positions r1, r2, r3, ..., rN is equal to

|Ψ(r1, r2, r3, ..., rN)|2. The solution of equation 2.1 provides energy as a function of nuclear

coordinates, a relationship of prime importance in the study of physics, chemistry and

beyond.

Methods which endeavour to solve the Schrödinger equation are referred to as electronic

structure calculations. These require a number of approximations, one of the most important

being the Born-Oppenheimer approximation. It states that coupled nuclear and electronic

motion can be neglected. This is a valid approximation in many situations because nuclei

have comparatively much higher mass than electrons, and therefore have insignificant

quantum behaviour. This allows for the Schrödinger equation to be solved only for electrons

while nuclei are set as parameters. Once the potential energy surface has been mapped for

electrons, it can be used to solve the Schrödinger equation for stationary nuclei. The major

computational effort therefore lies in solution of the electronic Schrödinger equation for a

set of given nuclei.

Because of the complexity of solving the Schrödinger equation for many-electron systems,

it is necessary to make further approximations to facilitate calculations. Hartree-Fock theory

represents one of the oldest and most established methods for solving the multi-electron

Schrödinger equation. This method is classified as an independent-particle method owing

to the main approximation that electron motion is independent of all other electrons, and is

accounted for in an average way. Within this method, the total wavefunction Ψ is expressed

as a combination of orbitals, each of which describes an electron within a given system.

Electrons, which are fermions, cannot share the same quantum state. This property,

known as antisymmetry or Pauli’s exclusion principle, must also be incorporated into treat-

ment of the wavefunction which describes the electrons. This is resolved through use of a

Slater determinant. The variational theorem states that a trial wavefunction will have an

energy eigenvalue greater than or equal to the ground state wavefunction. The wavefunction
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can therefore self-consistently be tested until the energy is minimised for the single Slater

determinant, giving the ground state energy and wavefunction.

A major omission from Hartree-Fock theory is that it neglects to account for electron

correlation, i.e. how electron movement is affected by surrounding electrons. This is because

of the very nature of the method, which accounts for average electron-electron interactions

only. This can result in important underestimates of geometric and energetic parameters

compared to experimental results. Although there are solutions to this problem which

remain within the realm of Hartree-Fock theory (see section 2.5.3 for example), Density

Functional Theory (DFT) is a different method for solving the Schrödinger equation which

does include correlation, and represents a very successful improvement over traditional

Hartree-Fock theory.

2.2 Density Functional Theory

Density Functional Theory (DFT) has become the most popular quantum mechanical simu-

lation method in physics, chemistry and materials science. Its description of the electronic

structure of atomic, molecular, and condensed-matter systems has provided invaluable

insights. In this section, DFT’s underlying mechanics shall be addressed.

In summary, DFT has two guiding principles: (1) Energy is a function of total electron

density and (2) the total energy, wave function and all other molecular electronic properties

are unique to the ground state electron density. The first point is in stark contrast to the

Hartree-Fock method. Similarly to Hartree-Fock, the solution to the Schrödinger equation

in DFT approximates the true many-body wavefunction as a combination of one electron

densities. Instead of having to solve the Schrödinger equation using the complex and

computationally demanding many-electron wavefunction, the only necessary variable is

the total electron density, ρ(r), which is expressed as a function of real space coordinates

r= (x , y, z). DFT energy (E[ρ(r)]) is a “functional”, as it is a function (electron density) of

a function (real space coordinates).

What is referred to today as modern DFT is generally Kohn-Sham DFT. In 1965, Kohn
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and Sham introduced the following form of the exact energy functional:

E[ρ(r)] = Ts + U + Vnuc + Exc[ρ] (2.4)

where E[ρ(r)] is the ground-state energy, Ts is the kinetic energy of the non-interacting

single-particle Kohn-Sham orbitals, U is the Coulomb energy, Vnuc is the nuclear-electron

potential and Exc[ρ] is the exchange-correlation energy. U and Vnuc are borrowed from

Hartree-Fock theory; the real innovations of DFT lie in Ts and Exc[ρ]. In Kohn-Sham DFT, it

is possible to find the ground state density through self-consistent solution of Equation 2.4.

Single particle Kohn-Sham orbitals form a set of solutions to Schrödinger-like equations,

and total energy can be minimised with respect to this solution set. For a system containing

a number of electrons N , DFT and Hartree-Fock methods scale with N 3 and eN respectively,

resulting in significant computational cost savings overall through use of DFT.

2.2.1 Exchange-correlation energy: Exc[ρ]

Although DFT is in theory exact, in practice approximations are made because there is no

known analytical solution to the exchange-correlation functional. Exchange and correlation

arise from the Pauli principle as well as dynamic Coulomb interactions between electrons,

respectively. It is also worth noting that Exc[ρ] additionally corrects for the error made

in Ts. This error arises because the kinetic energy for the non-interacting single-particle

Kohn-Sham orbitals is not the same as the true kinetic energy.

The two main approximate forms of Exc[ρ] are the Local Density Approximation (LDA)

and the Generalised Gradient Approximation (GGA), the latter of which is used throughout

this work.

LDA versus GGA

The LDA was quite popular for calculating the electronic structure of solids through the

1970s and 80s.80 The LDA relies on computation of Exc[ρ] exclusively from the value of ρ

at each point in real space for a uniform electron gas. Mathematically, this can be expressed
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as:

E LDA
xc [ρ] =

∫

ρ(r)(εx[ρ(r)] + εc[ρ(r)])dr (2.5)

where εx[ρ(r)] and εc[ρ(r)] are the exchange and correlation energies per particle, re-

spectively. A major problem with the LDA is that molecules typically will be overbound by

around 1 eV/bond. Specifically of relevance for this thesis is that an LDA does not identify

the correct ground state for bulk Fe. Computations carried out by Blancá et al. 81 show an

LDA to predict non-magnetic fcc Fe as the lowest energy phase, while ferromagnetic bcc Fe

is known to be the ground state for bulk Fe and is correctly identified with a GGA.

GGAs were popularised in the late 1980s and represent the majority of functionals in use

today. GGAs differ from LDAs in that they not only account for ρ at each point in space, but

also the gradient ∇ρ. The GGA created by Perdew, Burke and Ernzerhof (PBE) was used for

all calculations involving iron throughout this work.82

2.2.2 Spin polarisation

Systems which demonstrate magnetism require additional technical considerations in order

to account for spin-polarisation. Typically, this includes metallic systems containing Fe,

Co, Mn and Ni as well as transition metal oxides. Spin polarisation is incorporated in the

DFT work within this thesis through use of spin-polarised GGAs.83 In essence, separate

calculations are carried out on majority spin (or spin up) and minority spin (or spin down)

electrons. This therefore requires the use of two separate ρ variables, often denoted ρ↑ and

ρ↓, where ρ = ρ↑ + ρ↓. Mathematically,

EGGA
xc [ρ

↑,ρ↓] =

∫

εxc(ρ
↑(r),ρ↓(r),∇ρ↑(r),∇ρ↓(r))dr (2.6)

In addition to the two separate calculations, the interaction between ρ↑ and ρ↓ must

also be accounted for. As a result, spin polarised calculations incur significant additional

cost to traditional DFT calculations, typically over twice the cost of the non-spin polarised

calculation.
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2.2.3 Dispersion corrections

Reliable dispersion corrections are a fairly recent addition to the DFT toolbox and are still

actively being developed.74 The failure to describe long-range electron correlations (electron

dispersion forces) occurs due to the approximate nature of exchange-correlation functionals

such as LDA and GGA. Specifically, it is because instantaneous density fluctuations are not

considered and only local properties are used to calculate the exchange-correlation energy.

The most widely adopted, inexpensive approach to account for vdW forces is the addition

of a pairwise additive dispersion correction energy term (Edisp) to the computed DFT energy.

For two particles which are separated by a distance r, the dispersion scheme should display

−1/r6 asymptotic behaviour. A general form for Edisp can be expressed as follows:

Edisp = −
∑

A,B

C6
AB/r

6
AB (2.7)

where r6
AB is the distance between atoms A and B and C6

AB is the dispersion coefficient for

atom pair A and B. In this work, the vdW scheme created by Tkatchenko-Scheffler (TS) is

used.84 This method makes use of reference atomic polarizabilities in addition to reference

C6
AB coefficients. An attractive feature of the TS scheme is the environment-dependent

C6
AB coefficients, which are scaled from reference atomic values based on effective atomic

volumes.

The review of Klimes and Michaelides 74 provides an overview and classification scheme

for the wide range of exisiting vdW methodologies. Pairwise schemes such as D285 as well

as environment-dependant pairwise TS84 and D386 schemes incur the lowest computational

cost at the expense of high accuracy. Moderate cost and accuracy are achieved through use of

the vdw-DF functionals,87 which instead of applying pairwise corrections make use of a new

functional form which includes long-range interactions. The random phase approximation

(RPA)88 and many body dispersion (MBD)89 schemes represent approaches which go beyond

the pairwise approximation, and are of the highest accuracy and computational cost.
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Hybrid inorganic-organic junctions (HIOS)

An understanding of the electronic structure of industrially relevant HIOS is key to tuning

their properties (see chapter 1 for applications). As a result, electronic structure calculations

aiming to provide an understanding of these systems at the atomistic level are popular.

Significant efforts have been invested in studying the effect of DFT vdW corrections upon

HIOS with an emphasis on molecular adsorption on metal and semiconductor surfaces,

see for example the reviews of Liu et al. 15 and Tkatchenko et al. 90 Many studies have

shown significant changes in adsorption energies, relative energetic ordering of adsorption

configurations as well as geometric parameters when dispersion corrections are included

for aromatic molecules adsorbed on metal and semi-conductor surfaces.57,91–105 Typically,

the most important effect is seen for adsorption energies, which have been estimated to

increase on average by 5.5 kJ/mol (0.06 eV) per carbon-sized atom.74 The impact has been

shown to vary from that estimate, and is dependent on a large number of factors including

the vdW correction/functional used, the adsorbate identity, the surface composition, the

strength of the adsorbate-surface interactions and the type and roughness of surface facet.

In terms of the method used to account for vdW interactions, schemes which make use of

a pairwise additive dispersion correction energy term tend to over-estimate the impact of the

interactions.74,92 Generally, more sophisticated vdW-including implementations tend to pro-

duce results more in line with experimental results, but there certainly are exceptions to this.

For example, use of the vdW-DF functional underestimates the experimental adsorption en-

ergy of benzene/Cu{111} (vdW-DF Eads = 0.55 eV,93 experimental Eads = 0.68 eV-0.81 eV,106

PBE-TS Eads = 1.05 eV92). This is particularly important given that use of vdW-DF and

other sophisticated schemes increases the cost of the calculation by at least 50%, while the

additional cost of pairwise additive corrections is minimal.74 New vdW schemes continue to

be developed to incorporate the realistic effect of vdW interactions within DFT.

Systems containing aromatic molecules can show especially strong changes upon addition

of vdW corrections due to dispersion interactions of the aromatic π-electron system with

the surface.14 This is why benzene, being the simplest small aromatic molecule, has been

intensely studied in this context upon metal and semi-conducting surfaces.91–95,97–99,102–106
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As for the metal identity, adsorption upon more noble metals, which tend to show less

reactivity, are usually strongly impacted by vdW corrections, as shown for example in the

work of McNellis et al. 92 on azobenzene adsorption on three coinage metal (Au{111},

Ag{111} and Cu{111}) surfaces. Conversely, in cases where strong chemisorption occurs,

for example for 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Cu{111} (Eads

= -2.60 eV),107 excellent agreement with experiment is achieved without the use of vdW

corrections. In some cases, a given vdW correction can provide better agreement with

experiment for adsorption on one surface facet (Cu{111}) than another (Cu{100}), showing

that this can also have an effect on the approach.108,109 A further effect which has infrequently

been discussed in the literature is the impact the chosen vdW scheme has on the metal

surface’s properties. Particularly, in cases where a functional which has been shown to

produce good agreement for bulk/surface properties with experiment (i.e. PBE), the ad hoc

addition of pairwise vdW corrections to such functionals can lead to poorer agreement.110

In more recent years, an approach (called DFT+vdWsur f )106 to incorporate vdW interac-

tions specifically for HIOS systems has emerged. It has shown results in excellent agreement

with experiment for a number of aromatic/metal surface systems.75 Although this scheme

has not been employed for the work in this thesis (its implementation within the CASTEP

code we use is at present incomplete), its use represents an interesting future work direction.

It is clear there are a number of important considerations within the DFT treatment of

HIOS. This thesis does not aim to ascertain or employ the ideal vdW-DFT method for the

adsorption of aromatic molecules on Fe surfaces; this would not be possible to determine

given the lack of experimental data for such systems. Instead, the work presented in this

thesis aims to ascertain more generally the effect of addition of vdW interactions to DFT

upon Fe surface adsorption energies and geometries. This is why the TS correction has been

selected for our work.

2.2.4 Hybrid functionals

Hybrid functionals include a range of functionals which mix Hartree-Fock and DFT. They

aim to improve the expression for exchange-correlation energy by incorporating a portion
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of Hartree-Fock-derived exact exchange.

The B3LYP functional111,112 is used for the gas-phase molecular DFT work in this thesis.

This is one of the most popular hybrid functionals and has been in use for DFT calculations

for decades. The paper describing the method is among the ten most cited scientific papers

of all time.46 B3LYP references the Becke 88 exchange functional, its three parameters and

the correlation functional of Lee, Yang and Parr. The B3LYP exchange-correlation functional

has the following form:

EB3LY P
xc = E LDA

x + 0.20(EHF
x − E LDA

x ) + 0.72(EGGA
x − E LDA

x ) + E LDA
c + 0.81(EGGA

c − E LDA
c ) (2.8)

where x represents exchange, c represents correlation, HF is Hartree-Fock. As can be seen in

equation 2.8, B3LYP also includes a mixture of both LDA and GGA exchange and correlation

contributions.

The combination of B3LYP/6-31G(d,p) has been shown to produce a mean average error

of 2.5 kcal/mol (0.11 eV) for both heats of formation and isomerisation energies for 622

organic compounds containing C, H, N and O.113

2.3 Solid State DFT: the CASTEP code

CAmbridge Serial Total Energy Package (CASTEP) is one of many implementations of a DFT

simulation package. Its focus is on solid-state condensed matter, which generally presents

different features compared to DFT implementations which focus on molecular species (see

section 2.5 for details of molecular DFT codes). Since the conception of CASTEP in 1986,

many authors have contributed to create a very robust electronic structure code.114,115

Many solid-state DFT codes such as CASTEP share common features, including a plane

wave basis to represent the wavefunction, pseudopotentials and total-energy minimisation

(to identify the ground-state). In the following sections, these key concepts as well as certain

CASTEP-specific features shall be discussed. Throughout all thesis work, version 17.2.1 of

the CASTEP code is used.
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2.3.1 Plane wave basis

Bloch’s theorem

Bloch’s theorem is stated as follows:

ψ~k(~r) = u~k(~r)e
i~k·~r (2.9)

where ψ~k(~r) is the Bloch wave, u~k is a periodic function with the same periodicity as the

crystal under study (also known as the Bloch function), ~r is the position vector and ~k is a

vector of real numbers (also called the crystal wave vector). A suitable mathematical basis

must be selected for the Bloch function, and for crystal systems this is generally plane waves.

For mathematical convenience, this can be expressed in reciprocal space:

ψ~k(~r) =
∑

~G

u~k( ~G)e
i(~k+ ~G)·~r (2.10)

where ~G is the reciprocal lattice vector. In order to represent any ψ~k(~r), the basis set should

in theory be complete and therefore contain an infinite number of plane waves. In practice

this is not possible, so a cut-off energy is introduced, and only plane waves with a kinetic

energy below the following cut-off are used:

~2| ~G + ~k|2

2m
< Ecut-off (2.11)

The change of ψ~k(~r) with ~k becomes negligible for close k-points. This implies that a

finite number of k-points can be used to study a system. The number of k-points selected to

approximate infinite ~k is referred to as k-point sampling and is one of the basis set parameters

which must be tested for convergence with respect to a particular property, usually the

total energy of the system. This work makes use of the common Monkhorst-Pack (MP) grid

sampling scheme, which is a regular, homogeneous user-defined grid of k-points.

A plane wave basis presents many advantages over an atom-centered one. It is mathemat-

ically complete and simple, does not depend on atomic positions, has a single convergence

criterion, treats all space the same and readily incorporates periodic boundary conditions,
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which are necessary for solid-state calculations. Atom-centered basis sets are still in use for

study of solid-state systems to overcome certain plane wave-related disadvantages (more

discussion of this in section 2.5.1). One such disadvantage is that the number of necessary

plane waves is determined by the greatest curvature of the wavefunction. A solution to this

problem is through use of pseudopotentials.

2.3.2 Pseudopotentials

A pseudopotential replaces the real potential, originating from both the core electrons and

ionic cores, with an effective potential. More specifically, the true wavefunction is replaced

with a smoothed pseudo-wave function within a core radius Rc. Figure 2.1 provides a visual

depiction of three of the most important requirements for a valid pseudopotential. First,

the real and pseudo-wavefunction must agree below distances of Rc. Second, the real and

pseudo-potential must agree beyond Rc. Finally, the eigenvalues must be the same whether

real potentials or pseudopotentials are used. When appropriate pseudopotentials are used,

they significantly lower the computational cost due to a reduced number of electrons to be

treated explicitly and a smaller basis set.

Figure 2.1. Graphical representation of original wavefunction (Ψ), norm-conserving
(Ψnc) and ultrasoft (Ψus) pseudopotentials.

Norm-conserving-type pseudopotentials, which were proposed in the late 1970s, were

the first to become routine in use within plane-wave DFT codes. A norm-conserving pseu-
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dopotential has the requirement that the charge in the core region should be the same

for the all-atom wavefunction as for the pseudo-wavefunction. To ensure tranferability

of pseudopotentials, a suitable Rc should be chosen. The larger the Rc value, the smaller

Ecut-off can be, but it also makes it more difficult to preserve norm-conservation and the

pseudopotential becomes less transferable.

Ultrasoft nonlinear core corrections

In practice, norm-conserving pseudopotentials can be prohibitively expensive for first-row

and transition metal elements as large basis sets and high Ecut-off values are usually re-

quired.115 Vanderbilt’s ultrasoft pseudopotentials address these issues by relaxing the norm-

conserving requirement.116 This allows for a much smoother pseudo-wavefunction region

below Rc, which allows for a smaller number of plane waves to be used. Typically, this

translates to Ecut-off values around two times smaller than with norm-conservation resulting

in less than a third of the number of plane waves.115 A problem which arises due to not

reproducing the all-electron core charge with the ultrasoft pseudopotential is that scattering

properties may become incorrect due to a generalised eigenvalue problem.116 In CASTEP, this

is amended by using two or three reference energies each having their own set of projectors

for the valence electrons. This results in ultrasoft psuedopotentials being generally much

more transferable than their norm-conserving counterparts.115 The additional cost incurred

by solving the generalised eigenvalue problem is more than offset by the computational

time savings afforded by a reduced number of plane waves. Ultrasoft pseudopotentials are

therefore inexpensive in addition to being highly transferable.

It can be difficult to determine which electrons should be classified as core or valence

for transition metals. These so-called semi-core states can be treated as valence electrons

to err on the side of caution, but treating more electrons explicitly results in a more costly

calculation. Nonlinear core corrections (NLCC) provide a solution to this problem.117 These

corrections, which explicitly treat the exchange and correlation interactions between core

and valence charge densities, tend to be of a much lower cost and highly transferable at

the expense of accuracy. NLCC have been shown to be particularly important for magnetic
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materials, because spin density is more localised around the atomic core than charge

density.118

2.3.3 Electronic energy minimisation

Electronic energy minimisation is where all the previously described DFT calculation occurs.

Initial wavefunctions and densities are input and modified in some way to generate new

output wavefunctions and electron densities.

Electronic energy minimisation in CASTEP makes use of a preconditioned conjugate

gradient method.115 The conjugate gradient method is a variant on the steepest descent

search method. Steepest descent is characterised by a cycle through the following steps:

1. A trial wavefunction is provided;

2. Energy is computed;

3. The energy gradient is computed;

4. The coefficients used for subtracting the gradient from the trial wavefunction are

adjusted;

5. An improved trial wavefunction is generated;

6. Steps 2-5 are repeated until the ground-state is identified.

CASTEP offers two iterative minimisation schemes, namely density mixing and ensemble

DFT (EDFT).118 These schemes differ mainly in whether E[ρ(~r)] is recomputed at each

step. In this work, density mixing is used, where E[ρ(~r)] is not recomputed at each step,

which denotes it as non-self-consistent. Charge density at the end of a minimisation step is

“mixed” with the initial charge density for the next step until convergence is reached. This

mixing of density results in a robust and efficient minimisation scheme for most metallic

systems and surfaces. This technique is however non-variational, meaning energy is not

always lowered during the steepest descent search. This can sometimes result in difficulty

converging the ionic forces. An additional concern arises for spin-polarised calculations,
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where spin is also mixed-in separately from the charge density mixing. EDFT does also work

well for metallic systems and is variational, but as E[ρ(~r)] is recomputed at each step it

is prohibitively expensive. In cases where charge sloshing occurs or the steepest descent

search is otherwise unstable, EDFT can prove useful.

For all calculations described in this thesis, only density mixing is used. The electronic

tolerances used are 1 × 10−8 eV for energies and 1 × 10−5 eV/Å for forces.

2.3.4 Geometry optimisation

Geometry optimisation calculations involve iteration over a series of inner and outer loops.

The outer loop, called the ionic or geometric loop, makes use of the converged result of the

inner loop, i.e. electronic energy minimisation, to obtain the forces on the ionic coordinates.

These provide an indication as to how the atomic positions should be changed in order to

get closer to the ground-state configuration. The ground-state is considered to have been

reached once further ionic steps do not significantly change user-defined force, energy and

ionic displacement tolerances. Within this thesis, the tolerances used are 0.01 eV/Å (forces),

1 × 10−5 eV (energy) and 0.01 Å (ionic displacement).

Geometric convergence is achieved through use of the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) minimisation algorithm, where first and second derivatives of the energy are both

used to identify minima. This results in much faster convergence than with only the first

derivative being used, as is done for example when using steepest descent minimisation.

2.4 Surface calculations

Two dimensional surfaces do not have natural three dimensional periodicity, so generation

of a three dimensional periodic supercell is not possible by default. The periodic nature

of the two dimensional plane of a surface is appropriate for this task, so a unit cell can be

built through inclusion of artificial periodicity in the direction normal to the surface. This is

accomplished through use of a finite vacuum space above the surface. Usually, the vacuum

selected will be of at least 10 Å to prevent non-physical interaction of the surfaces separated
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Figure 2.2. Example surface supercell with adsorbate, bulk, top surface and vacuum
layers indicated.

by the vacuum spacing. Additionally, bulk and surface regions of the two dimensional

material are introduced. A sufficient number of bulk and surface layers must be selected to

ensure realistic behaviour, which can be verified by comparing against characteristic surface

properties. Generally, the bulk surface atom coordinates are frozen while the surface layers

are allowed to relax along with any species being adsorbed on the surface. A representative

diagram of a surface supercell is shown in figure 2.2.

2.4.1 Surface properties

Surface energy

Surface energy quantifies the energy required to cut a crystal along a given surface plane to

form two halves. A first form often seen in the computational literature which we will refer

to as ς, can be expressed according to the following equation:
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ς=
1
2

Eslab − nEbulk (2.12)

where Eslab is the total energy of the slab, n is the number of slab atoms and Ebulk is the

total energy of the bulk material per atom. the 1
2 factor accounts for the formation of two

surfaces upon cleavage of a crystal.

Of experimental relevance is the surface energy per unit area (γ) which is expressed as

follows:

γ=
Eslab − nEbulk

2A
(2.13)

where A is the surface area of the slab. A correction must however be applied to equation

2.13 because γ does not converge with increasing slab thickness.119–121 As documented in

works from literature, this is a result of the well-converged bulk energy (Ebulk) differing from

the bulk energy associated with the lower portion of the surface slab. A number of methods

have been proposed to correct this error. This work makes use of the method developed by

Boettger 119 , which employs incrementally thicker slab energies to ascertain the slab-derived

bulk energy. This can be expressed as,

Ebulk = E i
slab − E i−1

slab =
∆Eslab

∆N
(2.14)

where i is the slab thickness. Making use of an average of several ∆Eslab values for different

i increments results in improved predictions. The ranges of i used for these averages are

described where surface energies are calculated throughout this work.

Workfunction

The workfunction (φ) is defined as the minimum energy needed to move a surface electron

to a point just outside the solid surface. It is calculated according to the following equation:

φ = Evac − EF (2.15)
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Where Evac is the vacuum energy and EF is the Fermi energy. EF is provided directly

in the output of geometry optimisation or single point calculations. Evac can be calculated

from the local potential, which must be extracted from the CASTEP binary check file. This is

accomplished using the pot1d CASTEP tool, which makes use of the macroscopic averages

method presented by Fall et al. 122

2.4.2 Adsorbate-surface system properties

In addition to properties which describe the clean surface, there are a number of properties

suited to the study of a coupled adsorbate-surface system. These properties can reveal

interesting information about the interactions between adsorbate and surface, and are

discussed in the following sections.

Adsorption energy

The adsorption energy (Eads) provides a measure of the strength of the interaction between

the surface and adsorbate. More specifically,

Eads = Esur f +molec − (Esur f + Emolec) (2.16)

where Esur f +molec is the energy of the adsorbed molecule and surface, Esur f is the energy

of the bare, geometry-optimised surface slab and Emolec is the energy of the geometry-

optimised gas-phase molecule. This measure can provide insight into whether the species

is chemisorbed or physisorbed, with a minimum Eads of -0.5 eV per molecule typically

characterising chemisorption. Throughout the literature, both positive and negative values

are used to describe Eads. In this thesis, negative values are used for exothermic adsorption

processes, where a more negative value is indicative of stronger adsorption.

Distortion energy

There is often a change in the conformation adopted by a molecule when adsorbed on a

surface compared to its optimal isolated configuration in the gas-phase. The distortion energy
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(Edist) serves to quantify the deformation of the molecule’s adsorbed configuration away

from its isolated gas-phase optimised configuration. All Edist values presented throughout

this work are positive owing to the energy gain upon distortion away from the isolated

gas-phase molecule’s configuration. The distortion energy, particularly when coupled with

other data such as Eads, can provide complementary insight into the underlying mechanism

for adsorption. For example, molecular distortion at the metal surface can result if it provides

improved overlap of adsorbate orbitals with surface orbitals.

Charge density difference

The distribution of charge density (ρ) within the adsorbate-surface system can be studied,

but a potentially more useful metric is the charge density difference (∆ρ) which is calculated

similarly to the adsorption energy, i.e.

∆ρ = ρsur f +molec − (ρsur f +ρmolec) (2.17)

where ρsur f +molec is the charge density of the combined adsorbate-surface system, ρsur f

is the charge density associated with the clean surface in its adsorbed configuration and

ρmolec is the charge density associated with the isolated gas-phase adsorbate in the adsorbed

configuration. Because ∆ρ aims to analyse the differences in density between adsorbate

and surface, it is important to make use of the charge densities for adsorbed configurations

as opposed to the isolated gas-phase optimised charge densities. The adsorbed and isolated

gas-phase configurations will have slight differences in their distribution of density, and

subtracting the wrong ρsur f and ρmolec will result in erroneous ∆ρ.

The charge density difference is most useful as a visual representation of the charge

transfer interactions between the adsorbate and surface. Regions of decreased (increased)

electron density can usually be correlated with the HOMO (LUMO) orbitals of the adsorbate

which can donate (back-donate) electron density.
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Spin density

The spin density provides an insight into the distribution of spin within the adsorbate-surface

system. This is particularly interesting for adsorption upon iron surfaces, as adsorbates

without spin-polarisation can become spin-polarised as a result of interaction with the

ferromagnetic surface.

As with the charge density difference, the spin density is most helpful when visually

represented. Throughout this thesis, blue (yellow) regions denote minority (majority) spin.

Unlike the charge density difference, it is of most use to directly represent the spin density

as opposed to the spin density difference. Because none of the adsorbates studied carry spin

in the gas-phase, the spin density already naturally provides the “difference” compared to

the gas-phase molecule.

All spin and charge density data is prepared using the c2x utility123 , which extracts and

reformats the desired densities from the CASTEP binary checkpoint file.

Density of states

The Density Of States (DOS) provides information on the number of occupied states at a

range of energy levels. A study of the DOS for the adsorbate-surface components prior to, as

well as after, adsorption can provide important insights on changes in electronic structure

for both adsorbate and surface. Of special relevance for this thesis is the Projected Density

of States (PDOS), where the DOS can be projected upon a specific atom, orbital(s) (i.e. s, p

or d) or some combination of both. Projection upon specific atoms and their orbitals can

be useful in cases where it is expected that a certain atom or orbital plays an active role in

the adsorption process, and would therefore show a shift in occupation of energy levels. In

terms of molecules, specific DOS bands can be assigned to specific molecular orbitals; their

change upon adsorption can be indicative of those orbitals which have favourable alignment

and therefore interact favourably with the surface orbitals.

All DOS and PDOS data shown throughout this thesis are calculated using the OptaDOS

program in conjunction with CASTEP.124
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2.5 Molecular DFT: the Gaussian code

From a technical standpoint, it is possible to treat gas-phase molecular systems using a plane

wave-basis DFT implementation such as CASTEP. This would require placing the molecule of

interest in a periodic vacuum large enough to prevent unphysical self-interactions. In doing

so, a large region of vacuum is treated with the same level of accuracy as the gas-phase

molecule, resulting in high computational cost. Because molecular systems are finite, they

do not typically benefit from use periodic boundary conditions, rendering the plane wave

approach unnecessarily expensive.

In certain cases found throughout this thesis, it is necessary to make use of the approach

described above in order to make direct comparisons between the gas-phase and adsorbed

states of a molecule. In all other cases, molecular systems have been studied using a

separate DFT implementation, which relies on a localised basis set, called Gaussian.125

The distinguishing features of this code which are used in this thesis are described in the

following sections.

2.5.1 Atomic basis sets

The plane wave basis is one of many which can be used to represent the electronic wave

function and solve the Kohn-Sham equation (equation 2.4). As explained previously, such

basis sets tend to be favoured for problems in materials science where periodic boundary

conditions are convenient. As for gas-phase molecular systems, they are often better suited

to other basis sets. Specifically, one such category is the Atomic Orbital (AO) basis.

In the same way that the plane wave basis is a linear combination, the AO basis is made

up of a linear combination of atomic orbitals (also called LCAO). There are two main ways in

which the atomic orbital basis is implemented: Slater-Type Orbitals (STO) and Gaussian-Type

Orbitals (GTO). Mathematically, the GTO takes the form:

Φnlmζ(r,θ ,φ) = αYlm(θ ,φ)r2n−n−l e−ζr2
(2.18)

Where Φnlmζ(r,θ ,φ) is the GTO expressed in spherical coordinates, l, m and n are
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quantum numbers which determine the type of orbital (l = 0 is an s orbital, l = 1 is a

p orbital, etc.), ζ determines the width of the orbital (a small ζ results in a more diffuse

function), r is distance from the nuclear positions, α is a normalisation constant and Ylm(θ ,φ)

is a spherical harmonic. The main difference between STO and GTO lies in the eζr2
term;

in the case of STO, the dependence is of the form e−ζr . The r power provides a better

description of the orbital compared to r2 at the expense of very high computational cost

(the r power requires square root calculations which are time-consuming). Although GTOs

describe the orbital less accurately, they are of such a reduced computational cost compared

to STO (even with the minimum three times more GTO functions required for a description

as good as STO) that they tend to be preferred.

The dependence on quantum numbers and atomic positions results in a chemically

intuitive basis set as well as basis sets of small size which give decent results. This approach

does have some disadvantages, one of the most important being Basis Set Superposition

Error (BSSE). These errors result from the finite nature of the AO-basis set. When two

molecules are in close proximity to each other, their basis functions will overlap, which can

result in an overall improvement in computed energies for example compared to when the

two molecules are distanced. In other words, computed properties will differ according to

the distance between two molecules due to BSSE. There are a number of approaches to

resolve this issue, including increasing the number of basis functions used or the so-called

counterpoise correction, where calculations are carried out with the new “mixed” basis set

and the associated error is subtracted from the original basis set.

Aside from the increase in computational cost due to treatment of a large vacuum with

plane waves in the molecular case, distinguishing features between the plane wave and

GTO approaches include: core electrons not being treated explicitly for plane wave DFT

when pseudopotentials are used; the plane wave approach does not suffer from BSSE; the

plane wave basis is orthogonal while the AO basis is non-orthogonal; exact exchange is more

readily calculated within an atomic orbital basis which allows for trivial use of high-accuracy

hybrid functionals (see section 2.2.4 for a description of these methods) while calculation

of exact exchange in the plane wave basis comes at very high computational cost, limiting
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their coupled use with hybrid functionals. There are a number of other differences between

these methods; for a good overview the paper of Tosoni et al. 126 is recommended. The

paper also provides evidence that structures, interaction energies and vibrational modes are

identical for plane wave and atomic orbital approaches as long as high-quality basis sets

are employed.126 It is also worth mentioning that periodic DFT codes can and have been

implemented which rely on atomic basis, such as for example the SIESTA code.127

Pople basis

The basis set used within this work is one of those developed by John Pople, which were

popularised by the Gaussian DFT package. As mentioned previously, a combination of

several GTO must be used to provide the same accuracy as the STO approach. The so-called

Contracted Gaussian-Type Orbitals (CGTO) is just that; a sum over a combination of n GTO,

as shown in equation 2.18. This is the approach employed by Pople basis sets.

The naming scheme employed by the Pople basis sets (i.e. X-YZG) explains the construc-

tion of the basis set. The first character (X) is the number of GTO which make up the CGTO

which describe the core atomic orbitals. Y and Z relate to the description of valence orbitals.

Specifically, Y and Z refer to the use of what is a called a split-valence type basis set, more

specifically of the double zeta type. Because valence electrons are of central importance in

describing reactivity, the description of each AO with more than one CGTO (which in turn

can be made up of several GTO) results in a better overall description of the valence.

Throughout this work, the 6-31G(d,p) basis set within Gaussian 09 is used.125 6-31G(d,p)

offers a good level of accuracy alongside a reasonable computational cost.113 It makes use

of a 6-GTO CGTO in describing the core AO and a double zeta basis set for the valence,

where one CGTO is composed of a single Gaussian, while the other is described by the

combined use of three GTO. As for the (d,p) term (which is used interchangeably with **

in the literature), this relates to the use of polarisation functions. Specifically, d refers to

the use of additional d polarisation functions on non-hydrogen atoms and p refers to use of

additional p polarisation functions on hydrogen. Polarisation functions help to account for

changes in the shape of orbitals when other orbitals with higher angular momentum (l) are
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in their vicinity. This is the reason why hydrogen atoms have p polarisation functions (l + 1)

and the valence p-orbitals found in common organic molecule atoms have d polarisation

functions.

2.5.2 Solvation

Solvation is accounted for in this work using the self-consistent reaction field (SCRF) model

coupled with the polarisable continuum model (PCM) as implemented in Gaussian.125,128

This method places the molecule, which is contained within a cavity of overlapping spheres,

in a polarisable medium with a dielectric constant ε. The sphere radii are determined by

atomic van der Waals radii which are scaled by an empirically-derived factor. The free energy

of solvation (∆Gsol v) is defined as:

∆Gsol v =∆Gcavi t y +∆Gdispersion +∆Gelec (2.19)

where ∆Gcavi t y represents the energy cost associated with formation of a hole in the con-

tinuum, ∆Gdispersion represents the stabilising dispersion interactions between solvent and

solute and ∆Gelec accounts for the electrostatic stabilisation which arises from the electric

charge on the solute (this polarises the medium which in turn changes the dipole moment of

the solute). The effect described for ∆Gelec explains why the reactive field solvent must be

treated self-consistently; an iterative computational procedure ensures that the description

of both solvent and solute accounts for their interactions with each other. The dielectric

constant ε is constant and is the only parameter which characterises the solvent. As water is

of interest throughout this thesis, ε is set to 78.3553.

It should be stressed that the SCRF PCM solvation scheme provides only a qualitative

picture of solvation. Reaction field models cannot simulate the effect of solvation within the

first solvation sphere due to cavitation.
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2.5.3 Semi-empirical methods

The purpose of semi-empirical methods is to speed up the expensive ab initio Hartree-

Fock method through empirical parameterisation.128 An overview of Hartree-Fock theory is

provided in section 2.1.

A first source of simplification is in treating only valence electrons explicitly. Depending

on the semi-empirical method, different techniques are used to account for the core electrons,

including reduction of the nuclear charge or use of effective core potentials which account

for the repulsion arising from the nuclei and core electrons. This, coupled with the use of

minimal STO basis sets (only s- and p-functions), results in a first cost-reduction compared

to the Hartree-Fock method.

The second and most important source for reduction of computational cost lies in the

computation of expensive two-electron integrals. The number of these integrals can be

reduced because products of basis functions of the same type on different atoms are set to

zero. This assumption is referred to as Zero Differential Overlap (ZDO). This results in all

two-electron integrals with two-center charge distributions being neglected. The remaining

integrals are assigned parametric values which are based on experimental or high-quality

computed data. The number of neglected integrals as well as the parametrisation procedure

distinguishes different semi-empirical methods.

PM6

The parametric method number 6 (PM6) method129 is used within this work to conduct

otherwise computationally expensive conformational analysis. This method relies on the

Modified Neglect of Differential Diatomic Overlap (MNDO) integral approximation, which

effectively is the same as ZDO described above except that parameters are optimised to

reproduce molecular properties (as opposed to atomic properties). The original MNDO

parameterisation procedure was first improved upon in the AM1 method (1985) followed

by PM3 method and its various extensions (1989-2004). The PM6 method (2007) evolved

from deficiencies in the MNDO/AM1/PM3 methods. Namely, it applies a number of different

modifications to the core-core approximations, provides better coverage of main group
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elements (with an emphasis on biochemical compounds), and provides a set of restricted

optimised parameters for transition elements, allowing for treatment of 70 different elements.

For a test set of 1373 compounds which includes the elements treated in this thesis, the PM6

method offers an average unsigned error of 4.4 kcal mol−1 (0.19 eV), a slight improvement

over certain significantly more expensive DFT methods i.e. B3LYP 6-31G*: 5.2 kcal mol−1

(0.23 eV).129

41



42



Chapter 3

Fe Bulk and Surface Studies

3.1 Introduction

In order to study adsorption on iron surfaces, it is first necessary to ensure that suitable

models for bulk iron and iron surface slabs are selected. The following section includes

results of convergence testing for Body Centred Cubic (bcc)-type iron, both in bulk and slab

forms, which are compared to analogous computational and experimental values from the

literature. The goal of this exercise is to identify the highest accuracy parameters at the

lowest computational cost. This is important, as some of the adsorbates used in future

chapters are large, meaning large metallic slabs will be required to accurately simulate the

adsorption process. Efficiency gains made on the expensive metallic portion of the system

therefore have a significant impact on our ability to carry out the work in future chapters.

Another factor which has been tested is the effect of the chosen van der Waals correction

(TS84) on these parameters. As discussed in chapter 2, van der Waals corrections have been

shown to be of great importance for correctly capturing the adsorption behaviour of aromatic

molecules on transition metal surfaces. Given their necessity for following chapters, it is

prudent to study their impact on bulk and metal surface properties, particularly since other

studies have shown vdW correction schemes can have a significant impact of the properties

of the metal, including a study on the Fe{110} surface.110
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3.2 Bulk bcc Fe crystal

The search for suitable Fe surface models begins with studying the bulk phase. Body centered

cubic (bcc) Fe (also called ferrite or α-Fe) is the stable pure Fe phase at standard pressure and

temperature conditions. At a temperature of around 1185 K, Fe undergoes phase transition

to form the Face Centred Cubic (fcc) Fe phase, also referred to as γ-Fe or austenite. For

this thesis, only bcc Fe will be studied, however fcc type surfaces are also of great interest

for future work given the often high pressure and/or temperature conditions present in oil

wells, the presence of microstructural islands on steel surfaces which have austenitic-type

structure and the complex and interesting magnetic behaviour of fcc Fe bulk and derived

surfaces.130,131 This is discussed more in chapter 7. In terms of bcc Fe, its magnetic behaviour

is far less complex, and has a ferromagnetic configuration in the ground state.

