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Abstract

Cell-type specific regulation of transcription drives the production of the myriad of
di�erent cells generated during development. Profiling genome-wide gene expression
landscapes in di�erent tissues has improved our understanding of the physiological
and pathological processes taking place during development. Yet, the mechanisms
underlying cell-type specific transcription are not well understood. Promoters
and enhancers are the key loci that orchestrate spatiotemporal patterns of gene
expression. Their activities can range from ubiquitous to highly cell-type specific,
and their composition and arrangement define the regulatory grammar directing
gene transcription across development. More comprehensive in vivo studies of these
regulatory grammars would improve our understanding of how di�erent patterns
of gene expression are obtained across tissues.

Caenorhabditis elegans is an important model organism for studying develop-
mental processes. At the beginning of my PhD, I helped characterize the dynamics
of gene expression and chromatin activity across development and aging. Follow-
ing this, I aimed to identify and characterize the regulatory elements involved in
tissue-specific control of transcription in C. elegans. I jointly profiled chromatin
accessibility and gene expression landscapes across the five main tissues of the adult
nematode. To achieve this, I developed a method to sort fluorescently labelled nuclei
from individual C. elegans tissues. Analyzing the datasets I generated, I first showed
that around 80% of the regulatory elements in C. elegans are specifically active in
subsets of tissues. I then revealed fundamental di�erences in the genetic structure
and regulatory architecture of genes expressed ubiquitously or in individual tissues,
and I defined two distinctive regulatory grammars associated with specific sets
of genes. I also uncovered striking and unsuspected di�erences in nucleosome
arrangement and sequence features of ubiquitous and germline-specific promoters
compared to somatic promoters. Finally, I optimized a single nucleus method to
analyze chromatin accessibility and gene expression during embryogenesis and did
a pilot study of early embryo development.

My work provides a comprehensive resource of chromatin accessibility and
transcription patterns in the di�erent tissues of C. elegans. It sheds light on
fundamental di�erences between the mechanisms of transcription regulation of
germline-active genes or somatic tissue-specific genes. The outcome of this work
will greatly enable and push forward C. elegans transcription regulation research.
The first datasets jointly profiling chromatin accessibility and nuclear transcription
across the majority of tissues in a multicellular organism will also be of benefit for
the broader community studying gene regulation in eukaryotes.
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Chapter 1

Introduction

To place my study in the general context of genome organization and transcription

regulation, the first section of this introduction provides an overview of the current

understanding of the nucleosomal architecture. The second section further presents

the notion of regulatory elements as well as the di�erent mechanisms regulating

chromatin transcriptional activity and introduces the aspects of gene regulation in

development. The third section presents Caenorhabditis elegans as a model system

to investigate gene regulation in development. The fourth and last section of this

introduction establishes the main aims of my PhD.

1.1 Nucleosomes are the fundamental unit of chro-

matin

The molecules of DNA contained in eukaryotic cells can reach up to several meters

when stretched out. Yet, the nuclei where they are stored are one to fifty million

times smaller than this. To reach this state of compaction, DNA is packaged with

a complex set of proteins into a substance called chromatin. In Chapter 1.1, I

present the role of nucleosomes as the fundamental structural unit of chromatin.
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Figure 1.1 – Hierarchical organization of the molecule of DNA in an eukaryotic
nucleus (adapted from Yadav et al., 2018).

1.1.1 Nucleosomes are the basic structural unit of the genome

1.1.1.1 DNA is wrapped around globular protein complexes

The nucleosome is the basic structural unit of the chromatin. It facilitates the

organization of DNA double-helix into chromatin, a highly compact nucleoprotein

entity (Figure 1.1 and Cutter and Hayes, 2015).

The core of a nucleosome is made of a protein complex comprising two copies

of four histone proteins: H2A, H2B, H3 and H4 (Figure 1.2A and Cutter and

Hayes, 2015). A147-bp-long fragment of DNA can wrap around this relatively small

octamer. Each nucleosome resembles a globule with a diameter of approximately 10

nm and is separated from the next nucleosome by a 10- to 80-bp-long DNA linker

(Figure 1.1 and Figure 1.2A-B). With DNA wrapped around histones, the chromatin

fiber is frequently compared to a “beads-on-a-string” structure (Figure 1.1).

In comparison, the dimensions of a 150 bp-long DNA linear segment would be

roughly 2 nm x 50 nm. Thus, the nucleosome is an e�cient way to package DNA

in nuclei. In physiological conditions, when the additional histone H1 is present

and binds to DNA linkers, specific spatial organization of the nucleosomes can

form higher-order chromatin fibers, allowing for greater compaction of the DNA in
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Figure 1.2 – Molecular constituents of a nucleosome. A- A nucleosome is
constituted of a protein core (a combination of eight histone proteins) with DNA
wrapped around it. B- Drawing of a dinucleosome (two adjacent nucleosomes
separated by a DNA linker) (adapted from Cutter and Hayes, 2015).
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out of the nucleosome core globule (Protein Data Bank 1KX5). B- Histone
post-translational modifications found in eukaryotes (reviewed in Zhao and
Garcia, 2015).

nuclei (Figure 1.1).

1.1.1.2 Nucleosomes confer a high plasticity to chromatin

Chromatin is the resulting complex of DNA and histones interacting with additional

proteins and RNA. It is the main constituent of the nucleus in eukaryote cells. The

structure of the chromatin is highly dependent on the nucleosome organization

and the extent to which DNA is compacted can vary accordingly (see below).

This has a predominant role in the nuclear biology. For instance, the overall

structure adopted by chromatin during interphase can in some cases be relatively

loose to allow gene expression. However, during cell division, conformation of the

chromatin undergoes drastic remodeling and adopt a much denser organization

into chromosomes, ensuring protection and appropriate segregation of the heritable

genetic material. This illustrates one of the most important aspects of the chromatin:

its plasticity is a crucial feature coming into play in many developmental processes,

from cell di�erentiation to stress response. In the next sections, I present the

di�erent features of nucleosomes important for chromatin regulation.

1.1.2 Histone post-translational modifications

1.1.2.1 Histone can be post-translationally modified

Histones are the key protein components of nucleosomes. They are characterized

by their prominent N-terminal tails exposed on the surface of the assembled
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complexes which combine both activities, such as the Polycomb Repressive
Complex 2 (adapted from Hyun et al., 2017).

nucleosome (Figure 1.3A). These tails feature evolutionary conserved amino-acids

subject to dozens of covalent post-translational modifications (PTM) (Figure 1.3B

and Ho et al., 2014). For instance, Lysine 4 of the Histone 3 (His3) protein can

be methylated one, two or three times; such histone modifications are referred

to as H3K4me1, H3K4me2 or H3K4me3. A variety of histone PTMs exist (e.g.

acetylation, methylation, ubiquitinylation or phosphorylation, among others) and

a�ect N-terminal tails of all histones as well as the C-terminal tail of H2A and

H2B (Kouzarides, 2007).

The proteins responsible for histone PTMs form a large family of histone

modifying complexes known as “writers” which is still growing as of today. In many

cases, “erasers” (i.e. factors with antagonist activity form “writers”) also exist,

allowing for the covalent histone PTMs to be reversible (Figure 1.4). For example,

histone acetyl transferases and histone deacetylases have opposite enzymatic activity

on lysine residues of histones (Kouzarides, 2007).

Most histone modifying complexes have orthologues across metazoans. The

Polycomb Repressive Complex 2 (PRC2) is a well-studied chromatin remodeler

constituted of at least three main subunits (EZH2, EED and SUZ12) in human
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and responsible for H3K27 trimethylation. All of these subunits are conserved

in Drosophila melanogaster and two of them are found in Caenorhabditis elegans:

MES-2 (ortholog of EZH2) and MES-6 (ortholog of EED).

1.1.2.2 Histone modifications and gene regulation

Many histone PTMs modify the electrostatic constrains of the nucleosome (Tessarz

and Kouzarides, 2014). For instance, the unacetylated Lysine 56 from His3 (H3K56)

is positively charged and enhances the interaction between the DNA backbone

(negatively charged) and the histone. Acetylation of this lysine removes its positive

charge, decreasing the a�nity between the histone and the DNA backbone. This

has been described as “nucleosome breathing” and results in a relaxed wrapping

of DNA around nucleosomes with H3K56ac modifications. Other histone tail

modifications, such as the addition of methyl groups on lysine residues, can create

steric hindrance either between the nucleosome surface and the DNA double-strand

or between subunits of the nucleosome (Bowman and Poirier, 2015). Finally, PTMs

at the histone-histone interface (such as H4K91ac) can disrupt nucleosome intrinsic

stability by altering the interactions between each histone protein.

Overall, histone modifications largely impact the stability of nucleosomes as

well as their interactions with DNA, and thus play a central role in regulating

chromatin organization and gene expression (Bannister and Kouzarides, 2011).

On top of modulating nucleosome stability and interactions with DNA, some

histone modifications can also participate to the recruitment of transcription

factors. H3K4me3 is a canonical histone modification found at the first nucleosome

downstream of transcription start sites. It has been shown to be read by the PHD

domain of TAF3, a subunit of TFIID, a basal transcription factor required for the

activation of large sets of genes in metazoans (Vermeulen et al., 2007).

In other cases, histone modifications can lead to the recruitment of inactivating

proteins. H3K9me2/3 modifications are bound by the chromodomain of Heterochro-

matin Protein 1 (HP1) (Fischle et al., 2005) which, when recruited to a given locus,

will lead to inactivation of transcription (Danzer and Wallrath, 2004). Importantly,

histone modifications can act cooperatively to enhance binding of a given factor.

For instance, PHF8 binding to H3K4me3 is enhanced by the acetylation of H3K9

and H3K14 (Bannister and Kouzarides, 2011).
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A

B

Figure 1.5 – A- Di�erent combinations of histone modifications demarcate func-
tional elements in mammalian genomes. B- Association of histone modifications
with either an active or an inactive chromatin conformation for di�erent func-
tional elements (adapted from Zhou et al., 2011).

1.1.2.3 Histone code and chromatin states

Di�erent histone PTMs are associated with certain chromatin loci (e.g. promoter,

enhancer, transcription, repeats, inactive chromatin, ...) (Ernst and Kellis, 2010;

Kundaje et al., 2015 and Figure 1.5A). H3K4me2 and H3K4me3 are usually found

in cis of distal gene regulatory loci. H3K36me2 and H3K36me3 are found enriched

across a transcribed gene, in combination with H3K79me1/2/3 at its 5’ end.

H3K9me1/2/3 and H3k27me2/3 are generally found in inactive chromatin, either

in large domains or over narrow loci. Importantly, the reversible nature of histone

PTMs reflects how a given genomic locus can switch between an active and an
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Figure 1.6 – Organization of euchromatin and heterochromatin in a mammalian
nucleus. Left inset: electron microscopy photograph of a nucleus (adapted
from medcell.med.yale.edu). Right inset: Schematic of the organization of
chromatin within a nucleus, with chromosome territories and the di�erent types
of chromatin depcited (adapted from https://www.mechanobio.info/).

inactive conformation (Figure 1.5B). This notion of a histone code defining specific

chromatin environment, also known as “chromatin states”, has been instrumental

in the understanding of the role of the chromatin and its dynamic changes for gene

regulation, cell physiology and development.

The notion of histone PTMs cross-talk is crucial to understand how combinations

of histone modifications are integrated together. Histone PTM cross-talks occur at

multiple levels. First, competitive antagonism between histone modifications occurs,

particularly at the lysines of histone tails which are subject to a range of possible

modifications (Kouzarides, 2007). Secondly, histone modifications can depend on

one another. For example, methylation of H3K4 and H3K79 can only happen when

H2BK123 is ubiquitylated in yeast (Lee et al., 2007). Alternatively, binding of HP1

to H3K9me3 is disrupted by the phosphorylation of H3S10 during mitosis (Fischle

et al., 2005). Finally, the order of implementation of histone modifications can

a�ect the impact of these modifications on gene transcription (Lee et al., 2010).

1.1.3 Nucleosomes and chromatin accessibility

1.1.3.1 Accessibility in euchromatin and heterochromatin relies on nu-

cleosome structure and organization

Chromatin is segregated in the nucleus into euchromatin and heterochromatin (Fig-

ure 1.6 and Chen and Dent, 2014; Evans et al., 2016). Euchromatin is characterized
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1.1 Nucleosomes are the fundamental unit of chromatin

by a loose nucleosome arrangement, active histone modifications (e.g. H3K36me3

and H3K79me2) and the association with transcription factors (Figure 1.7). Euchro-

matin is in a decondensed state which fills up most of the nucleoplasm (Figure 1.6).

In contrast, heterochromatin is characterized by H3K9me3 and/or H3K27me3

modifications, the association with heterochromatin proteins such as HP1 and

a high level of histone compaction (Figure 1.7). Heterochromatin is present in

the nucleus (i) interacting with the nuclear lamina at the nuclear envelope, (ii)

condensed into granules within the nucleus or (iii) around the nucleoli (Figure 1.6).

Heterochromatin can be separated into two states. “Constitutive heterochromatin”

is found at specific regions of the genome which are permanently condensed into an

inactive state across all physiological and most pathological contexts, and is usually

marked by H3K9me2 and H3K9me3. On the contrary, “facultative” heterochro-

matin is a non-permanent inactive state of the chromatin which can be altered

depending on the cell context, and is usually marked by H3K27me3 (Figure 1.7).

More generally, depending on their structure and organization, nucleosomes

confer di�erent levels of accessibility to the chromatin. Inactive chromatin-related

histone modifications generate compact arrays of nucleosomes; this creates an

environment where only heterochromatin proteins can interact with DNA. In

contrast, active chromatin-related histone modifications relax nucleosomes, allowing

for transcription activators to bind to DNA.

1.1.3.2 Profiling of chromatin accessibility landscapes

Nucleosomes define the first level of chromatin accessibility. Thus, profiling nu-

cleosome presence (or absence) across a given locus is a way to profile chromatin

accessibility. Historically, this has been done by using nucleases. By adding nucle-

ases to nuclei containing DNA in its native conformation, cuts are preferentially

generated where the DNA is accessible and unprotected, i.e. where the DNA

is not in contact with nucleosomes. Relying on this idea, deoxyribonuclease I

(DNase I) and Micrococcal nuclease (MNase) have been used in analogous ways to

profile chromatin accessibility (Zentner and Heniko�, 2012). DNase preferentially

cuts in “hyper-sensitive” accessible regions of the DNA; upon sequencing, regions

characterized by a high accessibility are revealed by DNase-seq signal. MNase,

on the contrary, cuts DNA between nucleosomes; upon paired-end sequencing,
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tions, dense nucleosomes and attachment to nuclear envelope, while euchromatin
is associated with loose nucleosome structure, higher chromatin accessibility
and enriched interactions with transcription factories (adapted from Zhou et al.,
2011).
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FAIRE

Figure 1.8 – Di�erent genomic assays can be used to profile chromatin accessibility.
ATAC-seq relies on the Tn5 transposase to capture accessible chromatin; DNase-
seq relies on DNAse to capture DNase I hypersensitive sites; MNase-seq relies on
MNase to capture nucleosomal DNA; FAIRE-seq relies on mechanical shearing
to capture nucleosome-depleted under-crosslinked DNA.

regions occupied by a nucleosome will be revealed and accessible regions can be

inferred by the absence of MNase-seq signal (Figure 1.8). Each method has its pros

and cons: DNase-seq allows one to model the footprint of a protein on the DNA

double-strand to study its mechanism of binding but does not give any information

of the neighboring nucleosome organization. In contrast, MNase-seq reveals the

arrangement (occupancy and positioning) of nucleosomes at accessible regions and

throughout the genome but will not shed light on how other proteins may be

interacting with DNA.

Of note, other profiling methods also provide information on nucleosome arrange-

ment. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) allows

one to profile the binding pattern of a protein (which could be a histone subunit of

nucleosomes, for instance) (Park, 2009). FAIRE (Formaldehyde-Assisted Isolation

of Regulatory Elements) is another method relying on cross-linking of nucleosomal

DNA and enrichment of non-crosslinked internucleosomal DNA (Giresi et al., 2007).

However, these methods do not have the same sensitivity as nuclease-based assays,

which are preferred when focusing on profiling chromatin accessibility.

More recently, ATAC-seq (Assay for Transposase-Accessible Chromatin sequenc-
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ing) was designed to profile chromatin accessibility (Buenrostro et al., 2013). It

relies on a transposase (Tn5) to insert short DNA oligomers (transposomes) in

accessible regions; after isolation of the “tagmented” DNA and library preparation,

paired-end sequencing can reveal accessible loci where the Tn5 enzyme was able to

integrate its transposome (Figure 1.8). Importantly, ATAC-seq not only reveals

hyper-sensitive sites, similarly to DNase-seq, but it also gives additional information

on the nucleosome organization flanking the accessible site. Computational tools

such as nucleoATAC (Schep et al., 2015) have now been developed to use ATAC-seq

datasets to infer nucleosome occupancy and positioning, alleviating the hurdle of

the MNase-seq poor reproducibility.

ATAC-seq is a very e�cient method to map open chromatin loci and study

nucleosome organization. Its early experimental procedure has been further op-

timized and in adequate conditions, as few as 500 nuclei can yield a reasonably

good chromatin accessibility profile (Corces et al., 2017). However, single-cell

techniques are now emerging and would theoretically allow one to profile the chro-

matin accessibility landscape of thousands of nuclei individually. This represents

a formidable opportunity to start focusing on new questions. Notably, the field

of developmental biology will certainly benefit from these techniques as single-cell

approaches represent the way to study the di�erentiation events occurring early

on during embryonic development. Such topics are already being tackled (e.g.

by Cusanovich et al., 2018a) to try and shed light on the early molecular events

leading to the formation of a multi-cellular organism.

1.1.4 Interplay between nucleosomes and transcription fac-

tors

Transcription factors (TFs) are proteins interacting at regulatory loci of the genome

to control gene expression (Spitz and Furlong, 2012). Many of them directly interact

with DNA by recognizing specific binding motifs thanks to a DNA-binding domain,

though some can indirectly interact with DNA when engaged in multi-protein

complexes. A canonical example is the vitamin D receptor (VDR) transcription

factor. In unstimulated cells, monomeric VDR is unable to form stable protein-DNA

interactions at its binding motif. When its ligand 1,25(OH)2D3 is present in cells,

VDR recognizes it and changes conformation, triggering its heterodimerization
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A B

Figure 1.9 – Vitamin D: a canonical example of transcription factor-mediated
gene regulation. A- Structure of the heterodimer VDR-RXR bound to DNA
(top) and representation of its DNA binding site (bottom) (adapted from Carl-
berg and Campbell, 2013). B- VDR-RXR-mediated recruitment of a battery
of proteins leading to modification of the local chromatin environment: chro-
matin remodeling complexes (yellow), histone acetyl-transferases (pink), general
transcription factors (in green, see 1.2.1.1) and mediator (in blue, see 1.2.1.2)
(adapted from Pike and Meyer, 2010).

with the retinoid X receptor (RXR). The dimer can then physically interact with a

specific DNA motif found in vitamin D response elements (VDREs) (Figure 1.9-A

and Carlberg and Campbell, 2013).

TF binding sites (TFBS) may be “buried” within nucleosomal DNA rather than

in between nucleosomes (Neph et al., 2012). In this context, most transcription

factors can not recognize their binding site. Nucleosome remodelers are conserved

protein complexes that are usually required to first displace or remove nucleosomes,

an ATP-dependent active process (Clapier and Cairns, 2009). As a consequence,

the local organization of nucleosomes is altered and initially hidden TFBS can be

unmasked, allowing transcription factors to bind (Figure 1.10 and Jiang and Pugh,

2009; Spitz and Furlong, 2012).

Reversely, the binding of transcription factors to their DNA binding site (e.g. the

VDR-RXR heterodimer to VDREs) also leads to important remodeling of the local

chromatin environment (Figure 1.9B and Pike and Meyer, 2010). Transcription

factors can interact with chromatin remodelers or transcription machinery to

modify local transcriptional activity, and in some cases largely remodel nucleosome

organization.

Importantly, “pioneer” transcription factors (e.g. PHA-4 in C. elegans) are a

specific class of transcription factors that can bind nucleosomal DNA (Hsu et al.,

2015; Zaret and Carroll, 2011). Their binding can initiate cooperative interactions
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Figure 1.10 – Mechanisms altering DNA accessibility by nucleosome remodeling.
A- A stable nucleosome. B- A remodeled nucleosome. C- An evicted nucleosome.
Three transcription factor binding sites are shown in red, green and blue,
respectively. The red and blue sites only become accessible after remodeling (B),
either by nucleosome sliding or by chromatin remodeling complexes that ‘extract’
DNA from the nucleosome surface (e.g. ISW2, SWR1 and SWI/SNF). The
green site is always accessible in the various states as it is exposed at the outer
side of the nucleosome. Nucleosome eviction (C) might be necessary to assemble
large protein complexes and to transcribe the underlying DNA (adapted from
Jiang and Pugh, 2009).

with other regulatory proteins, eventually leading to loosening and opening of the

local chromatin. Upon pioneer factor binding, chromatin can become competent

for activation or even become transcriptionally active. Thus, pioneer factors are

the first to come into play during cell di�erentiation, a process inherently requiring

large genome-wide chromatin remodeling (Iwafuchi-Doi and Zaret, 2014).

1.2 Principles of gene regulation in metazoans

Nucleosomes are fundamental units of chromatin and are required for packaging

DNA into nuclei. However, these “beads on a string” also represent a hurdle

obstructing the complex machinery in charge of gene transcription. In Chapter 1.2,

I present the structure of the di�erent classes of regulatory elements (REs) and

introduce the importance of gene regulation during development.

1.2.1 Regulatory elements modulate transcription

1.2.1.1 Promoters regulate the initiation of productive transcription

Fundamental promoter organization Tens of thousands of promoters exist

in metazoan genomes and are located at the 5’ end (or “upstream”) of coding se-

quences. When favorable conditions are met, a complex set of proteins are recruited
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Figure 1.11 – Schematic of the di�erent protein complexes interacting at the
extended promoter (core promoter and proximal TF binding motifs) and at distal
sites. Red box: RNA polymerase II; blue box: general transcription factors (e.g.
TFIID); yellow diamond and orange oval: specific transcription factors; green
hexagon: co-regulators (e.g. p300/CBP) (adapted from Fuda et al., 2009).

to a promoter locus (Figure 1.11) to initiate transcription of the downstream region.

RNA polymerase II (RNAPII) is the enzymatic complex generally responsible for

the synthesis of messenger RNA (mRNA) from protein-coding genes. mRNAs

synthesized during the transcription undergo co- and post-transcriptional modifica-

tions (such as capping, splicing and poly-A-tailing, depending on its nature) and

are exported out of the nucleus to be translated.

The very first base of a promoter to be transcribed is called a “Transcription

Start Site” (TSS). In a given promoter, the TSS is not necessarily located at a

reproducible position for every initiation event (Figure 1.12). Instead, TSSs are

organized in clusters (i.e. Transcription Initiation Clusters, or TICs, also referred

to as Transcription Clusters or TCs, Carninci et al., 2006). The base with the

highest transcription initiation signal is usually used to annotate the dominant TSS

(Figure 1.12). TSS profiling is the most specific approach to annotate promoters

and has led to the identification of di�erent groups of promoters, based on their

transcription initiation characteristics (reviewed in Lenhard et al., 2012 and detailed

in 1.2.1.1).

Still, precisely annotating TSSs may be challenging in specific contexts. In

C. elegans, trans-splicing a�ects ~ 70% of the transcripts (Allen et al., 2011); the

5’ end of these transcripts (the “outron”) can be spliced out and replaced by a

splice leader sequence. Importantly, the trans-spliced outron can be several kb
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antisense RNAs are represented) and the second row shows typical signals of
transcription initiation obtained by cap analysis of gene expression (CAGE). The
sequence features typically found in promoters (polyA (pA) sites, 5� splice sites
(5� SSs) and CpG dinucleotides) are visualized as greyscale bars showing their
average pattern density, where black indicates higher density. The representative
DNase sensitivity is shown as well as the typical patterns of H3K27ac, H3K4me1
and H3K4me3 histone modifications (adapted from Andersson and Sandelin,
2019).
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Figure 1.13 – Structure of the Pre-Initiation Complex (PIC) without RNA Pol
II and TFIIB (left inset) and with RNAPII and TFIIB (right inset). TBP:
TATA-Binding Protein; TAF: TBP-Associated Factors; Inr.: Initiator (adapted
from Louder et al., 2016).

long, e�ectively preventing the precise mapping of promoters in this organism.

Alternative methods have been used to capture the position of the initial 5’ end

have been successfully applied to map TSSs and promoters in the nematode (Chen

et al., 2013; Jänes et al., 2018; Kruesi et al., 2013; Saito et al., 2013).

Promoters harbor specific sequences and chromatin features which can be used

to infer the position of promoters in genomic studies. For instance, splicing sites

and CpG dinucleotides as well as H3K4me3 and H3K27ac histone modifications

are enriched around or immediately downstream of promoters (Figure 1.12).

Formation of Pre-Initiation Complex at promoters for productive tran-

scription The Pre-Initiation Complex (PIC) is assembled at core promoters

(Figure 1.11 and Figure 1.12). It is required to activate RNAPII and its position

determines where transcription initiates. The PIC is a large protein complex that

orchestrates transcription initiation (Figure 1.13). The main components of this

complex are the general transcription factors (GTF): TFIIA, -B, -D, -E, -F and

-H and RNAPII. Each member of the TFII family is composed of many subunits,

resulting in a massive complex of more than fifty proteins bound in the promoter

region (Kornberg, 2007). On top of this minimal PIC assembly, co-activators are

generally required for transcription of messenger RNAs (Figure 1.11).

Initiation of transcription is a multi-step process starting with the assembly of

the PIC at an open promoter (Figure 1.13 and Figure 1.14). First, TFIID interacts

at an open promoter. This interaction is stabilized by TFIIA and TFIIB brings

DNA into a configuration which can enter the active site of the RNA Polymerase
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Figure 1.14 – Molecular steps leading to productive transcription of an mRNA. 1)
Upon opening of the chromatin by a pioneer factor, a TF binds to the promoter.
2) This e�ectively initiates the assembly of the pre-initiation complex at the open
promoter. 3) DNA is unwound to form an open complex, 4) RNAPII engages
transcription and rapidly pauses. 5) A second phosphorylation of RNAPII
C-terminal domain leads to its escape. 6) Eventually, the RNAPII encounters a
termination signal and 7) it is recycled in a new PIC (adapted from Fuda et al.,
2009). The modalities of RNA transcription initiation vary for di�erent types of
promoters and across organisms.
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1.2 Principles of gene regulation in metazoans

Figure 1.15 – Sequences enriched in core promoters and their conserved location
(adapted from Haberle and Lenhard, 2016). Note that this is an aggregated
consensus promoter and that no promoter would present all these sequences at
once.

II. RNAPII and TFIIF are recruited, followed by TFIIE ad TFIIH. The initial

recruitment of TFIID to the promoter is variable depending on its organization

and can require either a TATA-Binding Protein (TBP) subunit or TBP-related

factors (TRFs). Once the PIC is assembled, transcription is initiated at the TSS

after unwinding the DNA, forming an open complex. RNAPII then breaks contacts

with promoter-bound factors, transcribes 20–50 bases downstream of the TSS and

pauses. At this stage, RPB1, the main subunit of RNAPII, has its carboxy-terminal

domain (CTD) phosphorylated. A second phosphorylation of the CTD leads to

RNAPII escape from pausing to enter in a productive elongation state, ending

with transcription termination. At this point, RNAPII can be reused in a new

transcription initiation event (Fuda et al., 2009).

Conserved sequences in promoters are important for regulation Core

promoters contain canonical sequence features found across all eukaryotes or in

specific clades (Figure 1.15 and Lenhard et al., 2012). DNA motifs are bound by

di�erent factors and contribute to transcription initiation. However, canonical

sequences are not found all in every core promoter. For instance, the TATA-box is

the motif recognized by TBP at TATA promoters (Buratowski et al., 1989) but in

its absence, the Sp1 protein can act as a molecular bridge between the DNA and

TFIID to enable proper PIC assembly (Kadonaga et al., 1986; Tan and Khachigian,

2009). Moreover, specific promoter sequences have been identified in individual

species (e.g. MTE and DPE in Drosophila, Figure 1.15).

Extended promoters (~ 120-150 bp around the TSS) can also harbor additional

transcription factors binding sites (TFBS). TFBS are sometimes unmasked upon
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chromatin opening by pioneer factors and can then be bound by specific tran-

scription factors. Once bound, specific transcription factors can modulate the

activity of the promoter. Thus, the presence or absence of TFBS is a good indicator

of where, when and how sets of promoters are activated. For instance, ELT-2

transcription factor is the master regulator of gut di�erentiation in C. elegans and

more than 80% of the genes active in the gut feature its binding motif in their

promoter (McGhee et al., 2009). Thus, identifying conserved motifs enriched in

sets of promoter sequences aids understanding the mechanisms of regulation of

these promoters (Kulakovskiy and Makeev, 2013).

Nucleosome organization at promoters Accessibility of DNA at promoters

is crucial for protein factors to bind and regulate transcription (see 1.1.4), and

nucleosomal organization at promoters is largely conserved from yeast to metazoans

(Mavrich et al., 2008b; Schones et al., 2008; Valouev et al., 2008; Yuan et al., 2005,

Figure 1.12). Active promoters are generally depleted of nucleosomes, generating a

so-called Nucleosome-Depleted Region (NDR). Flanking upstream and downstream

nucleosomes are identified as the -1 and +1 nucleosomes. These nucleosomes usually

have a high occupancy and a tight positioning, i.e. they are generally localized at

the same loci upstream and downstream of the NDR. In yeast, the nucleosomes

downstream of the +1 nucleosomes are also well arranged, creating an array of

nucleosomes (Figure 1.16 and Mavrich et al., 2008a). Such arrays are also detected

in mammals at ubiquitous or strongly expressed genes, albeit to a lesser extent

than in yeast (Lenhard et al., 2012).

In the absence of any other factor, the position of a nucleosome on DNA is

influenced by the underlying DNA sequence (Albert et al., 2007; Dreos et al.,

2016; Field et al., 2008; Forrest et al., 2014; Haberle et al., 2014; Ioshikhes et al.,

1996, 2011; Pich et al., 2018; Satchwell et al., 1986; Segal et al., 2006; Struhl and

Segal, 2013; Wang and Widom, 2005). To which extent this is relevant for in vivo

nucleosome positioning along the genome and particularly in the regions flanking

NDRs has been under a lot of investigation and still remains debated (reviewed in

Struhl and Segal, 2013; Travers et al., 2010). An emerging model is that specific

underlying DNA sequence features (such as 10-bp periodic dinucleotides or stretches

of (A/T)n, n>6, also referred to as poly(dA:dT) tracks) confer specific physical

properties to the DNA double-helix, such as bendability or sti�ness, which can favor
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1.2 Principles of gene regulation in metazoans

Figure 1.16 – Nucleosomal landscape of yeast genes. The peaks and valleys
represent similar positioning relative to the transcription start site (TSS). Nu-
cleosomes are shown as grey ovals and the green–blue shading represents the
transitions observed in nucleosome composition and phasing (green represents
high H2A.Z levels, acetylation, H3K4 methylation and phasing, whereas blue
represents low levels of these modifications). Note the strong phasing of the +1
nucleosomes (adapted from Jiang and Pugh, 2009).

or disfavor nucleosome positioning (Figure 1.17 and Struhl and Segal, 2013; Travers

et al., 2010). Such sequence features at and around promoters likely contribute to

the generation of nucleosome-depleted regions flanked by -1 and +1 nucleosomes

(Struhl and Segal, 2013).

Defining classes of promoters Promoter classes have been defined according

to several di�erent features (reviewed in Haberle and Lenhard, 2016; Lenhard et al.,

2012). A predominant classification relies on the structure of the Transcription

Initiation Clusters (TICs). TICs can be described as either sharp or broad, based

on the transcription start profile obtained by CAGE-seq (Carninci et al., 2006).

Promoters with sharp TICs (“type I promoters”) are enriched for core promoter

elements such as the TATA box while those with broad TICs (“type II promoters”)

are enriched for other elements such as the Initiator. In vertebrates, this classifica-

tion overlaps to some extent with CpG islands : usually only one short CpG island

is found over the TSSs of type I promoters while larger CpG islands cover type II

promoters. A third class, “type III promoters”, encompasses promoters covered

by very large CpG islands often extending well into the gene body. Sharp and

broad promoters also have distinct patterns of nucleosome positioning and histone
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Figure 1.17 – Biases in nucleosomal sequences. Long stretches of A/T disfavor
nucleosome positioning and are enriched in nucleosome-depleted regions, while 10-
bp periodic W (A/T) or S (G/C) dinucleotide signals are enriched in nucleosomal
sequences (adapted from Struhl and Segal, 2013).

modification.

A functional annotation of these promoter classes has been proposed based on

GO enrichment analyses (Carninci et al., 2006; Haberle and Lenhard, 2016; Lenhard

et al., 2012). Mostly based on GO term enrichment analysis, it has been suggested

that type I promoters are associated with genes with tissue-specific expression in

adult tissues whereas type II promoters are associated with genes expressed across

all tissues, and type III promoters control developmentally regulated genes. This

proposed functional classification was initially useful to refine the textbook notion

of promoters, and contributed to clarify the relationship between the structure and

the function of a promoter. However, it did not take into account the fact that

genes can harbor promoters of di�erent types (e.g. a ubiquitously active promoter

and a tissue-specific promoter). Furthermore, only a minority of the promoters

have a “sharp” TIC or a TATA-box (~ 20 to 25%, Chen et al., 2013; Sandelin et al.,

2007) and could not explain the overall abundance of tissue-specific gene expression

genome-wide. Thus, directly determining characteristics shared by functional sets

of promoters with similar activity (e.g. tissue-specific promoters) could help to

refine our understanding of the relationship between the structure and the function

of a promoter.
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1.2.1.2 Enhancers remotely modulate transcription

Enhancers resemble promoters but do not lead to productive transcrip-

tion In addition to promoters, enhancers represent the other major class of

regulatory elements. Enhancers are specific loci of the genome which can modulate

the transcriptional output of associated promoter(s) (Figure 1.18A and Shlyueva

et al., 2014).These loci can be located in close proximity (~ 200 bp to 1 kb) or up to

several kilobases upstream or downstream from the promoter they regulate (Levine,

2010; Shlyueva et al., 2014) and in some extreme cases, enhancers can be located

hundreds of kilobases to few megabases away from their target promoters (Joshi

et al., 2015). Many enhancers are located within the transcribed region of the gene

they regulate, particularly in the first intron (Park et al., 2014). Enhancers are

typically enriched for transcription factor binding sites which, when unmasked upon

nucleosome remodeling, recruit specific transcription factors. These transcription

factors can modulate the transcriptional activity of an associated promoter. Thus,

distant enhancers can drastically increase the transcriptional output of promoters,

sometimes more than 100-fold (Figure 1.18A).

Importantly, the di�erences in the structural features of promoters and enhancers

responsible for their specific functions still remain unclear. Enhancers share a lot

in common with broad bi-directional promoters (Andersson et al., 2015; Core et al.,

2014): both classes of regulatory elements feature NDRs, they can recruit functional

PICs and they usually lead to bi-directional initiation of transcription. The major

di�erence currently observed between the two classes actually lays outside of the

regulatory regions (Figure 1.19). In some organisms, enhancers are enriched for

polyadenylation sites immediately around their NDR while splicing sites are located

in proximity downstream of a promoter NDR. This leads to di�erences in RNA

stability: enhancer RNAs (eRNA) and upstream antisense RNAs (uaRNA) are

rapidly degraded by exosomes while messenger RNAs are recognized and handled

by spliceosomes (Andersson and Sandelin, 2019).

The mechanisms by which a transcription factor bound to a distal enhancer

modulates the transcriptional output of a promoter has been a long-standing ques-

tion. It is now clear that DNA adopts a hierarchical multi-level spatial organization

on top of the fundamental chromatin fiber (see 1.2.2.2 and Serizay and Ahringer,

2018). Regulatory loops are a major type of higher-order organization of the
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Figure 1.18 – Enhancers can modulate promoter transcription activity. A-
Enhancers recruiting di�erent transcription factors can modulate the transcrip-
tional activity of an associated promoter. B- and C- Given the cellular context,
promoter-enhancer physical interactions – usually mediated by the Mediator
protein complex (in red) – di�erently modulate the transcriptional activity of
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Figure 1.19 – Di�erences between promoters and enhancers. The stability of the
transcripts originating from both ends of an NDR determine the main activity of
a regulatory element. At promoters, an elongating transcript rapidly encounters
5’ splice sites which promote its splicing, leading to an increase in stability
(adapted from Andersson et al., 2015).

chromatin fiber (Robson et al., 2019; Schoenfelder and Fraser, 2019). Physical

chromatin looping could directly link two regulatory elements together and concep-

tually explains how enhancers can act from afar by bringing transcription factors

in spatial proximity to a promoter (Spitz, 2016). In many organisms, cohesin and

Mediator are the major protein complexes involved in enhancer-promoter (E-P)

loops: cohesin has a ring-like structure and actively extrudes chromatin into a loop

while Mediator is thought to act as a bridge, bringing enhancers and promoters

close together (Figure 1.18B-C and Fudenberg et al., 2016; Shlyueva et al., 2014).

1.2.1.3 Insulators limit the communication between enhancers and

promoters

Insulators are another class of regulatory elements that function as physical barrier.

Contrary to enhancers and promoters, insulators indirectly influence transcription.

One example is CTCF, which binds DNA in a sequence-specific manner. When

interacting with its binding site, CTCF de facto generates an insulator by acting

as a bulky factor physically limiting interactions (Figure 1.20). In collaboration

with the cohesin factor, it is thought to participate to chromatin loop extrusion,

eventually forming a self-contained isolated neighborhood with limited interactions

with regulatory elements outside of this domain (Figure 1.20 and Dowen et al.,

2014; Hnisz et al., 2016).

CTCF is evolutionarily conserved across most bilaterians but is absent in other

metazoans, plants and fungi (Heger et al., 2012, 2009). However, within bilaterians,

Platyhelminthes and some nematodes including C. elegans appear to have lost
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Figure 1.20 – Role of insulators in chromatin higher-order structure. Insulator
proteins such as CTCF bind to insulator loci and form homodimers e�ectively
blocking loops from being further extruded, thus creating an isolated neighbor-
hood. Within this environment, E-P loops can be formed without interfering
with the rest of the genome (adapted from Furlong and Levine, 2018).

CTCF, yet retain an organized chromatin architecture (Crane et al., 2015; Huang

et al., 2018). This raises the question of which chromatin loci and which factors

are important to modulate chromatin organization in these species.

1.2.2 Regulation of gene expression: beyond regulatory

elements

1.2.2.1 Nascent mRNA are co-transcriptionally processed

Initiation of transcription is a highly regulated biological process. However, elon-

gating and mature transcripts still face additional regulation (Figure 1.21 and Li

and Manley, 2006; Maniatis and Reed, 2002; Saunders et al., 2006; Shatkin and

Manley, 2000). Soon after transcription initiation, a cap is added to the 5’ end

of the nascent mRNA. Additional protein complexes also bind to the elongating

mRNA, acting as chaperone to ensure its adequate packaging. Transcripts are

spliced while being synthesized and a polyadenylated 3’ tail is added to them when

their transcription is achieved. Improperly processed transcripts are recognized

and degraded by surveillance complexes in the nucleus.
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Figure 1.21 – Co- and post-transcriptional control of RNA. After initiation of
transcription, the nascent RNA is capped, packaged and spliced while elongating.
Transcription terminates when RNAPII encounters termination signals and the
RNA is polyadenylated. These modifications protect the mRNA from being
degraded by surveillance complexes so that it can be safely exported outside of
the nucleus (adapted from Li and Manley, 2006).
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Figure 1.22 – Large-scale chromatin organization in Topological Associating
Domains (TADs). Enhancers and promoters located within a TAD preferentially
interact with each other (adapted from Ali et al., 2016).

1.2.2.2 Chromatin is spatially organized into higher-order domains

Gene expression is also regulated by the hierarchical multi-level spatial organization

of chromatin. Beyond the aforementioned enhancer-promoter interactions, the

chromatin adopts a higher-order 3D architecture. Topological Associating Domains

(TADs) are a larger-scale fundamental feature of the genome spatial architecture,

essentially acting as megabases-large isolated neighborhoods (see 1.2.1.3). Fine

regulatory interactions such as E-P loops are contained within each TAD and

inter-TAD physical interactions are inhibited (Figure 1.22 and Ali et al., 2016).

Since their initial identification in metazoans (Dixon et al., 2012; Hou et al., 2012;

Nora et al., 2012; Sexton et al., 2012), the TADs have been under a lot of scrutiny

and their main mechanisms of formation and structural characteristics are now

better defined.

I published a more exhaustive review of the spatial organization of the chromatin

at di�erent scales as well as the di�erences observed across species (Serizay and

Ahringer, 2018), which can be found in the Appendix Chapter A.
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1.2.3 Combinations of regulatory elements control gene

expression in development

1.2.3.1 Genome-wide atlases of regulatory elements in development

Regulatory elements play a central role in modulating chromatin transcriptional

output, and the last decade has witnessed increasing e�orts to comprehensively

annotate them. Active regulatory elements are characterized by a nucleosome-

depleted region, and genome-wide DNA accessibility profiling has been largely used

as a proxy to identify putative regulatory elements. Tens of thousands of accessible

genomic loci have been mapped across metazoans using genome-wide chromatin

accessibility profiling techniques (mainly DNase-seq and/or ATAC-seq, see 1.1.3.2),

thus generating atlases of cis-regulatory elements in many metazoans (Andersson

et al., 2014; Bulut-Karslioglu et al., 2018; Jänes et al., 2018; Liu et al., 2019a; Nègre

et al., 2011; Quillien et al., 2017; Thurman et al., 2012).

Regulatory element accessibility has been extensively studied during devel-

opment in worm (Daugherty et al., 2017; Jänes et al., 2018), fly (Bozek et al.,

2019; Cusanovich et al., 2018a; Haines and Eisen, 2018; Thomas et al., 2011), fish

(Pálfy et al., 2019; Uesaka et al., 2019), mouse (Uesaka et al., 2019; Wu et al.,

2016) and human (Gao et al., 2018; Liu et al., 2019b). Moreover, some studies

have performed tissue-specific accessibility profiling, relying either on single-cell

approaches (Cusanovich et al., 2018a) or bulk tissue analysis (Liu et al., 2019a;

Werber et al., 2014). These studies showed that a majority of regulatory elements

undergo dynamic changes of accessibility during development.

In C. elegans, the Ahringer lab has pioneered the genome-wide functional

annotation of regulatory elements in development. Sequencing of short nuclear RNA

with a 5’-cap was used to profile transcription initiation clusters (TICs, equivalent to

CAGE tag clusters) (“short-capped RNA-seq”, Chen et al., 2013). Simultaneously,

longer capped nuclear transcripts were sequenced to profile transcription elongation

events (i.e. productive elongation) (“long-capped RNA-seq”, Chen et al., 2013).

Together, these data provided insights in the transcription landscape across the

entire genome and throughout development. Later, ATAC-seq experiments were

performed and led to the annotation of 42,247 accessible chromatin loci (Jänes

et al., 2018). The integration of the transcription initiation landscape (short
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Table 1.1 – Regulatory classes of accessible elements annotated in Jänes et al.,
2018.

Type of elements # %
Uni-directional promoters 11,620 27.51
Bi-directional promoters 1,976 4.68

Putative enhancers 19,231 42.52
Non-coding RNA 824 1.95

Pseudogene promoters 291 0.69
Unknown promoters 1,791 4.24

Other elements 6,512 15.41

capped RNA-seq), the productive elongation landscape (long capped RNA-seq)

and the chromatin accessibility landscape (ATAC-seq) allowed to functionally

annotate these chromatin loci into sets of promoters, enhancers and other classes

(Table 1.1). Accessible loci overlapping one or more TICs and with productive

transcription were annotated as promoters. This resulted in 13,596 promoters

being annotated to 11,196 genes of the 20,222 protein-coding genes annotated in

the C. elegans genome. 19,231 other accessible loci overlapping TICs but without

productive elongation were annotated as putative enhancers. Finally, the remaining

accessible sites were annotated based on the genetic feature they overlap with (e.g.

non-coding RNA). The exact strategy used to functionally annotate accessible

chromatin loci is further detailed in Jänes et al. (2018) (Appendix Chapter B). In

this study, nucleosome occupancy and histone modifications landscapes have also

been generated, confirming and improving the current understanding of regulatory

element molecular organization (Jänes et al., 2018).

1.2.3.2 Regulation of gene expression during development

Promoter activity is dynamic during development During development,

a single cell gives rise to progenitors, which further di�erentiate in various lineages.

Ultimately, tissues and organs are formed and fulfill specific biological functions.