In terms of some general guidelines regarding the computational treatment of Fe, spin

polarisation is necessary to account for the strong magnetic behaviour of bcc Fe. A GGA

method (specifically we use PBE as implemented in the CASTEP code) has been shown to

correctly capture the ground magnetic state of bcc Fe.81 Finally, as a result of the magnetic

nature of Fe, we make use of ultrasoft pseudopotentials with additional nonlinear core

corrections (NLCC) due to the tendency for spin density to localise near the atomic core.

These issues and accompanying methods are discussed in more detail in chapter 2.

Convergence of the bulk lattice constant, total energy and magnetic moment are tested

with respect to k-point sampling at a cutoff energy of 340 eV for the bcc Fe conventional

cell. The conventional cell is chosen as opposed to the primitive cell because it is the unit

used to construct surface slabs in this thesis. Results of these convergence tests are shown in

figure 3.1. The plot of free energy as a function of k-point sampling shows that energy has

converged for a 7 × 7 × 7 Monkhorst-Pack (MP) grid of k-points. For results shown from

chapter 4 onwards, sampling equivalent to a k-point mesh of 8 × 8 × 8 or higher is used.

Therefore, values obtained at 8 × 8 × 8 MP sampling are shown in table 3.1. The computed

lattice constant and magnetic moment at the 8 × 8 × 8 MP sampling are within 1.7 % and

1.8 % of experimental values respectively. The bulk modulus, which was measured through

fitting to the Murnaghan equation of state,132 is within the range of theoretically determined
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bulk moduli, albeit at the higher end, as shown in table 3.1. When comparing to another

CASTEP-derived study of bcc Fe, good agreement is achieved, which demonstrates that the

CASTEP-derived bulk modulus is slightly higher than that identified using other codes.133

Overall, excellent agreement is achieved.

Figure 3.1. k-point sampling convergence tests on bcc Fe conventional cell lattice
constant, total energy and magnetic moment at a cutoff energy of 340 eV.

Figure 3.2. Energy cut-off sampling convergence tests on bcc Fe conventional cell
lattice constant, total energy and magnetic moment at a k-point Monkhorst-Pack grid of
7 × 7 × 7.

van der Waals corrected bcc results

The addition of empirical TS van der Waals corrections on the bcc bulk lattice constant,

magnetic moment and bulk modulus were studied and are reported in table 3.2. The lattice

constant and magnetic moment are slightly smaller (-2% and -3% respectively) compared to
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Table 3.1. Calculated lattice constant, magnetic moment and bulk modulus for bulk
bcc Fe.

Study Lattice constant Magnetic moment Bulk modulus
(Å) (µB) (GPa)

This work 2.82 2.17 192
Theory 2.79-2.89134 2.17-2.32135 144-215134

Theory (CASTEP)133 2.81 2.21 219
Experiment136 2.87 2.22 166-173

Table 3.2. Calculated lattice constant, magnetic moment and bulk modulus for bulk
bcc Fe including van der Waals correctiona

Method Lattice constant Magnetic moment Bulk modulus
(Å) (µB) (GPa)

PBE-TS (This work) 2.76 2.10 242
PBE-D2110 2.80 2.15 176
optB86b-vdW110 2.81 2.12 199

a The work of Chiter et al. 110 makes use of VASP with PAW, k-point sampling
mesh of 18 × 18 × 18 and cutoff energy of 400 eV.

the pure PBE DFT calculation while the bulk modulus is higher (+27%). The decreased lattice

constant result is unsurprising given that the purpose of adding van der Waals corrections

is to provide the pure DFT result with attractive dispersion forces, meaning that Fe atoms

would prefer to lie closer together. Aside from the bulk modulus, the work of Chiter et al. 110

show similar trends going from PBE to different vdW-corrected methods. The paper mentions

that the effect of the chosen vdW scheme on bulk modulus can vary significantly, and that

the D2 and optB86b-vdW methods resulted in decreased and increased values compared to

their PBE result (186 GPa), respectively.

3.3 bcc Fe surface slab Studies

It is important to study adsorption phenomena on the most stable, lowest energy surfaces

(for Fe, these are the flat bcc {110} followed by the kinked bcc {100}) as they are most likely
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Table 3.3. Parameters describing the bcc Fe slabs used throughout this
thesis

Surface No. Layers No. Fixed layers Vacuum spacing (Å)

{110} 6 3 10
{100} 8 4 10
{211} 8 4 10

to be the predominantly exposed crystal faces in a realistic system. However, the study of

adsorption on a higher energy stepped surface such as Fe{211} is also valuable. The Fe{211}

surface is of special interest as it is the most symmetric stepped Fe surface structure and

is slightly lower in energy than the Fe{111} surface.137,138 Many research works show that

metal surfaces have high vulnerability to corrosion where there are defects, steps or edges

as the surface atoms will be under-coordinated and thereby more reactive.39 It is for this

reason that a range of surfaces will be studied throughout this thesis.

Below, the results of convergence testing for the bcc Fe{110}, Fe{100} and Fe{211} are

shown and compared to values found in the literature. The detailed survey of all convergence

testing carried out in order to identify the best number of metallic layers and vacuum spacing

to represent the slab are shown in Appendix A.

3.3.1 Comparison to Literature Values

Using the computed bulk lattice constant found in 3.2 and the same DFT parameters which

were used in that section, the models selected to best represent the three studied surfaces

facets are described in table 3.3.

Changes in interlayer spacings upon surface relaxation for the {100}, {110} and {211}

surfaces are shown in table 3.4. Values for the {100} and {211} compare very well with

other theoretical and experimental values, particularly considering this work makes use

of eight surface layers while the work of Błoński and Kiejna makes use of fifteen surface

layers.140 As for the Fe{110} surface, the trends in computed distances are inconsistent

across two different studies,139,140 and experimental data is limited only to the ∆12 value.141
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Table 3.4. Interlayer separation prior to surface relaxation (d) and changes (%) due to
surface relaxation for bcc Fe surfaces

Surface Study d (Å) ∆12 ∆23 ∆34

{110} This work 2.002 -0.82 -0.66 -0.59
Yu et al. 139 - -0.35 0.17 -0.031

Błoński and Kiejna 140 - -0.1 0.3 -0.5
Experiment (LEED)141 2.03 0.5 ± 2 - -

{100} This work 1.416 -3.31 1.81 -0.52
Yu et al. 139 - -3.09 0.89 -0.12

Błoński and Kiejna 140 - -3.6 2.3 0.4
Experiment (LEED)142 1.433 -5 ± 2 5 ± 2 -

{211} This work 1.156 -9.20 5.25 -0.91
Błoński and Kiejna 140 - -9.1 3.7 -0.5
Experiment (LEED)143 1.17 -10.4 ± 2.6 5.4 ± 2.6 -1.3 ± 3.4

With this in mind, the spacing changes we achieve are reasonable despite∆23 being negative

while other studies find it to be positive. It should be stressed that the values are expressed

in %, so the difference in ∆23 of a fraction of a percent is negligible.

Calculated surface energies and work functions for the studied bcc surfaces are shown in

table 3.5, and values are compared to calculated and experimental values from the literature.

As described in chapter 2, the method of Boettger 119 is used to calculate all surface energies.

Specifically, an average of the slab-derived bulk energies for 6-10 layer slabs is used to

calculate surface energies for the {110}, {100} and {211} slabs respectively. A similar

approach is used in the work of Błoński and Kiejna 140 to which this work is compared,

however their work makes use of an average of slab-derived bulk energies for 10-15 layer

slabs.

For all surface energies and work function values, the results of this work compare

favourably to those from literature. This work’s γ values are slightly higher than others,

which is in part due to the slightly smaller CASTEP-derived lattice constant. The ς values,

which do not include the effect of the smaller surface area, compare well with other computed

ς values, and are within 15% of other computed results from the literature.
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Table 3.5. Surface energy (γ) and work function (φ) for relaxed bcc
Fe surfaces

Surface Study ς (eV) γ (J/m2) φ (eV)

{110} This work 0.97 2.73 4.87
Radilla et al. 68 - 2.06 4.84

Błoński and Kiejna 140 0.85 2.37 4.76
Experiment144 - - 4.80

{100} This work 1.40 2.81 3.95
Radilla et al. 68 - 2.43 3.95

Błoński and Kiejna 140 1.25 2.47 3.91
Experiment145 - - 4.27

{211} This work 1.81 2.95 4.23
Błoński and Kiejna 140 1.57 2.50 4.12

van der Waals corrected bcc results

The addition of empirical TS van der Waals corrections has a non-negligible impact on the

surface structure of the bcc surfaces, as can be seen in table 3.6. In all cases, the contraction

of the first surface layer is greater than without van der Waals corrections. For all three

surfaces studied using van der Waals corrections, only one interlayer spacing (Fe {211}

spacing 2-3) experienced an expansion with respect to the bulk. This is due to the attractive

long range forces introduced through use of the TS correction.

As for the PBE-TS surface energies (shown in table 3.7), significant increases are observed

in all cases. Again, this is partly correlated with the smaller PBE-TS-derived lattice constant

in the case of γ values. This is in agreement with the work of Chiter et al. 110 on the Fe{110}

surface. As for workfunction values, PBE-TS has relatively little effect on them. The work of

Chiter et al. on Fe{110} shows PBE-D2 to also have a minimal effect on the workfunction.

As the D2 correction shares certain similar features with the TS scheme, the similar trend in

workfunction change is expected.
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Table 3.6. Interlayer separation prior to surface relaxation (d) and
changes (%) in interlayer spacing due to surface relaxation for bcc Fe
surfaces with TS van der Waals correction

Surface Study d (Å) ∆12 ∆23 ∆34

{110} This work 2.002 -0.82 -0.66 -0.59
This work PBE+TS 2.002 -2.46 -1.79 -

PBE-D2110 - 1.01 0.80 -0.34
optB86b-vdW110 - -0.18 0.54 -0.36

{100} This work 1.416 -3.31 1.81 -0.52
This work PBE+TS 1.416 -4.65 -0.42 -3.65

{211} This work 1.156 -9.20 5.25 -0.91
This work PBE+TS 1.156 -9.44 2.66 -2.43

Table 3.7. Surface energy (γ) and work function (φ) for relaxed
bcc Fe surfaces with TS van der Waals correction

Surface Study ς (eV) γ (J/m2) φ (eV)

{110} This work 0.97 2.73 4.87
This work PBE+TS 1.60 4.51 4.86

PBE-D2110 - 3.02 4.78
optB86b-vdW110 - 2.89 5.00

{100} This work 1.40 2.81 3.95
This work PBE+TS 2.28 4.56 3.93

{211} This work 1.81 2.95 4.23
This work PBE+TS 2.84 4.64 4.28
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Chapter 4

Benzene Adsorption on Fe Surfaces

4.1 Introduction

This chapter presents and compares the results of DFT study of adsorption of benzene on

three different iron surface facets.

Section 4.1.1 introduces the motivations and current research efforts made on benzene

adsorption on metallic surfaces. Section 4.1.2 presents progress made in the study of benzene

adsorption on iron and iron-like surfaces.

This work’s results are presented for benzene adsorption on the flat Fe{110} surface in

section 4.2, followed by benzene adsorption on the kinked Fe{100} surface in section 4.3

and, finally, results for benzene adsorption on the stepped Fe{211} surface are shown in

section 4.4. A discussion of the similarities and differences in trends observed for benzene

adsorption on the Fe{110}, Fe{100} and Fe{211} surface facets is presented in section 4.5.

Concluding remarks are made at the end of the section.

4.1.1 Benzene adsorption on metallic surfaces

Because benzene is the simplest, most accessible aromatic building unit, it has featured

heavily in experimental surface science research as a model system to probe fundamental

surface-adsorbate interactions as well as to better understand more complicated aromatic

adsorption phenomena. For this reason, the adsorption of benzene on catalytically relevant
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surfaces has been studied rigorously since the 1970s.

A comprehensive review of experimental efforts and corresponding results for benzene

adsorption on a number of transition metal surfaces is included in the book chapter of

Steinrück and Held.11 One of the earliest papers in this area, which studies the adsorption of

benzene upon Pt{111} and {100} surfaces through use of Low Energy Electron Diffraction

(LEED) and workfunction change, is presented in the 1973 paper of the Somorjai research

group.146 Somorjai et al. have continued to study aromatic adsorption experimentally using

a wide variety of surface science techniques, and have had a major influence on this research

area.147 Other important contributors to this area include the groups of Steinrück11,148 and

Netzer.149–151 The 1991 paper of Netzer also provides a perspective on trends in adsorption

of benzene on transition metal surfaces based on experimental data which had been collected

up to that time.150 Benzene adsorption on transition metals does continue to be of current

interest, as evidenced for example by the very recent paper of Carey et al. which makes use

of Single Crystal Adsorption Calorimetry (SCAC) to study heat of adsorption and sticking

probability of benzene on Pt{111} and Ni{111}.152

Theory has been an important tool in furthering the understanding of the electronic

structure of organic-inorganic junctions, and this is certainly no exception in the area of

benzene adsorption on many different types of surfaces. DFT work prior to 2009 on benzene

adsorption on transition metal surfaces is thoroughly covered in the review of Jenkins.14

As is mentioned in this review, effectively all studies presented there fail to account for

the effect of van der Waals which is neglected within DFT. Such effects are particularly

important for aromatic adsorption on metal surfaces due to the tendency for these molecules

to maximise their van der Waals interaction with the surface. In 2009, the inclusion of

such corrections to DFT was not yet routine. Over the course of the past decade, new

formalisms to account for van der Waals corrections and their implementation in popular

DFT packages has resulted in a renewed interest in the study of benzene and aromatic

molecule adsorption on transition metal surfaces. As with DFT functionals, there is now

a wide range of correction schemes, including cost-effective but lower accuracy pairwise

schemes (D285), environment-dependant pairwise schemes (D3,86 TS84 and long-range
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density functionals (vdw-DF denoted functionals87) which are of moderate cost and accuracy,

all the way up to the very accurate, high-cost many body schemes (RPA88). An excellent

perspective on progress in this area, classification of existing schemes and a comparison of

them is presented in the paper of Klimes and Michaelides.74

In recent years, computational research works have focussed heavily on the suitability of

various DFT van der Waals correction schemes by probing the nature of aromatic adsorption

on transition metal surfaces. Such works include: the recent thorough study of benzene

adsorption on the {111} surfaces of Pt, Pd, Rh, Ir, Ni and Ag, the {110} surfaces of Mo, W and

the {0001} surface of Ru by Lakshmikanth et al. 103 as well as a study by the same group on

Pt{111}, {110} and {100};104 the combined experimental-computational study of benzene

adsorption on Cu{111} of Sacchi et al. 109 ; the combined experimental-computational work

of Liu et al. 101 on benzene adsorption on {111} facets of Cu, Ag and Au; the study of Matos

et al. 102 of benzene adsorption on {110} facets of Ag, Au, Cu, Pd, Rh and Ni; benzene on

{111} surfaces of Cu, Ag, Au, Rh, Pd, Ir and Pt using a number of different van der Waals

correction methods by Carrasco et al. 97; benzene on Cu{111} using a local orbital DFT

code with various van der Waals correction schemes (as opposed to the plane-wave codes

employed by all previously listed studies).98 A study conducted by Canduela-Rodriguez et al.

using the vdW-DF method and the optPBE-vdW functional on the adsorption of benzene on

fcc Pd{100} showed an average increase in binding strength of around 0.5 eV compared

with uncorrected DFT (PBE).99,153 There is also a recent study of benzene as well as toluene,

phenol and m-cresol adsorption on a variety of Fe, Co, Ni, Cu, Ru, Rh, Pd and Pt surfaces

using the optB88-vdW functional (all adsorbates are studied within the same adsorption

site across all surfaces).105 The absence of Fe from this series of papers (but one) exploring

benzene adsorption on transition metal surfaces is noteworthy.

4.1.2 Benzene adsorption on Fe surfaces

There is a limited body of research regarding the adsorption of aromatic molecules on Fe

surfaces. Experimentally, UHV Fe adsorption experiments are highly challenging due to the

difficulty in obtaining clean Fe surfaces because of the tendency for passivation/reaction of Fe
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single crystals. For this reason, there is an extremely limited number of studies on benzene or

any aromatic molecule adsorption on Fe surface facets. To the best of our knowledge, there

is a single study on adsorption of benzene on an iron surface in UHV, specifically benzene

adsorption on a thin film of Fe(110) on a W support.154 Angle and spin-resolved ultra-violet

photoelectron spectroscopy (A/SRUPS) experiments at saturation pressure at 200 and 300 K

reveal benzene adsorbs molecularly and flat on the Fe{110} film with pseudo-C3v symmetry.

There is also the less traditional surface science study of Sun et al. 155 which studies the spin-

polarised electronic structure of benzene adsorbed upon a thin film of Fe{100} (mounted on

a MgO{100} single crystal) using spin-polarised metastable-atom deexcitation spectroscopy

(SPMDS). We are unaware of any aromatic adsorption studies on an Fe single crystal under

UHV conditions.

As for computational studies of benzene on Fe surfaces, there are a few, however several

fail to account for van der Waals interactions in their DFT calculations, mostly due to

these corrections not being readily accessible at the time these papers were published.

This includes the study of perpendicular and parallel-adsorbed benzene on Fe(100) by

Goumri-Said et al. 156 which makes use of a combination of molecular mechanics and DFT

and the studies of Sun et al. on benzene adsorption on Fe{100}.155,157 Such results are

still interesting, however should be regarded as potentially inaccurate due to the lack of

correction to account for non-local interactions.

As for DFT studies of aromatic adsorption on iron which do account for van der Waals

corrections, the only one we are aware of is a study of benzene adsorption on the Fe{110}

surface in the context of a wider study on the interaction of benzene with PdFe bimetallic

surfaces by Hensley et al. 96 The inclusion of van der Waals interactions is achieved through

use of the optB88-vdW functional in this work.153 Its use shows a significant change in

adsorption energy compared to the results using PBE, with adsorption energies on average

0.74 eV stronger when van der Waals effects are included. There is also the recent study of

Jia and An 105 which analyses the effect of three different forms of van der Waals-corrected

DFT upon the adsorption energetics and geometries of benzene on Fe{110}. An important

detail to mention within the study of Jia and An is that they only study adsorption of benzene
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centered upon a Fe{110} bridge site, while hollow-centered sites have been shown to be

preferred both on Fe{100} and Fe{110} whether or not van der Waals-corrected DFT is

used.96,155 To the best of our knowledge, there has been no van der Waals-corrected DFT

study of benzene adsorption on either Fe{100} or Fe{211}, the latter of which has not been

studied at all for aromatic adsorption.

In terms of Fe-like or related surfaces, there is a growing body of DFT work on iron oxide,

sulphide, nitride and carbide type surfaces. The very recent DFT work of Muñoz Ramo and

Jenkins on benzene and naphthalene adsorption on θ -Fe3C{010} (among other adsorbates)

represents a good example of such efforts.158 There are also a number of studies carried out

by the group of Professor Nora de Leeuw on such surfaces, namely one which probes benzene

adsorption on hematite (α-Fe2O3)surfaces as well as on one of the smallest heteroatomic

aromatics, thiophene, on layered FeS {001}, {011} and {111}.159,160 There is a paper

by Zhang et al. which studies the benzene/Fe4N interface and identifies an interesting

antiferromagnetic spin state for the Fe atoms lying just below the benzene molecule.161 We

expect this body of work to continue growing given the relevance of this type of surface in

many industrially relevant applications including oil and gas processing, pigments, catalysis,

semiconductors and organic coatings.

It becomes clear that study of the adsorption of benzene on iron surfaces is rather

incomplete, both experimentally and computationally. Studies in this area using van der

Waals-corrected DFT allow for important insights to be gathered on a system for which

experimental studies are challenging. In this chapter, we describe results on the study of

benzene adsorbed on Fe{110}, Fe{100} and Fe{211} surfaces. These three surfaces were

selected on the basis that they represent the three energetically most stable surfaces for

bcc Fe, as well as presenting three different roughnesses, with Fe{110} being the only flat

bcc facet, Fe{100} showing a kinked structure and Fe{211} having stepped structure. The

choice of Fe{211} is also relevant in the context of our focus on corrosion inhibition due to

corrosion being shown to take place at more reactive sites such as step edges, defects sites

and roughened surfaces.30
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4.2 Benzene/Fe{110}

4.2.1 Introduction

The Fe{110} surface is a sensible choice for our study of benzene adsorption for several

reasons. First, it is the only existing flat bcc surface, is energetically favoured and therefore

likely to be predominantly present on a real iron crystal.137 Second, there is existing DFT

work on the benzene/Fe{110} system which also includes important vdW corrections, so

provides an opportunity for comparison to the results presented here.96 Comparing our own

DFT results to those derived from an analogous study will improve confidence in our results

for benzene adsorption on the Fe{100} (section 4.3) and Fe{211} (section 4.4) surfaces, for

which other DFT studies are either incomplete or missing from the literature.

Table 4.1. Simulation details and parameters
specific to the benzene/Fe{110} calculations

Parameter Value

Vacuum spacing (Å) 10
Cell size (c × c) (4 × 4)
Number of slab layers 6
Number of fixed slab layers 3
MP K-point sampling 2 × 2 × 1

Detailed information on the computational methods and general simulation parameters

used throughout this chapter is presented in chapter 2. Results of convergence testing

carried out on the bcc Fe bulk and Fe{110} slab system are presented in chapter 3. Results

from the aforementioned section are used in determining the simulation parameters such as

cell dimensions and k-point sampling for our benzene/Fe{110} model system.

As the packing of benzene on the Fe{110} surface is not known experimentally, we

have opted for a packing arrangement which minimizes intermolecular interactions. For

the purposes of studying the interaction of benzene with the Fe{110} surface, we make

use of a (4 × 4) unit supercell (made up of four by four units of the conventional bcc Fe

cell). The chosen supercell, alongside its dimensions, is shown in figure 4.1. As can be seen,
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Figure 4.1. Surface structure, simulation cell and relevant PBE-optimised distances for
the (4 × 4) Fe{110} simulation cell. All distances in Å.

the {110} conventional cell has a parallelepiped shape, which is why the simulation cell

also has this shape. It should be noted that this is larger than what is necessary to prevent

intermolecular interactions between periodic copies of benzene. We have chosen these

cell dimensions in order to directly compare our findings for benzene/Fe{110} with results

presented in chapter 5 for naphthalene and quinolinium adsorption on the Fe{110} surface,

which require at minimum a (4 × 4) simulation cell. The smallest possible cell size which

would limit interactions between periodic copy images would be a (3 × 3) unit simulation

cell, which is what is used in the benzene/Fe{110} DFT work of Hensley et al. 96 There are a

number of other differences between the cited work and this work which could result in

different results; see the table in the Appendix (section B) as well as the discussion in section

4.5. A six layered slab with three fixed layers was used as this system produced a well

converged surface workfunction (see chapter 3). Finally, the chosen Monkhorst-Pack (MP)

k-point sampling of 2 × 2 × 1 has a density comparable to an 8 × 8 × 8 k-point sampling of

the conventional bcc cell. This produces distances converged to within 0.002 Å, energies

within 0.01 eV and spin within 0.03 µβ . A full list of simulation parameters used for the

benzene/Fe{110} system can be found in table 4.1.
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4.2.2 Adsorption geometries and energies

Figure 4.2. Benzene orientations selected for study on Fe{110}. Hydrogen atoms
omitted for clarity.

Figure 4.2 shows the eight high symmetry benzene binding sites on the Fe{110} surface

which are tested alongside the naming convention used throughout this section. The eight

sites are selected because they represent the points of highest symmetry on the bcc{110}

surface. The bcc{110} facet is the lowest energy surface for iron, however unlike the usual

lowest energy fcc{111} surface which is also flat (fcc being the structure more commonly

adopted by catalytically-relevant transition metals), bcc{110} presents lower symmetry. The

bcc{110} surface is close-packed only in two directions, while the fcc{111} is close-packed

in all three directions. As a result, there is a greater number of unique high symmetry points

and therefore possible binding sites on the bcc{110} surface than on the fcc{111} surface.

All eight adsorption sites are first geometry-optimised using the PBE functional. Out of

the eight tested binding sites, five are stable and three (A-0◦, A-30◦ and S-30◦) are unstable,

and shift towards one of the five favoured geometries. This is in agreement with the results

of Hensley et al. for benzene adsorption on the Fe{110} surface, as they also find the two

atop sites and short bridge site to be unstable.96
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Figure 4.3. Images of 0◦ rotated PBE-TS optimised benzene binding sites. Views shown
above the Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 4.4. Images of 30◦ rotated PBE-TS optimised benzene binding sites. Views shown
above the Fe{110} surface (a) to the side (b) as well as an alternate side view (c).

Figures 4.3 and 4.4 depict all PBE-TS optimised geometries of benzene on Fe{110}. The

PBE-optimised geometries are not shown for brevity because they are essentially identical

to the PBE-TS optimised ones; this is discussed in section 4.2.2. In all cases, the benzene

molecule C-H bonds flip up and away from the surface. For all stable binding sites on the

Fe{110} surface, the benzene molecular plane buckles slightly. The adsorbed geometry of

benzene across all five adsorption sites is similar, and this is reflected in the similar binding

energies, distortion energies and geometric parameters as shown in tables 4.2 and 4.3. The

largest difference in binding energy is between the H sites (-1.62 eV) and the stable L-30◦ site

(-1.56 eV) and is 0.06 eV. The small difference in energy between the different adsorption
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sites indicates a flat potential energy landscape for benzene adsorption on Fe{110}, and is

indicative of difficulty in distinguishing different sites in UHV experiments. Additionally,

it would not be possible to observe the least stable of the adsorption sites (L-30◦) below

temperatures of 80 K. This is because the Arrhenius equation reveals that the probability of

finding a system at energy E is proportional to e−∆E/kB T , and kBT = 0.07 eV at 80 K.

There is an interesting but subtle change in Fe{110} surface structure seen for the S-30◦

binding site: stability is afforded by the gap between the short bridge atoms opening up. In

other words, the increased space between the bridging atoms makes the site resemble more

of a stable long bridge geometry.

vdW-corrected adsorption geometries and energies

Table 4.2. Calculated optimised energies for stable benzene adsorption sites on
Fe{110}a

Eads(eV) Edist(eV)
site This work Hensley et al. 96 This work Hensley et al. 96

S-0◦ -1.59 (-3.45) -1.11 (-1.82) 1.25 (1.36) 1.20 (1.14)
H-30◦ -1.62 (-3.43) -1.21 (-1.97) 1.41 (1.48) 1.16 (1.08)
H-0◦ -1.62 (-3.42) -1.20 (-1.95) 1.60 (1.44) 1.19 (1.12)
L-0◦ -1.58 (-3.35) -1.17 (-1.88) 1.23 (1.33) 1.13 (1.07)
L-30◦ -1.56 (-3.33) -1.16 (-1.91) 1.20 (1.32) 1.19 (1.12)

a Eads represents the adsorption energy and Edist represents the distortion
energy upon adsorption. Data in brackets represents a van der Waals
corrected result. In the case of this work, the TS correction is used,84 while
in the DFT work of Hensley et al.,96 the optB88-vdW functional is used.153

All non-bracketed results were calculated using PBE.

Figures 4.3 and 4.4 show all PBE-TS optimised geometries of benzene on Fe{110} and

tables 4.2 and 4.3 show the PBE-TS derived energetics and geometric parameters. The

most obvious change is the strong increase in adsorption energy strength of on average

1.80 eV. The increase in adsorption strength upon addition of a vdW correction scheme is

expected for this system given that benzene binds parallel to the metallic surface in an effort

to maximise its vdW interaction with the surface. Another interesting change is found in the
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Table 4.3. Calculated optimised geometric parameters for benzene on Fe{110}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free benzene 1.39 (1.40) 1.09 (1.09) 0(0) 120 (120) -
S-0◦ 1.45 (1.45) 1.10 (1.10) 20 (21) 119 (119) 2.11 (2.09)
H-30◦ 1.46 (1.45) 1.10 (1.10) 25 (24) 119 (120) 2.11 (2.10)
H-0◦ 1.46 (1.45) 1.10 (1.10) 24 (23) 120 (120) 2.11 (2.12)
L-0◦ 1.45 (1.45) 1.09 (1.09) 22 (24) 120 (120) 2.16 (2.09)
L-30◦ 1.45 (1.45) 1.09 (1.09) 23 (23) 120 (120) 2.11 (2.14)

a dC−C represents the average C-C bond length in benzene, dC−H the average
C-H bond length, θC−H the average CH tilt angle (dihedral) with respect to the
molecular plane, θC−C the average angle between carbon atoms in the molecule
and dC−Fe() represents the average C-Fe distance. Data in brackets represents a
van der Waals corrected result. All non-bracketed results were calculated using
PBE. The free benzene results were extracted from a GGA-PBE (PBE-TS) geometry
optimisation using a cubic 20 Å box to prevent benzene self-interactions.

relative energetic ordering of the five sites. In particular, a new geometry has become the

most favourable adsorption site, namely the S-0◦ site. It is worth noting that it isn’t much

stronger binding than the top PBE-optimised H-0◦ and H-30◦ sites (energy difference of

0.03 eV). This is again due to the flat potential energy landscape for benzene adsorption

on Fe{110}, which results in minimal energetic distinction between the stable adsorption

geometries.

The TS vdW correction used throughout this work, though simple, environment-dependant

and cost-effective, has been observed to overbind certain aromatic systems on metal sur-

faces.92 Table 4.2, which compares this work’s vdW-corrected energy results to those of

Hensley et al. 96 , demonstrates this to be the case. Their work makes use of a more so-

phisticated vdW scheme (optB88-vdW153) which is less prone to overbinding, and as a

result the optB88-vdW results are only around 0.70 eV stronger than the PBE results. With

the exception of the S-0◦ site, despite the discrepancy in numbers due to different vdW

correction schemes, PBE-vdW trends are similar for this work and that of Hensley et al. See

section 4.5 for discussion of the S-0◦ site energetics.

Table 4.3 lists the PBE-TS geometric parameters alongside analogous PBE-derived data.

The results show clearly that PBE adsorption geometries are minimally affected by the
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addition of the TS correction. The largest discrepancies lie in the C-Fe distances. While they

are not very big differences (the biggest difference between PBE and PBE-TS data is for the

L-0◦ site and is on the order of 0.07 Å), it is no great surprise to see a change in this data

given that the TS correction captures benzene-Fe interactions which do not exist using pure

PBE.

4.2.3 Charge density difference

Contour plots of charge density difference for the five stable PBE-TS optimised adsorption

sites of benzene on Fe{110} are shown in figure 4.5. As a reminder, the calculation method

and purpose of charge density difference analysis is explained in chapter 2. The five density

distributions show more similarities than they do differences. This can be attributed to the

similarity in binding energy and adsorption geometry of the five identified stable sites. In

all cases, regions surrounding the carbon atoms are yellow which indicates increased local

charge density, while the region between the surface and adsorbate is blue, indicating a

reduction in the electronic density. This area of reduced charge density follows the benzene

molecule, extending to the hydrogen atoms. Some configurations show particularly strong

decrease of electron density below the center of the benzene ring, namely L-0◦ and L-30◦.

Just below the region of electron depletion, yellow regions of charge density increase extend

out from the metal surface. These findings are discussed in section 4.5.

4.2.4 Spin density

Spin density plots are shown for the five stable benzene/Fe{110} sites in figure 4.6 (see

chapter 2 for more information on spin density studies and calculation method). The overall

look of the plotted densities for different sites is similar (minority spin (yellow) regions above

carbon atoms, majority spin (blue) regions below carbon atoms and majority spin (blue)

regions on hydrogen atoms). As with the charge density difference, this is consistent with

the fact that the different sites were found to be similar in energy. It is however interesting

to note that the distribution of minority spin around the carbon atoms seems quite different

even for sites which were found to be identical in terms of binding strength. This is seen for
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Figure 4.5. Images of optimised benzene binding site charge density difference. View
shown from above the Fe{110} surface. Blue (yellow) regions denote a decrease (in-
crease) in electron density on the order of 2 × 10−2 electrons/Å3.

64



H-0◦ and H-30◦ sites for example, where in one case the minority spin (blue) distribution

roughly follows the C-ring shape, whereas for H-30◦, the minority spin (blue) region extends

over the top of one of the C-H bonds. The same can be said for L-0◦ and L-30◦, which have

quite different minority spin distribution above the carbon atoms.

Figure 4.6. Images of optimised benzene binding site spin densities. View shown from
above the Fe{110} surface. Blue (yellow) regions denote minority (majority) spin regions
on the order of 3 × 10−3 electrons/Å3.
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4.2.5 Atomic charges and spin

Charge and spin density contour plots provide a qualitative picture of the distribution of

charge and spin. Hirshfeld charges and atom-resolved spin can provide complimentary quan-

titative results. Hirshfeld charges have been calculated for the PBE and PBE-TS optimised

S-0◦ conformation of benzene on the Fe{110} surface. These are presented alongside spin

measured on different groups of atoms in table 4.4.

Table 4.4. Calculated Hirshfeld charges and atomic spin results for S-0◦

benzene on Fe{110}

Atom group charge (e) charge (e) spin (µβ) spin (µβ)
PBE PBE-TS PBE PBE-TS

C6H6 sum 0.13 0.13 -0.32 -0.32
C sum -0.22 -0.22 -0.32 -0.34
H sum 0.35 0.35 0 0.02
Metal slab sum -0.25 -0.21 165.74 164.72

First, the results show that charges derived from PBE and PBE-TS methodologies are

essentially identical. The benzene molecule carries a small partial positive charge (+0.13),

which results from the sum of a negatively charged ring of carbon atoms (-0.22) and

positively charged H atoms (+0.35). This charge is balanced by a negatively charged metal

slab (-0.25). It is also worth noting here that the sum of Hirshfeld charges is non-zero,

i.e. there is an excess negative charge of -0.08 in the PBE-TS case. The results shown in

table 4.4 are derived from a single point calculation using 4 × 4 × 1 MP sampling of the

(4 × 4) simulation cell. Even with a k-point mesh two times finer than that used for all

other calculations studying benzene/Fe{110}, the sum of charges does not add up to zero.

Studying the metal slab charges more closely, there are several atoms with -0.01 e charge.

Within the CASTEP output file, Hirshfeld charge values are included with rounding to two

decimal places. Given that the simulation cell includes 96 Fe atoms alongside the presence

of ±0.01 charges resulting from rounding, it is plausible that a slight negative excess charge

should appear. This finding is corroborated by the +0.13 e on benzene being identical

whether 2 × 2 × 1 or 4 × 4 × 1 MP sampling is used. Finally, the numerical values match the

66



trends seen in the charge density difference diagram (figure 4.5), where electronic density

increases on C atoms (therefore they carry negative charge) and decreases on H atoms

(where positive charges are seen).

As for spin, again PBE and PBE-TS derived results are effectively identical, and show

negative values (minority spin) for both the carbon atoms and entire molecule. The H atoms

show very little majority spin polarisation, the same direction of spin as the Fe atoms. These

results are consistent with what is seen in the spin density diagrams, see figure 4.6.

It is worth commenting on the small but noticeable difference between PBE and PBE-TS

derived charges and spins on the Fe slab. This is because the optimised coordinates for

PBE and PBE-TS slabs is different; in the case of PBE-TS, the upper surface slab layers are

more tightly bound to each other and the bulk-like slab layers, which results in slightly

more strongly-bound Fe atoms, ie. the upper surface layers of Fe have slightly more bulk

character. Given that iron surfaces are known to have higher surface spin polarisation

than their bulk,162 it therefore isn’t surprising that PBE-TS spin (164.72) is slightly reduced

compared to PBE spin (165.74).

4.2.6 DOS and PDOS

The PDOS for a carbon atom and an Fe atom from the PBE-preferred H-30◦ adsorption

site is shown in figure 4.7 (for more general information on PDOS calculations and the

information they reveal, see chapter 2). These atoms are selected for PDOS analysis because

they are in close contact within the H-30◦ adsorption geometry. Previous DFT work on

benzene/Ni{111}163 shows the PDOS antibonding and bonding orbitals lie above and

below the Fermi energy, respectively. As for the precise assignment of gas-phase PDOS

peaks to benzene orbitals, the paper of Mittendorfer and Hafner 163 provides a detailed

account of their assignment. Quantitative agreement of DOS peaks with experimental Angle

Resolved Ultraviolet Photoelectron Spectroscopy (ARUPS) data cannot be expected given

that calculations neglect many-body effects, but the ordering of unoccupied and occupied

levels is reproduced when compared to ARUPS data acquired for benzene.164 We are not

aware of any benzene/iron experimental ARUPS data, so it is not possible to compare the
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adsorbed benzene/Fe{110} PDOS data to analogous experimental results.

Looking first at the carbon peaks in figure 4.7, the adsorbed-benzene peaks show a shift to

higher (i.e. more negative) binding energies. This is also observed for benzene/Ni{111}.163

The higher energy carbon peaks (3a1g , 2b1u and 1b2u) remain sharp and well-defined,

whereas the orbitals which lie closer to the Fermi energy are broadened or disappear. The

latter effect is a result of interaction with Fe 3d orbitals. The highest occupied molecular

orbitals (1e1g , 3e2g and 1a2u) are those which overlap most significantly with the iron PDOS,

and as a result these peaks are no longer well defined in the adsorbed-state PDOS plot. This

behaviour is in agreement with the H-30◦ benzene/Fe{110} PDOS of Hensley et al. 96

The adsorption process also has an effect upon the distribution of states for Fe interacting

with C. Specifically, there is an increase in the number of majority spin states just before the

Fermi level, while there is an increase in minority spin states at binding energy higher than

the Fermi level as well as a reduction of minority spin states above the Fermi level. New

states for Fe in the adsorbed benzene case can also be seen at binding energies lower than

-6 eV, which correspond to the PDOS peaks of shifted 3e1u and 1a2u benzene orbitals.

The plot overall supports the strong electronic interaction of benzene with the Fe{110}

surface. The trends and general appearance of the PDOS are in near perfect agreement with

those for the analogous study of benzene adsorption on Fe{110} of Hensley et al. 96

In addition to the H-30◦ site-derived PDOS, a plot of the PDOS for the PBE-TS-preferred

S-0◦ site is included in figure 4.8. Overall, the S-0◦ has similar features to the H-30◦ plot.

The main differences include a more significant shift of the minority spin Fe states to higher

binding energies, almost no change in the majority spin Fe distribution of states as well as

different changes in the shape and shifts of the 1b2u, 3e1u and 1a2u carbon peaks. These

changes show that the preferred benzene orbital-Fe 3d interactions are different for different

adsorption sites.
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Figure 4.7. Projected density of states (PDOS) for benzene on Fe{110} in the H-30◦

adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 87 before (black) and after adsorption (red). The lower plot shows C atom
3 within benzene in the gas-phase (black) and after adsorption (red, majority spin and
minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated by a
black dashed line. The gas-phase benzene DOS has been aligned with the C(2s) peak
for the adsorbed benzene, as this level is not expected to be involved in the adsorption
process.
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Figure 4.8. Projected density of states (PDOS) for benzene on Fe{110} in the S-0◦

adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 91 before (black) and after adsorption (red). The lower plot shows C atom
1 within benzene in the gas-phase (black) and after adsorption (red, majority spin and
minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated by a
black dashed line. The gas-phase benzene DOS has been aligned with the C(2s) peak
for the adsorbed benzene, as this level is not expected to be involved in the adsorption
process.
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4.2.7 Workfunction

Figure 4.9. Plot of the calculated potentials used for calculating the vacuum energy
(Evac) needed to calculate the workfunction (top) alongside the cell used for the calcula-
tion (below). The plot and configuration are aligned so that what is plotted matches
atomic coordinates below it. Results shown for PBE optimised geometry.

Prior to presenting the workfunction results for benzene/Fe{110}, it is useful to review

the procedure used to obtain these results. As discussed in chapter 2, workfunction (φ) is

calculated by subtracting the Fermi energy (EF) from the vacuum energy (Evac). As explained

previously, EF is obtained directly through geometry optimisation/single point calculations,

but Evac needs to be calculated from the density stored in the binary CASTEP .check file. This

is achieved using the pot1d utility. Figure 4.9 depicts the behaviour of the pot1d-calculated

potentials for a double-sided bcc Fe{110} surface slab with benzene (in the H-30◦ adsorption

site) adsorbed on both sides. In figure 4.9, the vacuum region is depicted from around
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Table 4.5. Calculated Workfunction (φ) results for 3-fold-hollow-30◦ ben-
zene on Fe{110}a

Method Evac(eV) EF(eV) Fe{110} C6H6/Fe{110} ∆φ (eV)
φ (eV) φ (eV)

PBE -3.19 -6.90 4.90 3.71 -1.19
PBE-TS -3.19 -6.89 4.86 3.70 -1.16

a Evac represents the vacuum energy, EF represents the Fermi energy
and ∆φ represents the difference between the C6H6/Fe{110} φ and
bare Fe{110} φ. Bare Fe{110} φ values are calculated using the
6-layer (4 × 4) slab.