This requires large-scale remodeling of chromatin, and many genes become expressed

in restricted cell types at specific developmental stages. Regulatory elements

control these distinct spatiotemporal patterns of gene expression. The genome-wide

“atlases” of regulatory elements have been instrumental to investigate the dynamics

of regulation of gene expression during development.

Transcription factors also play a central role in gene regulation at each develop-
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A B

Figure 1.23 – Di�erentiation of the endoderm in C. elegans. A- The lineage of
the twenty clonal cells forming the worm intestine originates from the E cell
(adapted from McGhee, 2007). B- The di�erentiation of the E cell precursor
into twenty daughter cells depends on the specific transcription factors med-1,
med-2, end-1, end-3, elt-2 and elt-7 regulating each other through feed-forward
loops (adapted from Maduro et al., 2007).

mental stage, from cell specification to organogenesis and later on in post-embryonic

development. They coordinate the expression of functional sets of ubiquitous or

tissue-specific genes involved in similar processes. A canonical example of tran-

scription factors precisely regulating the expression of tissue-specific genes is the

skn-1—med-1,2—end1,3—elt-2,7 cascade in C. elegans. This cascade regulates

the transcription of intestinal genes early on during embryogenesis development

(Figure 1.23). Thus, characterizing the spatiotemporal activity of transcription

factors would bring insights in their contribution to tissue-specific gene regulation

during development.

Finally, chromatin architecture largely varies during development and con-

tributes to gene regulation. For example, in fly, both local and global chromatin

remodeling events occur during embryogenesis and contribute to the activation of

di�erent sets of genes (Figure 1.24).

Thus, characterizing the activity of regulatory elements and transcription

factors as well as the chromatin architecture during development is crucial to better

understand the mechanisms of tissue-specific gene regulation.

Di�erent intrinsic promoter sequences are associated with positioning of

TSSs during development The mechanism by which transcription is initiated

at promoters can also vary during development. Haberle et al. profiled transcription

initiation landscape throughout Zebrafish embryonic development (Haberle et al.,
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Figure 1.24 – Remodeling of chromatin architecture during embryogenesis in fly.
Between nuclear cycle 8 and 13, Zelda pioneer factor is synthesized and binds to
nucleosomal DNA, leading to rearrangement of nucleosome organization at a
battery of promoters. This contributes to inducing the major ZGA at NC 14. At
this stage, newly synthesized transcription factors initiate gene transcription and
genome zygotic 3D architecture is acquired (adapted from Hamm and Harrison,
2018).

2014). This study revealed that within individual promoters, the nature of the DNA

sequences associated with the position of transcription initiation change throughout

development. In oocytes, the position of the dominant TSS of thousands of

constitutively expressed genes appears aligned ~ 30 bp downstream of a degenerated

TATA-box (“W-box”). Once the genome is activated in zygotic cells, TSSs can

shift up to few tens of bp and appear aligned ~ 50 bp upstream of +1 nucleosomes,

whose positioning is facilitated by the underlying DNA sequence (Figure 1.25 and

Haberle et al., 2014). This groundbreaking study clearly showed that the position

of TSSs could be directly aligned (or not) with nucleosome-positioning sequences.

A limitation of this study is the comparison of the transcription initiation

grammar used in one cell type (the oocytes) with that used in cells from embryos

harboring di�erentiating tissues. This mixed-tissues state prevented the authors

of the study from identifying tissue-specific transcription initiation grammars.

Going further, it would be particularly interesting to investigate the di�erences

in transcription initiation grammars at promoters active in di�erent sets of fully

di�erentiated tissues.

Regulatory grammars contribute to gene regulation Gene regulatory gram-

mars are defined by the composition, arrangement and activities of regulatory
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during ZGA in zebrafish. A- Transcription initiation landscape at the cyclin
1 locus at di�erent time points throughout the embryonic development. Note
the shift of TSS clusters before and after ZGA. B- Two di�erent underlying
transcription initiation grammars (adapted from Haberle et al., 2014 and Haberle
and Lenhard, 2016).

elements that control transcriptional patterns of gene expression (Levine, 2010;

Spitz and M Furlong, 2012; Yáñez-Cuna et al., 2013). Di�erent regulatory gram-

mars have been described, ranging from single promoters to complex structures of

multiple alternative promoters, and regulatory elements can operate redundantly,

hierarchically, additively or synergistically (Bahr et al., 2018; Davuluri et al., 2008;

Guerrero et al., 2010; Herr, 1993; Osterwalder et al., 2018; Whyte et al., 2013).

The striking patterns of expression observed for structural genes in fly embryos

are canonical examples of cooperation between regulatory elements. For instance,

several enhancers are present around the eve locus and each one drives a specific

pattern of spatial expression for eve. The combination of all the enhancers leads to

the overall banding pattern observed for eve expression (Figure 1.26A).

Importantly, the function of regulatory elements can change throughout de-

velopment. For instance, the same set of enhancers can activate two di�erent

promoters in di�erent cellular contexts. Perhaps the most famous example of such

developmentally regulated process is the transition from fetal g-globin to adult

b-globin (Figure 1.26B and Sankaran and Orkin, 2013). A cluster of enhancers

known as the Locus Control Region (LCR) is located ~ 50 kb upstream of two globin
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Figure 1.26 – Regulatory grammars in development. A- Pattern of expression
of the gene eve (top, photo from Andrioli et al., 2002) and contribution of six
di�erent associated enhancers to the overall pattern of expression (bottom).
B- The human Locus Control Region (LCR) regulating the transcription of a
g-globin before birth switches to regulating the transcription of a neighboring
b-globin after birth.
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genes, g-globin and b-globin. During embryonic development and up to the birth,

the g-globin is transcribed. However, the LCR–g-globin interactions occurring

during embryogenesis are disrupted after birth by new transcription factors such as

SOX6, FOP and BCL11A, and KLF1, which rewire the LCR interactions with the

b-globin promoter. Furthermore, alternative promoters of the same gene can also

be activated in di�erent contexts, a mechanism known as “promoter switching”.

This can play a major role in development as the resulting mRNAs isoforms could

harbor di�erent coding sequences (Pecci et al., 2001; Pozner et al., 2007). Finally,

perturbation of the linear and/or spatial arrangement of regulatory elements can

lead to pathologies (Chatterjee and Ahituv, 2017; Lupiáñez et al., 2015; Parker

et al., 2013; Schaub et al., 2012).

Overall, these examples illustrate the importance of characterizing the com-

binatorial activity of regulatory elements, which defines regulatory grammars, to

understand the mechanisms of gene regulation during development.

1.3 Using C. elegans to study gene regulation in

development

In Chapter 1.2, I presented the molecular mechanisms of gene regulation in meta-

zoans and the central role played by regulatory elements. Based on these mecha-

nisms, a variety of gene expression patterns are obtained in di�erent cellular and

organismal contexts. In Chapter 1.3, I introduce Caenorhabditis elegans as a model

system to study gene regulation during development.

1.3.1 C. elegans is a powerful system to study cell-type

specific control of gene expression

1.3.1.1 C. elegans has pioneered the field of modern genetics and ge-

nomics

Characterized by a rapid 3-day life cycle and a large brood size (~ 200 progeny),

Caenorhabditis elegans stands as an attractive system to study development. More-

over, the ability to precisely edit its genome, the fact that it is (mostly) a self-

fertilizing hermaphrodite and that males can be used for genetic crosses make C.
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elegans an ideal model organism to investigate the principles governing in vivo gene

regulation in metazoans (Riddle et al., 1997). The worm has emerged as a model

system for genetics relatively recently compared to Drosophila, but the fact that it

was the first metazoan to have its genome fully sequenced is a testament to how

quickly it gained popularity among the community of geneticists toward the end of

the 1990 decade (C. elegans Sequencing Consortium, 1998).

The 100 megabase C. elegans genome has many similarities with more complex

metazoans, notably featuring gene structure with introns and exons, alternative

splicing, regulatory sequences as well as intergenic regions with repeated sequences,

albeit generally smaller than in other metazoans (Spieth et al., 2018). C. elegans

research has pioneered many breakthrough genetic approaches including large-

scale genetic screens, the use of GFP as a biological marker and the use of RNA

interference. It also paved the way for biological discoveries including mechanisms

of dosage compensation, genes involved in apoptosis, mechanisms of acquisition of

embryo polarity and mechanisms of trans-generational inheritance (Table 1.2 and

Corsi et al., 2015).

1.3.1.2 C. elegans tissues are formed by an invariant cell lineage

Perhaps the most striking feature of Caenorhabditis elegans development is its

fixed cell lineage, which leads to consistency of cell number and cell position from

individual to individual during development. Its cell lineage has been entirely deter-

mined from the single-cell embryo to the mature adult by microscopic observation

of cell divisions and cell migrations in the transparent animal ( Figure 1.27 and

Sulston and Horvitz, 1977; White et al., 1986). It has proven to be an excellent

model system with a high connectivity to human biology, and worm-based studies

have unlocked a wealth of knowledge on multiple facets of biology.

Benefiting from its constant cell lineage and the collection of techniques available,

many cell di�erentiation regulatory pathways have been identified in the worm

(Corsi et al., 2015). For instance, the gut develops clonally from the unique E

blastomere, born at the 8-cell embryo stage. During embryogenesis, this blastomere

gives rise to twenty cells whose identity and function are maintained throughout

the life of the worm. The cascade of key transcription factors involved in this

di�erentiation process has been extensively studied (Figure 1.23 on page 33 and
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Table 1.2 – Selected discoveries in C. elegans research (adapted from Corsi et al.,
2015).

Year Discovery References
1974 Identification of mutations that

a�ect animal behavior
Brenner 1974; Dusenberry et

al. 1975; Hart 2006
1977 First cloning and sequencing of a

myosin gene
Macleod et al. 1977

1977 Genetic pathways for sex
determination and dosage
compensation described

Hodgkin and Brenner
1977; Meyer 2005; Zarkower:

18050479
1981 Identification of mutations

a�ecting touch sensitivity
Sulston et al. 1975; Chalfie and

Sulston 1981
1981 First germline stem cell niche

identified
Kimble and White 1981; Kimble

and Crittenden 2005
1983 First complete metazoan cell

lineage
Sulston and Horvitz 1977;

Kimble and Hirsh
1979; Sulston et al. 1983

1983 Discovery of apoptosis (cell
death) genes

Hedgecock et al. 1983; Ellis and
Horvitz 1986; Yuan and Horvitz
1992; Yuan et al. 1993; Conradt

and Xue 2005
1984 Identification of heterochronic

genes
Ambros and Horvitz 1984; Slack

and Ruvkun 1997
1986 First complete wiring diagram of

a nervous system
White et al. 1986; Jarrell et

al. 2012; White 2013
1987 Discovery of the first axon

guidance genes
Hedgecock et

al. 1987, 1990; Culotti 1994
1988 Asymmetric distribution of

cellular components in embryos
by par proteins

Kemphues et al. 1988; Gönczy
and Rose 2005

1993 Demonstration of a role for
insulin pathway genes in

regulating lifespan

Friedman and Johnson
1988; Kenyon et

al. 1993; Kimura et
al. 1997; Collins et al. 2007

1993 First microRNA (lin-4) and its
mRNA target (lin-14) described

Lee et al. 1993; Wightman et
al. 1993; Vella and Slack 2005

1993 Identification of
nonsense-mediated decay genes

Pulak and Anderson
1993; Hodgkin 2005

1994 Introduction of GFP as a
biological marker

Chalfie et al. 1994; Boulin et
al. 2006

1998 First metazoan genome
sequenced

C. elegans Sequencing
Consortium 1998; Schwarz 2005

1998 Discovery of RNA interference
(RNAi)

Fire et al. 1998

2000 Development of genome-wide
RNAi screening

Fraser et al. 2000; Kamath et
al. 2001

2000 Transgenerational inheritance
and its mediation by piRNA

Grishok et al. 2000; Ashe et
al. 2012

2005 First use of channelrhodopsin
optogenetics in an intact animal

Nagel et al. 2005 16360690
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Figure 1.27 – Cell fate specification during early C. elegans embryonic develop-
ment. Left: abbreviated cell lineage tree (up to the 8-cell stage) and nature and
number of derived cells at the time of hatching (adapted from Gilbert, 2000).
Right: Example of annotation of cells by confocal imaging during gastrulation.
Asterisks indicate the di�erentiating Ea and Ep cells, and neighboring cells are
labeled with arrows. Note that Ea and Ep ingress towards the center of the
embryo during gastrulation and are eventually surrounded by MSap and P4
(adapted from Lee and Goldstein, 2003).

Maduro et al., 2007; McGhee, 2007). Tissue-specific gene regulation of biological

processes has also been tackled in post-embryonic development. For instance, the

di�erent steps of proliferation and maturation of the germline in hermaphrodite

worms have been extensively studied.

Overall, the mechanisms of gene regulation involved in tissue-specific processes

are still poorly appreciated. Improving our understanding of the tissue-specific

chromatin organization regulating networks of genes during development would help

to shed light on many key biological processes, from the control of cell di�erentiation

to the physiological functions of individual organs.

1.3.1.3 Challenges arising from studying tissue-specific genetics in C.
elegans

C. elegans is a small organism (~ 1 mm when it has reached adulthood) protected by

a resistant cuticle. The worm community clearly benefited from these characteristics

which for example allow one to safely preserve thousands of strains in a single

container indefinitely (Stiernagle, 2006). However, for the same reasons, isolating

genetic material from individual tissues is more complicated in the worm than

in other larger model organisms (e.g. fly, fish, mice). The easiest approach

is to extract cells from embryos. This yields relatively healthy living cells and

isolated blastomeres can even be cultured and di�erentiated in vitro (Sangaletti and

Bianchi, 2013). However, getting access to whole cells of the worm after hatching at

larval stages is challenging and requires lengthy and ine�cient cuticle dissociation
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methods (Zhang et al., 2011). This represented a major hurdle hindering the use

of traditional methods widely used in other organisms such as fluorescent-activated

cell sorting (FACS) or antigen-based cell purification to study tissue-specific post-

embryonic development. Thus, while large-scale screens and candidate-based

perturbation assays can be performed, using genomic assays to study tissue-specific

gene regulation in di�erentiated tissues remains challenging and requires the design

and optimization of a method to isolate material from individual tissues.

The embryonic development is very short in worm (14 hours at 20-22 °C). If

this is an advantage when seeking to obtain a lot of individuals, it also implies that

it is challenging to capture intermediate cell stages which undergo fundamental

chromatin remodeling during specification and di�erentiation (e.g. there is only E

cell per embryo and it only exists for few minutes before dividing into daughter

cells). Traditional steady-state genome-wide approaches do not appear adapted to

capture events transiently occurring during a very brief period of time.

1.3.2 Preliminary studies: focusing on gene expression

Many studies have tried to characterize gene expression in specific tissues of the

worm, using a variety of approaches (Table 1.3). Originally, tissue-specific cells have

been obtained from embryonic cell dissociation followed by in vitro di�erentiation

and FACS-based isolation (Fox et al., 2005, 2007; Zhang et al., 2002) but this

could not be used for RNA quantification in adult tissues in vivo. Soon after,

mRNA tagging methods emerged, using for instance poly(A)-binding protein co-

immunoprecipitation, and have been extensively used to study steady-state levels of

mature transcripts in bulk tissues (Blazie et al., 2015; Ma et al., 2016; Pauli et al.,

2006; Roy et al., 2002) or even single cell types (Spencer et al., 2011; Stetina et al.,

2007; Takayama et al., 2010). Around the same time, realizing the limitations of

tiling microarrays used between 2002 and 2009, the worm community focused on

large-scale microscopy-based reporter assays (Dupuy et al., 2007; Hunt-Newbury

et al., 2007; McKay et al., 2003; Murray et al., 2008, 2012). With the improvements

in flow cytometry and the emergence of high-throughput RNA-sequencing after 2010,

an increase of FACS-based studies generated new high-quality datasets covering

whole tissues (Haenni et al., 2012; Kaletsky et al., 2018; Meissner et al., 2009;

Warner et al., 2019) or individual cell types (Kroetz and Zarkower, 2015; Spencer
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Table 1.3 – Important studies quantifying gene expression or protein levels in C.
elegans tissues or cell types.

Method
of tissue
isolation

Biological material Quantif.
method

Reference

Embryonic
cell
culture

Touch receptors from cultured embryo cells Microarray Zhang 2002
Neuron from primary cultures of embryonic
cells

Microarray Fox 2005

Embryonic muscle cells and cultured
derivates

Microarray Fox 2007

RNA
tagging

Muscle cells in L1 Microarray Roy 2002
Intestine cells in L4 Microarray Pauli 2006
Pan-neurons and A-class cholinergic neurons
in larvae

Microarray Stetina 2007

ASEL or ASER neurons Microarray Takayama 2009
11 di�erent subtissues in larvae Microarray Spencer 2011
Intestine, pharynx and body muscle (mixed
stages)

RNA-seq Blazie 2015

Muscle in larvae, dauer larvae and aging
worms

RNA-seq Ma 2016

Dissections

Intestines from adults Microarray McGhee 2007
Dissected gonads RNA-seq Ortiz 2014
Dissected gonads 3’-end-seq West 2016
Dissected and cryo-sectioned gonads RNA-seq Diag 2018

Proteomics Seam and hyp7 epidermal cells, intestine, or
neurons

Mass spec. Waaijers 2016

Intestine, epidermis, body wall muscle, or
pharyngeal muscle

Mass spec. Reinke 2017

Nuclei pu-
rification Muscle cells in adults Microarray Steiner 2012

Reporter
assays
(mi-
croscopy)

802 reporters Microscopy McKay 2003
~900 promoters in larvae Microscopy Dupuy 2007
1886 promoters in larvae Microscopy Hunt-Newbury

2008
127 genes during embryogenesis Microscopy Murray 2008
93 genes in 363 specific cells from L1 stage Microscopy Liu 2009

FACS-
based

Embryonic neurons Microarray Stetina 2007
Muscle embryonic cells SAGE Meissner 2009
13 di�erent subtissues in embryo Microarray Spencer 2011
Intestine nuclei in larvae 3’-end-seq Haenni 2012
NSM serotonergic neurons in adults RNA-seq Spencer 2014
PGCs in L1 RNA-seq Kroetz 2015
Muscle, neuron, intestine, and epidermis cells
in adult

RNA-seq Kaletsky 2018

Muscle, intestine, neurons, pharynx and
hypodermis during emb. dev.

RNA-seq Warner 2019

Single-cell

Very early embryos (2-cell stage) CEL-seq Hashimshony
2012

L2 larvae sciRNA-
seq

Cao 2017

Developing embryos sciRNA-
seq

Paker 2019

Hand-picked embryos (1- to 16-cell stages)
and cell dissociation

SMART-
seq2

Tintori 2016
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et al., 2014). Micro-dissections have also been useful to generate tissue-specific

RNA-seq datasets in intestine (McGhee et al., 2007) and in germline (Diag et al.,

2018; Ortiz et al., 2014; West et al., 2018). Finally, with the rise of single-cell

techniques, incredibly precise quantification of cell-specific gene expression is now

possible and single-cell experiments have been performed in embryos (Hashimshony

et al., 2012; Packer et al., 2019; Tintori et al., 2016) and larvae (Cao et al., 2017).

Importantly, most of these studies have been performed in embryos or early

larvae stages, and not in a systematic or comprehensive way. The only integrative

tissue-specific resources covering the main tissues when all the tissues are fully

formed come from Kaletsky et al. (2018), who performed RNA-seq after sorting

nuclei from individual tissues (neurons, muscle, hypodermis and intestine) in adult

worms. However, the authors did not isolate germline nuclei and consequently, one

of the main tissues constituting the body of adult worms was not characterized

in this study. In this study, the authors identified tissue-specific isoforms and

generated a tissue-specific gene expression prediction tool. However, they did not

focus on defining tissue-specific classes of genes and their structural characteristics.

Even more importantly, only a handful chromatin accessibility studies have

been published in C. elegans (Daugherty et al., 2017; Ibrahim et al., 2018; Jänes

et al., 2018; Kolundzic et al., 2018; Lee et al., 2017) and the only tissue-specific

dataset reported as of today is from the primordial germline and in this study, the

authors focused on a mutant phenotype (Lee et al., 2017). Lack of information

on chromatin activity has largely hindered studies of the function of regulatory

elements in gene regulation.

1.3.3 Outstanding questions

As described hereabove, patterns of gene expression throughout development have

already been extensively studied. However, there is still a need for a comprehensive

study of tissue-specific gene expression patterns in fully di�erentiated animals.

Furthermore, the mechanisms of gene regulation used to obtain these patterns

of tissue-specific expression remain poorly investigated. Seminal studies point

to di�erent grammars of transcription initiation between di�erent developmental

stages (Haberle et al., 2014), but how the transcription of tissue-specific genes is

controlled is still unclear. Notably, the di�erences between mechanisms of regulation
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of ubiquitous genes or tissue-specific genes have not been directly tackled. Finally,

the role of transcription factors and chromatin organization in individual tissues has

rarely been comprehensively investigated. Answering these outstanding questions

would shed light on fundamental mechanisms involved in the regulation of gene

expression during development.

1.4 Aims of my PhD

During my PhD, I sought to investigate regulatory elements activity in C. elegans

to shed light on principles of temporal and tissue-specific gene regulation. I pursued

three major goals described below.

Characterizing genome-wide dynamics of chromatin activity through

life

At the beginning of my PhD in 2016, a project was ongoing in the lab to identify and

annotate regulatory elements active at di�erent stages of C. elegans development

and aging. I integrated the ATAC-seq and RNA-seq datasets generated for this

project along with published ChIP-seq data, to identify the general patterns of

temporal chromatin activity and better characterize the regulatory element activity

through development and aging of a metazoan (Figure 1.28, Aim I, Chapter 3).

Defining the regulatory architecture of tissue-specific and ubiquitous

genes

I devoted the major part of my PhD to investigating the tissue-specific gene

regulation in the worm (Figure 1.28, Aim II, Chapter 4, Chapter 5 and Chapter

6). I developed a sorting method to purify bulk tissues and I profiled chromatin

accessibility and transcriptional activity across the five main tissues of the adult

worm. With these datasets, I aimed to identify the regulatory architectures of

tissue-specific and ubiquitous genes and the molecular features of their associated

regulatory elements.
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Figure 1.28 – Aims of my PhD. Each aim is further described in Section 1.4 (The
schematic of Aim III is inspired from Farrell et al., 2018).
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Investigating the mechanisms of gene regulation during lineage specifi-

cation and organogenesis

Finally, I sought to investigate how tissue-specific patterns of gene expression are

acquired and regulated, specifically during lineage specification and organogenesis

(Figure 1.28, Aim III, Chapter 7). For this, I focused on developing single-cell-based

approaches to study regulatory element activity in individual nuclei during early

embryogenesis and tissue di�erentiation.
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Chapter 2

Methods

2.1 Experimental methods

Unless specified in the Foreword on page 1 or in relevant chapters, I performed all

the experiments described in this work.

Generation of transgenic strains

C. elegans strains were maintained using standard procedures at 25 °C and fed

OP50 E. coli. Targeting of the GFP to the nuclear envelope was achieved in

two di�erent ways: 1) by fusing a StrepTag (WSHPQFEK) to the N-terminal

end of GFP (from pPD95.02, Fire lab Vector Kit) and UNC-83 (aa 1-290) to

its C-terminal end, or 2) fusing the full-length NPP-9 coding sequence to the

C-terminal end of GFP. The first approach was used to target GFP to the nu-

clear envelope in germline, muscle, hypodermis and intestine cells. The second

approach was used to target GFP to the nuclear envelope in neurons. The pro-

moter used to express the reporter in individual tissues are the mex-5 promoter

(for Germline expression, chrIV:13,353,242-13,353,729), the egl-21 promoter (for

Neuron expression, chrIV:10,481,768-10,481,932), the myo-3 promoter (from Mus-

cle expression, chrV:12,234,302-12,236,686), the dpy-7 promoter (for Hypodermis

expression, chrX:7,537,794-7,538,688) and the npa-1 promoter (for Intestinal ex-

pression, chrV:7,075,526-7,075,947) (coordinates are in ce11). Three-way Gateway

cloning was used to clone each tissue-specific promoter (in slot 1) upstream of the

reporter coding sequence (in slot 2). tbb-2–3’ UTR was used in slot 3 (Merritt

et al., 2008). The destination vector was pCFJ150 (Frøkjaer-Jensen et al., 2008).
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Reporter constructs were integrated in a single copy at the ttTi5605 Mos1 site

located on chrII (Frøkjaer-Jensen et al., 2008).

Worm collection

C. elegans strains were grown in liquid culture to the adult stage using standard

S-basal medium with HB101 bacteria, animals bleached to obtain embryos, and

the embryos hatched without food in M9 bu�er for 24 hr at 25 °C to obtain

synchronized starved L1 larvae. L1 larvae were grown in a further liquid culture at

25 °C for approximately 42h and young adult worms were then collected, washed

in M9, floated on sucrose, washed again in M9, then frozen into “popcorn” by

dripping embryo or worm slurry into liquid nitrogen.

Nuclear isolation

Young adult hermaphrodites were obtained by growing synchronized starved L1

larvae at 25 °C in standard S-basal medium with HB101 bacteria for 40-42h. After

sucrose flotation and washing in M9 bu�er, worms were frozen into “popcorn” by

dripping concentrated slurry into liquid nitrogen. Nuclei were isolated as previously

detailed (Jänes et al., 2018), with minor modifications. ~ 20,000 to 200,000 frozen

young adult worms were broken by smashing using a Biopulverizer then the frozen

powder was thawed in 8 ml Egg bu�er (25 mM HEPES pH 7.3, 118 mM NaCl, 48

mM KCl, 2 mM CaCl2, 2 mM MgCl2). Broken worms were pelleted by spinning

at 800 g for 3 min then resuspended in 8 ml of Bu�er A (0.3 M sucrose, 10 mM

Tris pH 7.5, 10 mM MgCl2, 1 mM DTT, 0.5 mM spermidine 0.15 mM spermine,

protease inhibitors (Roche complete, EDTA free) and 0.025 % IGEPAL CA-630).

The sample was dounced (two strokes) in a 14-ml stainless steel tissue grinder

(VWR) then spun at 100 g for 6 min to pellet remaining worm fragments. The

supernatant was kept (nuclei batch 1) and the pellet resuspended in a further 7

ml of Bu�er A and dounced for 30 strokes. This was spun at 100 g for 6 min to

pellet debris and the supernatant was kept (nuclei batch 2). The first fraction was

enriched for germline nuclei while the second fraction was enriched for somatic

nuclei.
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Nuclear sorting

Following isolation, nuclei were immunostained by adding phycoerythrin-coupled

anti-GFP antibody (Biolegend # 338003) at 1:200 in 7 ml of bu�er A, and 280

units of murine RNAse inhibitor (M0314S) were added to protect RNA from being

degraded. Nuclei were kept slowly rotating at 4 °C in the dark for 1 to 16 hours.

Debris was removed by spinning at 100 g for 6 min at 4 °C then nuclei were

pelleted (2000 g for 20 min at 4 °C), washed in 6 ml of bu�er A, and resuspended

in bu�er A containing 80 U/ml murine RNAse inhibitor at a concentration of ~

10-15 million nuclei / ml. Finally, nuclei were filtered on 30 µm mesh (CellTrics

04-0042-2316) and stained with 0.025 µg/ml DAPI. Nuclei quality was assessed

immediately before sorting by microscopy.

Nuclear sorting was performed at 4 °C using a Sony SH800Z sorter fitted with

a 100 µm sorting chip and auto-calibrated. Nuclei were gated using the DAPI

signal and PE-positive nuclei were gated using PE-H / BSC-A signal. DAPI gating

depended on which nuclei were being sorted (e.g. intestine nuclei are 32N). A

recording speed > 15,000 nuclei per second ensured a sorting e�ciency higher than

80 %. Nuclei were sorted into 15 ml Falcon tubes containing 500 µl of bu�er A with

800U/ml murine RNAse inhibitor. Nuclei were sorted in batches of one million

and then processed for downstream applications. The purity and integrity of each

batch of nuclei was assessed by recording an aliquot of sorted nuclei in a second

pass in the sorter and by microscopy. All sorted samples used in this study had a

purity higher than 95%.

ATAC-seq

One million nuclei were pelleted (2000 g for 20 min at 4 °C) and resuspended in 1X

Tn5 Bu�er (10 mM Tris pH 8, 5 mM MgCl2, 10% DMF) at a final concentration

of ~ 500,000 nuclei / ml. 2.5 µl of Tn5 (Illumina FC-121-1030) were added to 47.5

µl (~ 25,000 nuclei) of the suspension. The mix was incubated for 30 min at 37 °C

while mixing at 400 rpm. Tagmented DNA was purified using a MinElute column

(Qiagen) and converted into a library using the Nextera kit protocol. Typically,

libraries were amplified using 12-16 PCR cycles. Libraries were then cleaned up

using 0.6 volumes of AMPure XP beads to remove large fragments of DNA (>

700 bp) and DNA recovered from the supernatant by adding 1.2 volumes of beads.
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DNA was eluted in 50 µl water and the library was further size-selected using 0.9

volumes of beads to bind the library, leaving adaptor dimers in the supernatant.

ATAC-seq libraries were generated from two biological replicates for each tissue,

and were sequenced in both single-end and paired-end modes. Single ATAC-seq

libraries were made for L1 and L3 muscle (SE-sequenced) and L3 germline (PE-

sequenced). PGC-specific ATAC-seq data at the L1 stage was obtained from (Lee

et al., 2017).

RNA-seq

Nuclear RNA was extracted from batches of one million sorted nuclei by pelleting

nuclei (2000 g for 20 min at 4 °C), washing them in 1 ml of bu�er A, then adding

500 µl of Trizol to pelleted nuclei. 100 µl of Chloroform were added and samples

were shaken vigorously for 15 s. Samples were then spun at 12,000 g for 15 min at

4 °C and the aqueous phase was transferred into one volume of ice-cold Isopropanol.

0.5 µl of GlycoBlue (AM9515) was added and RNA was left to precipitate overnight

at -20 °C. RNA was pelleted (12,000 g for 30 min at 4 °C), washed in 1 ml of

ice-cold 80% Ethanol and resuspended in 12 µl of RNAse-free water. A minimum

of 20 ng of total nuclear RNA was used to make long nuclear RNA-seq libraries.

Long nuclear RNA (>200 nt) was isolated using Zymo Clean and Concentrate

columns (#R1013) and stranded libraries were prepared with the NEB Next Ultra

Directional RNA Library Prep Kit (#E7420S) after removal of rRNA using the

Ribo-Zero rRNA removal kit (MRZH11124). Long nuclear RNA-seq libraries were

made from two biological replicates for each tissue and were PE-sequenced.

Histone modification profiling

cChIP-seq was performed using chromatin from sorted neuron nuclei. Two million

nuclei were sorted and resuspended in 200 µl FA bu�er (50 mM HEPES-KOH pH

7.5, 1 mM EDTA, 1% Triton X-100, 0.1% Na-DOC, 150 mM NaC). Chromatin

was sheared to 100-300 bp-long fragments by sonicating the samples for 25 cycles

(30” on / 30” o� on Bioruptor Pico sonicator at high setting). Each sample was

then topped up to 1 ml with FA bu�er and 57.4 µl of Sarkosyl were added. 2.5 µg

of antibody (H3K4me3: ab8580; H3K27me3: 309-95259, H3K36me3: ab9050) were

added along with 60 ng of the corresponding recombinant histone and samples with
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antibody were incubated overnight at 4 °C slowly rotating. Dynabeads® Protein

A (10001D) were also blocked in FA bu�er complemented with 1% BSA and 10

µl tRNA. The next day, blocked beads were washed twice in FA bu�er then the

equivalent of 50 µl of Dynabeads® Protein A slurry was added to each sample and

the mix was kept at 4 °C rotating for two hours. Subsequently, chromatin-bound

beads were washed twice with FA bu�er, once with FA 500 (same recipe than FA

but with 500 mM NaCl), once with FA 1000, once with TEL (10 mM Tris-HCl

pH 8.0, 250 mM LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA) and

twice with TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). Samples were eluted twice

with 150 µl elution bu�er for 15 minutes at 65 °C. Samples were then treated with

RNAse for 30 minutes at 37 °C, then with proteinase K at 55 °C for 1-2 hours then

transferred to 65 °C overnight to reverse crosslinks. DNA was cleaned up using

1.8 volume of AMPure XP beads and eluted in 40 µl of lowTE (10 mM Tris-HCl

pH 8.0, 0.1 mM EDTA). Libraries were then made using the Accel-NGS® 2S Plus

DNA Library Kit (21024) following manufacturer instructions.

CUT&RUN was performed using chromatin from sorted muscle nuclei. For

each histone modification profiling, around 30,000 muscle nuclei were directly

sorted into 500 µl of NE1 bu�er (Skene and Heniko�, 2017). The rest of the steps

were performed as described in Skene and Heniko�, 2017. Once eluted, DNA

was transformed into high-throughput sequencing libraries using the procedure

described in Jänes et al., 2018.

Single-nucleus experiments

Single-nucleus assays were performed using the 10X Genomics Chromium workflow.

Nuclei were obtained as follows: a “popcorn” of frozen early embryos was dropped

into 1 ml of bu�er A and quickly thawed. Embryos were then stained with DAPI

and ran through a Sony SH800Z sorter fitted with a 100 µm sorting chip, and only

the embryos with the 30% lowest DAPI signal were recovered. From there, nuclei

were extracted using a Balch homogenizer fitted with a 18 µm ball, allowing for a

2 µm clearance. After ~ 8-10 strokes, nuclei were readily released from embryos

into a high-quality single-nucleus suspension. Accurate nuclei concentration was

estimated using a C-Chip disposable hemocytometer (DHC-N01). Single-nucleus

emulsion and RNA-seq or ATAC-seq was performed by the Genomics facility at
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the CRUK Institute using 10X Genomics workflows.

2.2 Computational methods

Unless specified in the Foreword on page 1 or in relevant chapters, I performed all

the computational analyses described in this work.

Data processing

Sequenced reads were trimmed using fastx_trimmer 0.0.14 and aligned to the ref-

erence genome WBcel235/ce11 obtained from Ensembl release 92 (ftp://ftp.ensembl.org/pub/release-

92/) using bwa-backtrack 0.7.17-r1188 (Li and Durbin, 2009) in single-end

(ATAC-seq) or paired-end mode (ATAC-seq, long nuclear RNA-seq). Low-quality

(q < 10), mitochondrial and modENCODE-blacklisted (Dunham et al., 2012) reads

were discarded.

Normalized genome-wide accessibility tracks were computed with MACS2

(Feng et al., 2012) using parameters --format BAM --bdg --SPMR --gsize ce

--nolambda --nomodel --extsize 150 --shift -75 --keep-dup all and the

bedGraphToBigWig utility (Kent et al., 2010). ATAC-seq was also sequenced

in paired-end mode; paired-end data were used for nucleosome occupancy and

fragment density analysis.

Long nuclear RNA-seq data were processed essentially as in (Chen et al., 2013).

Following alignment and filtering, fragments-per-million-normalized strand-specific

coverage tracks were computed by transforming the bam file into a bedGraph

file using the genomeCoverageBed v2.26.0 utility (Quinlan and Hall, 2010) with

the parameters -bg -pc -scale 10e6/${NBFRAGS} -strand ${STRAND} (where

${NBFRAGS} is the number of mapped fragments and ${STRAND} is + or -). Gene

annotations used throughout this study are WBcel235/ce11 obtained from Ensembl

release 92 (ftp://ftp.ensembl.org/pub/release-92/).

To assess the reproducibility of biological replicate datasets, I used site accessi-

bility or gene expression values to compute pairwise Euclidean distances between

each dataset and pairwise Pearson correlation scores. The 20% least accessible

sites and least expressed genes were not taken into consideration to compute the

correlation scores. Both ATAC-seq and RNA-seq data from biological replicates
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showed high concordance.

Clustering of promoter accessibility

Accessible loci with regulated accessibility during development or aging were

determined as follows. All loci (n = 42,245) were tested for a di�erence in ATAC-

seq coverage between any two developmental time points or between any two aging

time points using DESeq2 (Love et al., 2014). Sites with >= 2 absolute fold change

and adjusted p-value < 0.01 were defined as ‘regulated’ and were used in clustering

analyses (n = 30,032 in development and n = 6,590 in aging); regulated promoters

(n = 10,199 in development and n = 1,800 in aging).

Depth-normalized ATAC-seq coverage of each promoter was calculated at each

time point in development or aging. For each accessible locus, the log2-mean-

centered relative accessibility was calculated throughout development or aging.

Clustering was performed using k-medoids as implemented in the pam() method of

the cluster R package. Di�erent numbers of clusters were tested for clustering

of regulatory elements in developmental and aging datasets and assessed by their

“silhouette”; 16 was chosen for developmental data and 10 for aging data as

the normalized changes in promoter ATAC-seq signals within each cluster were

relatively homogeneous. I manually merged two aging clusters showing comparable

accessibility and tissue-specific gene enrichment (resulting in the cluster I + H

[2]). Clusters labels were determined based on enrichment for tissue-biased gene

expression within each cluster (see below).

To compare accessibility and gene expression, FPM-normalized gene-level read

counts were calculated using DESeq2, and then averaged across biological replicates.

Using single-cell RNA-seq data from Cao et al., 2017, I defined tissue-biased

gene expression as follows: Gene expression was considered enriched in a given

tissue if it had a fold-change >= 3 between expression in the tissues with highest

and second highest levels and an adjusted p-value < 0.01. This defined 5,315 genes

with tissue-biased expression (1,432 in Gonad, 553 in Hypodermis, 799 in Intestine,

352 in Muscle, 1,218 in Neurons, 447 enriched in Glia, 514 in Pharynx). For each

developmental or aging cluster of promoters, I calculated the percentage of genes

with biased expression in a given tissue relative to the total number of genes in the

cluster.

53



Methods

Integration of transcription factor binding profiles and chro-

matin dynamics

modENCODE and modERN transcription factor binding datasets used in this paper

were obtained from http://www.encodeproject.org or http://data.modencode.org

(EOR-1) (Araya et al., 2014; Kudron et al., 2018). ChIP-seq profiles were manually

inspected and 227 high quality datasets selected, covering 176 transcription factors.

To analyze enrichment of individual factors, TF peaks were assigned to a regulatory

element if their summits overlapped with the 400 bp region centered at the element

midpoint. I excluded binding at so-called ‘HOT’ (highly occupied target) regions

from enrichment analyses, as these are thought to represent non-sequence-specific

TF binding or ChIP artifacts (Gerstein et al., 2014; Kudron et al., 2018). HOT

regions were defined here as accessible sites with binding of 19 or more of the

analyzed 176 TFs (sites in the top 20% of binding, excluding sites with no bind-

ing). Only transcription factors with more than 200 peaks overlapping ‘non-HOT’

regulatory elements were kept, to ensure su�cient data for analysis. Following this

stringent filtering, 89 transcription factors could be assayed for binding enrichment.

Transcription factor binding enrichment in each cluster was estimated using the

odds ratio and the transcription factors with an enrichment higher than 2 in at

least one cluster and an associated p-value < 0.01 were kept (Fisher’s exact test).

Temporal activity of transcription factors during develop-

ment and aging

Temporal activity of transcription factors during development or aging is estimated

as follows: for each factor, its binding enrichment across all the promoter clusters

was multiplied by the average promoter accessibility in corresponding clusters,

separately during development and aging. The resulting matrix product was then

row-scaled.

Annotation of new regulatory elements

In a previous study, 42,245 accessible sites were identified across development and

aging and annotated them into functional classes (coding promoters, non-coding

promoters, unassigned promoters, putative enhancers, inactive elements) based on
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nuclear RNA-seq patterns (Jänes et al., 2018). Jürgen Jänes ran his annotation

pipeline using the previously generated data together with the newly generated

adult tissue-specific ATAC-seq and RNA-seq generated in this study. This resulted

in the detection and annotation of 5,269 new accessible sites, bringing the total

sites to 47,514.

GO term enrichment analyses

GO term enrichment analyses were performed using the gProfileR 0.6.7 package

(Reimand et al., 2007), filtering for redundant GO terms using the hier_filtering

= moderate option. To compare GO enrichment across several groups, the clusterProfiler

3.10.1 package (Yu et al., 2012) was used, filtering for redundant terms using RE-

VIGO (http://revigo.irb.hr/). Only GO terms with Bonferroni-adjusted p-values

lower than 0.05 were kept.

Comparison of gene annotation with published gene sets

I compared the main classes of tissue-specific and ubiquitous genes obtained in

this study with previously published gene sets from Cao et al., 2017, Spencer et al.,

2011 and Kaletsky et al., 2018 (Figure 5.9 on page 111). None of these studies

formally defined a class of ubiquitous genes.

Annotation of DREAM targets

DREAM targets were defined as the set of genes regulated by DREAM complex

identified in Latorre et al., 2015 (Figure 5.16 on page 119).

Distribution in chromatin domains

Distribution of genes and accessible sites over active or regulated domains, borders

and chromosome X (Figure 5.19 on page 123) was obtained using the chromatin

domain annotation from Evans et al., 2016.
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Physical chromatin interactions and networks of inferred

interactions in individual tissues of young adult worms

Chromatin interactions mapped using ARC-C in whole worms at the L3 stage

were obtained from Huang et al., 2018. I discarded 8,547 interactions mapped in

L3 anchored at at least one accessible site classified as “Unclassified” or “Low” in

young adults, and 589 other interactions anchored at two regulatory elements not

active in the same tissue(s) in young adult (e.g. one germline and one neuron

regulatory element). I then deconvoluted the remaining 24,152 interactions based

on the activity of the two regulatory elements to which each interaction is anchored.

For instance, an interaction anchored to a ubiquitous promoter on one side and to

a promoter active in both neurons and muscles on the other side would be assigned

to the two sets of neuron and muscle interactions. This resulted in five sets of

inferred interactions in the five main tissues of the YA worm.

Networks of inferred interactions in individual tissues were generated and

investigated using igraph 1.2.4 package (Csardi and Nepusz, 2006). Simulated

networks of inferred interactions in individual tissues were generated by first deleting

specific interactions (e.g. interactions bridging loci located further than X bp from

each other) or specific loci (e.g. sites accessible across all four somatic tissues)

then re-computing the resulting networks. Interaction frequency, communities and

modularity were determined using igraph 1.2.4 package.

ATAC-seq fragment density plots

ATAC-seq fragment density plots, also known as V-plots (Heniko� et al., 2011),

were generated using the VplotR 0.4.0 package (Serizay, 2020b).

Nucleosome occupancy tracks and putative +1 nucleosome

mapping

Processed bam files from paired-end ATAC-seq duplicates of each tissue or from

whole organism young adults (Jänes et al., 2018) were merged. For each class

of promoter (germline, neuron, muscle, hypodermis, intestine and ubiquitous

promoters), the nucleoATAC python package (Schep et al., 2015) was used to

compute the probability of nucleosome occupancy from -1kb to + 1kb from promoter
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centers in each tissue (germline, neuron, muscle, hypodermis, intestine and whole

organism). Promoter centers were defined by the summits of peaks in chromatin

accessibility signal.

Putative +1 and -1 nucleosome positions were determined for each set of tissue-

specific promoters using the corresponding tissue-specific nucleosome occupancy

probability track and for ubiquitous promoters using whole organism nucleosome

occupancy probability track (Jänes et al., 2018). I assigned the center of the putative

+1 nucleosome to the local maximum of the nucleosome occupancy probability

within 200 bp downstream from the forward TSS mode (TSSs were annotated using

short capped nuclear RNA-seq, see Chen et al., 2013; Jänes et al., 2018). Similarly,

the center of the -1 nucleosome summit was assigned to the local maximum of the

occupancy probability within 200 bp upstream of the reverse TSS mode. Only

coding promoters with experimentally determined forward and reverse TSSs were

considered.

Motif identification and enrichment analyses

Motifs enriched in di�erent sets of promoters (-75 bp to +105 bp from promoter

centers) were identified using MEME in stranded mode and a 0-order background

model (-markov_order 0). MEME mode was set to ‘Any Number of Repetitions’

(-mod anr) and motif widths were restricted to 6 to 25 bp. The five motifs found

most enriched (with an E-value threshold of 0.05) were retrieved. Unstranded

motifs (found twice as complementary sequences, since MEME was run in stranded

mode) were manually combined. PWMs for the Initiator (Inr) and the TATA motif

were obtained from Jin et al., 2006. Motif mapping to promoters was performed

in R using the Biostrings 2.50.2 package, the GenomicRanges 1.34.0 package

and the TFBSTools 1.20.0 package with a relScore threshold set to 0.8.

Dinucleotide periodicity

To estimate dinucleotide periodicity in sets of sequences (e.g. -50 to +300 bp

sequences around ubiquitous, germline or somatic-tissue-specific TSSs in Figure 6.9

on page 147, or -50 to +300 bp sequences around TSSs from di�erent organisms in

Figure 6.15 on page 154), the getPeriodicity() function from the periodicDNA

0.2.0 package was used with default parameters (Serizay, 2020a). Briefly, the
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distribution of distances between all possible pairs of dinucleotides in the set of

sequences was computed and corrected for distance decay, smoothed by a moving

average window of 3 and power spectral densities were retrieved by applying a Fast

Fourier Transform to the normalized distribution.