0-0.17 and also 0.83-1.0 fractional coordinate units. The pot1d guidelines recommend use

of the value for the electrostatic potential (Velec) within the vacuum region as the value

for Evac if the potential has gone flat within the vacuum region. If the total potential (Vloc,

which is the sum of Velec and the exchange correlation potential, Vxc) has gone flat within

the vacuum region, its value in the vacuum can also be used as the vacuum potential, but it

tends to require larger vacuum spacings to go flat because Vxc has a longer decay length.

Figure 4.9 also demonstrates that for a spin-polarised system such as benzene/Fe{110}, the

calculated potentials can differ for majority and minority spin electrons.

For the surface slab alone, a single-sided slab (one bulk, one surface and one vacuum

region in the simulation cell) can serve as a good enough approximation to achieve a

reasonable workfunction value. For slab systems which include an adsorbate or more

complex surfaces, it becomes necessary to make use of double-sided slabs (two surface and

vacuum regions and one bulk region sandwiched between the two surface regions) where

the potentials will be symmetric with respect to the unit cell. This is because there is an

unphysical effect associated with the potentials derived from a unit cell containing a “fixed”

surface, which arises from the termination of the bulk section of the metal slab. In such

cases, it becomes awkward to define Evac due to the sloping potential in the vacuum region.

Workfunction data for the H-30◦ benzene geometry on Fe{110} is presented in table 4.5.

Data has been calculated using both PBE and PBE-TS optimised geometries. The PBE-TS

bezene/Fe{110} φ result (3.70 eV) is very slightly smaller than the PBE result (3.71 eV).
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Despite the slight changes in PBE-TS and PBE optimised slab geometry, the PBE and PBE-TS

optimised benzene/Fe{110} workfunctions differ only by 0.01 eV. As for the change in

workfunction compared to the bare slab (∆φ), both PBE and PBE-TS show a decrease of

just over 1 eV. Again, there is a slight difference between the two calculation methods, but it

is very small (0.03 eV). Adsorption-induced workfunction decrease is common for benzene

adsorption on transition metals: this effect, as well as a comparison of these results to other

transition metal surface φ values, is presented and discussed in section 4.5.

4.3 Benzene/Fe{100}

4.3.1 Introduction

The second most stable bcc Fe surface, Fe{100}, is studied in this section for its interaction

with benzene. Given its relative stability and therefore potential to be exposed on a real

crystal, it is an interesting surface to study. It is also particulary interesting to compare

results obtained on this surface to those on Fe{110}; on the Fe{110} surface, as mentioned

previously in section 4.2, atoms assume the most close-packed arrangement for a bcc surface,

ie. in two directions. As can be seen in figure 4.10, the top surface layer of Fe{100} is

now no longer close-packed in any dimension. The practical outcome of this is that the

layer directly underlying the uppermost one becomes exposed, and can have more of an

effect on stabilising adsorption geometries. The Fe{100} surface presents a high level of

symmetry which is also interesting in terms of the adsorption behaviour upon it. Finally, the

benzene/Fe{100} case is also of interest because there is existing DFT work on this system in

the literature.155 The work of Sun et al. 155 on the benzene/Fe{100} system does not make

use of vdW corrections, so it is relevant to study the impact these may have in this work.

Table 4.6 lists the simulation parameters used for the benzene/Fe{100} system. Of

particular note is the increased number of slab layers (8) compared to that used for Fe{110}

(6). The kinked structure of the Fe{100} surface is more open than the flat Fe{110} top layer,

which, as mentioned previously, can result in the Fe{100} underlying layer playing a more

active role in the adsorption process. It is therefore prudent to include a greater number
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of slab layers to increase the distinction between surface and bulk layers. Additionally, it

was necessary to use 8 layers to achieve convergence of slab parameters (see Appendix

section A). Geometry optimisation calculations allowed for relaxation of the top four surface

layers as well as the benzene molecule. The bottom four slab layers, which are meant to

represent the bulk, are kept fixed. The dimensions of the (3 × 3) simulation cell chosen

for study, as well as relevant interatomic Fe-Fe distances, are shown in figure 4.10. The

chosen MP k-point sampling grid (4 × 4 × 1) is equivalent to a 12 × 12 × 1 sampling of the

conventional cell, which should be sufficient to produce results with high accuracy (slightly

better than distances converged to within 0.002 Å, energies within 0.01 eV and spin within

0.03 µβ .) Chapter 3 offers more details on matters related to convergence testing of the

bulk and bare bcc Fe{100} surface.

Table 4.6. Simulation details and parameters
specific to the benzene/Fe{100} calculations

Parameter Value

Vacuum spacing (Å) 10
Cell size (c × c) (3 × 3)
Number of slab layers 8
Number of fixed slab layers 4
MP K-point sampling 4 × 4 × 1

4.3.2 Adsorption geometries and energies

Adsorption is studied at six different high symmetry adsorption sites as depicted in figure

4.11. These sites have been studied in a previous work on the Pd{100} surface (note:

although this is a fcc {100} surface, the fcc {100} surface has a similar appearance to the bcc

{100} surface).99 The hollow (H), atop (A), bridge1 (B1) and bridge2 (B2) benzene/Fe{100}

sites have been studied in work published by Sun et al. 155 To the best of our knowledge,

there has been no published DFT study on benzene on Fe{100} binding sites H-15◦ and

A-15◦. Binding sites H-15◦ and A-15◦ are related to the H and A sites by a 15◦ rotation,

so that the C-C bonds are parallel to the [011] direction. Unlike the Fe{110} surface, 30◦
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Figure 4.10. Surface structure, simulation cell and relevant PBE-optimised distances
for the (3 × 3) Fe{100} simulation cell. All distances in Å.

Figure 4.11. Benzene orientations selected for study on Fe{100}. Hydrogen atoms
omitted for clarity.

rotation of a site results in an identical conformation on the surface.

Upon geometry optimisation, all six studied sites produced unique, stable adsorption

geometries. Adsorption and deformation energies are presented in table 4.7, where they

are also compared to those from the analogous work of Sun et al. Optimised geometric

75



parameters are included in table 4.8. Images of all optimised configurations are shown

in figures 4.12 and 4.13. Although all initial configurations produced unique optimised

geometries, in all but one case the optimised geometry is very similar to the starting geometry.

Upon geometry optimisation of the initial B2 binding site, it was found to drift in the [001]

direction to a different, highly favourable binding site. We refer to this new geometry as

double atop (DA) due to its alignment of two C atoms with two Fe atoms.

In all cases, the benzene C-C distances have expanded somewhat, which indicates that

C-C bonds have less double bond character as a result of interaction of the π-electron system

with the metal surface. The data shown in table 4.8 demonstrates the upwards flip away from

the surface of the hydrogen atoms, also seen for Fe{110}, to a greater extent in certain cases

(H and B1) than others (A). As discussed in section 4.2, this has been seen in many other

DFT studies of benzene on transition metal systems.165 The closest approach for benzene

to the surface is achieved by the B1 binding site, which is also the case for the work by

Sun et al. The adsorption energies identified in this work are compared to those identified

by Sun et al. in table 4.7. Although the relative ordering of different sites is matched, the

PBE energies from this work are in all cases approximately 0.3 eV stronger in energy than

those identified in the work of Sun et al. The differences between the simulation parameters

in this work and the work Sun et al. are presented and further discussed in section 4.5,

alongside the comparison of this work’s benzene/Fe{110} results and analogous work by

Hensley et al. The difference in adsorption energy between strongest adsorption site (H,

-1.41 eV) and weakest adsorption site (A, -0.21 eV) shows a difference of 1.27 eV, therefore

there is a fairly significant energetic distinction between the studied sites, and certain sites

(A and A-15◦) would be expected to not be observed as easily experimentally at 298 K,

as explained in section 4.2 because kBT = 0.26 eV. As for distortion energies, the values

show that they roughly scale with adsorption energy, where the most favourable adsorption

sites show stronger distortion than those which adsorb weakly to the Fe{100} surface. The

exception to this rule is the B1 site, which as shown by this work and that of Sun et al., has

the strongest distortion energy but the fourth strongest adsorption energy on Fe{100}. This

can also be seen through observation of its configuration at the surface (shown in figure
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Table 4.7. Calculated optimised energies for stable benzene adsorption
sites on Fe{100}a

Eads(eV) Edist(eV)
site This work Sun et al. 155 This work Sun et al. 155

H -1.41 (-3.02) -1.07 1.12 (0.92) 0.957
H-15◦ -1.35 (-3.02) - 1.06 (1.04) -

DA -1.35 (-2.98) - 1.06 (1.07) -
B1 -1.09 (-2.84) -0.74 1.70 (1.70) 1.433
A -0.21 (-1.82) -0.04 0.28 (0.42) 0.251

A-15◦ -0.22 (-1.81) - 0.18 (0.23) -

a Eads represents the adsorption energy and Edist represents the
distortion energy upon adsorption. Data in brackets represents a
van der Waals corrected result. In the case of this work, the TS
correction is used.84 The DFT work of Sun et al. makes use of the
PBE functional only. All non-bracketed results are calculated using
PBE.

4.12) where it displays a cyclohexane-boat like geometry at the surface. This similarity to

a saturated hydrocarbon can also be seen in the B1 average C-C bond of 1.46 Å, which is

much longer than a typical C-C double bond, as seen in table 4.8. This demonstrates that

benzene deformation does not necessarily always scale directly with its adsorption strength

on a metal surface.

Images of configurations not studied by Sun et al. are shown in figure 4.13 and relevant

energy and geometric data is shown in tables 4.7 and 4.8. The H-15◦ site presents an

optimised configuration which is slightly tilted with respect to the surface. The work of Sun

et al. only presents data for two sets of benzene carbon (two C2 atoms and four C4 atoms),

which suggests that additional symmetry could have been imposed in their DFT calculations,

which could result in such tilted configurations being missed. In any case, although the

H-15◦ binding site is among the most energetically favourable which feature in this study,

it is still weaker than the original hollow site, on the order of 0.06 eV. The A-15◦ is only

0.01 eV more strongly binding than the A site.

As mentioned previously, the DA site is obtained from geometry optimisation of the B2

initial configuration. It presents a binding energy which is an order of magnitude stronger
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Figure 4.12. Images of PBE-TS optimised benzene binding sites. Views shown above
the Fe{100} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 4.13. Images of PBE-TS optimised benzene binding sites which are not studied
in the work of Sun et al. (Ref. 155) Views shown above the Fe{100} surface (a) to the
side (b) as well as an alternate side view (c).
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Table 4.8. Calculated optimised geometric parameters for benzene on Fe{100}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free benzene 1.39 (1.40) 1.09 (1.09) 0 (0) 120 (120) -
H 1.45 (1.44) 1.09 (1.09) 23(21) 120 (120) 2.12 (2.15)

H-15◦ 1.45 (1.44) 1.09 (1.09) 21 (21) 120 (120) 2.14 (2.14)
DA 1.44 (1.44) 1.09 (1.09) 21 (20) 120 (120) 2.17 (2.15)
B1 1.46 (1.46) 1.10 (1.10) 21 (21) 118 (118) 2.12 (2.11)
A 1.42 (1.42) 1.10 (1.10) 7 (7) 120 (120) 2.24 (2.25)

A-15◦ 1.42 (1.42) 1.10 (1.10) 6 (6) 120 (120) 2.23 (2.22)

a dC−C represents the average C-C bond length in benzene, dC−H the average
C-H bond length, θC−H the average CH tilt angle (dihedral) with respect to the
molecular plane, θC−C the average angle between carbon atoms in the molecule
and dC−Fe represents the average C-Fe distance. Data in brackets represents a van
der Waals corrected result. All non-bracketed results were calculated using PBE.
The free benzene results were extracted from a GGA-PBE (PBE-TS) geometry
optimisation using a cubic 20 Å box to prevent benzene self-interactions.

than the the original B2 site identified by Sun et al. This is a binding site which we believe

would not have been identified if additional symmetry constraints were imposed upon

benzene as may have been done in the existing DFT work from the literature. As shown

in the side-view offered in figure 4.13, the double atop localised portion of the adsorbate

is raised from the surface while the other side of the molecule has moved closer to the

surface. The DA site is only 0.06 eV weaker than the hollow site, making it to be one of the

most stable adsorption sites on Fe{100}. The starting B2 structure identified by Sun et al. is

decidedly less stable.
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vdW-corrected adsorption geometries and energies

The work of Sun et al. on benzene/Fe{100} does not consider the effect of vdW corrections on

DFT calculations. Dispersion corrections are known to play a significant role in the binding

strength of aromatic molecules on metallic surfaces, therefore a vdW-corrected DFT study is

a necessary step towards understanding the adsorption of benzene on Fe{100}. Tables 4.7

and 4.8 show the PBE-TS benzene/Fe{100} energy and geometric data. A large decrease

in binding energy of on average 1.64 eV is observed across all binding sites. As mentioned

previously, existing literature shows that PBE-TS tends to result in overbinding of aromatic

molecules on metal surfaces, resulting in artificially high binding energies. Aside from the

large change in adsorption energy, only minor changes in the adsorption geometries can

be observed, as with benzene/Fe{110} in section 4.2. The relative ordering of the binding

site strengths is effectively the same as with pure PBE, although the H-15◦ has increased

in relative strength to be as strong as the top H site. This finding is in itself interesting, as

other studies (including the benzene/Fe{110} work shown in section 4.2 previously) have

shown that the relative binding strength of different aromatic binding sites may change from

pure PBE when using dispersion correction schemes for metallic systems.57 This suggests

that vdW corrections have less impact on adsorption energies upon more open, reactive or

kinked surfaces compared to close-packed surfaces. This is discussed further in section 4.5.

4.3.3 Charge density difference

The charge density difference for the most favourable binding sites has been calculated and

studied. Images of the distribution of charge are shown for the four strongest binding sites

(H, H-15◦, DA and B1) in figure 4.14. In all cases, charge density increases on the carbon

atoms and decreases immediately below them. The way in which the charge density is

distributed across the benzene molecule however is not the same even for relatively similar

binding sites. For example, comparing the H and H-15◦ sites, the increased charge density

is seen to spread across a C-C bond in the rotated case whereas for the regular H site,

the charge increase remains localised over carbon atoms only. Even more dramatic is the

significantly weaker B1 site which shows delocalisation of increased charge over the entire

81



benzene ring. This is likely related to the comments made in preceding section 4.3.2, which

is that the B1 benzene conformation shows strong distortion, and bears a resemblance to a

cyclohexane boat conformation. The DA site also shows some differences as a result of the

tilted geometry of the adsorbate. The four charge density plots do show other similarities,

namely that the charge density distribution near the hydrogen atoms decreases and there is

an increase in charge density directly above the Fe surface. The B1 site has an interesting

lack of change in charge density in the center of the benzene ring directly above the Fe

surface, while all the other binding sites show decrease in density in the same region. Tilted

and strongly deformed geometries aside, all of the features described here are similar to

those observed for benzene/Fe{110}.

4.3.4 Spin density

Figure 4.15 shows the the spin densities for four benzene/Fe{100} binding sites (H, H-15◦,

DA and B1). Minority spin is seen around all of the benzene carbon atoms. Hydrogen atoms

are of majority spin, matching the spin of Fe slab atoms. Certain C-H bonds, for example

in the DA site in figure 4.6, present more minority spin character than others. The DA site,

which shows more benzene distortion/tilting, has distinctly lower symmetry contours. As

for B1, although benzene also distorts in this adsorption site, it does so symmetrically and

as a result shows a high-symmetry spin density structure which looks quite different to the

other sites.

4.3.5 Atomic charges and spin

Hirshfeld charges are calculated for the PBE and PBE-TS optimised H conformation of

benzene on the Fe{100} surface. These are presented in table 4.9 alongside atom-resolved

spin on different atom groups.

As with the Hirshfeld charges for benzene/Fe{110} (section 4.2.5), the sum of all atom

charges for the simulation cell is non-zero (+0.02 e). The charges shown in table 4.9

are derived using a 8 × 8 × 1 MP mesh, double the density of k-points used to study

benzene/Fe{100} adsorption energies and geometries. The slight excess positive charge
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Figure 4.14. Charge density difference shown for the four strongest benzene/Fe{100}
binding sites. Views shown from above the Fe{100} surface (a) as well as from the side
(b). Blue (yellow) regions denote a decrease (increase) in electron density on the order
of 2 × 10−2 electrons/Å3.
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Figure 4.15. Spin density for optimised geometries of benzene bound to Fe{100}. Views
shown from above the Fe{100} surface (a) as well as from the side (b). Blue (yellow)
regions denote minority (majority) spin regions on the order of 3 × 10−3 electrons/Å3.
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Table 4.9. Calculated Hirshfeld charges and atomic spin results for preferred
H benzene adsorption site on Fe{100}

Atom group charges (e) charges (e) spin (µβ) spin (µβ)
PBE PBE-TS PBE PBE-TS

C6H6 sum -0.08 -0.02 -0.4 -0.4
C sum -0.36 -0.32 -0.44 -0.44
H sum 0.28 0.30 0.04 0.04
Entire slab sum 0.10 0.03 180.44 178.77

is likely to arise from rounding errors for small charges within the Fe{100} slab. As the

slab contains fewer atoms (72) than the Fe{110} model (96), it is to be expected that the

rounding error should be of a lower magnitude than for the {110} slab.

The charge and spin values confirm the qualitative observations in the spin and charge

density difference plots shown in figures 4.15 and 4.14, which is that C atoms show minority

spin/decrease in charge density and hydrogen atoms show slight majority spin/increase

in charge density. The changes between PBE and PBE-TS methodology are minor for both

Hirshfeld charges and spin. The biggest change related to charge is seen in the reduction of

charge in the Fe slab using PBE-TS compared to PBE. A reduction in spin is also observed

using PBE-TS compared to PBE. As discussed in section 4.2.5 for Fe{110}, this is most likely

due to changes in the lattice parameter going from PBE to PBE-TS (i.e. Fe atoms prefer to

lie slightly closer together using PBE-TS).

4.3.6 DOS and PDOS

The PDOS for a C-Fe pair within the preferred H site for benzene/Fe{100} is shown in figure

4.16. As with the PDOS for benzene/Fe{110} (see section 4.2.6), the chosen carbon and

iron atoms are in close contact within the benzene/Fe{100} adsorption site.

The PDOS for the Fe atom in the bare Fe{100} shows a different distribution of states

owing to the different surface structure. Specifically, it shows an increase in more strongly

bound majority spin states and a significant increase in minority spin states just above the

Fermi level.
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The carbon-C1 peaks show very similar shifts to higher binding energies compared to

the H-30◦ site on Fe{110}; an unsurprising finding given that both sites are centered above

hollow-like sites. The orbital closest to the Fermi energy (1e1g) disappears due to favourable

overlap with the Fe 3d states. As for the Fe PDOS, aside from the new peaks at high binding

energies (arising due to the high binding energy C orbitals) as well as a slight reduction in

the number of minority spin and majority spin states, the Fe atom in the benzene-adsorbed

and bare slab cases are very similar. This implies that the electronic structure of the surface

is not affected as strongly for the benzene/Fe{100} case as for example benzene/Fe{110}.

All trends are in good agreement with the H site benzene/Fe{100} PDOS of Sun et al. 155

Given that the work of Sun et al. does not employ any vdW correction, the similar PDOS

plots support the claim often made in the literature that the application of vdW corrections

minimally affects electronic structure.
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Figure 4.16. Projected density of states (PDOS) for benzene on Fe{100} in the H
adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 8 before (black) and after adsorption (red). The lower plot shows C atom 1
within benzene in the gas-phase (black) and after adsorption (red, majority spin and
minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated by a
black dashed line. The gas-phase benzene DOS has been aligned with the C(2s) peak
for the adsorbed benzene, as this level is not expected to be involved in the adsorption
process.
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4.4 Benzene/Fe{211}

4.4.1 Introduction

The final surface studied in the context of benzene adsorption in this chapter is the stepped

Fe{211} surface. As shown in figure 4.17, the bcc {211} surface features rows of single-atom

thickness, close-packed atoms separated by troughs which expose an underlying layer of

close-packed atoms.

Table 4.10. Simulation details and parameters
specific to the benzene/Fe{211} calculations

Parameter Value

Vacuum spacing (Å) 10
Cell size (c × c) (2 × 3)
Number of slab layers 8
Number of fixed slab layers 4
MP K-point sampling 6 × 4 × 1

There are several reasons for studying adsorption upon Fe{211}. Fe{111}, which might

be the logical low Miller index surface for study after Fe{110} and Fe{100}, is known to be

a high-reactivity facet (for example it is the most active facet in ammonia synthesis) and as

a result is relatively unstable.166,167 Field-ion microscopy experiments show that pyramidal

bcc{211} facets, which have been shown to be the second most active in certain catalytic

reactions, grow on bcc crystals preferentially over bcc{111}, particularly when adsorbates

are involved.168–171 Prior work shows the Fe{211} facet has surface energy above that of

Fe{110} and Fe{100} but below Fe{111}.138 It is also relevant for this particular thesis to

study aromatic adsorption on a higher reactivity, open surface because corrosion inhibition

has been said to take place within surface crevices and pits, which typically feature stepped,

terraced and defective surfaces.30 Finally, to the best of our knowledge there has been no

study (experimental or theoretical) of the adsorption behaviour of benzene on Fe{211},

which provides additional motivation to carry out such a study.

In this section, the results of DFT calculations probing the adsorption of benzene on
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the Fe{211} surface are presented and analysed. All simulation details and parameters

used specifically for the benzene/Fe{211} calculations can be found in table 4.10. The

conventional cell of Fe{211} is rectangular, therefore the (2 × 3) dimensions are chosen

for the simulation cell both to accommodate the benzene molecule as well as to produce a

nearly square simulation cell so each periodic copy of benzene is approximately equidistant

across the four edges of the cell. As with Fe{110}, it is sensible to use a high number of

surface layers (eight) to account for the potential for underlying layers to interact with the

adsorbate. This is also why four of the eight layers are allowed to relax during geometry

optimisation. Finally, a MP sampling of 6 × 4 × 1 k-points is used, which produces sampling

equivalent to 12 × 12 × 12 k-points for the convental bcc Fe cell, which as mentioned before,

produces results converged to within 0.002 Å (distances), 0.01 eV (energies) and 0.03 µβ

(spin).

Figure 4.17. Surface structure, simulation cell and relevant PBE-optimised distances
for the (2 × 3) Fe{211} simulation cell. All distances in Å.

4.4.2 Adsorption geometries and energies

Figure 4.18 shows the sixteen high-symmetry benzene adsorption sites at the Fe{211} surface.

The Fe{211} surface presents the lowest symmetry of the three surfaces investigated thus

far, which is why it has the highest number of unique high-symmetry binding sites where
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benzene is likely to be found in a local energy minimum. Upon geometry optimisation,

eight adsorption sites were stable while eight were unstable. The unstable sites all migrated

towards one of the eight stable structures identified. Table 4.11 provides an account of these

results for all sixteen tested sites.

Tables 4.12 and 4.13 show the adsorption energies and geometric data collected for all

eight stable adsorption benzene sites on the Fe{211} surface. Correspondingly, optimised

geometries are represented in figures 4.19, 4.20 and 4.21.

Figure 4.18. Benzene orientations selected for study on Fe{211}. Hydrogen atoms
omitted for clarity.

The three strongest binding sites (in descending order, these are BU2, AU2 and H3) all

sit in hollow or hollow-like geometries on the surface. The two most favourable sites BU2

and AU2 sit in the troughs formed by the Fe{211} stepped surface. It is interesting to note

the strong distortion of the benzene molecule in the case of BU2 in figure 4.19 which shows

it adopting a cyclohexane-like boat conformation. The second strongest site (AU2 in figure

4.19) which is shifted along the trough to sit centered atop an Fe atom, shows very little
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Table 4.11. Outcome of geometry optimisation
for the 16 high-symmetry benzene binding sites
on the Fe{211} surface

Benzene binding site Stable Unstable

H1 x
H2 x
H3 x
H4 x
A1 x
A2 x

BT1 x
BT2 x
B1 x
B2 x
B3 x
B4 x

AU1 x
AU2 x
BU1 x
BU2 x

Table 4.12. Calculated optimised energies for stable
benzene adsorption sites on Fe{211}a

Adsorption site Eads(eV) Edist(eV)

BU2 -1.55 (-3.44) 2.97 (3.22)
H3 -1.34 (-3.14) 2.85 (3.08)

AU2 -1.41 (-3.08) 2.25 (2.51)
BU1 -1.29 (-2.96) 1.43 (1.58)
AU1 -1.13 (-2.78) 1.39 (1.50)
A2 -0.59 (-2.33) 0.11 (0.17)
A1 -0.64 (-2.28) 0.17 (0.28)
B3 -0.61 (-2.21) 0.79 (0.76)

a Eads represents the adsorption energy and
Edist represents the distortion energy upon ad-
sorption. Data in brackets represents a van der
Waals corrected result, for which the TS correc-
tion is used.84 All non-bracketed results were
calculated using PBE.
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Table 4.13. Calculated optimised geometric parameters for benzene on Fe{211}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free benzene 1.39 (1.40) 1.09 (1.09) 0 (0) 120 (120) -
BU2 1.47 (1.48) 1.11 (1.11) 29 (29) 116 (116) 2.11 (2.11)
H3 1.47 (1.48) 1.10 (1.10) 31 (31) 119 (118) 2.11 (2.09)
AU2 1.47 (1.47) 1.10 (1.10) 32 (34) 120 (120) 2.10 (2.08)
BU1 1.45 (1.45) 1.10 (1.10) 24 (27) 120 (120) 2.33 (2.30)
AU1 1.45 (1.45) 1.10 (1.10) 23 (26) 120 (120) 2.32 (2.30)
A2 1.42 (1.42) 1.09 (1.10) 3 (4) 120 (120) 2.23 (2.21)
A1 1.42 (1.42) 1.10 (1.10) 3 (3) 120 (120) 2.23 (2.25)
B3 1.43 (1.43) 1.09 (1.09) 16 (15) 120 (120) 2.40 (2.42)

a dC−C represents the average C-C bond length in benzene, dC−H the average
C-H bond length, θC−H the average CH tilt angle (dihedral) with respect to the
molecular plane, θC−C the average angle between carbon atoms in the molecule
and dC−Fe represents the average C-Fe distance. Data in brackets represents a van
der Waals corrected result. In the case of this work, the TS correction84 is used.
All non-bracketed results were calculated using PBE. The free benzene results
were extracted from a GGA-PBE (PBE-TS) geometry optimisation using a cubic
20 Å box to prevent benzene self-interactions.

ring deformation in comparison. The third strongest site (H3 in figure 4.19) once again

shows strong ring deformation in its optimised geometry at the hollow position, however it

does not deform symmetrically like the strongest site. The binding sites found within the

trough with 0 degree rotation (BU1, AU1, see figure 4.20) show much lower stability in

comparison to the strongest 30 degree rotated trough sites BU2 and AU2. This shows that

the 30 degree molecular rotation provides a particularly favourable adsorbate alignment

with the uppermost layer Fe{211} atoms. The PBE energetic separation between the top site

(BU2, Eads = -1.55 eV) and weakest adsorbing site (A2 Eads = -0.59 eV) is 0.96 eV, which

is significantly larger than any energy difference found on Fe{110} or {100}. It is likely

atop-centered sites would not readily be observed under experimental conditions based on

the computed adsorption energies, because at 298 K, kBT = 0.26 eV.

The strong adsorption sites show upward-tilt of the C-H bonds with respect to the benzene

molecular plane as has been seen in preceding sections. In the case of Fe{211}, the greatest

C-H bond tilts yet are observed, with the best sites showing average tilt angles upwards
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of 30◦. Benzene/Fe{211} also shows the strongest distortion energies of all three surfaces

studied, in some cases (BU2 for example) just shy of 3 eV. Additionally, the lengths of C-C

bonds in benzene adsorbed on Fe{211} are the highest of all three Fe surfaces, which again

hints at the benzene adopting a conformation closer to cyclohexane which is consistent

with the boat-like geometry found in the strongest adsorption site. Even for the strongest

adsorbing site BU2, the C-C bond lengths are still shorter than those found for a cyclohexane

molecule (1.50 Å). Finally, an interesting phenomenon unique to the Fe{211} surface is that

lateral movement of slab layers is observed quite far away from the uppermost movable slab

layers. In other words, the adsorption of benzene on the top slab layers provokes changes

even several layers deep below the top layer. This is not entirely surprising given that the

Fe{211} surface is stepped, therefore far more open than the surfaces studied up until this

section.

vdW-corrected adsorption geometries and energies

PBE-TS derived benzene/Fe{211} adsorption energies and geometric parameters are shown

in tables 4.12 and 4.13. All geometries look essentially identical to those identified with

PBE, which is supported by data in table 4.13. As for adsorption energies, unsurprisingly a

significant increase in strength is observed, between 1.60 - 1.90 eV for all binding sites. As

for the relative ordering of adsorption sites, some changes are seen, mainly shuffles amongst

the best and the worst sites. This includes swapping of H3 and AU2 in second and third

place as well as new ordering of weakest three sites (A2 switches to sixth place from eighth

place, A1 moves from sixth to seventh place and B3 is the weakest site). The distortion

energies also increase non-negligibly for the strongest adsorption sites (around 0.25 eV

increase for the top three sites) but minimally for weaker sites.
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Figure 4.19. Images of the three strongest PBE-TS optimised benzene binding sites.
Views shown above the Fe{211} surface (a) to the side (b) as well as an alternate side
view (c).

94



Figure 4.20. Further images of PBE-TS optimised benzene binding sites. Views shown
above the Fe{211} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 4.21. Images of PBE-TS optimised atop-like benzene binding sites. Views shown
above the Fe{211} surface (a) to the side (b) as well as an alternate side view (c).
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4.4.3 Charge density difference

PBE-derived charge density difference plots are shown for the top three benzene/Fe{211}

binding sites (BU2, AU2 and H3) in figure 4.22. Of the three density distributions, the H3

site charge density is the most dissimilar to any benzene/Fe charge density seen before,

owing to the strong asymmetric deformation of benzene in this site. Another stand-out

feature is the appearance of a region of increase in electronic density (yellow) within the top

surface Fe atoms for the BU2 site. Specifically, this occurs between atoms in the uppermost

row of atoms, not the trough layer, and in a region some distance away from the adsorbate.

This is noteworthy as changes in the charge density of Fe surface atoms has not yet featured

in an important way in any other charge density difference plot. For the BU2 and AU2

site density plots, there is a decrease in electronic density in the trough under benzene

formed on the surface, while there is an increase just above the uppermost Fe atoms. This

is also observed for the H3 site, albeit a little less clearly due to the site having features of

adsorption both above and within the trough.

Aside from the differences highlighted above, the charge density difference plots for ben-

zene on Fe{211} are certainly reminiscent of those seen for benzene adsorption on Fe{100}

and Fe{110}, where charge density has increased around the carbon atoms, decreased just

below the plane of the benzene molecule and increased just above the uppermost Fe atoms.

The density near H atoms has in most cases decreased but in one case (H3) it does increase

on certain H atoms.

4.4.4 Spin density

The spin density for the top three benzene adsorption sites on Fe{211} is shown in figure

4.23. Given the important differences in adsorption energy and structure for the three most

favourable binding sites, the spin polarisation is not expected to be the same in all three cases

at the surface. This is indeed the case, as there are important differences between the three

density plots shown in figure 4.23. Comparing the spin density for the strongest site (BU2) to

that of the other two (AU2 and H3), the most notable difference is the reduction of majority

spin regions (yellow regions) at the surface and increase in minority spin areas (blue regions)
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Figure 4.22. Images of most favourable optimised benzene binding site charge density
difference. Views shown from above the Fe{211} surface (a) as well as from the side
(b). Blue (yellow) regions denote a decrease (increase) in electron density on the order
of 2 × 10−2 electrons/Å3.
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at the surface. This shows that the adsorption of the strongly distorted benzene molecule

seen in BU2 induces more minority spin regions within the Fe{211} surface, specifically in

the trough regions. The spatial regions above the carbon atoms in the benzene ring are of

minority spin (blue), similarly to all other benzene-C atoms within adsorption geometries

studied on iron surfaces. Also, the contours surrounding the hydrogen atoms are of majority

spin (yellow) except in the case of the third strongest site H3, where one of the hydrogen

atoms is distinctly polarised with minority spin. Referring back to figure 4.20, it is clear that

the molecule deforms in such a way that one hydrogen atom is much further above the slab

surface than all others, which is the same hydrogen atom which has become surrounded by

a region of minority spin. The region of minority spin along the H3 benzene-ring connects

with the region of minority spin above the hydrogen atom, and the full minority spin contour

does not match the benzene ring as in other cases, as it has a node along one C-C bond.

4.4.5 Atomic charges and spin

Hirshfeld charges are calculated for the BU2 benzene/Fe{211} site at the PBE and PBE-TS

levels. The data is presented in table 4.14 alongside spin measured on different groups of

atoms.

Table 4.14. Calculated Hirshfeld charges and atomic spin results for BU2
benzene adsorption site on Fe{211}

Atom group charges (e) charges (e) spin (µβ) spin (µβ)
PBE PBE-TS PBE PBE-TS

C6H6 sum 0.02 0.04 -0.36 -0.34
C sum -0.26 -0.26 -0.38 -0.36
H sum 0.28 0.30 0.02 0.02
Entire slab sum -0.05 -0.05 116.12 113.37

Firstly, the distinction between PBE and PBE-TS results for charge is minimal. The

non-zero charge sum, i.e. -0.01 e for PBE-TS, which has been observed for Fe{110} and and

Fe{100} is seen again. As explained, this is the result of rounding in the CASTEP output

file. There is also little distinction between PBE and PBE-TS derived spin, aside from a

99



Figure 4.23. Images of three most favourable optimised benzene binding site spin
densities. Views shown from above the Fe{211} surface (a) as well as from the side (b).
Blue (yellow) regions denote spin minority (majority) regions on the order of 3 × 10−3

electrons/Å3.
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decrease of 2.75 µβ for PBE-TS compared to PBE. This type of difference has been observed

for both Fe{100} and Fe{110} and can be attributed to the changes in surface structure

upon application of vdW corrections, which shorten Fe-Fe distances slightly. This effect

is slightly stronger than on Fe{110} and Fe{100}, which can be attributed to the more

under-coordinated stepped structure experiencing stronger changes upon application of

vdW-corrected DFT.

The Hirshfeld charges match the trends seen in the charge density difference plots from

section 4.22, showing negative charge on carbon atoms (therefore increased charge density

on carbon atoms) and positive charge on hydrogen atoms (therefore reduced charge density

on hydrogen atoms). The slab carries a minimal negative charge of -0.05 e and the adsorbate

as a whole carries a charge between 0.02-0.04 e dependant on whether PBE or PBE-TS is

used. The molecule as a whole shows distinct minority spin polarisation (-0.36 µβ) which

arises from the spin polarisation on C atoms.

4.4.6 DOS and PDOS

The PDOS for the benzene/Fe{211} BU2 adsorption site are shown for two sets of interacting

C-Fe atom pairs in figure 4.24 and 4.25. The Fe15-C1 pair (figure 4.25) represents the pairing

of an underlying-layer Fe atom and nearby C atom (i.e. within the surface trough) while the

Fe40-C2 pair (figure 4.24) represents a C atom above the surface trough interacting with

an uppermost-layer Fe atom. These two different interaction types are achieved through

strong deformation of benzene within the BU2 site - see section 4.4.2 for visualisations and

quantification of this effect.

Certain trends in peak shifts are similar to those observed for benzene/Fe{110} in section

4.2.6. This includes a shift of orbital binding energies to more negative values compared

to the gas-phase; a disappearance of the adsorbed-C peaks near the Fermi level due to

interaction with Fe 3d orbitals and the appearance of new high binding energy peaks in the

Fe PDOS due to the adsorbate-C orbitals. It is also worth noting that the Fe{211} PDOS do

not resemble that of Fe{110} or {100} because of different surface coordination. Additionally,

the PDOS plots for Fe15 and Fe40, both within the Fe{211} surface, are different. Differences
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are found mainly near the Fermi level, where the underlying layer atom (Fe15) shows an

increase in spin-up states in the Fermi level’s vicinity while the uppermost layer atom (Fe40)

shows an increase in spin-down states in this region. Given the different coordination of

these two atoms, such minor differences are to be expected.

One difference between the benzene/Fe{211} PDOS and previous benzene/Fe{110} and

Fe{100} plots is found in the adsorbed C PDOS peaks. The high binding energy 3a1g and

2b1u orbitals have shifted to higher binding energies, but have additionally split into pairs

of peaks. This is undoubtedly related to the strong deformation of benzene at the surface,

which experiences changes in its electronic structure thanks to its structural resemblance to

the boat cyclohexane conformation.

Comparing figures 4.24 and 4.25, there are some differences between the C peaks for

C1 and C2, namely the shifted 1b2u and 3e1u are of significantly different shapes. The most

striking difference is the change in the Fe states for Fe40 (figure 4.24). This iron atom

shows a shift of majority spin states towards the Fermi level, i.e. to lower binding energies.

There is also an increase in minority spin states at higher binding energies accompanied by

a decrease in states at lower binding energies, above the Fermi level. Fe15 in the underlying

layer is in relatively close contact with C1, but it shows minimal change compared to the

bare slab. As the underlying surface layer has higher coordination to neighbouring Fe atoms,

the Fe PDOS is less affected by the vicinal benzene-C atom.
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Figure 4.24. Projected density of states (PDOS) for benzene on Fe{211} in the BU2
adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 40 before (black) and after adsorption (red). The lower plot shows C atom
2 within benzene in the gas-phase (black) and after adsorption (red, majority spin and
minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated by a
black dashed line. The gas-phase benzene DOS has been aligned with the C(2s) peak
for the adsorbed benzene, as this level is not expected to be involved in the adsorption
process.
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Figure 4.25. Projected density of states (PDOS) for benzene on Fe{211} in the BU2
adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 15 before (black) and after adsorption (red). The lower plot shows C atom
1 within benzene in the gas-phase (black) and after adsorption (red, majority spin and
minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated by a
black dashed line. The gas-phase benzene DOS has been aligned with the C(2s) peak
for the adsorbed benzene, as this level is not expected to be involved in the adsorption
process.
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4.4.7 Workfunction

The results of workfunction calculation on the preferred benzene/Fe{211} BU2 adsorption

site are shown in table 4.15. The calculation procedure is as described for benzene/Fe{110}

in section 4.2.7. In comparing PBE and PBE-TS derived quantitites, there are very small

differences between them, at most on the order of 0.03 eV. The workfunction of the bare

Fe{211} slab is reduced (by -1.04 eV using PBE-TS) upon adsorption of benzene, which is

the trend which was also observed for benzene/Fe{110}. This is discussed further in section

4.5.

Table 4.15. Calculated Workfunction (φ) results for BU2 benzene adsorption
site on Fe{211}a

Method Evac(eV) EF(eV) Fe{211} C6H6/Fe{211} ∆φ (eV)
φ (eV) φ (eV)

PBE -2.40 -5.59 4.23 3.19 -1.04
PBE-TS -2.40 -5.60 4.20 3.20 -1.01

a Evac represents the vacuum energy, EF represents the Fermi energy
and ∆φ represents the difference between the C6H6/Fe{211} φ and
bare Fe{211} φ. Bare Fe{211} φ values are calculated using the
8-layer (2 × 3) slab.

4.5 Discussion and conclusions

Herein, a discussion and comparison of the trends observed for benzene adsorption across

Fe{110}, Fe{100} and Fe{211} surfaces is presented. Comparisons between results developed

in this thesis are also compared to other transition metal surfaces and Fe-containing surfaces.