To generate 10-bp dinucleotide periodicity score tracks, the generatePeriodicityTrack()

function from the periodicDNA 0.2.0 package was used with default parameters

(Serizay, 2020a). Briefly, a running 10-bp dinucleotide periodicity score was cal-

culated by applying a Fast Fourier Transform (stats 3.5.2 package) on the

distribution of distances between pairs of dinucleotides (e.g. WW. . . . . . WW) found

in 100-bp long sequences (2-bp increments).

Phasing of nucleosomal sequences

To observe the 10-bp periodic occurrence of a dinucleotide in putative +1 nucleo-

somes, sequences (400 bp centered at the nucleosome dyads) were first clustered by

k-means based on the dinucleotide occurrences in each sequence, then the clusters

were rephased within a -/+5 bp range using the lag value estimated by the ccf()

function from the stats 3.5.2 package.

Sets of annotations in fly, fish, mouse and human

In worms, experimentally annotated TSSs were used (Jänes et al., 2018). In fly

and zebrafish (respectively dm6 and danRer10 genome versions), TSSs were as-

signed to the first base of the genes using TxDb.Dmelanogaster.UCSC.dm6.ensGene

3.4.4 and TxDb.Drerio.UCSC.danRer10.refGene 3.4.4 gene models with the

GenomicFeatures 1.34.7 package in R. In mouse and human, FANTOM5 CAGE

datasets were used to retrieve the dominant TSS closest to the gene annotation

(Lizio et al., 2015).

Nucleosome occupancy in fly, fish, mouse and human

Nucleosome occupancy tracks were generated as described for worms using nucleoATAC

with the following ATAC-seq datasets: SRR6171265 in fly (Haines and Eisen, 2018),

SRR5398228 in zebrafish (Quillien et al., 2017), SRR5470874 in mouse (Benchetrit

et al., 2019) and SRR891268 in human (Buenrostro et al., 2013).
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Coe�cient of variation of gene expression

Coe�cient of variation of gene expression (CV) values were retrieved from Gerstein

et al., 2014 for worm, fly and human or computed using gene expression datasets

from Pervouchine et al., 2015 for mouse and White et al., 2017 for zebrafish. Genes

with the 20% lowest CVs were considered broadly expressed and those with the

20% highest CVs were considered regulated.

Other visualization tools

Figures were generated in R 3.5.2, using either base or ggplot2 3.1.1 plotting

functions. Genome browser screenshots were obtained from IGV 2.4.8. Genome

tracks in the bigWig format were imported in R using the rtracklayer 1.42.2

package.

59





Chapter 3

Coordinated regulatory element

activity during C. elegans
development and aging

When I started my PhD, Yan Dong and Michael Schoof were profiling chromatin

accessibility and gene expression by ATAC-seq and RNA-seq, throughout C. elegans

development and aging. In parallel, Jürgen Jänes was leading the computational

analyses. I joined this project to investigate the dynamics of regulatory element

accessibility during C. elegans development and aging. In Chapter 3, I present the

characteristics of sets of regulatory elements which have coordinated changes in

accessibility during C. elegans life. Most of the results presented here have been

published in Jänes et al. (2018) (see Appendix Chapter B).

Collaboration note: Yan Dong and Michael Schoof generated the ATAC-seq and

RNA-seq libraries used in this chapter and Jürgen Jänes developed the bioinformatic

pipeline to map and annotate regulatory elements from these datasets.

3.1 Chromatin accessibility dynamics during de-

velopment and aging

3.1.1 Annotation of regulatory elements in C. elegans

Regulation of transcription during development is a key process to achieve spa-

tiotemporal patterns of gene expression. Promoters and enhancers play a central
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role in this process, either by initiating or by modulating transcription, and can be

under spatial and/or temporal control. Thus, an essential step for understanding

the transcriptional circuits that control development and physiology is the genome-

wide identification and characterization of regulatory elements (see Chapter 1.2

and Chapter 1.3). Still, no study had yet investigated regulatory element usage

across the life of an animal, from the embryo to the end of life. Caenorhabditis

elegans is an ideal model organism to map regulatory elements and study their

dynamics through development and aging, as it has a simple anatomy, well-defined

cell types, and short development and lifespan.

At the beginning of my PhD, I joined a project to identify and annotate

regulatory elements used during Caenorhabditis elegans development and aging

by integrative analysis of di�erent types of high-throughput sequencing datasets

(Jänes et al., 2018). ATAC-seq datasets generated from embryo to aging worms

were used to define 42,245 genomic loci accessible at any point during the worm life

cycle. Nuclear RNA-seq data were then used to functionally annotate the accessible

sites. This identified 15,678 putative promoters (13,596 of them associated with

protein-coding genes) and 19,231 putative enhancers. 824 accessible sites were

found to overlap small ncRNAs and 6,512 other accessible sites did not have any

transcriptional activity and remained uncharacterized.

3.1.2 Sets of coordinated promoters regulate gene expres-

sion during development

I sought to investigate changes in the accessibility of regulatory elements across C.

elegans life. I first focused on chromatin accessibility dynamics between embryonic

development and adulthood. 71% of the annotated accessible sites showed a

significant di�erence in accessibility within this period of time. To investigate how

accessibility relates to gene expression, I then focused on the 13,596 regulatory

elements annotated as promoters of protein-coding genes; 10,199 of these promoters

(75%) showed significant changes in accessibility in development. Using a k-medoids

clustering approach, I grouped them into sixteen sets of promoters characterized

by similar temporal variations of accessibility (Figure 3.1). The remaining 3,397

promoters show stable accessibility. Importantly, I observed that within each

cluster, promoter accessibility and nuclear RNA levels of the associated genes are
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Figure 3.1 – k-medoids based clustering of promoter accessibility changes during
development. A- Mean-centered promoter accessibility in each cluster during
development. Solid lines represent the average value of chromatin accessibility
and grayed ribbons represent the confidence intervals. B- Example of promoter
accessibility changes in cluster 1 and cluster 13.

relatively well correlated (mean r = 0.47, sd = 0.11 across all clusters), indicating

that indeed accessibility is a good metric of promoter activity and overall gene

expression (Figure 3.2). These results suggest that most promoters are dynamically

accessible during development, and that subsets of promoters with coordinated

accessibility regulate temporal expression of their associated genes.

I hypothesized that some of the sets of promoters with coordinated accessibility

could be associated with genes involved in tissues-specific processes. I took advan-

tage of a single-cell dataset measuring levels of gene expression in di�erent tissues

in L2 stage to annotate each cluster based on its association with tissue-specific

genes (Figure 3.3, Figure 3.4 and Cao et al., 2017). I found that eight clusters of

coordinated promoters are associated with genes specifically expressed in one or

two tissues (four gonad-related promoter clusters (G1-G4), two intestine-related

promoter clusters (I1, I2), one hypodermis-related promoter cluster (H) and one

promoter cluster associated with genes expressed in neurons and muscle (N +

M)). Interestingly, promoters associated with genes with the same tissue-specificity

can exhibit similar trends of chromatin accessibility variations but with di�er-

ent amplitudes. For instance, G1 and G2 gonad-related promoter clusters are

both characterized by an increase of chromatin accessibility starting in L3 (when

germline starts proliferating); however, the amplitude of this increase is 1.5-fold

greater in G2 than in G1 (Figure 3.3). This is consistent with higher levels of
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Figure 3.3 – Association between promoter clusters and biological processes (1).
The left column represents promoter accessibility changes during development.
The middle column represent the % of genes from each cluster specifically
expressed in a given tissue in L2 (data from Cao et al., 2017). The right column
shows the main GO terms enriched in each cluster (colors indicate the type of
GO term; blue: Biological Process; green: Molecular Function; orange: Cellular
Component). Clusters are grouped by the tissue in which the associated genes
are generally expressed: A- Gonad-related clusters, B- Intestine-related clusters,
C- Hypodermis-related cluster and D- Neurons and muscle-related cluster. Only
the eight promoter clusters with tissue-specific-related functions are shown here
(the other eight clusters are shown in Figure 3.4)
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Figure 3.4 – Association between promoter clusters and biological processes (2).
The eight clusters of promoters with no clear tissue-specific-related functions
are represented here. Legends are the same than in Figure 3.3.
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3.1 Chromatin accessibility dynamics during development and aging

expression for the genes associated with a promoter from the G2 cluster compared

to those associated with a promoter from the G1 cluster (Figure 3.2). Overall, the

coordinated promoters in these eight clusters are regulating the temporal expression

of tissue-specific genes. In contrast, genes associated with the remaining eight

promoter clusters (Mix1–8) are generally not tissue-specific genes, but still have

a variable expression during development (Figure 3.1 and Figure 3.4). Thus, the

coordinated promoters in the “Mix” clusters are regulating the temporal expression

of genes expressed more broadly across tissues.

I performed Gene Ontology term enrichment analyses on the genes associated

with each set of promoters to investigate the functional role of coordinated promoters

(Figure 3.3). As expected, I found that promoter clusters associated with tissue-

specific genes are enriched for GO terms related to that tissue. For instance, the

cluster H contains promoters associated with genes highly expressed in hypodermis

and GO terms linked them to cuticle development. Interestingly, promoter clusters

regulating similar tissue-specific groups of genes can be associated with di�erent

biological functions. For example, the I1 cluster contains promoters associated

with intestinal genes involved in organismal defense against pathogens, while the

I2 cluster contains promoters associated with intestinal genes generally involved

in metabolism. “Mix” promoter clusters associated with broadly expressed genes

are also enriched for specific biological functions. For instance, the cluster Mix4 is

associated with genes expressed during embryogenesis and early larval stages and

involved in cell migration (Figure 3.4).

Taken together, these results suggest that sets of promoters with coordinated

activity during development temporally regulate functional sets of tissue-specific or

broadly expressed genes.

3.1.3 Sets of coordinated promoters regulate gene expres-

sion during aging

Following the same approach, I also characterized chromatin accessibility changes

during aging. In contrast to the development time course, only 1,800 of the

13,596 promoters (13%) show significant changes in accessibility. As for the

development time course, I clustered these promoters according to their changes in

accessibility and identified eight clusters of promoters with coordinated chromatin
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Figure 3.5 – k-medoids based clustering of promoter accessibility changes during
aging. A- Mean-centered promoter accessibility in each cluster during aging.
Solid lines represent the average value of chromatin accessibility and grayed
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changes in cluster 3 and cluster 7. YA: Young adults; d3: day 3 of life (i.e. one
day older than YA); d7: day 7 of life; d10: day 10 of life; d14: day 14 of life.

accessibility during aging. I annotated these promoter clusters based on their

association with tissue-specific genes (Figure 3.5 and Figure 3.6). This identified

one cluster of intestine-related promoters (I), two clusters of promoters associated

with genes enriched in intestine or hypodermis (I + H) and five other clusters

(Mix1-5). Interestingly, most of the promoters that changed accessibility during

aging underwent a decrease of accessibility (Figure 3.6). This is in line with recent

reports suggesting focal heterochromatinization in aging nuclei (Sen et al., 2016).

These results show that many of the promoters undergoing accessibility changes

during aging are associated with intestine and hypodermis processes, supporting

a central role of these tissues in aging and lifespan (Gelino et al., 2016; Herndon

et al., 2002; McGee et al., 2011).
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Figure 3.6 – Association between aging promoter clusters and biological processes.
The left column represents promoter accessibility changes during aging. The
middle column represent the % of genes from each cluster specifically expressed
in a given tissue in L2 (data from Cao et al., 2017). The right column shows
the main GO terms enriched in each cluster (colors indicate the type of GO
term; blue: Biological Process; green: Molecular Function; orange: Cellular
Component). Clusters are grouped by the tissue in which the associated genes are
generally expressed: A- Intestine or Intestine and Hypodermis-related clusters,
B- Promoters clusters with no clear tissue-specific-related functions.
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3.2 Transcription factors coordinating regulatory

element accessibility

3.2.1 Transcription factors associated with developmental

promoter clusters

The sets of developmentally coordinated promoters I identified are associated

with genes with shared biological functions. I hypothesized that transcription

factors could bind to specific sets of promoters to coordinate the expression of their

associated genes across developmental stages, as seen in Figure 3.2. I obtained

genome-wide transcription factor binding profiles from the modENCODE and

modERN databases (Kudron et al., 2018; ModENCODE, 2011) and computed the

odds ratio of TF binding in each promoter cluster (Figure 3.7). In many cases,

transcription factors were specifically associated with one or several individual

clusters of promoters. For example, the intestinal transcription factor ELT-2

(Fukushige et al., 1998) is enriched at promoters of intestinal clusters I1 and I2.

Similarly, the hypodermal transcription factors BLMP-1 (Horn et al., 2014), NHR-

25 (Gissendanner and Sluder, 2000) and ELT-3 (Gilleard et al., 1999) bind to

promoters of the hypodermal cluster H and the germline XND-1 factor (Wagner

et al., 2010) binds to promoters of germline clusters G1 to G4 (Figure 3.7).

I aimed to characterize the activity of transcription factors throughout develop-

ment. The levels of expression of a given transcription factor do not necessarily

recapitulate the TF binding activity. For instance, a transcription factor can be

expressed but restricted to cytoplasm, or would require the presence of a co-factor

to bind to DNA. I sought to leverage (i) the TF binding profile at promoters and

(ii) the accessibility dynamics of the promoters to provide an alternative estimation

of the regulatory activity of a transcription factor, based on its binding patterns

rather than on its expression. For a given transcription factor (e.g. XND-1) at

a given time point (e.g. L1 stage), I defined its temporal activity –XND≠1,L1 as

the sum of the products between the TF binding enrichment (EnrXND≠1,clust.i,

defined as the percentage of promoters bound by the factor within a cluster i)

and the average promoter accessibility in L1 (Acc,clust.i,L1, defined as the average

promoter accessibility in cluster i), for each of the annotated clusters.
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Figure 3.7 – Odds ratio of transcription factor binding in individual developmental
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16ÿ
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1
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2

Thus, the temporal activity of any transcription factor at any given time during

development is defined by the matrix product – = Enr · Acc (Figure 3.8). When

z-scored by rows, the resulting matrix of temporal activity scores indicates to

which extent a factor binds to accessible promoters at each developmental stage,

for each transcription factor (Figure 3.9). Thus, the temporal activity metric aims

to describe more directly the binding patterns of a transcription factor over time,

compared to using its levels of expression.

This temporal activity metric shows expected results, such as the germline-

specific transcription factors being mostly active at the young adult stage (e.g.

HIM-1, XND-1) or transcription factors involved in cell fate specification mostly

active at the embryo stage (e.g. SPTF-1). Interestingly, unusual patterns of

transcription factor temporal activity can also be detected. For example, NHR-

25 is a transcription factor involved in the patterning of the hypodermis during

embryogenesis, but also regulates a network of genes involved in larva-to-adult

transition (Chen et al., 2004; Hada et al., 2010). The activity of NHR-25 at these

two di�erent strategic time points of C. elegans development is clearly detected in

its temporal activity (Figure 3.9).
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Figure 3.10 – Network of protein-protein interactions between transcription
factors involved in aging. The interaction network is built using STRING
database (Szklarczyk et al., 2019). Colors indicate groups of transcription
factors preferentially interacting with each other within the network. Line width
indicates the confidence of the interaction.

3.2.2 Transcription factors associated with aging promoter

clusters

I also evaluated transcription factor binding enrichment at aging promoter clusters.

DAF-16/FoxO, a master regulator of aging (Lin et al., 2001), preferentially binds

promoters in aging clusters I, I+H [1], I+H [2] and Mix1 (Figure 3.7). Consistent

with a prominent role of DAF-16 in the intestine (Kaplan and Baugh, 2016), these

clusters are enriched for promoters associated with intestinal genes (Figure 3.6).

The binding enrichment patterns of five other TFs implicated in aging (DVE-1,

NHR-80, ELT-2, FOS-1 and PQM-1, Folick et al., 2015; Goudeau et al., 2011;

Mann et al., 2016; Tepper et al., 2013; Tian et al., 2016; Uno et al., 2013) are

similar to DAF-16, indicating that they bind to similar sets of promoters associated

with intestinal genes and potentially function in complex(es) (Figure 3.7). This is

consistent with the protein-protein interactions documented between these factors,

with DAF-16 at the center of a network of proteins all physically or functionally

interacting (Figure 3.10).

Importantly, promoters bound by these factors are characterized by an overall
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Figure 3.11 – Temporal activity of transcription factors during aging. For each
factor, its temporal activity at any given time during aging is the product of
its binding pattern across all the promoter clusters by the average promoter
accessibility in each cluster during aging. The resulting matrix product is scaled
by rows.

decrease of accessibility during aging (Figure 3.6). This suggests that these pro-

moters, accessible during development of the worm and bound by TFs, undergo

local chromatin remodeling during cellular senescence. This in turn may prevent

key transcription factors such as DAF-16 from binding to these promoters, thus

triggering tissue-wide defects accumulating during aging (Wolkow et al., 2017).

Finally, I summarized the temporal activity of all the transcription factors

involved in aging using the same approach as described above (Figure 3.11). This

revealed a major switch of transcription factor temporal activity during aging.

Around D7 (day 7), many transcription factors involved in physiological regulation

of hypodermis and intestinal genes (e.g. ELT-2, DAF-16, SKN-1) stop being active.

At the same time, an increased binding of other transcription factors normally not
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active in adult worms (e.g. ZIP-8) is observed (Figure 3.11).

These observations suggest that D7, seven days after having reached adulthood,

is a pivotal time point in aging; it stands as the transition between two developmen-

tal stages regulated by di�erent sets of transcription factors. This approach points

out to transcription factor candidates which could be involved in gene regulation

during aging before or after D7.

3.2.3 Unravelling new putative roles for uncharacterized

transcription factors

The aforementioned results also revealed cluster-specific associations for uncharac-

terized transcription factors, such as ZTF-18 and ATHP-1 with germ line promoter

clusters and CRH-2 with the intestinal clusters (Figure 3.7 on page 71). Particularly,

CEBP-1 binding is enriched in aging promoter clusters Mix3 and Mix4 and is

characterized by a readily increasing temporal activity during aging starting at D7

(Figure 3.11). This suggests a potential role of CEBP-1 in activating a subset of

genes involved in cellular senescence in C. elegans, as it is the case for its homologue

CEBP-b in mouse (Sandhir and Berman, 2010).

3.3 Discussion

In Chapter 3, I identified and characterized clusters of promoters temporally

coordinated during C. elegans development and aging. This showed that the

overwhelming majority of promoters (75%) are regulated during development. I

characterized di�erent dynamics of coordinated chromatin accessibility during

development, including monotonously decreasing or increasing accessibility over

time, but also oscillating accessibility. To get an insight on their function, I

have correlated each cluster of promoters with orthogonal data, such as single-

cell-derived tissue-specific gene expression or gene ontology terms. I observed

expected results, such as the oscillating promoters being associated with molting

process (cluster H in Figure 3.3), a circadian process (Turek and Bringmann, 2014).

New insights also emerged from this analysis, for example the existence of sets

of promoters characterized by the same trend of accessibility changes but with

di�erent amplitudes, which could be further studied in the future.
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Chromatin accessibility changes in aging have never been studied before, and

C. elegans stands as the ideal model system to do so. I found that a small set of

promoters (13%) is dynamically accessible during aging in C. elegans. These pro-

moters are largely associated with intestinal and hypodermal functions, confirming

the central role of these two tissues in aging (Gelino et al., 2016; Herndon et al.,

2002; McGee et al., 2011).

Interestingly, the set of dynamic promoters in development and in aging largely

overlap, and ~ 20% of all the annotated promoters do not show any significant

accessibility change throughout C. elegans life. It is conceivable that specific

mechanisms ensure the constant accessibility of these persistent promoters over

time. In the future, investigation of this set of promoters could shed light on some

of these mechanisms.

Using modENCODE/modERN public database, I also identified transcription

factors preferentially binding at each cluster of promoters. This confirmed and

extended the current knowledge of transcription factor binding during development

and aging, as well as the biological functions regulated by these transcription factors.

I also defined the “temporal activity” metric, to provide an alternative metric of the

activity of a given transcription factor across development and aging. This approach

integrates the transcription factor binding patterns measured by ChIP-seq and the

dynamic accessibility of promoters bound by these transcription factor. Thus, this

metric aims at describing the binding patterns of a transcription factor over time

more directly, rather than relying on its levels of expression. However, for each

transcription factor, its ChIP-seq profile is usually derived from the developmental

stage where the factor is most expressed (Gerstein et al., 2010). Thus, an important

limitation of this approach is the assumption that the sites bound by each factor

do not significantly vary during development.

This analysis is the first step in understanding how regulatory elements con-

tribute to gene regulation. However, a precise annotation of tissue-specific regulatory

elements is still lacking. This is a major hurdle which prevents from investigating

the mechanisms of tissue-specific regulation.
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Chapter 4

Optimizing tissue-specific

chromatin profiling in C. elegans

In Chapter 3, I characterized temporal patterns of chromatin accessibility during

development and aging. However, to understand developmental regulation of

cell-type specific gene expression, comprehensive annotation of regulatory element

activities in di�erent cells is needed.

To profile chromatin accessibility in specific cells, it is necessary to have a

reliable method to isolate material of interest. In Chapter 4, I present the work I

conducted in the first half of my PhD to optimize an experimental procedure to

isolate nuclei from individual tissues in C. elegans.

Collaboration note: Michael Chesney designed and cloned the StrepTag::GFP::UNC-

83 reporter and generated two of the five reporter strains. Chiara Cerrato helped in-

ject constructs in the EG6699 strain. Rhys McDonough helped generate CUT&RUN

libraries.

4.1 Optimizing an approach to isolate material

from individual tissues

4.1.1 Existing methods to isolate tissue-specific material

Several di�erent approaches have been used to isolate biological material from

individual tissues in C. elegans (Table 1.3 on page 42). Micro-dissection has been

successfully used to obtain material specifically from germline or intestine (Diag
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et al., 2018; McGhee et al., 2007; Ortiz et al., 2014; West et al., 2018). This

allowed the characterization of germline gene expression in di�erent subset of

germline cells (e.g. germline meiotic cells, oocytes, sperm) or the identification

of alternative poly-adenylation usage. However, the tissues obtained using micro-

dissection are not completely pure. For example, the somatic gonad is also extracted

when the germline is isolated by micro-dissection. It would also be feasible to

isolate neurons, muscle or hypodermis by micro-dissection, but this would only

yield low amounts of material. RNA tagging by an engineered RNA-binding

protein has also been used to isolate RNA from specific tissues or cell types, but

this approach is limited to transcriptome analysis and cannot be used to assay

chromatin features such as its accessibility (Blazie et al., 2015; Ma et al., 2016).

Isolation of tagged nuclei by a�nity purification (INTACT) has been used in worm

to isolate muscle nuclei in young adults (Steiner et al., 2012) and seems to be a

promising technique. However, it relies on antibody-covered magnetic beads to

separate nuclei by immunoa�nity, resulting in nuclei clumping. This would not

hinder standard RNA-seq and/or ATAC-seq procedures but it would exclude the

possibility of using single-cell approaches on these isolated nuclei, as these methods

require high-quality single-nucleus suspensions.

FACS-based methods have been used to sort specific cells, sometimes generat-

ing high-quality RNA extracts but other times only allowing for 3’-end-seq (see

Table 1.3 on page 42). Yet, full-length RNA-seq is crucial to investigate many

aspects of gene expression (e.g. alternative exon splicing) and more importantly to

annotate regulatory elements as promoters. Moreover, because of the worm thick

cuticle, cells embedded in highly connected complex tissues such as neurons can be

di�cult to isolate in larvae and adult worms. Rather than trying to isolate specific

cells, I sought to optimize a nuclear sorting approach inspired from the standard

fluorescence-activated cell sorting (FACS) technique.

4.1.2 Optimizing a FACS-based sorting procedure

4.1.2.1 Designing a fluorescent reporter for nuclei sorting

To sort a population of tissue-specific nuclei (e.g. all muscle nuclei) by FACS, I

needed a method to fluorescently label nuclei of interest. I initially decided to

use strains where a GFP reporter would be specifically expressed in nuclei from

80



4.1 Optimizing an approach to isolate material from individual tissues

individual tissues. I took advantage of the large collection of strains generated in

the lab to investigate which type of reporter construct would yield the best results.

Chromatin-bound or not? Di�erent GFP reporter strains have been generated

for promoter- and reporter-assay (e.g. Jänes et al., 2018), however, these generally

relied on a GFP protein (26.9 kDa) being fused to HIS-58, the histone H2B protein.

Conceptually, this results in a ~25% increase of the total molecular weight of

the histone octamer constituting the nucleosome protein core. Though this has

been widely used to mark lineage-specific cells, the impact of this histone tagging

on chromatin organization and nucleosome remodeling dynamics has never been

formally investigated. Since the study of chromatin accessibility and nucleosome

organization is at the core of my project, I decided to exclude chimeric histone-

GFP reporters to avoid any potential technical artifact. Instead, I focused on

non-chromatin-bound GFP reporters.

Freely di�using or localized? An important feature of a fluorescent reporter

used for sorting is its brightness. By microscopy, the NLS::GFP::LacZ reporter (a

GFP fused to a nuclear localization signal and to a LacZ protein) shows strong

fluorescence in the PD4251 strain where it is expressed under the control of the

muscle-specific myo-3 promoter (Timmons et al., 2003). In fact, its expression is

so high that it is visible even under the dissecting microscope. Yet, even though

the GFP signal is robustly detected in living worms, I found that it was largely lost

during nuclei preparation from frozen worms, and could not be detected by FACS

(not shown). One possible explanation is that the small chimeric protein leaks out

during nuclei preparation, potentially due to increased permeability of the nuclear

envelope once nuclei are isolated. Another explanation is that the fluorescent

protein is located within the nucleus and thus its signal cannot be readily detected

by FACS. Thus, I decided to rely on a chimeric protein anchored to the outer side

of the nuclear envelope. This presents three advantages: (i) it directly exposes the

fluorescent protein to the FACS sensors, without nuclear envelope in-between, (ii)

it traps it within the phospholipid bilayer, preventing it from di�using away during

nuclei preparation and finally (iii) it limits the interactions between the fluorescent

reporter and chromatin and their potential side e�ects.

To target a GFP reporter to the nuclear envelope, I used a construct generated
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by Michael Chesney in the lab (inspired from Henry et al., 2012), consisting of

the GFP protein fused to a Streptavidin tag and to the C-terminal sequence of

UNC-83 protein. UNC-83 is a conserved major constituent of the nuclear envelope

and its C-terminal end is located on the outer nuclear membrane (McGee et al.,

2006). Upon integration in C. elegans genome, this chimeric protein is localized to

the nuclear envelope (see 4.1.2.2 and Figure 4.3). I also generated an alternative

tag consisting of the NPP-9 protein fused to GFP (previously described in Steiner

et al., 2012) and used it to label neuron-specific nuclei.

Array or single-copy transgene integration? Finally, the method by which

a reporter is integrated to the worm genome is important. For example, the

NLS::GFP::LacZ reporter in the PD4251 strain is integrated in C. elegans genome

as an array and thus expressed at very high levels. While this seems ideal for

increased brightness, transgenes in integrated arrays are known to show variable

transformation e�ciencies and to be silenced over generations in germline (Mello

et al., 1991). For these reasons, I decided to favor targeted single-copy reporter

integrations over arrays, to ensure reproducible and heritable labelling of individual

tissues. Targeted single-copy reporter integrations can be achieved by using mos1-

mediated Single Copy Insertion (mosSCI) (Frøkjaer-Jensen et al., 2008).

Which promoters to control reporter expression? To isolate nuclei from

individual tissues, I need to express the fluorescent reporter in each specific tissue

separately. Many reporter assays have been performed in worm and regulatory

regions driving di�erent patterns of tissue-specific expression have already been

identified. Among others, the mex-5 promoter drives reporter expression in germline

(Merritt et al., 2008); the myo-3 promoter is typically used to drive expression

of reporters in all muscle cells (Fox et al., 2007); npa-1 promoter has been used

for reporter expression in intestine (Segref et al., 2010); dpy-7 promoter has been

used for reporter expression in hypodermis (Gilleard and McGhee, 2001); egl-21

promoter has been used for reporter expression in all neurons (Jacob and Kaplan,

2003).

I decided to use these promoters to drive a tissue-specific expression of my

reporter. These promoters present two major advantages:

1. The five associated genes have been shown to be expressed across their entire
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Figure 4.1 – Expression of tissue-specific genes in di�erent cell types. The
promoters used to create the reporter strains are obtained from these genes
(data from Cao et al., 2017).

tissue using single-cell RNA-seq (e.g. egl-21 is expressed across all types of

neurons, Figure 4.1 and Cao et al., 2017).

2. The regulatory regions associated to these genes are relatively simple and

promoters have been annotated to specific genomic loci (Figure 4.1).

4.1.2.2 Creating tissue-specific reporter strains

I decided to rely on Gateway cloning technology to generate the constructs express-

ing the chimeric fluorescent marker under the control of the di�erent tissue-specific

promoters. In Gateway cloning, three “slots” are stitched to each other using

specific recombinases (Figure 4.2A). In my case, the three slots were:

1. The promoter controlling the expression of the reporter in the appropriate

tissue (slot 1);

2. The GFP coding sequence, fused at the N-terminus to a Streptavidin Tag

and at the C-terminus to the first 290 amino-acids of UNC-83 (slot 2);

3. tbb-2 3’ untranslated region (UTR), which is required for proper expression

of the construct (Merritt et al., 2008; Zeiser et al., 2011, slot 3).

These three “slots” were integrated in a mosSCI-compatible backbone vector and

injected into the EG6699 strain (Frøkjaer-Jensen et al., 2008). In total, five strains

were generated, each one of them expressing the final GFP reporter under the

control of a tissue-specific promoter (Figure 4.2B and Table 4.1). I validated the
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Figure 4.2 – Gateway strategy used to create tissue-specific reporter strains. A-
A three-way gateway cloning strategy is used to insert a promoter, a fluorescent
reporter coding sequence and a 3’-UTR into a destination vector. B- The
resulting construct can be injected into the EG6699 strain to integrate into the
ttTi5605 Mos1 allele on chrII as a single copy.

Table 4.1 – Tissue-specific reporters used in this study. The promoter controls
the expression of the reporter in a single tissue. Spatio-temporal expression of
each reporter has been established by visual observation of the reporter strain.
The tissue in parenthesis is where GFP fluoresence is observed.

Tissue marked
(Strain ID) Promoter Reporter Expressed

Germline
(JA1616)

mex-5
(chrIV:13353242-13353729)

StrepTag::GFP
::UNC-83

Emb: -
L1: -
L3: +/- (germline)
YA: + (germline)

Neurons
(JA1816)

egl-21
(chrIV:10481768-10481932) NPP-9::GFP

Emb: + (neurons)
L1: + (neurons)
L3: + (neurons)
YA: + (neurons)

Muscle
(JA1585)

myo-3
(chrV:12234302-12236686)

StrepTag::GFP
::UNC-83

Emb: + (muscle)
L1: + (muscle)
L3: + (muscle)
YA: + (muscle)

Hypodermis
(JA1815)

dpy-7
(chrX:7537794-7538688)

StrepTag::GFP
::UNC-83

Emb: + (hypodermis)
L1: + (hypodermis)
L3: + (hypodermis)
YA: + (hypodermis)

Intestine
(JA1817)

npa-1
(chrV:7075526-7075947)

StrepTag::GFP
::UNC-83

Emb: + (intestine)
L1: + (intestine)
L3: + (intestine)
YA: + (intestine)
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reporter integration in the five strains and assessed its spatiotemporal pattern of

expression by microscopy (Figure 4.3 and Table 4.1).

4.1.2.3 Sorting nuclei from individually labelled tissues

Once I generated the five tissue-specific reporter strains, I started optimizing the

tissue-specific nuclear sorting procedure. I could reproducibly obtain suspensions

of intact and well-separated nuclei with visible GFP fluorescence in subsets of

nuclei. However, when running a nuclei preparation through a cell sorter, no

GFP+ sub-population could be detected (data not shown). It is known that the

GFP protein does not perform well for fluorescence-activated sorting, compared to

other fluorescent proteins or fluorophores. For instance, phycoerythrin (PE) is a

fluorescent protein characterized by a great absorption coe�cient and an almost

perfect quantum e�ciency, and can be directly conjugated to antibodies. I decided

to enhance fluorescence by immunostaining the GFP protein with a PE-conjugated

a-GFP antibody (4.4). This strategy resulted in a clear separation of two nuclei

populations, one PE- (i.e. GFP-) and one PE+ (i.e. GFP+) (4.4B).

I also initially struggled to recover sorted nuclei. After sorting 500,000 nuclei,

pelleting and resuspending them in a small volume, very few nuclei were detected

by microscopy but a lot of debris and burst nuclei were visible. Biological material

is often prone to degradation after sorting, so I optimized the handling of the nuclei

post-sorting to prevent them from bursting. After many tests, I found that sorting

nuclei into a 15mL polystyrene Falcon tube pre-coated and pre-filled with 500uL of

nuclei bu�er enriched 0.025% IGEPAL CA-630 (a mild non-ionic non-denaturing

detergent) ensured that the nuclei remained intact and did not adhere to the sides

of the collection tube.

The optimized experimental procedure can now be used to isolate specific

populations of nuclei labelled by a GFP reporter targeted to the nuclear envelope.

Importantly, this sorting approach yields highly pure populations: more than

95% of the sorted nuclei are GFP+ when the purity is assessed post-sorting by

microscopy and/or by flow cytometry (4.4B).
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Figure 4.3 – Reporter strains created for this study, to label nuclear envelope
of germline nuclei (A), neuronal nuclei (head neurons, ventral nerve cord and
tail neurons) (B), muscle nuclei (anterior and posterior sides) (C), hypodermis
nuclei (head, ventral hypodermal ridge, seam and tail) (D) and intestine nuclei
(E). For each reporter, the construct used to drive reporter expression is depicted
and the resulting GFP expression pattern is shown. DIC images are also shown
for reference.
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4.2 Optimizing downstream genome-wide profil-

ing assays

Thanks to this optimized sorting procedure, I was able to sort tissue-specific nuclei

based on their GFP signal and e�ciently recover them for downstream procedures.

Still, the sorting throughput remained generally low (~ 100,000 to 500,000 in an

hour of sorting). On the other hand, genome-wide experiments such as RNA-seq

and/or ATAC-seq are typically performed using several million nuclei. Thus, it was

crucial to ensure these assays could work using lower inputs of sorted nuclei.

4.2.1 Nuclear transcription: RNA-seq

RNA-seq is a technique widely used to profile genome-wide gene expression in

populations of cells. However, in C. elegans, ~ 70% of the mature cytoplasmic

transcripts are trans-spliced: their 5’ end (the “outron”) is spliced out and replaced

by a splice leader sequence (Allen et al., 2011). The detection of outrons is important

to accurately map transcription initiation events and to annotate promoter activity

for regulatory elements ( 1.2.3.1 on page 31 and Chen et al., 2013; Jänes et al.,

2018). By sorting nuclei rather than cells, the RNA extracts are enriched in nuclear

immature transcripts with their outron still unspliced.

Intact RNA is required to generate high-quality RNA-seq libraries. However,

RNA is readily degraded if bu�ers contain even traces of RNase and can also be

chemically fragmented when heated in presence of divalent metal cations. Thus,

the nuclei sorting procedure can potentially lead to RNA degradation at many

steps. I extracted RNA from nuclei immediately after their isolation from whole

worms, after immunostaining with a PE-conjugated a-GFP antibody and finally

after sorting (Figure 4.5A). This revealed that RNA was largely degraded as soon

as nuclei were immunostained. I confirmed this by performing a stepwise RNA

extraction (Figure 4.5B). The first steps of nuclei isolation do not have a major

impact on RNA integrity, but incubation of nuclei in staining bu�er for as short

as five minutes was enough to largely degrade RNA. I then incubated purified

intact RNA in di�erent solutions for one hour, to test which one would cause RNA

degradation (Figure 4.5C). As expected, staining bu�er completely degrades pure

RNA, even in presence of RNase inhibitors. The staining bu�er recipe is composed
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A

D

B C

Figure 4.5 – RNA integrity during nuclei sorting procedure. A- RNA integrity
before nuclei staining, after nuclei staining and after nuclei sorting. B- RNA
integrity after each step of nuclei isolation. C- RNA integrity after one hour of
incubation in the indicated solutions. D- RNA integrity from RNA prepared
from simple nuclei extraction (left) and from nuclei after sorting (right). In this
experiment, nuclei have been stained in their extraction bu�er.
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of 5% BSA and 1mM EDTA in PBS (Bonn et al., 2012). I found that RNA

incubated with 5% BSA in RNase-free water was readily degraded (Figure 4.5C).

From these results, I concluded that the BSA (supposedly RNase-free, according to

the manufacturer) was contaminated with RNase. I then experimented staining in

di�erent other bu�ers and realized that immunostaining with the PE-conjugated

a-GFP antibody was possible in the standard nuclei extraction bu�er without

added BSA, thus preserving RNA integrity.

Eventually, optimized immunostaining and sorting procedures yield mostly

intact RNA (Figure 4.5D), which can then be processed into a library for high-

throughput sequencing.

4.2.2 Chromatin accessibility: ATAC-seq

ATAC-seq is one of the most straightforward genome-wide techniques to study

chromatin accessibility (see 1.1.3.2). Even though the assay was originally designed

for cultured cell lines (Buenrostro et al., 2013), it has since then been used in many

organisms using both cells and isolated nuclei. In worm, it has been performed

using one million nuclei from standard C. elegans nuclear preparations (Jänes et al.,

2018). To test whether the procedure would yield high-quality results using a

lower number of sorted nuclei, I sorted di�erent amounts of nuclei and performed

ATAC-seq on each individual sorted population (Figure 4.6).

ATAC-seq performed using 500,000 nuclei yields a very satisfactory chromatin

accessibility profile, comparable to the high-quality reference accessibility track

from Jänes et al. (2018) (Figure 4.6A). Importantly, ATAC-seq performed with

decreasing amounts of sorted nuclei also showed good enrichment of accessibility

over the background, though generally slightly lower than that of ATAC-seq done

with 500,000 nuclei (Figure 4.6B). Moreover, the peaks annotated with MACS2

using ATAC-seq results from 500,000 unsorted nuclei or ten times less sorted nuclei

show a very good overlap (Figure 4.6C).

These results suggest that ATAC-seq can be performed using sorted nuclei

with fewer nuclei than initially assumed and still result in high-quality chromatin

accessibility tracks. In the following ATAC-seq experiments, I typically used

between 25,000 and 50,000 sorted nuclei to perform ATAC-seq.
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Figure 4.6 – Results of ATAC-seq performed on di�erent amounts of nuclei. A-
Snapshot of chromatin accessibility tracks from reference ATAC-seq track (in
black, from Jänes et al., 2018) or performed in 500K unsorted nuclei or 500K,
250K, 100K and 50K sorted nuclei. The scale is the same across the tracks.
B- Aggregate profiles over annotated C. elegans promoters. C- Euler diagram
representing overlap between sets of peaks obtained from ATAC-seq results from
500K unsorted nuclei (left) or 50K sorted nuclei (right).

4.2.3 Histone modifications: ChIP-seq and variants

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a powerful

method traditionally used to profile histone modifications or transcription factor

binding landscapes. It has been widely used in C. elegans to understand the

mechanisms underlying gene regulation (e.g. Latorre et al., 2015; McMurchy et al.,

2015), yet only one study so far has reported tissue-specific ChIP-seq profiling

in worm (Steiner et al., 2012). ChIP-seq experiments usually require several

million nuclei to prepare chromatin extracts for immunoprecipitation, which cannot

be easily obtained using sorting-based approaches. However, recent advances

have lowered the amount of input needed to profile histone modifications (e.g.

Brind’Amour et al., 2015; Skene and Heniko�, 2017; Valensisi et al., 2015). cChIP-

seq is an straightforward adaptation of the standard ChIP-seq protocol. By

adding recombinant histones harboring the modification of interest as a carrier (e.g.

recombinant H3 with H3K4me3 modification), one can lower the chromatin input

to as low as tens of nanograms, rather than micrograms (Valensisi et al., 2015).

Alternatively, nuclease-based alternatives such as the ‘Cleavage Under Targets
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and Release Using Nuclease’ (CUT&RUN) method are also emerging (Skene and

Heniko�, 2017). In CUT&RUN, an epitope of interest (e.g. H3K4me3) is marked by

an antibody in intact unfixed permeabilized nuclei, then a chimeric protein A fused

to MNase is added to the nuclei. This leads to controlled DNA cleavage upstream

and downstream of the epitope and the cut DNA is then released and processed

into a sequencing library. I decided to test whether cChIP-seq and CUT&RUN

would work for low inputs of sorted tissue-specific nuclei. I profiled H3K4me3,

H3K36me3 and H3K27me3 histone marks on sorted nuclei by cChIP-seq (neuron

nuclei) and CUT&RUN (muscle nuclei) and compared the results to gold-standard

ChIP-seq.

Both CUT&RUN and low-input ChIP-seq methods yielded decent results

for H3K4me3 profiling (Figure 4.7A), with an important di�erence. H3K4me3

enrichment profile from CUT&RUN is more focused at promoters than that from

low-input ChIP-seq (Figure 4.7A-B). This could be due to the di�erent methods

used to achieve DNA fragmentation (physical fragmentation in ChIP-seq and

enzymatic cleavage in CUT&RUN), or to the fact that CUT&RUN can lead to

artifactual signal at accessible chromatin loci (Skene and Heniko�, 2017).

Previous work in C. elegans showed that H3K36me3 and H3K27me3 histone

modification landscapes are respectively segregated and form active or regulated

domains (Evans et al., 2016). Borders between each type of domain are characterized

by a switch between these histone modification patterns. Such switch between

HK36me3 and H3K27me3 can be observed from either CUT&RUN or low-input

ChIP-seq, suggesting that the profiling of these modifications is possible in sorted

tissue-specific nuclei. In these test experiments, H3K27me3 profile seems better by

CUT&RUN than by cChIP-seq, while H3K36me3 profile seems better by cChIP-seq

than by CUT&RUN (Figure 4.7B-C). However, further experiments are needed to

confirm these observations.

Active and regulated domains have been annotated using mixed-tissue whole-

organism ChIP-seq datasets, thus the variability of these chromatin domains in

individual tissues is largely unstudied. Notably, it is still unknown whether regulated

domains, which contain tissue-specific genes, harbor H3K27me3 or H3K36me3

histone modifications in the nuclei from the tissue(s) where the genes they contain

are expressed. I focused on three neighboring genes on chrII, which are characterized

by di�erent patterns of expression: C03H5.5 is specifically expressed in muscle
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Figure 4.7 – Results of histone modifications profiling performed using di�erent
methods. A- H3K4me3 profiling by reference ChIP-seq protocol in whole
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Figure 4.8 – Histone modifications profiles in muscle and neuron nuclei. Three
histone modifications are profiled: H3K4me3, H3K36me3 and H3K27me3. Mod-
ifications are profiled in muscle nuclei by CUT&RUN (in orange) and in neuron
nuclei by low-input ChIP-seq (in green). Reference ChIP-seq tracks from mixed-
tissues whole-organism worms are also displayed (in black). Chromatin domains
(Active: red; Regulated: black; borders: gray) are also shown at the bottom.
The orange-shaded area represents a muscle-specific locus, the green-shaded area
represents a neuron-specific locus and the red-shaded area represent ubiquitous
loci. For each histone modification, the vertical scale is the same across the
three tracks.

cells, C03H5.3 is ubiquitously expressed and C03H5.6 is only expressed in neurons

(Figure 4.8). H3K4me3, H3K36me3 and H3K27me3 histone modification profiles

from mixed-tissue whole-organism samples suggest that only C03H5.3 (located

in an active domain) harbors H3K36me3 modifications whereas the two other

genes appear covered by H3K27me3. Yet, when looking at tissue-specific histone

modification profiles, it clearly appears that indeed, muscle-specific C03H5.5 locus

is enriched for H3K36me3 over its gene body in muscle nuclei but retains H3K27me3

in neurons. Inversely, neuron-specific C3H05.6 harbors H3K36me3 over its gene

body in neuron nuclei but is marked by H3K27me3 in muscle nuclei (Figure 4.8).

Though based on isolated examples, these preliminary observations suggest that

some tissue-specific genes indeed harbor tissue-specific active H3K36me3 mark in

the tissue(s) where they are expressed, contrary to what was previously suggested

(Evans et al., 2016; Pérez-Lluch et al., 2015). More generally, they confirm that

the tissue-specific histone modification profiling after nuclei sorting is suitable to

investigate the tissue-specific mechanisms of gene regulation.
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Figure 4.9 – Procedure to perform genome-wide assays in individual tissues in C.
elegans. Note that di�erent promoters can be used to label specific populations
of cells. Most genome-wide assays require nuclear material and should be
compatible with sorted nuclei.