Conclusions are drawn at the end of the section.
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4.5.1 Benzene on Fe{110}, Fe{100} and Fe{211}

Certain trends can be identified across all three surfaces. Firstly, hollow or hollow-like

geometries tend to be preferred across all surfaces; this often enables at least a portion of the

C atoms to lie in close contact with one or several Fe atoms. Looking at the top adsorption

sites identified using PBE-TS on Fe{110}, Fe{100} and Fe{211}, benzene adsorption is

strongest on Fe{110} (-3.45 eV), very closely followed by Fe{211} (-3.44 eV) and finally is

weakest on Fe{100} (-3.02 eV). Using PBE, the ordering for benzene adsorption strength

across all three surfaces is exactly the same as with PBE-TS; Fe{110} (-1.62 eV), Fe{211} (-

1.55 eV) and Fe{100} (-1.41). It is worth noting that the identity of the strongest adsorption

site does change from PBE to PBE-TS for Fe{110} (the H-30◦ is preferred using PBE while

S-0◦ is preferred with PBE-TS), but the same site is preferred whether PBE and PBE-TS are

used for Fe{100} (H) and Fe{211} (BU2). Aside from preferred adsorption sites, it is clear the

inclusion of vdW corrections can affect the relative energetic ordering of sites, given that with

PBE-TS Fe{110} and {211} differ only by 0.01 eV, whereas with PBE they differ by 0.07 eV,

just shy of an order of magnitude higher. Interestingly, the trend is reversed with respect to

Fe{100}, which is 0.14 eV weaker than Fe{211} with PBE but 0.36 eV weaker with PBE-TS.

This is an indication that vdW corrections play an important role for benzene adsorption

on the Fe{211} surface. This observation was also made within section 4.4.2 for Fe{211},

because the energies for the most strongly adsorbed conformations have noticeably stronger

adsorption strengths upon switching from PBE to PBE-TS methodology. More generally, use

of PBE-TS increases the strength of adsorption compared to use of PBE, but minimally affects

the geometry of adsorption. Studying average vdW-corrected adsorption strengths over all

sites per surface, the increases compared to PBE are of 1.80 eV for benzene/Fe{110}, 1.64 eV

for benzene/Fe{100} and 1.75 eV for benzene/Fe{211}. It is worth stressing here again that

several works have found that use of PBE-TS results in overbinding of aromatic molecules

on metal surfaces.57,92 Other recent works however have found that TS performs suitably

for aromatic adsorption when compared to experiment, for example on Cu surfaces.109

As for adsorption geometries, some deformation is observed for benzene in all cases. In

all cases, the C-H bonds flip up and away from the metal surface. This is related to the so-
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called cushion effect.172 The cushion effect describes the region of depleted electron density

commonly found between aromatic adsorbates and metal surfaces, which is observed within

all charge density difference plots shown in this chapter. This is a result of the squashing

of metal d orbitals by Pauli repulsion with the aromatic π electrons. This results in a

decrease in the surface dipole. The adsorbed “dished” conformation of benzene generates

an internal dipole which further reduces the surface dipole. This effect is separate from

charge tranfer interactions, and in the case of benzene results in the observed decrease in

workfunction compared to the clean surface. As mentioned previously, the flip of aromatic

C-H bonds up and away from the metal surface has been observed in numerous other

calculations.163,165,172,173 One of these works163 finds rehybridisation of C-pz states with Ni-d

states results in more favourable orbital overlap for benzene/Ni{111}, and the extent to

which this occurs is correlated with C-H tilt angles.

For the flat and relatively flat Fe{110} and Fe{100} surfaces, some buckling of the

benzene molecular plane is observed, so PBE-TS deformation energies are the order of

1.39 eV (Fe{110}) and 0.90 eV (Fe{100}). For benzene/Fe{211} however, very strong

deformation of the molecular plane of benzene is observed, with deformation energies

of over 3 eV. Strong deformation of benzene is a feature of favoured adsorption sites on

Fe{211}, with the top site showing a cyclohexane boat-like geometry. A similar type of

benzene deformation has also been observed in the inorganic complex Fe2(C6H6).174 The

lengthening of C-C bonds of benzene for the top adsorption sites on Fe{211} to 1.47 are

reflective of a strong reduction of benzene’s aromaticity. The reduced aromaticity and strong

deformation of benzene can explain why the preferred benzene adsorption site (BU2) on the

most under-coordinated and therefore most reactive Fe{211} surface is not stronger than

the preferred adsorption site on the more stable Fe{110} surface. The adsorption energy is a

balance between strength of adsorbate-surface interactions as well as the extent of molecular

(and surface) deformation.173

In comparing the PBE benzene/Fe{110} results to the analogous results of Hensley et al.,

although the same trends are observed, the adsorption energy results presented in this thesis

are around 0.4 eV stronger than those from the published work.96 This difference may be
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arise for a number of reasons. One source is the differing calculation setup; in particular,

the smaller simulation cell (3 × 3) and smaller number of slab layers (4) could result in non-

negligeable differences. All known differences between this work and the work of Hensley

et al. have been summarised in section B in the Appendix. Special consideration should

also be accorded to the choice of DFT code. The ∆-value metric developed by Lejaeghere

et al. 175 quantifies the root-mean-square energy difference between the equations of state

averaged over all elemental crystals for two different DFT codes. The paper of De Waele

et al. 176 uses the ∆-value to provide a scale with which to compare energies derived from a

large number of electronic structure calculation codes. Depending on the version of VASP

which was used in the work of Hensley et al. 96 , the standard deviation ∆ value compared

to CASTEP for benzene/Fe{110} adsorption energies is anywhere from 0.25 ev to 0.68 eV,

which is on the order of the differences observed. The ∆-value increases for larger systems

and is particularly significant for iron in comparing CASTEP and VASP. As for the comparison

to the vdW-corrected benzene/Fe{110} work of Hensley et al., as the chosen scheme isn’t

the same as the one used in this work (optB88-vdW), there is no expectation that the results

should match. The results show that the TS scheme used in this work strongly overbinds

benzene compared to optB88-vdW. It is however interesting to note the trends are relatively

similar, aside from the S-0◦ binding site. Our work identifies an interesting but subtle change

in Fe{110} surface structure for this site only: it appears additional stability is afforded to

this particular binding site by formation of a larger gap between the iron atoms involved

in binding the S-0◦ site. The increased space between the bridging atoms makes the site

resemble more of a stable long bridge geometry. Because Hensley et al. make use of a smaller

simulation cell dimensions, it is possible that the cell size restricts such changes in Fe-Fe

distance. This is a plausible reason for the differing S-0◦ stability.

As for benzene/Fe{100} which is also studied at the PBE level by Sun et al. 155 , this

thesis presents adsorption energies which are between 0.2 - 0.3 eV stronger than those from

the analogous work. Similarly to the comparison of this work to that of Hensley et al., we

believe this is a combined result of differing simulation parameters (see section B in the

Appendix for a full summary of differing simulation parameters) as well as the ∆ value
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contribution. It should be noted that no vdW-corrected work was produced in the work of

Sun et al., therefore only PBE results can be compared. The trends we find are the same

as those in the analogous work, however it is also worth noting that this work identifies

additional stable adsorption sites, and that the B2 starting point shifts to the DA site. It is

unclear from the text, but there is a possibility addition symmetry was imposed in the work

of Sun et al., which may prevent the DA site from being identified.

In studying charge density difference for benzene across all surfaces, generally the

regions surrounding the carbon atoms in benzene show an increase in charge, while the

hydrogen atoms show either a decrease or little change. The region just below the adsorbate

demonstrates the cushion effect, where there is a decrease in electronic density due to the

π-orbitals squashing the iron 3d orbitals which point up and away from the surface. There

are also cases where charge density decrease regions appear above the plane of the molecule,

showing up as lobes on C-C bonds. This is reflective of the molecular orbitals of benzene

involved in charge transfer. This is seen particularly strongly for the top three Fe{211} sites,

see figure 4.22. An interesting difference between the charge densities for Fe{110} and

Fe{100} is that the decrease in electron density (blue) just above the Fe surface extends out

further away from the benzene ring than it does for benzene on Fe{100}. This suggests that

charge transfer is redistributed more easily across the flat surface than on the kinked {100}

surface. As for spin density, the same trends can generally also be seen across all surfaces;

the area around carbon atoms show spin opposite to that of the surface while the hydrogen

atoms almost all show spin polarisation to match the majority spin of the surface. There are

a few cases where a carbon atom shows spin majority, for example the Fe{100} DA site. With

respect to Hirshfeld charges and atom-resolved spin, all data agreed with the corresponding

charge density differences and spin densities. What is interesting is the difference in charge

and spin polarisation acquired by benzene on different surfaces. Benzene carries a positive

charge on Fe{110} and Fe{211} but a slight negative charge on Fe{100}. Across all surfaces,

benzene polarises to be of minority spin, owing mostly to the carbon atom minority spin

polarisation.

In general, the results presented here show adsorption of benzene on Fe surfaces results
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Table 4.16. Computed and experimental benzene/TM surface work-
functions (φ) from literaturea

Surface φex p (eV) φDF T (eV) ∆φ (eV)

Pd{100}99 - 3.87 -1.28
Co{0001}177 4.25 - -1.30
Cu{111}172,178 3.85 (4.07) (-0.78)
Ag{111}178,179 3.80 (3.73) (-0.73)
Au{111}172,178 4.25 (4.49) (-0.79)
Fe{110} (This work) - 3.71 (3.70) -1.19 (-1.16)
Fe{211} (This work) - 3.19 (3.20) -1.04 (-1.01)

a φex p represents an experimental result for the value of work-
function of the benzene adsorbed on transition metal surface
system while φDF T represents an analogous result derived using
DFT. ∆φ represents the change in work function compared to
the bare metal slab (unless a DFT result is unavailable, this is
given for a DFT result). For φDF T , data in brackets represents a
vdw-corrected result, and all non-bracketed results are derived
using non-vdw corrected DFT. The van der Waals correction used
for the results in Ref. 178 is Becke and Johnson’s XDM method
coupled with the RPBE functional.

in a reduced workfunction compared to the bare slab. This is a fairly consistent trend for

benzene adsorption across a number of metal surfaces. See table 4.16 for a comparison of

workfunction values with those derived from other calculations.

Finally, the PDOS across all three surfaces show certain similar trends: a shift of benzene

orbital peaks to higher binding energies, disappearance of benzene orbital peaks near the

Fermi level due to hybridisation with d orbitals, when shifts appear in the Fe PDOS, spin-up

states tend to shift to lower binding energies (closer to the Fermi level) and spin-down states

tend to shift to higher binding energies (away from the Fermi level). These trends are in

good agreement with analogous benzene/Fe DFT works.96,155
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4.5.2 Benzene on other surfaces

As many fcc metals are used as industrial catalysts, they feature heavily in the experimental

literature on benzene adsorption upon metal surfaces. This is in contrast to relatively

few experimental studies of benzene adsorption on bcc surfaces.154,180 Across fcc surfaces,

experiments and calculations reveal preferred benzene adsorption sites are flat-lying (except

on stepped or more corrugated surfaces, i.e. fcc {110} where benzene can show tilting at

the metal surface), show C-C bond lengthening compared to the benzene gas-phase bond

lengths, and show higher adsorption strength on more reactive metals.11,150 This agrees with

what is seen in this thesis for benzene on the flat bcc Fe{110} and kinked bcc Fe{100}. Aside

from these trends however, there is a wide variety of possible preferred adsorption sites,

orientations and ordering of benzene at different fcc metal surfaces. As a result, it is not

straightforward to extend other findings from fcc surface adsorption as a whole to the results

from this thesis. In terms of calculations, the DFT work of Lakshmikanth et al. 103 investigates

the preferred adsorption site for benzene on flat surfaces for nine different metals including

fcc, bcc and Hexagonal Close Packing (hcp) surfaces. The work of Lakshmikanth et al. makes

use of vdW-corrected DFT across all surfaces, so any potentially important vdW-related

effects on adsorption energy have been accounted for. A bridge-centered site is preferred

upon most fcc {111} surfaces (the exception is Rh, for which the bridge site is as favourable

as the hcp hollow site) while upon hcp Ru{0001}, a hcp hollow site with 30◦ rotation is

preferred. As for the two bcc{110} surfaces (Mo and W), long bridge and hollow sites are

equally preferred in both cases. Interestingly, our work also identifies the hollow site as

favourable on the Fe{110} in addition to the short bridge site, in contrast to other results

on bcc {110} surfaces. As discussed in section 4.2, this could be related to the chosen cell

size, which allowed the short bridge to expand slightly, making the final S-0◦ site resemble a

long bridge type site. There could also be a change due to the relatively different lattice

parameters for these bcc metals, allowing for better orbital overlap in the long bridge site

on Mo and W (Mo: 3.15 Å, W: 3.17 Å) than on Fe (Fe: 2.87 Å). Finally, the strong spin

polarisation of iron could also play a role in determining the preferred adsorption site on the

bcc{110} surface. In summary, it is unsurprising to see differences in preferred adsorption
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modes for differently packed flat metal fcc, bcc and hcp surfaces, as the surface symmetry is

different upon these surfaces (i.e. close packing in three directions on the fcc {111} surface

in contrast with close packing in two directions for the bcc{110} surface) and packing

distances vary depending on the lattice parameter.

The experimental LEED work of Pussi et al. 181 on benzene adsorption on Co{101̄0} is

particularly interesting to compare to the benzene/Fe{211} results from this thesis, as the

stepped surface structure of hcp{101̄0} is quite similar to bcc{211}. At 300 K saturation of

the Co{101̄0} surface with benzene, a p(3 × 1) monolayer of benzene is favoured, where

the preferred adsorption site is analogous to either H1 or H3 sites on the Fe{211} surface

(see figure 4.18 in section 4.4). Their quantitative LEED(I-V) analyses indicate that the

adsorbed benzene molecule is not flat on the surface; it may either be flat within the surface

trough or deforming quite heavily in a similar site. Our DFT result for benzene/Fe{211}

would support the proposal that benzene should deform when adsorbed within the trough,

though adsorption behaviour could be different upon the hcp{101̄0}. As for the preferred

adsorption site, the work from this thesis does identify H3 as being a strong adsorption site,

albeit not as strong as the BU2 site, which is centered about the surface trough. The work

presented in this thesis neglects to account for the effect of higher surface coverage, in which

case it is reasonable that the H3 adsorption site could provide a favourable positioning at

the surface, as it allows for hydrogen bonding between adsorbates more readily than the

BU2 site. Work on higher surface coverage is planned for the future; see chapter 7 for more

information.

4.5.3 Conclusion

The adsorption of benzene has been studied using DFT and vdW-corrected DFT upon three

different surface facets; the bcc Fe{110}, Fe{100} and Fe{211} surfaces. These three surfaces

were chosen as they each represent a different type of stable surface (flat, kinked or stepped)

which has the highest chance of being present on a real iron crystal.

The DFT-PBE findings reveal that hollow or hollow-like adsorption sites are preferred

across all surfaces: the H-30◦ and H-0◦ sites on Fe{110} (Eads = -1.62 eV); the H site on
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Fe{100} (Eads = -1.41 eV) and the surface-trough bridge centered BU2 site on Fe{211} (Eads

= -1.55 eV). Once vdW corrections are accounted for by way of the TS correction scheme,

the relative energetics are shifted and adsorption energies are overall stronger. As a result,

the S-0◦ site is preferred on Fe{110} (EvdW
ads = -3.45 eV) while the H site on Fe{100} (EvdW

ads =

-3.02 eV) and BU2 site on Fe{211} (EvdW
ads = -3.44 eV) remain strongest. The use of PBE-TS

minimally affects PBE-optimised adsorption geometries. Geometries vary depending on the

adsorption site and surface, but show the strongest deformation on the Fe{211}, followed

by the kinked Fe{100} and flat Fe{110}. The Fe{211} shows particularly interesting strong

deformation in its preferred adsorption site BU2, where the adopted benzene conformation

bears a strong resemblance to the boat form of cyclohexane. Across sites and iron surface

facets studied, the C-H bonds flip up and away from the metal surface. This behaviour is

related to hybridisation of C-p orbitals with Fe 3d orbitals as well as what is known as the

cushion effect, arising from π and surface electron Pauli repulsion.

Analysis of Hirshfeld charges and differential charge density reveal increase of electron

density around carbon atoms while the regions surrounding H atoms show a decrease of

charge density. The H-0◦ site on Fe{110} carries an overall positive charge (+0.09 e) as well

as the BU2 site on Fe{211} (+0.04 e) while the H site on Fe{100} carries a negative charge

(-0.02 e). As for spin, across all surfaces benzene is spin-polarised as a result of adsorption;

carbon atoms are of minority spin while hydrogen atoms are of majority spin except in a

few cases. Finally, the surface workfunction is reduced due to the adsorption of benzene

across all surfaces (Fe{110} ∆φ = -1.16 eV and Fe{211} = -1.01 eV) in line with results

seen for benzene on many other metal surfaces.
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Chapter 5

Polyaromatic and Heteroatomic

Hydrocarbon Adsorption on Fe{110}

5.1 Introduction

In this chapter, the adsorption of two Polyaromatic Hydrocarbon (PAH) species (naphthalene

and quinolinium) on the bcc Fe{110} facet is presented. The adsorption of PAH on transition

metal surfaces, whether purely containing C-H bonds or including heteroatoms, is central to

many technologies. Research on HIOS relevant to this work is reviewed in section 5.1.1.

Research which employs iron as the inorganic component within HIOS is highlighted in this

section, alongside literature featuring adsorption of relevant PAH molecules on other metal

surfaces.

The results for adsorption of naphthalene of the Fe{110} surface are presented in section

5.2. This is followed by the results for quinolinium adsorption on the Fe{110} in section 5.3.

A comparative discussion of the adsorption behaviour of structurally similar naphthalene

and quinolinium molecules on the Fe{110} surface is presented in section 5.4, alongside

comparisons to the benzene/Fe{110} data presented in chapter 4 as well as other related

systems.
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5.1.1 PAH adsorption on transition metal surfaces

There is a large body of experimental and computational research on the adsorption of

PAH on transition metal surfaces, which has been reviewed previously.2,12–14 This is because

such systems are of central relevance in a large number of applications, including (but not

limited to) heterogeneous catalysis, lubrication and coatings, chemical sensing, organic

opto-electronic devices, dye-sensitised solar cells, batteries, and of particular focus for

this thesis, corrosion inhibition. Because of this wide spectrum of potential applications,

the amount of work is too vast to review in any comprehensive way in this thesis. The

following introductory material carries a focus on simulations related to the application of

interest, corrosion inhibition. In this first section, a review of efforts towards the study of

corrosion inhibition in general are presented. It should be noted that there are reviews on

this topic which should certainly be consulted, particularly for a more thorough overview of

all calculations and experiments done in this context.28,30,31

Aside from steel and iron, corrosion is a problem requiring study for many other metallic

substrates which feature in different applications. A particularly popular choice for study by

the surface science community is copper. Copper is widely used industrially and commercially

and is prone to acid corrosion, so a number of corrosion inhibitor molecules have been

developed to protect such surfaces. Benzotriazole (BTAH) as well as its derivatives are one

of the most popular choices in this context, and have been studied on a number of different

copper and copper oxide surfaces.39,50,57,58,182 Azole-type inhibitors, including imidazoles

and triazoles, have also been studied rigorously in this context.43,60,61,183,184 When discussing

the adsorption of heteroatomic PAH upon transition metal surfaces using DFT with a special

emphasis on corrosion inhibition, it is necessary to mention Kokalj et al.,39,42–44,50,58–61,185,186

who have established themselves as authorities in this area. Their group have studied a

number of molecular systems on a number of different surfaces, as well as a review on

the methods used and calculations carried out in this area. Generally, their studies take

place on Cu and Cu oxide surfaces, however other surfaces have also been studied. Marcus

et al. have also made important contributions in the DFT study of corrosion inhibition

alongside corrosion mechanisms more generally, especially on oxide surfaces as well as zinc
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corrosion inhibition.24,31,39,48,65,66,187–191 Finally, Taylor et al. have made key insights related

to corrosion and corrosion inhibition from a computational standpoint, with an emphasis

on how atomistic calculations fit into the multiple length and timescales present within the

corrosion process.25,30,31,39,192,193 Outside the corrosion inhibition space, the adsorption of

large PAH systems on Cu has been studied using DFT, for example in a study of a polyimide,

which has shown promise as a polymeric substrate for flexible printed circuit boards, on

Cu{111}.194 Another popular metal for study in the context of corrosion has been aluminium.

The DFT study of 8-hydroxyquinoline and related molecules on Al{111} has been carried

out.62,64 Also, a DFT study of gallic acid, which is known to have an inhibitory effect on Al,

has been conducted on the Al{111} surface.63

DFT work in recent years has focussed on more nuanced analyses, for example the

work of Wang et al. 184 which studies the adsorption of imidazole, benzotriazole and 2-

mercaptobenzoxazole on the Cu{100} grain boundary. Larger systems are also now being

treated in this context, for example in the study of surfactants used as corrosion inhibitors.70

Methods beyond DFT are also being used, such as DFTB which has allowed for the study

of adsorption of large aromatic systems which are expensive to study using DFT.77 Hybrid

DFT methods have also been used to better quantify charge transfer at the organic-metal

interface.195 There has also been work done to try to build predictive models for aromatic

adsorption behaviour and energetics on the Pt{111} surface.196 There is an important

emerging research area in the DFT study of corrosion inhibitor adsorption on metal surfaces

under potential bias, as demonstrated in one paper in the study of pyridine on Au{111}.73

Such studies are expected to develop and play an important role in the future study of

corrosion inhibition research; this is discussed more in chapter 7.

PAH adsorption on iron surfaces

Given the importance of steel, it is unsurprising that steel and steel-like iron surfaces should

be of interest in the context of acid corrosion inhibition research. There is an enormous body

of work on experimental adsorption of corrosion inhibitor and small aromatic molecules

on different steel and iron oxide surfaces at a wide variety of experimental conditions
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(temperature, solvent, pressure, within an electrochemical cell, etc.) A review of such work

falls outside the scope of this thesis, so only the relevant computational studies conducted

to date are presented here.

Significant work has been invested towards correlation of the experimental corrosion

inhibition properties of known corrosion inhibitors to molecular descriptors, such as the

energy of the HOMO and LUMO, dipole moment, and atomic charges, extracted from

molecular DFT studies.26,47 Although trends linking corrosion inhibition efficiency to ACI

structural and electronic properties have been identified, the use of such QSAR and QSPR

approaches has received criticism in the literature. A number of studies49–51 have shown that

these methods do not work well to predict the experimental inhibitory action for all systems,

which is in large part because the effectiveness of ACI molecules depends not only on

molecular properties, but additionally on the interplay of molecule–surface, water–surface,

and molecule–water interactions. In saying this, there have been a number of studies which

attempt to incorporate the surface-molecule interactions into QSAR models, typically using

cluster models to represent the metallic surface.54 These studies have issues of their own, as

the clusters used tend to be small and may therefore not be representative of the true nature

of a metallic surface. There is a small number of studies which do attempt to study the

effectiveness from many different angles, including periodic DFT studies, such as the study

of Camacho-Mendoza et al. which in addition to building their DFT QSAR model around

imidazole-based compounds also perform Electrochemical Impedance Spectroscopy (EIS) to

study experimental corrosion inhibition as well as periodic DFT studies of benzimidazole

and imidazole adsorption on Fe{110}.69 Finally, the QSAR and QSPR approaches can be

useful when robust experimental data sets and machine learning models are used, for

example in the work of Winkler et al. 52 which identifies molecular descriptors (not derived

from quantum chemical calculations) that can be used to quantitatively predict corrosion

inhibition properties of organic molecules upon aerospace alloys.

Perhaps in part as a response to criticism of QSAR and QSPR approaches, the past

decade has resulted in a growing body of published work which features force-field based

MD and MC simulation techniques to probe the adsorption of an aromatic ACI, typically
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on an iron surface facet to represent the steel surface, most often alongside experimental

electrochemical experiments. These efforts are reviewed comprehensively in the recent

work of Verma et al. 79 Some examples from this class of work which are of relevance to

this work include the work of Zheng et al. on two oxadiazole derivatives on the Fe{100}

surface,197 quinazolinone derivatives on the Fe{110} surface (in the context of lubricating

oils),198 three thiourea derivatives adsorbed on the Fe{110} surface in water199 and the

study of five bis-azo dyes on the Fe{110} surface.200 This work can provide helpful clues

on how the adsorption takes place, and compared to uncorrected DFT, such approaches do

better capture important vdW interactions which play a significant role in the binding of

aromatic systems. Because such methods are relatively inexpensive, they also readily allow

for the inclusion of solvent (water) or even other components of interest. A major flaw of

the typical force field-based approaches, as other works rightly point out,201 is that they fail

to capture reactivity such as charge transfer that may occur on the surface. Such effects may

play a key role in the activity of corrosion inhibitors. Additionally, the metallic character of

a pure iron slab is described poorly by a general purpose force field, which is the solution

most often used in existing works. There has been a very limited number of ab initio MD

studies of corrosion inhibitor/surface systems, see for example the work of Allal et al. 78 on

thiophene adsorption on Al{111}. Such studies are rare because of the high computational

expense involved to propagate a relatively large hybrid organic-inorganic system through

time at the DFT level.

There is a number of DFT works in the literature which probe molecule-iron surface

interactions under UHV conditions. In terms of molecules around the size of benzene

which include heteroatoms, this includes guaiacol and phenol on Fe{110},202,203 pyridine on

Fe{100},204 m-cresol on Fe{110},205 anisole on Fe{110},206 thiophene, pyrrole and furan on

Fe{110},201 2-mercaptoimidazole on Fe{100},68 phenylalanine and methionine on Fe{110}67

and imidazole on Fe{100}.186 It is worth highlighting the work of Guo et al. 201 which provides

interesting insight into the study of corrosion inhibitor molecules through comparative study

of cyclic molecules containing N, O and S atoms on the Fe{110} surface. As for molecules

adsorbed on iron surfaces more similar in size to naphthalene and quinolinium, a recent work
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by Kumar et al. 71 employs periodic DFT calculations to study the adsorption mechanism of

henna extracts, which are known to have anticorrosive properties, on the Fe{100} surface.71

The three adsorbates studied (lawsone (2-hydroxy-1,4-naphthoquinone), gallic acid and α-

D-glucose) share similar features with both naphthalene and quinolinium. The work of Sun

et al. 207 on DFT adsorption of pentacene on the Fe{100} surface represents an impressive

computational effort, particularly at the time it was published. A very recent work by

Murmu et al. 76 studies the adsorption of 1-phenoxybenzene and 1,4-diphenoxybenzene on

the Fe{110} surface using DFTB to better understand the adsorption mode of much larger

azomethine-derived Schiff bases which have some corrosion inhibitory action on mild steel

surfaces. There is also the study of Camacho-Mendoza et al. as mentioned previously, which

studies the adsorption of benzimidazole and imidazole on Fe{110} including the effect of

solvation through use of a periodic implicit solvation model.69 A recent study by Gouron

et al. also looks at adsorption of imidazole derivatives in the context of corrosion inhibition

using DFT, but with an emphasis of self-assembled monolayer behaviour (close packing)

upon the Fe2O3{0001} surface.208 It is worth mentioning that a significant proportion of the

listed studies neglect to use vdW-corrected DFT, which as discussed previously can result in

failure to adequately describe the adsorption process.

It becomes apparent that studies of ACI subunits on iron surfaces has not been systematic.

It is particularly noteworthy that the choice of surface upon which adsorption is studied

seems arbitrarily decided in certain works. Additionally, it isn’t always made clear in these

works how/whether different adsorption configurations were tested. Rigorously studying

the adsorption behaviour of simple, moderately-sized ACI scaffolds such as naphthalene and

quinolinium on the most stable surface facet (Fe{110}) is therefore worthwhile.

Naphthalene and quinoline adsorption on metal surfaces

Studies of naphthalene adsorption on metal surfaces are not uncommon given that it is a

logical second step in the study of simple aromatics after benzene. Naphthalene adsorption

has been studied using DFT on Pt{111},173,209 Pd{111} and Rh{111}209 and more recently

using the PBE+vdWsur f approach upon Ag{111}, Cu{111} and Pt{111}.75 As for UHV ex-
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periments, the adsorption behaviour of naphthalene been studied on Pt{111},146,210,211

Pt{100},146 Cu{100},212 Cu{111},213,214 Ag{111},215,216 Ag{100}217 and Rh{111}218 by way

of a wide variety of surface science techniques, including LEED, SCAC, Scanning Tunneling

Microscopy (STM), and Near-edge X-ray Absorption Fine Structure (NEXAFS) among others.

Findings vary depending on the surface facet and metal identity, but in all cases naphthalene

adsorbs in a flat-lying (or slightly tilted) configuration to maximise its vdW interaction

with the metal surface. On fcc{111} surfaces, the longer C2 naphthalene axis aligns with a

primitive surface lattice direction, and on several fcc {111} surfaces, LEED reveals naph-

thalene occupies a threefold 120◦ rotated (3 × 3) overlayer structure which does not show

long-range ordering.210,218 DFT calculations reveal the preferred naphthalene adsorption

site on Pt{111} features benzyl rings centered on bridge sites found on the fcc{111} surface,

where the central C-C bond sits above an atop site.75,173 In the preferred adsorption geometry,

the naphthalene molecule distorts, which enables better overlap of the molecular orbitals

with the surface d orbitals.173 The picture is quite different for Ag{111} and Cu{111}, which

were studied using vdW-corrected DFT by Maurer et al. 75: the benzyl rings prefer to lie

centered above hollow sites. To the best of our knowledge, there are no UHV experiments

or calculations for naphthalene adsorption on bcc metal surfaces.

As for the adsorption of quinolinium, to the best of our knowledge this has not been

studied; the fact that it is a charged species and would therefore adsorb with a counter ion

under experimental conditions is likely to complicate UHV experiments. The adsorption

behaviour of a number of related molecules on metal surfaces have however been stud-

ied, namely pyridine and quinoline.209,219,220 The differences between these molecules is

discussed more carefully in section 5.3.

5.2 Naphthalene/Fe{110}

5.2.1 Introduction

Naphthalene (C10H8) is a logical next step in the study of aromatic adsorption on iron after

benzene. Naphthalene also features heavily in the corrosion inhibition literature as a scaffold
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for known effective inhibitors. Understanding the way this simplified system interacts with

the Fe{110} surface, which is the most stable bcc iron surface, is sure to help rationalise the

interaction mode of more complex adsorbates with the same surface.

In this section, the results of DFT calculations probing the adsorption of naphthalene upon

the Fe{110} surface are presented. Simulation parameters can be found in table 5.1. The

parameters used are essentially identical to those used for benzene adsorption on the Fe{110}

surface. See chapter 4 for a more detailed description and rationalisation for the choice of

parameters as well as a visualisation of the chosen simulation cell. The naphthalene/Fe{110}

simulation parameters are identical to those used to study the adsorption of benzene/Fe{110}

so that results for benzene and naphthalene adsorption on Fe{110} can be directly compared

to each other.

Table 5.1. Simulation details and parameters
specific to the naphthalene/Fe{110} calcula-
tions

Parameter Value

Vacuum spacing (Å) 10
Cell size (c × c) (4 × 4)
Number of slab layers 6
Number of fixed slab layers 3
MP K-point sampling 2 × 2 × 1
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5.2.2 Gas-phase naphthalene

The PBE-TS-optimised gas-phase structure of naphthalene is shown in figure 5.2.2 alongside

its optimised C-C and C-H bond lengths (the same distances are found using PBE). Geometry

optimisation was conducted using a 20 Å box to prevent interaction with periodic copies

of naphthalene. As can be seen in figure 5.2.2, there are four types of C-C bond within

naphthalene: four short C-C bonds (1.38 Å) (1) four longer C-C bonds (1.42 Å) (2) two

outer C-C bonds (1.41 Å) (3) and the longest C-C bond which connects the two cycles

(1.43 Å)(4). The C-H bonds are all of the same length (1.09 Å). The lengths observed are in

excellent agreement with other theoretical results173,221,222 ((1): 1.38 Å, (2) and (3): 1.41 Å,

(4): 1.43 Å) and experimental results223–225 ((1): 1.37 Å, (2) and (3): 1.42 Å, (4): 1.43 Å).

Figure 5.1. Gas-phase naphthalene PBE-TS optimised structure and bond lengths.

5.2.3 Adsorption geometries and energies

In order to systematically study the various possible adsorption sites of naphthalene on

Fe{110}, a sensible starting point is to align one of naphthalene’s benzyl groups on one

of the five known possible high symmetry sites as identified in chapter 4 for benzene on

Fe{110}. Namely, these are the first and second short bridge sites, which are treated as

distinct due to the positioning of the second benzyl ring with respect to the first as well as

the long bridge site, the 3-fold hollow site and the atop site. After positioning the benzyl
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ring upon one of the five identified sites, the entire naphthalene molecule is rotated by 30◦

increments about the benzyl-centered portion. The 30◦ increment was chosen owing to our

previous finding that benzene may adopt a 0 or 30◦ non-symmetrically equivalent version of

each of the five aforementioned binding sites. In doing this, we end up with thirty possible

adsorption sites (six rotations × five unique sites).

From this initial survey of possible binding sites, it is possible to narrow down the

number of binding sites for DFT study. First, certain rotations produced identical sites to

other rotation angles. On this basis, ten of the thirty sites could be discarded. Of the twenty

remaining sites, we identify nine sites which have very high symmetry and therefore stand

the best chance of high stability after DFT optimisation. These sites, which form the basis of

our starting point for DFT calculations, are shown in figure 5.2. The 11 discarded sites are

not studied due to low symmetry, most often due to the second benzyl group not occupying

a high-symmetry site. Results for a DFT study of the similar naphthalene/Pt{111} system

from the literature support the hypothesis of higher symmetry generally being favoured.173

The nine naphthalene/Fe{110} geometries chosen for study include sites where the

benzyl ring on naphthalene is rotated along one of three distinct angles. There are five

different 150◦ rotated geometries, three 120◦ rotated geometries and one 0◦ rotated geometry.

All chosen sites feature high-symmetry benzene/Fe{110} sites for the positioning of the

two aromatic rings. The naming conventions used throughout this chapter are based on

the benzene/Fe{110} adsorption site names, where each benzyl ring’s position is part of

the final name. The rotation angle is omitted for clarity, but has been indicated in figure

5.2. The following abbreviations are used throughout the chapter: "H" for 3-fold-hollow

site, "S" for short bridge site, "L" for long bridge site and "A" for atop site. This shortens the

150◦-3-fold-hollow-3-fold-hollow centered binding site for example to HH.

A summary of the outcome of DFT optimisation is shown in table 5.2. Of the nine

adsorption sites studied, four are unstable upon DFT optimisation. In such cases, the initial

geometry converted to one of the other five stable sites. The final geometry achieved is not

the same one for the four unstable starting configurations, and has been indicated in table

5.2.
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Figure 5.2. Naphthalene orientations selected for study on Fe{110}. Hydrogen atoms
have been omitted for clarity.

Tables 5.3 and 5.4 list the energy results and geometric parameters for the five stable

PBE-optimised naphthalene/Fe{110} adsorption sites. Representations of the corresponding

PBE-TS optimised adsorption geometries are included in figures 5.3 and 5.4. There are

minimal changes between the adsorption geometries calculated using PBE and PBE-TS; only

the PBE-TS geometries are therefore shown. As can be seen from the adsorption energies

in table 5.3, the most favourable configuration is the HH arrangement closely followed by

the LL site. These two adsorption sites are relatively similar geometrically (see figure 5.4)

and as a result are only separated by 0.02 eV. In decreasing order of energetic stability are

a long bridge centered-type site (LC, for which the starting geometry was a short bridge

centered site, SS3), long bridge - short bridge type site (LS) and finally a different short

bridge - short bridge site (SS1). These predictions are mostly as expected, as the most

favourable PBE-optimised benzene/Fe{110} site was a 3-fold-hollow-centered site followed
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Table 5.2. Stability of different tested naph-
thalene/Fe{110} configurations

Configuration Name Stable Unstable

SS1 X
SS2 X
LL X
HH X
AA X
LS X
AS X
HA X
SS3 X∗

∗ In this case, the geometry of the initial
configuration changed upon optimisation.
The new optimised geometry is referred to
as LC.

relatively closely in energy by a long bridge-centered site (see chapter 4). The difference

in energy between the best (HH) and worst (SS1) sites is 0.33 eV, which is an indicator

that a significant proportion of the more favourable proposed adsorption sites would be

observed under UHV conditions thanks to thermal motion (again, because E is proportional

to e−∆E/kB T , and kBT = 0.26 eV at 298 K). As for the distortion of naphthalene, as with

benzene/Fe{110} in all cases the C-H bonds flip up and away from the surface while the

aromatic rings undergo some degree of buckling depending on the adsorption site. This is

reflected in the Edist values (table 5.3) which are all above 1.60 eV.

One unexpected result is the change in adsorbate geometry for the SS3 starting geometry

(see figure 5.3 for a representation of the final geometry). The optimised geometry no

longer features benzyl rings centered about short bridges, but instead features very high

overall symmetry without the benzyl rings being centered about high symmetry sites. The

new site, which will be referred to as LC (Long bridge Centered), features the central C-C

bond of naphthalene centered above the long bridge site on the Fe{110} surface. The LC

conformation features two pairs of carbon atoms each interacting with a single iron atom,

as well as the two central carbon atoms interacting with an iron atom each. This new site
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Table 5.3. Calculated optimised energies for stable
naphthalene adsorption sites on Fe{110}a

Adsorption site Eads(eV) Edist(eV)

LC -2.59 (-5.68) 2.15 (2.36)
HH -2.66 (-5.59) 1.95 (2.04)
LL -2.64 (-5.58) 1.84 (1.98)
LS -2.40 (-5.32) 1.74 (1.81)

SS1 -2.33 (-5.25) 1.67 (1.89)

a Eads represents the adsorption energy and
Edist represents the distortion energy upon ad-
sorption. Data in brackets represents a vdW-
TS corrected result.84 All non-bracketed results
were calculated using PBE.

presents an adsorption energy which is 0.07 eV less stable than the strongest HH site, which

puts it in third place compared to all other binding sites. This demonstrates that there may

be favoured naphthalene/Fe{110} sites where the benzyl rings are not necessarily centered

on high-symmetry benzene/Fe{110} sites. This is quite interesting in comparing to the DFT

work of others on naphthalene adsorption on flat transition metal surfaces, where all the

most stable adsorption sites feature centering of naphthalene’s benzyl rings on high symmetry

benzene/metal{111} adsorption sites.173,209 One site which is identified and moderately

favoured on Pt{111} (referred to as "butadiene-like") features strong deformation of the

naphthalene molecule in order that it may bind to the surface through four C-Pt bonds (Four

carbon atoms and three Pt atoms) instead of the entire molecule, which allows for the other

half of the molecule to maintain aromaticity as it is relatively far away from the surface.

This is quite a different case to the LC site observed here, as the butadiene-like geometry

demonstrates poor overall symmetry with respect to the surface, whether laterally or in the

direction perpendicular to the surface. Additionally, because of the difference in symmetry

between the studied fcc {111} surfaces and the bcc {110} surface presented in this thesis, a

butadiene-like arrangement of naphthalene on Fe{110} appears to either be unstable or not

produce a lifting of the other portion of the molecule, as some of the configurations tested

feature this type of arrangement and this has not been observed on Fe{110}. Finally, the
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difference in reactivity between previously tested Pt, Pd and Rh and Fe could also explain

the differences observed. These comparisons will be considered more carefully in section

5.4.

Table 5.4. Calculated optimised geometric parameters for naphthalene on Fe{110}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free naphthalene 1.40 (1.40) 1.09 (1.09) 0 (0) 121 (121) -
LC 1.46 (1.46) 1.10 (1.10) 22 (22) 120 (120) 2.12 (2.10)
HH 1.45 (1.45) 1.10 (1.10) 21 (21) 120 (120) 2.13 (2.12)
LL 1.45 (1.45) 1.09 (1.09) 23 (23) 120 (120) 2.11 (2.10)
LS 1.45 (1.45) 1.09 (1.09) 21 (21) 120 (120) 2.16 (2.15)
SS1 1.44 (1.45) 1.10 (1.10) 20 (21) 120 (119) 2.12 (2.11)

a dC−C represents the average C-C bond length in benzene, dC−H the average C-H
bond length, θC−H the average CH tilt angle (dihedral) with respect to the molecular
plane, θC−C the average angle between carbon atoms in the molecule and dC−Fe

represents the average C-Fe distance. Data in brackets represents a vdW-TS corrected
result.84 All non-bracketed results were calculated using PBE. The free naphthalene
results were extracted from geometry optimisation using a cubic 20 Å box to prevent
naphthalene self-interactions.
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Figure 5.3. Images of 0◦ and 120◦ rotated optimised naphthalene binding sites. Views
shown above the Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 5.4. Images of 150◦ rotated optimised naphthalene binding sites. Views shown
above the Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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Vdw-corrected adsorption geometries and energies

Figure 5.5. Comparison of adsorption energies for all PBE (blue) and PBE-TS (red)
optimised naphthalene/Fe{110} sites.