4.3 Discussion

Compared to other model organisms, obtaining biological material from individual

tissues C. elegans is challenging, notably due to its small size. Because of this,

few tissue-specific chromatin profiling experiments have been conducted yet and

the study of mechanisms of tissue-specific gene regulation in C. elegans has been

hampered. Thus, being able to isolate nuclei from individual tissues is key to study

tissue-specific gene regulation. In this chapter, I described the development of a

method to isolate highly pure nuclei from individual tissues by nuclear sorting, a

necessary prerequisite for obtaining tissue-specific data. With the help of others, I

have compared and optimized di�erent types of fluorescent reporters, streamlined

the sorting procedure and adapted downstream genome-wide assays to work with

low material inputs. The resulting workflow is highly modular (Figure 4.9). For

example, someone studying a specific tissue (e.g. the pharynx) would only need to

clone a new promoter upstream of the existing reporter by Gateway and inject this

construct to generate a new tissue-reporter strain, and would subsequently be able

to perform all the genome-wide assays previously described.

Compared to other methods of tissue-specific profiling, the sorting-based ap-

proach retains several advantages. For example, RNA-tagging is the method

generally used to profile tissue-specific transcriptomes, but this approach does

not have the same versatility as the sorting-based approach. In this case, the
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experimenter is limited to studying gene expression and cannot profile chromatin

accessibility, for instance. Compared to the INTACT nuclei purification method

(Steiner et al., 2012), the purity and the number of sorted nuclei can be finely

adjusted during the sorting, and the detection of other parameters such as the

diploidy or the size of the nuclei can be used to further select specific populations

of nuclei. However, the sorting method remains a low-throughput, laborious task,

even with optimized conditions. Obtaining 100,000 nuclei can take between 30

minutes and 2 hours, depending on the percentage of nuclei to isolate among the

nuclei preparation. Along with the required immunostaining prior to sorting (~

1h30 minimum), this may represent a significant increase of the time required to

perform an assay, especially compared to other approaches like INTACT nuclei

purification, which is more “instantaneous”. This needs to be taken into account

when planning an experiment.

I also optimized several genomic assays, which can now be performed using low

amounts of sorted tissue-specific nuclei. These assays can be used to study the gene

regulatory organization (addressed in Chapter 5 and Chapter 6), but also widen

the possibilities to tackle other biological questions, such as transcript alternative

splicing in di�erent tissues (Gracida et al., 2016), the di�erence of transcription

factor binding patterns across tissues (Reinke et al., 2018) or the tissue-specific

chromatin integrity throughout aging (Sen et al., 2016).

An important point to address is the relevance of using a FACS sorting approach,

which can only generate populations of nuclei from bulk tissues, when other

approaches such as single-cell methods are rapidly emerging. A sorting-based

approach still retains several important benefits compared to single-cell approaches.

It allows investigation of the chromatin organization by histone modification

and/or transcription factor profiling, which is currently impossible or still in

early development in single cells. It also remains more cost-e�ective than single-

cell approaches. Finally, the reproducibility and the significance of the results

can be experimentally assessed by directly comparing replicates. Batch e�ects,

cell variability and cell annotation algorithms still pose significant challenges for

evaluating data reproducibility in single-cell assays (Yuan et al., 2017). However, a

sort-based approach is limited to the study of bulk tissues and patterns in small

sub-populations cannot be easily identified. On the contrary, results from single-cell

methods are much more granular and can lead to a better understanding of the
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the variability and heterogeneity of a feature measured in individual cells. Overall,

single-cell techniques and sorting-dependent assays are complementary and, in the

future, the combined use of the two approaches should help to further improve our

understanding of tissue-specific mechanisms of gene regulation (see Chapter 7).
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Chapter 5

Gene regulatory architectures in

adult C. elegans

In Chapter 4, I presented the experimental procedure I developed to isolate nuclei

from individual tissues and perform genome-wide assays. In Chapter 5, I describe

the gene expression and chromatin accessibility datasets generated from the five

main tissues of the worm (germline, neurons, muscle, hypodermis and intestine), at

the young adult stage. I then classify accessible sites and genes according to their

tissue-specific patterns of accessibility or expression and use the data to characterize

distinctive features of gene regulatory architecture of each gene class.

Collaboration note: Yan Dong generated nuclear RNA sequencing libraries using

RNA from sorted tissue-specific nuclei which I isolated. Jürgen Jänes used the

datasets I generated to identify and functionally annotate accessible chromatin loci,

using a pipeline he developed during his PhD (Jänes et al., 2018).

5.1 Profiling tissue-specific transcriptomes and

chromatin accessibility

With (i) five di�erent tissue-specific reporter strains, (ii) an optimized sorting

procedure and (iii) genome-wide assays adapted for small amounts of sorted nuclei,

I was able to profile chromatin accessibility and gene expression across the five

main tissues of the worm. I focused on young adult worms, where somatic cells are

terminally di�erentiated and germline has reached maturity.
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Table 5.1 – Percentages of paired-end reads mapping to exons, introns and
elsewhere, for each replicate of nuclear RNA-seq.

% of paired-end reads in
Sample exons introns others

Germline (YA) rep1 82.95 14.113 2.934
Germline (YA) rep2 89.61 9.026 1.368
Neurons (YA) rep1 86.9 12.659 0.445
Neurons (YA) rep2 87.57 11.915 0.511
Muscle (YA) rep1 87.82 12.18 0.003
Muscle (YA) rep2 87.4 11.719 0.877
Hypod. (YA) rep1 73.59 21.738 4.667
Hypod. (YA) rep2 73.88 20.797 5.323
Intest. (YA) rep1 68.34 25.397 6.263
Intest. (YA) rep2 79.2 17.347 3.451

5.1.1 Tissue-specific gene expression

I profiled the nuclear transcriptome of five main tissues of the adult worm: germline,

neurons, muscles, hypodermis and intestine. For each sample, I sorted at least

one million nuclei and obtained between 10 and 100 ng of nuclear RNA. Libraries

were generated in duplicates for each tissue and sequenced in paired-end mode,

eventually obtaining ten datasets. I aligned and filtered the sequencing results

following a standard procedure described in Jänes et al. (2018). Importantly, I

obtained the raw expression counts by counting overlapping RNA-seq fragments at

the gene level rather than at the transcript level, as immature nuclear transcripts

were sequenced and a significant portion of the fragments map to introns (Table 5.1).

After transforming the raw counts into “Transcripts Per Million” (TPM), I compared

all the samples to each other. I observed well-correlated results between duplicates,

suggesting that the nuclei sorting followed by RNA-seq is highly reproducible

(Figure 5.1A). Moreover, when browsing the di�erent nuclear RNA-seq tracks at

known tissue-specific loci, I could observe expected patterns of expression in each

tissue (Figure 5.2A).

An important step in annotating promoters in C. elegans relies on the detection

of outrons, and previous reports from our group showed that profiling of nuclear

RNA, enriched for immature unspliced transcripts, e�ciently captures outron

signals ( 1.2.3.1 on page 31 and Chen et al., 2013; Jänes et al., 2018). I browsed my

tissue-specific nuclear RNA-seq profiles and could indeed observe clear transcription

elongation, originating from known promoters (Figure 5.2A, B).
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Figure 5.1 – Correlations between tissue-specific nuclear RNA-seq samples. A-
Euclidean distances between all the tissue-specific nuclear RNA-seq replicates
(left). The values on the distance tree are the Pearson correlation scores between
two replicates of the same tissue. A Principal Component Analysis (PCA) also
shows spatial grouping of duplicates (right). B- Distance tree between the
tissue-specific gene expression values measured in YA worms (this study) or in
L2 worms by single-cell RNA-seq (Cao et al., 2017).
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Figure 5.2 – Tissue-specific nuclear RNA-seq signals. A- Nuclear RNA-seq tracks
at five di�erent tissue-specific loci. The annotated promoters are indicated by
vertical dotted lines. The scale is the same across the tracks and is adjusted
at each locus. B- Focus on odd-2, an intestine-specific gene. Promoters (solid-
colored) and putative enhancers (transparent) are represented on top of the
tracks. The outron signals between the promoters and the splice acceptor site
(represented by red dotted lines) are readily detected. Note the increase of
transcription at each of the two promoters. The scale is the same across the
tracks.
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I also compared gene expression values derived from tissue-specific nuclear

RNA-seq from young adult worms with aggregated gene expression values obtained

from single-cell RNA-seq performed in worms at the L2 stage (Cao et al., 2017).

I observed that each adult tissue-specific dataset clusters with L2 data from the

corresponding tissue. This suggests that my tissue-specific RNA-seq datasets are

of high quality (Figure 5.1B).

Together, these observations suggest that the tissue-specific nuclear RNA-seq

datasets I generated after nuclei sorting are suitable for genome-wide analysis of

tissue-specific gene expression. Moreover, these nuclear RNA-seq datasets constitute

an important asset to complete the annotation of promoters in C. elegans (see

5.1.2.2 below).

5.1.2 Tissue-specific chromatin accessibility landscapes

5.1.2.1 Quantifying tissue-specific accessibility of regulatory elements

To profile chromatin accessibility in each tissue of the adult nematode, I also

performed tissue-specific ATAC-seq experiments. For each sample, I typically used

between 25,000 and 50,000 sorted nuclei. I generated two replicates for each tissue

and sequenced the libraries in both single-end and paired-end mode (see Chapter

5 for the analysis of paired-end datasets). After transforming raw counts into

“Reads Per Million” (RPM), I compared all the samples to each other and observed

well-correlated results between replicates, suggesting that the nuclei sorting followed

by ATAC-seq is highly reproducible (Figure 5.3).

I then processed the ATAC-seq sequencing datasets into genome-wide browsable

tracks representing tissue-specific chromatin accessibility and inspected the tracks

at known loci to estimate their quality. HLH-1 is a known transcription factor

specifically expressed in muscle cells. The muscle-specific nuclear RNA-seq profile

indeed shows transcription signal at the hlh-1 locus, extending from its promoter

approximately 500 bp upstream (Figure 5.4A). The location and tissue-specific

activity of this promoter region has been experimentally determined previously

(Krause et al., 1994). Importantly, I could observe a specific increase of chromatin

accessibility at the expected hlh-1 promoter region in muscle nuclei, but not in

other tissues (Figure 5.4A). Two other regulatory elements present in the first intron

of hlh-1 gene also exhibit muscle-specific accessibility, as expected from previous
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Figure 5.3 – Correlations between tissue-specific ATAC-seq samples. Euclidean
distances between all the tissue-specific ATAC-seq replicates (left). The values
on the distance tree are the Pearson correlation scores between two replicates
of the same tissue. A Principal Component Analysis (PCA) also shows spatial
grouping of duplicates (right).

promoter dissection studies (Krause et al., 1994). BED-3 is a transcription factor

specifically involved in molting regulation and reporter assays have shown that

bed-3 promoter drives transcription specifically in hypodermal cells (Jänes et al.,

2018). In my datasets, I observed that, indeed, the promoter associated to bed-3 is

only accessible in hypodermal nuclei. Here again, two putative bed-3 enhancers are

accessible specifically in hypodermis, similar to the bed-3 promoter. More generally,

the comparison of the two types of datasets at known tissue-specific loci reveals

a strong concordance between chromatin accessibility signals and tissue-specific

patterns of gene expression (Figure 5.4C).

These observations suggest that the tissue-specific ATAC-seq datasets generated

after nuclei sorting are suitable for genome-wide analysis of tissue-specific gene

regulation. Importantly, the ATAC-seq and nuclear RNA-seq profiles match each

other, with tissue-specific transcription initiation readily detected at promoters

active in the corresponding tissue(s).

5.1.2.2 Completing the functional annotation of accessible loci in C.
elegans

Transcriptome and chromatin accessibility profiles throughout C. elegans life pre-

viously allowed to (i) map and (ii) functionally annotate 42,245 chromatin loci

(see 1.2.3.1 on page 31 and Jänes et al., 2018). With the new tissue-specific datasets

I generated, additional accessible loci could potentially be identified and annotated.
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Figure 5.4 – Tissue-specific ATAC-seq signals and accordance with tissue-specific
ATAC-seq signals. A- hlh-1, a known muscle-specific locus. B- bed-3, a known
hypodermis locus. Promoters (solid-colored) and putative enhancers (transpar-
ent) are represented on top of the tracks. C- Accordance between ATAC-seq
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represent trans-spliced outrons. In each panel of this figures, the scale is the
same across the five ATAC-seq tracks and across the five RNA-seq tracks, and
is adjusted at each locus.
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Table 5.2 – Original and new accessible sites. The original accessible sites have
been mapped and annotated in Jänes et al. (2018). The new annotated sites
have been obtained by including the tissue-specific ATAC-seq and RNA-seq
datasets to the original ones and re-running the annotation pipeline.

Accessible sites # of
original sites

# of
new sites

Increase of #
of sites

Forward promoters 5,863 384 +6.5 %
Reverse promoters 5,757 352 +6.1 %

Bi-directional promoters 1,976 31 +1.6 %
Putative enhancers 19,231 2,218 +11.5 %
Non-coding RNA 824 20 +2.4 %

Pseudogene promoters 291 23 +7.9 %
Unknown promoters 1,791 91 +5.1 %

Other elements 6,512 2,150 +33.0 %

Jürgen Jänes first integrated my tissue-specific ATAC-seq datasets with the previ-

ously generated developmental and aging datasets and ran the mapping pipeline

he had developed during his PhD. This led to the identification of 5,269 additional

chromatin accessible sites in C. elegans genome, for a total of 47,514 sites. He

then integrated my tissue-specific nuclear RNA-seq datasets with the previously

generated developmental and aging datasets and ran his annotation pipeline. This

let to the functional annotation of 3,119 of the 5,269 new loci, with notably 767

new promoters and 2,218 new putative enhancers (Table 5.2). For instance, a new

promoter was annotated at the shk-1 locus, on top of the three already annotated

ones (Figure 5.5). At this promoter, transcription clearly initiates specifically in

neurons, whereas the three promoters previously annotated are characterized by

either muscle-specific or muscle and neuron-specific transcription initiation. Of

note, the other 2,150 new loci do not overlap any transcriptional signals and remain

uncharacterized.

Thus, the tissue-specific datasets that I generated provided useful information

to improve the annotation of regulatory elements in C. elegans genome.

5.2 Classification of regulatory elements and genes

Mechanisms of tissue-specific gene regulation remain poorly investigated in C.

elegans. With the tissue-specific RNA-seq and ATAC-seq datasets I generated, I

aimed at annotating gene and regulatory element usage in the five main tissues of

the nematode. This would help investigating how patterns of tissue-specific gene
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Figure 5.5 – Example of a newly annotated accessible site at the shk-1 locus.
Promoters (solid-colored) and putative enhancers (transparent) are represented
on top of the tracks. The new promoter (labelled with an asterisk) has been
annotated using the tissue-specific datasets. The color of the bars indicate in
which tissue(s) the site is accessible (orange: muscle; green: neurons). Both
tissue-specific ATAC-seq and nuclear RNA-seq profiles are displayed. The scale
is the same across the five ATAC-seq tracks and across the five RNA-seq tracks.

expression are obtained.

5.2.1 Diversity of tissue-specific patterns of gene expres-

sion

5.2.1.1 Classification of genes into ubiquitous and tissue-specific classes

I leveraged the tissue-specific nuclear RNA-seq datasets generated in young adult

worms to classify each of the 20,222 protein-coding genes annotated in C. elegans

genome into di�erent classes. I compared expression changes between all possible

pairs of tissues (
15

2
2

= 10 pairs) using DESeq2 (Love et al. (2014)). Genes with

an increase or decrease of expression between two tissues higher than 3-fold and

with an adjusted p-value < 0.01 were considered significantly di�erently expressed

(DE). Of note, within the 20,222 protein-coding genes, many are not expected to

be expressed in young adults. Thus, 5,575 genes (28%) had an expression lower

than 5 TPM across all of the five tissues in young adult and were annotated as

inactive. In the remaining 14,647 protein-coding genes, the tissue specificity was

determined according to the following successive rules:

1. Genes specifically active in a single tissue: genes (i) significantly DE between
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the first and second most expressed tissue and (ii) not significantly DE

between the second and the third most expressed tissues.

2. Genes restricted to two tissues: genes (i) significantly DE between the second

and the third most expressed tissues and (ii) not significantly DE between

the third and the fourth most expressed tissues.

3. Genes restricted to three tissues: genes (i) significantly DE between the third

and the fourth most expressed tissues and (ii) not significantly DE between

the fourth and the fifth most expressed tissues.

4. Genes restricted to four tissues: genes significantly DE between the fourth

and the fifth most expressed tissues.

5. Ubiquitous-biased genes: genes (i) significantly DE between any other pair of

tissues (e.g. first and fourth most expressed tissue) and (ii) detected across

all tissues (RPM > 5 in all tissues).

6. Ubiquitous-uniform (also simply referred to as “uniform”) genes: genes (i)

not significantly DE between any pair of tissues and (ii) detected across all

tissues (RPM > 5 in all tissues).

7. Unclassified genes: genes with expression < 5 RPM in some tissues and not

significantly DE could not be confidently classified (n = 2,346).

Using this approach, almost half of the classified genes (48%) were ubiquitously

expressed (Figure 5.6, 28% uniformly expressed and 20% with biased ubiquitous

expression). The rest of the classified genes were either expressed in a single tissue

(32%) or a subset of tissues (20%).

I observed that the nuclear RNA datasets have minor contamination, likely

originating from bulk cytoplasmic RNA released during nuclear isolation. This

resulted in tissue-specific genes with high expression (e.g. muscle myosin gene unc-

54 ) being classified as “ubiquitous-biased”. From this point forward, when studying

ubiquitous genes and chromatin loci, I specifically focus on the “ubiquitous-uniform”

class and for simplicity refer to them as “ubiquitous”
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Figure 5.6 – Classification of expressed genes. A- Distribution of expressed
protein-coding genes in tissue-specific, tissue-restricted and ubiquitous classes.
The 27 tissue-restricted classes have been merged into “2-tissues”, “3-tissues”
and “4-tissues” for simplicity. B- Heatmap of gene expression values in each
tissue dataset. The genes are ordered by their class.

5.2.1.2 Validation of the tissue-specific and ubiquitous gene sets

Gene Ontology term enrichment analysis is an approach traditionally used to

assess the biological meaningfulness of gene sets. I performed GO analyses on the

main classes of genes and observed an enrichment of terms relevant to each set of

genes (e.g. synaptic vesicle transport in neuron-specific gene set, contractile fibers

in muscle-specific gene set or cuticle in hypodermis-specific gene set, Figure 5.7).

This suggested that the di�erent sets of genes obtained by classification of their

expression indeed reflect functional groups of genes involved in tissue-specific

biological processes.

A useful metric to assess variability of expression across di�erent conditions is

the Coe�cient of Variation (CV, Gerstein et al., 2014). Genes expressed in a single

tissue have a high CV whereas those expressed in multiple tissues have a lower CV.

I measured CV values in each of my gene sets. As expected, tissue-specific genes

have a high CV and ubiquitous genes have a very low CV (Figure 5.8). Moreover,

genes restricted to two, three or four tissues are characterized by decreasing CV
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Figure 5.9 – Comparison of gene expression classes with previously published
gene sets from Cao et al., 2017; Kaletsky et al., 2018; Spencer et al., 2011. Only
my main tissue-specific and ubiquitous gene classes are displayed. Note that
none of these studies formally define a class of ubiquitous genes.

values lower than those of tissue-specific tissues but higher than those of ubiquitous

genes. This suggests that the classification method used to generate these classes

accurately identifies genes expressed across subsets of tissues.

Several tissue-specific transcriptomes have already been generated in C. elegans

using di�erent approaches (see Table 1.3 on page 42). To validate my classification

method, I compared my sets of gene annotations to those from previous studies

which annotated gene expression across multiple tissues (Cao et al., 2017; Kaletsky

et al., 2018; Spencer et al., 2011). This revealed a good intersection between my

datasets and previously published tissue-specific annotations (Figure 5.9). Impor-

tantly, I profiled gene expression in most of the cells from the adult worm, where

the germline is developed and functional and all the other tissues are terminally
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di�erentiated, and I was thus able to define both tissue-specific and ubiquitous sets

of genes.

When investigating the results of my gene classification method, I observed that

the germline set contained several sperm-related genes (e.g. spe-44, Figure 5.10A).

Sperm-specific genes are activated during spermatogenesis at the L4 stage and are

largely down-regulated in young adults, but may still be detected in my datasets as

some L4 worms are present in the collection of adult worms. Using transcriptome

profiles generated across development (Jänes et al., 2018), I could subdivide my

original set of 903 germline genes into three subcategories: 625 adult germline

genes (whose expression peak at YA stage), 127 germline genes enriched in oocytes

and inherited in embryos (whose expression peak in embryos) and 151 sperm genes

(whose expression peak at L4 stage, Figure 5.10B). These subcategories significantly

overlap with previously annotated pregamete, oocyte and sperm genes (Figure 5.10C

and Lee et al., 2017). In subsequent analysis, the set of germline-specific genes

only refers to those highly expressed in adult germline (i.e. the 625 adult germline

genes and the 127 oocyte genes).

5.2.2 Diversity of tissue-specific patterns of chromatin ac-

cessibility

I leveraged the tissue-specific ATAC-seq datasets generated in young adult worms

to classify the 47,514 accessible loci annotated in C. elegans genome into di�erent
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classes. I used the rules described in the previous section, with a threshold of

8 RPM. I successfully classified 25,205 accessible sites into five tissue-specific

classes (germline, neuron, muscle, hypodermis or intestine), 27 tissue-restricted

classes (e.g. sites active in both neurons and muscles, or in all somatic tissues

but not in germline, etc) and two ubiquitous classes (containing sites with either

uniform or non-uniform accessibility across tissues) (Figure 5.11). Interestingly,

chromatin accessibility is overall largely tissue-specific (Figure 5.11A). A majority

of the classified sites (56%) are only accessible in a single tissue, with 22% other

sites having tissue-restricted and only 22% showing ubiquitous accessibility. Many

tissue-specific regulatory elements have been observed from bulk tissue-specific

ATAC-seq in fly (Liu et al., 2019a) and single-cell ATAC-seq studies in fly and

mouse (Cusanovich et al., 2018a,b), but they did not always represent the major

part of all the regulatory elements (10 to 40% of the accessible loci are reported to

be di�erently accessible across tissues of the adult mouse, Cusanovich et al., 2018b;

Liu et al., 2019a). This could originate from the higher complexity of mammalian

tissues or from the highly heterogenous nature of single-cell datasets, making the

identification of tissue-specific accessibility much more complex.

The remaining 22,309 (47%) sites were not classified, either because they are not

detected in my datasets or not accessible enough to confidently classify them. They

could represent genomic loci accessible in early developmental stages but inactive

in young adult. To check this, I looked at their accessibility across development.

While the successfully classified sites are generally highly accessible at the YA

stage (when tissue-specific accessibility is assessed), the unclassified sites have a

decreased accessibility after the embryonic stage (Figure 5.12). Thus, these sites

are preferentially accessible in embryos.

Using a nuclei sorting approach presents several limitations. Fist, intra-tissue

heterogeneity cannot be determined. For instance, gene expression in di�erent

types of neurons is controlled by specific regulatory elements but isolating the

whole population of neuron nuclei does not allow to distinguish or estimate this

diversity. For instance, unc-30 is a neuronal gene highly expressed specifically

in GABAergic neurons; pan-neuron tissue-specific datasets cannot resolve this

intra-tissue specificity (Figure 5.13). Moreover, lowly expressed (accessible) genes

(chromatin) may be under the threshold of detection of ATAC-seq and RNA-

seq. For example, unc-55 is another neuron-specific gene, expressed in the same

113



Gene regulatory architectures in adult C. elegans

Normalised accessibility (log2 RPM)

Tissue-specific sites

Ubiquitous sites

Accessible sites (n = 25,205)

Tissue-restricted sites

4 6 8 10 12
G

er
m

lin
e

N
eu

ro
n

M
us

cl
e

H
yp

od
er

m
is

In
te

st
in

e

Other accessible sitesEnhancersPromoters

A

C

B

Tissue-specific ATAC-seq signal:

Hypod. promoters Intest. promotersMuscle promotersNeuron promotersGermline promoters

Neuron Muscle IntestineGermline Hypodermis

Ubiquitous promoters

5

10

15

20

25

−1000 0 1000

Ac
ce

ss
ib

ilit
y

Ac
ce

ss
ib

ilit
y

5

10

15

20

−1000 0 1000

10

20

30

40

−1000 0 1000

10

20

30

40

50

−1000 0 1000

10

20

30

−1000 0 1000

10

20

−1000 0 1000

Hypod. & Intest. promoters

10

20

30

−1000 0 1000

Soma promoters

50

100

−1000 0 1000

Neuron & Muscle promoters

20

40

60

80

−1000 0 1000

Tissue-restricted (22%)

# 
of

 a
cc

es
si

bl
e 

si
te

s
Tissue-specific (56%)

Ubiquitous (22%)
G

er
m

lin
e

N
eu

ro
n

M
us

cl
e

H
yp

od
er

m
is

In
te

st
in

e

2 
tis

su
es

3 
tis

su
es

4 
tis

su
es

So
m

a

U
bi

qu
ito

us
bi

as
ed

U
bi

qu
ito

us
un

ifo
rm

2184

2728
2962

3468

2852
3115

1159

357

956

2918

2506

800

447
625

649

512

544

254
157

468

487

470

1434 1432

1487

991 1336

406 250

843

934

0
10

00
20

00
30

00
40

00

914 847 905
1332 1349 1235

499 549

1607

1085
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GABAergic neurons than unc-30 but to lesser levels. While the unc-30 promoter

was successfully classified as a neuron-specific promoter, neither of its the two unc-55

promoters could be classified using tissue-specific ATAC-seq data. When studying

specific subsets of cells such as the GABAergic neurons, using a new reporter strain

to directly sort nuclei from these cells could overcome these limitations.

5.3 Two distinctive gene regulatory architectures

According to the aforementioned classification, ~ 80% of the open chromatin loci

are accessible in a subset of tissues or in a single tissue, compared to only ~ 50% of

the genes (Figure 5.6 and Figure 5.11). This di�erence raised the question of how

regulatory elements are combined to regulate gene expression. Do tissue-specific

regulatory elements generally control tissue-specific genes and ubiquitous ones

control ubiquitous genes? Or is ubiquitous expression achieved by combining

di�erent tissue-specific regulatory elements together? What is the transcriptional

e�ect of alternative promoters? I used the classifications described hereabove to

investigate the organization of tissue-specific and ubiquitous genes and to decipher

their regulatory grammars.

5.3.1 Functional groups of ubiquitous genes are di�erently

structured

I first focused on dissecting the structural organization of ubiquitous genes. I

observed that among the ubiquitous genes with annotated promoter(s), 45% of

them have at least two promoters, which is significantly more than for other classes

of gene (Figure 5.14A, 1.53-fold higher, p-value 2.75e-17). I wondered whether

structural features were specific to ubiquitous genes with one or three or more

promoters. I found that ubiquitous genes with only one promoter had fewer

enhancers than those with alternative promoters (Figure 5.14B). The promoters

associated with one-promoter ubiquitous genes are more often bidirectional while

those associated with ubiquitous genes with alternative promoters are generally

unidirectional (Figure 5.14C). Finally, one-promoter ubiquitous genes have fewer

and shorter introns than those with alternative promoters (Figure 5.14D-E).

Overall, this revealed extensive structural di�erences between ubiquitous genes
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Figure 5.14 – Structural characteristics of ubiquitous, germline-specific or somatic-
tissue-specific genes. Ubiquitous genes are split into genes with one, two or
three or more promoters. A- Number of promoters per gene. B- Number of
enhancers per gene. C- Directionality of the promoters associated to each gene.
D- Number of introns per gene. E- Length of introns. Only the genes with at
least one classified promoter are considered.

controlled by a single promoters and those controlled by alternative promoters.

This prompted me to investigate the function of ubiquitous genes with only one

promoter, two promoters or three or more promoters. I performed GO enrichment

analysis for each set and found that ubiquitous genes with a single promoter are

enriched for basal cellular processes such as RNA processing, peptide transport and

ribonucleoprotein complex biogenesis. In contrast, ubiquitous genes with three or

more alternative promoters are involved in more complex processes such as embryo

development, regulation of signaling and cellular response to stress (Figure 5.15).

5.3.2 Germline-specific and soma-restricted genes have dis-

tinctive regulatory structure

5.3.2.1 Gene structure is associated with tissue-specific patterns of

expression

I then investigated the structure of tissue-specific genes and found striking di�er-

ences in the organization of germline genes compared to those restricted to somatic

tissues. Germline genes very rarely have alternative promoters or associated en-

hancers (Figure 5.14A-B), their promoters are often bidirectional (Figure 5.14C) and

they have few short introns (Figure 5.14D-E). In contrast, somatic-tissue-specific
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genes have more alternative promoters, are frequently associated to several en-

hancers, their promoters are largely unidirectional and they have many more and

longer introns (Figure 5.14). Thus, germline genes resemble ubiquitous genes with

one promoter while somatic-tissue-specific genes resemble ubiquitous genes with

multiple promoters.

5.3.2.2 Germline and ubiquitous promoters of germline-specific genes

As expected, most tissue-specific genes are associated with promoter(s) specifically

active in the corresponding tissue (Figure 5.16). However, I observed that a group

of genes with germline-specific expression have ubiquitously accessible promoters

(Figure 5.16, bottom left corner). To investigate whether these genes have di�erent

cellular functions than germline genes with germline promoters, I performed GO

term enrichment analyses. This revealed that the germline genes with only germline

promoters are involved in gamete generation and reproduction, while those with only

ubiquitous promoters are involved in cell division and maintenance of DNA integrity

(Figure 5.17A). Besides, I found that many of the ubiquitous promoters associated

with germline-specific genes are targets of Rb/DREAM, a transcriptional repressor

complex (13-fold enrichment, p-value = 5e-13, Figure 5.17B). This supports a model

whereby a group of genes with ubiquitously active promoters are predominantly

expressed in the germline at the young adult stage via their silencing by the

DREAM complex in somatic tissues (Petrella et al., 2011; Wu et al., 2012).
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5.3.3 The role of alternative promoters

Despite some variability across gene sets, 30% of all genes with at least one

annotated promoter have alternative promoters. I wondered whether alternative

promoters would rather be redundant or complementary (i.e. active in the same

set of tissues or in di�erent tissues). I observed that more than half of the genes

with two alternative promoters have their two promoters in the same class, whereas

less than 10% had two alternative promoters active in di�erent non-overlapping

sets of tissues (Figure 5.18A).

To understand the transcriptional impact of multiple promoters active in the

same tissue(s), I examined the relationship between the number of regulatory

elements and gene expression level. Among ubiquitously expressed genes, I found
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that the number of promoters and enhancers is positively correlated with gene

expression (Figure 5.18B). Similarly, tissue-specific genes with two tissue specific

promoters have higher gene expression levels than those with only one (Figure 5.18C).

At individual loci, the nuclear RNA-seq signal originating from the two alternative

promoters highlights the respective contribution of each promoter (e.g. at odd-2

locus, Figure 5.18D).

Furthermore, I also noted that 15% of the ubiquitously expressed genes with two

promoters have one tissue-specific promoter in addition to a ubiquitously active one.

In such context, the additional tissue-specific promoter can lead to an increased

expression of a ubiquitous gene in the corresponding tissue (e.g. mog-3 in muscle

nuclei, Figure 5.18E).

Taken together, these observations suggest that alternative promoters primarily

play an additive role in the regulation of expression levels, rather than in increasing

the number of tissues in which genes are expressed. In the case of ubiquitous genes,

this can lead to increased expression in individual tissues.

5.3.4 Two emerging classes of gene regulatory architecture

Overall, these observations suggest that both fundamental cellular processes and

germline functions are encoded by genes with a basic structure resembling that of

simpler organisms such as yeast, with few regulatory elements and few introns. On

the contrary, genes involved in developmental and tissue-specific processes have a

more complex structure, with many regulatory elements and longer introns. For

these genes, additional enhancers and alternative promoters may finely regulate

their levels of transcription.

These results also suggest that an important role of alternative promoters is to

increase gene expression rather than being necessary for its expression per se. This

could explain some cases where the deletion of an individual regulatory element

does not have an obvious e�ect on gene expression, despite the regulatory element

having transcriptional activity in transgenic assays (Catarino and Stark, 2018;

Dukler et al., 2016).
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5.4 Spatial organization of genes in the nucleus

I have shown that ubiquitous, germline and somatic genes are di�erently structured

in terms of local regulatory architecture. At a larger scale, chromatin is spatially

organized in 3D (see 1.2.2.2 and Appendix Chapter A). Here, I investigate how

genes and regulatory elements are spatially organized in nuclei from individual

tissues.

5.4.1 Genes and regulatory elements are segregated in clus-

ters along the chromosomes

In C. elegans and across metazoans, chromatin is typically segmented in active or

regulated domains (Carelli et al., 2017). In C. elegans, “active” domains, delimited

by H3K36me3 histone modifications, are enriched for ubiquitously expressed and

germline-specific genes, whereas “regulated” domains, delimited by H3K27me3

histone modifications, are enriched for spatially or temporally regulated genes

(Evans et al., 2016; Gaydos et al., 2012). Using my gene expression classes, I

confirmed that indeed ubiquitous genes are largely segregated in active domains

while nearly 90% of the soma-restricted genes are located in regulated domains,

domain borders or chromosome X (Figure 5.19A) . However, only 50% of the

germline-specific genes were located in the active domains, with the rest generally

located in regulated domains.

For the first time, I could also assess the segregation of regulatory elements into

123



Gene regulatory architectures in adult C. elegans

active or regulated domains. As expected from the distribution of tissue-specific

and ubiquitous genes, the distribution of the ubiquitous or tissue-specific regulatory

elements recapitulates that of genes. Ubiquitous regulatory elements are almost

entirely found within active domains, germline-specific regulatory elements are

enriched in active domains but some are also found over regulated domains, and

soma-restricted regulatory elements are largely restricted to regulated domains or

chromosome X (Figure 5.19B).

5.4.2 Inferring 3D interactions in individual tissues of young

adult worms

The previous observation suggests that based on their tissue-specificity, genes and

regulatory elements are linearly segregated along the chromosomes into active and

regulated domains. It is now well-established that chromatin spatially folds to

acquire a 3D architecture within each nucleus (Beagan and Phillips-Cremins, 2020;

Serizay and Ahringer, 2018). I wondered whether ubiquitous and tissue-specific

regulatory elements also spatially segregate.

To answer this question, I first needed to identify chromatin interactions occur-

ring in individual tissues at the young adult stage. Our lab developed a method to

identify interactions between regulatory elements at a very fine scale (< 500 bp) in

C. elegans called ARC-C (Accessible Region Chromosome Conformation Capture,

Huang et al., 2018). Chromatin is cross-linked and in situ digested by DNase at

low concentration, preferentially cutting at accessible chromatin loci. DNA ends in

spatial proximity are then ligated to each other and finally, the Tn5 transposase

is used to capture accessible chromatin and convert it into a sequencing library.

After sequencing, chimeric DNA fragments are identified and used to construct

chromosome-wide contact maps and to call significant interactions. ARC-C has

been performed to profile spatial interactions in nuclei from whole C. elegans larvae

at the L3 stage. It captured more than twelve million chimeric DNA fragments and

identified ~ 33,000 chromatin interactions linking two chromatin accessible sites.

Analysis of this set of interactions from whole animals at the L3 stage has shed

light on fundamental aspects of the chromatin organization (Huang et al., 2018).

I sought to leverage this set of ~33,000 chromatin interactions (hereafter referred

to as whole larvae L3 interactions) to infer the chromatin interactions in nuclei
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from each tissue in young adults.

• First, I removed 8,547 interactions identified in larvae where at least one

anchor regulatory element was inactive in young adults. This identified 24,741

interactions that are anchored to two regulatory elements both active in YA

(this set of interactions is referred to as pseudo-YA interactions hereafter)

(Figure 5.20A, 1st step).

• Then, I defined sets of inferred interactions in germline, neuron, hypodermis

or intestine nuclei. To do this, for each tissue, I took the subset of interactions

from the pseudo-YA set of interaction which were anchored at both ends to a

regulatory element active in the tissue of interest (Figure 5.20A, 2nd step).

For instance, an interaction anchored to a germline-specific promoter on

both ends belongs to the set of germline interactions, whereas an interaction

anchored to a ubiquitous promoter on one end and to a promoter active in

both neurons and muscles on the other end belongs to both the neuron and

muscle interaction sets (see interaction ‡ in Figure 5.20A).

In total, 24,152 interactions were coherent and assigned to at least one of the five

di�erent sets of inferred interactions. The remaining 589 interactions (2.4% of all

the pseudo-YA interactions) represent incoherent interactions, i.e. interactions that

are anchored to two regulatory elements which are not active in the same tissues

(for instance one germline and one neuron regulatory element).

This approach has two major limitations. First, the original set of interactions

is obtained from whole larvae ARC-C. This implies that interactions occurring in a

limited number of cells (e.g. interactions restricted to a subset of neurons) may be

missed. Second, it presumes that the accessibility of regulatory elements in each

tissue (i.e. their tissue annotations) does not change at all between the L3 stage

and the young adult stage. To check to which extent a change in tissue-specific

accessibility would a�ect the resulting sets of interactions, I randomly shu�ed the

tissue annotations for di�erent proportions of regulatory elements in adults. 2.4%

new incoherent interactions correspond to a change of tissue annotation for ~6%

of the regulatory elements. This suggests that only a small number of regulatory

elements change accessibility between the L3 stage and the young adult stage, and

that the five resulting di�erent sets of inferred interactions are generally accurate.
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Figure 5.20 – Inferring chromatin interactions in each tissue at the YA stage. A-
33,288 interactions have been mapped in whole worms at the L3 stage. 8,547
interactions anchored to a chromatin locus inactive in YA are discarded (* in
the figure). The remaining 24,741 link accessible sites all active in young adult.
24,152 of them are linking two regulatory elements both accessible in at least
one tissue. Some specific cases exist: for instance, an interaction between a locus
accessible in both neurons and muscle and a ubiquitous locus (accessible in all
tissues) ends up in both sets of neuron interactions and muscle interactions (‡ in
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Figure 5.21 – Features of inferred interaction networks in individual tissues. A-
Distance-dependent interaction frequency plot for interaction networks inferred
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In the future, chromatin spatial organization could be interrogated directly from

nuclei of individual tissues to mitigate these limitations.

5.4.3 Di�erences in chromatin interaction networks in germline

or somatic tissues

To better understand the spatial organization of chromatin in nuclei from each

tissue, I generated networks of inferred interactions in each tissue (Figure 5.20B). I

further investigated the features of the five tissue networks of inferred interactions

using approaches derived from the network theory (Ma’ayan, 2011).

I first asked whether the genomic distances separating pairs of interacting loci

di�ered between tissues. I found that shorter interactions (< 100 kb) were enriched

in germline nuclei compared to somatic nuclei whereas longer interactions (> 100

kb) were depleted (Figure 5.21A, p-value = 6.761e-18). This suggests that within

germline nuclei, interacting elements are generally close to each other along the
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Table 5.3 – Communities in the interaction networks inferred in individual tissues

Number of
communi-

ties

Average
number of sites
/ community

Number of orphans
(% of sites accessible

in the tissue)
Germline interaction network 341 7 6,002 / 8,541 (70%)
Neuron interaction network 191 28 5,892 / 11,244 (52%)
Muscle interaction network 256 27 5,597 / 12,631 (44%)

Hypodermis interaction network 177 40 5,304 / 12,347 (43%)
Intestine interaction network 200 35 4,488 / 11.510 (39%)

chromosomes, whereas there are longer-range chromatin interactions in nuclei from

somatic tissues.

To further explore 3D organization, I then defined communities in each interac-

tion network. Within a network, a community is a group of accessible sites which

are internally densely connected, i.e. a group of accessible sites interacting more

with each other than with the rest of the network (Porter et al., 2009). I found

that there were more communities in the germline interaction network than in the

somatic ones (Table 5.3). Importantly, communities in germline interaction network

contain fewer accessible sites on average, compared to those in each of the four

somatic interaction networks (Table 5.3). This suggests that within germline nuclei,

interacting elements are organized in many small communities.

I also measured the betweenness for each accessible site, in each network. For a

given node ‚, its betweenness score g(‚) is given by the expression:

g(‚) =
ÿ

s”=‚ ”=t

‡st(‚)
‡st

where ‡stis the number of shortest paths from node s to node t, and ‡st(‚)

is the number of those paths that pass through ‚ (Girvan and Newman, 2002).

The betweenness score gives an indication on how essential a given node is for

the overall structure of the surrounding network. Essential central sites have a

high betweenness score while non-essential sites have a low betweenness score

(Figure 5.21B). I found that the betweenness of accessible sites in the somatic

inferred interaction networks is generally higher than that of sites in germline

inferred interaction networks (Figure 5.21C). This suggests that the organization

of the somatic networks relies on key central loci whereas those in the germline

network are more interconnected and rely less on local sites.
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Finally, I focused on the importance of long-distance interactions in generating

communities within the networks inferred in individual tissues. For each tissue

interaction network, I simulated the organization of accessible sites into communities

in the absence of interactions longer than a certain distance (Figure 5.21D). In the

germline interaction network, the number of communities is relatively independent

of the presence or absence of long-distance interactions. On the contrary, in somatic

interaction networks, the number of individual communities drastically decreases

with long-distance interactions.

Taken together, these results suggest that the germline interaction network

primarily consists of small uniform communities of regulatory elements (Figure 5.21

and Table 5.3). In contrast, somatic interaction networks seem to rely on long-

range interactions to merge individual small communities into larger structured

communities (Figure 5.21 and Table 5.3).

5.4.4 Soma promoters could act as physical hubs recruiting

somatic transcription factors

5.4.4.1 Soma accessible sites are important interaction hubs in somatic

interaction networks

I sought to investigate the factors responsible for the di�erences observed between

germline and somatic regulatory networks. A major di�erence between accessible

chromatin sites in germline or somatic tissues is the presence of ~ 1,000 “soma” sites,

accessible in all the somatic tissues but not in germline nuclei. To better understand

the di�erent contribution of tissue-specific sites, soma sites and ubiquitous sites

to the inferred networks, I calculated the accessible site degrees, for ubiquitous,

tissue-specific and somatic sites. The degree of a site is the number of interactions

between this site and other sites. This revealed that in each inferred network, 40 to

60% of the ubiquitous sites interact with one to ten other sites (Figure 5.22A). This

was also observed for the somatic tissue-specific accessible sites. However, less than

10% of the germline sites are connected to other sites. Strikingly, I observed that in

the somatic networks, soma sites are characterized by very high degrees, i.e. soma

sites have an unusually high number of interactions with other sites (Figure 5.22A).

Moreover, the number of interactions for each soma site is positively correlated

with their accessibility (Figure 5.22B). These observations suggest that the soma
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Figure 5.22 – Soma sites are interacting with a large number of loci. A- Accessible
site degree (i.e. the number of interactions between a site and other sites), for
ubiquitous, tissue-specific or soma sites. The interaction networks inferred in
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sites, specifically accessible across the four somatic tissues, could play a role of

interaction hubs in each somatic tissue inferred network.

To get more insights in the role of soma sites in organizing networks of interac-

tions, I sought to study the organization of the four somatic interaction networks

in the absence of these soma sites. To do so, I first computationally masked the

~ 1,000 soma sites from the original networks and simulated the resulting inter-

action networks in each of the four somatic tissues. I analyzed the structure of

the resulting simulated networks using the di�erent metrics previously described

(see Figure 5.21). When suppressing the soma sites from the somatic interaction

networks, the distance-dependent interaction frequencies in the simulated networks

become similar to that of the germline interaction network (Figure 5.23A and insets

* and **). Moreover, the betweenness of accessible sites in the simulated somatic

interaction networks without the soma sites is reduced and more comparable to

that of sites in the germline interaction network (Figure 5.23B). Finally, albeit

still fluctuating more than in germline network, the number of communities in the

simulated somatic interaction networks without the soma sites is generally less

dependent on long-range interactions (Figure 5.23C).

Together, these observations suggest that the soma sites, accessible in nuclei of

the four somatic tissues, may play a fundamental role in bringing individual small

communities of accessible sites together, in order to form large communities. This

data support a model whereby soma sites act as anchoring hubs for long-range

interactions, important for the aggregation of accessible sites into large communities.
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Figure 5.23 – Contribution of the soma sites to the structure of interaction
networks. A- Distance-dependent interaction frequency plot for interaction
networks inferred in individual tissues (as described in Figure 5.21A), with or
without soma sites. The dashed lines show the interaction frequencies in the
di�erent interaction networks simulated in the absence of soma sites. Close-
up insets (* and **) are displayed below the main graph. B- Betweenness of
accessible sites in each inferred interaction network. The transparent violin plots
show the distribution of the betweenness in the somatic interaction networks
simulated in the absence of soma sites. C- Distance-dependent number of
communities in interaction networks inferred in individual tissues (as described
in Figure 5.21C). The dashed lines show the number of communities in the
di�erent interaction networks simulated in the absence of soma sites. The same
code is used in A and C.
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5.4.4.2 Soma sites are bound by many transcription factors

I then sought to investigate which transcription factors were binding to soma sites

as well as to other sites. I leveraged the extensive database of ChIP-seq experiments

provided by modENCODE and modERN (Kudron et al., 2018; ModENCODE,

2011). I obtained the annotated TF binding sites from the modENCODE/modERN

portal and computed the TF binding enrichment score for each TF in each class of

tissue-specific, soma (i.e. active across the four somatic tissues) and ubiquitous

accessible sites (Figure 5.24A). As expected, known tissue-specific transcription

factors were found to specifically bind to tissue-specific classes of sites (e.g. ELT-2

and DAF-16 enriched in intestine sites, or UNC-55 and UNC-86 enriched in neuron

sites, Figure 5.24A). I then clustered the transcription factors according to their

binding patterns (Figure 5.24B). This identified several clusters of transcription

factors known to functionally interact to co-regulate sets of regulatory elements. For

example, DPL-1 and LIN-53 are component of the DREAM complex responsible for

silencing reproduction-related genes in somatic tissues in the worm (Petrella et al.,

2011; Wu et al., 2012 and Figure 5.24C). SNPC proteins physically interact with

UNC-130 and RPC-1 and are responsible for piRNA expression in germline (Kasper

et al., 2014 and Figure 5.24C). Finally, DAF-16, ELT-2, PQM-1 and NHR-80 are

central factors co-regulating many intestinal genes (McGhee et al., 2009; Tepper

et al., 2013 and Figure 5.24C).

Intriguingly, despite their well-known tissue-specific functions, many transcrip-

tion factors are also found bound to soma sites, active across the four somatic

tissues (e.g. ELT-2 and DAF-16 in intestine or UNC-55 and UNC-86 in neurons)

(Figure 5.24A). This prompted me to investigate the number of transcription factors

bound to the di�erent sets of accessible sites. I found that many transcription

factors bound to individual soma sites (median of 9, Figure 5.25). Yet, soma

sites do not harbor binding sites responsible for the recruitment of many of these

transcription factors (data not shown). However, soma sites are characterized by

an exceptionally high accessibility, compared to ubiquitous or tissue-specific loci

(see Figure 5.11 on page 114).

Together, these results show that many tissue-specific transcription factors

can promiscuously bind to soma accessible sites. Previous work identified “high-

occupancy target” (HOT) sites in C. elegans and other organisms (Chen et al.,
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Figure 5.24 – Transcription factors enriched in each class of accessible sites.
A- Heatmap of transcription factor enrichment score (odds ratio) for each
transcription factor over tissue-specific, soma (i.e. active across the four somatic
tissues) and ubiquitous accessible sites. The bottom heatmap is a summary of
the transcription factors significantly enriched over each class of accessible sites
(enrichment score >= 3, p-value <= 0.05, % of bound accessible sites >= 1%).
B- Hierarchical clustering of the transcription factor binding patterns. The
colors of the branches indicate to which set of accessible sites the corresponding
transcription factor preferentially binds. C- Examples of functional interaction
networks obtained from STRING database based on the hierarchical clustering
in B. The colors of the nodes indicate to which set of accessible sites the
corresponding transcription factor preferentially binds. The transcription factors
enriched at soma accessible sites are bolded.
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Figure 5.25 – Number of transcription factors bound to individual sites, for each
class of accessible site.

2014; Foley and Sidow, 2013; Gerstein et al., 2010; Roy et al., 2010). HOT sites are

defined as sites bound by an unusual number of transcription factors but were the

TF binding motifs are absent. I investigated whether the soma sites I characterized

correspond to previously identified HOT sites in C. elegans (Chen et al., 2014). I

found that 120 out of the 956 soma sites overlap with HOT sites (120 of the 359

annotated HOT sites, 28-fold enrichment, p-value = 1.8e-111).

5.4.4.3 An emerging role for soma accessible sites

Together, these results suggest that the soma accessible sites play a fundamental role

in the spatial architecture of the chromatin and for the recruitment of transcription

factors, in somatic tissues. Around 1,000 sites found across the genome are accessible

in all the somatic tissues but not in the germline, and they are characterized by a

strikingly high accessibility. They appear to act as physical hubs which contribute

to spatially aggregate regulatory elements into large communities. They also seem

to be able to promiscuously recruit transcription factors regulating tissue-specific

and ubiquitous processes, essentially behaving like HOT sites. This suggests a

model whereby these soma sites would act as central platforms to locally enrich

the concentration of transcription factors and facilitate their transfer to distant

accessible sites brought in close proximity.

5.5 Discussion

Determining regulatory architectures responsible for the di�erent gene expression

patterns found in multicellular organisms is necessary for understanding how the
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genome encodes development. For the first time, I comprehensively profiled gene

expression and chromatin accessibility in all the main tissues of the adult C. elegans.

These new datasets allowed to annotate 13% more regulatory elements than the

most detailed set of annotations as of today (Jänes et al., 2018). Regulatory element

dissection approaches have been historically used to understand how spatiotemporal

patterns of gene expression were obtained (Cox and Hirsh, 1985; Krause et al.,

1994; Okkema et al., 1993; Rougvie and Ambros, 1995). However, these approaches

are laborious and low throughput. The set of annotations provided here is going

to be instrumental in helping design experimental procedures. Generally, it is a

great resource for the worm community to study gene regulation in C. elegans,

complementing and improving previously published annotations (Chen et al., 2013;

Jänes et al., 2018; Kruesi et al., 2013; Saito et al., 2013).

I classified genes and regulatory elements into ubiquitous, tissue-restricted and

tissue-specific sets. This confirmed that regulatory elements are generally highly

tissue-specific and suggests that they are even more abundant than previously

thought (Cusanovich et al., 2018b; Liu et al., 2019a). Using this classification,

I could also directly investigate the relationship between the structure and the

biological function of ubiquitous and tissue-specific genes. This revealed that

ubiquitous genes involved in basic biological processes and germline-specific genes

both have a simple and compact structure, whereas ubiquitous genes involved in

developmental processes and somatic-specific genes tend to have a more complex

structure (Figure 5.26A).

Importantly, chromatin seems to be di�erently organized in germline and somatic

tissues. In germline nuclei, chromatin may be spatially segregated into small

individual communities of regulatory elements. In contrast, regulatory elements

located further apart from each other may interact and form larger communities in

nuclei from somatic tissues. These dramatic di�erences in chromatin organization

may be linked to the plasticity of the cells in each tissue. Indeed, most somatic

cells reach terminal di�erentiation in embryogenesis, as soon as 500 minutes post

fertilization, and then ensure the same biological function throughout C. elegans

life cycle. On the contrary, the two germ cell progenitors formed early during

embryogenesis rapidly go into quiescence, then start proliferating in larval stages, to

eventually di�erentiate into either sperm or oocyte gametes (Kimble and Crittenden,

2005). On top of this, fine regulation of the chromatin is achieved in germline
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Figure 5.26 – Models of gene regulatory architectures at di�erent scales. A- At
the scale of individual genes, two distinctive structures are found. Left: examples
of the simple regulatory architecture shared by ubiquitous genes (e.g. mrps-
17 and txdc-9 ) and germline-specific genes (e.g. snpc-3.1 and puf-7 ). Right:
examples of more complex architectures found at developmental ubiquitous
genes (e.g. lin-45) or somatic tissue-specific genes (e.g. mlt-10 ). B- At a larger
scale, networks of chromatin spatial interactions di�er between germline and
somatic tissues. The same succession of regulatory elements can either fold into
small communities in germline nuclei (left) or into a large organized community
in neuron nuclei (right). Central soma accessible sites play an essential role in
organizing regulatory elements into a large hierarchical community.
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to limit the expression of transgenes (Bagijn et al., 2012) and ensure integrity

of germline DNA (Schaner and Kelly, 2006). At each step throughout germline

development, important remodeling of histone modifications has been observed

in vivo (Schaner and Kelly, 2006). Thus, investigating the relationship between

these remodeling events and the spatial organization of the chromatin in germline

represents an exciting challenge for future studies.

Strikingly, soma sites, defined here as the sites accessible in all four somatic

tissues, seem to act as interaction hubs at the center of these large communities

(Figure 5.26B). They show high similarity and significantly overlap with previously

characterized HOT sites (Chen et al., 2014; Gerstein et al., 2010; Roy et al., 2010).

Several di�erent hypotheses could be formulated to explain how soma sites may

function as central nodes for large communities. These sites might recruit one or

several specific DNA-binding protein(s) not identified yet, which in turn would

help generating large multivalent transcription factor complexes, following a model

recently proposed to regulated X chromosome folding during the X Chromosome

Inactivation (Pandya-Jones et al., 2020). The intrinsic DNA sequence of these soma

sites could also have physical properties facilitating the non-specific recruitment

of transcription factors (Wreczycka et al., 2019). Eventually, the aggregation of

transcription factors could lead to the formation of phase-separated compartments,

as suggested in a model proposed for super-enhancers (Hnisz et al., 2017). Models

of phase-separated chromatin compartments have already been been proposed to

segregate heterochromatin, but such process is usually thought to rely on histone

modification and proteins (Feric et al., 2016; Larson et al., 2017; Strom et al., 2017).

Here, soma regulatory elements would stand as the hubs favoring nucleation and

formation of phase-separated compartments. Overall, these conceptual models

open new areas of investigation which could shed light on general principles of

chromatin spatial organization in C. elegans somatic tissues.

Still, this model of chromatin interactions is based on interaction networks

inferred in each tissue from whole organism data and assuming that these interac-

tions do not vary between L3 and YA (Huang et al., 2018). In the future, sets of

interactions directly obtained from nuclei of individual tissues would be necessary to

confirm these conclusions and go further in the analysis of tissue-specific chromatin

interactions.
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Chapter 6

Molecular organization of

promoters in adult C. elegans

In Chapter 5, I charactered the regulatory architectures of ubiquitous and tissue-

specific genes and the chromatin interaction networks in nuclei from individual tis-

sues. The tissue-specific di�erences in these gene regulatory architectures prompted

me to investigate whether di�erences were also present at the level of promoters.

In Chapter 6, I study the nucleosome organization at promoters of di�erent classes

and investigate the mechanisms underlying their positioning.

6.1 Nucleosomes flank ubiquitous and germline-

specific promoters

6.1.1 Patterns of chromatin accessibility at ubiquitous and

tissue-specific promoters

When I originally compared the patterns of chromatin accessibility at di�erent

classes of promoters, I observed a striking feature only found in germline-specific

and ubiquitous promoters (see Figure 5.11 on page 114). At these promoters, the

central peak of accessibility is immediately flanked by close neighboring regions of

increased accessibility. In contrast, accessibility was greater at somatic promoters at

the center of their peak, but no “shoulder” could be detected. I wondered whether

di�erences in ATAC-seq fragment sizes could explain these di�erent signatures. I

plotted the distribution of ATAC-seq fragment sizes mapping over promoters of each
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Figure 6.1 – Distribution of ATAC-seq fragment sizes from tissue-specific ATAC-
seq datasets over di�erent sets of promoters.

class and found that the size of ATAC-seq fragments mapping over ubiquitous or

germline-specific promoters followed a multi-modal distribution (Figure 6.1). Both

short ATAC-seq fragments (< 100 bp) and longer fragments (~200 bp and ~350

bp) mapped over these loci. Importantly, this was true for ubiquitous promoters

across all tissue-specific ATAC-seq datasets, suggesting that this was not a technical

artifact associated with the germline ATAC-seq dataset. This was in sharp contrast

with the unimodal distribution of ATAC-seq fragment sizes for fragments mapping

over somatic-tissue-specific promoters (Figure 6.1). This suggests that the molecular

organization of somatic promoters or ubiquitous and germline-specific promoters

could be fundamentally di�erent.

A multi-modal fragment size distribution is generally expected from whole

ATAC-seq libraries (Buenrostro et al., 2013). Longer ATAC-seq sequenced frag-

ments (> 150 bp) typically represent nucleosome-spanning fragments (Buenrostro

et al., 2013; Schep et al., 2015). Thus, the location of these long ATAC-seq frag-

ments relative to the center of regulatory elements is indicative of where and how

nucleosomes are positioned. Aggregated ATAC-seq fragment density plots (also

known as “V-plots”, Heniko� et al., 2011) can be used to visualize this distribution

of fragment lengths relative to the center of di�erent sets of promoters (Figure 6.2,

more details in 8.1 on page 173). Stereotypical patterns of fragment density are

observed over promoters flanked by consistently aligned -1 and +1 nucleosomes:

small fragments mostly overlap the promoter centers while larger fragments are over

+1/-1 nucleosomes on either side of the promoters (Figure 6.2A). On the contrary,

if the flanking nucleosomes are not consistently aligned relative to promoter centers,

fragment density plots do not show any increased fragment density other than that
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6.1 Nucleosomes flank ubiquitous and germline-specific promoters

Figure 6.2 – Interpretation of two di�erent ATAC-seq fragment density plots.
A- At promoters flanked by nucleosomes aligned relative to the center of the
promoters, short ATAC-seq fragments are enriched close to the center of the
promoters while longer fragments are enriched on each side of it. These longer
fragments are nucleosome-spanning fragments. B- At promoters flanked by
weakly positioned nucleosomes which are not aligned relative to the center of the
promoters, only the central nucleosome-depleted region is dense. See Figure 8.1
on page 174 for more details.

at the nucleosome depleted regions at promoter centers (Figure 6.2B). For each of

the five tissue-specific ATAC-seq datasets, I generated ATAC-seq fragment density

plots over ubiquitous and the corresponding tissue-specific promoters. In line with

the multimodal distribution observed over ubiquitous promoters (Figure 6.1), a

-1 and +1 nucleosome signature is readily apparent over ubiquitous promoters in

all tissues (Figure 6.3, top row). The same pattern is also observed over germline-

specific promoters in germline ATAC-seq data (Figure 6.3), in agreement with the

multimodal distribution of ATAC-seq fragment sizes over germline-specific promot-

ers (Figure 6.1). However, somatic tissue-specific promoters lack this signature of

well-positioned +1/-1 nucleosomes (Figure 6.3). To better quantify the di�erences

between each fragment density plots, I devised an approach to estimate a flanking

nucleosome enrichment score based on the background distribution of ATAC-seq

fragments (Figure 6.4A). The flanking nucleosome enrichment score over ubiquitous

promoters is similar across all tissue-specific ATAC-seq datasets, and only the

germline-specific promoters have a comparable enrichment score; in contrast, the

somatic-tissue-specific promoters have a very low flanking nucleosome enrichment
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(Figure 6.4B).

Chromatin in germline nuclei adopt a specific conformation during meiosis at

the adult developmental stage. To test whether the meiotic chromatin conformation

was responsible for the nucleosome positioning I observed, I compared chromatin

accessibility in germline and muscle nuclei in adult with two other developmental

stages. I produced ATAC-seq datasets from muscle nuclei in L1 and L3 stages and

from germline nuclei in L3 stage, and I obtained germline ATAC-seq from L1 stage

from Lee et al., 2017. At L1 stage, germline cells are quiescent and at L3 stage, the

germline is actively proliferating. I observed consistent ATAC-seq patterns across

L1, L3 and adult stages at muscle or germline promoters. Muscle ATAC-seq profiles

over muscle promoters consistently showed a single narrow peak of accessibility

while germline ATAC-seq profiles showed increased accessibility on the flanking

sides of the germline promoters at all stages (Figure 6.5). This suggests that the

typical arrangement of flanking nucleosomes is a property of germline promoters

throughout post-embryonic development.

6.1.2 Ubiquitous and germline promoters are stereotypi-

cally organized

To gain more insight into nucleosome positioning at di�erent sets of promoters,

I used nucleoATAC to compute nucleosome occupancy probability profiles from
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ATAC-seq data (Schep et al., 2015). This confirmed the preliminary observations

from fragment density plots and revealed that the +1 and -1 nucleosomes are

positioned at a relatively consistent distance from the TSS in ubiquitous and

germline-specific promoters (Figure 6.6). In contrast, somatic tissue-specific pro-

moters are characterized by lower -1 and +1 nucleosome occupancy and a larger

range of nucleosome positions relative to TSSs (Figure 6.6).

Using genome-wide nucleosome occupancy probability profiles in combination

with previous mapping of dominant transcription initiation sites (Jänes et al., 2018),

I could quantitatively measure parameters of promoter nucleosomal organization

(Figure 6.7A). At ubiquitous and germline-specific promoters, I found that the 5’

edge of the +1 nucleosome is generally found ~ 20 bp downstream of the TSS

(median distances of 22 bp for ubiquitous promoters and 12 bp for germline-specific

promoters, Figure 6.7B). In contrast, at somatic tissue-specific promoters, the +1

nucleosomes are more widely distributed downstream of the TSS (Figure 6.7B).

Moreover, divergent TSSs are closer to each other in ubiquitous and germline-

specific promoters than in somatic tissue-specific promoters and NDRs are narrower

in ubiquitous and germline-specific promoters (Figure 6.7B).

Together, these results show that at ubiquitous and germline-specific promoters,

well-positioned +1 nucleosomes are reproducibly aligned ~ 20 bp downstream of
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the TSS, generating a narrow central nucleosome-depleted region. In comparison,

somatic tissue-specific promoters have a wider NDR and their flanking nucleosomes

are not aligned with their associated TSS.

6.2 Underlying sequence features are contribut-

ing to promoter structure

6.2.1 10-bp WW periodicity at germline-active promoters

Some sequences features are thought to influence the positioning of nucleosomes

(Struhl and Segal, 2013). To understand whether specific sequence features could

be responsible for the di�erences I observed in ubiquitous and germline promoters

compared to somatic-tissue-specific ones, I search for short sequences enriched in

each class of promoters. Interestingly, I observed that ubiquitous and germline-

specific promoters share a T-rich motif with 10 bp spacing, which was not present

at somatic tissue-specific promoters (Figure 6.8). Previous studies have implicated
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Figure 6.9 – TT periodicity at ubiquitous and tissue-specific TSSs. A- Dis-
tribution of distances between pairs of TT dinucleotides (TT....TT) found in
sequences -50 bp to + 300 bp around TSSs of di�erent types of promoters. B-
Associated power spectral density values of TT periodicities.

10-bp WW (W = A/T) periodicity in nucleosome positioning (Andersson et al.,

2014; Dreos et al., 2016; Field et al., 2008; Haberle et al., 2014; Ioshikhes et al.,

1996; Johnson et al., 2006; Mavrich et al., 2008a; Satchwell et al., 1986; Segal et al.,

2006; Struhl and Segal, 2013; Wang and Widom, 2005). To investigate whether

the T-rich motif found at ubiquitous and germline-specific promoters was part of a

larger TT periodic signal, I sought to quantify the TT periodicity in each set of

promoters. I computed the distances between all possible pairs of TT dinucleotides

in the sequences from -50 bp to +300 bp relative to TSSs of the di�erent classes of

promoters. This showed that around ubiquitous and germline-specific TSSs, pairs

of TT dinucleotides are generally interspaced by k bases, k being a multiple of

10 (Figure 6.9A). To quantify the overall TT periodicity, I computed the power

spectral density for each histogram using a Fourier Transform. This analysis

confirmed that TT dinucleotides exhibit strong 10-bp periodicity in ubiquitous and

germline-specific promoter sequences but not in somatic-tissue-specific promoters

(Figure 6.9B).

To assess whether the 10-bp TT periodicity I measured in the vicinity of

ubiquitous and germline TSSs was associated with +1 nucleosomes, I generated

genome-wide tracks of 10-bp dinucleotide periodicity (see Chapter 8). I observed

that ubiquitous and germline-specific promoter regions harbor a strong 10-bp

periodic WW signal immediately downstream of their TSS (Figure 6.10A). At these
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Figure 6.10 – 10-bp periodicity of di�erent dinucleotides at ubiquitous and
tissue-specific TSSs. A- Aggregate plots of 10-bp WW, TT and AA periodicity
tracks at ubiquitous and tissue-specific promoters aligned at their TSS. Only
the forward promoters are considered here. The reverse promoters show similar
results. B- WW, TT and AA occurrences in +1 nucleosomal sequences of
ubiquitous promoters. The sequences have been aligned at the +1 nucleosome
dyad and shifted by a maximum of 5 bp to highlight the periodic occurrence of
dinucleotides. The summed occurrences are displayed on top of each heatmap.
The average TSS positions of ubiquitous promoters (~20 bp upstream of the
+1 nucleosome edge) are displayed by the shaded gray area. See Figure 6.11
for other dinucleotides and other promoter classes. C- Power Spectral Density
values at a period of 10 bp, for di�erent dinucleotides in each set of promoters.
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at +1 nucleosomes of ubiquitous or tissue-specific promoters (400 bp window
centered at nucleosome dyads). The sequences have been aligned at the +1
nucleosome dyad and shifted by a maximum of 5 bp to highlight the periodic
occurrence of dinucleotides. The summed occurrences are displayed on top of
each heatmap.

promoters, 10-bp WW periodicity strikingly coincides with the position of +1

nucleosomes (Figure 6.10B and Figure 6.11). The 10-bp TT dinucleotide periodicity

is the major contributor of the overall 10-bp WW periodicity and is skewed toward

the 5’-half of +1 nucleosomes, while a weaker 10-bp AA periodicity peaks over

the 3’-half of +1 nucleosomes (Figure 6.10). SS also appeared to occur over +1

nucleosomes of ubiquitous and germline-specific promoters, albeit to a lesser extent

(Figure 6.10C and Figure 6.11). Of note, other dinucleotides did not have a strong

10-bp periodicity over these classes of promoters (Figure 6.10, Figure 6.11).

Finally, I sought to investigate whether the 10-bp TT periodicity was correlated

with nucleosome occupancy. I grouped +1 nucleosomes of ubiquitous and germline-

specific promoters into bins of 20 +1 nucleosomes, based on their occupancy score.
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I then computed the power spectral density score of 10-bp WW periodicity in the

nucleosomal sequences of each bin. I observed a strong correlation (Pearson’s r

= 0.71) between average nucleosome occupancy of each bin and the strength of

10-bp WW periodicity (Figure 6.12). Therefore, the strength of 10-bp periodic

WW signal over +1 nucleosomes at ubiquitous and germline-specific (i.e. all the

germline-active) promoters is positively correlated with nucleosome occupancy.

Importantly, these results also highlight the absence of any 10-bp periodic

dinucleotide signal at somatic-tissue-specific promoters (Figure 6.9, Figure 6.10 and

Figure 6.11). This is in line with the absence of positioned +1 nucleosomes at these

promoters (Figure 6.3, 6.4 and 6.6).

6.2.2 Positioning of other sequence features at promoters

Other sequence features are found to be enriched at promoters. The Inr initiator

sequence, the Sp1 motif and the TATA-box are three well-known core promoter

elements that have already been characterized in C. elegans promoters (Chen et al.,

2013; Saito et al., 2013). I investigated the position of these sequences and their

enrichment within sets of ubiquitous or tissue-specific promoters. I found that

the Inr motif is enriched in all promoter classes, however, somatic tissue-specific

promoters showed higher Inr enrichment than ubiquitous and germline-specific

promoters (Figure 6.13, 1.55-fold enrichment, p-value = 6e-14). I further observed

that Sp1 and TATA box motifs are both predominantly associated with somatic-
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tissue-specific promoters, with striking tissue biases. The Sp1 motif, peaking at -45

bp upstream of the TSS, is enriched at neural, muscle and hypodermal promoters

but not at intestinal promoters, whereas the TATA-box motif was predominantly

found at hypodermal and intestinal promoters, peaking at -30 bp upstream of the

TSS. This enrichment of Sp1 and TATA-box in some but not all of the tissue-specific

classes of promoters had not been thoroughly investigated before, likely due to the

lack of clear annotation of ubiquitous and tissue-specific sets of promoters in other

organisms. Finally, de novo motif analysis also revealed that somatic tissue-specific

promoters share two dinucleotide composition biases, a T/C-rich stretch and a

(CA)n dinucleotide repeat. Again, these two biases are not found in ubiquitous or

germline-specific promoters (Figure 6.13).

The de novo motif analysis also uncovered motifs associated with tissue-specific

promoters (Figure 6.14 and Figure 6.8 on page 146). For example, as expected,

many intestinal promoters harbor the GATA motif bound by ELT-2, while the

HLH-1 motif is found specifically at muscle promoters (Figure 6.14; Chen et al.,

1994; McGhee et al., 2007). Many of these motifs have peak positions within the

NDR, often ~45 bp upstream of the TSS (Figure 6.14).

Altogether, these results highlight the tissue-specific di�erences in both core
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Figure 6.14 – Position of DNA motifs enriched at ubiquitous and tissue-specific
promoters aligned to the TSS. Motif Position Weight Matrices (PWM) are
displayed on the right. Only promoters with experimentally defined TSSs were
considered.
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6.3 10-bp WW periodicity in animal genomes

promoter elements and TF binding motifs, and bring further insight in the sequence

features which may be important for the activity of tissue-specific and/or ubiquitous

promoters.

6.3 10-bp WW periodicity at ubiquitous promot-

ers is a feature of non-mammalian genomes

Finally, I wondered whether the 10-bp periodic WW signal is a feature associated

with +1 nucleosomes of ubiquitous promoters in other animals. 10-bp periodic

WW sequences have been observed or suggested at +1 nucleosomes in yeast, fly,

zebrafish and mammals (Albert et al., 2007; Forrest et al., 2014; Haberle et al.,

2014; Ioshikhes et al., 2011; Mavrich et al., 2008b; Tolstorukov et al., 2009; Wright

and Cui, 2019). However, the specific association of a 10-bp WW signal with

di�erent sets of promoters regulating genes with particular patterns of expression

has rarely been directly investigated.

I first examined sequences around TSSs of all annotated genes in fly, zebrafish,

mouse, and human. I could detect an increase of 10-bp WW periodicity downstream

of fly and zebrafish TSSs (Figure 6.15A), as expected from previous reports (Haberle

et al., 2014; Mavrich et al., 2008b). As in C. elegans, the WW periodicity signals in

fly and zebrafish peaked in the 5’ half of +1 nucleosomes. However, no comparable

increase of 10-bp WW periodicity downstream of TSSs was present around mouse

or human promoters (Figure 6.15A).

I then investigated subsets of promoters, to ask (i) whether 10-bp WW period-

icity is associated with ubiquitously active promoters and (ii) if it is enriched in

ubiquitous promoters compared to promoters with regulated activity. Using the

coe�cient of variation of gene expression (CV) metric, I considered genes in the

bottom 20% of CV values to have broad ubiquitous expression and those in the top

20% to have highly regulated expression (e.g. tissue specificity). I then quantified

WW 10-bp periodicity in each of the two sets of promoters and for each organism,

as described in 6.2.1 on page 146. Though the periodicity strength is generally

lower in fly and zebrafish compared to C. elegans, I found that in each organism,

WW 10-bp periodicity was higher at promoters of broadly expressed genes than at

those of highly regulated genes (Figure 6.15B-C). In contrast, neither the broadly
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Figure 6.15 – 10-bp WW periodicity at ubiquitous and tissue-specific TSSs.
A- 10-bp WW periodicity and nucleosome occupancy tracks are plotted over
TSS, for all the genes annotated in worm, fly, zebrafish, mouse and human.
B- Normalized distribution of distances between pairs of WW dinucleotides
(WW....WW) found in sequences -50 bp to + 300 bp around TSSs of worm, fly,
zebrafish, mouse and human genes. Two sets of TSSs have been analyzed: those
associated with genes broadly expressed in the organism (top row: coe�cient of
variation of expression in bottom 20%) and those associated with genes highly
regulated in the organism (bottom row: coe�cient of variation of expression in
top 20%). The distribution of distances is normalized as explained in 8.2 on
page 178. C- Power spectral density values of 10-bp WW periodicity.
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active nor the regulated groups of mouse and human promoters have comparable

WW periodicity signals (Figure 6.15B-C). These results suggest that 10-bp WW

periodicity signals are a conserved feature of ubiquitously active promoters in

non-mammalian animals, possibly lost in mammals throughout evolution.

6.4 Discussion

Historically, promoters have been grouped based on their sequence or their pattern

of transcription initiation (Carninci et al., 2006; Lenhard et al., 2012). This proved

to be helpful to redefine the textbook promoter structure. Using such classification,

multiple features including intrinsic DNA sequence, chromatin remodelers, DNA

binding proteins, and RNA polymerase machinery have been shown to be associated

with di�erent types of promoter structures (reviewed in Haberle and Lenhard, 2016).

Still, few studies have directly focused on comparing promoter organization based

on their spatiotemporal activity. Classifying C. elegans promoters into functional

sets of ubiquitous, tissue-restricted and tissue-specific promoters, I could directly

compare the characteristics of each group of promoters.

Investigating these di�erent classes, I found that strong +1 nucleosome po-

sition coinciding with 10-bp periodic WW signal is a key feature of ubiquitous

and germline-specific promoters. The association of 10-bp WW periodicity and

nucleosome position was first noted by Travers and colleagues in chicken, and is

thought to aid nucleosome positioning by conferring sequence-dependent anisotropic

bendability to the DNA polymer (Drew and Travers, 1985; Trifonov, 1980; Zhurkin

et al., 1979). Since then, this periodicity has been observed in nucleosomal se-

quences in di�erent eukaryotes including C. elegans, but its specific association

with +1 nucleosomes of di�erent promoter types was unknown (Albert et al., 2007;

Dreos et al., 2016; Field et al., 2008; Forrest et al., 2014; Haberle et al., 2014;

Ioshikhes et al., 1996, 2011; Johnson et al., 2006; Mavrich et al., 2008a,b; Peckham

et al., 2007; Pich et al., 2018; Satchwell et al., 1986; Segal et al., 2006; Struhl

and Segal, 2013; Tolstorukov et al., 2009; Wang and Widom, 2005; Widom, 2001;

Wright and Cui, 2019). In contrast to ubiquitous and germline-specific promoters,

I found that +1 nucleosomes of C. elegans somatic tissue-specific promoters are

not associated with a 10-bp WW periodicity signal, have lower occupancy, and

inconsistent position relative to the TSS. Instead, I observed intriguing biases
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Molecular organization of promoters in adult C. elegans

Figure 6.16 – Two models of PIC positioning at promoters. The nucleosome
organization and sequences features found in ubiquitous, germline-specific and
somatic-tissue-specific promoters suggest that two models of Pre-Initiation
Complex recruitment exist. A- In ubiquitous and germline-specific promoters
(i.e. all germline-active promoters), nucleosomes flank a narrow 120 to 140
bp-wide NDR. Positioning of these nucleosomes is facilitated by the underlying
DNA sequence which harbors highly periodic WW (mainly TT) dinucleotides.
Thus, the Pre-Initiation Complex (PIC) assembling at the NDR is physically
constrained by the +1 nucleosome edge, resulting in transcription initiation
~20 bp upstream of the +1 nucleosome edge. Many of these promoters lead
to bidirectional elongative transcription. Otherwise, upstream-antisense RNA
(uaRNA) are transcribed. B- In soma-restricted promoters, NDRs are wider (>
200 bp) and flanking nucleosomes are weakly positioned and not reproducibly
aligned relative to the TSS. Core and transcription factors recruited to the
NDR facilitate assembly and positioning of the PIC, resulting in transcription
initiation -45 to -50 bp downstream.

in the enrichment of core motifs at these promoters. TATA boxes are primarily

found in hypodermal and intestinal promoters whereas Sp1 motifs are most highly

enriched in neuronal promoters. In addition, tissue-specific motifs are present, and

these often have peak positions around -50bp relative to the mode TSS. Overall,

these results are in agreement with the model whereby promoters with high tran-

scriptional plasticity have well-positioned flanking nucleosomes but those with low

transcriptional plasticity do not (Tirosh and Barkai, 2008).

Structural studies of the Pre-Initiation Complex (PIC) suggest that it physically

interact with DNA from -45 bp to +20 bp relative to the transcription start site

(Louder et al., 2016; Robinson et al., 2016; Schilbach et al., 2017). Interestingly, at

C. elegans ubiquitous and germline promoters, the 5’ edges of +1 nucleosomes are

located roughly +20 bp downstream of the TSS, which would be at the 3’ end of

the PIC. This supports a model initially proposed in yeast whereby a positioned

+1 nucleosome could facilitate PIC complex assembly by interacting with TFIID

(Figure 6.16A) (Jiang and Pugh, 2009). In contrast, at soma-specific promoters
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which lack strongly positioned nucleosomes, transcription factors might help to

locally recruit and position the PIC to initiate transcription ~ 45 bp downstream

of their binding site (Figure 6.16B). These models are not mutually exclusive and

additional mechanisms also contribute to promoter activity.

Similar to C. elegans, I observed that a 10-bp WW periodicity signal is also as-

sociated with promoter +1 nucleosomes of broadly expressed genes in zebrafish and

fly. This is consistent with a previously described enrichment of 10-bp periodicity

in AA and TT dinucleotides downstream of constitutively expressed promoters in

zebrafish zygote (Haberle et al., 2014). A weak genome-wide AA/TT periodicity

was previously noted in fly but not associated with any class of gene (Mavrich

et al., 2008b). In contrast, the periodic WW signal is not detected at promoters of

broadly expressed genes in mouse and human, despite their having well positioned

+1 nucleosomes. This is consistent with reports showing a low 10-bp WW periodic-

ity in mammal genomes, either around TSSs (Tolstorukov et al., 2009; Wright and

Cui, 2019) or genome-wide (Pich et al., 2018).

From these observations, 10-bp WW periodicity seems to contribute to +1 nucle-

osome positioning at ubiquitously active promoters of non-mammalian eukaryotes,

especially those of genes with basal cell functions. 10-bp WW periodicity is also

found at promoters in yeast (Mavrich et al., 2008a; Travers et al., 2010), suggesting

that this would be an ancient conserved mechanism to regulated housekeeping

genes. In contrast, nucleosome positioning at promoters in mammals may rely on

other mechanisms, whereas the WW 10-bp periodicity is relatively weaker. This

could be linked to the increase of CpG islands in mammalian promoters.
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Chapter 7

Gene regulation along C. elegans
di�erentiation trajectories

By investigating tissue-specific ATAC-seq and RNA-seq datasets, I was able to

identify fundamental di�erences in gene architecture and promoter organization in

individual tissues (Chapter 4, 5 and 6). These datasets were generated from nuclei

sorted from bulk tissues in young adult worms. Such approach is poorly fitted

to study the mechanisms of gene regulation along cell di�erentiation trajectories.

In Chapter 7, I describe the potential of single-cell-based approaches to study

embryonic development and organogenesis. I also present the pilot studies I

conducted using single-cell-based techniques to study gene regulation during cell

fate determination in C. elegans and introduce the challenges and future directions

of the project I initiated.

Collaboration note: Yan Dong prepared the collection of live embryos (up to

100-cell stage embryos) used for single-nucleus genomic assays.

7.1 Studying gene regulation in embryogenesis

with single-cell approaches

Three main processes take place during embryonic development:

• Transition from maternal to zygotic control of development;

• Cell fate specification;
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• Morphogenesis/organogenesis, which leads to the formation of functional

tissues.

Precise control of gene expression is crucial for the correct progression of these steps,

and relies on many di�erent parameters, from cytoplasmic determinant to pioneer

transcription factors. The mechanisms of gene regulation during embryogenesis

have been at the center of developmental studies for the past decades, but most

of these studies focus on a particular process, such as the genetic control of the

development of the vulva in C. elegans (Kornfeld, 1997) or the control of the

development of the eye in D. melanogaster (Bessa et al., 2002).

With the emergence of single-cell approaches, it appears feasible in principle to

determine the regulation of chromatin, gene expression, and nuclear organization

in every single cell from the zygote to the terminally di�erentiated cells. C. elegans

is the only model organism where it would be realistically possible to identify

mother and daughter cells throughout the entire embryonic development, as its

cell lineage is small, invariable and fully known. Thus, using single-cell methods

in C. elegans could help determining the mechanisms underlying the regulatory

changes occurring during embryonic development. This would reveal the principles

by which the genome directs cell fate specification and organogenesis.

7.1.1 Focusing on cell fate specification during early em-

bryogenesis

Single-cell approaches are ideal to study the mechanisms of gene regulation involved

in specification during C. elegans early embryogenesis, but two points are crucial

when designing these assays. Firstly, cell types with unique characteristics are

formed at each division, especially during early stages of the embryonic development.

For instance, specification in the E lineage is initiated in the first hour after

fertilization of the oocyte and involves a cascade of transcription factors di�erently

expressed in the EMS progenitor cell, the E blastomere and the E daughter cells

(Figure 7.1). Secondly, because maternal RNA molecules are loaded in the fertilized

oocyte and inherited in daughter cells for several cell divisions, profiling cytoplasmic

mature mRNA does not directly reflect the transcriptional activity of the zygote.

These aspects of embryonic development need to be taken into account when

designing the experimental approaches.
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Figure 7.1 – Transient expression of transcription factors during specification.
Left: cells are rapidly dividing during the first hours of embryogenesis. The
vertical axis indicates time of development (from the first cleavage) at 25 C. The E
lineage is highlighted in pink. Right: expression of di�erent transcription factors
involved in the E lineage specification during early embryonic development,
measured by single-cell RNA-seq of hand-dissected embryos (Tintori et al., 2016).

Two recent studies used single-cell-based approaches to profile gene expression

during C. elegans embryogenesis. Using the 10X Genomics platform, Packer et al.

(2019) profiled the transcriptome of ~80,000 individual cells throughout embryogen-

esis. Using SMART-seq technology, Tintori et al. (2016) profiled the transcriptome

of 219 cells from 1-cell to 16-cell stage embryos. These two datasets are currently

the reference to study genome-wide transcriptomic changes during C. elegans em-

bryogenesis at single-cell resolution, but they present several conceptual limitations.

First, they focus either on the very first minutes of embryonic development (1-cell

to 16-cell embryos) or on the later stages (200-cell to 550-cell embryos), and thus

cannot fully characterize gene expression during cell specification (under 100-cell

stage embryos). Secondly, these studies mostly quantify cytoplasmic transcript

abundance and thus do not measure the transcriptional activity of the zygote.

Thirdly, they only focused on transcript quantification and do not provide any

insight in the dynamics of chromatin organization during development, e.g. in

terms of accessibility.

Between 1-cell and 32-cell stages, the embryos undergo drastic changes during

Zygotic Genome Activation (ZGA) and quickly after ZGA, lineage specification

occurs, restricting populations of cells to a determined fate. I aimed to leverage

RNA-seq and ATAC-seq single-cell approaches to investigate the mechanisms

required for transcription regulation during ZGA and early cell specification, in

individual nuclei of C. elegans.
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Figure 7.2 – Nuclei obtained from a collection of embryos with or without
enrichment of 1- to 32-cell stage embryos. A- Distribution of embryo stages in a
collection before and after enriching for early embryos (1- to 32-cell stages) by
sorting. B- Estimated proportion of nuclei from di�erent embryo stages after
nuclei isolation, before and after enriching for early embryos by sorting. C-
Estimated number of nuclei from individual embryo stages, assuming sequencing
of 2000 individual nuclei obtained from the sorted embryos. D- Estimated
sampling of individual nuclei from each embryo stages, assuming sequencing of
2000 individual nuclei obtained from the sorted embryos. The red line represents
10-fold oversampling of each nucleus of an embryo at a given stage.

7.1.2 Profiling gene expression and chromatin accessibility

in single nuclei

To study ZGA and early cell specification, I sought to profile both zygotic transcrip-

tional activity and chromatin accessibility in individual nuclei from early embryos,

between 1-cell and 32-cell stage or up to 100-cell stage. However, harvesting very

early embryos (< 32-cell stage) is challenging and early embryo collections typically

contain at least 20% of ~ 100-cell embryos (Figure 7.2A). This is a major issue in

single-nucleus experiments, as the nuclei from these late embryos would represent

more than 50% of the entire set of extracted nuclei (Figure 7.2B). I first attempted

to isolate early frozen embryos (< 32-cell stage embryos) by sorting. To specifically

obtain very early (1-cell to 32-cell stages) embryos from a population of mixed

embryos, I optimized a cytometry-based sorting method. Staining frozen embryos

162



7.1 Studying gene regulation in embryogenesis with single-cell
approaches

by DAPI, I could distinguish early embryos (with relatively low DAPI signal) from

older embryos (with greater DAPI signal). Thus, I could e�ectively sort embryos

between the 1-cell and the 32-cell stage (Figure 7.2A-C). Overall, nuclei from each

cell type and at any embryonic stage (up to the 32-cell stage) are well represented

when enriching for very early embryos by sorting(Figure 7.2D).

Using the 10X Genomics workflow, I then performed snATAC-seq and snRNA-

seq on nuclei obtained from (i) 1- to 32-cell stage sorted frozen embryos or (ii) up

to ~100-cell stage unsorted live embryos. I aimed to sequence ~ 2,000 individual

nuclei, which should be su�cient to achieve a ~ 10-fold oversampling of nuclei from

each cell type at any embryo stage in the sorted embryos (Figure 7.2D). This should

be enough to get preliminary insights on whether we can successfully perform

single-cell experiments and identify individual cells from the early cell lineage

tree. I recovered 4,945 individual nuclei after snRNA-seq (2,072 from sorted early

embryos and 2,873 from unsorted older embryos) and 2,316 individual nuclei after

snATAC-seq (1,115 from early embryos and 1,201 from older embryos).

To understand whether the snRNA-seq or snATAC-seq experiments e�ciently

captured transcript abundance or chromatin accessibility, I plotted histograms of

Unique Molecular Identifiers (UMI) counts per nucleus. The number of UMIs per

nucleus is a good metric to get preliminary insights about whether a single-cell

experiment worked or failed. This revealed that the two snRNA-seq runs had a

satisfactory distribution of UMIs per nucleus, suggesting that they both worked

(Figure 7.3A). Nuclei from early embryos appeared to have a slightly lower transcript

content compared to older embryos (Figure 7.3A). Correspondingly, there are overall

slightly fewer detected genes in nuclei from sorted early embryos than in nuclei

from older embryos (Figure 7.3B). This could represent the gradual zygotic genome

activation (ZGA) during the early division cycles after oocyte fertilization. However,

this could also be a technical issue arising from using sorted frozen embryos.

The distribution of UMI counts per nucleus is drastically di�erent between the

two snATAC-seq experiments. Nuclei from sorted early embryos have on average ~

200 UMI / nucleus while those from older embryos have on average ~ 5000 UMI /

nucleus (Figure 7.3C). This results in only ~ 100 accessible regions detected per

nuclei on average in snATAC-seq from sorted early embryos, compared to almost

3,000 in snATAC-seq from older embryos (Figure 7.3D). This suggests that the

snATAC-seq experiment performed on nuclei from sorted early embryos failed,
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potentially because of the embryo sorting step or the fact that these embryos were

frozen prior to sorting and nuclei isolation.

Taken together, these metrics suggest that it is possible to enrich for early

embryos by sorting frozen embryos and still get good quality snRNA-seq data.

However, freezing embryos prior to nuclei isolation and/or enriching for early

embryos by sorting may slightly reduce the number of detected genes by snRNA-

seq and masking true biological observations. Furthermore, these steps seem to

severely impact snATAC-seq. Thus, further controls using synchronous populations

of embryos, frozen or not and sorted or not, will need to be performed to understand

which of these steps have an impact on snRNA-seq and snATAC-seq (see 7.1.2 on

page 162 for further discussion).

7.1.3 Cell markers and di�erentiation trajectories

To see whether snRNA-seq and snATAC-seq datasets could be leveraged to get

useful insights in gene regulation during early embryogenesis in C. elegans, further

processing of the raw data is required. I processed, filtered and reduced the

dimensionality of the snRNA-seq and snATAC-seq datasets using the monocle3

suite (Cao et al., 2019). In the subsequent preliminary analyses of the single-nucleus

experiments, I decided to merge the two snRNA-seq datasets together and focus

on the snATAC-seq dataset obtained from older embryos.

I embedded the ~ 5,000 individual nuclear transcriptomes into two dimensions

using UMAP (Figure 7.4). This revealed that the two snRNA-seq samples have a

reasonable overlap, although some populations of nuclei were only found in one of

the two samples. This is expected, as each sample is enriched either for early or

older embryos. I then clustered the embedded single nuclei using a graph-based

approach (Cao et al., 2019). This identified 33 di�erent clusters. To annotate

some of these clusters, the transcript abundance of genes known to be specifically

expressed in subsets of committed cells can be used. For instance, the well-known

cascade of genes inducing cell fate of the E lineage through med-2 – end-1/3 – elt-7

serial expression can be used to characterize cells from the E lineage (Figure 7.5A

and Figure 7.1 on page 161). In the merged snRNA-seq dataset, end-3 transcripts

are enriched in clusters 1, 9 and 24, while end-1 and elt-7 transcripts are enriched

in clusters 19 and 4 (Figure 7.5B). These observations suggest that clusters 1, 9 and
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Figure 7.4 – UMAP projection of ~5,000 transcriptomes from individual nuclei.
Each dot represents a single nucleus, colored according to its method of isolation
(left) or its cluster (right).