The PBE-TS optimised structures are shown in figures 5.3 and 5.4, and accompanying

PBE-TS energetics and geometric data are shown in tables 5.3 and 5.4 respectively. As

seen from previous benzene/Fe{110} studies, accounting for the effect of important vdW

corrections can impact the surface adsorption energies. This is also the finding from this

work for naphthalene/Fe{110}, as seen in the significantly stronger energies in table 5.3.

For all sites studied, the adsorption energy strength increase is on the order of 3 eV. This

is a larger change than for PBE vs PBE-TS for benzene/Fe{110} which is in line with the

fact that naphthalene is a larger molecule containing a larger extent of aromaticity, which

makes it capable of further vdW interactions compared to benzene with the metal surface.

Another finding of great interest is the change in the relative energetic ordering of the stable

adsorption conformations. The change in relative energetics is shown in figure 5.5. The
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clear outlier is the LC adsorption site, which as mentioned previously is the third most stable

of all sites with PBE, but is the preferred adsorption site with PBE-TS. There is no significant

change in geometry observed between any of the PBE and PBE-TS optimised structures

as can be seen from the geometric PBE-TS parameters listed in table 5.4, so this relative

increase in adsorption strength for LC compared to the other sites is a purely electronic

effect. LC is significantly stronger (by 0.09 eV) than the next best site, HH. This is interesting

as it is very similar to the PBE-optimised energy difference between LC and HH sites (0.07

eV), where HH is instead preferred. Distortion energies shows the strongest distortion for

LC (2.36 eV) followed by HH (2.04 eV) which matches the trend seen in adsorption strength.

Similar changes in relative energetic ordering due to the use of a vdW correction have been

observed in other works, and will be discussed in section 5.4.

5.2.4 Charge density difference

Charge density difference plots for the stable naphthalene/Fe{110} adsorption sites are

shown in figure 5.6. From upper left to bottom right, the density plots shown are ordered

by decreasing adsorption strength. Across all sites, it is clear that electron density tends

to increase on C atoms while there are regions of decreased electron density 1) below the

adsorbate plane 2) around H atoms and 3) above the molecular plane, often appearing

as “nodes” separating the positive charge density regions. Comparing different structures,

the most striking/interesting contours appear for the LC site which, as explained in section

5.2.3, is a long bridge-centred site with overall high symmetry but low-symmetry positioning

of the benzyl rings. The overall charge density difference plot for this adsorption site also

appears to be very symmetrical, particularly when compared to the others.

The contour shapes of the charge density diagrams can be rationalised by studying

the Molecular Orbital (MO) diagram for a given adsorbate, see the work of Yamagishi

et al. 165 for example. The naphthalene MO diagram has been computed using molecular

DFT calculations and is represented in figure 5.7. In studying the high symmetry top PBE-TS

site (LC in figure 5.6), the region of charge density increase (yellow) is effectively identical

to the structure of the MO corresponding to LUMO+2, so it is likely this orbital plays a role
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in accepting electron density from the iron surface in the given configuration. However,

looking at the yellow regions for all other adsorption sites, they do not clearly resemble

a single MO, but do present features of LUMO, LUMO+1, LUMO+2 and LUMO+3. The

orbital(s) which provide the best overlap with the underlying metal’s d (or s or p) orbitals

will feature most significantly in the charge density diagram plot. From our plots, it appears

that all configurations aside from LC provide their maximal interaction with the surface

through a mixture of unoccupied and occupied orbitals. As for the electron density depletion

regions (blue), above the plane of the LC site adsorbate again quite clearly presents what

seems to correspond to the HOMO contour plot. This seems to be the case also for the blue

regions above the LS site, although it seems the lobes aren’t all equivalent, so there may

be contributions from other orbitals. Finally, electron density decrease above the SS1 site

plane presents features of the HOMO-3 orbital, but also has traces of other orbitals being

involved in the adsorption process. It’s also worth noting that the appearance of occupied

and unoccupied orbital-like charge density contours is a clear indicator that the adsorbate is

capable of both forward and back-donation of electron density with the metal surface.

The most important conclusions to draw from the combined charge density difference

- MO analysis is that regions of electron increase for naphthalene roughly correspond to

LUMO (or higher order LUMO)-like MO configurations, while regions of electron depletion

seen above the plane of the molecule correspond to HOMO (or lower order HOMO)-like MO

configurations. Of further importance is that it isn’t necessarily just the HOMO and LUMO

involved in the adsorption process; it seems the involved orbitals are highly adsorption

configuration-dependant, and therefore that HOMO-1, HOMO-2 etc. and LUMO-1, LUMO-2

etc. can become involved in the electron exchange process if it improves orbital overlap at

the surface. The nature of such findings has been discussed extensively in other papers, for

example for benzene/Ni{111}.165
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Figure 5.6. Images of optimised naphthalene binding site charge density density. View
shown from above the Fe{110} surface. Blue (yellow) regions denote a decrease (in-
crease) in electron density on the order of 1.5 × 10−2 electrons/Å3.
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Figure 5.7. Calculated molecular orbital diagram for naphthalene. The calculated
energies and MOs were obtained using DFT (B3LYP/6-31G(d,p)) as implemented in
Gaussian09.125 HOMO, LUMO and other MOs are indicated on the diagram.
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5.2.5 Spin density

The spin densities for all naphthalene/Fe{110} adsorption sites are shown in figure 5.8.

Surface-induced spin polarisation can be seen on the adsorbate, which carries no spin in the

gas-phase, for all geometries. Across all adsorption configurations, H atoms are of majority

spin while C atoms are all of minority spin. All the configurations show slightly different spin

density distribution, but probably the most unique-looking of all is the LS site. It features

C-related minority spin which is distorted compared to other adsorption configurations. This

may have something to do with LS being the only site which presents benzyl rings centred on

different high symmetry sites (a long bridge and short bridge type site). As with the charge

density difference, the LC site shows the highest symmetry spin density contours. This again

supports the comments made for charge density difference that this adsorption configuration

must allow for particularly good overlap of its MOs with the underlying surface orbitals.

5.2.6 Atomic charges and spin

Table 5.5 lists the PBE and PBE-TS-derived Hirshfeld charges and atom-resolved spin for

relevant atom groupings from the top adsorption site (LC). Values for the top PBE-optimised

site (HH) are also presented later in section 5.4 as they compare more closely to the

quinolinium/Fe{110} results.

The Hirshfeld charges derived for the LC site using PBE and PBE-TS methodologies are

effectively identical, save for the negligible 0.01 change for the iron slab. As discussed

previously for benzene/Fe{110} in chapter 4, charges have been produced using an increased

k-point sampling (4 × 4 × 1 mesh), therefore the small non-zero sum of charges (for PBE-TS,

the sum is -0.02 e) is likely related to rounding in the CASTEP output. Also similarly to

benzene/Fe{110}, the LC site overall acquires a positive charge (+0.16 e) while the iron

slab overall carries a counter-balancing negative charge (-0.18 e). The carbon atoms within

the LC site overall carry a negative charge (-0.28 e) while the H atoms overall carry a larger

positive charge (+0.44 e). This is in good agreement with the charge density difference plot

as shown in figure 5.6, where increased electron density appears around the C atoms while

regions of decreased charge density occupy the regions surrounding H atoms.
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Figure 5.8. Images of the optimised naphthalene binding site spin densities. View shown
from above the Fe{110} surface. Blue (yellow) regions denote minority (majority) spin
regions on the order of 3 × 10−3 electrons/Å3.
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The spin values show negative spin polarisation on the C atoms and no polarisation

on the H atoms. The C result agrees well with the spin density shown in section 5.2.5

where blue minority spin regions are observed above the C atoms. As for H, spin majority

regions are observed about the H atoms in the spin density plot in contrast with the zero

spin polarisation. A reasonable explanation for the discrepancy would be that, given the

scale of the contours shown in figure 5.8, (3× 10−3 electrons/Å), perhaps these values are

below 0.01 µβ per atom. The PBE-TS spin values observed for benzene/Fe{110} (0.02 µβ)

are very small, so the naphthalene/Fe{110} result is also sensible in comparison. The PBE

and PBE-TS results are in perfect agreement for H and C atom spin, but as has previously

been seen for benzene adsorption, there is a slight decrease in the metal slab spin sum. This

difference is likely to result from additional relaxation of the surface when the TS correction

is applied.

Table 5.5. Calculated Hirshfeld charges and atomic spin results for LC on
Fe{110}

Atom group charges (e) charges (e) spin (µβ) spin (µβ)
PBE PBE-TS PBE PBE-TS

C10H8 sum 0.16 0.16 -0.52 -0.52
C sum -0.28 -0.28 -0.52 -0.52
H sum 0.44 0.44 0.00 0.00
Metal slab sum -0.17 -0.18 223.47 221.98

5.2.7 DOS and PDOS

Figure 5.9 shows the PDOS for one surface iron atom and the nearest carbon with which it

directly interacts in the LC naphthalene/Fe{110} adsorption site. The carbon plot shows a

significantly larger number of gas-phase orbital peaks compared to benzene/Fe{110} from

chapter 4. The assignment of these peaks to isolated gas-phase naphthalene orbitals can be

done, but will form part of a future work. Given that the gas-phase naphthalene PDOS has

been aligned with the adsorbed naphthalene PDOS, the difference between the two shows

the same trend as for benzene/Fe{110}, namely that the orbital peaks are shifted to higher
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binding energies. The Fe PDOS plot shows the usual new peaks in the high binding energy

region which correspond to the high binding energy carbon orbitals. The most notable

change in the Fe PDOS plot is a significant shift in the minority spin densities to higher

binding energies, both below and above the Fermi level. This results in a reduction of the

number of spin-down states at the Fermi level. As for the majority spin Fe PDOS, they remain

relatively unaffected by the adsorption process.

5.2.8 Workfunction

The change in workfunction upon adsorption has been studied for the preferred PBE-TS

optimised adsorption geometry (LC). The computed results are listed in table 5.6. The

methodology used to obtain these results is identical to that used to study benzene/Fe{110}

in chapter 4.

As per the findings for benzene on Fe{110}, there are negligible differences between

the PBE and PBE-TS energies used to calculate the workfunction. A decrease in the pure

iron surface workfunction of 1.51 eV is observed using PBE-TS. This shows that naphtha-

lene decreases the Fe{110} surface workfunction more than the most favourable benzene

adsorption site does (-1.16 eV). This is in line with all results seen throughout this section,

where naphthalene tends to show similar trends to benzene only on a greater scale owing to

naphthalene’s larger size and increased aromaticity.

Table 5.6. Calculated Workfunction (φ) results for best site for naphthalene
on Fe{110}a

Method Evac(eV) EF(eV) Fe{110} C10H8/Fe{110} ∆φ (eV)
φ (eV) φ (eV)

PBE -3.19 -6.59 4.90 3.40 -1.50
PBE-TS -3.18 -6.53 4.86 3.35 -1.51

a Evac represents the vacuum energy, EF represents the Fermi energy
and ∆φ represents the difference between the C10H8/Fe{110} φ and
bare Fe{110} φ. Bare Fe{110} φ values are calculated using the 6-layer
(4 × 4) slab.
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Figure 5.9. Projected density of states (PDOS) for naphthalene on Fe{110} in the LC
adsorption geometry. The upper plot shows the majority spin and minority spin PDOS
for Fe atom 91 before (black) and after adsorption (red). The lower plot shows C atom
2 within naphthalene in the gas-phase (black) and after adsorption (red, majority spin
and minority spin shown). The Fermi energy (EF ) has been set to zero and is indicated
by a black dashed line. The gas-phase naphthalene DOS has been aligned with the
lowest energy C(2s) orbital for adsorbed naphthalene, as this level is not expected to be
involved in the adsorption process.
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5.3 Quinolinium/Fe{110}

5.3.1 Introduction

In this section, the adsorption behaviour of quinolinium (C9H8N+) on the Fe{110} surface

is studied. There are several compelling reasons to study the adsorption behaviour of

quinolinium on iron which will be discussed here. As before, the reason for the choice of

the Fe{110} facet is that it has been shown to be the most stable of all bcc iron facets, which

implies that it should predominantly be exposed on a realistic iron single crystal.

Quinolinium has the same structure and connectivity as naphthalene, with the only

difference being that it has a nitrogen atom in place of one of the carbon atoms. As a result,

quinolinium carries a +1 charge. The study of structurally similar molecules which have

different electronic structure is interesting in its own right, as it can be used to ascertain

the effect of different heteroatom substitutions in aromatic rings upon adsorption. This is

of particular relevance in the study of ACI adsorption upon steels because it is known that

heteroatom-substituted aromatic molecules are effective whereas aromatic hydrocarbons,

which most often are insoluble in the acidising fluids used, are unable to provide corrosion

protection. The choice of quinolinium is motivated by the fact that it (and closely related

compounds) are known to have acid corrosion inhibition activity on a variety of metal surfaces

including steel.8,19,226–229 It should be noted at this stage that there are DFT studies of the

adsorption of quinoline (C9H7N) and quinoline-derived molecules on metal surfaces.62,209,230

It is expected that only limited comparisons can be drawn between quinoline and quinolinium

adsorption, because the N-H functionality in quinolinium is expected to act quite differently

than the bare, aromatic N present in quinoline. In particular, other studies have shown

quinoline to be able to adsorb tilted on a metallic surface, similarly to pyridine, by binding

to the surface partly through the nitrogen - metal bond.231 An obvious further difference is

the presence of positive charge on quinolinium, which we expect would lead to important

differences in adsorption geometry compared to neutral quinoline.

In the following sections, the results of quinolinium adsorption on Fe{110} surface will be

presented. Prior to showcasing the work, it is necessary to outline technical considerations
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Table 5.7. Simulation details and parameters
specific to the quinolinium/Fe{110} calcula-
tions

Parameter Value

Vacuum spacing (Å) 10
Cell size (c × c) (4 × 4)
Number of slab layers 6
Number of fixed slab layers 3
MP K-point sampling 2 × 2 × 1

which affect the DFT calculations for charged species. These considerations are discussed in

this section. All simulation details and parameters can be found in table 5.7. These simulation

parameters are identical to those used to study the adsorption of benzene/Fe{110} and

naphthalene/Fe{110}, meaning our results for benzene, naphthalene and quinolinium

adsorption on Fe can be directly compared to each other. For rationalisation of the selected

parameters as well as a visual representation of the chosen unit cell, chapter 4 should be

consulted. The results of quinolinium/Fe{110} DFT calculations are presented from section

5.3.3 onwards.

Periodic DFT for charged systems

Charged systems can be studied using DFT, but there are a number of issues which do not

apply to neutral calculations which must be addressed to ensure a correct answer is being

produced from the calculation.232 These considerations are presented and discussed here,

and the solutions and workarounds used throughout this chapter are presented.

The first issue which must be considered arises from treating a charged simulation cell

with periodic boundary conditions using DFT. Because the cell is infinitely repeated in three

dimensions, so then is also the charge applied to the system. Clearly this is problematic,

as finite charge is needed to accurately represent the system being studied. One technical

solution to this problem is to apply a homogeneous counter-charge to the entire cell to

balance the charge added into the system. This type of correction is used for calculating

the properties of periodic systems containing ions and charge defects for example.233 For
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quinolinium adsorption on an iron surface, it may therefore be sensible to apply a +1 charge

(charge on the quinolinium ion) as well as a counter-balancing homogeneous -1 charge

on the entire cell. We have however opted to treat the quinolinium/Fe{110} as neutral

throughout the DFT calculations presented in this chapter. This is a sensible approach thanks

to the nature of the real system our simulations are meant to emulate. We are interested

in the adsorption of quinolinium on a steel-like slab, which is meant to represent the steel

piping used in oil well applications. In this sort of application, the metal slab would be

grounded or earthed, meaning that electrons from earth can be provided to the slab or

donated from the slab to earth as necessary to equilibrate the additional charge coming

from the adsorbate. Using a sufficiently large slab (ie. having enough layers for there to be

a bulk-like phase of iron) ensures there are sufficient electrons in the bulk metal to act as an

electron sink, able to provide or remove additional electron density as a grounded metal

would. It should however be noted that for applications where the real system of interest

would not be grounded, for example a nanoparticle in solution, this neutral cell approach

could be problematic.

The problematic infinite charge for the quinolinium/Fe{110} system is therefore resolved

thanks to making use of a neutral cell. A second issue in the same vein arises in the

calculation of adsorption energy. This is because it is not possible to make any simplifications

to prevent quinolinium in the gas phase from being positively charged. In other words, in

the DFT optimisation of quinolinium alone, it is necessary to apply a +1 charge as well as

the homogeneous neutralising -1 background charge as mentioned above. This results in a

new issue; the total energy of the simulation cell converges very slowly with increasing cell

size. Convergence is challenging, to the extent that it isn’t realistic to achieve convergence

by simply increasing the size of the simulation cell. This results in the energy of the gas

phase ion quinolinium being ill-defined, as it is dependant on the size of the artificial box it

is placed in. It is therefore necessary to identify the ion’s “true” total energy which can be

used in the adsorption energy calculations.

This can be resolved in different ways. The first method is to plot a number of DFT

total energies for the same system as a function of varying cubic cell length (L), where the
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intercept at 1/L = 0 is used as the converged total energy. The second method makes use

of the so-called Leslie-Gillan correction scheme.234 The Leslie-Gillan correction takes the

following form:

Eint =
q2α

2Lε0
(5.1)

where Eint is the corrected total electrostatic energy of the charged species, q is the total

charge on the charged species (for quinolinium: +1.603× 10−19 C),α is the lattice-dependant

Madelung constant (for quinolinium: 2.8373 for simple cubic arrangement of point charges),

L is the linear dimension of the supercell and ε0 is the vacuum permittivity (for quinolinium:

8.854 × 10−12 F/m). This energy correction should be subtracted from the total energy

for every different cell dimension used (Eint depends on L) to give a converged energy. It

should be noted there are other correction methods, such as the Makov-Payne extension

which has additional dependance on the quadrupole moment and L3 cubic term.235

The result of the application of the two correction methods, alongside the original

divergent total energies, is shown in figure 5.10. The two methods predict quite a similar

converged total energy. The intercept of the Leslie-Gillan-derived curve has a negligible

difference of 6 × 10−6 eV compared to the 1/L intercept method total energy, so we have

opted to use the 1/L method intercept-derived value for our calculations (-1787.74646 eV).

Thanks to the 1/L intercept method, the charged quinolinium total energy is no longer

ill-defined. At this stage, all that remains is to calculate adsorption energies, but a new

problem arises. This third issue relates to our usual adsorption energy calculation equation.

As a reminder;

Eads = Esur f +molec − (Esur f + Emolec) (5.2)

If equation 5.2 is used as is, the energy associated with the adsorbate (Emolec) represents

a +1 charged system while the bare metal surface energy (Esur f ) represents a neutral system.

This is problematic because we know the combined surface and adsorbate system energy

(Esur f +molec) is neutral while in its current form, equation 5.2 has the sum of separate gas
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Figure 5.10. Total energy (eV) for quinolinium in a cubic box plotted as a function of
1/L (Å). The red curve shows the lack of convergence of total energy as a function of
simulation cell size, even up to very large cell size. The total energies after application
of the Leslie-Gillan correction (blue) and 1/L intercept-derived total energy (green) are
also shown.

phase components (Esur f + Emolec) as +1.

The solution we have developed for this issue is to include the workfunction (φ) in the

adsorption energy equation. This is shown in equation 5.3:

Eads = Esur f +molec − (Esur f + Emolec −φ) (5.3)

Where φ is the bare metal workfunction. As the workfunction represents the energy

necessary to remove one electron from the surface into the vacuum, subtracting it from the

surface energy Esur f results in a good approximation for the total energy of the -1 charged

surface slab. In the limit of low surface coverage, the workfunction of the slab covered with

adsorbate will be equal to that of the bare slab, therefore we can make use of the computed

bare Fe{110} value for these calculations. For higher coverage cases, it would be necessary

to make use of the workfunction value for the adsorbate/Fe{110} system.

Finally, it is also worth noting that the procedure described here is repeated for both PBE

and vdW-corrected PBE-TS calculations. The inclusion of the TS correction shifts all energy

results to more negative values.
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5.3.2 Gas-phase quinolinium

The PBE-TS-optimised structure of quinolinium is shown alongside all bond lengths in figure

5.3.2 (the same distances are found using PBE). As with naphthalene, geometry optimisation

was conducted using a 20 Å box to prevent interaction with periodic copies of quinolinium.

In comparing to the gas-phase naphthalene data (see section 5.2.2), there is a wider variety

of bond lengths due to the N atom. In particular, DFT geometry optimisation reveals there

is a longer (1.38 Å) and shorter (1.34 Å) C-N bond within quinolinium. This is in good

agreement with an experimental crystal structure for quinolinium perchlorate (1.37 Å and

1.33 Å).236,237 The calculated C-N-C angle (124◦) is also in excellent agreement with the

experimental value (123◦). As for the C-C bond lengths, a range of experimental C-C bond

lengths is observed within quinolinium, from 1.37 Å to 1.42 Å, in excellent agreement with

the range observed using DFT. The N-H bond (1.03 Å) is shorter than the C-H bond (1.09 Å).

Figure 5.11. Gas-phase quinolinium PBE-TS optimised structure and bond lengths.
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Figure 5.12. Quinolinium orientations selected for study on Fe{110}. Hydrogen atoms
have been omitted for clarity. The nitrogen atom is indicated in blue.

5.3.3 Adsorption geometries and energies

On the basis of the similarity of quinolinium to naphthalene, the optimised naphthalene/Fe{110}

sites (see section 5.2.3) form the basis for the starting structures chosen for study of quino-

linium adsorption on the Fe{110} surface. As a result of the nitrogen atom in quinolinium

in place of naphthalene’s carbon, quinolinium has reduced symmetry compared to naph-

thalene. The result of this is that the number of quinolinium/Fe{110} sites selected for

study is greater than the five stable naphthalene/Fe{110} configurations. Within a given

high-symmetry naphthalene adsorption site on Fe{110}, there can be different arrangements

of the quinolinium molecule depending on the location of the N atom with respect to the

surface. This is illustrated in figure 5.12, for example for the HH-NA and HH-NS sites. As

with naphthalene/Fe{110}, H is used to represent the centering of a benzyl ring over a

3-fold-hollow site, so the HH notation indicates that both benzyl rings are centered above
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Table 5.8. Stability of different tested
quinolinium/Fe{110} configurations

Adsorption site Stable Unstable

LC-NH X
LS-NH X
LS-NA X
HH-NA X
HH-NS X
LL-NS X
LL-NA X

SS2-NA X
AS-NA X
SS1-NA X
LA-NA X

such sites. The additional “-NX” notation indicates the arrangement X of the nitrogen atom

within high-symmetry surface sites. As a result, HH-NA indicates two 3-fold-hollow centered

aromatic rings alongside nitrogen in the atop (A) position, while HH-NS represents the same

site but with the N atom in the short bridge (S) position.

DFT optimisation of the naphthalene/Fe{110}-based starting configurations showed sites

in which the N atom was positioned atop of an Fe atom (i.e. -NA denoted configurations) were

favoured. To ensure all sites featuring nitrogen in an atop arrangement had been studied, a

further three relatively high-symmetry starting configurations are identified through rotation

of quinolinium about a NA-centered axis. The three further quinolinium/Fe{110} sites (LA-

NA, SS1-NA and AS-NA, see figure 5.12 feature high symmetry and therefore the strongest

likelihood of favourable adsorption. As a result, a total of eleven quinolinium/Fe{110}

starting configurations are studied throughout this section.

The general results of DFT optimisation for all eleven sites studied is listed in table

5.8. As can be seen, seven of the the eleven sites are unique, stable adsorption geometries

while the other four are unstable. The nitrogen atom has a strong directing effect upon

quinolinium adsorption, such that the LL sites optimise to HH type sites, where the N

atom has a higher symmetry arrangement with respect to the Fe{110} surface. As for the
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AS-NA and SS1-NA sites, the preference for N to be in an atop arrangement is insufficient

to stabilise the lower symmetry arrangement of the molecule. Tables 5.9, 5.10 and 5.11

list the adsorption energies, bond lengths and angles of interest for the seven stable PBE-

optimised quinolinium/Fe{110} adsorption sites. Images of the PBE-TS optimised adsorption

geometries are included in figures 5.13, 5.14 and 5.15. As with naphthalene/Fe{110}, the

optimised PBE and PBE-TS adsorption geometries have very similar appearance; as a result,

only the PBE-TS geometries are shown.

The preferred PBE-optimised adsorption site is the HH-NA site (Ead = -3.73 eV) and is

significantly stronger than the next strongest site (LS-NA, Ead = -3.50 eV). The difference in

energy is 0.23 eV, nearly an order of magnitude higher than the separation between the top

two naphthalene/{110} configurations. The strongest three adsorption sites (HH-NA, LS-NA

and LA-NA) all feature the aromatic N atom in the atop position. It is interesting to note

however that nitrogen being in the atop site is not a guarantee of favourable adsorption,

as demonstrated by the SS2-NA site, which is among the weakest of the stable adsorption

sites. This is also true of the two unstable sites (AS-NA and SS1-NA) which were chosen

specifically to orient the N to an atop orientation. The preferred tetravalent atop orientation

of the nitrogen atom has been observed in prior work on sp3 hybridised NH3 adsorption on

the Fe{211} surface.238 The energetic separation between strongest (HH-NA) and weakest

(LS-NH) sites is 0.57 eV, which indicates that several of the less favoured sites are likely not

to be observed under standard conditions in UHV experimental surface science experiments

(because kBT= 0.26 eV at 298 K, see chapter 4 for further discussion of this). For cases where

N is not in an atop position (LC-NH, LS-NH and HH-NS configurations), the N atom is found

to be out of the plane of the quinolinium molecule into the vacuum. This is demonstrated

for example for the LS-NH site (see figure 5.13).

Quinolinium distortion energies show that there is moderate deformation for all sites

compared to the ideal, flat gas-phase quinolinium molecule. It also shows that deformation

energy is uncorrelated with adsorption energy. As an example, LA-NA shows the strongest

deformation energy (1.54 eV), which is most likely due to the fact that it shows the highest

average C-H tilt angle (27◦) of all the adsorption sites. It is also interesting to note that despite
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Table 5.9. Calculated optimised energies for stable
quinolinium adsorption sites on Fe{110}a

Adsorption site Eads(eV) Edist(eV)

HH-NA -3.73 (-6.71) 1.45 (1.46)
LS-NA -3.50 (-6.51) 1.27 (1.30)
LA-NA -3.49 (-6.49) 1.54 (1.62)
SS2-NA -3.29 (-6.43) 1.10 (1.41)
LS-NH -3.16 (-6.41) 1.13 (1.31)
HH-NS -3.38 (-6.29) 1.15 (1.11)
LC-NH -3.24 (-6.29) 1.48 (1.52)

a Eads represents the adsorption energy and
Edist represents the distortion energy upon ad-
sorption. Data in brackets represents a vdW-
TS corrected result.84 All non-bracketed results
were calculated using PBE.

this, LA-NA is not the preferred adsorption site, although among the strongest sites. The

second strongest distortion energy (1.48 eV) is observed for one of the weakest adsorption

sites, LC-NH. Table 5.11 shows that it features one of the longest N-Fe distances (2.69 Å),

and figure 5.13 shows the N atom shifted above the plane of the quinolinium molecule,

which would contribute significantly to the strong distortion energy. Comparing Edist among

adsorption sites provides certain interesting trends, however the absolute value for Edist

should be treated as approximate. This is because the deformed quinolinium geometry

which is found on the Fe{110} surface has participated in charge transfer interactions with

the metal surface. The adsorbed geometry therefore no longer carries the +1 charge found

on the ideal gas-phase quinolinium molecule to which it is being compared.

The C-C and C-Fe distances are of comparable dimensions to those obtained for naph-

thalene (explicit comparisons are made in section 5.4). It is therefore more interesting

to discuss the nitrogen-related metrics here (see table 5.11). First, it is evident from the

N-Fe distances and N-H angle data that the data broadly falls under two categories: cases

where N is in the atop configuration (N-Fe distance around 2 Å and N-H tilt angle around

5◦) and cases where N is not in the atop configuration (N-Fe distances above 2.55 Å and

N-H tilt angles of 20◦ or more). It seems if N cannot bind in a tetravalent arrangement
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with a single underlying Fe atom, the loss of aromaticity in the pyridinyl ring results in the

ejection of N from the plane to form the familiar trigonal pyramidal shape associated with

sp3 hybridization of NH3 for example, where a lone pair of electrons points up from N and

away from the surface.

Table 5.10. Calculated optimised geometric parameters for C in quinolinium on Fe{110}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free quinolinium 1.40 (1.40) 1.09 (1.09) 0 (0) 121 (121) -
HH-NA 1.45 (1.45) 1.10 (1.10) 25 (24) 119 (119) 2.13 (2.11)
LS-NA 1.45 (1.45) 1.10 (1.10) 23 (21) 120 (120) 2.12 (2.10)
LA-NA 1.46 (1.45) 1.09 (1.09) 27 (27) 120 (120) 2.12 (2.11)
SS2-NA 1.45 (1.45) 1.10 (1.10) 23 (20) 120 (119) 2.12 (2.11)
LS-NH 1.45 (1.45) 1.09 (1.10) 22 (24) 120 (120) 2.14 (2.12)
HH-NS 1.45 (1.45) 1.10 (1.10) 23 (23) 120 (120) 2.11 (2.09)
LC-NH 1.46 (1.46) 1.10 (1.10) 22 (22) 119 (119) 2.11 (2.10)

a dC−C represents the average C-C bond length in quinolinium, dC−H the average C-H
bond length, θC−H the average CH tilt angle (dihedral) with respect to the molecular
plane, θC−C the average angle between carbon atoms in the molecule and dC−Fe

represents the average C-Fe distance. Data in brackets represents a vdW-TS corrected
result.84 All non-bracketed results were calculated using PBE. The free quinolinium
results were extracted from geometry optimisation using a cubic 20 Å box to prevent
quinolinium self-interactions.
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Table 5.11. Calculated optimised geometric parameters for N in quinolinium on Fe{110}a

site dN−C(Å) dN−H(Å) θN−H(◦) θC−N−C(◦) dN−Fe(Å)

free quinolinium 1.34, 1.38 1.03 (1.03) 0 (0) 121 (122) -
(1.34, 1.38)

HH-NA 1.43, 1.45 1.03 (1.03) 20 (29) 120 (120) 2.03 (2.02)
(1.43, 1.45)

LS-NA 1.41, 1.45 1.03 (1.03) 19 (31) 121 (121) 2.03 (2.03)
(1.41, 1.45)

LA-NA 1.43, 1.45 1.03 (1.03) 33 (37) 120 (121) 2.00 (2.00)
(1.44, 1.45)

SS2-NA 1.42, 1.43 1.03 (1.03) 27 (37) 122 (122) 2.01 (2.13)
(1.42, 1.46)

LS-NH 1.40, 1.42 1.03 (1.03) 4 (6) 120 (119) 2.76 (2.88)
(1.39, 1.42)

HH-NS 1.39, 1.42 1.03 (1.03) 6 (7) 123 (124) 2.56 (2.52)
(1.39, 1.43)

LC-NH 1.40, 1.43 1.03 (1.03) 4 (4) 119 (119) 2.69 (2.65)
(1.41, 1.43)

a dN−C represents the average N-C bond length in quinolinium, dN−H the N-H bond
length, θN−H the NH tilt angle (dihedral) with respect to the molecular plane, θC−N−C

the angle between C, N and C in the molecule and dN−Fe represents the N-Fe distance.
Data in brackets represents a vdW-TS corrected result.84 All non-bracketed results
were calculated using PBE. The free quinolinium results were extracted from geometry
optimisation using a cubic 20 Å box to prevent quinolinium self-interactions.
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Figure 5.13. Images of 0◦ and 120◦ rotated PBE-TS optimised quinolinium binding sites.
Views shown above the Fe{110} surface (a) to the side (b) as well as an alternate side
view (c).
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Figure 5.14. Images of 150◦ rotated PBE-TS optimised quinolinium binding sites. Views
shown above the Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 5.15. Image of the 125◦ rotated, N-atop position PBE-TS optimised quinolinium
binding site. Views shown above the Fe{110} surface (a) to the side (b) as well as an
alternate side view (c).
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Vdw-corrected adsorption geometries and energies

Figure 5.16. Comparison of adsorption energies for all PBE (blue) and PBE-TS (red)
optimised quinolinium/Fe{110} sites.

The energies and accompanying geometric data for vdW-corrected DFT optimisation of

all stable quinolinium/Fe{110} sites are summarised in tables 5.9, 5.10 and 5.11. Figures

5.13 , 5.14 and 5.15 show the PBE-TS optimised structures. All seven starting structures are

stable after PBE-TS optimisation and showed minor geometric changes with respect to their

respective starting configuration. As for the adsorption energies all adsorption sites show a

strong increase in adsorption strength, on the order of around 3 eV. The increase is on the

same order as for naphthalene/Fe{110}, a sensible finding given the similar dimensions of

the two adsorbates. The PBE-preferred site (HH-NA) remains the best adsorption site using

PBE-TS, with a 0.2 eV stronger adsorption energy than the second best site. The second

and third best sites also remain in the same relative energetic ordering, however there are

changes in the relative energetic ordering of the weaker sites. This is shown in figure 5.16
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which provides a comparison of the adsorption energies for all PBE and PBE-TS optimised

quinolinium/Fe{110} configurations. Comparisons of PBE-TS changes in relative energetic

ordering observed here for quinolinium will be compared to those seen for benzene and

naphthalene in section 5.4.

5.3.4 Charge density difference

Charge density difference analysis for quinolinium adsorbed on Fe{110} is not as straightfor-

ward as for neutral molecules. This is because these analyses rely on the difference between

the charge density of adsorbed and isolated gas-phase components. Simply applying a +1

charge to the gas-phase adsorbate in its adsorbed configuration is not representative of

the charge density of the adsorbed ion, as it no longer carries the full +1 charge due to

the transfer of charge with the surface. Additionally, the surface becomes charged in the

adsorption process, and should therefore carry charge somewhere between 0 and -1. This is

problematic, as applying a portion of charge to the clean Fe surface will result in it localising

quite differently compared to a situation where an adsorbate is present. Specifically, the

charge will distribute uniformly across the surface, whereas in the case of quinolinium

adsorption, it would be rather localised in the upper layer beneath the adsorbate. Figure

5.17 shows the effect the charge applied to the adsorbate has upon the charge density

difference plot. The neutral (0) and +1 charge cases are shown for comparison alongside the

+0.26 charge case, where the charge is applied only to the isolated adsorbed configuration

of quinolinium. The +0.26 charge value is extracted from Hirshfeld charge calculation, see

section 5.3.6. The +0.26 configuration quite closely resembles the 0 charge configuration,

which is sensible given that the +0.26 charge is closer to 0 than +1. The +1 charge density

difference shows a notable overall increase in charge density on the adsorbate, namely

extending out on to the H atoms and slightly beyond the molecule. There are arguments

for use of either of the positively charged charge densities, but in order to better represent

the actual charge on the adsorbed species, the +0.26 case will be used for further study

throughout this section.

As with the naphthalene/Fe{110} charge density, the differential charge density distri-
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bution can be compared to the MO diagram for quinolinium, which has been calculated

and is shown in figure 5.18. Compared to the naphthalene MO diagram, it shares more

resemblances than differences, but it is clear the N atom has an effect on the size and shape

of the orbitals. Comparing the computed MOs to the +0.26 plot of charge density difference,

the region of increased electron density (yellow) has a distinct resemblance to the LUMO,

which is sensible given the increase in electronic density. As for the regions of decreased

electron density (blue) which lie above the plane of the molecule, they are less pronounced

but do resemble the HOMO most of all the MOs. These findings are in line with what would

be expected, though it is interesting that for this adsorption configuration, it is less clear

that orbitals aside from the HOMO and LUMO are contributing to stabilising the favoured

adsorption geometry.

Figure 5.17. Comparison of charge density difference as a function of charge applied
to gas phase adsorbate for the HH-NA adsorption site. Configurations are viewed from
above the Fe{110} surface (above) and the side (below). Blue (yellow) regions denote
a decrease (increase) in electron density on the order of 2 × 10−2 electrons/Å3. The
position of the nitrogen atom is indicated (N).
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Figure 5.18. Calculated molecular orbital diagram for quinolinium. The calculated
energies and MOs were obtained using DFT (B3LYP/6-31G(d,p)) as implemented in
Gaussian09.125 The HOMO, LUMO and other MOs are indicated on the diagram. The
position of nitrogen is indicated for all MOs.
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5.3.5 Spin density

The spin densities for the strongest three quinolinium/Fe{110} adsorption sites, which all

feature N in the atop position, are shown in figure 5.19. As is observed for naphthalene, the

surface induces spin polarisation in quinolinium, which is not normally spin polarised in the

gas-phase. Regions of minority spin can be seen following the C-C and C-N bonds, and in all

cases the N-H group appears to be of minority spin. Beneath the adsorbate, regions of spin

majority can be observed, and most of the H atoms associated with aromatic C atoms are of

majority spin. There are insignificant differences between the spin density plots for the top

three adsorbates, which is perhaps a further hint that the N plays a significant role in the

adsorption mode of the molecule upon the surface, i.e. only the quinolinium MOs which

favour N-Fe alignment participate in charge transfer at the surface.

5.3.6 Atomic charges and spin

Hirshfeld charges and spin for the preferred HH-NA quinolinium adsorption geometry on

Fe{110} are presented in table 5.12.

Regarding charges, the same comment which has been made for benzene and naph-

thalene/Fe{110} must again be made; a higher k-point sampling (4 × 4 × 1 MP mesh) has

been employed for charge calculation, so the non-zero sum of charges (-0.07 e) is most

likely due to rounding in the CASTEP-derived Hirshfeld charge output. The charges show

an overall positive charge on the molecule, which results as a combination of negative

charge on C and N atoms and larger positive charge on the H atoms. This behaviour is

overall consistent with the picture provided by the charge density difference plot in section

5.3.4, which shows regions of increased charge density above C and N atoms, and regions

of charge density decrease in the vicinity of H atoms. The slab carries a negative charge

which is expected given the positive charge on the adsorbate. Similarly to benzene and

naphthalene, the PBE and PBE-TS-derived Hirshfeld charges show only minor differences.

A small negative charge (-0.03) appears on the quinolinium N atom. This is due to the

stronger electronegativity of N compared to C, which draws electron density away from

surrounding C atoms. This behaviour has been observed for other similar aromatic system
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Figure 5.19. Images of top three PBE-TS optimised quinolinium binding site spin
densities. View from above the Fe{110} surface. Blue (yellow) regions denote minority
(majority) spin minority regions on the order of 3 × 10−3 electrons/Å3. The position of
the nitrogen atom is indicated (N).
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with N-heteroatoms.239

As for spin, the C and N atoms all are minority spin polarised, while the H atom grouping

is only very slightly majority spin polarised (0.01 µβ). This is consistent with the spin density

plot shown in 5.3.5. The very low majority spin contribution of the H atoms is consistent

with that seen for naphthalene on Fe{110}. The slight difference between the metal slab

sum for PBE and PBE-TS is also observed for quinolinium/Fe{110}, and relates to additional

attractive interactions between Fe atoms which results in more strongly coordinated upper

layers, and thereby reduced spin. Aside from this difference, PBE and PBE-TS spin show

only minor differences.