Figure 7.5 – Expression of E lineage-related marker genes. A- Patterns of
expression of di�erent E lineage-related marker genes during early embryonic
development, measured by single-cell RNA-seq of hand-dissected embryos (Tin-
tori et al., 2016). B- Expression of the corresponding marker genes in ~5,000
individual nuclei. Each dot represents a single nucleus, colored based on the
transcript abundance for the indicated gene (med-2, end-3, end-1, elt-7 ).
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Figure 7.6 – UMAP projection of ~1,200 chromatin accessibility profiles from
individual nuclei. Each dot represents a single nucleus, colored according to its
cluster. B- Cluster-aggregated chromatin accessibility profiles at end-3, elt-7
and elt-2 loci. The scale is the same across the three tracks and adjusted at
each locus. C- Annotation of clusters 8, 1 and 2.

24 may consist of E blastomere cells whereas clusters 4 and 19 may represent E

daughter cells, Ea and Ep (Figure 7.5B). Importantly, med-2 transcripts are found

across most clusters even though med-2 is thought to only be zygotically expressed

in the EMS precursor. This could originate from abundant maternally inherited

cytoplasmic med-2 mRNA (Maduro et al., 2007). The potential issue of maternal

transcripts is further tackled in 7.2.

I also analyzed the ~ 1,200 individual chromatin accessibility profiles obtained

by snATAC-seq performed in embryos with a wider range of cell number (1- to ~

100-cell stage embryos). I embedded the nuclei into two dimensions and obtained

20 clusters. I then generated cluster-specific aggregated genome-wide tracks of

chromatin accessibility (Figure 7.6). Here again, markers of individual cell types

were found to be specifically accessible in individual clusters. For instance, the

end-3 promoter is accessible in nuclei from cluster 8, the elt-7 promoter is accessible

in nuclei from 3 clusters (cluster 8, 1 and 2) and the elt-2 promoter is accessible

in nuclei from cluster 2 (Figure 7.6B). Based on the known temporal patterns of

expression of these genes (Figure 7.5), the clusters 8, 1 and 2 could respectively

correspond to the original E blastomere (expressing end-3, cluster 8), its early

daughter cells (expressing elt-7, cluster 1) and the cells appearing later in the E

lineage (expressing elt-7 and elt-2, cluster 2) (Figure 7.6C).
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Overall, these preliminary observations suggest that single-nucleus RNA and

ATAC sequencing can be used to annotate populations of cells across the cell

lineage tree during early embryogenesis in C. elegans. However, several important

technical questions have to be addressed before starting to generate large-scale

datasets.

7.2 Challenges arising from single-nucleus approaches

The pilot experiments I conducted highlighted several shortcomings and technical

challenges related to both the experimental design and the downstream computa-

tional analysis of single-nucleus genomic assays.

Modeling of the cytoplasmic RNA background in snRNA-seq To per-

form single-nucleus RNA-seq or ATAC-seq from early embryos, I prepare a sus-

pension of single nuclei by breaking open embryos using a ball-bearing Balch

homogenizer. This e�ectively breaks embryo shells and plasmid membranes. How-

ever, when cells burst, their cytoplasmic RNA content is released and mixed with

the nuclei suspension. During 10X Genomics sample preparation, an emulsion of

nuclei in suspension with the ambient cytoplasmic RNA is then obtained. The

resulting cytoplasmic RNA “soup” generates a background which can significantly

hamper subsequent biocomputational analyses (Kang et al., 2018). Since cytoplas-

mic RNA is mostly maternally inherited in early embryos, the cytoplasmic RNA

content does not reflect active zygotic transcription. This could result in a gene

appearing to be transcribed in all the cells when it actually is (partially or totally)

maternally inherited (e.g. med-2, Figure 7.5A). Tools such as souporcell (Heaton

et al., 2019) or SoupX (Young and Behjati, 2018) are being actively developed to

measure and correct such cytoplasmic RNA background inherent to emulsion-based

applications. These tools could potentially be used to estimate and remove the

contribution of maternally inherited RNA in snRNA-seq from early embryos.

Improvement of single-nucleus genomic assays from sorted frozen em-

bryos To study ZGA and the beginning of cell specification, focusing of nuclei

from very early embryos is required. To do so, I have isolated for 1-cell to 32-cell

stage embryos by sorting them from a frozen collection of embryos (see 7.1.2 on
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page 162). As stated above, this step may have reduced the quality of snRNA-seq

and seems to have severely impacted snATAC-seq (Figure 7.3). Notably, prior to

sorting, frozen embryos are stained with DAPI at 0.5 ng/ul, a higher concentra-

tion than what is typically used for nuclear sorting (0.025 to 0.05 ng/ul). High

concentrations of DAPI, a DNA intercalating agent, could potentially inhibit the

e�ciency of Tn5-based tagmentation in snATAC-seq. This could be readily as-

sessed by performing snRNA-seq and snATAC-seq on nuclei from DAPI- or DAPI+

embryos. Furthermore, using nuclei from frozen embryos may alter the e�ciency

of single-cell genomic assays, although successful experiments have been conducted

using cryopreserved samples in combination with 10X Genomics workflows. This

could also be assessed by performing snRNA-seq and snATAC-seq on nuclei from

synchronous populations of live or frozen embryos.

If these control experiments confirm that sorting frozen embryos systematically

impacts the e�ciency of single-nuclei genomic assays, other approaches should

be pursued. For example, the goa-1 mutant strain could be used. Young adult

goa-1 mutants are characterized by a fast egg laying phenotype and only retain

recently fertilized embryos. Thus, this strain could be used to collect very early

live embryos, rather than relying on sorting of frozen embryos.

Automatic annotation of cluster identity The comparison of transcriptome

(or chromatin accessibility) profiles across clusters allow the a posteriori annotation

of individual clusters. This process typically relies on ground truth knowledge to

infer the nature of a given cluster based on the pattern of expression of few markers

(exemplified in Figure 7.5). Manual cluster annotation is a laborious process prone

to errors and which can yield suboptimal results. On the other hand, tools such as

Garnett (Pliner et al., 2019) or scCATCH (Shao et al., 2020) can use lists of marker

genes known to be specifically expressed in a single cell type to automatically

annotate individual clusters. Relying on the resources from the worm community

(WormBase), compiling lists of marker genes in C. elegans should be possible and

will help annotating clusters during cell fate specification and organogenesis.

Integration of snATAC-seq and snRNA-seq data In the last five years,

emulsion-based single-cell (or single-nucleus) methods have been rapidly expanding

(Zhang et al., 2019). Yet, a unified methodology to analyze the di�erent types
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of single-cell “omics” is still missing (Amezquita et al., 2020; Stuart and Satija,

2019), and integrating snRNA-seq and snATAC-seq together remains a major

challenge. New approaches such as canonical correlation analysis (CCA), multi-

omics factor analysis (MOFA) or non-negative matrix factorization (NMF) are

emerging and could be used to integrate di�erent types of datasets together (e.g.

single-nucleus RNA-seq and ATAC-seq) (Stuart et al., 2019). Such tools will be

helpful to investigate the dynamic relationship between chromatin architecture and

gene expression during cell specification or organogenesis in C. elegans.

7.3 Toward a developmental single-nucleus atlas

The single-nucleus pilot experiments I conducted in very early (1-cell to 32-cell

stage) and embryos up to a later developmental stage (1-cell to ~ 100-cell stage)

are promising. I propose strategies to resolve the current technical hurdles and the

analytical challenges inherent to single-nucleus RNA-seq and ATAC-seq experiments.

Once these issues are addressed, libraries of tens of thousands of nuclei could be

obtained and deeply sequenced using these single-nucleus approaches. This will

enable the investigation of tissue-specific mechanisms of gene regulation during cell

fate specification, ideally from 1-cell to 200-cell embryos.

In C. elegans, organogenesis takes place in the second half of the embryogenesis

as well as during post-embryonic development. At this point, it becomes challenging

to sample cells from each cell type in single-cell-based approaches (Packer et al.,

2019). To address this issue, I also plan on sorting nuclei from specific lineages

(e.g. the intestine lineage) and then perform snRNA-seq and snATAC-seq on these

sorted nuclei. Rather than superficially sampling all the cells of the ~ 550-cell

embryos undergoing organogenesis, this approach would allow independent in-depth

analysis of cell trajectories in each tissue separately, even for those with a relatively

small cell lineage (e.g. the intestine lineage has only 20 terminally di�erentiated

cells whereas the neurons account for more than 300 cells). Moreover, it would

also enable the study of post-embryonic tissue-specific gene regulation in specific

developmental contexts at the single-nucleus resolution, such as the activation of

the M progenitor cell generating muscle cells during post-embryonic development

(Krause and Liu, 2012).

Leveraging single-nucleus experimental approaches in early embryonic devel-
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opment as well as in individual tissues in late embryogenesis and post-embryonic

development, a developmental single-nucleus cartography can be generated to

investigate the principles by which the genome regulates cell fate specification and

organogenesis.
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Chapter 8

Computational tools and

resources for genomics

During my PhD, I have developed two R packages, VplotR and periodicDNA,

to support the analysis of the sequencing datasets I have generated. In Chapter

8, I describe their principles and illustrate how they can be used. I also present

JABrowser, a cloud-based genome browser, and RegAtlas, a web application I

developed to share the results of my investigation. Together, these utilities provide

useful tools and facilitate the dissemination of the datasets I have generated during

my PhD as public resources in the larger scientific community.

8.1 VplotR: R package to produce fragment den-

sity plots

8.1.1 Fragment lengths bear information

Libraries generated by MNase-seq, DNase-seq or ATAC-seq are usually sequenced

in a paired-end manner. This was originally useful to select 147-bp long fragments

corresponding to nucleosomal DNA in MNase-seq (e.g. Valouev et al., 2008),

but elegant approaches have also relied on MNase-seq fragment lengths to study

transcription factor binding sites, as binding protects DNA from being cut (Heniko�

et al., 2011). The more recent ATAC-seq assay also generates genomic fragments

from both nucleosome-spanning DNA and NDRs, resulting in a multi-modal

distribution of short or longer fragments (Buenrostro et al., 2013). Because longer
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Figure 8.1 – Rationale of the VplotR package. A- Sequenced fragments (for
instance obtained from ATAC-seq) mapping to a locus of interest can originate
from either nucleosomal DNA (in pink) or from nucleosome-free DNA (for
instance from NDRs, in blue). B- The fragments can be embedded in a two-
dimension graph. The horizontal coordinate represents the distance from the
center of a fragment to the center of a locus of interest (for instance the NDR).
The vertical coordinate represents the length of the fragment. C- When this
projection is done over hundreds of loci, it results in a fragment density plot,
i.e. a matrix which can be visualized as a heatmap, with the color gradient
representing the density of fragments at each set of coordinates.

fragments likely originate from nucleosome-spanning DNA, the distribution of

fragments lengths can be used to infer the local arrangement of nucleosomes

flanking an NDR (Schep et al., 2015). Thus, integrating ATAC-seq fragment length

component into existing analytical frameworks could bring additional insights.

8.1.2 VplotR can illustrate spatial distribution of fragment

lengths

I developed VplotR (Serizay, 2020b), an R package which can be used to easily

generate fragment density plots, inspired from the visualization approach originally

known as “V-plot” (Heniko� et al., 2011). In a fragment density plot, sequenced

fragments are projected into a two-dimensional graph: the horizontal axis represents

the location of the center of a fragment relative to the center of a locus of interest,

while the vertical axis separates the fragments according to their length (Figure 8.1A,

B). When multiple loci are aggregated together, the resulting plot represents the

density of fragments using a color code (Figure 8.1C). Over nucleosome-depleted

regions, such fragment density plot is helpful to highlight the position of flanking

nucleosomes, for instance (Figure 8.1C).

The steps performed to generate a fragment density plot using VplotR are the

following:

1. Import genomic loci of interest into a GRanges object. This is typically done
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Figure 8.2 – Multimodal distribution of ATAC-seq fragment sizes

using methods from rtracklayer package:

loci_of_interest <- rtracklayer::import(�file.bed�)

2. Import fragments from a .bam file of paired-end reads aligned and filtered to

a genome reference. This can be done using importPEBamFiles(), a VplotR

function built on top of the Rsamtools package which generates GRanges

objects from local .bam files.

fragments <- VplotR::importPEBamFiles(

bam_file, where, shift_ATAC_fragments

)

• The where argument is used to only import fragments of the .bam file

mapping to genomic loci of interest, to reduce computational load.

• The shift_ATAC_fragments boolean argument specifies whether the

fragments should be shifted from their location; fragments originating

from ATAC-seq experiments are traditionally shifted by -4 / +5 bp to

account for Tn5 steric hindrance (Buenrostro et al., 2013).

3. Check whether the fragments lengths show a multimodal distribution (Fig-

ure 8.2):
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Vplot_matrix <- VplotR::getFragmentsDistribution(

fragments, loci_of_interest

)

4. Initiate a Vplot object as follows:

Vplot_matrix <- VplotR::computeVmat(fragments, loci_of_interest)

5. Normalize the Vplot object as follows:

Vplot_matrix_normalized <- VplotR::normalizeVmat(

Vplot_matrix, normFun, roll

)

• The normFun argument specifies how to normalize the Vplot matrix.

The matrix can be scaled by dividing each cell by the sum of the

entire matrix (normFun = ’pctsum’). This normalization approach is

ideal to relatively compare multiple fragment density plots, to identify

di�erences in fragment density patterns. Alternative normalization

methods are currently being developed, notably to normalize di�erent

fragment density plots by the sequencing depth of the library used to

generate each plot. This should allow a direct comparison of absolute

density scores rather than relative patterns of fragment density.

• The roll argument specifies the binning window to apply to the matrix.

If data is plotted over few genomic loci or if sequencing depth is relatively

low, the resulting V-plots may appear grainy; this argument can be used

to smooth it.

6. Compute the resulting fragment density plot as follows:

Vplot <- VplotR::plotVmat(Vplot_matrix_normalized, ...)

• The plotVmat() function can take several arguments to customize the ap-

pearance of the final fragment density plot. The package documentation

provides more information about these arguments (https://js2264.github.io/VplotR).
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Figure 8.3 – ATAC-seq fragment density plots at ubiquitous or tissue-specific sets
of promoters (top row) or enhancers (bottom row). Each plot is independently
Z-scored.

• This function generates a ggplot object which can be further customized

using the ggplot2 package.

The steps 4, 5 and 6 can be streamlined using the di�erent methods defined in

the plotVmat() function (see the VplotR documentation for more details). Among

other methods, plotVmat() function can take a nested list of arguments to quickly

generate multiple fragment density plots.

A detailed example of a concrete VplotR usage is shown in Appendix Chapter

C.

8.1.3 Case study: Investigating nucleosome positioning at

enhancers

In Chapter 6, I focused on the organization of promoters whereas that of other

types of REs (e.g. putative enhancers) has not been discussed. To further illustrate

the usefulness of VplotR, I now investigate nucleosome positioning at enhancers

(defined in Jänes et al., 2018). It is generally thought that enhancers are also

characterized by well-positioning flanking nucleosomes (Andersson and Sandelin,

2019), but how this positioning compares to that observed at promoters remains

unclear. I sought to investigate this point in more details using VplotR. I generated

ATAC-seq fragment density plots at ubiquitous or tissue-specific sets of promoters

or enhancers (Figure 8.3). I observed flanking nucleosome signals at ubiquitous

and germline promoters and enhancers, generally absent at somatic-tissue-specific

promoters or enhancers. I found that the relative enrichment of nucleosomal versus

nucleosome-free fragments seems lower over ubiquitous and germline enhancers
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than over ubiquitous and germline promoters. This suggests that although -1 and

+1 nucleosomes are flanking ubiquitous and germline enhancers, their occupancy is

lesser there than at ubiquitous and germline promoters. However, the normalization

method used here does not allow direct comparison of absolute density scores across

heatmaps. In the future, the additional normalization currently being developed

will allow such direct comparisons.

8.1.4 Public availability of VplotR

This case study illustrates how VplotR can be used to analyze chromatin organiza-

tion at di�erent types of genomic loci. VplotR is primarily designed for exploratory

data analysis but also features quantification tools to test hypotheses. It is built in

R and relies on the tidyverse environment to generate publication-ready figures in

an organized workflow (Wickham et al., 2019). VplotR is already available from

Github (https://github.com/js2264/VplotR) and will be submitted for publication

in the near future. All the analyses presented in this thesis have been performed

using VplotR v0.4.0.

8.2 periodicDNA: R package to analyze k-mers

periodicity

8.2.1 DNA sequence influences nucleosome positioning

Soon after solving the structure of nucleosomes, Kornberg raised a fundamental

question: whether the positioning of nucleosomes in vivo in regard to a DNA locus

was “specific” or “statistical” (Kornberg, 1981). Nucleosome “specific” positioning

implies that the physicochemical properties of DNA sequences are enough to explain

how nucleosomes are arranged along a DNA double-helix (e.g. described in Segal

et al., 2006). On the contrary, a “statistical” positioning postulates the presence of a

“boundary” nucleosome (either a protein or a strong intrinsic positioning sequence,

or both) which specifies one end of a nucleosomal array not determined by the

physicochemical properties of DNA sequence (e.g. described in Mavrich et al.,

2008a). Later on, biochemists and computational biologists found out that periodic

dinucleotide sequences were associated with positioned nucleosomes, suggesting
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that the “specific” model contributes – at least to a certain extent – to nucleosome

positioning (see Jiang and Pugh, 2009; Struhl and Segal, 2013 for review).

8.2.2 periodicDNA can identify periodic oligonucleotides

To test whether specific periodic sequences were associated with nucleosome posi-

tioning in my project, I developed periodicDNA, a package aiming at characterizing

periodicities of oligonucleotides (and particularly dinucleotides) (Serizay, 2020a).

The package relies on Fourier Transform to identify periodic signals (Bracewell

and Bracewell, 1986). It also makes use of the Biostrings package to handle DNA

sequences and genome assemblies.

periodicDNA can be used to estimate the power spectral density (PSD) of a

given dinucleotide (motif argument) at specific periods (period argument) in a set

of sequences of interest (seqs argument), using a simple wrapper function:

periodicityScore <- periodicDNA::getPeriodicity(

motif, seqs, period

)

The intermediate steps internally performed when calling this function are the

following (Figure 8.4):

1. In each sequence of a set of n sequences (the seqs argument), all the pairs of

the dinucleotide of interest (the motif argument, e.g. TT) are identified and

their pairwise distances are measured.

2. The distribution of the all the resulting pairwise distances (also called “dis-

togram”) is generated.

3. The following normalization steps are then performed:

(a) The distogram is transformed into a frequency histogram and then

normalized by the following steps:

(b) The frequency histogram follows a marked overall decrease of frequencies

with increased pairwise distances. Indeed, for a 200-bp long sequence

containing 20 WW dinucleotides exactly distant from each other by 10

base pairs, there are 19 pairs with a pairwise distance of 10 but only 1
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Figure 8.4 – Rationale of the periodicDNA package. Steps are described in the
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measured by periodicDNA between some of the pairs of TT. For the single
sequence shown here, there are 31 individual TT dinucleotides, resulting in131

2
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= 465 di�erent pairs in total.
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pair of dinucleotides with a pairwise distance of 190. To overcome this

distance decay, the frequency histogram is smoothed using a moving

average window of 10 and the resulting smoothed frequency histogram

is substracted from the frequency histogram. This e�ectively transforms

the decreasing frequency histogram into a dampened oscillating signal

and improves the PSD estimation by Fourier Transform.

(c) The dampened oscillating signal is then scaled (i.e. mean-centered and

normalized) and smoothed using a moving average window of 3. This

last step e�ectively removes the e�ect of the latent 3-bp periodicity of

most dinucleotides found in eukaryote genomes (Gutiérrez et al., 1994).

4. A Fast Fourier Transform (FFT) is then used to estimate the power spectral

density (PSD) of the normalized oscillating distribution at di�erent periods

(the period argument).

The PSD can be used in itself to identify which dinucleotide frequencies are enriched

in the provided set of sequences. Its amplitude at a given frequency can also be

used to compare dinucleotide frequencies across samples.

A manuscript presenting the periodicDNA package and its functionalities is

shown in Appendix Chapter D.

8.2.3 Case study: Refining the model of sequence-based

nucleosome positioning in C. elegans

I previously brought evidence suggesting that highly periodic dinucleotides are

associated with -1 and +1 nucleosome positioning at ubiquitous and germline-

specific promoters in C. elegans (see 6.2.1 on page 146). I revealed that at these

sets of promoters, the underlying nucleosomal DNA sequence was characterized

by a strong TT 10-bp periodicity, known to facilitate the bending of DNA into

a conformation favorable to its wrapping around histones (Travers et al., 2010).

The use of my periodicDNA package was instrumental in identifying this feature.

Here, I extend the use of periodicDNA to further characterize this periodicity in

di�erent genomic loci. I focus on ubiquitous and tissue-specific promoters and

enhancers, splitting each element into core (-70 to +70 base pairs around the center

of the regulatory element), flanking (-210 to -70 base pairs and +70 to +210 base
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pairs) and distal sequences (-350 to -210 base pairs and +210 to +350 base pairs)

(Figure 8.5A). I then calculated the TT 10-bp periodicity score over core, flanking

and distal sequences of ubiquitous or tissue-specific promoters and enhancers.

This showed that ubiquitous and germline-specific promoters have a high TT

10-bp periodicity in the flanking sequences which largely decreases in the immediate

neighboring distal sequences (Figure 8.5B). Such TT periodicity is absent in other

tissue-specific promoters, as expected from previous results (Figure 8.5B). These

observations further support a sequence-specific model of nucleosome positioning

at ubiquitous and germline promoters (Figure 8.5C). Interestingly, ubiquitous and

germline enhancers show TT 10-bp periodicity in their flanking sequences as well as

in their distal sequences (Figure 8.5B). The similarity of TT periodicity signal in the

flanking and distal sequences of ubiquitous and germline enhancers could explain

why nucleosomes flanking these enhancers may not be as strongly positioned as in

the corresponding promoters (Figure 8.5C).

8.2.4 Public availability of periodicDNA

This case study illustrates how periodicDNA could be used to analyze periodicity

of oligonucleotides in di�erent types of genomic loci. periodicDNA is built in R and

relies on the tidyverse environment to generate publication-ready figures in an orga-

nized workflow (Wickham et al., 2019). periodicDNA will soon be submitted for pub-

lication and is already available from Github (https://github.com/js2264/periodicDNA).

All the analyses presented in this thesis have been performed using periodicDNA

v0.2.0.

8.3 JABrowser: a cloud-base genome browser

for reproducible investigation

8.3.1 A virtual private server to publicly share data

High-throughput sequencing data is typically processed into a .bigWig file, which

can then be loaded locally in genome browsers (e.g. using IGV, Robinson et al.,

2011). The .bigWig format represents a convenient way for an investigator to

dynamically explore genomic tracks, but these files usually exceed hundreds of
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Figure 8.5 – TT periodicity in promoters and enhancers. A- Pictogram represent-
ing how regulatory elements were divided into core, flanking and distal regions.
The core sequence is the 140-bp long sequence at the center of the regulatory
element; the flanking sequences range from -210 to -70 and from +70 to +210;
the distal sequences range from -350 to -210 and from +210 to +350 (with the
center of the regulatory element being the reference). B- TT 10-bp periodicity
scores obtained from periodicDNA. C- Model of sequence-driven nucleosome
positioning at di�erent sets of promoters or enhancers. Three di�erent situations
are observed: (1) a decrease of TT periodicity on both sides of the flanking
nucleosomes favors their precise positioning, (2) a weaker widespread TT period-
icity favors nucleosome positioning without local enrichment and (3) absence of
TT periodicity does not favor nucleosome positioning. Note that these models
do not illustrate the role of other factors such as chromatin remodelers.
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megabytes and storing and sending genome-wide .bigWig tracks can still be a

hurdle. Thus, sharing findings with others remains a challenging task. Online

public genome browsers exist (e.g. UCSC genome browser, Tyner et al., 2017) and

can be used to remotely browse tracks without file transfers, but quickly become

limiting when the files are locally required.

In an e�ort to make my results and findings available to the broad audience,

I decided to publicly share all the datasets I had generated during my PhD on

a server. To do so, I set up a web server with DigitalOcean. DigitalOcean is a

hosting provider o�ering virtual private servers (VPS) named “droplets”. Droplets

are highly customizable, with the possibility to choose among di�erent distributions

and to specify the virtual hardware dedicated to each droplet. I started with the

entry-level plan, a Ubuntu 18.04 configuration with a single virtual CPU, 1 GB of

memory and 25 GB of SSD storage. Virtual CPUs, memory and additional storage

blocks can be dynamically purchased and added to an existing configuration, so my

server should not incur any hardware limitation. I then set up a Nginx web server

with a standard configuration. Large files such as .bigWig files can be hosted on

this server and can be publicly accessed and downloaded, thus facilitating genomic

data sharing.

8.3.2 JBrowse: an open-source genome browser

Besides o�ering a convenient way to share large genomic datasets, a web server

can be configured to host a genome browser. A cloud-based genome browser is

the ideal way to let everyone dynamically investigate processed datasets. I sought

to install a genome browser on the VPS I had set up. I relied on JBrowse, a

genome browser actively developed by the GMOD community (Buels et al., 2016).

JBrowse is an exceptionally fast genome browser with a fully dynamic HTML5

interface. Its installation is straightforward and once set up on a VPS, it can

be served as a static web page. Convenient Perl scripts provided by GMOD can

be used to easily integrate any type of data to a JBrowse instance. Importantly,

JBrowse processes feature tracks into smaller .json (JavaScript Object Notation)

chunks (Figure 8.6) and only the individual .json files required for rendering of each

genomic location are transferred from the server to the client. This ensures that

most of the computational work (i.e. rendering annotation tracks) is performed by
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Figure 8.6 – JBrowse directory structure. The main JBrowse folder is located
in the public_html/ folder of the VPS to enable public access. It contains
css, src and plugins folders required for the computational steps performed on
the client-side. The bin folder contains perl scripts to add data to the genome
browser, either from bigwig files or from “flat files” (i.e. feature files). Flat files
are further processed into small .json collection files.

JavaScript on the client-side. This is a major advantage of JBrowse as it (i) allows

for a seamless browsing experience by reducing the amount of data to download,

and (ii) prevents server overload. This is particularly useful since the droplet I set

up has fairly limited computational resources.

JBrowse is highly configurable through packages already developed and the

support of JavaScript callback functions (Buels et al., 2016). Notably, the browser

acts as a static page and a unique URL is associated with each possible state of the

browser (location, selected tracks, etc). Therefore, it is easy to share an observation

with a collaborator by simply copying the URL. A “Share” button is also present in

the browser and helps making it even more straightforward. Finally, a “Screenshot”

button lets the investigators save high-definition, publication-ready figures of a

genomic locus with selected tracks of interest. Thus, JBrowse is a dynamic genome

browser integrating powerful extensions which can be used to facilitate genomic

exploration and sharing of observations.
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Figure 8.7 – Overview of a JABrowser instance. A- hlh-1 locus with several
loaded tracks. Top 5 tracks: tissue-specific ATAC-seq in YA; 6-10th: tissue-
specific nuclear RNA-seq in YA; 11th: annotation of regulatory elements; 12-17th:
ATAC-seq across worm development;18th: gene model. B- Screenshot of the
information panel displayed upon clicking on a regulatory element. C- Screenshot
of the information panel displayed upon clicking on a gene.

8.3.3 JABrowser: a public JBrowse instance hosted by the

Ahringer lab

I configured JABrowser, a JBrowse instance hosting di�erent types of datasets

generated in the Ahringer lab (Figure 8.7A). Gene and regulatory annotations

have been imported as feature tracks. For each entry, customized information can

be displayed by clicking on the feature of interest (Figure 8.7B, C). Chromatin

accessibility, gene expression signals and other tracks (e.g. ChIP-seq experiments)

are stored in bigWig files and are displayed as linear tracks (Figure 8.7A). A
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convenient track selector is available to filter and select the datasets to visualize.

In total, sixty-five tracks are currently hosted in JABrowser:

• Five di�erent feature annotation tracks (for genes, regulatory elements, etc);

• Eleven developmental or aging and five tissue-specific chromatin accessibility

tracks;

• Twelve developmental and ten tissue-specific gene expression tracks;

• Twenty-two profiles of histone marks generated by ChIP-seq, covering four

di�erent histone modifications across development.

JABrowser is accessible at https://ahringerlab.com/JABrowser.

8.4 RegAtlas: a web app to investigate tissue-

specific gene regulation in worm

8.4.1 A responsive infrastructure based on Shiny

Relying on DigitalOcean as a VPS provider has another important benefit: Digi-

talOcean grants super-user authorizations to droplet managers. This means that

once set up, a droplet can really be tailored to the developer’s needs and software

can be installed and fully configured. I decided to take full advantage of this and

I set up an instance of R 3.5.1 (R Core Team, 2019) on my VPS. This allowed

me to host R data files and carry out analyses directly in the cloud. Even though

this droplet does not provide hefty computation power like other cloud comput-

ing systems, it can still remotely run R sessions with reasonable computation

requirements.

I sought to develop a web application which could be used to dynamically

investigate and download my data. I decided to build such application using Shiny,

a versatile R package particularly powerful when used in combination with a VPS

(Chang et al., 2019). Shiny aims to combine the computational power of R with the

interactivity of the modern web by creating a dynamic app, built on HTML and

supporting JavaScript and CSS libraries. Relying on the R language, a developer can

write a full-featured web app presented in an intuitive interface. On the client-side,
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a user without coding experience can communicate with the Shiny app’s underlying

structure to access, process and visualize data using R powerful packages, all of this

directly in a traditional web browser. Shiny apps have been successfully used in all

scientific fields and have been particularly e�ective in genomics projects to give an

overview of large datasets (e.g. SPACEGERM (Diag et al., 2018), VisCello (Packer

et al., 2019) or by Cusanovich et al. (2018a)). Using Shiny, I created RegAtlas, a

C. elegans regulatory atlas accessible at http://ahringerlab.com/RegAtlas.

8.4.2 Quick access to gene information

To provide a fully-fledged intuitive user interface, I divided RegAtlas in four

segments. The first page of the app primarily focuses on single gene entries, as

many users would likely want to query individual genes that they study. This tab

can present the information related to specific gene (e.g. hlh-1 ) queried using either

its unique WormBase ID or its locus name (Figure 8.8). The first row highlights

basic information about the gene of interest (name, genomic location, tissue-specific

pattern of expression), a short description based on the Textpresso engine (extracted

from WormBase, Müller et al., 2004) and several “quick access” hyperlinks, for

instance to download an extended .txt report or to the associated WormBase gene’s

page (Figure 8.8A). The second row displays gene expression values throughout

development (from embryo to young adults, in mixed tissues) and across tissues

(in young adult) (Figure 8.8B). Finally, the third row of the page contains a table

of annotated regulatory elements associated to the gene on interest (Figure 8.8C).

Thus, this page quickly provides general information for a given gene and can be

used by the community as a platform to investigate tissue-specific gene regulation.

8.4.3 Querying lists of genes

The second page of RegAtlas focuses on lists of genes and follows a more analytical

approach. A list of genes can be entered by the user by copy-pasting, or can be

chosen among the pre-computed gene lists (e.g. muscle-specific genes, genes with

at least one hypodermis promoter, etc) (Figure 8.9A). Server-side computation in

R is then initiated by clicking on the “Perform analysis” button. Once the analysis

is finished (typically < 5 seconds), a .g�3 annotation can be downloaded. This

.g�3 file contains useful information such as the level of tissue-specific expression of
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A

B

C

Temporal and spatial gene expression

Figure 8.8 – RegAtlas: overview of the single gene query page. A- Genes can
be queried by entering their WormBase ID or their locus ID. Basic information
are displayed, mostly retrieved from WormBase. B- Gene expression values
across development (left) and in tissues of young adults (middle and right) are
displayed. Note that the right panel displays tissue-specific gene expression
values after correction of the background noise, as described in the Information
panel of the web app. C- Table of associated regulatory elements and their
tissue-specific expression in young adult.
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Figure 8.9 – RegAtlas: overview of the multiple genes query page. A- List of
genes can be queried by typing or copying their WormBase ID or their locus ID.
Lists of genes are available as example. Regular expressions can be used to match
several names (here all the unc genes are queried) B- Barplot representing the
intersection of the query with the tissue-specific and ubiquitous sets of genes. C-
Heatmaps of temporal and spatial expression of the query and their associated
regulatory elements. D- Results of Gene Ontology terms enrichment analysis
performed on the query using gProfiler (Reimand et al., 2007).
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the queried genes, or the tissue-specific accessibility of their associated regulatory

elements. Furthermore, the intersection of the query list with tissue-specific and

ubiquitous gene sets computed during my PhD is shown as a barplot (Figure 8.9B).

Heatmaps of gene expression throughout development and across tissues in young

adult worms are also displayed and many plotting parameters can be customized

using dropdown menus (Figure 8.9C). Tissue-specific chromatin accessibility scores

of the regulatory elements associated to the query are also shown as a third heatmap.

Finally, GO term enrichment analyses can be performed on the list query. The

gProfiler R package (Reimand et al., 2007) is used to identify GO terms enriched

in genes from the query (Figure 8.9D).

This page provides an analytical framework to examine lists of genes. Impor-

tantly, all the results can be individually exported in files readable by standard

computing tools, therefore facilitating the use of this app as a tool for reproducible

investigation.

8.4.4 Integration of JABrowser

Shiny apps essentially behave like dynamic web pages, modified and reloaded

upon client input. Moreover, because the genome browser I developed is based

on JBrowse and behaves as a web page with a unique URL (see Section 8.3), it is

easily embeddable into other web pages using standard HTML code. I leveraged

these features of Shiny and JBrowse to integrate my genome browser into RegAtlas.

The integrated genome browser is accessible in the third page of the app, and

presents the same features as in its standalone version. Because the URL of the

embedded browser is obtained from the Shiny code, it can be programmatically

updated upon client’s input. This ensures that when a user queries a gene in the

first tab, the browser URL is updated to reflect this change. This allowed me to

integrate a hyperlink in the first tab of the app to redirect the user to the browser

already focused on the queried gene, so that navigating across the app is a seamless

experience.

8.4.5 Quick and anonymous access to entire datasets

Finally, all the processed genome-wide tissue-specific ATAC-seq or RNA-seq datasets

can be anonymously downloaded with a single click, as (1) browsable tracks in
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.bigWig format, (2) annotation features in .g�3 format or (3) as text tables in .txt

format. The latter tables have been formatted so that their import in R is facilitated.

Moreover, it is possible to dynamically explore and filter these tables within the

web application. Thus, this page favors both small-scale data investigation and

large-scale data sharing.
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Conclusion

At the beginning of my PhD, I focused on investigating the dynamics of chromatin

accessibility during C. elegans life. By characterizing sets of promoters whose activ-

ity is temporally coordinated, I shed light on functional networks of transcription

factors during development and aging. This work has been integrated in a larger

project annotating, describing and characterizing promoters and enhancers across

the C. elegans genome and throughout its life.

At the same time, I developed and optimized a method to sort nuclei from

individual tissues in C. elegans. This method allowed me to investigate gene

regulation in individual tissues of C. elegans at the young adult stage. I profiled

chromatin accessibility and gene expression across the five main tissues of the

nematode. By classifying the chromatin accessible site in tissue-specific, tissue-

restricted and ubiquitous sets, I showed that most of the regulatory elements in C.

elegans genome are active in a single tissue or in a subset of tissues, rather than

ubiquitously. I also uncovered large di�erences in gene structures: ubiquitously

expressed genes and germline-specific genes have a particularly simple structure

while genes where expression is restricted to somatic tissues have a more complex

organization, with more regulatory elements associated with each gene. Finally, I

provide evidence that the spatial folding of the chromatin exhibits tissue-specific

characteristics. In the germline, chromatin folds into small communities while in

somatic tissues, it has a more complex 3D network that relies on soma regulatory

elements. The function of these soma regulatory elements, and whether mechanisms

of liquid-liquid phase-separation are required for the segregation of the chromatin

into large communities, are possible paths to explore in the future.

I then focused on the characteristics of ubiquitous and tissue-specific promoters.

I showed that ubiquitous promoters are characterized by well-positioned -1 and +1

nucleosomes associated with a 10-bp WW periodic signal, as previously described
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for broadly active promoters. Strikingly, promoters active in adult germline also

share this organization, while those whose activity is restrained to somatic tissues

have a much less defined promoter structure. Notably, positioning of the +1

nucleosome at ubiquitous and germline-specific promoters is well-aligned with that

of the TSS. For the first time, these results identify a di�erent organization between

promoters active in germline (i.e. germline-specific and ubiquitous promoters) and

those restricted to somatic tissues. These findings could suggest that di�erent

mechanisms of positioning of Pre-Initiation Complex exist in the two di�erent

groups of promoters. In the future, characterizing molecular arrangement of the

RNA Polymerase II and other general transcription factors at these loci may shed

light on the contribution of promoter sequences and positioning of the PIC. My

results also suggest that 10-bp WW periodicity could be an ancient conserved

signal contributing to +1 nucleosome positioning at ubiquitously active promoters

of non-mammalian eukaryotes, whereas nucleosome positioning in mammals may

rely on other mechanisms.

Overall, combinations of sequence features and DNA binding motifs are strik-

ingly di�erent at ubiquitous, germline and somatic-tissue-specific promoters in

C. elegans. In the future, these clear di�erences could be leveraged to annotate

tissue-specific regulatory element activity based on their sequence. Relying on

powerful sequence classification methods built on Long Short Term Memory neural

networks, characteristics of tissue-specific and ubiquitous promoters in C. elegans

could be used to identify and classify regulatory elements in other nematode species,

for example.

Toward the end of my PhD, I initiated a new project aiming at characterizing

the genomic regulation and gene expression changes that drive cell specification and

di�erentiation during development. I started optimizing single-nuclei approaches to

profile chromatin accessibility and gene expression in individual nuclei using the 10X

Genomics platform. I performed preliminary experiments in very early embryos

(1-cell to 32-cell stage) and later embryos (up to 100-cell stage). This showed

promising results suggesting that these methods could be used to characterize gene

regulation during early embryonic development in individual cells. In the future,

organogenesis during embryogenesis and in post-embryonic development could also

be investigated by using single-cell approaches in combination with the nuclear

sorting method I developed.
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Finally, I strove to make all my findings and my methodology easily and

anonymously available to the broad community. I created two R packages to

support my research, which can now be used to answer other biological questions. I

also designed RegAtlas, a web interface to dynamically browse and easily download

the key datasets I generated during my PhD. In the future, these e�orts should

facilitate the dissemination of this data and promote the investigation of the

mechanisms of tissue-specific gene regulation in C. elegans as well as in other

organisms.
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Appendix A

Genome organization at di�erent

scales: nature, formation and

function

This appendix introduces a review entitled “Genome organization at di�erent scales:

nature, formation and function”, which I wrote toward the end of my first year

of PhD. My PhD project was at first focusing on chromatin physical interactions,

to continue the work initiated by Wei Qiang Seow and Ni Huang (Huang et al.,

2018). When Julie received an invitation to write a review about genome 3D

organization and forwarded it to the lab, I considered this as a chance to capitalize

the knowledge I acquired in this field as well as to improve my writing skills early

on during my PhD. The publication is presented in its final edited form hereafter

and have been reprinted with permission from the publisher. It has been published

in the “Cell nucleus” special issue of Current Opinion in Cell Biology volume 52.

DOI: https://doi.org/10.1016/j.ceb.2018.03.009

Note: Since this publication, new key results have been obtained, notably

clarifying the biological importance of these compartments and how they are

formed (Haarhuis et al., 2017; Kruse et al., 2019; Nuebler et al., 2017; Rowley et al.,

2017). These recent results have been comprehensively documented in a review

which also clarifies the nomenclature in use (Beagan and Phillips-Cremins, 2020).
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Genome organization at different scales: nature,
formation and function
Jacques Serizay and Julie Ahringer

Since the discovery of chromosome territories, it has been clear

that DNA within the nucleus is spatially organized. During the

last decade, a tremendous body of work has described

architectural features of chromatin at different spatial scales,

such as A/B compartments, topologically associating domains

(TADs), and chromatin loops. These features correlate with

domains of chromatin marking and gene expression,

supporting their relevance for gene regulation. Recent work has

highlighted the dynamic nature of spatial folding and

investigated mechanisms of their formation. Here we discuss

current understanding and highlight key open questions in

chromosome organization in animals.
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Introduction
The current view of nuclear organization has come pre-
dominantly from applying variations of two major types of
method, (i) microscopic observations or (ii) assessment of
chromatin interactions using Chromosome Conformation
Capture (3C) techniques (see [1] for a concise review of
these methods). Using microscopy to visualise fluorescent
probes targeted to specific loci can reveal the spatial
location of whole chromosomes and the relative positions
of loci with respect to each other or to landmarks such as
the nuclear envelope or nucleoli. On the other hand, 3C
methods detect interactions between two regions of chro-
matin [2]. In these methods, the physical proximity of two
regions of DNA within the nucleus is inferred from the
frequency of ligation events generated between them
following nuclear fixation and digestion. Although cap-
tured ligation events are referred to as ‘chromatin inter-
actions,’ in reality they represent regions of DNA that

were close enough to be ligated together, which could be
because of a direct interaction between these regions or
because the regions occupied the same general vicinity.
Applying the 3C technique genome-wide (Hi-C), chro-
matin interactions can be mapped across the genome [3],
with resolution related to the depth of sequencing [3,4].
Importantly, 3C methods and microscopy are highly
complementary. 3C methods identify putative chromatin
interactions usually from cell populations and cannot
assess the frequency of occurrence of the identified
interactions across the population. On the other hand,
microscopy can be used to validate interactions and their
frequency, by visualising large numbers of individual
nuclei. Live imaging is also powerful to investigate the
stability of interactions and the dynamics of the associa-
tion of proteins with chromatin.

Applying these methods has led to the definition of
different types of chromatin organization, such as chro-
mosome territories, compartments, TADs, insulated
domains, contact domains, and loops. Here we discuss
their properties and potential relationships.

Large-scale organization: chromosome
territories and compartments
The initial visualization of the spatial positioning of
chromosomes by microscopy demonstrated that their
organization is actively regulated within the nucleus.
Individual chromosomes are spatially organized in
interphase nuclei, occupying distinct chromosome ter-
ritories (CTs), and adopting relatively reproducible
positions in different cells with limited intermingling
(Figure 1a). Additionally, inactive regions of chromatin
are often found in proximity to the nuclear envelope
whereas active chromatin generally has a more internal
position within the nucleus [5].

More recently, 3C-based procedures have been instru-
mental in assessing 3D structure of individual chromo-
somes at increasingly higher resolution. Using Hi-C to
derive average chromosome conformations from captur-
ing pair-wise interactions in populations of cells revealed
that chromosomes have two major types of structural
domains, termed A and B compartments [3]. The A
compartment contains active chromatin (denoted by tran-
scriptional activity, higher chromatin accessibility and
H3K36me3 deposition) while the B compartment, more
compacted, is associated with inactive chromatin
(denoted by low transcriptional activity, association with
the nuclear lamina and H3K27me3 deposition) [3,4].
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Importantly, the plaid pattern obtained by plotting pair-
wise correlation scores of interaction landscapes, when
observed across entire chromosomes (Figure 1b), reveals
that chromatin interactions are more frequent between
regions of the same compartment type (A with A, and B
with B) [3]. A recent Hi-C study conducted on single
mammalian cells provided striking views of the spatial
arrangements of A and B compartments [6!!]. In model-
ling the arrangement of all chromosomes within the
nucleus, it was shown that DNA from the A compartment
is organized in an inner ring-shaped structure, while DNA
from the B compartment preferentially associates with
the lamina and the edges of nucleoli (Figure 1a). These
results are consistent with previous studies that used
microscopy to map the locations of active and inactive
chromatin within nuclei [5,7].

A single-cell Hi-C study also highlighted the stochastic
positions of A and B compartments in interphase cells
[6!!]. Although a locus on a given chromosome occupies
the same compartment in different nuclei, the spatial
folding of the chromosome varies between nuclei
(Figure 1a). This is in agreement with the finding that
positions of lamina-associated chromatin (largely corre-
sponding to the B compartment) are not heritable.
Instead, these regions are randomly redirected to the
nuclear lamina or near nucleoli after mitosis, with some of
them switching from a nuclear lamina position to a
nucleolar associated location [8]. These studies show
that chromosomes have different conformations in dif-
ferent cells and that A compartment active chromatin and
B compartment inactive chromatin are spatially segre-
gated both within chromosomes and globally within
nuclei.

Importantly, A/B compartment organization is only
observed in interphase. During mitosis, chromatin struc-
ture is radically rearranged (Figure 1c) [5,9,10]. Hi-C
studies performed on synchronised cells showed that
minutes after entering prophase, chromosomes lose A/B
compartment organization and progressively generate
and compact arrays of loops arranged around helical
scaffolds of condensin I and II complexes. This raises
the question of how compartment structure is reformed.