Table 5.12. Calculated Hirshfeld charges and atomic spin results for HH-NA
quinolinium site on Fe{110}

Atom group charges (e) charges (e) spin (µβ) spin (µβ)
PBE PBE-TS PBE PBE-TS

C9NH +
8 sum 0.26 0.25 -0.51 -0.50

C sum -0.22 -0.23 -0.49 -0.48
H sum 0.51 0.51 0.01 0.01
N -0.03 -0.03 -0.03 -0.03
Metal slab sum -0.36 -0.32 221.88 220.30

5.3.7 DOS and PDOS

The PDOS for the HH-NA quinolinium/Fe{110} adsorption site in figure 5.20 (C-Fe pair)

and figure 5.21 (N-Fe pair). As with all other PDOS plots shown, the atom pairs are chosen

because they feature surface and adsorbate atoms in very close contact, therefore having the

highest probability of showing electronic structure changes. As with naphthalene/Fe{110}

PDOS (section 5.2.7), the assignment of orbital identities to peaks in the C and N spectra is

challenging, and shall feature in a future work.

Looking first to the C-Fe PDOS shown in figure 5.20, the usual shift of adsorbate orbital

peaks to stronger binding energies can be seen, although the shifts are less significant than

for naphthalene/Fe{110}. This is also reflected generally in the Fe PDOS, where a minor
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shift towards stronger binding energies of minority spin states can be observed. This results

in a reduction of the number of minority spin states at the Fermi level. The majority spin Fe

PDOS remains relatively unchanged compared to the clean Fe{110} surface.

The N-Fe pair PDOS plot shown in figure 5.21 shows several of the same trends as the

C-Fe PDOS. Namely, the shift of minority spin Fe states to higher binding energies resulting

in fewer minority spin states at the Fermi level. The Fe PDOS shows new peaks at binding

energies between -6 eV to -8 eV compared to the clean Fe{110} surface which arise from the

N orbitals, as can be seen from the match between the two plots. As for the comparison of

gas-phase N and adsorbed N, the peaks at low energies show relatively good a match from

-10 eV to -8 eV, after which point they have shifted towards stronger binding energies or

broadened due to their interaction with the Fe 3d states. The disappearance of adsorbed-N

orbital PDOS peaks occurs slightly earlier than for the C-Fe pair.
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Figure 5.20. Projected density of states (PDOS) for quinolinium on Fe{110} in the
HH-NA adsorption geometry. The upper plot shows the majority spin and minority spin
PDOS for Fe atom 91 before (black) and after adsorption (red). The lower plot shows C
atom 4 within quinolinium in the gas-phase (black) and after adsorption (red, majority
spin and minority spin shown). The Fermi energy (EF ) has been set to zero and is
indicated by a black dashed line. The gas-phase quinolinium DOS has been aligned with
the lowest energy C(2s) peak for adsorbed quinolinium, as this level is not expected to
be involved in the adsorption process.
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Figure 5.21. Projected density of states (PDOS) for quinolinium on Fe{110} in the
HH-NA adsorption geometry. The upper plot shows the majority spin and minority spin
PDOS for Fe atom 90 before (black) and after adsorption (blue). The lower plot shows
the N atom within quinolinium in the gas-phase (black) and after adsorption (blue,
majority spin and minority spin shown). The Fermi energy (EF ) has been set to zero and
is indicated by a black dashed line. The gas-phase quinolinium DOS has been aligned
with the lowest energy N(2s) peak for adsorbed quinolinium, as this level is not expected
to be involved in the adsorption process.
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5.3.8 Workfunction

The change in workfunction upon adsorption has been studied for the top PBE-TS opti-

mised adsorption geometry, the HH-NA site. The results are listed in table 5.13. The

methodology used to obtain these results is identical to that used to study benzene and

naphthalene/Fe{110}, see chapter 4 for more details.

There is a difference of 0.02 eV between the PBE and PBE-TS quinolinium/Fe{110}

φ and also ∆φ. This difference is similar to that found for benzene/Fe{110} and naph-

thalene/Fe{110}. The workfunction for the adsorbate/metal slab system has been reduced

by 1.82 eV (PBE-TS) compared to the pure metal surface. This result is also in line with

other results in this thesis, however it appears the presence of the nitrogen reduced the

workfunction more than the C and H containing naphthalene (-1.51 eV). The significance of

these differences is considered and discussed in section 5.4.

Table 5.13. Calculated Workfunction (φ) results for quinolinium on Fe{110}
(HH-NA site)a

Method Evac(eV) EF(eV) Fe{110} C9NH +
8 /Fe{110} ∆φ (eV)

φ (eV) φ (eV)

PBE -3.38 -6.44 4.90 3.06 -1.84
PBE-TS -3.38 -6.42 4.86 3.04 -1.82

a Evac represents the vacuum energy, EF represents the Fermi energy and
∆φ represents the difference between the C9NH +

8 /Fe{110} φ and bare
Fe{110} φ.

5.4 Discussion and Conclusions

In this section, the results of sections 5.2 and 5.3 on naphthalene and quinolinium adsorption

on the Fe{110} surface are compared and discussed. It is useful to make comparisons between

naphthalene, quinolinium and benzene adsorption on Fe{110} given that benzene is a subunit

in both naphthalene and quinolinium. The naphthalene and quinolinium comparisons are

for this reason extended to the results of benzene/Fe{110} calculations from chapter 4.
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Following this, the results of naphthalene adsorption on Fe{110} are compared to results for

naphthalene adsorption on other flat transition metal surfaces. Conclusions follow this final

discussion section.

5.4.1 Benzene, Naphthalene and Quinolinium on Fe{110}

Overall, the results show quinolinium adsorbs more strongly to the Fe{110} surface than

naphthalene, with or without the inclusion of the TS correction. PBE (PBE-TS) results

show a difference of 1.07 eV (1.03 eV) between the most strongly bound quinolinium

and naphthalene adsorption sites. It is also interesting that the preferred adsorption ge-

ometry is equivalent using PBE (HH for naphthalene and HH-NA for quinolinium) while

with PBE-TS, a shift in relative adsorption energetics results in naphthalene preferring to

adopt the very high symmetry LC site while the HH-NA quinolinium geometry remains the

preferred site for quinolinium. As discussed, there are also changes in relative energetics for

quinolinium/Fe{110} adsorption geometries, but only among the less favourable adsorp-

tion geometries. The top quinolinium adsorption sites all share the common feature of N

adsorbing in a tetravalent orientation above an Fe atom, which demonstrates that this is

an important feature in providing strong adsorption of quinolinium on the surface. It also

explains why PBE-TS does not impact the relative energetic ordering of top adsorption sites,

as vdW interactions play a less important role than for naphthalene, where such interactions

dominate. Clearly, vdW interactions still play an important role in the adsorption behaviour

of quinolinium; indeed, this can be seen in the strong effect the TS correction has on all the

quinolinium adsorption energies. It does, however, appear that these interactions do not

play the dominant role in the determination of best adsorption geometries for quinolinium

on Fe{110}. As for benzene/Fe{110}, the change in PBE-preferred (H-type sites) and PBE-

TS-preferred (S-0◦) provides a similar picture to the change in preferred adsorption site for

naphthalene/Fe{110}. As expected, PBE-TS adsorption energies for naphthalene (-5.68 eV)

and quinolinium (-6.71 eV) are significantly stronger than for benzene (-3.45 eV). It is also

of little surprise to see the naphthalene and quinolinium energies just under double that of

benzene, as there are 40% more atoms (C and N) which participate in direct surface binding
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interactions.

To better quantify the difference in adsorption energy offered by substitution of a C atom

(in naphathalene) with a N atom (in quinolinium), additional calculations have been carried

out (results shown in figure 5.22). In these calculations, the preferred quinolinium adsorption

geometry (HH-NA) has had its N atom substituted by a C atom, and the energy of this new

adsorbate/surface system has been evaluated (without relaxation). The approximation

which is made in this case is that the quinolinium structure is identical to that of optimised

naphthalene, which in reality is not the case (for example, the C-N bond lengths are

different to C-C bond lengths, and also are slightly different on either side of the pyridinyl

ring). If the structure were relaxed, the naphthalene configuration would likely convert

to the HH site, which has slight structural differences to the HH-NA site geometry. The

geometric and energetic differences between the HH-NA quinolinium geometry, HH-NA-

derived naphthalene geometry and the HH naphthalene geometry are shown in figure 5.22.

The energy differences show that the N atom contributes just over 1 eV to the PBE-TS

adsorption energy. There is a difference of 0.09 eV between the HH and HH-NA-type

naphthalene adsorption sites, which confirms a slight difference in preferred adsorption

geometry for naphthalene compared to quinolinium.

Figure 5.22. Side views of quinolinium HH-NA site, naphthalene in the identical HH-NA
geometry and naphthalene in the optimised HH geometry. These are shown alongside
the differences in adsorption energy (∆Eads) between the three adsorption geometries.

The charge density difference gives clues as to the MOs involved in the adsorption

process. In comparing the charge density differences across the HH and HH-NA sites for

naphthalene and quinolinium respectively, it is little surprise to see similar charge density

plots. In observing figures 5.7 and 5.18 which show the MO diagram for naphthalene and

quinolinium, N does have an effect on the energies and overall shape of the orbitals, but
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there is still a strong similarity to the naphthalene MO diagram. Other notable differences

between the MO diagrams lie in the HOMO-LUMO gap energies, where naphthalene (∆E =

4.80 eV) has a larger gap than quinolinium (∆E = 4.29 eV). The smaller gap for quinolinium

offers further insight as to why it has stronger adsorption energy compared to naphthalene; a

smaller HOMO-LUMO gap is indicative of higher reactivity. In comparing the naphthalene-LC

and quinolinium-HH-NA charge density difference plots, few comparisons can be drawn.

The LC density distribution shape is quite dissimilar to any other shown in this chapter,

demonstrating that a different set of orbitals are involved in stabilising the LC site. The

same can be said of the spin density shown in figure 5.8. The PDOS analysis will be key to

ascertaining the exact orbitals which hybridise with iron 3d orbitals to stabilise adsorption

geometries; this assignment and analysis is planned for a future work.

Table 5.14. PBE-TS Hirshfeld charges for benzene (H-0◦ site), naphthalene
(HH site) and quinolinium (HH-NA site) adsorption geometries on Fe{110}

Charges (e) C6H6 (H) C10H8 (HH) C9H8N+ (HH-NA)

Charge on molecule 0.10 0.14 0.26
Charge on C -0.23 -0.29 -0.22
Charge on H 0.33 0.43 0.51
Charge on N - - -0.03

Charge on slab -0.19 -0.22 -0.36

Table 5.14 summarises the Hirshfeld charges of interest for the H-0◦ site of benzene/Fe{110},

HH site for naphthalene/Fe{110} and HH-NA site for quinolinium/Fe{110}. It is worth

mentioning that HH is not the preferred PBE-TS geometry for naphthalene on Fe{110}, but

in order to compare the charges on structurally similar benzene and quinolinium adsorption

geometries, it was selected over the preferred LC geometry for this analysis. Table 5.14

shows that across all adsorbate/surface systems, the adsorbate carries an overall positive

charge while the metal slab carries a negative charge. In all cases, the carbon atoms carry

negative charge while H atoms carry positive charge. This is in line with charge density

difference plots for naphthalene and quinolinium (figure 5.6) showing electron density

increase on C atoms and decrease on H atoms. As for the charge on the slab, it is negative
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Table 5.15. PBE-TS calculated workfunction
(φ) results for best sites of benzene, naphtha-
lene and quinolinium adsorption on Fe{110}a

Adsorbate/Fe{110} φ (eV) ∆φ (eV)

Benzene 3.70 -1.16
Naphthalene 3.35 -1.51
Quinolinium 3.04 -1.82

a φ represents the adsorbate/Fe{110}
workfunction and ∆φ represents the dif-
ference between the adsorbate/Fe{110} φ
and bare Fe{110} φ (4.86 eV).

for all adsorbates, and counters the positive charge which appears on the molecule. Across

the three adsorbates and metal slabs, in general the magnitude of charge increases from

benzene to naphthalene and finally is largest for quinolinium.

Workfunction values for quinolinium, naphthalene and benzene adsorbed on Fe{110} are

compared in table 5.15. As with the trend in adsorption energies, the strongest workfunction

change is observed for quinolinium, followed by naphthalene and benzene. Again, the N

atom in quinolinium has a significant effect in further reducing the workfunction (on the

order of -0.31 eV) compared to naphthalene.

5.4.2 Naphthalene and heteroatomics on other surfaces

DFT studies of naphthalene adsorption on metal surfaces are surprisingly uncommon; as

of writing this, there are the studies of Morin et al. 173 on Pt{111}, Santarossa et al. 209

on Pt{111}, Pd{111} and Rh{111} and that of Maurer et al. 75 on Ag{111}, Cu{111} and

Pt{111} using PBE+vdWsur f . The three studies are conducted on flat fcc metal surfaces, and

the two first studies neglect to use vdW-corrected DFT. As mentioned in chapter 4, limited

comparisons can be made between the flat fcc{111} and bcc{110} because the coordination

number (CN) of atoms at either surface is different (surface fcc atom CN = 9, surface

bcc atom CN = 6). The work of Santarossa et al. 209 mentions that the influence of vdW

interactions should not significantly affect the adsorption properties because chemisorption
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occurs between the adsorbate and metal surface. Based on the results in this thesis, it is true

that many properties are not substantially affected by the application of the TS correction

(the geometry of adsorption, charge and spin density distributions and the workfunction

for example), but the application of PBE-TS has a non-negligible effect on the relative

stability of naphthalene adsorption sites. Specifically, the use of PBE-TS stabilises the highly

symmetric naphthalene LC site such that it is favoured over the PBE-preferred adsorption

site, HH. There is the possibility that the use of PBE-TS overly stabilises the LC site compared

to other vdW correction schemes given its tendency for overbinding, but even the more

sophisticated optB88-vdW functional used by Hensley et al. 96 to study benzene/Fe{110}

shows changes in relative energetic ordering of benzene adsorption sites. The conclusion

which should be drawn from this evidence is that the influence of vdW-corrected DFT cannot

be ignored to provide an accurate representation of the behaviour of naphthalene adsorbed

on metal surfaces. Disregarding the effect of vdW-corrected DFT, the works on naphthalene

adsorption on more reactive fcc metal surfaces (i.e. Pt, Pd and Rh) show preferential

adsorption at di-bridge sites, where both benzyl rings are centered on bridge sites.173,209 The

emphasis on reactive fcc metals should not be understated, as the work of Maurer et al. 75

shows adsorption on flat coinage metal surfaces to occur with benzyl rings centered above

hollow sites. The findings for reactive fcc metal surfaces are in line with results for benzene

adsorption on the same fcc surfaces, which shows preferential adsorption centered on the

bridge site. According to the same logic, it makes sense to see naphthalene/Fe{110} in the

HH site using PBE given that the H-0◦ and H-30◦ benzene/Fe{110} are preferred using PBE.

Upon application of the TS correction, in both cases bridge-centered sites are preferred; the

S-0◦ for benzene and the new LC site for naphthalene.

In closer relation to the motivation for the work in this thesis, it is relevant to compare our

results to those of similar corrosion inhibitor fragments on iron surfaces. DFT calculations

have been carried out on a series of cyclic molecules containing N (pyrrole), O (furan) and S

(thiophene) atoms on Fe{110} by Guo et al. 201 Across the three adsorbates studied, all prefer

to adsorb in flat-lying adsorption geometries on the Fe{110} surface and also tend to donate

electron density to the surface to an extent which correlates with observed experimental
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inhibition efficiency trends (O < N < S). This also is in line with the finding from this thesis,

which is that an aromatic adsorbate without heteroatoms donates less electron density

(+0.16 e) to the surface than a heteroatom-containing version (+0.24 e). As the authors

of the paper make use of Hirshfeld charges to describe charge transfer, those can also be

directly compared to data from this thesis. The charges they derive (furan: 0.09e , pyrrole:

0.15e , thiophene: 0.17e) demonstrate they are all of lower electron donating ability than

quinolinium.

There is also the work of Kumar et al. 71 which studies the adsorption behaviour of henna

extract, including lawsone (2-hydroxy-1,4-naphtoquinone) which has the best inhibition

efficiency of all henna extract molecules and bears some resemblance to both naphthalene

and quinolinium. Aside from the fact that they study adsorption on the Fe{100} facet as

opposed to the flat Fe{110} surface studied in this work, certain interesting comparisons can

be made. First, compared to the other two molecules studied (gallic acid and α-D-glucose),

the preferred adsorption geometry for lawsone is much more flat-lying and has a far stronger

adsorption energy upon the Fe{100} surface. Gallic acid in particular is of a similar planarity

to lawsone and contains almost the same number of atoms, albeit two more oxygen atoms

and lesser aromaticity (substituted benzene ring). A comparison of the results of Kumar

et al. and from this thesis demonstrate that in addition to heteroatom substitution, the

choice of aromatic inhibitor scaffold is also an important element found within excellent

corrosion inhibitors. In particular, naphthalene-type scaffolds tend to result in improved

corrosion inhibition compared to benzene-type scaffold. This is supported by the results

of Schmitt and Bedbur 228 , where the application of compounds containing naphthalene

scaffolds exhibited far lower steel corrosion rates compared to molecules containing one or

even multiple benzene groups instead.

Conclusion

In this chapter, the adsorption behaviour of naphthalene (C10H8) and quinolinium (C9H8N+)

on the flat Fe{110} surface are studied using DFT. The results reveal significant differences

between the adsorption mode of these two molecules, particularly when vdW-corrections
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are applied to the calculations. First, the PBE adsorption energy for naphthalene in the

preferred HH site (Eads = -2.66 eV) is weaker than that for quinolinium in its preferred

site which is analogous to HH (called HH-NA) (Eads = -3.73 eV). This is also true of the

PBE-TS case, where the preferred naphthalene adsorption site (LC) (Eads = -5.68 eV) is still

significantly weaker than the preferred quinolinium adsorption site HH-NA (Eads = -6.71 eV).

In both cases, there are changes in relative energetic ordering of the adsorption sites; in

the case of quinolinium, this is mainly for the less favourable sites while for naphthalene,

a less favourable PBE-optimised site becomes the most stable adsorption geometry using

PBE-TS. In all preferred quinolinium adsorption sites, the N atom is found in an atop site

on the surface; prior DFT work on NH3 adsorption on Fe{211} supports this finding, as it

enables nitrogen to adopt a favourable tetravalent arrangement.238 The PBE-TS preferred

naphthalene site LC exhibits high symmetry at the surface, and the charge density difference

suggests the naphthalene MOs involved in adsorption are unlike those seen for any of the

other naphthalene/Fe{110} adsorption sites. Quinolinium adsorption is found to decrease

the Fe{110} workfunction (∆φ = -1.82 eV) to a greater extent than naphthalene (∆φ

= -1.51 eV), again demonstrating the strong effect the N heteroatom has upon the metal

surface. Parallels can readily be drawn to the benzene/Fe{110} system studied in using DFT

in this thesis as well as in prior published work,96 including similar adsorption geometries

both with and without the application of the TS vdW correction.
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Chapter 6

NMQ+: Gas-phase and Adsorbed on

Fe{110}

6.1 Introduction

A highly effective ACI, offering protection to a wide range of steel surfaces under the acidic

conditions and elevated temperatures present in oilfields, is Naphthylmethyl Quinolinium

Chloride (NMQCl).228 The adsorption mechanism of cationic NMQ+ is not known, although it

is suspected to be driven by electrostatic forces and chemisorption.

In this introduction, the NMQCl and NMQ+ species are introduced alongside research

on their known effectiveness as ACI (section 6.1.1). Some of the research on ACI presented

in this chapter has already been presented in chapter 5, but particularly relevant works are

highlighted again here in section 6.1.2, with an emphasis on molecules similar to the gas

phase NMQ+ species.

In section 6.2, the results of the molecular DFT study of the gas-phase and solvated

NMQ+ cation are presented. This includes conformational study of the ion, a closer look

at its gas-phase properties as well as the impact of solvation effects. In section 6.3, the

adsorption behaviour of the NMQ+ ion on the Fe{110} surface is presented. All results

are discussed in section 6.4 and compared to the Fe{110} adsorption results for benzene,

naphthalene and quinolinium presented in chapters 4 and 5.
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6.1.1 NMQCl and NMQ+ as ACI

Figure 6.1 shows the structure of NMQCl. NMQCl has the formula C20H16NCl and the ionic

form of the molecule has the formula C20H16N+. The ion carries a charge of +1. It contains a

naphthyl moiety and quinolinium moiety which are linked through the quinolinium N atom

and one of the naphthalene C atoms by a methyl C. A reported synthesis of NMQCl requires

dissolution of quinoline and 1-chloromethyl-naphthalene in isopropyl alcohol, where the

mixture is allowed to reflux at 95◦C for 6 hours.240 A search of the NMQCl structure within

the literature reveals it features exclusively within corrosion inhibition papers, with a large

portion of these publications comprising patents on novel acid corrosion inhibitor package

formulations in the oil and gas industry.19,34,40,41,228,240–242

Figure 6.1. Naphthylmethyl quinolinium chloride (NMQCl) chemical structure

The earliest published work on the effectiveness of NMQCl in corrosion inhibition

comes from Schmitt and Bedbur 228 , who studied the anti-corrosion properties of eleven

quaternary ammonium compounds in a 10% HCl solution on high purity iron and mild steel

surfaces. The work shows NMQCl to produce the lowest corrosion rate among all eleven

compounds investigated by an order of magnitude. This finding is indicative of the special

anti-corrosive properties of NMQCl, as certain other compounds investigated in the work

of Schmitt and Bedbur have very similar structure. Within the work, improved inhibition
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efficiency is found to be correlated with increasing number of aromatic cycles in the inhibitor

molecule. Patents published a few years later detail the ACI package in use by Schlumberger

Ltd. which features the NMQCl molecule, alongside salts which further improve corrosion

inhibition at oilfield conditions.19,241 A more recent paper also provides further evidence

of good corrosion resistance upon application of NMQCl to steel surfaces.240 Other papers

demonstrate that certain molecules which bear structural resemblances to NMQCl also have

corrosion resistance on steel, other metal surfaces and immersed in other solvents, such as

benzyl quinolinium chloride on nickel immersed in HClO4 for example.228,229,243

A study of the interaction of NMQCl with a Duplex Stainless Steel (DSS) surface has

recently been published.34 DSS surfaces have a heterogeneous microstructure composed

of ferritic (Fe with bcc crystal structure) and austenitic (Fe with fcc crystal structure) steel

phases. They include a slew of alloying elements including Cr, Ni, Mo, Mn and N. These

elements tend not to distribute equally between the austenite and ferrite phases. As DSS

materials present a combination of favourable ferritic and austenitic steel characteristics,

they have found extensive application in the production of oil and gas. During acid-mediated

active corrosion of DSS materials, differences in the elemental composition of the austenite

and ferrite phases promote galvanic corrosion, resulting in significant differences between the

dissolution rate of the two phases.34,244,245 A highly effective ACIP for DSS under these acidic

conditions as well as at the elevated temperatures present in oilfields contains NMQCl.34,228

Scanning Electron Microscopy (SEM)-Energy Dispersive X-Ray (EDX) results shown in the

paper of Ho et al. 34 demonstrate a marked preference by NMQCl for the ferritic phase. The

reason for this selectivity is not well understood.

In solution, NMQCl dissociates to form cationic NMQ+ ions alongside the chloride

counter-ions. Adsorption of the cationic ACI NMQ+ has been suggested to be driven by

electrostatic forces (via ionic interaction with the charged metal surface or higher concen-

tration of ions in the vicinity) and chemisorption (via interaction of the naphthyl group

with the metal surface).40,41 Although a chemically intuitive proposal, little evidence has

been provided to directly support this mechanism. Investigations of any kind to validate

adsorption mechanisms are complicated by a number of considerations. This includes (but
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is not limited to) the poorly understood nature of the steel surface under varied and often

intense oil well conditions, the presence of a multitude of other compounds in the acidising

fluid, some of which are known to enhance the corrosion inhibition of ACI molecules, and

the coupling of results determined at the various time and length scales which determine

corrosion inhibitory action. See chapter 1 for further general discussion of the mode of

action of corrosion inhibitors.

A wide variety of surface structures can be found on steels found within oil wells.25

As discussed in chapter 1, the corrosion process itself may significantly modify the surface

through dissolution of the protective oxide layer, redeposition of solubilised oxide layer com-

ponents (including Cr and Mo found in stainless steels) as well as redeposition of corrosion

byproducts, the nature of which depend on the corrosion environment.72 Redeposition aside,

steels such as DSS present different microstructural islands at the surface, which also can

differ significantly from the bulk alloy due to segregation of certain alloying elements to the

surface. In order to validate our models and to study the effect of ACI on the major compo-

nent of steels i.e. iron, we have opted to simulate adsorbates on a pure bcc Fe surface. For

reasons outlined above, this is a relatively common approach in the periodic DFT corrosion

inhibitor literature to date. We plan to work on different surface structures in the future,

see chapter 7 for more detailed information on such research directions.

6.1.2 Related works

Gas Phase NMQ+

Cinchona alkaloids are a class of molecules which occur in the bark of Cinchona genus trees.

This class of molecules has been of interest given their application as anti-malarial drugs,

but in more recent times have been intensely studied for their application within heteroge-

neous and homogeneous enantioselective organocatalysis. One of the more heavily studied

cinchona alkaloids which bears a structural resemblance to NMQ+ is Cinchonidine (CD).

CD (chemical formula: C19H22N2O, see figure 6.2) enhances the rate of enantionselective

hydrogenation of α-ketoesters (Orito reaction) by 1-2 orders of magnitude. It is formed

of two different moieties, namely the heteroatomic aromatic quinoline ring as well as the
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quinuclidine ring. The two groups are connected by a methanol group. The consensus

view in terms of the role CD plays in asymmetric synthesis is that CD orients the reactant

molecule (an activated ketone) in a special way on a platinum surface which favours one of

two enantiopure alcohols.5,246 The CD structure is highly reminiscent of the NMQ+ scaffold,

although CD is charge neutral, which could result in some significant differences in reactivity.

Figure 6.2. Cinchonidine (CD, C19H22N2O) molecule with different moieties indicated.
The torsional angles τ1 and τ2 are also shown, which are used to describe the results of
conformational search. Figure adapted with permission from Ref. 5 (A. Baiker, Chem.
Soc. Rev., 2015, 44, 7449) - Published by The Royal Society of Chemistry.

Given the important role CD plays in enantioselectivity, there have been a number of

experimental and quantum chemical studies to determine the preferred gas-phase geometry

of the CD molecule, see the review of Baiker 5 as well the more computationally-focussed

review of Tanriver et al. 247 In particular, the flexible methanol linker allows for a rich

conformational space, where the quinuclidine and quinoline ring systems can be positioned

in various favourable orientations with respect to each other. Typically, these orientations

are described by torsional angles τ1 and τ2 (see figure 6.2) but can also depend on other

factors, such as the orientation of the methanol linker for example. The study of Dijkstra
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et al. 248 reports the first X-ray structure of a cinchona alkaloid alongside combined NMR

and molecular mechanics level calculations to probe a number of different molecules’

conformational space. They identify four low-energy conformers for each molecule studied,

which differ in energy by up to around 5 kcal/mol (0.22 eV). As for cinchonidine specifically,

a combined 2D NMR-DFT study by Urakawa et al. reveals eleven low-energy structures

which differ at most by around 7 kcal/mol (0.30 eV).249 The later DFT conformational study

of Kristyan 250 should also be noted, as it additionally studies the interaction of various

CD conformations with the reactant, methyl pyruvate. Cinchona alkaloid conformers are

categorised either by being closed or open, which refers to the positioning of the quinuclidine

nitrogen; if it is oriented toward the aromatic quinoline rings then it is considered to be a

closed conformer, and if it is pointing away from the quinoline then it is considered to be

an open structure.251 Other studies show that the preferred conformations are impacted by

a number of factors including solvent, solutes, temperature, self-interactions, protonation

as well as the surface in cases of adsorption.5,249,250,252 All these considerations support the

complexity of the conformational landscape of cinchona alkaloids.

Adsorbed NMQ+

There are a few experimental studies of the corrosion inhibition behaviour of NMQCl.34,228,240

There is, however, a large number of experimental corrosion inhibition studies which

employ structurally similar molecules to NMQ+ as ACI. The study of Abboud et al. 253 of 5-

naphthylazo-8-hydroxyquinoline in contact with 1M HCl-immersed mild steel via weight loss,

potentiodynamic polarisation, FT-IR, XRD and UV-VIS spectroscopy provides a representative

example. As these studies include the effects of solvent (including acid), corrosion product

redeposition as well as limited characterisation of surface structure at the atomisitic level,

only limited comparisons can be made between the results from this thesis and such literature.

It is more useful to compare the results from this thesis to those from more closely related

and/or simplified studies.

One of the closest research papers in terms of motivation and research methods to the

study of NMQ+/Fe{110} presented in this chapter can be found in the recent publication
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of Guo et al. 77 , where the anticorrosive properties of three chalcone derivatives (aromatic

ketones found in biological systems) are studied on the Fe{110} surface using DFTB. The

DFTB approach enables high-quality computational study of much larger corrosion inhibitor

systems with relative ease, particularly when compared with DFT. An interesting periodic

DFT study conducted by Özcan et al. 254 studies the adsorption of 2-((3-Methylpyridine-

2-imino)methyl)phenol (MPIMP) on Fe{110}, however it should be noted this study is

carried out without the influence of potentially important vdW corrections.254 The results

of these studies are presented and compared to those from this thesis in section 6.4. DFT

aside, as discussed in chapters 1 and 5 there are a number of computational studies of

acid corrosion inhibition which make use of force field-based MD or MC simulation. As

mentioned, these studies typically lack any description of charge or spin transfer which can

be critical to correctly describe the adsorption process. As a result, only limited or qualitative

comparisons should be made to such studies. A recent review79 provides a comprehensive

collection of such studies.

Figure 6.3. Coverage-dependant adsorption modes of cinchonidine on Pt{111} surface.
Coverage increases from left to right. Figure used with permission from Ref. 5 (A. Baiker,
Chem. Soc. Rev., 2015, 44, 7449) - Published by The Royal Society of Chemistry.

Outside the corrosion inhibition research area, the CD molecule which bears structural

similarity to NMQ+ has been scrutinised with respect to its adsorption behaviour on platinum

surfaces, including use of DFT studies. The most relevant experiments, calculations and

their results for the CD/Pt system are listed in the following paragraph.

Experimental work by Ferri and Bürgi using Attenuated Total Reflectance - Infrared
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(ATR-IR) shows that the interaction of cinchonidine in CH2Cl2 solutions with the Pt surface

is dependant on surface coverage (see figure 6.3 for a schematic depiction of the different

adsorption modes).231 In their work, shifts in the CD IR signals show direct interaction of

CD with the metallic surface. At low coverages of CD, the molecule prefers to maximise its

vdW interaction with the surface by binding through the π electrons of the quinoline ring.

At moderate coverages, the H atom bound to the C atom next to the nitrogen atom (α-H) is

abstracted from the molecule, which allows both the α carbon on quinoline and nitrogen to

bind directly to the Pt surface. Finally, at the highest coverages, the CD packs more tightly

by foregoing binding the α carbon atom to the surface and binds instead solely through

nitrogen, giving way to a more upright adsorption geometry of quinoline with respect to the

surface. This is in contrast to the moderate coverage (α-H abstracted CD), in which quinoline

is notably tilted with respect to the surface. In all cases, the quinuclidine group does not

interact with the surface, which is why quinoline is said to act as the anchoring group in the

literature. These results are supported by computational work by Vargas and Baiker, where

the adsorption behaviour of CD on Pt{111} is studied using DFT calculations.230 There

have been many other computational works on this and related systems, to study ion and

molecule co-adsorption,255–257 dynamic effects,258 bimetallic surfaces259 and different chiral

modifier molecules260–262 in addition to the studies on the conformational behaviour of the

isolated molecule in the gas phase.248–250 A number of reviews, some of which cover chiral

adsorption and catalysis more generally, provide a more thorough overview of progress in

this field.6,246,263

6.2 Gas-Phase NMQ+

In this first section of results, the behaviour of isolated NMQ+ in the gas phase is studied

using computational methods. A conformational search for the NMQ+ molecule is first

conducted in order to identify the most energetically favourable conformers, see section

6.2.1. As discussed in section 6.1.2, studies of the similar CD system reveal a relatively

complex conformational landscape with multiple local energy minima, which supports the
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need for conformational search studies of NMQ+.

The conformational search is followed by geometry optimisation using a higher level

of theory. These results are also described in section 6.2.1, and further results derived

specifically for the lowest energy conformers, namely an overview of the MO diagram,

atomic charges and behaviour in aqueous solution are covered in sections 6.2.2, 6.2.3 and

6.2.4 respectively.

The findings from this section serve to guide the DFT study of adsorption of NMQ+ on

the Fe{110} surface, which is presented in section 6.3. The understanding of the gas-phase

behaviour of isolated NMQ+ also serves as a starting point for future work on the behaviour

of solvated NMQ+.

6.2.1 Conformational search

Figure 6.4. The NMQ+ ion with the two torsional angles τ1 and τ2 which are scanned
in the conformational search.

The conformational search of NMQ+ is performed similarly to work described in prior

publications248–250 on gas-phase conformational search on the CD molecule, where the

change in energy is computed as a function of varying two torsional angles which we refer

to as τ1 (centered on the quinolinium group) and τ2 (centered on the naphthyl group). The
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torsional angles τ1 and τ2 on NMQ+ are represented in figure 6.4.

The scan is performed at the semi-empirical level, specifically using the PM6 method

within the Gaussian 09 program.125,129 The torsional angles τ1 and τ2 are varied by 15

degree increments which produces 625 NMQ+ conformers which all undergo PM6-level

constrained geometry optimisation, i.e. geometry optimisation whilst keeping the τ1 and τ2

torsional angles fixed. Using a semi-empirical method allows for a relatively inexpensive

scan with a good level of accuracy, and scan regions of interest can be further refined through

subsequent unconstrained geometry optimisation using a more accurate level of theory.

Figure 6.5. Plot of energy differences (∆E, in eV) resulting from conformational study
of NMQ+. Results are shown for 625 NMQ+ conformers, produced by incremental 15
degree rotation of torsional angles τ1 and τ2, which are geometry-optimised at the PM6
level. The letters A-C and A’-C’ shown on the plot indicate regions of lowest energy
which are studied throughout this section. D and D’ are indicated for use further in this
section. A DFT-optimised NMQ+ configuration is used as the starting point for the scan,
where τ1 = 75◦ and τ2 = -157◦.
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The conformational scan results are shown in figure 6.5. Dark blue regions indicate

the lowest energy conformers while the orange and red regions indicate highest energy

conformers. The scan reveals several regions of minimum energy, some of which are of

relatively similar energy. There are four different regions of minimal energy: The region

including the letters A and B (1), a region of similar shape and size including letters A’ and

B’ (2), the region denoted C (3) and the region denoted C’ (4). As for the region of overall

lowest energy, there are two such points: points B and B’ on figure 6.5. The highest energy

red areas are indicative of NMQ+ conformers where the naphthyl and quinolinium portions

of the molecule are in unfavourably close contact due to the constrained torsional angles

τ1 and τ2. This confirms what is chemically intuitive, which is that the most favourable

conformations of NMQ+ appear when the napthyl and quinolinium groups are in a staggered

conformation.

The low-energy region which includes A’ and B’ and that including C ’ can be seen to

connect by a shallow barrier. Because the plot wraps three dimensionally, regions including

A, B and C are connected in a similar way. A higher energy barrier splits regions A, B and A’,

B’ of minimal energy, however there are lower energy pathways connecting these regions,

which feature conformations on the order of 0.4 eV higher in energy. The scan overall

presents a high level of symmetry, an unsurprising finding given that the molecule itself

presents relatively high symmetry.

The low-energy conformers A-C and A’-C’, along with their PM6 computed energies, are

illustrated in the top of figure 6.6. The labels shown in figure 6.6 correspond to the labels

as shown in the conformational search (figure 6.5). The lowest energy conformers of all are

conformers B (τ1 = 165◦ and τ2 = -98◦) and B’ (τ1 = 135◦ and τ2 = 98◦). Conformers A

and A’ are very close in energy to B and B’, with less than 0.01 eV separating them. C and

C’ are within 0.05 eV of the lowest energy conformers, which indicates that these could be

easily accessed at room temperature (given that kBT = 0.26 eV at 298K).

The semi-empirical PM6 analysis provides a useful starting point for analysis, but to

better understand the energy landscape of NMQ+, the conformations require unconstrained

relaxation, i.e. All degrees of freedom (including the τ1 and τ2 torsional angles) should
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Figure 6.6. Low-energy NMQ+ conformers (A-C and A’-C’) identified by a PM6 coor-
dinate scan as well as the resulting DFT-optimised structures. Energies are shown in
reference to the lowest energy structure for PM6 and DFT-optimised cases, respectively.
The PM6 structures correspond to the labelled regions on figure 6.5.
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be allowed to relax to their preferred orientation. Full DFT-level geometry optimisation is

performed on the low-energy structures A-C and A’-C’ and the resulting optimised geometries

and energies are presented in the lower portion of figure 6.6. DFT optimisation is carried

out using the B3LYP functional and 6-31G(d, p) basis set.

The DFT-level optimisation results in structural changes compared to the PM6-level

constrained optimisation conformers. As a result, the energy differences between different

conformers change and three minima emerge; the lowest-energy B and A’ structures (∆E =

0), the moderately low energy C structure (∆E = +0.10) and finally the highest energy A,

B’ and C’ structures (∆E = +0.17). A selection of PM6-derived conformers aside from those

shown in figure 6.6 have also been geometry optimised using DFT and all converted to one

of these three structures.

The differences between the three DFT-optimised conformers are illustrated in figure 6.7.

Looking first at the lowest energy conformer (hereafter referred to as “B-type”), it can be

further separated into two categories, distinguished by the sign of the τ2 angle (80◦ or -80◦).

These structures are mirror-image rotamers: this is illustrated in figure 6.7. This finding

has important implications, for example for adsorption on chiral surfaces. As for the C-type

conformer, no mirror-image rotamer is identified through the PM6-search, and it features τ1

(75◦) and τ2 (-157◦) angles which are nearly “swapped” compared to the B-type conformer

(τ1 = 177◦ and τ2 = -80◦).

In studying the highest energy conformers, i.e. DFT-optimised C’, A and B’, the τ1 and

τ2 angles they adopt are quite different to their starting values. According to the adopted

angles (τ1 = -62 or 62 and τ2= -63 or 63), this corresponds to the regions labelled D and

D’ in figure 6.5. The PM6 scan correctly identifies this conformer as being less favourable,

on the order of +0.2 eV higher in energy than the B-type conformer, which compares well

with the +0.17 eV difference identified with DFT optimisation. D and D’ conformers are also

mirror-image rotamers, which are again distinguished by the sign of the τ1 and τ2 dihedral

angles.

For the rest of the section as well as for the study of adsorption behaviour upon Fe{110},

the B-type and C-type conformers only are studied. Although interesting, the D-type con-
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Figure 6.7. Three distinct conformers identified from full DFT relaxation of PM6-level
conformer scan. All conformers shown with the naphthyl group perpendicular to the
plane of the page. The relationship between mirror-image B-type and D-type rotamers
is shown. Energy differences shown are in eV.

188



former is significantly higher in energy (∆E = +0.17 eV) as it features a more "closed”

structure compared to the other two conformer types. A full study of the potential energy

landscape, including the study of high energy conformers, transition states as well as the

D-type conformer is planned for future work; see chapter 7.

6.2.2 MO diagram

To better understand the differences between the B and C-type conformers, the molecular

orbitals of these two optimised conformers are studied. Figure 6.8 shows the five highest

occupied and five lowest unoccupied orbital representations alongside their energetics for

conformers B and C. Despite the structural and energetic differences between B and C,

these conformers show the same HOMO and LUMO spatial separation onto naphthyl and

quinolinium moeities, respectively. The DFT-optimised HOMO and LUMO energies are,

however, quite different; the HOMO-LUMO gap for the B-type structure (2.70 eV) is 0.36 eV

larger than for the less favourable C structure (2.34 eV). This results due to the B-HOMO

energy being lower and B-LUMO energy being higher than the C-HOMO and C-LUMO

energies respectively. Again, pre-empting the study of the NMQ+/Fe{110} system, this

could have important implications for the preferred NMQ+ conformer when adsorbed on

the surface. As for orbitals above and below the LUMO and HOMO respectively, there are

some differences between B and C; namely, certain C MOs (LUMO+2, LUMO+3)show more

spreading of orbital density across the entire molecule compared to B and the structure of

C HOMO-2 and HOMO-3 switch compared to the ordering B HOMO-2 and HOMO-3. The

switch is not overly surprising given that HOMO-2 and HOMO-3 are very close in energy.

Otherwise, trends are largely the same for conformers B and C.

Common to both conformers is the localisation of HOMO-1 and LUMO+1 on the same

portions of the molecule as the HOMO and LUMO respectively, while the HOMO-2 and

LUMO+2 localise on opposite portions of the molecule to the previous two MOs. The

HOMO-3 MO (and LUMO+2 and LUMO+3 MOs for conformer C) shows the most spreading

of its MO density across the entire molecule, whereas most other MOs localise more on one

of the two main portions of the molecule. In some cases, the MO extends from one portion
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Figure 6.8. Calculated molecular orbital diagram for B (left) and C (right) type NMQ+
conformers. The calculated energies and MOs were obtained using DFT (B3LYP/6-
31G(d,p)). The HOMO, LUMO and other MOs are indicated on the diagram. The same
view of each MO is shown, where the quinolinium portion (Q) is on the left side of
the structure and naphthyl (N) on the right. The HOMO-LUMO gap energy (∆E) is
indicated.
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of the molecule onto the methyl linker atoms, for example the LUMO.

6.2.3 Atomic charges

Figure 6.9. Gas-phase NMQ+ molecule with accompanying calculated B conformer
Mulliken charges. Charges on carbon atoms are indicated in grey, charge on nitrogen
atoms are indicated in blue, and charges on hydrogen atoms are indicated in black.

The computed Mulliken charges on the B3LYP-optimised NMQ+ B conformer are shown

alongside the NMQ+ structure with accompanying labels in figure 6.9. In the calculation,

a +1 charge is applied to the entire molecule. The Mulliken charges demonstrate that

the N atom carries negative charge (-0.54 e) while two of the three surrounding C atoms

each carry a positive charge. This is because nitrogen is more electronegative than the

surrounding C atoms. This is in line with the results found for Mulliken charge distribution

near N on quinolinium as shown in figure 6.10 as well as with results from other work on

other N-heterocycles.239

In comparing the NMQ+ charge distribution to that of quinolinium (see figure 6.10), the
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Figure 6.10. Quinolinium (top) and naphthalene (bottom-right) molecules with com-
puted Mulliken charges. Charges on carbon atoms are indicated in grey, charge on
nitrogen atoms are indicated in blue, and charges on hydrogen atoms are indicated in
black.

H atom connected to N also carries a positive charge (+0.32 e) which is greater than all other

H atoms. However, the methyl-C in the same position in NMQ+ carries a negative charge

(-0.13 e). There are several reasons why this behaviour is observed. Firstly, the methyl-C is

not a part of the aromatic cycle, and therefore charge may be less readily withdrawn from it

by N. Second, C is more electronegative than H, and therefore has a stronger tendency to

retain its charge compared to H in an equivalent position. Third, the C atom on the naphthyl

group which connect with the methyl-C has less negative charge (-0.03 e) than all other

negatively charged C atoms within the naphthyl linker. This demonstrates that the methyl-C

is more electron withdrawing than the naphthyl-C, which likely is due to its proximity to the

highly electron withdrawing N atom. Finally, the charge on C in methane using 6-31G(d,p)

has been calculated to be -0.47 e, which is significantly more negative than the methyl-C

value within NMQ+.264 As for the charges on NMQ+-naphthyl, they compare very well with
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the charges on isolated naphthalene (see figure 6.10), and show the greatest differences

nearer to the methyl linker.

6.2.4 Solvation

The solvation energy of both B and C conformers has been calculated using the polaris-

able continuum model (PCM) within the Solvent Cavity Reaction Field (SCRF) method

implemented in Gaussian 09.125,128 The result is shown in table 6.1 below. Interestingly, the

energetic separation of conformers B and C is reduced from 0.10 eV to 0.03 eV, meaning

that once in aqueous solution the conformers are much closer in energy. This is also an

indicator more generally that a high energy conformer in the gas phase won’t necessarily be

the preferred conformer in solution and/or at the metal surface, which is what has been

observed previously for the similar CD system in solution and on the platinum surface.230,249

It is important to note here that the SCRF approach simply studies the B or C-type structures

within a polarisable medium without allowing for any structural changes to the molecule

(see chapter 2 for more detailed information about the SCRF methodology). It is expected

that the structure could change significantly under aqueous conditions, as well as for explicit

water molecules to react with NMQ+. Further solvation studies of the NMQ+ ion, including

interaction of NMQ+ with explicit molecules, form part of planned future work; see chapter

7 for further details.

Table 6.1. Relative energies (given with respect to B) of B and C-type
structures as a function of PCM implicit solvation.

Calculation Method Energy of B (eV) Energy of C (eV)

B3LYP/6-31G(d,p) 0.00 +0.10
B3LYP/6-31G(d,p) + PCM 0.00 +0.03
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6.3 NMQ+/Fe{110}

In this section, the results of DFT study of the adsorption of NMQ+ on the Fe{110} surface

are presented. The topic is introduced in section 6.3.1 with a particular emphasis on the

models used to guide the selection of starting configurations for adsorption on the Fe{110}

surface. The optimised adsorption configurations for NMQ+ on Fe{110} and accompanying

analyses are presented from section 6.3.2 onwards.

6.3.1 Introduction

A number of different hypotheses for the preferred interaction mode of NMQ+ with a metal

surface have evolved over the course of this research project based on existing surface

science and corrosion science literature. The following section presents the arguments which

support and challenge certain proposed adsorption models. The models selected for study

help ascertain the simulation parameters, which are presented and discussed later in this

section.

NMQ+/Fe{110} Adsorption: Models

There are a number of ways in which NMQ+ can plausibly interact with a metal surface.

In order to simplify studies of this model system, the steel surfaces of industrial relevance

will throughout this work be approximated with bcc iron. Steels are principally composed

of iron, and ferritic steels in particular have bcc-like structure. Alloying elements which

provide steels with their favourable properties will almost certainly have an impact on the

steel’s surface structure and therefore adsorption behaviour. As there have been few studies

of aromatic adsorption on iron more generally, it is sensible to build upon the adsorption

studies in chapter 5 presented on the flat, most energetically stable Fe{110} surface. Future

work is planned for other steel-like, roughened and/or defective surfaces. Chapter 7 provides

more detailed overview of such research directions.

Figure 6.11 shows three proposed adsorption modes for NMQ+ on an iron surface.

Within all three models, chloride counter-anions play some role in the adsorption process
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Figure 6.11. Three possible adsorption models for the interaction of NMQ+ with
Fe{110}.

(note: other anions may be substituted, chloride is mentioned specifically because (1) steel

acid corrosion found in gas and oil wells often takes place in concentrated HCl solutions and

(2) it is the counter-ion found within the NMQCl ACI). The study of Morales-Gil et al. 265

shows that, for a carbon steel substrate immersed in 1M HCl, the oxide/hydroxide film

found on the polished sample dissolves and is replaced by an iron chloride salt film. The

absence of a metal oxide or hydroxide layer in the models shown in figure 6.11 is deliberate;

the Pourbaix diagram (a plot of electrochemical potential against pH for a given material,

see chapter 1) indicates iron is likeliest to be found in the Fe0, Fe2+ or Fe3+ states at the

pH values characteristic of the strongly acidising environments employed in oil wells. The

precise oxidation state is dependant on the applied voltage potential, which is dependant on

the alloy used, chemical species in the vicinity of the electrochemical cell and the extent of

galvanic corrosion among other factors.26 Further X-ray Photoelectron Spectroscopy (XPS)

experiments by Morales-Gil et al. 265 reveal that in the presence of a sufficient concentration

of a known ACI molecule (2-mercaptobenzimidazole), the chloride salt film dissolves and the

inhibitor takes its place, binding directly to the steel surface. The inhibitor used in the work

of Morales-Gil et al. differs from NMQ+ in that it is a N and S-containing heteroaromatic

inhibitor while NMQ+ has only the N heteroatom in the quinolinium group. Despite

these differences, the results of Morales-Gil et al. provide convincing evidence that under

acidising conditions and with a high enough concentration of ACI included, ACI can interact
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directly with the metal surface. As for the CD/Pt system, which has already been discussed

in section 6.1.2 due to its resemblance to the NMQ+/Fe system, ATR-IR spectroscopy

experiments show that it directly interacts with the Pt surface, and it is generally accepted

that enantiodifferentiation occurs thanks to the direct modifier-platinum interaction.5,231

Model 3 presents a situation where NMQ+ interacts through its quinolinium group with

the chloride salt layer formed on top of the metal surface. Although such a situation is

likely to exist at some stage, the evidence presented above points toward direct adsorbate-

metal binding being especially important in corrosion inhibition. From the perspective of

computational feasibility, Model 3 presents a more demanding problem, as it first requires

evaluation of the optimal model for the iron chloride surface. Some DFT work does exist in

this area, specifically on the Fe{100} surface266,267 as well as the Fe{110} surface which also

includes the effect of the electrode potential.192 For the two reasons cited, only Models 1

and 2 will be investigated by way of DFT studies in this thesis. The merits and evidence

which supports the existence of these two models is presented in the following text.

Model 1 features adsorption of NMQ+ through direct interaction of the naphthyl group

with the iron surface. Given the strong interaction of naphthalene and quinolinium with

the Fe{110} surface (chapter 5), it is tempting to put forward a model which features both

naphthyl and quinolinium groups on NMQ+ interacting with the surface directly. Based

on the conformational search presented in section 6.2, all favoured conformers of NMQ+

feature staggered naphthyl and quinolinium groups, so it is improbable for both naphthyl

and quinolinium to interact with the iron surface in their respective preferred configurations.

Within Model 1, the charged quinolinium group is stabilised through interaction with

nearby chloride anions in solution. There has been general support for this mechanism

in the literature, though little evidence has been provided to support it.40,41 Some recent

experimental evidence which supports Model 1 is provided in the work of Ho et al.,34 which

studies the corrosion protection of a DSS surface by NMQ+. DSS presents ferritic (bcc-type)

and austenitic (fcc-type) islands due to the segregation of elements added to the steel to one

of two phases. The adsorption of NMQ+, which was monitored via the carbon concentration

in SEM-EDX, was observed to appear selectively on the lower potential ferrite phase. In other
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terms, NMQ+ selectively adsorbs on the anodic regions of the employed DSS. Because the

quinolinium portion of the NMQ+ molecule carries a significant amount of positive charge,

adsorption to the bare metal surface could preferentially proceed through direct interaction

of the naphthyl group with the metal surface. The publication of Ho et al. also notes that

because the ferrite dissolves more rapidly than the austenitic phase even with NMQ+ present,

there is the possibility that higher local surface area promotes preferential adsorption of

NMQ+. Furthermore, the highest carbon concentrations are observed in crevices and grain

boundaries separating bcc and fcc phases. These findings weaken arguments made for this

first model, as they imply that NMQ+ is drawn to the ferritic phases of DSS because it

presents a larger number of under-coordinated, reactive sites compared to the austenitic

phases.

As for Model 2, it presents an opposite proposal to the Model 1; instead of interacting

with the metal surface through its naphthyl group, NMQ+ adsorbs to the metal surface via

the quinolinium moiety. Initial support for this model is provided by the results presented

in chapter 5, which identify the most stable quinolinium adsorption site on Fe{110} as

having stronger adsorption energy than the most stable naphthalene site on the Fe{110}

surface. The interaction of quinolinium with the metal surface would also be favoured in the

presence of co-adsorbed chloride anions. The adsorption of anionic Cl– on the metal surface

generates localised regions of charge depletion (i.e. image charges) in the metal surface.

This would produce a neutralising area of charge density increase in the metal, which could

favour the adsorption of NMQ+ via its positively charged quinolinium group. These changes

in charge density are illustrated in figure 6.11 Finally, Model 2 is supported by quinolinium

and smaller quinolinium-derivatives presenting corrosion inhibitory action on their own

(although of reduced effectiveness compared to NMQ+).241 In spite of these supporting

arguments, the second model fails to explain why NMQ+ is more strongly attracted to

positively-charged regions of DSS as shown in the work of Ho et al. 34 Additionally, although

solvation is not explicitly being considered in these models, theoretical results from the

literature reveal that the solvation energy of quinolinium is over an order of magnitude

larger (-2.34 ± 0.13 eV) than for naphthalene (-0.105 eV).268,269 This is not an unexpected
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finding given that quinolinium is ionic while naphthalene is not. Although quinolinium

may adsorb more strongly on the iron surface, the strong solvation energy of quinolinium

translates into a higher energy cost to displace its surrounding solvation shell so it may

interact directly with the metal surface.

In the next sections, adsorption configurations which place either naphthalene or quino-

linium in an anchoring position on the surface are studied using DFT. This is done in order

to study proposed Models 1 and 2. Calculations will be guided by the results of our studies

of naphthalene and quinolinium adsorption on the Fe{110} surface (chapter 5) as well as

work done on the conformational stability of NMQ+ in the gas phase (see section 6.2). It is

important to stress that the adsorption studies presented in the following sections do not in-

clude the effect of water, acid, electrochemical potential or any additional ionic species upon

the preferred adsorption geometries of NMQ+ on the Fe{110} surface. The combination of

all these factors is likely to contribute significantly to the real preferred adsorption mode.

The results presented from section 6.3.2 onwards represent an effort towards studying the

isolated ACI-metal interactions. The results of this work can be coupled with all the other

components involved in this complex system in the future, for example using a multiphysics

modelling framework.25 A more detailed discussion of these considerations is provided in

chapter 7.

Simulation details and parameters

The simulation parameters used in the study of NMQ+ adsorption on the Fe{110} surface are

included in table 6.2. To accommodate the large size of the NMQ+ adsorbate and prevent

intermolecular interactions, it is necessary to make use of larger cell dimensions than have

been used so far throughout this thesis. The minimal cell dimensions which can be used

are (5 × 5), which results in 150 Fe atoms being used to represent the metal slab. The

total system is composed of 187 atoms including the C, N and H atoms of NMQ+. Due to

the large size of the system (note also the increased vacuum spacing of 18 Å to prevent

unphysical interactions of the NMQ+ molecule with the bulk Fe layers), initial geometry

optimisation is carried out using only the Γ point. Once sufficient convergence is achieved
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at this level, geometry optimisation is carried out at a 2 × 2 × 1 MP mesh until convergence

is achieved. This k-point sampling provides density comparable to an 10 × 10 × 10 k-point

mesh sampling of the conventional bcc cell, which produces distances converged to better

than 0.002 Å, energies slightly lower than 0.01 eV and spin around 0.03 µβ .

Table 6.2. Simulation details and parameters
specific to the NMQ+/Fe{110} calculations

Parameter Value

Vacuum spacing (Å) 18
Cell size (c × c) (5 × 5)
Number of slab layers 6
Number of fixed slab layers 3
MP K-point sampling 2 × 2 × 1

6.3.2 Adsorption geometries and energies

Figure 6.12 shows the six NMQ+/Fe{110} configurations chosen for DFT optimisation.

Three configurations are based on the DFT-optimised lowest energy gas-phase NMQ+ B

conformer and a further three configurations are based on the second low-energy gas-phase

NMQ+ conformer C. The structural differences between these two conformers is shown in

the upper section of figure 6.12. Further discussion of these differences can be found in

section 6.2 where conformational search is carried out. Given the relatively small energetic

separation between low-energy NMQ+ conformers B and C (0.10 eV), it is sensible to study

the adsorption behaviour of both conformers on the Fe{110} surface. This is further justified

given findings from previous works on a similar system (CD/Pt{111}) which demonstrate

that conformers which are of lesser stability in the gas phase can be stabilised on the

surface.230

For each NMQ+ conformer, three unique adsorption sites are studied. For each of the

conformers B and C, two adsorption configurations are based on having the naphthyl group

lying flat on the surface while the other features the quinolinium acting as the anchor for

NMQ+ to the Fe{110} surface. A single flat-lying quinolinium configuration (HH-NA, see
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Figure 6.12. Six starting configurations for NMQ+ binding sites on the Fe{110} surface.
The corresponding anchoring NMQ+ group and its adsorption site is shown on the left.
The two NMQ+ conformers (B and C) used in the adsorption studies are shown at the
top.
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chapter 5) per conformer is sufficient given that the PBE and PBE-TS methods both identify it

as the strongly favoured adsorption site on Fe{110}. As for the naphthyl group, the favoured

PBE and PBE-TS-optimised naphthalene/Fe{110} adsorption geometries are not the same.

PBE identifies the HH site as being preferred while PBE-TS identifies the LC site as being

most favourable. In either case, the energetic separation between HH and LC sites is not

large (around 0.05 eV). It is therefore prudent to study NMQ+ adsorption configurations in

which the naphthyl group serves to anchor the molecule to the surface in different ways, i.e.

HH and LC naphthalene adsorption sites.

The naming scheme used throughout this chapter to describe the six different adsorption

sites accounts for the factors mentioned above and is included within figure 6.12. The first

character, which is either B or C, distinguishes the NMQ+ conformer selected for adsorption.

The second character, either Q or N, depicts how the NMQ+ adsorption site is anchored

to the iron surface, i.e. through the quinolinium (Q) or naphthyl (N) moiety respectively.

The final portion of the adsorption site name depicts the adsorption site of the anchoring

moiety. There are two possibilities here as well: either HH (a 3-fold-hollow-3-fold-hollow

arrangement of either naphthyl or quinolinium) or LC (the long bridge-centred site for

naphthyl which is preferred when the TS correction is applied).

Figures 6.13 and 6.14 provide visual representations of the geometry optimised B and

C conformers on Fe{110}, respectively. Energetic data, including adsoption energies and

distortion energies, are provided in table 6.3. Geometric data is provided in tables 6.4, 6.5,

6.6 and 6.7, which are organised as such to easily compare with prior results for naphthalene

and quinolinium adsorption on Fe{110}. Data unique to the NMQ+ system, mainly regarding

the methyl linker and torsional angles, is included in table 6.7.

In terms of the calculation of adsorption energies, it is first worth noting that as with

quinolinium/Fe{110}, the entire NMQ+/Fe{110} system is treated as being neutral. This

is a valid simplification, as for the purposes of the intended application the iron slab is

earthed, and as a result charge can flow to and from the slab without explicitly including a

charge in the calculation. The energy of gas-phase NMQ+ is necessary for the adsorption

energy calculations and must carry the +1 charge. This is problematic because (1) the
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Figure 6.13. Images of B conformer NMQ+ binding sites. Views shown above the
Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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Figure 6.14. Images of C conformer NMQ+ binding sites. Views shown above the
Fe{110} surface (a) to the side (b) as well as an alternate side view (c).
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energy converges impractically slowly with increasing cell size and (2) adjustments must

be made to the usual calculation method of adsorption energy to balance the charges for

adsorbed and gas-phase components. These issues and their solutions are identical to those

faced for quinolinium/Fe{110}, so are described in more detail in chapter 5. In essence, the

solution to (1) lies in making use of the intercept value as the gas-phase energy when 1/L =

0, while (2) is resolved by incorporating the bare Fe{110} surface workfunction value in the

adsorption energy calculation.

Table 6.3. Calculated optimised energies for NMQ+
adsorption sites on Fe{110}a

NMQ+ Adsorption site Eads(eV) Edist(eV)

C-N-HH -9.85 -
C-N-LC -8.73 -
B-Q-HH -7.23 3.24
C-Q-HH -7.03 2.80
B-N-HH -7.00 2.06
B-N-LC -6.85 2.13

a Eads represents the adsorption energy and Edist

represents the distortion energy upon adsorp-
tion. All data calculated using PBE-TS.84 Distor-
tion energies are calculated with respect to the
most favourable gas-phase NMQ+ conformer, B.

In studying the adsorption energies in table 6.3, it is obvious there are some important

differences between the C-N sites, which feature anchoring of the C conformer through

the naphthyl group, and the B-N, C-Q and B-Q sites. The C-N-HH site in particular is very

strongly favoured, with an adsorption energy more than 1 eV stronger than the second best

site, C-N-LC. This is impressive given that even C-N-LC is strongly favoured compared to the

other four adsorption sites, on the order of 1.38 eV stronger than the strongest of the other

sites (Eads = -7.23 eV for B-Q-HH). Figure 6.14 reveals the reason for these high energy

differences: both C-N-HH and C-N-LC show dissociation of two hydrogen atoms, which

allow for the direct interaction of the quinolinium group with the iron surface. To clarify,

the hydrogen atoms dissociate from NMQ+ spontaneously in the geometry optimisation
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process; this is not imposed nor is the system biased for this process to take place in any way.

Another point of interest is that the hydrogen atoms which dissociate are not the same for

C-N-HH and C-N-LC. On C-N-HH, the two hydrogen atoms dissociate from the quinolinium

group, which allows two quinolinium C atoms to interact directly with the iron surface, each

positioned in 3-fold-hollow sites, with the C-C bond centred on the long bridge between

iron atoms. On C-N-LC however, one dissociated H atom derives from the analogous C

atoms associated with the quinolinium group, but the other dissociated H atom is originally

associated with the methyl linker which connects the quinolinium and naphthyl groups. As a

result, the C-N-LC site shows interaction of its methyl-C and one quinolinium-C with the iron

surface. The quinolinium group shows a very similar orientation with respect to the metal

surface, with the quinolinium-C bound to the surface positioned in a 3-fold-hollow site. The

methyl-C is positioned in an atop position, which is unlike the C-N-HH configuration, where

the methyl-C favours a short bridge site, though this is likely influenced by the positioning

of the quinolinium C atoms binding directly to the metal surface. The adsorption energies

of more weakly bound conformations (all with Eads around -7 eV) are only slightly higher

than the adsorption energies for the strongest PBE-TS naphthalene/Fe{110} site (-5.68 eV)

and quinolinium/Fe{110} site (-6.71 eV) (values taken from chapter 5). This slight increase

is sensible given that the additional methyl group, which is quite close to the metal surface

in all configurations, has some favourable interaction with the surface. This trend does also

reveal what is represented in figures 6.13 and 6.14, which is that conformations which fail

to orient the group which does not interact in a flat-lying geometry with the surface instead

places them up and away from the metal surface as much as possible. This is evidenced in

the longer C-Fe distances in tables 6.4 (for B-Q-HH and C-Q-HH) and 6.5 (for B-N-HH and

B-N-LC).

As for the distortion energies, they reveal significant deformation occurs at the surface

compared to the gas-phase conformer. This is corroborated by the τ1 and τ2 dihedral

angles listed in table 6.7, which show conformations with a range of τ1 and τ2 values.

This is not a result of the difference between B and C conformers, as certain angles differ

significantly from either B or C dihedral angles. These findings confirm the assertion that
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Table 6.4. Calculated optimised geometric parameters for naphthyl group on NMQ+
adsorbed on the Fe{110} surfacea

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free NMQ+-naphthyl 1.40 1.09 0 121 -
C-N-HH 1.45 1.10 21 120 2.12
C-N-LC 1.45 1.10 24 120 2.13
B-Q-HH 1.41 1.10 0 121 4.05
C-Q-HH 1.40 1.09 0 121 4.88
B-N-HH 1.45 1.10 22 120 2.10
B-N-LC 1.46 1.10 20 120 2.11

a dC−C represents the average C-C bond length in the naphthyl portion
of NMQ+, dC−H the average C-H bond length, θC−H the average CH tilt
angle (dihedral) with respect to the molecular plane, θC−C the average angle
between carbon atoms in the molecule and dC−Fe represents the average C-Fe
distance. All data calculated using PBE-TS. The free NMQ+ results were
extracted from a PBE-TS geometry optimisation of the NMQ+ B conformer
using a cubic 40 Å box to prevent NMQ+ self-interactions.

surface adsorption can stabilise conformers which are of lesser stability in the gas phase.

There are a number of unexpected results in this section, but the most surprising of

all is the identity of the most favourable adsorption geometry (C-N-HH) as well as the

spontaneous dissociative adsorption mode. The C-N-HH adsorption site changes very little

from its starting geometry aside from the dissociation of hydrogen atoms. It is the most stable

adsorption site despite featuring the worst of the two naphthalene/Fe{110} adsorption sites

(HH), the worst of the two anchoring groups (naphthalene) in terms of adsorption strength

as well as the higher energy conformer (C). Based on those considerations alone, it might be

reasonable to guess that C-N-HH would be the worst of all adsorption geometries tested,

however geometry optimisation reveals it allows for a particularly favourable orientation

of the non-flat-lying quinolinium group, which can then bind directly to the iron surface

through loss of two H atoms. In order to better understand this adsorption configuration,

the charge density difference, spin density, atomic charge and spin values, workfunction

and PDOS are studied exclusively for the preferred C-N-HH adsorption site throughout the

following sections (6.3.3 to 6.3.7).
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Table 6.5. Calculated optimised geometric parameters for carbon in the quinolinium
portion of NMQ+ on Fe{110}a

site dC−C(Å) dC−H(Å) θC−H(◦) θC−C(◦) dC−Fe(Å)

free NMQ-quinolinium 1.40 1.09 0 120 -
C-N-HH 1.41 1.51 0 121 4.16
C-N-LC 1.40 1.36 0 121 4.39
B-Q-HH 1.45 1.10 22 119 2.12
C-Q-HH 1.45 1.10 24 119 2.14
B-N-HH 1.40 1.09 0 121 4.88
B-N-LC 1.40 1.09 0 121 5.16

a dC−C represents the average C-C bond length in the quinolinium portion of
NMQ+, dC−H the average C-H bond length, θC−H the average CH tilt angle
(dihedral) with respect to the molecular plane, θC−C the average angle between
carbon atoms in the molecule and dC−Fe represents the average C-Fe distance.
All data calculated using PBE-TS. The free NMQ+ results were extracted from
a PBE-TS geometry optimisation of the NMQ+ B conformer using a cubic 40
Å box to prevent NMQ+ self-interactions.

Table 6.6. Calculated optimised geometric parameters for nitrogen
in the quinolinium portion of NMQ+ on Fe{110}a

site dN−C(Å) θC−N−C(◦) dN−Fe(Å)

free NMQ-quinolinium 1.39, 1.34 121 -
C-N-HH 1.39, 1.40 121 2.86
C-N-LC 1.40, 1.40 119 2.67
B-Q-HH 1.45, 1.46 119 2.00
C-Q-HH 1.44, 1.44 120 2.06
B-N-HH 1.40, 1.36 121 3.89
B-N-LC 1.40, 1.36 121 3.95

a dN−C represents the average N-C bond length in NMQ+,
dN−H the N-H bond length, θN−H the NH tilt angle (dihedral)
with respect to the molecular plane, θC−N−C the angle between
C, N and C in the molecule and dN−Fe represents the N-Fe
distance. All data calculated using PBE-TS. The free NMQ+
results were extracted from a PBE-TS geometry optimisation
of the NMQ+ B conformer using a cubic 40 Å box to prevent
NMQ+ self-interactions.
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Table 6.7. Calculated optimised geometric parameters for the methyl linker in NMQ+ on
Fe{110}a

site dC−C(Å) dC−N (Å) θC−C−N (◦) dC−H(Å) τ1(◦) τ2(◦)

free NMQ-methyl (B) 1.49 1.51 115 1.10 80 176
free NMQ-methyl (C) 1.52 1.49 114 1.09 157 75
C-N-HH 1.52 1.46 115 1.10 175 109
C-N-LC 1.49 1.46 116 1.85 155 71
B-Q-HH 1.49 1.50 116 1.10 93 177
C-Q-HH 1.50 1.47 122 1.11 161 73
B-N-HH 1.50 1.49 120 1.12 57 168
B-N-LC 1.50 1.47 119 1.12 80 180

a dC−C represents the C-C bond length in the NMQ+methyl linker, dC−N the C-N bond
length, θC−C−N the angle between C, C and N in the molecule, and dC−H represents
the average C-H bond length on the methyl group. τ1 and τ2 indicate the optimised
torsional angles within NMQ+, and are used identically to the conformer search in
section 6.2.1. All data calculated using PBE-TS. The free NMQ+ B and C results are
extracted from a PBE-TS geometry optimisation of the NMQ+ B and C conformers
using a cubic 40 Å box to prevent NMQ+ self-interactions.

6.3.3 Charge density difference

Charge density difference plots for the C-N-HH site are shown in figure 6.15. Charge density

is shown for two different contour isovalues, i.e. scales at which charge transfer is shown.

This is because the isovalue used throughout this thesis (2 × 10−2 electrons/Å3) fails to

show any change in the electron density on the NMQ+ quinolinium group. This is of special

relevance for the following section 6.3.4 on spin density.

As was done for the charge density difference for quinolinium on the Fe{110} surface (see

chapter 5), the charge on the geometry-optimised configuration of the adsorbate (+0.07 e) is

used in the charge density difference calculations. The plots show regions of charge increase

surrounding both dissociated hydrogen atoms. There are also some regions showing charge

density decrease above and surrounding these regions of increased density. This supports the

fact that H is binding directly to surface Fe atoms which as a result modifies the surrounding

surface charge density. As for the NMQ+ scaffold, it is helpful to separate it into its different

components and analyse them separately. First, the naphthyl moeity charge density can
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Figure 6.15. Comparison of charge density difference as a function of contour isovalue
(values shown on figure). Charge applied to gas-phase NMQ+ is +0.07 e, the Hirshfeld-
derived charge identified on adsorbed C-N-HH. Configurations are viewed from above
the Fe{110} surface (top) alternate rotated view from above (middle) and from the side
(below). Blue (yellow) regions denote a decrease (increase) in electron density on the
order shown on the figure.

209



be independantly studied. Given that it interacts with the surface very similarly to the

naphthalene HH site on Fe{110}, it is unsurprising that the charge density difference should

distribute in quite a similar way, with charge density increasing upon the carbon atoms and

decreasing around the hydrogen atoms. The pattern shown, which as discussed previously

indicates the naphthalene MO which is involved in adsorption at the metal surface, is also

very similar to that seen for HH-naphthalene/Fe{110}. As for the NMQ+ quinolinium group,

it is clear that the portion of the quinolinium which points away from the surface experiences

far less variation in its charge density than the portion which interacts directly with the

surface. Even at the alternative 3 × 10−3 electrons/Å3 scale shown, the charge density

is minimally changed, particularly when compared to the anchoring naphthyl group. The

carbon atoms which bind directly to the metal surface show the greatest differences in

their charge density compared to the isolated gas-phase NMQ+; they show increase in

electron density with an accompanying decrease in electron density in the area just above

the surface upon quinolinium, with some of that electron density decrease found on the N

atom. The region of decreased electron density on N is sandwiched by regions of electron

density increase on either side of quinolinium. Finally, the methyl linker which connects

the naphthyl and quinolinium portions shows effectively no change in its charge density

compared to the gas phase at the 2 × 10−2 electrons/Å3 scale. At the 3 × 10−3 electrons/Å3

scale, the hydrogen which points away from the surface shows an increase in electron density,

while the other methyl component densities are obscured by changes in the metal surface

charge density distribution.

6.3.4 Spin density

The contour of spin density at the level of 3 × 10−3 electrons/Å3 is shown for the pre-

ferred C-N-HH adsorption site in figure 6.16. The naphthyl portion, which adsorbs flat on

the metal surface, displays spin distribution similar to what has been seen previously for

naphthalene/Fe{110}, where the hydrogen atoms show majority spin polarisation, while

the regions above the carbon atoms are minority spin polarised. The methyl linking the

naphthyl and quinolinium show the opposite trend; the linking carbon atom is of majority
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spin while the hydrogen atoms are of minority spin. The quinolinium portion shows unusual

behaviour compared to what has been seen so far. Given its unique adsorption configuration

on the surface as well as the loss of 2 H atoms, different behaviour is somewhat expected.

The two carbon atoms which bind directly to the iron surface are surrounded by regions

of minority spin, but are separated by a region which is majority spin polarised centered

between the two carbon atoms. Most of the hydrogen atoms on the quinolinium group show

minimal spin polarisation at the given scale, but the distribution of spin on the rest of the

molecule is strongly reminiscent of the HOMO-4 orbital for quinolinium (see chapter 5).

The nitrogen is polarised to be of minority spin. As for the hydrogen atoms which have

dissociated from the quinolinium group, they are of minority spin, and appear to have only

a limited effect on the surrounding spin density.

Figure 6.16. Images of the top C-N-HH PBE-TS optimised NMQ+ binding site spin
density. Views are from above the Fe{110} surface (top) as well as to the side (bottom).
Blue (yellow) regions denote minority (majority) spin regions on the order of 3 × 10−3

electrons/Å3.
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In order to better understand the unusual spin polarisation observed on the portion

of quinolinium which points away from the metal surface, the charge density difference

on the same portion was studied more carefully. The plot shown in figure 6.15 at the

3 × 10−3 electrons/Å3 scale shows poorly defined, minimal changes in the electron density

on quinolinium far away from the surface. Therefore, the well-defined spin polarisation

on quinolinium is not associated with a significant transfer of electronic density to the

quinolinium atoms. The spin polarisation may therefore be a result of the direct bonding

pairs of carbon and iron. Finally, reducing the spin density isovalue scale (in the same way

as is done for charge density difference) does not reduce the intensity of spin-polarisation

on quinolinium any more than on the methyl or naphthyl groups, showing that the acquired

spin is on the same order as that observed on the rest of the adsorbed molecule.

6.3.5 Atomic charges and spin

The Hirshfeld charges and atom-resolved spin have been evaluated and grouped by relevant

portion within table 6.8 for the C-N-HH NMQ+/Fe{110} adsorption site. In studying the

Hirshfeld charges, whether or not the two dissociated hydrogen atoms are included as part

of the adsorbate, the adsorbate overall carries a positive charge while the iron surface carries

a negative charge. This is in agreement with what has been seen for previous aromatic

adsorbates studied in chapters 4 and 5. Including the two dissociated hydrogen atoms on

the surface, the adsorbate charge is of +0.07 e while if they are removed from the sum of

adsorbate charges, the charge increases to +0.19 e. The dissociated hydrogen atoms each

carry a negative charge of -0.06 e (for a total of -0.12 e). This is in contrast to the charges

found on on aromatic-H and methyl-H atoms, which all carry positive charges. All carbon

atoms carry a negative charge and the nitrogen atom carries a slight positive charge, which

is in agreement with the results of the charge density difference analysis shown in figure

6.15.

The naphthyl moiety has very similar behaviour with respect to charge to the HH-

naphthalene/Fe{110}, which is also supported by the charge density difference result. As for

the quinolinium portion, unlike any aromatic adsorbate so far, it shows an overall negative
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Table 6.8. Calculated Hirshfeld charges and atomic spin
results for C-N-HH NMQ+ site on Fe{110}

Atom group charges (e) spin (µβ)

NMQ+
C sum -0.55 -0.60
H sum 0.60 -0.12
Dissociated 2H -0.12 -0.13
N 0.02 -0.02
NMQ+ -2H 0.19 -0.61
Full sum (NMQ+ +2H) 0.07 -0.74
Naphthyl
C sum -0.30 -0.54
H sum 0.37 0.03
Full sum 0.07 -0.51
Quinolinium
C sum -0.24 -0.07
2 C bound to surface sum -0.10 -0.24
H sum 0.14 -0.14
Dissociated 2H -0.12 -0.13
N 0.02 -0.02
Full sum -0.08 -0.23
Methyl linker
C -0.01 0.01
H sum 0.09 -0.01
Full sum 0.08 0.00
Metal slab
sum -0.28 351.23

charge (-0.08 e). This is a result of a significant negative charge associated with the C

atoms (-0.24 e). Just under half of this negative charge is contributed solely by the two

C atoms binding directly to the iron surface, which together contribute -0.10 e. This is

consistent with the regions of increased electron density around the C atoms closest to the

iron surface. The overall negative charge on the quinolinium portion (-0.08 e) is exactly

balanced by the overall positive charge on the methyl linker (+0.08 e), which results from

positive charge on the H atoms and a slight negative charge on the C atom. As a final note

regarding charges, NMQ+/Fe{110} Hirshfeld charge is calculated using a finer k-point mesh

(4 × 4 × 1) than for geometry optimisation, and the non-zero sum of charges (-0.21 e) is
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likely due to rounding in the CASTEP-derived Hirshfeld output, particularly for metal atoms.

This is the largest system studied throughout this thesis, so it is plausible that the error for

NMQ+/Fe{110} should also be the largest.

In terms of spin, the overall polarisation of NMQ+ is of minority spin (-0.74 µβ) even

if the dissociated hydrogen atoms are excluded (-0.61 µβ). This is unsurprising given that

most atom groups are of minority spin, except the H atoms included in the naphthyl group

(0.03 µβ) as well as the C atom in the methyl linker (0.01 µβ). This is consistent with the

picture provided by the spin density in section 6.3.4. The spin density plot reveals there are

additional regions of spin majority on several of the C atoms on the quinolinium portion

of NMQ+, but it is evident from the sum of spin on quinolinium C atoms (-0.07 µβ) that

these are of lesser magnitude than the minority spin contributed by the two C atoms bound

directly to the iron surface (-0.24 µβ). The methyl linker shows overall no spin polarisation,

as it is balanced by spin polarisation of equal value on the C and H atoms. The overall spin

polarisation of the NMQ+ scaffold is mainly contributed by the naphthyl linker, on the order

of 84%.

6.3.6 DOS and PDOS

The PDOS for a C-Fe pair within the optimised C-N-HH NMQ+/Fe{110} site is shown in

figure 6.17. Specifically, the C-Fe pair chosen is where dehydrogenation behaviour occurs,

i.e. one of the quinolinium-C atoms which loses its hydrogen and binds directly to an iron

surface atom.

Because NMQ+ has lost two hydrogen atoms in the preferred C-N-HH adsorbed con-

figuration, the adsorbed state C orbitals are expected to show differences compared to the

isolated gas-phase NMQ+ PDOS. This is indeed the case, as there is no obvious relationship

between the isolated and adsorbed C5 peaks shown in figure 6.17. As with naphthalene and

quinolinium, future work will aim to correlate the isolated NMQ+ PDOS peaks with NMQ+

molecular orbitals, which may assist in understanding the adsorbed C5 peaks. Additionally,

a study of the isolated doubly dehydrogenated NMQ+ species in its own right is planned

for the future, see section 7. An interesting finding from the plot of adsorbed C5 PDOS
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is that there is a notably larger number of minority spin states than majority spin states

between the -6 eV to -3 eV energy range. Carbon states starting at around -6 eV are the

first to significantly overlap with iron states, so this demonstrates that the hybridisation of

high energy molecular orbitals with high energy iron orbitals results in an uneven distribu-

tion of spin within carbon. This has not been observed for any other PDOS plot produced

throughout this thesis. The interesting spin behaviour may provide some support for the

unusually well-resolved distribution of spin on the NMQ+ quinolinium group which persists

far away from the surface. Perhaps there is a molecular orbital within the -6 eV to -3 eV

energy range which provides particularly good overlap with the surface orbitals, which also

results in unusual spin polarisation behaviour. This interesting behaviour will be studied

more deeply in a future work.

As for the plot of Fe PDOS, similarly to naphthalene/Fe{110} and quinolinium/Fe{110},

the majority spin states show minimal changes while the minority spin states show a shift to

higher binding energies, which results in a reduction in the number of states in the vicinity

of the Fermi level. Two of the previously discussed prominent minority spin peaks found in

the C PDOS appear clearly in the Fe PDOS at a binding energy between -4 eV and -5 eV.
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Figure 6.17. Projected density of states (PDOS) for NMQ+ on Fe{110} in the C-N-HH
adsorption geometry. The upper plot shows the majority and minority spin PDOS for Fe
atom 143 before (black) and after adsorption (red). The lower plot shows the C atom
5 within NMQ+ majority and minority spin PDOS in the gas-phase (black) and after
adsorption (red). The Fermi energy (EF ) has been set to zero and is indicated by a black
dashed line. The gas-phase NMQ+ DOS has been aligned with the C(2s) peak for the
adsorbed NMQ+, as this level is not expected to be involved in the adsorption process.
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6.3.7 Workfunction

The change in Fe{110} workfunction upon adsorption of NMQ+ in the C-N-HH has been

studied. Results are presented in table 6.9. The same workfunction calculation procedure

was used as for benzene, naphthalene and quinolinium on the Fe{110} surface; chapter 4

should be consulted for a detailed summary of the calculation method. The only difference

for the NMQ+/Fe{110} system is an increased vacuum spacing (36 Å in the double-sided

slab) compared to the benzene, naphthalene and quinolinium setup (20 Å in the double-

sided slab). This is done because a large portion of the C-N-HH adsorption site points into

the vacuum, and a larger spacing avoids unphysical interaction of the adsorbate with its

periodic copy.