Although a relationship between transcriptional activity
and compartments is clear, the mechanism of compart-
ment formation and function are not yet understood. A
striking feature of A and B compartments is their differ-
ent chromatin composition, including histone modifica-
tions associated with gene activity or inactivity, respec-
tively. Chromatin state domains, which are defined by
differently marked chromatin, have been noted to sub-
divide the genomes of animals, and their position in the
genome is relatively constant during development [11].
Interestingly, super-resolution  imaging has shown that
different chromatin state domains (e.g., active, inactive,

Polycomb marked) have distinct types of 3D organiza-
tion, with Polycomb-marked chromatin having the dens-
est packing [12,13!]. Furthermore, altering local chroma-
tin composition through targeting histone modifiers can
drive repositioning to different compartments [14].
Whereas histone modifications can be inherited through
cell division, most compartment interactions are lost
during mitosis but regained after division [9,15]
(Figure 1c). These data suggest a model where the
formation and structure of chromosome compartments
relies on chromatin domains [16!!,17,18!!]. In such a
model, chromatin reorganization that occurs during mito-
sis would prevent A/B compartment interactions,  while
retention of chromatin domain marking would provide a
framework for regenerating compartments in daughter
cells (Figure 1c).

What might cause the segregation of chromatin into two
types of spatial compartment? A growing body of work has
shown that liquid–liquid phase separation can drive the
formation of non-membrane bound compartments in the
nucleus and cytoplasm [19]. For instance, the nucleolus is
a phase separated compartment containing several differ-
ent immiscible liquid-like sub-compartments, and HP1
containing heterochromatin has liquid-like properties and
appears to form by phase separation [20–23]. The forma-
tion of these membrane-less compartments is thought to
be driven by the local condensation of proteins containing
unstructured regions. It is plausible that domains of
particular chromatin modifications and/or proteins could
drive phase-separated compartments that organize chro-
mosome structure.

Intermediate scale organization: topologically
associating domains
At a more local scale, chromatin interaction studies mostly
in Drosophila and mammalian cells have described the
segmentation of the genome into small physical domains
of tens of kilobases up to a few megabases, and generally
containing a small number (e.g., 1–10) of genes [4,24–28].
These self-interacting domains are variously termed
‘Topologically Associating Domains’ (TADs) [24–26],
sub-TADs [27], ‘contact domains’ [4] and ‘insulated
neighbourhoods’ [28]. They are defined based on observ-
ing frequent chromatin interactions within a region and
relatively fewer interactions with neighbouring chroma-
tin. Because these differently named domains are defined
in a similar way, and it is unknown whether they are
functionally different, we will refer to this class of chro-
mosome segmentation domain as ‘topologically associat-
ing domains’ (TADs) without distinction. The properties
of TADs support the view that they represent functional
domains. For example, histone modification and replica-
tion timing are often similar across individual TADs
[4,29]. Additionally, TADs appear to constrain the regu-
latory activity of enhancers [30].

146 Cell nucleus
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TAD boundaries
The positions of TAD boundaries defined from studies
on populations of cells appear relatively conserved in
different cell types and across evolution [27,28,31–34].
In mammals, TAD boundaries interact more frequently
with each other than with any other locus within the TAD
and usually show binding of the CCCTC binding factor
CTCF and the cohesin complex [4,24,25]. CTCF was
initially identified as a protein with insulator activity, and
its binding motifs at interacting boundaries are almost
always oppositely oriented [4,34,35]. These observations
have led to the notion that a chromosome domain is
constrained within an insulating loop anchored by oppo-
sitely oriented CTCF proteins at the two boundaries of
the domain (Figure 2). This model is supported by the

analyses of mutants with deletions or inversions of CTCF
sites at TAD boundaries, which led to predicted fusions
or alterations of TADs [36,37].

The importance of TAD domain organization is also
supported by gene expression and phenotypic alterations
that are associated with TAD perturbations. In late
embryonic development in the mouse, deleting a bound-
ary between TADs that separate Hox genes alters gene
expression and leads to skeletal defects [38]. In human
and mouse, the inversion, deletion or duplication of
TADs or TAD boundaries was shown to alter expression
of genes located in the affected TADs, resulting in heart
or limb pathologies [39,40], Cook syndrome [41!] or
cancer susceptibility [42].
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Large-scale chromosome organization. (a) Computational model of the 3D structure of a haploid mouse ES genome using data from a single-cell Hi-
C experiment. Left: Modelled arrangement of the chromosomes within a single nucleus. Each chromosome is coloured differently. Center: Cross-
section of the modelled nucleus, with A compartment in blue and B compartment in red. The B compartment is enriched at the nuclear lamina and
in a central ring that surrounds the nucleolus. Right: Different structural organization of chromosome 9 modelled from two different single-cell Hi-C
datasets. Figures extracted from [6!!]. (b) Pearson correlation map of chromatin interactions on Chromosome 17 at a resolution of 500 kb. The
eigenvector obtained by principal component analysis (PCA) reveals segregation of the chromosome in two compartments, A (positive values) and B
(negative values). Data visualised using Juicebox and obtained from [4]. (c) A/B compartments are present in interphase, lost in mitosis and re-
established after cell division. A/B compartment re-establishment could potentially rely on retained chromatin domains defined by histone
modifications. The Pearson correlation maps of interactions are coloured as in (b). Data obtained from [9] and visualised using Juicebox [4].
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Mechanism and dynamics of domain
formation
The cohesin complex forms a ring structure that entraps
DNA for sister chromatid cohesion in meiosis and mitosis
[43]. The enrichment of cohesin at TAD boundaries in
interphase cells, together with its ability to entrap DNA,
has led to a ‘loop extrusion’ model to describe the
formation of insulating loops [44,45!] (Figure 3). In this
model, a loop of DNA is dynamically extruded by a loop
extrusion factor (LEF) that contains cohesin (Figure 3b–
f). Encountering a ‘boundary factor’ (BF) such as CTCF
would stabilize the complex (Figure 3e–i). This model
would explain the enrichment of cohesin and CTCF at
TAD boundaries and the strong interaction signal
observed between these regions. Of note, consistent with
these roles, cohesin binding is located on the inner edge
of the TAD relative to CTCF (Figure 3e) [46].

Increasing experimental and modelling studies have
given strong support to the involvement of cohesin and
loop extrusion in regulating chromosome organization
(see [47] for a recent review). However, their mechanisms
are still unclear. For example, the factors or processes
providing the force for loop extrusion are not yet known.
Transcriptional activity is correlated with TADs, and a
recent computational model suggests that the negative
supercoiling generated by transcription could provide
energy for loop extrusion by ‘pushing’ cohesin handcuffs
[22,45!,48]. However, TADs may not rely on transcrip-
tion, as they start forming in Drosophila embryogenesis
before the onset of the majority of zygotic transcription,

and still form even after chemical inhibition of RNA
polymerase [49,50].

The dynamics of cohesin and CTCF binding to chroma-
tin argue that loops are not static structures but instead are
constantly forming and collapsing (Figure 3d–f). Cohesin
has a residence time of "22 min, and CTCF, potentially
playing the role of an insulating loop anchor, has a
residence time of "1 min [51!!]. This implies that cohe-
sin/CTCF loops are present only transiently even when
ends are at TAD boundaries (Figure 3). The binding
dynamics also explains how an extruding loop could
bypass a TAD boundary to form a larger loop. Finally,
dynamic binding suggests that nested extrusion would be
expected to form within existing loops. A dynamic nature
of chromosome domains is also supported by single-cell
Hi-C studies [6!!,52,53!]. Although averaged TAD
boundary positions converge to those defined using a
large number of cells, individual cells differ in TAD
positions, and TADs can transgress conserved TAD
boundaries. These studies support the view of dynamic
loop formation and collapse and indicate that TADs are
not stable structures (Figure 3).

Factors involved in the formation of domains
and boundaries
A series of recent studies directly investigated the roles of
cohesin and CTCF in interphase chromosome organiza-
tion by removing them in mammalian cells [16!!,54!!].
Loss of CTCF, the Rad21 component of cohesin, or the
cohesin loading factor Nipbl, led to the loss of TADs and
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loops [16!!,54!!,55], underlining the important structural
role of both CTCF and cohesin in forming loops and
insulated domains. In line with these results, the cohesin
release factor WAPL was shown to restrict loop extension,
as evidenced by the increase in loop size upon its deple-
tion [56!!]. However, although loops and TAD structure
were lost upon CTCF or cohesin removal, A/B compart-
ment structure remained intact, indicating that TADs and
compartments are two independent types of structure

[16!!,54!!,55]. CTCF or cohesin loss did not cause wide-
spread transcriptional changes but only affected the
expression of a limited set of genes, suggesting that much
of normal gene expression is not dependent on TAD
structure. It may be that compartments, which are
retained, are important in this context.

The regulation of nucleosome dynamics at TAD bound-
aries also has the potential to control boundary ‘strength’
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Model of dynamic loop extrusion. A loop extrusion factor (LEF) binds to a segment of chromatin between two boundary factors (BF) located on
TAD boundaries and initiates loop extrusion (a). Although this loop is growing, a new LEF could bind within the loop (b), leading to the extrusion of
a secondary nested loop (c). If BFs are present when the loop ends reach a TAD boundary, the loop is temporarily stabilized (d) then disrupts
when a LEF or LEF/BF complex dissociates (e). Alternatively, if a BF is not present, the loop could bypass the TAD boundary (f). Loops could
potentially also dissociate during any phase of extrusion. Model based on Refs. [44,45!].
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(i.e. the level of segregation of interactions on each side of
the boundary). TAD boundaries are sensitive to DNAse I
digestion which indicates a lower nucleosome density
[57,58]. Moreover, loss of the nucleosome remodelling
protein BRG1 increases nucleosome occupancy at TAD
boundaries and reduces boundary strength and CTCF
binding [59]. In addition to affecting the binding of
boundary factors, nucleosome dynamics has the potential
to affect boundary function through changing local chro-
matin flexibility (see [60] for further discussion).

Importantly, factors involved in domain formation appear
to differ in different animals. Mammals show strong
CTCF/cohesin loop anchors at TAD boundaries [4,27]
whereas in Drosophila, CTCF sites are at a small propor-
tion of TAD boundaries and are not usually in inverted
orientation [18!!]. Instead, Drosophila TAD boundaries
are enriched for a number of other architectural proteins,
such as CP190 and BEAF [57,58]. Furthermore, recent
studies indicate that the prevalent strong loop anchors
observed in mammals do not exist in Drosophila and that
many TAD ‘boundaries’ are instead domains of active
genes [18!!,57,61!].

Domains in other organisms
The widespread TAD structure described in mammals
and Drosophila has not been observed in other organisms
such as Caenorhabditis elegans [62] and Arabidopsis thaliana
[63]. However, this difference may be due to technical
and/or biological limitations, such as Hi-C map resolution
and gene spacing. Notably, TAD-like structures are visi-
ble in gene-depleted regions of these otherwise compact
genomes [18!!]. Although TADs are not apparent in C.
elegans, a larger domain structure required for dosage
compensation has been observed on the X chromosome
[62]. Additionally, C. elegans autosomes are demarcated by
alternating chromatin domains of H3K27me3 and
H3K36me3 which contain genes with different modes
of regulation [11,15]. Although the relationship between
this chromatin domain pattern and spatial organization is
not yet known, a similar chromatin domain organization of
high versus low levels of H3K27me3 occurs in Drosophila
sperm, and this pattern aligns well with TADs and TAD
boundaries, respectively [17,61!]. The alignment of his-
tone modification domains with TADs together with the
finding that compartments and histone modification pat-
terns are not generally affected by loss of cohesin or
CTCF in mammals suggests that chromatin domains
may provide a primary level of 1D chromatin organization
and regulation upon which higher-level organizational
mechanisms act.

Small-scale chromatin interactions
Variant 3C methods such as 4C, 5C, ChIA-PET or pro-
moter capture, focusing on selected regions of the gen-
omes, have uncovered extensive contacts between regu-
latory elements (i.e. promoters and enhancers), especially

within TADs, which are not generally visible using
genome wide methods such as Hi-C [64–67]. Enhancers
usually contact multiple promoters and vice versa (Fig-
ure 2), and interacting regions show correlated activity,
suggesting that contacts have functions in transcriptional
control. Some genomic regions, such as Frequently Inter-
acting REgions (FIREs) show particularly dense local
interactions [31,68] and are associated with networks of
co-expressed tissue-specific genes clustered within the
same domain [68]. Their function is not yet known, but
they might serve as a platform for transcription regulation
in a domain. The anchors of enhancer/promoter interac-
tions are less enriched for the combination of CTCF and
cohesin compared to loop anchors at insulating TAD
boundaries suggesting alternative mechanisms for their
formation [4,27,31,40]. This observation could explain
the relatively weak effect of CTCF and cohesin depletion
on gene regulation [16!!,54!!].

There is evidence that both pre-established loops and de
novo loop formation play roles in regulating transcrip-
tional output. In Drosophila and mammals, interactions
between enhancers and promoters are detected before
gene activation and are associated with paused RNA
polymerase, suggesting that such contacts prime later
expression [31,64,69]. Similarly, during early neural line-
age commitment, enrichment of transcription factor YY1
at a set of pre-established regulatory loops is associated
with transcription activation [33]. During macrophage
development, transcription activation is associated with
both the formation of new regulatory loops and increased
acetylation of H3K27 at pre-existing loop anchors [31].
Finally, directly inducing contact between an enhancer
and a promoter can drive transcription, supporting the
functionality of interactions [70,71].

In summary, the current data support roles for chromatin
interactions in regulating gene expression and controlling
chromosome organization. Yet the mechanisms that gov-
ern patterns of regulatory element interactions are still
poorly understood.

Conclusion
In this review, we have highlighted the diverse and
versatile mechanisms implemented within the nucleus
to build spatially organized and regulated chromatin.
Although recent work has provided a remarkable
improvement in our understanding of genome organiza-
tion, many outstanding questions remain, such as (1) How
are higher-order structures such as A/B compartments
formed? Do liquid–liquid phase transitions play a role?
(2) How are TADs formed? What provides the force for
loop extrusion? (3) How are contacts between regulatory
elements made and what are their functions? What are the
roles of transcription factors? (4) How many different
types of loop exist, and what are their functions?
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The increasing use of perturbation analyses, studies of
protein and regulatory dynamics, and investigations at
higher resolution will help to address these and other
fundamental questions. The field is at an exciting stage
where new studies and technologies should lead to break-
throughs in our understanding of genome regulation and
organization.
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Appendix B

Chromatin accessibility dynamics

across C. elegans development

and aging

This appendix introduces a publication entitled “Chromatin accessibility dynamics

across C. elegans development and ageing”. During my first year, I work on this

project initiated by Yan Dong, Michael Schoof and Jürgen Jänes, and I actively

participated to the final submission of this publication as well as to the corrections.

With inputs and comments from all the authors, I wrote the last two sections

of the publication, entitled “Extensive regulation of chromatin accessibility in

development” and “Analysis of ageing clusters”. The publication is presented in

its final edited form hereafter and have been reprinted with permission from the

publisher. It has been published as a “Tools and Resources” article in eLife in

2018.

DOI: https://doi.org/10.7554/eLife.37344
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Abstract An essential step for understanding the transcriptional circuits that control
development and physiology is the global identification and characterization of regulatory
elements. Here, we present the first map of regulatory elements across the development and
ageing of an animal, identifying 42,245 elements accessible in at least one Caenorhabditis elegans

stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and
19,231 putative enhancers, and find that both types of element can drive orientation-independent
transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein
coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the
accessibility of most elements changes during development and/or ageing and that patterns of
accessibility change are linked to specific developmental or physiological processes. The map and
characterization of regulatory elements across C. elegans life provides a platform for
understanding how transcription controls development and ageing.
DOI: https://doi.org/10.7554/eLife.37344.001

Introduction
The genome encodes the information for organismal life. Because the deployment of genomic infor-
mation depends in large part on regulatory elements such as promoters and enhancers, their identi-
fication and characterization is essential for understanding genome function and its regulation.

Regulatory elements are typically depleted for nucleosomes, which facilitates their identification
using sensitivity to digestion by nucleases such as DNase I or Tn5 transposase, termed DNA accessi-
bility (Sabo et al., 2006; Crawford et al., 2006; Buenrostro et al., 2013). In different organisms,
large repertoires of regulatory elements have been determined by profiling DNA accessibility
genome-wide in different cell types and developmental stages (Thomas et al., 2011;
Kharchenko et al., 2011; Thurman et al., 2012; Yue et al., 2014; Kundaje et al., 2015;
Daugherty et al., 2017; Ho et al., 2017). However, no study has yet investigated regulatory ele-
ment usage across the life of an animal, from the embryo to the end of life. Such information is
important, because different transcriptional programs operate in different periods of life and ageing.
Caenorhabditis elegans is ideal for addressing this question, as it has a simple anatomy, well-defined
cell types, and short development and lifespan. A map of regulatory elements and their temporal
dynamics would facilitate understanding of the genetic control of organismal life.

Active regulatory elements have previously been shown to have different transcriptional outputs
and chromatin modifications (Andersson, 2015; Kim and Shiekhattar, 2015). Transcription is initi-
ated at both promoters and enhancers, with most elements having divergent initiation events from
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two independent sites (Core et al., 2008; Kim et al., 2010; De Santa et al., 2010; Koch et al.,
2011; Chen et al., 2013). However, promoters and enhancers differ in the production of stable tran-

scripts. At protein-coding promoters, productive transcription elongation produces a stable tran-
script, whereas enhancers and the upstream divergent initiation from promoters generally produce

short, aborted, unstable transcripts (Core et al., 2014; Andersson et al., 2014; Rennie et al.,
2017).

Promoters and enhancers have also been shown to be differently enriched for specific patterns of
histone modifications. In particular, promoters often have high levels of H3K4me3 and low levels of
H3K4me1, whereas enhancers tend to have the opposite pattern of higher H3K4me1 and lower
H3K4me3 (Heintzman et al., 2007; Heintzman et al., 2009). However, in human and Drosophila

cell lines, it was observed that H3K4me3 and H3K4me1 levels correlate with levels of transcription at
regulatory elements, rather than whether the element is a promoter or an enhancer (Core et al.,
2014; Henriques et al., 2018; Rennie et al., 2018). Further, analyses of genes that are highly regu-

lated in development showed that their promoters lacked chromatin marks associated with activity
(including H3K4me3), even when the associated genes are actively transcribed (Zhang et al., 2014;

Pérez-Lluch et al., 2015). Therefore, stable elongating transcription, rather than histone modifica-
tion patterns, appears to be the defining feature that distinguishes active promoters from active
enhancers (reviewed in Andersson, 2015; Andersson et al., 2015; Kim and Shiekhattar, 2015;

Henriques et al., 2018; Rennie et al., 2018).
Regulatory elements have not been systematically mapped and annotated in C. elegans. Pro-

moter identification has been hampered because the 5’ ends of ~70% of protein-coding transcripts

are trans-spliced to a 22nt leader sequence (Allen et al., 2011). Because the region from the tran-
scription initiation site to the trans-splice site (the ‘outron’) is removed and degraded, the 5’ end of
the mature mRNA does not mark the transcription start site. To overcome this difficulty, previous

studies identified transcription start sites for some genes through profiling transcription initiation
and elongation in nuclear RNA or by inhibiting trans-splicing at a subset of stages (Gu et al., 2012;

Chen et al., 2013; Kruesi et al., 2013; Saito et al., 2013). In addition, two recent studies used
ATAC-seq or DNAse I hypersensitivity to map regions of accessible chromatin in some developmen-
tal stages, and predicted element function by proximity to first exons or chromatin state

(Daugherty et al., 2017; Ho et al., 2017).
Toward building a comprehensive map of regulatory elements and their use during the life of an

animal, here we used multiple assays to systematically identify and annotate accessible chromatin in

the six C. elegans developmental stages and at five time points of adult ageing. Strikingly, most ele-
ments undergo a significant change in accessibility during development and/or ageing. Clustering

the patterns of accessibility changes in promoters reveals groups that act in shared processes. This
map makes a major step toward defining regulatory element use during C. elegans life.

Results and discussion

Defining and annotating regions of accessible DNA
To define and characterize regulatory elements across C. elegans life, we collected biological repli-

cate samples from a developmental time course and an ageing time course (Figure 1A). The devel-
opmental time course consisted of wild-type samples from six developmental stages (embryos, four
larval stages, and young adults). For the ageing time course, we used glp-1(e2144ts) mutants to pre-

vent progeny production, since they lack germ cells at the restrictive temperature. Five adult ageing
time points were collected, starting from the young adult stage (day 1) and ending at day 13, just
before the major wave of death.

Figure 1A outlines the datasets generated. For all developmental and ageing time points, we
used ATAC-seq to identify accessible regions of DNA. We also sequenced strand-specific nuclear
RNA (>200 nt long) to determine regions of transcriptional elongation, because previous work dem-

onstrated that this approach could capture outron signal linking promoters to annotated exons
(Chen et al., 2013; Kruesi et al., 2013; Saito et al., 2013). For the development time course, we

additionally sequenced short (<100 nt) capped nuclear RNA to profile transcription initiation, pro-
filed four histone modifications to characterize chromatin state (H3K4me3, H3K4me1, H3K36me3,
and H3K27me3), and performed a DNase I concentration course to investigate the relative
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Figure 1. Overview of the project. (A) Overview of genome-wide assays and time points of developmental and ageing samples. For development

samples, chromatin accessibility, transcription initiation, productive elongation, and chromatin state were profiled in six stages of wild-type animals

(embryos, four larval stages, young adults). For ageing samples, chromatin accessibility and productive transcription elongation were profiled in five

time points of sterile adult glp-1 mutants (Day 1/Young adult, Day 2, Day 6, Day 9, Day 13). (B) Representative screen shot of normalized genome-wide

accessibility profiles in the eleven samples (chrIII:9,041,700–9,196,700, 154 kb).

DOI: https://doi.org/10.7554/eLife.37344.002

The following source data and figure supplements are available for figure 1:

Source data 1. Accessible sites identified using ATAC-seq.

DOI: https://doi.org/10.7554/eLife.37344.006

Figure supplement 1. Comparison of ATAC-seq to concentration courses of DNase I-seq and MNase-seq.

DOI: https://doi.org/10.7554/eLife.37344.003

Figure supplement 2. Reproducibility and broad relatedness of ATAC-seq and RNA-seq data.

DOI: https://doi.org/10.7554/eLife.37344.004

Figure supplement 3. Reproducibility and broad relatedness of the histone modification data.

DOI: https://doi.org/10.7554/eLife.37344.005
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accessibility of elements. Micrococcal nuclease (MNase) data were also collected for the embryo

stage. As previously noted by others, we found that ATAC-seq accessibility signal is similar to that
observed using a low-concentration DNase I or MNase, and that the ATAC-seq data has the highest

signal-to-noise ratio (Buenrostro et al., 2013); Figure 1—figure supplement

1C) (Buenrostro et al., 2013); Figure 1—figure supplement 1A).
To define sites that are accessible in at least one developmental or ageing stage, focal peaks of

significant ATAC-seq enrichment were identified across all developmental and ageing samples,

yielding 42,245 individual elements (Figure 1B, Figure 1—source data 1; see Materials and meth-

ods for details). Of these, 72.8% overlap a transcription factor binding site (TFBS) mapped by the
modENCODE or modERN projects (Araya et al., 2014; Kudron et al., 2018), supporting their

potential regulatory functions (Figure 2—figure supplement 1A).
Two recent studies reported accessible regions in C. elegans identified using DNase I hypersensi-

tivity or ATAC-seq (Ho et al., 2017; Daugherty et al., 2017). The 42,245 accessible elements
defined here overlap 33.7% of (Ho et al., 2017) DNase I hypersensitive sites and 47.9% of

(Daugherty et al., 2017) ATAC-seq peaks (Figure 2—figure supplement 1B,C). Examining the non-

overlapping sites from pairwise comparisons, it appears that differences in peak calling methods
account for some of the differences. Accessible regions determined here required a focal peak of

enrichment, whereas the other studies found both focal sites and broad regions with increased sig-
nal. Consistent with these differences in methods, sites unique to the two studies are enriched for

exonic chromatin, depleted for both TFBS and transcription initiation sites, and often found in broad

regions of increased accessibility across transcriptionally active gene bodies (Figure 2—figure sup-
plement 1B–E). Similarly, using MACS2 to call peaks on the ATAC-seq data reported here, as used

by Daugherty et al. (2017), identified a group of exon enriched sites not found using our peak call-

ing method (Figure 2—figure supplement 2A). However, the fraction of such sites is relatively small
indicating that other differences also contribute, such as signal-to-noise or nematode growth

methods.
To functionally classify elements, we annotated each of the 42,245 elements for transcription initi-

ation and transcription elongation signals on both strands (Figure 2A,B; Figure 2—source data 1;
see Materials and methods for details). Overall, 37.1% of elements had promoter activity, defined by

a significant increase in transcription elongation signal originating at the element in at least one

stage and one direction. Promoters were assigned to protein-coding or pseudogenes if continuous
transcription elongation signal extended from the element to an annotated first exon (covering the

outron). Promoters were unassigned if transcription elongation signal was not linked to an annotated
gene. We observed detectable transcription initiation signal at 82.3% of elements (Figure 2—source

data 1); those with no significant transcription elongation signal in either direction were annotated

as putative enhancers (hereafter referred to as ‘enhancers’). The remaining elements had no detect-
able transcriptional activity or overlapped ncRNAs (tRNA, snRNA, snoRNA, rRNA, or miRNA)

(Figure 2B; Figure 2—source data 1). We found that accessible sites are enriched for being located

within outrons or intergenic regions (Figure 2—figure supplement 3).
Within the promoter class, we defined 15,572 protein-coding coding promoters: 11,478 elements

are unidirectional promoters and 2118 are divergent promoters that drive expression of two oppo-

sitely oriented protein-coding genes (Figure 2—source data 1). In total, promoters were defined for

11,196 protein-coding genes, with 3000 genes having >1 promoter (Figure 2C). The protein-coding
promoter annotations show good overlap with four sets of TSSs previously defined based on map-

ping transcription (Chen et al., 2013; Kruesi et al., 2013; Saito et al., 2013; Gu et al., 2012); 76.8–

85.1%; Figure 2—figure supplement 5). Enhancers (n = 19,231) were assigned to a gene if they are
located within the region from its most upstream promoter to its gene end; 6668 genes have at least

one associated enhancer, and 3240 genes have >1 enhancer (Figure 2C).
The locations of unassigned promoters (n = 3106) suggest different potential functions. A large

fraction (35.1%) generate antisense transcripts within the body of a protein coding gene, suggesting
a possible role in regulating expression of the associated gene (Figure 2—figure supplement 5).

Another large group (38.4%) produce antisense transcripts from an element that is a protein coding
promoter in the sense direction, a pattern seen in many mammalian promoters, termed upstream

antisense (uaRNA) or promoter upstream (PROMPT) transcripts (Figure 2—figure supplement 5;

Preker et al., 2008; Flynn et al., 2011; Sigova et al., 2013). Most of the rest (21.7%) are intergenic
and may define promoters for unannotated transcripts.
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Figure 2. Annotation of accessible elements. (A) Top, strand-specific nuclear RNA in each developmental stage monitors transcription elongation; plus

strand, blue; minus strand, red. Below is transcription initiation signal, accessible elements (colored by annotation), and gene models (chrI:12,675,000–

Figure 2 continued on next page
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Patterns of histone marks at promoters and enhancers
Promoters and enhancers show general differences in patterns of histone modifications, such as

higher levels of H3K4me3 at promoters or H3K4me1 at enhancers, and chromatin states are fre-

quently used to define elements as promoters or enhancers (Heintzman et al., 2007; Ernst and Kel-

lis, 2010; Ernst et al., 2011; Kharchenko et al., 2011; Hoffman et al., 2013; Daugherty et al.,

2017). However, it has been shown that H3K4me3 levels correlate with transcriptional activity rather

than with function (Pekowska et al., 2011; Core et al., 2014; Andersson et al., 2014;

Henriques et al., 2018; Rennie et al., 2018), suggesting that defining regulatory elements solely

based on chromatin state is likely to lead to incorrect annotations.
To further investigate the relationship between chromatin marking and element function, we

mapped four histone modifications at each developmental stage (H3K4me3, H3K4me1, H3K27me3,

H3K36me3) and examined their patterns around coding promoters and enhancers. As expected,

many coding promoters had high levels of H3K4me3 and were depleted for H3K4me1 (Figure 3A).

Moreover, enhancers had generally low levels of H3K4me3 and higher levels of H3K4me1 than pro-

moters (Figure 3A). However, many elements did not have these patterns. For example, about 50%

of coding promoters have a high level of H3K4me1 and no or low H3K4me3 marking (Figure 3A).
To investigate the nature of these patterns, we examined coefficients of variation of gene expres-

sion (CV; Gerstein et al., 2014) of the associated genes. Genes with broad stable expression across

cell types and development, such as housekeeping genes, have low variation of gene expression lev-

els and hence a low CV value. In contrast, genes with regulated expression, such as those expressed

only in particular stages or cell types have a high CV value. We found a strong inverse correlation

between a gene’s CV value and its promoter H3K4me3 level (!0.64, p<10!15, Spearman’s rank cor-

relation; Figure 3; Figure 3—figure supplement 1A). Furthermore, promoters with low or no

H3K4me3 marking are enriched for H3K27me3 (Figure 3; Figure 3—figure supplement 1A), which

is associated with regulated gene expression (Tittel-Elmer et al., 2010; Pérez-Lluch et al., 2015;

Evans et al., 2016). These results support the view that H3K4me3 marking may be a specific feature

of promoters with broad stable activity, consistent with the finding that active promoters of regu-

lated genes lack H3K4me3 (Pérez-Lluch et al., 2015). The profiling here was done in whole animals,

which may have precluded detecting modifications occurring in a small number of nuclei. Neverthe-

less, the results indicate that chromatin state alone is not a reliable metric for element annotation.

Histone modification patterns at many promoters resemble those at enhancers, and vice versa.
Promoters and enhancers also share sequence features. Both are enriched for initiator INR ele-

ments, although enhancers have a slightly lower INR frequency (Figure 3B and Figure 3—figure

Figure 2 continued

12,683,400, 8.4 kb). The left side of each element is colored by the reverse strand annotation whereas the right side of an element is colored by the

forward strand annotation (color key at bottom). (B) Left, distribution of accessible sites in four categories: promoters (one or both strands), putative

enhancers, no activity, or overlapping a tRNA, snRNA, snoRNA, rRNA, or miRNA. Right, distribution of different types of promoter annotations. (C) Left,
distribution of the number of promoters and enhancers per gene; right, boxplot shows that genes with more promoters also have more enhancers.

DOI: https://doi.org/10.7554/eLife.37344.007

The following source data and figure supplements are available for figure 2:

Source data 1. Regulatory annotation of accessible sites.

DOI: https://doi.org/10.7554/eLife.37344.014

Figure supplement 1. Comparisons to previous accessibility maps.

DOI: https://doi.org/10.7554/eLife.37344.008

Figure supplement 2. Effect of differences in peak calling methods on the types of identified accessible sites.

DOI: https://doi.org/10.7554/eLife.37344.009

Figure supplement 3. Genomic locations of accessible sites.

DOI: https://doi.org/10.7554/eLife.37344.010

Figure supplement 4. Comparison to published TSS maps.

DOI: https://doi.org/10.7554/eLife.37344.011

Figure supplement 5. Types of unassigned promoters.

DOI: https://doi.org/10.7554/eLife.37344.012

Figure supplement 6. Transgenic tests of annotated promoters and enhancers for promoter activity.

DOI: https://doi.org/10.7554/eLife.37344.013
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supplement 1B). Promoters and enhancers are also both enriched for CpG dinucleotides (Figure 3B

and Figure 3—figure supplement 1B). Promoters with high H3K4me3 and low CV values (broadly

expressed genes) have the highest CpG content, whereas those with low H3K4me3 and high CV val-

ues have the lowest CpG content (Figure 3B and Figure 3—figure supplement 1B). Promoters also

differ from enhancers by the presence of TATA motifs, which occur predominantly at genes with low

Figure 3. Chromatin state and sequence features of promoters and enhancers. (A) Heatmaps of indicated histone modifications and CV values at

coding promoters (top), and enhancers (bottom), aligned at element midpoints. Elements are ranked by mean H3K4me3 levels. Low CV values indicate

broad expression across development and cell types and high CV values indicate regulated expression. Promoters of genes with low CV values have

high H3K4me3 levels. (B) Distribution of initiator Inr motif, TATA motif, and CpG content at coding promoters and enhancers, separated by H3K4me3

level (top, middle, and bottom thirds). Grey-shaded regions represent 95% confidence intervals of the sample mean at the genomic position with the

highest signal.

DOI: https://doi.org/10.7554/eLife.37344.015

The following figure supplement is available for figure 3:

Figure supplement 1. Chromatin state and sequence features of promoters and enhancers sorted by CV value.

DOI: https://doi.org/10.7554/eLife.37344.016
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H3K4me3,and high CV values (i.e. with regulated expression; Figure 3B and Figure 3—figure sup-

plement 1B).

Promoters and enhancers can drive gene expression in an orientation
independent manner
To validate the promoter annotations, we compared them with studies where small regions of DNA

had been defined as promoters using transgenic assays. These comprised 10 regions are defined

based on transcription initiation signal (Chen et al., 2014), nine regions defined based on proximity

to a germ line gene (Merritt et al., 2008), and four defined by proximity to the first exon of a mus-

cle expressed gene (Hunt-Newbury et al., 2007). Of these 23 regions, 21 overlap an element in our

set of accessible sites, 19 of which are annotated as protein coding promoters (Figure 2—figure

supplement 6A). One of the remaining two is annotated as an enhancer and the other overlaps an

accessible element for which no transcriptional signal was detected. We further directly tested three

elements annotated as promoters (for hlh-2, ztf-11 and bed-3 genes), and found that all three drove

robust expression of a histone-GFP reporter (Figure 2—figure supplement 6A). Overall, there is

good concordance between promoter annotation and promoter activity.
Most of the elements annotated as protein-coding promoters are flanked by bidirectional tran-

scription initiation signal (74.0%), similar to the pattern seen in mammals. Most (82.6%) are unidirec-

tional promoters, producing a protein-coding transcript in one direction, but no stable transcript

from the upstream initiation site. To test whether such upstream antisense initiation sites could func-

tion as promoters, we inverted the orientation of two active unidirectional promoters (ztf-11 and

F58D5.5). If the lack of in vivo transcription elongation was a property of the element or initiation

site itself, the GFP fusion should not be expressed. However, we observed that the two inverted uni-

directional promoters both drove GFP expression. The expression patterns generated were similar

in both orientations, although the ztf-11 promoter was weaker when inverted (Figure 2—figure sup-

plement 6B,C). These results suggest that signals for productive elongation occur downstream of

the transcription initiation site.
Similar to the upstream antisense transcription initiation observed at promoters, enhancers also

show transcription initiation signals but generally do not produce stable transcripts (Core et al.,

2014; Andersson et al., 2014). Previous studies have reported that some enhancers can function as

promoters in transgenic assays and also at endogenous loci (Kowalczyk et al., 2012; Leung et al.,

2015; Nguyen et al., 2016; van Arensbergen et al., 2017; Mikhaylichenko et al., 2018). To assess

the potential promoter activities of C. elegans enhancers, we directly fused 12 putative enhancers

that had transcription initiation signal in embryos to a histone-GFP reporter gene and assessed

transgenic strains for embryo expression. Two of the tested enhancers are located in introns, and

one of these, from the bro-1 gene, has been previously validated as an enhancer (Brabin et al.,

2011); most of the others are associated with the hlh-2 or ztf-11 genes. We found that 10 of 12

tested regions drove reporter expression in embryos, including the two intronic enhancers (Fig-

ure 2—figure supplement 6B,C). Whereas the hlh-2 and ztf-11 promoters drove strong, broad

expression, the associated enhancers were active in a smaller number of cells and expression levels

were overall lower (Figure 2—figure supplement 6B,C). We also tested two enhancers in inverted

orientation and found that both showed similar activity in both orientations, as observed for the two

tested promoters (Figure 2—figure supplement 6B,C). The percentage of enhancers that func-

tioned as active promoters is higher than that observed in a cell-based assay (Nguyen et al., 2016),

possibly because all cell types are tested in an intact animal. Episomal-based assays have also been

reported to underestimate activity (Inoue et al., 2017).

Extensive regulation of chromatin accessibility in development
We observed extensive changes in chromatin accessibility across development, with most elements

showing a significant difference within the developmental time course (71%,>=2 fold change,

FDR < 0.01; Figure 4—source data 1; see Materials and methods). To investigate how accessibility

relates to gene expression, we focused on the 13,596 elements annotated as protein-coding pro-

moters. Of these, 10,199 displayed significant changes in accessibility in development, with the

remaining 3397 promoters classified as having stable accessibility. We note that the detected

changes could be due to regulation of accessibility, or alternatively to changes in cell number during

Jänes et al. eLife 2018;7:e37344. DOI: https://doi.org/10.7554/eLife.37344 8 of 24

Tools and resources Chromosomes and Gene Expression Genetics and Genomics

239



development (e.g. the number of germ line nuclei increases from two in L1 larvae to ~2000 in young

adults).
We reasoned that promoters having similar patterns of accessibility changes over development

may regulate genes that function in shared processes and be regulated by shared sets of transcrip-

tion factors. To investigate this, we applied k-medoid clustering to the 10,199 promoters with devel-

opmental changes in accessibility, defining 16 clusters (Figure 4A, Figure 4—figure supplement 1,
Figure 4—figure supplement 2, and Figure 4—source data 1; see Materials and methods). Within

clusters, we observed that promoter accessibility and nuclear RNA levels are usually correlated

(mean r = 0.47 (sd = 0.11) across all clusters), indicating that accessibility is a good metric of pro-
moter activity and overall gene expression (Figure 4—figure supplement 1 and Figure 4—figure

supplement 2).
To investigate whether the shared patterns of accessibility changes over development identify

promoters of genes involved in common processes, we took advantage of recent single-cell profiling
data obtained from L2 larvae, which provides gene expression measurements in different tissues

(Cao et al., 2017). We find that half of the developmental promoter clusters are enriched for genes

with tissue biased expression (Figure 4A, Figure 4—figure supplement 1 and Figure 4—figure
supplement 2). Based on these patterns of enrichment, we defined four gonad promoter clusters

(G1-G4), two intestine clusters (I1, I2), one hypodermal cluster (H) and one cluster enriched for neural
and muscle expression (N + M) (Figure 4A, Figure 4—figure supplement 1 and Figure 4—figure

supplement 2). Genes associated with the remaining eight promoter clusters (Mix1–8) are generally

expressed in multiple tissues, but predominantly in the soma (Figure 4A, Figure 4—figure supple-
ment 1 and Figure 4—figure supplement 2). As expected, genes linked to the stable promoters

are widely expressed. Interestingly, within a tissue, promoter clusters can exhibit similar variations in

accessibility but with different amplitude. For instance, gonad clusters G1 and G2 both show a sharp
increase in accessibility at the L3 stage; however, the increase is 1.5-fold larger in G2 than in G1. The

gonad clusters are generally characterized by an increase of promoter accessibility starting in L3

when germ cell number strongly increases.
To further investigate promoter clusters sharing accessibility dynamics, we performed Gene

Ontology analyses on the associated genes. As expected, we found that clusters containing genes

enriched for expression in a particular tissue are also associated with GO terms related to that tissue

(Figure 4A, Figure 4—figure supplement 1 and Figure 4—figure supplement 2). For instance,
cluster H contains genes highly expressed in hypodermis and GO terms linked to cuticle develop-

ment. Of note, the four accessibility clusters enriched for expression in germ line are associated with
GO terms for different sets of germ line functions (Figure 4—figure supplement 1 and Figure 4—

figure supplement 2). Similarly, the two intestinal clusters also identify genes with different types of

intestinal function. Furthermore, accessibility dynamics can reflect the temporal function of the asso-
ciated promoters. For instance, cluster Mix4 has GO terms indicative of neuronal development and

highest accessibility in the embryo, when many neurons develop. These results suggest that pro-

moter clusters contain genes acting in a shared process and having a similar mode of regulation.
To identify potential transcriptional regulators, we asked whether the binding of particular tran-

scription factors is enriched in any promoter clusters, using TF binding data from the modENCODE

and modERN projects (Boyle et al., 2014; Kudron et al., 2018). TFs with enriched binding were

found for each cluster (Figure 5A), and the expression of such TFs was generally enriched in the
expected tissue. For example, we found that ELT-2, an intestine-specific GATA protein

(Fukushige et al., 1998), has enriched binding at promoters in intestinal clusters 1 and 2. Similarly,

hypodermal transcription factors BLMP-1 (Horn et al., 2014), NHR-25 (Gissendanner and Sluder,
2000) and ELT-3 (Gilleard et al., 1999) are enriched in the hypodermal promoter cluster, and bind-

ing of the germ line XND-1 factor (Wagner et al., 2010) is enriched in the germ line clusters of pro-
moters. We also identified novel tissue-specific associations for uncharacterized transcription factors,

such as ZTF-18 and ATHP-1 with germ line promoter clusters and CRH-2 with the intestinal clusters

(Figure 5A). These results agree and extend those of Cao et al. (2017), who identified TFs for which
binding was correlated with cell-type-specific expression levels.

We also observed differences in TF-binding enrichments between promoter clusters associated
with the same tissue. For example, Clusters G1-G4 all contain promoters associated with germline-

enriched genes (Figure 4A). However, distinct binding enrichments are observed in promoters in
G1-G2 compared to those in G3-G4, with the latter showing enrichment for LIN-35 and DPL-1, two
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Figure 4. Shared dynamics of promoter accessibility in development and ageing. Clusters of promoters with shared relative accessibility patterns across

(A) development or (B) ageing. Relative promoter accessibility is log2 of the depth-normalized ATAC-seq coverage at a given time point divided by the

mean ATAC-seq coverage across the time series (see Materials and methods). The percentage of associated genes that have enriched expression in

Figure 4 continued on next page
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members of the DREAM complex, which controls cell cycle progression (Figure 5A). Taken together,
the results suggest that promoters with shared accessibility patterns have shared cell- and process-
specific activity, and they highlight potential regulators that are candidates for future studies.

Analysis of ageing clusters
We next focused on chromatin accessibility changes during ageing. In contrast to the development
time course, the accessibility of most promoters is stable during ageing, with only 13% (n = 1,800) of

promoters showing changes (Figure 4—source data 1). Interestingly, 75% of these also had regu-
lated accessibility in development.

As for the development time course, we clustered accessibility changes in ageing. We identified
eight clusters of promoters with similar accessibility changes across ageing and annotated them
based on tissue biases in gene expression (Figure 4B; Figure 4—source data 1). This defined one
intestinal cluster (I), two clusters enriched for intestine or hypodermal biased expression (I + H) and
five mixed clusters. Several mixed clusters show weak gene expression enrichments, such as intestine

expression in Mix1-2 and neural expression in Mix3 (Figure 4B). As observed for the development
clusters, enriched GO terms were consistent with gene expression biases (Figure 4B, Figure 4—fig-
ure supplement 3).

We then evaluated the enrichment of transcription factors at each ageing promoter cluster. The
binding of DAF-16/FoxO, a master regulator of ageing (Lin et al., 2001), is associated with five age-
ing promoter clusters (Figure 5B). Consistent with a prominent role in the intestine (Figure 4B;
Kaplan and Baugh, 2016), promoter clusters enriched for DAF-16 binding are also enriched for
intestinal genes (Figure 4B). The binding enrichment patterns of five other TFs implicated in ageing

(DVE-1, NHR-80, ELT-2, FOS-1 and PQM-1 (Uno et al., 2013; Folick et al., 2015; Goudeau et al.,
2011; Mann et al., 2016; Tian et al., 2016; Mao et al., 2016; Tepper et al., 2013) are similar to
DAF-16 (Figure 5B). These TFs and DAF-16 are also enriched in developmental intestine promoter
clusters (Figure 5A), supporting cooperation between them in development and ageing. A group of

hypodermal TFs including BLMP-1, ELT-1 and ELT-3 are found enriched at promoters in one of the
two I + H ageing clusters (Figure 5B). Finally, CEBP-1 binding is enriched in clusters Mix3 and Mix4,
which are characterized by a continuous increase of promoter accessibility across ageing. This sug-
gests a potential role of CEBP-1 in activating a subset of genes during ageing, as it is the case for its

homologue CEBP-b in mouse (Sandhir and Berman, 2010).

Conclusion
For the first time, we systematically map regulatory elements across the lifespan of an animal. We
identified 42,245 accessible sites in C. elegans chromatin and functionally annotated them based on
transcription patterns at the accessible site. This avoided the problems of histone-mark-based

approaches for defining element function (Core et al., 2014; Henriques et al., 2018; Rennie et al.,
2018). Our map identified promoters active across development and ageing, but we did not find
promoters for every gene. Classes that would have been missed are those for genes expressed only
in males or dauer larvae (which we did not profile) and genes not active under laboratory conditions.
In addition, whole-animal profiling would miss promoters active in only a small number of cells. In

Figure 4 continued

the indicated tissues was determined from single-cell L2 larval RNA-seq data (Cao et al., 2017); see Materials and methods). Right hand panels show

examples of GO terms enriched in genes associated with development or ageing clusters.