As with all other aromatic adsorbates studied in this thesis, adsorption of NMQ+ in the

preferred adsorption configuration results in a reduction of the surface workfunction, on

the order of -1.63 eV. This value sits between those found for naphthalene (∆φ = -1.51 eV)

and quinolinium (∆φ = -1.82 eV). The fact that it is closer to that found for naphthalene

is also unsurprising given that naphthyl acts as the anchoring site in C-N-HH alongside an

additional contribution from the dehydrogenated quinolinium moiety.

Table 6.9. Calculated Workfunction (φ) results for C-N-HH NMQ+ adsorption
site on Fe{110}a

Method Evac(eV) EF(eV) Fe{110} C-N-HH/Fe{110} ∆φ (eV)
φ (eV) φ (eV)

PBE-TS -2.34 -5.56 4.86 3.22 -1.63

a Evac represents the vacuum energy, EF represents the Fermi energy and
∆φ represents the difference between the C10H8/Fe{110} φ and bare
Fe{110} φ .
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6.4 Discussion and Conclusions

In this section, different results are brought together to build an understanding of NMQ+ in

both isolated and Fe{110} adsorbed gas-phase states. A discussion of the adsorbed behaviour

of NMQ+ on Fe{110}would be incomplete without a comparison to the adsorption behaviour

of its building blocks naphthalene and quinolinium on the same surface. This is included

in section 6.4.1. Finally, section 6.4.2 compares the gas-phase and adsorbed behaviour of

NMQ+ to similar systems, namely CD and CD/Pt{111} alongside other ACI/metal surface

adsorption studies.

Prior to comparison with other systems, it is worth discussing certain NMQ+ and

NMQ+/Fe{110} results more carefully. Regarding the isolated gas-phase NMQ+ study,

unconstrained DFT optimisation of certain PM6 low-energy structures (B’) resulted in less

favourable structures found within the constrained PM6 scan, i.e. the D-type conformer.

This may occur for several reasons. First, this may be a result of shallow energy barriers

separating the different energy minima. These barriers are likely to differ at least somewhat

within DFT/PM6 and constrained/unconstrained geometry optimisation. Second, this result

could at least partly be due to the choice of conformational analysis parameters. The 15◦

increment used to generate conformations is relatively coarse and could explain why it is easy

for PM6 structures to convert from one to another upon unconstrained DFT-level geometry

optimisation. Another parameter worthy of consideration in this context is the starting

structure used as the basis for the conformer search. As indicated, a DFT-optimised NMQ+

configuration is used as the starting point for the scan, where τ1 = 75◦ and τ2 = -157◦. In

other words, 15◦ increments are added to these starting angles, which results in slightly

asymmetric constrained geometries. This procedure still provides a good overview of the

NMQ+ conformational space, but it may be wise to conduct a future conformational analysis

with identical initial torsional angles (e.g. τ1 = τ2 = 0). Finally, given the changes between

constrained PM6 conformational scan and unconstrained DFT-level optimisation, it would

be good practice to conduct a separate, refined (perhaps with 1◦ increment on τ1 and τ2)

conformational scan at the DFT level. Finally, it would also be necessary to conduct such

studies in the presence of solvent; in the first instance, the PCM model used in section 6.2.4
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would be a reasonable choice.

As for the NMQ+/Fe{110} results, it is helpful to compare the findings to relevant

experimental literature. The experiments of Ho et al. 34 identify preferential adsorption of

NMQ+ on the lower potential anodic ferrite/bcc islands found on a DSS surface, which

as a reminder features islands of bcc and fcc (austenitic) steel. The paper mentions that

preferential adsorption could be due to higher local surface area on the bcc-type islands,

however another consideration may also play a role; namely, the electric potential. An

approach to limiting galvanic corrosion reactions would be to halt the flow of electrons

within the electrochemical cell by equalising the electric potentials of microstructural metal

surface islands. Modification of electrode potentials can be achieved through adsorption of

inhibitor on anodic regions, cathodic regions or both.

A concept at the atomistic level which closely relates to the electrode potential is the

workfunction. Specifically, that which mostly closely relates to the workfunction within the

electrochemical environment is the absolute electrode potential.270 These two quantities

represent the work required to withdraw an electron from the metal surface (EF) into a

vacuum. In the case of the absolute electrode potential, the electron must also pass through

metal-electrolyte and electrolyte-vacuum interfaces, so additional dipole interactions are

present compared to the gas-phase workfunction. These additional contributions are referred

to as the Volta potential. Because the absolute electrode potential is difficult to determine in

practice, typically electrode potentials are defined with respect to the standard hydrogen

electrode (SHE), which features a platinum electrode exposed to an acidic solution containing

H2 gas. As a result of these similarities, a change in the metal workfunction in the gas-phase

is related to a change in the metal electrode potential.

The DFT work of Kokalj 58 finds a significant adsorption-induced reduction of the work-

function (∆φ = -2.25 eV) in their study of corrosion inhibitor BTAH on Cu{111}. The paper

states this should limit reactions which donate electrons to the metal, i.e. corrosive Cl–

adsorption, metal dissolution and metal oxidation. Because NMQ+ also reduces the metal

workfunction (∆φ = -1.63 eV), it should also inhibit anodic reactions, perhaps through

adsorption upon the anodic ferrite islands found in DSS. However, given the positive charge
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on NMQ+, this explanation fails to explain why a positively charged inhibitor should adsorb

on a positively charged surface. An additional failure of the explanation is why NMQ+

should adsorb upon the lower potential ferritic phase. Drawing parallels between electrode

potential and workfunction, the implication is that NMQ+ would further lower the elec-

trode potential at the anode, which would increase the rate of corrosion reactions. The

computed Hirshfeld charge on adsorbed dehydrogenated NMQ+ (+0.19 e) on the neutral

metal surface is indicative of covalent binding, which could be extended to explain why a

positively charged adsorbate interacts favourably with a positively charged surface. The

paper of Guo et al. 271 provides answers to the queries raised from a different perspective.

Their work studies the differences in workfunction between ferrite and austenite islands

found in DSS by way of scanning force microscopy and DFT calculations. Their calculations

reveal that the most stable fcc iron surface (fcc Fe{111}) has a higher workfunction than the

most stable bcc iron surface(bcc Fe{110}). However, their calculations also reveal that the

bcc Fe{110} workfunction is higher than those of the two next most stable fcc Fe surfaces

(fcc Fe{100} and fcc Fe{110}). Given that many different facets will be exposed at a real

crystal surface, this finding may be the key to explaining the selective adsorption of NMQ+

at the anode, where the workfunction is reduced to equalise the lower workfunction i.e.

lower electrode potential associated with non-flat fcc surfaces. Future work on studying

NMQ+ adsorption at fcc Fe surfaces will be beneficial towards validating these proposals.

6.4.1 Comparison to naphthalene and quinolinium on Fe{110}

The preferred adsorption geometry for NMQ+/Fe{110} (C-N-HH) is interesting to compare

to the studies of adsorption of naphthalene and quinolinium upon Fe{110}. The results

from calculations on naphthalene and quinolinium adsorption on the Fe{110} surface are

insufficient to explain the observed preferred geometry; indeed, this is partly down to

the ability for the quinolinium moiety to lose two hydrogen atoms, thereby allowing for

additional stabilisation when the naphthyl group acts as the anchor on the metal surface.

An interesting finding aside from this is that the NMQ+ naphthyl group adsorbs in a slightly

less favoured adsorption site than what was identified to be most favourable for naphthalene
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using the PBE-TS method, i.e. the HH site is preferred for NMQ+ naphthyl while the LC site

is preferred for naphthalene/Fe{110}. There are a number of factors which may explain

why this difference is observed; first, and likely to play an important role, is the directing

effect of the dehydrogenation of the quinolinium group. For the second best NMQ+/Fe{110}

site (C-N-LC), an interesting route is revealed over the course of DFT optimisation; first, the

quinolinium group loses one H atom. Next, the methyl linker loses the second H atom. Once

this process has occured, it seems a new, stronger anchor point via the methyl group is created

at the surface, which in turn allows the naphthyl-LC site to drift to the HH site. Although

the optimised C-N-LC site is not the strongest adsorption site, this provides strong support

for the HH-naphthyl site being preferred. Another factor which may explain why the HH

site is preferred is that the adsorption behaviour of 1-methylnaphthalene, which is in reality

what interacts with the surface within NMQ+, may be different to naphthalene/Fe{110}.

Naphthalene and 1-methylnaphthalene adsorption energies and geometries have been

shown to be very similar on Fe-containing θ -Fe3C{010}, which suggests there would not be

important differences between these adsorbates on Fe{110}.158 Finally, both the PBE and

PBE-TS energetic separation between LC and HH naphthalene/Fe{110} sites is relatively

small, on the order of 0.09 eV at the PBE-TS level.

Other comparisons are made to quinolinium and naphthalene/Fe{110} throughout

the chapter, but the other main points of interest are: aside from C-N-HH and C-N-LC

sites, the preferred adsorption anchor geometries and energies are consistent with results

found for naphthalene and quinolinium adsorption on Fe{110}; the charge and spin density

distributions found for the naphthyl anchor within C-N-HH are very similar to those found

for naphthalene/Fe{110}; the workfunction reduction afforded by C-N-HH (-1.63 eV) is

between those found for naphthalene (∆φ = -1.51 eV) and quinolinium (∆φ = -1.82 eV)

which is reasonable given the adsorption mode.

Clearly, hypothesis Models 1 and 2 presented in section 6.3.1 are invalidated by the

appearance of a novel adsorption mode which features interaction with the surface by

both naphthyl and quinolinium portions of NMQ+, enabled by spontaneous double dehy-

drogenation of the adsorbate. If the special C-N-HH and C-N-LC sites are not considered,
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the adsorption energies show that quinolinium-grafted NMQ+ adsorption sites (B-Q-HH,

C-Q-HH) are energetically favoured compared to naphthyl-grafted NMQ+ adsorption sites

(B-N-HH, B-N-LC) which is in line with the findings from chapter 5.

6.4.2 Comparison to other systems

As mentioned previously, isolated gas-phase NMQ+ shares similar features with the CD

molecule, which has been intensely scrutinised both experimentally and computationally

given its important role in enantionselective catalysis. The results of CD conformational

study,247,249 which is carried out in a near identical way to the conformational scan described

in this chapter, bear little resemblance to those for NMQ+. While our NMQ+ studies identify

three truly unique conformers, CD conformational search identifies up to eleven unique

favourable conformations at the DFT level. Potential energy surfaces resulting from varying

τ1 and τ2 for CD (analogous to figure 6.5 in section 6.2.1) show far less symmetry than the

plot presented in this thesis. This comes as no surprise given that the CD molecule presents

a chiral center where NMQ+ instead presents a non-chiral methyl group. Additionally, the

quinuclidine moiety in CD bears no resemblance to its quinoline group, whilst in the case of

NMQ+ the naphthyl and quinolinium groups differ only in the N atom. A further distinction

is in the vinyl group found on the CD quinuclidine moiety. The vinyl group participates

in additional steric interactions with the quinoline ring, and therefore produces a larger

energetic separation between structures. In any event, the preferred CD conformer called

Open(3) features τ1 = 99◦ and τ2 = 150◦. This spatial distribution is not dissimilar to both B

(τ1 = 80◦ and τ2 = 176◦) and C(τ1 = 157◦ and τ2 = 75◦). The next best conformer, which

differs depending on the DFT functional used, is either Closed(1) which is 1.11 kcal/mol

(0.05 eV) higher in energy or Open(10) which is 1.09 kcal/mol (0.05 eV) higher in energy.

This energy difference is lower than the difference between B and C (0.10 eV), in line with

the finding that there are more energy minima for CD than NMQ+.

Given the significant differences between the conformational space between CD and

NMQ+, it should come as little surprise that DFT studies of adsorption of CD upon Pt{111}

reveal a far more complex range of adsorption modes compared to those produced in this the-
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sis for NMQ+ on Fe{110}.230 In addition to the relatively different conformational spectrum,

Pt{111} is a flat fcc surface, which presents a smoother surface compared to the less close-

packed flat bcc surface as discussed in previous chapters. The work of Vargas and Baiker 230

studies the adsorption mode of CD on a 38 atom Pt{111} cluster. The preferred conformation

in the gas-phase (Open(3)) is not preferred in the adsorbed state; the most stable adsorption

geometry features binding through both the quinoline group and the quinuclidine-vinyl

group, Eads = -40.2 kcal mol−1 (-1.74 eV). The authors dismiss this adsorption site given its

instability under hydrogenation conditions and instead focus on the next best site, which

features the Closed(1) conformer which is anchored to the surface exclusively through the

quinoline group, and has Eads = -33.0 kcal mol−1 (-1.43 eV). It is worth noting here that the

work of Vargas and Baiker does not make use of vdW corrected-DFT which is expected to

increase the adsorption energy and potentially also change the relative energetic ordering

of adsorption sites. In spite of this, it is interesting to draw a parallel to this work; the

second best CD conformer Closed(1) adsorbs more strongly to the Pt{111} surface than the

more stable conformer Open(3) (Eads = -31.3 kcal mol−1 or -1.36 eV), a similar outcome to

what is observed in this chapter. Additionally, the preferred CD adsorption configuration

Open(3) features contributions from both quinoline and quinuclidine groups, similarly to the

naphthyl and quinolinium contributions of NMQ+/Fe{110}. What is very different between

CD and NMQ+ adsorption, however, is that dehydrogenation is not observed in any of the

eight minimal energy CD/Pt{111} adsorption geometries. Experiments on the aqueous

CD/Pt{111} system however do provide support for dissociative adsorption, in the form

of ATR-IR spectroscopy.231 At moderate coverages of CD on the Pt surface, the anchoring

quinoline group loses a H (on the carbon atom next to nitrogen) to the surface, and adopts

a slightly tilted orientation with respect to the surface (see figure 6.3). This behaviour is

still quite different to what is observed for NMQ+/Fe{110}, because the quinoline group

serves as the anchor for CD on the surface while also losing one H atom. If NMQ+ behaved

similarly on Fe{110}, a configuration with quinolinium anchoring NMQ+ (i.e. B-Q-HH or

C-Q-HH) could be expected to also show dehydrogenation, but this is not the case. It is

likely this is observed for CD because the quinoline-N atom can bind directly to a surface Pt
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atom in addition to the neighbouring dehydrogenated C atom, while the NMQ+-N atom

connects three carbon atoms, and therefore can only weakly interact with an underlying Fe

atom. In both cases, CD-quinoline and NMQ+-quinolinium groups have the ability to lose

hydrogen atoms in order to stabilise adsorption upon a metal surface.

As for the loss of two H atoms as exhibited in C-N-HH, a relevant analogue would be

benzyne (C6H4) which has been observed on Ir{100}.272–274 When benzene is adsorbed on

Ir{100} at 465 K, the formation of an ordered c(2 × 4) benzyne overlayer is accompanied by

H2 desorption. LEED I-V analysis finds benzyne adsorbs centered above a short bridge site

(for di-σ bonding) with a tilt angle of 47◦ with respect to the surface. Later DFT calculations

reveal the tilt results from improved overlap of π orbitals with surface d orbitals.273 The

double-dehydrogenated NMQ+-quinolinium group also sits centered above a bridge site

(albeit a long bridge) which allows for di-σ bonding. The C-N-LC site, where only one H

atom dissociates from quinolinium, also centers above the long bridge site, which provides

evidence for this being the preferred adsorption site. Still, further work is planned for the

future to establish the preferred upright partially dehydrogenated quinolinium adsorption site

independent of the rest of the NMQ+ molecule. As for the tilt, the C-N-HH-quinolinium also

displays a tilt, on the order of 16◦. Again, it would be necessary to study the dehydrogenated-

quinolinium separately to better understand whether the tilt angle provides improved overlap

of π orbitals with the iron d orbitals; this is planned for the future, see chapter 7.

Within the corrosion space, there are a number of DFT works which bear common

ground with the NMQ+/Fe{110}. The closest work comes in the form of a DFTB study

of heteroatomic cyclic molecule adsorption on Fe{110} conducted by Guo et al. 77 Three

aromatic-ketone-based adsorbates are studied which have a scaffold reminiscent of the

NMQ+ structure, but without replacement of any aromatic ring atoms with heteroatoms.

The presence of heteroatoms arises from N(CH3)2 and OH substituent groups on benzyl

rings or carbonyl groups inserted near the equivalent of the NMQ+ methyl group. All three

inhibitors adsorb in completely flat-lying geometries. The strongest adsorption energy is

provided by the N(CH3)2-substituted inhibitor (Eads = -1.94 eV). It should be noted here that

DFTB, like DFT, lacks a description of vdW interactions, so the Eads reported by Guo et al. 77 is
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likely to increase when such interactions are accounted for. The nitrogen atom lies above an

atop site for the preferred N(CH3)2-substituted inhibitor adsorption site. Clearly, there are

some similarities between these two adsorption modes, but a major difference between the

N(CH3)2-substituted inhibitor and NMQ+ is the completely flat-lying geometry observed for

the former. Additionally, dehydrogenation is not observed for any of the adsorbates studied

by Guo et al. 77 Another key difference between the inhibitors in the study of Guo et al. 77 and

this thesis is the inhibitor’s benzyl (Guo et al. 77) or naphthyl-based (this work) scaffold. As

is shown in the work of Schmitt and Bedbur 228 , major differences in the inhibited corrosion

rate are found for benzyl or naphthyl-based compounds, where compounds containing two

fused aromatic rings perform significantly better. Based on these considerations, a reasonable

hypothesis would be that the benzyl scaffold prevents dissociative adsorption which appears

to be important in strong corrosion inhibition. Further support for the importance of

dehydrogenation within corrosion inhibition has been identified in recent years. A recent

study by Gattinoni et al. 70 uses DFT to ascertain the mode of corrosion inhibitory and

lubrication action of surfactants (hexanoic acid, hexanamide and glycerol monohexanate)

upon iron oxide surfaces. Dehydrogenation is found to be thermodynamically favourable

for all surfactants under different circumstances (dependant on coverage, presence of defect

sites, temperature and pressure). The loss of hydrogen forms surface hydroxyl groups

upon the metal oxide surface’s oxygen sites. The study also reveals that dehydrogenation

is thermodynamically preferred under most conditions for glycerol monohexanate upon

the oxide surface, and the inhibitor shows lesser thermodynamic drive towards forming

high coverage films. Calculations show glycerides outperform carboxylic acids as lubricants,

which combined with these results demonstrate that a low-coverage lubricant film performs

better than a more densely packed surface film.70 Parallels between lubrication and corrosion

inhibition can be drawn, and the finding suggests that film density/thickness is not the sole

determining factor for corrosion inhibitory action. Finally, dehydrogenation has also recently

been studied for azole corrosion inhibitors upon copper oxide surfaces, and distinguishes

different azole species’ inhibitory action by how well the new, dissociated molecular geometry

can form N-Cu bonds.43 In conclusion, dehydrogenation could be a key element to the
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function of superior corrosion inhibiting adsorbates.

6.4.3 Conclusions

This chapter presents results of computational studies of NMQ+, the naphthylmethylquino-

linium cation, which is a known acid corrosion inhibitor of steel. To provide a better

understanding of its behaviour in the gas phase, a semi-empirical level conformational scan

is performed. After DFT-level geometry optimisation of the preferred conformers, three

unique conformers (referred to as B, C and D-type) are identified. B is more stable than

C by 0.10 eV, and features perpendicular arrangement of the naphthyl and quinolinium

groups. Calculations reveal that under aqueous conditions, although B is still preferred, C

increases in relative stability, so that C is only 0.03 eV away from B. The D-type conformer

is of significantly lower stability than B (0.17 eV).

The adsorption behaviour of NMQ+ on the Fe{110} is studied using DFT. Six adsorption

geometries, based on conformers B and C in addition to anchoring via the naphthyl or

quinolinium groups, are studied. One site (C-N-HH), which features the C conformer and

surface-anchoring through the naphthyl group, is strongly favoured above all others, on

the order of 1.12 eV. The marked preference is a result of double dehydrogenation of the

quinolinium linker; two C atoms in the vicinity of the nitrogen atom lose their H atoms,

enabling direct C-Fe bonds to form with the quinolinium group. The dehydrogenation

and related tilt of quinolinium with respect to the surface shares certain similarities with

DFT findings for CD/Pt{111} as well as benzyne/Ir{100}. The next best site (C-N-LC) also

demonstrates double dehydrogenation, although upon different carbon atoms. The affected

carbon atoms for C-N-LC are the quinolinium-C nearest to the nitrogen atom as well as one

of the methyl-C atoms. None of the other adsorption sites tested feature dehydrogenation

of any kind, and as a result have significantly weaker adsorption strength on Fe{110}. The

geometry optimised adsorption configurations demonstrate NMQ+ has a significant degree

of flexibility at the surface.

In the preferred adsorption geometry, C-N-HH, the dehydrogenated adsorbate acquires a

slight positive charge upon adsorption (+0.19e) and signficant minority spin polarisation
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(-0.74 µβ). The distribution of spin density on the quinolinium group, which is distant from

the surface, is unusually well defined, particularly in considering that there is minimal change

in the charge density on the same atoms. The PDOS for C-N-HH also supports unusual spin

behaviour, as certain orbitals show greater population of minority spin states than majority

spin states. The workfunction of the Fe{110} slab is reduced through adsorption of NMQ+

(∆φ = 1.63 eV) and is justified given that it lies between the values found for naphthalene

(∆φ = -1.51 eV) and quinolinium (∆φ = -1.82 eV).

The findings disprove all hypothesis models put forward to explain the preferred interac-

tion mode of NMQ+ with the Fe{110} surface. This is because an alternative mechanism,

which features dissociative adsorption, had not been considered. This result is supported by

several other DFT studies of corrosion inhibitor adsorption, which have identified dehydro-

genation to play an important role in stabilisation of the adsorbates.
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Chapter 7

Conclusions

7.1 Summary

This thesis describes the interaction of several aromatic molecules with iron surfaces. The

goal of this is twofold; first, to better understand the mode of action of an ACI used in oil

and gas drilling and second, to develop a fundamental theory for aromatic adsorption on

iron. A side-goal of this project aims to study the impact of a vdW DFT correction scheme

(TS) upon adsorption, as these corrections have been shown to have particularly important

effects for aromatic adsorption on metal surfaces.

First, the adsorption of the smallest aromatic subunit, benzene, is studied using DFT on

three different bcc iron facets; the flat Fe{110}, the kinked Fe{100} and the stepped Fe{211}

surfaces. Using DFT without vdW corrections, adsorption geometries which feature benzene

centred upon a hollow-like site are preferred. Upon inclusion of the TS vdW correction, the

preferred adsorption site changes only for the Fe{110}, where benzene prefers to center

above a short bridge site. All adsorption geometries feature some level of C-H bonds tilting

above the plane of the benzene molecule towards the vacuum; this behaviour is observed

for benzene adsorption on many other metal surfaces i.e. the cushion effect. Some charge

and spin transfer to benzene from the metal surface is observed; across all surfaces, benzene

presents overall minority spin but can carry a slight positive (Fe{110}, Fe{211}) or negative

(Fe{100}) charge. In all cases, the iron surface workfunction is reduced by the adsorption
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process. The results in this thesis compare well to those derived from other DFT works for

benzene adsorption on Fe{110} and Fe{100}. Aside from some changes in relative energetic

ordering of sites, the inclusion of the TS vdW correction greatly increases binding strengths

and has a negligible effect on adsorption geometries. The preferred adsorption geometry for

Fe{211} in particular is unusual, as it features strong deformation of the benzene molecule

within a surface trough, resulting in a resemblance of the adsorbed benzene molecule to the

cyclohexane boat conformation.

Second, the adsorption behaviour of two polyaromatic hydrocarbons, naphthalene and

quinolinium, is studied on the bcc Fe{110} surface using DFT. These two molecules are

chosen because they represent logical candidates for study after benzene as well as being

key moieties within a number of industrially relevant corrosion inhibitor molecules. For

naphthalene/Fe{110}, an interesting change in relative energetic ordering using PBE-TS

compared to PBE appears for the top adsorption site. Without use of the TS correction,

the HH site, which features benzyl rings centered about hollow sites, is favoured, which

agrees with the findings for benzene adsorption on Fe{110}. Once the TS correction is used,

however, a highly symmetrical, long bridge-centred site is instead the preferred adsorption

geometry. As for quinolinium/Fe{110}, the best three adsorption sites are consistent whether

or not PBE-TS is employed. This is because the three preferred sites feature localisation of the

nitrogen atom in an atop site on the Fe{110} surface, which is consistent with findings from

the literature for NHx adsorption on the Fe{211} surface. Overall, quinolinium has a higher

adsorption energy on the Fe{110} surface than naphthalene. Compared to naphthalene, the

N functionality in quinolinium is estimated to contribute just over 1 eV (including the vdW

correction) to the adsorption energy.

Finally, the adsorption of a known acid corrosion inhibitor, NMQ+, is studied on the

bcc Fe{110} surface again using DFT calculations. A search of the conformational space

of NMQ+ reveals three different stable conformers. Compared to the preferred conformer

(B-type), another (C-type) has lower stability (+0.10 eV) and the third (D-type) has even

lower stability (+0.17 eV). For the NMQ+/Fe{110} study, six unique starting configurations

are tested, and are based on the combination of the B and C conformers as well as results
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for naphthalene and quinolinium adsorption on Fe{110}. Of the six sites tested, one is

strongly preferred, on the order of 1.12 eV stronger adsorption energy than the next best

site. This is achieved thanks to double dehydrogenation of the quinolinium moiety, allowing

it to interact directly with the metal surface while the naphthyl group serves as the anchor

upon Fe{110}. Spontaneous dehydrogenation at the metal surface may be a key feature in

justifying the exceptional corrosion resistance offered by NMQ+, as dissociative adsorption

has been highlighted in other recent DFT studies of corrosion inhibitors. Parallels can also

be drawn to the structurally similar cinchonidine/Pt{111} system used in enantionselective

catalysis, as cinchonidine presents dehydrogenation of its quinoline group on the Pt{111}

surface. These results demonstrate that all hypotheses regarding the adsorption mode of

NMQ+ on metal surfaces are incomplete, as the possibility of dissociative adsorption had

never before been considered.

In summary, this thesis has improved the understanding of the seldom studied interaction

of aromatic molecules with iron surfaces. It has additionally provided novel mechanistic

insights which contribute towards the understanding of the function of ACI. These results

form part of a collection of studies at different time and length scales which are necessary

for a complete understanding of ACI inhibitory action. Such studies contribute towards the

rational design of novel effective ACI in oil and gas processing. Rational design of ACI has

the potential for important positive consequences in oilfields, including reduced operational

costs, safer working conditions and mitigation of environmental risks.

7.2 Future Work

In a realistic acid corrosion oil well scenario, there are many factors which can have a

significant impact upon the adsorption behaviour of the inhibitor. Many of the future work

directions arising from this work stem from the simplifications made in order to study

the molecule-surface interactions independently of other interactions present in the ACI

environment.

The first major additional consideration would be the impact of solvation upon adsorption.
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Aqueous solvation is undeniably important in the context of the mode of action of ACI,

and needs to be incorporated into the calculations presented throughout this thesis to

provide a full understanding of inhibitory action. Solvation is known to impact adsorption

energetics upon metal surfaces as well as metal and steel surface structure, as other works

have shown.275,276 In addition to conformational analysis of NMQ+ immersed in aqueous

solution, a study of the interaction of explicit water molecules with NMQ+ would also be

required. Given the positive charge on NMQ+, it is likely an implicit solvation scheme is

insufficient to describe the real interaction and possible reactivity of the inhibitor in bulk

water. Some combination of implicit and explicit solvation schemes may therefore be helpful

in this context. As for the NMQ+/Fe{110} system, it is possible to probe the preferred

adsorption geometry in the presence of an implicit solvation scheme (something akin to the

work of Mathew and Hennig 277,278 developed for VASP). Again, dependant on the results

of NMQ+ interaction with water, it may be necessary to first study NMQ+/Fe{110} in the

vicinity of explicit water molecules, perhaps coupled with the use of implicit solvation. A

current technical limitation is the lack of support for periodic implicit solvation in CASTEP

(we have received communication that this is under active development, to be based on

an open source three dimensional multigrid solver for the Poisson Boltzmann equation279).

Given these limitations and depending on results for interaction of NMQ+ with water, it

may be sensible to approach the aqueous NMQ+/Fe{110} situation differently, for example

through use of QM/MM-based molecular dynamics simulations, which would also allow

for the study of potentially important dynamic effects. This type of approach has been

implemented in the CP2K code.280 An entirely different approach would be to study the

system at the molecular mechanics level using a reactive force field such as ReaxFF,281

which offers the advantage of low computational expense while allowing for bonds to break

and form. Indeed, several studies on the surface chemistry of small molecules adsorbed

on iron surfaces have been carried out within the ReaxFF environment.282,283 A potentially

important contribution to this type of project would be the derivation of appropriate Fe-N

parameters which we have been told are currently lacking from the ReaxFF force field.

On the subject of solvation, experimental results show certain ionic species, particularly
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inorganic ions and especially iodide, have an important amplifying effect on the corrosion

protection by ACI molecules.284–288 Any future work aiming to study the activity of ACI

molecules in a complete way would require study of the interplay of ion-ACI, ion-surface,

and ACI-surface interactions alongside solvation. Given the acidic environment and use of

intensifier alongside ACI, the high priority ions for study would be H3O+, Cl– , I– and I –
3 .

Corrosion is inherently an electrochemical process, so accurate simulations require the

presence of a realistic and complete electrochemical environment. This builds upon use of

solvent, which can act as electrolyte, as well as the possibility of varying potential bias in the

metal slab. Treating the surface DFT calculation in this way can result in important changes

in the preferred adsorption geometry, as shown for example in the work of Steinmann

and Sautet 73 on pyridine/Au{111} system. Their work finds that the preferred adsorption

geometry of pyridine can be flat or "standing up” depending on the potential applied to

the gold surface. This is still a relatively new research area, so the underlying theory and

methods are under active development; a recent review provides a good summary of the

available methods as well as developments to come.289

There are a number of other research directions which could improve the understanding

of the corrosion resistance provided by NMQ+. This includes varying the nature of the

surface slab used in our calculations to more closely match the surface structure present

under realistic oil well conditions i.e. low-carbon steel, austenitic (fcc) steel and iron, iron

sulphides, oxides and carbides, chromate overlayers, etc. Additionally, studying the adsorp-

tion behaviour of other inhibitor molecules could be quite useful, particularly inhibitors with

similar structure to NMQCl which show significantly lower experimental corrosion resistance

as shown in the work of Schmitt and Bedbur.228 On that note, the study of isolated doubly

dehydrogenated NMQ+ is worthwhile given the strong preference for its existence at the

Fe{110} surface. Finally, calculations performed at higher inhibitor coverages would also be

beneficial, as the adsorption mode may differ significantly at increase surface packing.

There are additionally future work directions which apply more generally to aromatic

adsorption on iron. Studying the effect of application of more sophisticated van der Waals

correction schemes would form the basis of an important future work. The DFT+vdWsur f
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method290 has recently been validated against experimental data for a number of aromatic

adsorbates on metal substrates, showing excellent agreement.75 Testing the DFT+vdWsur f

methodology for the systems presented in this thesis would provide a greater level of

confidence regarding the effect of van der Waals corrections on DFT calculations. It would

also be useful to extend the studies of naphthalene, quinolinium and NMQ+ to other surface

facets, in particular reactive facets such as the Fe{211} or defective surfaces which are

said to be key to corrosion protection.39 There are also plans to more deeply investigate

the PDOS shown throughout this thesis. Namely, this involves studying the appearance of

adsorbate-surface mixed orbitals at highly occupied states, which can more clearly indicate

the surface and molecular orbitals involved in stabilising the preferred adsorption site. One

project which has currently been initiated is experimental validation of our results for the

preferred adsorption geometry of NMQ+ on the iron surface. This will be achieved by

studying the tilt angle of NMQ+ at the aqueous metal interface through ATR-IR experiments

carried out by Professor Stuart Clarke’s group.
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Appendix A

Fe Slab Convergence Testing

The sections below list the convergence of various parameters as a function of the number

of slab layers and the vacuum spacing for Fe{110}, Fe{100} and Fe{211} which are used

throughout the thesis in the study of aromatic adsorption.

A.1 Fe{110}

A.1.1 Slab layer number

Table A.1 lists the effect of increasing slab layer number for Fe{110} upon workfunction,

surface energy and upper layer spin value. The models studied for bcc Fe{110} slabs include

4 (2 movable layer), 6 (3 movable layer), 8 (4 movable layer), 10 (5 movable layer) and 12

(6 movable layers) layer slabs. In all cases, the vacuum was fixed at 10 Å and a 9 × 9 × 1

Monkhorst-Pack mesh was used for all calculations.

The results of table A.1 show the expected enhanced spin in the top layer (relative to

bulk Fe) which remains unchanged when increasing the number of layers past 6.162 As

for workfunction, it converges to within 0.01 eV at 6 layers. The excellent convergence of

surface energy, work function and spin using 6 layers gives confidence in making use of 6

slab layers for the 110 surface.
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Table A.1. Spin in top layer, workfunction (φ) and surface energy (γ)
values according to the number of slab layers of bcc Fe{110} used

Surface layer no. Spin in top layer (µB) φ (eV) γ (J/m2)

4 2.74 4.934 2.76
6 2.68 4.866 2.74
8 2.68 4.876 2.75

10 2.68 4.862 2.74
12 2.68 4.866 2.74

Table A.2. Workfunction (φ) and surface energy
(γ) values as a function of vacuum spacing for a
6-layer bcc Fe{110} slab

Vacuum Spacing (Å) φ (eV) γ (J/m2)

8 4.856 2.742
10 4.864 2.742
12 4.866 2.742
14 4.869 2.741
16 4.868 2.740
18 4.869 2.740
20 4.870 2.739

A.1.2 Vacuum spacing

The results of the effect of increasing vacuum spacing on the workfunction and surface

energy for the 6-layer Fe{110} slab are shown in table A.2. All other parameters are the

same as those used for the slab layer tests in section A.1.1.

Workfunction values vary by 6 0.006 eV for spacings of 10 Å or higher. Changes in

surface energy are negligible across all spacings. The use of a 10 Å vacuum spacing is

therefore justified for the bare Fe{110} slab.
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Table A.3. Spin in top layer, workfunction (φ) and surface energy (γ)
values according to the number of slab layers of bcc Fe{100} used

# Surface layers Spin in top layer (µB) φ (eV) γ (J/m2)

6 3.28 3.976 2.81
8 3.28 3.924 2.81

10 3.28 3.923 2.81
12 3.28 3.915 2.80

A.2 Fe{100}

A.2.1 Slab layer number

In this section, the convergence of work function, surface energy and magnetic behaviour

with increasing number of slab layers is tested for the bcc Fe{100}. The slabs studied include

6 (3 movable layer), 8 (4 movable layer), 10 (5 movable layer) and 12 (6 movable layers)

layers. The results for all slab models are compared in table A.3. In all cases, the vacuum is

fixed at approximately 10 Å (specifically, 6 layers-worth of bcc Fe{100} were used for the

vacuum) and a 9 × 9 × 1 Monkhorst-Pack mesh is used for all calculations.

The workfunction converges to within 0.01 eV at 8 layers. Spin in the top layer shows

the expected enhanced magnetism compared to bulk Fe (2.22 µB ), but does not appear

to be affected at all by the number of layers included for study.162 As the {100} is a more

"open" surface, i.e. the underlying layers are more accessible, it is unsurprising that a higher

number of layers is required for a well converged description of the surface. This behaviour

is also expected for the stepped {211} surface.

A.2.2 Vacuum spacing

The effect of vacuum spacing on the convergence of work function and surface energy is

quantified in table A.4 for the Fe{100}. The results are shown for an 8-layer bcc Fe{100}

slab and all other parameters are the same as those used for the Fe{100} slab layer tests in

section A.2.1.
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Table A.4. Workfunction (φ) and surface energy
(γ) values as a function of vacuum spacing for an
8-layer bcc Fe{100} slab

Vacuum Spacing (Å) φ (eV) γ (J/m2)

8 3.939 2.806
10 3.924 2.806
12 3.920 2.806
14 3.925 2.806
16 3.918 2.807
18 3.920 2.806
20 3.929 2.807

Workfunction values vary by 6 0.01 eV for spacings of 10 Å or higher. Changes in surface

energy are of 6 0.03 eV across all spacings. The use of a 10 Å vacuum spacing is therefore

justified.

A.3 Fe{211}

A.3.1 Slab layer number

The slab models studied for bcc Fe{211} include 6 (3 movable layer), 8 (4 movable layer),

10 (5 movable layer), 12 (6 movable layer) and 14 (7 movable layer) layer slabs. In all

cases, the vacuum was fixed at approximately 10 Å and a 9 × 9 × 1 Monkhorst-Pack mesh

was used for all calculations (the mesh at which convergence was observed for the bcc unit

cell).

Table A.5 shows the workfunction values converge to within 0.01 eV at 8 slab layers,

although it shows a slight decrease of 0.02 eV between 10 and 12 layers. The values for

spin in the top layer oscillate relatively negligibly between all surface layer numbers. As

for surface energy, it shows slight oscillation over the number of slab layers studied, on

the order of 0.01 eV. A study by Błoński and Kiejna showed the Fe{211} surface energy

and workfunction to converge at a very high number of layers to 2.50 J/m2 and 4.12 eV

respectively.140 This is in fair agreement with the 8-layer workfunction (4.193 eV) and
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Table A.5. Spin in top layer, workfunction (φ) and surface energy (γ)
values according to the number of slab layers of bcc Fe{211} used

Surface layer no. Spin in top layer (µB) φ (eV) γ (J/m2)

6 3.14 4.131 2.93
8 3.18 4.193 2.95

10 3.16 4.189 2.93
12 3.14 4.164 2.92

Table A.6. Workfunction (φ) and surface energy
(γ) values as a function of vacuum spacing for an
8-layer bcc Fe{211} slab

Vacuum Spacing (Å) φ (eV) γ (J/m2)

8 4.178 2.954
10 4.193 2.952
12 4.203 2.946
14 4.209 2.951
16 4.168 2.953
18 4.172 2.953
20 4.176 2.943

surface energy (2.95 J/m2) which we calculated.

A.3.2 Vacuum spacing

The effect of varying vacuum spacing upon the workfunction and surface energy of the

8-layer bcc Fe{211} slab are shown in table A.6. All other parameters are the same as those

used for the Fe{211} slab layer tests described in section A.3.1.

Workfunction values vary by 6 0.01 eV from 10-14 Å. However, for spacings greater

than 14 Å, workfunction values decrease slightly more, by 0.04 eV. These changes are not

reflected in the surface energies however, which across all vacuum spacings vary by 6 0.01

eV. With that in mind, we believe that the use of a 10 Å vacuum spacing is justified.
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Appendix B

Benzene/Fe: Comparisons to Literature

B.1 Benzene/Fe{110}

Table B.1 lists certain simulation parameters used in the study of benzene/Fe{110} presented

in chapter 4 as well as in the analogous work of Hensley et al. 96 The parameters listed

are only those which differ between the two works. All other unlisted parameters (e.g.

functional choice) are identical within the two works.

Table B.1. Differing parameters used in the work of Hensley et al.
and this work in the study of Benzene/Fe{110}

Parameter Hensley et al. 96 This work

Ecuto f f (eV) 400 340
Cell size 3 × 3 4 × 4
MP k-point sampling 3 × 3 × 1 2 × 2 × 1
Surface layers 4 6
Movable surface layers 2 3
DFT code VASP CASTEP
Pseudopotentials PAW USPP + NLCC
vdW correction optB88-vdW TS
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B.2 Benzene/Fe{100}

Table B.2 lists certain simulation parameters used in the study of benzene/Fe{100} presented

in chapter 4 as well as in the analogous work of Sun et al. 155 The parameters listed are only

those which differ between the two works. All other unlisted parameters (e.g. simulation

cell dimensions, k-point mesh) are identical within the two works.

Table B.2. Differing parameters used in the work of Sun et al.
and this work in the study of Benzene/Fe{110}

Parameter Sun et al. 155 This work

Ecuto f f (eV) 400 340
Surface layers 7 8
Vacuum spacing (Å) 18 10
Movable surface layers 2 4
Constrained bulk layers 5 4
DFT code VASP CASTEP
Pseudopotentials PAW USPP + NLCC
vdW correction N/A TS
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