DOI: https://doi.org/10.7554/eLife.37344.017

The following source data and figure supplements are available for figure 4:

Source data 1. Element accessibility dynamics and promoter accessibility clusters in development and ageing.

DOI: https://doi.org/10.7554/eLife.37344.021

Figure supplement 1. Characteristics of developmental promoter clusters (continued in Figure 4—figure supplement 2).

DOI: https://doi.org/10.7554/eLife.37344.018

Figure supplement 2. Characteristics of developmental promoter clusters (continued from Figure 4—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.37344.019

Figure supplement 3. Characteristics of ageing promoter clusters.

DOI: https://doi.org/10.7554/eLife.37344.020
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Figure 5. Transcription factor binding enrichment in developmental and ageing promoter clusters. Transcription factor (TF) binding enrichments in

developmental (A) or ageing (B) promoter clusters from Figure 4. TF-binding data are from modENCODE/modERN (Araya et al., 2014;

Kudron et al., 2018); peaks in HOT regions were excluded (see Materials and methods). Only TFs enriched more than twofold in at least one cluster

are shown, and only enrichments with a p<0.01 (Fisher’s exact test) are shown. Plots show TF binding enrichment odds ratio (left), expression of the TF

Figure 5 continued on next page
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the future, assaying accessible chromatin and nuclear transcription in specific cell types should iden-
tify many of these missed elements.

We found that accessibility of most elements changes during the life of the worm, supporting a
key role played by chromatin structure. Despite the map being based on bulk profiling in whole ani-
mals, we find that regulatory elements with shared accessibility dynamics often share patterns of tis-
sue-specific expression, GO annotation, and TF binding. The promoters with shared accessibility
changes are therefore excellent starting points for studies of cell- and process-specific gene expres-
sion. In summary, our identification of regulatory elements across C. elegans life together with an ini-
tial characterization of their properties provides a key resource that will enable future studies of
transcriptional regulation in development and ageing.

Materials and methods

Collection of developmental time series samples
Wild-type N2 were grown at 20˚C in liquid culture to the adult stage using standard S-basal medium
with HB101 bacteria, animals bleached to obtain embryos, and the embryos hatched without food in

M9 buffer for 24 hr at 20˚C to obtain synchronized starved L1 larvae. L1 larvae were grown in a fur-

ther liquid culture at 20˚C to the desired stage, then collected, washed in M9, floated on sucrose,
washed again in M9, then frozen into ‘popcorn’ by dripping embryo or worm slurry into liquid nitro-

gen. Popcorn were stored at !80˚C until use. Times of growth were L1 (4 hr), L2 (20 hr), L3 (30 hr),
L4 (45 hr), young adults (60 hr). Mixed populations of embryos were collected by bleaching cultures
of synchronized 1-day-old adults.

Collection of ageing time series samples
glp-1(e2144) were raised at 15˚C on standard NGM plates seeded with OP50 bacteria. Embryos

were obtained by bleaching gravid adults and then approximately 6000 placed at 25˚C on 150 mm
2% NGM plates seeded with a 30X concentrated overnight culture of OP50. For harvest, worms
were washed 3X in M9 and then worm slurry was frozen into popcorn by dripping into liquid nitro-

gen and stored at !80˚C. Harvest times after embryo plating were D1/YA (53 hr), D2 (71 hr), D6
(167 hr), D9 (239 hr), D13 (335 hr).

Nuclear isolation and ATAC-seq
Frozen embryos or worms (1–3 frozen popcorns) were broken by grinding in a mortar and pestle or
smashing using a Biopulverizer, then the frozen powder was thawed in 10 ml Egg buffer (25 mM
HEPES pH 7.3, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2). Ground worms were pelleted
by spinning at 1500 g for 2 min, then resuspended in 10 ml working Buffer A (0.3M sucrose, 10 mM
Tris pH 7.5, 10 mM MgCl2, 1 mM DTT, 0.5 mM spermidine 0.15 mM spermine, protease inhibitors
(Roche complete, EDTA free) containing 0.025% IGEPAL CA-630. The sample was dounced 10X in a
14-ml stainless steel tissue grinder (VWR), then the sample spun 100 g for 6 min to pellet large frag-
ments. The supernatant was kept and the pellet resuspended in a further 10 ml Buffer A, then
dounced for 25 strokes. This was spun 100 g for 6 min to pellet debris and the supernatants, which
contain the nuclei, were pooled, spun again at 100 g for 6 min to pellet debris, and transferred to a
new tube. Nuclei were counted using a hemocytometer. One million nuclei were transferred to a
1.5-ml tube and spun 2000 g for 10 min to pellet. ATAC-seq was performed essentially as in
Buenrostro et al. (2013). The supernatant was removed, the nuclei resuspended in 47.5 ml of

Figure 5 continued

in each tissue relative to its expression across all tissues (log2(TF tissue TPM/mean of the TF’s TPMs across all tissues), middle), and the decile of

expression of the TF in each tissue (right; TPMs < 1 are not taken into account when calculating TPMs deciles). Expression data are from Cao et al.

(2017). Legends for Figure Supplements.

DOI: https://doi.org/10.7554/eLife.37344.022

The following source data is available for figure 5:

Source data 1. TF datasets used for analyses.

DOI: https://doi.org/10.7554/eLife.37344.023
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tagmentation buffer, incubated for 30 min at 37˚C with 2.5 ml Tn5 enzyme (Illumina Nextera kit), and

then tagmented DNA purified using a MinElute column (Qiagen) and converted into a library using

the Nextera kit protocol. Typically, libraries were amplified using 12–16 PCR cycles. ATAC-seq was

performed on two biological replicates for each developmental stage and each ageing time point.

DNAse I and MNase mapping
Replicate concentration courses of DNase I were performed for each stage as follows. Twenty million

nuclei were digested in Roche DNAse I buffer for 10 min at 25˚C using 2.5, 5, 10, 25, 50, 100, 200,

and 800 units/ml DNase I (Roche), then EDTA was added to stop the reactions. Embryo micrococcal

nuclease (MNase) digestion concentration courses for embryos were made by digesting nuclei with

0.025, 0.05, 0.1, 0.25, 0.5, 1, 4, 8, or 16 units/ml MNase in 10 mM Tris pH 7.5, 10 mM MgCl2, 4 mM

CaCl2 for 10 min at 37C. Reactions were stopped by the additon of EDTA. Following digestions,

total DNA was isolated from the nuclei following proteinase K and RNase A digestion, then large

fragments removed by binding to Agencourt AMPure XP beads (0.5 volumes). Small double cut frag-

ments < 300 bp were isolated either using a Pippen prep gel (protocol 1) or using Agencourt

AMPure XP beads (protocol 2). Libraries were prepared as described in the Sequencing library prep-

aration section below.

Transcription initiation and nuclear RNA profiling
Nuclei were isolated and then chromatin associated RNA (development series) or nuclear RNA (age-

ing series) was isolated. Chromatin associated RNA was isolated as in (Pandya-Jones and Black,

2009), resuspending washed nuclei in Trizol for RNA extraction. To isolate nuclear RNA, nuclei were

directly mixed with Trizol. Following purification, RNA was separated into fractions of 17–200nt

and >200 nt using Zymo clean and concentrate columns. To profile transcription elongation (‘long

cap RNA-seq’) in the nucleus, stranded libraries were prepared from the >200 nt RNA fraction using

the NEB Next Ultra Directional RNA Library Prep Kit (#E7420S). Libraries were made from two bio-

logical replicates for each developmental stage and each ageing time point. To profile transcription

initiation (‘short cap RNA-seq’), stranded libraries were prepared from the 17–200nt RNA fraction.

Non-capped RNA was degraded by first converting uncapped RNAs into 5’-monophosphorylated

RNAs using RNA polyphosphatase (Epibio), then treating with 5’ Terminator nuclease (Epibio). The

RNA was treated with calf intestinal phosphatase to remove 5’ phosphates from undegraded RNA,

and decapped using Tobacco Acid Pyrophosphatase (Epicentre), Cap-Clip Acid Pyrophosphatase

(CellScript, for one L2 and one L3 replicate) or Decapping Pyrophosphohydrolase (Dpph tebu-bio,

for one L3 replicate) and then converted into sequencing libraries using the Illumina TruSeq Small

RNA Preparation Kit kit. Libraries were size selected to be 145–225 bp long on a 6% acrylamide gel,

giving inserts of 20–100 bp long. Libraries were made from two biological replicates for each devel-

opmental stage. During the course of this work, the TAP enzyme stopped being available; the Cap-

Clip and Dpph enzymes perform less well than TAP. One L3 and one YA replicate was made using a

slightly different protocol. Embryo short cap RNA-seq data from Chen et al. (2013) was also

included in the analyses (GSE42819).

ChIP-seq
Balls of frozen embryos or worms were ground to a powder using a mortar and pestle or a Retch

Mixer Mill to break animals into pieces. Frozen powder was thawed into 1% formaldehyde in PBS,

incubated 10 min, then quenched with 0.125M glycine. Fixed tissue was washed 2X with PBS with

protease inhibitors (Roche EDTA-free protease inhibitor cocktail tablets 05056489001), once in FA

buffer (50 mM Hepes pH7.5, 1 mM EDTA, 1% TritonX-100, 0.1% sodium deoxycholate, and 150 mM

NaCl) with protease inhibitors (FA+), then resuspended in 1 ml FA +buffer per 1 ml of ground worm

powder and the extract sonicated to an average size of 200 base pairs with a Diagenode Bioruptor

or Bioruptor Pico for 25 pulses of 30 s followed by 30 s pause. For ChIP, 500 ug protein extract was

incubated 2 ug antibody in FA +buffer with protease inhibitors overnight at 4˚C, then incubated

with magnetic beads conjugated to secondary antibodies for 2 hr at 4˚C. Magnetic beads bound to

immunoprecipitate were washed at room temperature twice in FA+, then once each in FA with 0.5M

NaCl, FA with 1M NaCl, 0.25M LiCl (containing 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA,

10 mM Tris pH8) and finally twice with TE pH8. Immunoprecipitated DNA was then eluted twice with
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1% SDS, 250 mM NaCl, 10 mM Tris pH8, 1 mM EDTA at 65˚C. Eluted DNA was treated with RNase

for 1 hr at 37C and crosslinks reversed by overnight incubation at 65˚C with 200 ug/ml proteinase K,

and the DNA purified using a Qiagen column. Libraries were prepared as described in the Sequenc-

ing library preparation section below. Two biological replicate ChIPs were conducted for each his-

tone modification at each developmental time point (Embryo, L1, L2, L3, L4, YA). Antibodies used

were: anti-H3K4me3 (Abcam ab8580), anti-H3K4me1 (Abcam ab8895), anti-H3K36me3 (Abcam

ab9050), and anti-H3K27me3 (Wako 309–95259).

Sequencing library preparation
DNA was converted into sequencing libraries using a modified Illumina Truseq protocol based on

https://ethanomics.files.wordpress.com/2012/09/chip_truseq.pdf. Briefly DNA fragments are first

repaired with an End repair enzyme mix (New England Biolabs, cat E5060) for 30 min at 20C in 50

ml, then all DNA fragments were recovered using 1 vol of AMPure XP beads and 1 vol of 30%

PEG8000 in 1.25M NaCl, and eluted in 16.5 ml of H2O. The DNA was 3’ A-tailed in 1X NEB buffer 2

using 2.5 units of Klenow 3’ to 5’ exo(minus) (New England Biolabs, cat M0212) and 0.2 mM ATP for

30 min at 37C in 20 ml. Illumina Truseq adaptors were then directly ligated to the DNA fragments by

adding 25 ml 2X buffer, 1 ml of 0.06 nM adaptors (1 ml of 1:250 dilution of Illumina stock solution),

2.5 ml water and 1.5 ml of NEB Quick ligase (cat M2200). After 20 min at room temperature, 5 ml of

0.5M EDTA pH8 was added to inactivate the enzyme and DNA was purified using AMPure XP

beads. For DNAse and MNase libraries, 1.3 volumes of beads were used; for ChIP libraries, 0.9 vol-

umes of beads were used. DNA fragments were eluted in 20 ml of H2O. We used 1 ml to determine

the number of cycles needed to get amplification to 50% of the plateau as in https://ethanomics.

wordpress.com/ngs-pcr-cycle-quantitation-protocol/. Libraries were amplified by PCR by adding 20

ml of the KAPA Hifi Hotstart Ready Mix (Kapabiosystem cat KK2601) and 1 ml of 25 uM Illumina Uni-

versal primers. Libraries were then size selected. DNAse and MNase libraries were purified using 1.3

volumes of beads. For ChIP libraries, 0.7 volumes of beads were added to bind large DNA. Beads

were discarded and DNA recovered from the supernatant by adding 0.75 volumes of beads and

0.75 volumes of 30% PEG8000 in 1.25M NaCl. DNA was eluted in 40 ml water and 0.8 volumes of

beads used to bind the library, leaving adaptor dimers in the supernatant. DNA was eluted in 10–15

ml water, quantified using a Qubit, and analyzed using a Agilent Tapestation.

Data processing
Reads were aligned using bwa-backtrack (Li and Durbin, 2009) in single-end (ATAC-seq, short cap

RNA-seq, ChIP-seq) or paired-end mode (ATAC-seq - developmental only, DNase-seq, MNase-seq,

long cap RNA-seq). Low-quality (q < 10), mitochondrial and modENCODE-blacklisted (Boyle et al.,

2014) reads were discarded at this point.
For ATAC-seq, normalized genome-wide accessibility profiles from single-end reads were then

calculated with MACS2 (Zhang et al., 2008) using the parameters –format BAM –bdg –SPMR –gsize

ce –nolambda –nomodel –extsize 150 –shift !75 –keep-dup all. Developmental ATAC-seq was also

processed in paired-end mode (ATAC-seq libraries of ageing samples were single-end). We did not

observe major differences between accessible sites identified from paired-end, and single-end pro-

files, and therefore use single-end profiles throughout the study for consistency.
Short-cap and long-cap data were processed essentially as in Chen et al. (2013). Following align-

ment, and filtering, transcription initiation was represented using strand-specific coverage of 5’ ends

of short-cap reads. Transcription elongation was represented as strand-specific coverage of long-

cap reads, with regions between read pairs filled in. For browsing, transcription elongation signal

was normalized between samples by sizeFactors calculated from gene-level read counts using

DESeq2 (Love et al., 2014). Normalized (linear) coverage signal was then further log-transformed

with log2 normalised coverage þ 1ð Þ.
ChIP-seq data was processed as in Chen et al. (2014). After alignment and filtering, the BEADS

algorithm was used to generate normalized ChIP-seq coverage tracks (Cheung et al., 2011).
Stage-specific tracks used in downstream analyses were obtained by averaging normalized signal

across two biological replicates. Manipulations of genome-wide signal were performed using bed-

tools (Quinlan and Hall, 2010), UCSC utilities (Kent et al., 2010), and wiggleTools (Zerbino et al.,

2014). Computationally intensive steps were managed and parallelized using snakemake
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(Köster and Rahmann, 2012). Genome-wide data was visualized using the Integrative Genomics

Viewer (Robinson et al., 2011; Thorvaldsdóttir et al., 2013).
To assess the reproducibility of replicate datasets, we performed PCA using the plotPCA() func-

tion in DESeq2 (Love et al., 2014) on peak accessibility at promoters (ATAC-seq), read counts at

annotated genes (long cap RNA-seq), 5’ end read counts at promoters (short cap RNA-seq), and

genic regions, from the most upstream promoter to the annotated 3’ end, excluding genes with no

annotated promoter (histone modifications). Replicates agreed well as shown in Figure 1—figure

supplements 2 and 3.

Identification of accessible sites
Accessible sites were identified as follows. We first identified concave regions (regions with negative

smoothed second derivative) from ATAC-seq coverage averaged across all stages and replicates.

This approach is extremely sensitive, identifying a large number (>200,000) of peak-like regions. We

then scored all peaks in each sample using the magnitude of the sample-specific smoothed second

derivative. We used IDR (Li et al., 2011) on the scores to assess stage-specific signal levels and bio-

logical reproducibility, setting a conservative cutoff at 0.001. Final peaks boundaries were set to

peak accessibility extended by 75 bp on both sides. We found that calling peaks using paired end or

single end data were highly similar, but some regions were captured better by one or the other.

Developmental ATAC-seq datasets were sequenced paired-end and ageing datasets single-end.

Peaks were therefore called separately using developmental paired-end data, developmental single-

end data extended to 150 bp and shifted 75 bp upstream, and ageing (single-end only) data, and

then merged. This was achieved by successively including peaks from the three sets if they did not

overlap a peak already identified in an earlier set. Figure 1—source data 1 gives peak calls and

ATAC peak heights at each stage.

Datasets and genome versions
Throughout this study, we used the WBcel215/ce10 (WS220) version of the C. elegans genome, and

WormBase WS260 genome annotations - with coordinates backlifted to WBcel215/ce10 (WS220).

For convenience, Figure 2—source data 1 also contains WBcel235/ce11 coordinates of accessible

sites and representative transcription initiation modes.
For motif analyses, Inr and TATA consensus sequences were obtained from Sloutskin et al.

(2015), and mapped with zero mismatches using homer (Heinz et al., 2010). CpG density was

defined as in Chen et al. (2014).
modENCODE (Araya et al., 2014) and modERN (Kudron et al., 2018) transcription factor bind-

ing datasets used in this paper were obtained from http://www.encodeproject.org or http://data.

modencode.org (EOR-1). ChIP-seq profiles were manually inspected and 227 high quality datasets

selected, covering 176 transcription factors (given in Figure 5—source data 1). To define TFBS clus-

ters (Figure 1—figure supplement 1C,D; Figure 2—figure supplement 1), TF peak calls were

extended to 200 bp on either side of the summit, and clustered using a single-linkage approach. To

analyze enrichment of individual factors (Figure 5), TF peaks were assigned to a regulatory element

if their summits overlapped with the 400 bp region centered at the element midpoint. Factors asso-

ciated with each regulatory element via this approach are given in Figure 4—source data 1. We

excluded binding at so-called ‘HOT’ (highly occupied target) regions from enrichment analyses in

Figure 5, as these are thought to represent non-sequence-specific TF binding or ChIP artifacts

(Gerstein et al., 2010; Kudron et al., 2018). HOT regions were defined here as accessible sites with

binding of 19 or more of the analyzed 176 TFs (sites in the top 20% of binding, excluding sites with

no binding).
Coefficients of variation of gene expression (CV) are from (Gerstein et al., 2014); processed table

was kindly provided by Burak Alver).

Annotation of regulatory elements
Patterns of nuclear transcription were used to annotate elements. At each stage, separately on both

strands, we assessed 1) initiating and elongating transcription at the site, 2) continuity of transcrip-

tion from the site to the closest downstream gene, and 3) positioning of nearby exons (on the

matching strand).
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To assess for transcription elongation at an accessible site, we counted 5’ ends of long cap reads
upstream (!250:!75), and downstream (+75:+250) of peak accessibility. We then used two
approaches to identify sites with a local increase in transcription elongation. First, we used DESeq2

to test for an increase in downstream vs upstream counts (‘jump’ method). Statistical significance
was called at log2FoldChange > 1.5, and adjusted p-value<0.1 (one-sided test). To capture addi-
tional regions with weak signal (‘incr’ method), we accepted sites with 0 reads upstream, at least
one read in both biological replicates downstream, and three reads total when summed across both

biological replicates.
To assess transcription initiation, we pooled short cap across all six wild-type stages, and included

two additional embryo replicates from Chen et al. (2013). The pooled signal was filtered for repro-

ducibility by only keeping signal at base pairs with non-zero transcription initiation in at least two
replicates. We then required the presence of at least one base pair with reproducible signal within
125 bp of peak accessibility to designate an accessible site as having transcription initiation. For

every site, we also defined a representative transcription initiation mode as the position with maxi-
mum short-cap signal within 125 bp of peak accessibility. For sites without reproducible short-cap
signal, we used an extrapolated, ‘best-guess’ position at 60 bp downstream of peak accessibility.

We annotated accessible sites as coding_promoter or pseudogene_promoter if they fulfilled the
following four criteria. (1) The accessible site had transcription initiation, and passed at least one of
the elongation tests (jump or incr), or passed both elongation tests (jump and incr). (2) Transcription

initiation mode at the accessible site was either upstream of the closest first exon, or, in the pres-
ence of a UTR, up to 250 bp downstream within the UTR. (The closest first exon was chosen based
on the distance between the 5’ end of the first exon and peak accessibility at the accessible site,

allowing the 5’ end of the exon to be up to 250 bp upstream or anywhere downstream of peak
accessibility). (3) The region from peak accessibility to the closest first exon did not contain the 5’
end of a non-first exon. (4) Distal sites (peak accessibility >250 bp from the closest first exon) were
additionally required to (a) have continuous long-cap coverage from 250 bp downstream of peak

accessibility to the closest first exon, and (b) be further than 250 bp away from any non-first exon.
We then further attempted to assign a single, lower-confidence promoter to genes that were not

assigned a promoter so far. For every gene without promoter assignments, we re-examined sites

that fulfilled criteria (2-4), and were either intergenic, or within 250 bp of the closest first exon. We
then annotated the site with the largest jump test log2FoldChange as the promoter, if it was also
larger than 1.

Next, sites within 250 bp of the 5’ end of an annotated tRNA, snRNA, snoRNA, miRNA, or rRNA
were annotated as non-coding_RNA. Intergenic sites more than 250 bp away from annotated exons
that had initiating transcription, and passed the jump test were annotated as unassigned_promoter.

All remaining sites were annotated as transcription_initiation or no_transcription based on whether
they had transcription initiation.

Elements were then annotated on each strand based on aggregating transcription patterns across
stages by determining the ‘highest’ annotation using the ranking of: coding_promoter, pseudoge-
ne_promoter, non-coding_RNA, unassigned_promoter, transcription_initiation, no_transcription. Ele-
ment type and coloring was then defined using the following ranking: coding_promoter on either

strand => coding_promoter (red); pseudogene_promoter on either
strand => pseudogene_promoter (orange); non-coding_RNA on either strand => non-coding_RNA
(black); unassigned_promoter on either strand => unassigned_promoter (yellow); transcription_initia-

tion on either strand => putative_enhancer (green); all remaining sites => other_element (blue). Fig-
ure 2—source data 1 gives annotation information.

Clustering of promoter accessibility
Accessible elements with regulated accessibility were determined as follows. All elements
(n = 42,245) were tested for a difference in ATAC-seq coverage between any two developmental

time points or between any two ageing time points using DESeq2 (Love et al., 2014). Sites
with >= 2 absolute fold change and adjusted p-value<0.01 were defined as ‘regulated’ (n = 30,032
in development and n = 6590 in ageing; Figure 4—source data 1); regulated promoters (n = 10,199

in development and n = 1800 in ageing) were used in clustering analyses.
For clustering analyses, depth-normalized ATAC-seq coverage of each promoter was calculated

at each time point in development or ageing. Relative accessibility was calculated at each time point
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in development or ageing by applying the following formula:

log2 ATACseq coverage time point i þ 1
! "

! log2 mean ATACseq coverage across time points þ 1ð Þ. Mean

ATAC-seq coverage across time points was calculated separately for the developmental and ageing

time courses. Clustering was performed using k-medoids, as implemented in the pam() method of

the cluster R package (Maechler et al., 2017). Different numbers of clusters were tested for cluster-

ing of regulatory elements in developmental and ageing datasets; 16 was chosen for developmental

data and 10 for ageing data as the normalized changes in promoter ATAC-seq signals within each

cluster were relatively homogeneous. We manually merged two ageing clusters showing comparable

accessibility and tissue-specific gene enrichment (resulting in the cluster I + H [2]). Clusters labels

were determined based on enrichment for tissue-biased gene expression within each cluster (see

below).
To compare accessibility and gene expression, FPM-normalized gene-level read counts were cal-

culated using DESeq2, and then averaged across biological replicates. For visualisation, relative

expression levels were calculated using the approach described above for relative promoter accessi-

bility (see formula above), with FPM values instead of ATAC-seq coverage values.
Using single-cell RNA-seq data from Cao et al. (2017), we defined tissue-biased gene expression

as follows: Gene expression was considered enriched in a given tissue if it had a fold-change >= 3

between expression in the tissues with highest and second highest levels and an adjusted

p-value<0.01. This defined 5315 genes with tissue-biased expression (1432 in Gonad, 553 in Hypo-

dermis, 799 in Intestine, 352 in Muscle, 1218 in Neurons, 447 enriched in Glia, 514 in Pharynx). For

each developmental or ageing cluster of promoters, we calculated the percentage of genes with

biased expression in a given tissue relative to the total number of genes in the cluster. These values

were plotted in Figure 4A and B (bar plots).
GO enrichments were evaluated using the R package gProfileR (Reimand et al., 2016) against C.

elegans GO database. Significant enrichment was set at an adjusted p-value of 0.05, and hierar-

chically redundant terms were automatically removed by gProfileR.

Enrichment for transcription factor binding in promoter clusters
Prior to analysis of TF peak enrichment at annotated promoters, accessible elements considered

‘HOT’ (see above) were removed, resulting in 10,086 to be assessed by enrichment analysis. Only

transcription factors with more than 200 peaks overlapping ‘non-hot’ regulatory elements were kept,

to ensure sufficient data for analysis. Following this stringent filtering, 89 transcription factors could

be assayed for binding enrichment. Transcription factor binding enrichment in each cluster was esti-

mated using the odds ratio and enrichments with an associated p-value<0.01 (Fisher’s exact test)

were kept. Transcription factors which did not show enrichment higher than two in any cluster were

discarded. Figure 5 summarizes the transcription factor binding enrichment in each cluster during

development or ageing. Relative tissue expression profiles of each transcription factor at the L2

stage (data from Cao et al., 2017) was calculated in each tissue by taking the log2 of its expression

(TPM) in the tissue divided by its mean expression across all tissues. A pseudo-value of 0.1 was first

added to all the TPM values before calculation of the relative levels of expression.

Construction of transgenic lines
Transgene constructs were made using three-site Gateway cloning (Invitrogen) as in Chen et al.

(2014). Site one has the regulatory element sequence to be tested, site two has a synthetic outron

(OU141; Conrad et al., 1995) fused to his-58 (plasmid pJA357), and site three has gfp-tbb-2 3’UTR

(pJA256; Zeiser et al., 2011) in the MosSCI compatible vector pCFJ150, which targets Mos site

Mos1(ttTi5605); MosSCI lines were generated as described (Frøkjaer-Jensen et al., 2008).

Data access
ATAC-seq, ChIP-seq, DNase/MNase-seq, long/short cap RNA-seq data from this study, including

processed tracks are available at the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.

nih.gov/geo/) under accession number GSE114494.
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Köster J, Rahmann S. 2012. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28:2520–
2522. DOI: https://doi.org/10.1093/bioinformatics/bts480, PMID: 22908215

Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M,
Hosseini M, Vernimmen D, Brown JM, Gray NE, Collavin L, Gibbons RJ, Flint J, Taylor S, Buckle VJ, Milne TA,
Wood WG, Higgs DR. 2012. Intragenic enhancers act as alternative promoters. Molecular cell 45:447–458.
DOI: https://doi.org/10.1016/j.molcel.2011.12.021, PMID: 22264824

Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ. 2013. Condensin controls recruitment of RNA polymerase II to
achieve nematode X-chromosome dosage compensation. eLife 2:e00808. DOI: https://doi.org/10.7554/eLife.
00808, PMID: 23795297

Kudron MM, Victorsen A, Gevirtzman L, Hillier LW, Fisher WW, Vafeados D, Kirkey M, Hammonds AS, Gersch J,
Ammouri H, Wall ML, Moran J, Steffen D, Szynkarek M, Seabrook-Sturgis S, Jameel N, Kadaba M, Patton J,
Terrell R, Corson M, et al. 2018. The ModERN resource: genome-wide binding profiles for hundreds of
Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 208:937–949. DOI: https://doi.org/10.
1534/genetics.117.300657, PMID: 29284660

Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller
MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC,
Pfenning AR, et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–330.
DOI: https://doi.org/10.1038/nature14248, PMID: 25693563

Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, Yen CA, Lin S, Lin Y, Qiu Y, Xie W, Yue F, Hariharan
M, Ray P, Kuan S, Edsall L, Yang H, Chi NC, Zhang MQ, Ecker JR, et al. 2015. Integrative analysis of haplotype-
resolved epigenomes across human tissues. Nature 518:350–354. DOI: https://doi.org/10.1038/nature14217,
PMID: 25693566

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:
1754–1760. DOI: https://doi.org/10.1093/bioinformatics/btp324, PMID: 19451168

Li Q, Brown JB, Huang H, Bickel PJ. 2011. Measuring reproducibility of high-throughput experiments. The Annals
of Applied Statistics 5:1752–1779. DOI: https://doi.org/10.1214/11-AOAS466

Lin K, Hsin H, Libina N, Kenyon C. 2001. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by
insulin/IGF-1 and germline signaling. Nature Genetics 28:139–145. DOI: https://doi.org/10.1038/88850,
PMID: 11381260

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2017. Cluster: Cluster Analysis Basics and Extensions.
Scientific Research Publisher.

Mann FG, Van Nostrand EL, Friedland AE, Liu X, Kim SK. 2016. Deactivation of the GATA Transcription Factor
ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genetics 12:e1005956. DOI: https://doi.org/10.
1371/journal.pgen.1005956, PMID: 27070429

Mao XR, Kaufman DM, Crowder CM. 2016. Nicotinamide mononucleotide adenylyltransferase promotes hypoxic
survival by activating the mitochondrial unfolded protein response. Cell Death & Disease 7:e2113. DOI: https://
doi.org/10.1038/cddis.2016.5, PMID: 26913604

Merritt C, Rasoloson D, Ko D, Seydoux G. 2008. 3’ UTRs are the primary regulators of gene expression in the C.
elegans germline. Current Biology 18:1476–1482. DOI: https://doi.org/10.1016/j.cub.2008.08.013, PMID: 1881
8082

Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. 2018. The degree of
enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes &
Development 32:42–57. DOI: https://doi.org/10.1101/gad.308619.117, PMID: 29378788

Nguyen TA, Jones RD, Snavely AR, Pfenning AR, Kirchner R, Hemberg M, Gray JM. 2016. High-throughput
functional comparison of promoter and enhancer activities. Genome Research 26:1023–1033. DOI: https://doi.
org/10.1101/gr.204834.116, PMID: 27311442

Pandya-Jones A, Black DL. 2009. Co-transcriptional splicing of constitutive and alternative exons. RNA 15:1896–
1908. DOI: https://doi.org/10.1261/rna.1714509, PMID: 19656867

Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P,
Spicuglia S. 2011. H3K4 tri-methylation provides an epigenetic signature of active enhancers. The EMBO
Journal 30:4198–4210. DOI: https://doi.org/10.1038/emboj.2011.295, PMID: 21847099

Pérez-Lluch S, Blanco E, Tilgner H, Curado J, Ruiz-Romero M, Corominas M, Guigó R. 2015. Absence of
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1 Introduction

This R package makes the process of generating fragment density plots (also known as “V-
plots”) straightforward. V-plots have been introduced for the first time by the Heniko� lab
in 2011 (Heniko� et al. 2011). More recently, V-plots have proven to be very instructive
to understand the local organization of the chromatin at regulatory elements. For instance,
the nucleoATAC package relies on cross-correlation of ATAC-seq fragment density plots to
accurately map nucleosome occupancy along the genome (Schep et al. 2015).
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VplotR aim is to streamline the process of generating V-plots. It contains wrapping functions
to import paired-end sequencing bam files and generate V-plots around genomic loci of interest.
VplotR is designed around ggplot2 and makes full use of its potential (Wickham et al. 2019).
As such, it is easy to generate V-plots in batch and combine them with other plots to make
publication-ready figures.
VplotR is aimed toward investigating ATAC-seq datasets but can be used to plot other types of
paired-end sequencing datasets such as DNase-seq or MNase-seq. This vignettes illustrates how
VplotR can be leveraged to investigate the local arrangment of nucleosomes around di�erent
sets of promoters.

2 Installation

VplotR can be installed as follows:

install.packages("devtools")
devtools::install_github("js2264/VplotR")
library(VplotR)

3 Quick use

A V-plot of ATAC-seq fragments (fragments) over loci of interest (granges) can be generated
using the plotVmat() function:

plotVmat(fragments, granges)

Multiple V-plots can be generated in parallel as follow:

list_params <- list(
"sample_1" = list("bam" = fragments_1, "granges" = granges_1),
"sample_2" = list("bam" = bam_2, "granges" = granges_2),
...,
"sample_N" = list("bam" = bam_N, "granges" = granges_N)

)
plotVmat(

list_params,
cores = length(list_params)

) + ggplot2::facet_wrap(~Cond.)
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4 Detailed use of VplotR: Positioning of nucleosomes
flanking ubiquitous or tissue-specific promoters

4.1 Importing data

VplotR use requires several objects. First, genomic loci of interest should be stored in a GRanges
object. In this example, we will fetch promoter and enhancer annotations stored on the Ahringer
server.

ce_REs <- readRDS(
url(�https://ahringerlab.com/VplotR/ce11_annotated_REs.rds�)

)
ce_proms <- ce_REs[ce_REs$is.prom]
proms_list <- list(

"Ubiq._proms" = ce_proms[ce_proms$which.tissues == �Ubiq.�],
"Germline_proms" = ce_proms[ce_proms$which.tissues == �Germline�],
"Neurons_proms" = ce_proms[ce_proms$which.tissues == �Neurons�],
"Muscle_proms" = ce_proms[ce_proms$which.tissues == �Muscle�],
"Hypod._proms" = ce_proms[ce_proms$which.tissues == �Hypod.�],
"Intest._proms" = ce_proms[ce_proms$which.tissues == �Intest.�]

)

Secondly, ATAC-seq bam files can be imported using the importPEBamFiles() function.

# Do not run
bam_files <- paste0(�~/bam-files/ATAC_�,

c(�mixed�, �germline�, �neuron�,
�muscle�, �hypodermis�, �intestine�

), �.bam�
)
bam_list <- importPEBamFiles(

bam_files,
where = GenomicRanges::reduce(

GenomicRanges::resize(ce_REs, width = 2000, fix = �center�)
),
shift_ATAC_fragments = TRUE

) %>% setNames(c(
�mixed�, �Germline�, �Neurons�,
�Muscle�, �Hypod.�, �Intest.�

))
# // Do not run
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In this vignette, ATAC-seq bam files already imported are fetched from the Ahringer server:

bam_list <- readRDS(
url(�https://ahringerlab.com/VplotR/ATAC_PE_fragments.rds�)

)

4.2 Plotting fragment size distribution

VplotR allows investigation of the distribution of fragments relative to the centers of loci of
interest by separating them according to their length. Before generating fragment density
plots, one might want to visualize the distribution of fragment lengths in a given sample. The
following command plots the distribution of fragment found in a mixed-tissue ATAC-seq sample
and mapping over annotated C. elegans promoters:

sizes <- getFragmentsDistribution(
bam_list[[�mixed�]],
ce_proms,
limits = c(0, 1200)

)
p_distr <- ggplot(sizes, aes(x = x, y = y), color = �#991919�) +

geom_line() +
theme_bw() +
labs(

title = �Fragment size distribution in mixed-tissue ATAC-seq�,
x = �Fragment size�,
y = �# of fragments�

) +
xlim(c(0, 600))
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This plot highlights the multi-modal distribution of ATAC-seq fragments found over promoters.
However, when splitting the fragments mapping to each set of ubiquitous or tissue-specific
promoters, a striking di�erence in fragment length distribution is observed between germline
and somatic-tissue-specific promoters.

sizes <- parallel::mclapply(mc.cores = 6,
c(�mixed�, �Germline�, �Neurons�, �Muscle�, �Hypod.�, �Intest.�),
function(TISSUE) {

idx <- paste0(ifelse(TISSUE == �mixed�, �Ubiq.�, TISSUE), �_proms�)
d <- getFragmentsDistribution(

bam_list[[TISSUE]],
proms_list[[idx]],
limits = c(0, 1200)

)
return(data.frame(d, tissue = TISSUE))

}
) %>% do.call(rbind, .)
p_distr_split <- ggplot(sizes, aes(x = x, y = y), color = �#991919�) +

geom_line() +
theme_bw() +
labs(

title = �Fragment size distribution in mixed-tissue
and tissue-sepcific ATAC-seq�,
x = �Fragment size�,
y = �# of fragments�

) +
facet_wrap(~tissue, scales = �free�, nrow = 1) +
xlim(c(0, 600))
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4.3 Plotting ATAC-seq fragment density plots

The fragment length distribution plots generated above do not show where shorter or longer
ATAC-seq fragments respectively map. ATAC-seq fragment density plots, a.k.a. V-plots, can
be used to show the distribution of ATAC-seq fragments of variable lengths over a set of regions
of interest. In such plot, the horizontal axis represents the position of the fragments relative to
the center of the loci of interest, and the vertical axis represents the length of the fragments.
The color code symbolizes the density of fragments.
For example, a V-plot of ATAC-seq fragments over ubiquitous promoters (from a mixed-tissue
ATAC-seq sample) can be generated as follows:

Vplot_ubiq <- bam_list[[�mixed�]] %>%
computeVmat(proms_list[[�Ubiq._proms�]]) %>%
normalizeVmat(normFun = �pctsum�, roll = 3) %>%
plotVmat(

main = �Mixed-tissues ATAC-seq fragments over ubiquitous promoters�
)

The di�erent steps to generate a V-plot over a set of genomic loci can be wrapped in a single
call to the plotVmat() function:

Vplot_ubiq <- plotVmat(
bam_list[[�mixed�]],
proms_list[[�Ubiq._proms�]],
main = �Mixed-tissues ATAC-seq fragments over ubiquitous promoters�

)
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To compute many di�erent V-plots simultaneously, one can pass the two main arguments
(bam_granges and granges) to the plotVmat function using a named list. Let’s generate V-
plots for each of the five tissue-specific ATAC-seq datasets; for each tissue-specific ATAC-seq
dataset, two V-plots will be generated:

• One for fragments mapping over ubiquitous promoters;
• One for fragments mapping over the corresponding tissue-specific promoters;

list_params <- list(
"Germline ATAC-seq\nover Ubiq. proms." = list(

bam_list[[�Germline�]], proms_list[[�Ubiq._proms�]]),
"Germline ATAC-seq\nover Germline proms." = list(

bam_list[[�Germline�]], proms_list[[�Germline_proms�]]),
"Neurons ATAC-seq\nover Ubiq. proms." = list(

bam_list[[�Neurons�]], proms_list[[�Ubiq._proms�]]),
"Neurons ATAC-seq\nover Neurons proms." = list(

bam_list[[�Neurons�]], proms_list[[�Neurons_proms�]]),
"Muscle ATAC-seq\nover Ubiq. proms." = list(

bam_list[[�Muscle�]], proms_list[[�Ubiq._proms�]]),
"Muscle ATAC-seq\nover Muscle proms." = list(
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bam_list[[�Muscle�]], proms_list[[�Muscle_proms�]]),
"Hypod. ATAC-seq\nover Ubiq. proms." = list(

bam_list[[�Hypod.�]], proms_list[[�Ubiq._proms�]]),
"Hypod. ATAC-seq\nover Hypod. proms." = list(

bam_list[[�Hypod.�]], proms_list[[�Hypod._proms�]]),
"Intest. ATAC-seq\nover Ubiq. proms." = list(

bam_list[[�Intest.�]], proms_list[[�Ubiq._proms�]]),
"Intest. ATAC-seq\nover Intest. proms." = list(

bam_list[[�Intest.�]], proms_list[[�Intest._proms�]])
)
plots <- plotVmat(

list_params,
xlim = c(-200, 200),
estimate_background = TRUE,
cores = length(list_params)

)
Vplots <- plots +

facet_wrap(~Cond., nrow = 2, dir = �v�) +
theme(legend.position = �bottom�) +
theme(panel.spacing = unit(1, "lines"))
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In the five tissue-specific ATAC-seq datasets, ubiquitous promoters are flanked by nucleosomes
in all tissues. Germline promoters are also characterized by prominent flanking nucleosomes,
while somatic promoters are not.
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4.4 Direct comparison of two V-plots

To better understand the di�erences in nucleosome organization in di�erent contexts, two V-
plots can be directly compared to each other. Here, let’s compare the nucleosome positioning
at neuron-specific promoters (using neuron-specific ATAC-seq data)

Vmat_neurons <- plotVmat(
bam_list[[�Neurons�]],
proms_list[[�Neurons_proms�]],
estimate_background = FALSE,
ylim = c(50, 200),
xlim = c(-200, 200),
cores = 10,
roll = 3,
return_Vmat = TRUE

)
Vmat_germline <- plotVmat(

bam_list[[�Germline�]],
proms_list[[�Germline_proms�]],
estimate_background = FALSE,
ylim = c(50, 200),
xlim = c(-200, 200),
cores = 10,
roll = 3,
return_Vmat = TRUE

)
Vmat_comp <- log2((Vmat_germline+1)/(Vmat_neurons+1))
Vplot_comp <- plotVmat(

Vmat_comp,
cores = 10,
roll = 2,
main = �Fragment density enrichment (Germline vs Neuron-specific promoters)�

)
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4.5 Nucleosome enrichment score

The enrichment of flanking nucleosomes around a nucleosome-depleted central region can be
estimated from a ATAC-seq fragment density plot using the nucleosomeEnrichment() func-
tion. This function is used to quantify the local enrichment of nucleosomal fragments compared
to background noise. Several flanking nucleosome enrichment scores can be computed at once
as follows:

list_scores <- parallel::mclapply(
c("Germline", "Neurons", "Muscle", "Hypod.", "Intest."),
function(TISSUE) {

message(�>> �, TISSUE)
nucenrich_tissue_spe_proms <- nucleosomeEnrichment(

bam_granges = bam_list[[TISSUE]],
granges = proms_list[[paste0(TISSUE, �_proms�)]],
estimate_background = TRUE,
verbose = TRUE

)
nucenrich_ubiq_proms <- nucleosomeEnrichment(

bam_granges = bam_list[[TISSUE]],
granges = proms_list[[�Ubiq._proms�]],
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estimate_background = TRUE,
verbose = TRUE

)
return(list(

�tissue-spe-proms� = nucenrich_tissue_spe_proms,
�ubiq-proms� = nucenrich_ubiq_proms

))
},
mc.cores = 5

) %>% setNames(c("Germline", "Neurons", "Muscle", "Hypod.", "Intest."))

Once the flanking nucleosome enrichment scores are computed, they can all be plotted together:

nucenrich_scores <- data.frame(
tissue = factor(

rep(names(list_scores), each = 2),
levels = names(list_scores)

),
promoters = c(rbind(

paste0(names(list_scores), � promoters�), rep(�Ubiq. promoters�, 5)
)),
promoters2 = factor(rep(c(0.5, 0.8), 5)),
score = unlist(lapply(

list_scores, function(Vmat) {
c(

Vmat[[1]]$fisher_test$estimate,
Vmat[[2]]$fisher_test$estimate

)
})),

is_ubiq = factor(rep(
c(�Over tissue-specific promoters�, �Over ubiquitous promoters�), 5),
levels = c(�Over ubiquitous promoters�, �Over tissue-specific promoters�)

)
)
nucenrich_plots <- ggplot(nucenrich_scores, aes(

x = tissue,
y = score,
fill = tissue,
group = is_ubiq

)) +
geom_col() +
facet_wrap(~is_ubiq, nrow = 1) +
scale_fill_manual(

values = c("#00AEEF", "#00A651", "#F7941D", "#808285", "#E365A6")
) +
labs(
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title = �Flanking nucleosome enrichment score�,
y = �Enrichment score�,
x = �Tissue-specific data�

) +
theme_bw() +
theme(legend.position = �none�)
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According to these results, flanking nucleosomes are significantly enriched at ubiquitous pro-
moters in nuclei from all tissues. Among tissue-specific promoters, only germline promoters
have a significant enrichment of flanking nucleosome. The promoters only active in the soma
(e.g. neuron-specific promoters) do not show any strong nucleosome enrichment flanking their
central NDR.

5 Session info

## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
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## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] magrittr_1.5 ggplot2_3.1.1 VplotR_0.4.0 knitr_1.22
##
## loaded via a namespace (and not attached):
## [1] SummarizedExperiment_1.12.0 tinytex_0.20
## [3] zoo_1.8-5 tidyselect_0.2.5
## [5] xfun_0.5 purrr_0.3.2
## [7] reshape2_1.4.3 lattice_0.20-38
## [9] colorspace_1.4-1 htmltools_0.3.6
## [11] stats4_3.5.2 rtracklayer_1.42.2
## [13] yaml_2.2.0 XML_3.98-1.19
## [15] rlang_0.4.2 pillar_1.3.1
## [17] glue_1.3.1 withr_2.1.2
## [19] BiocParallel_1.16.6 BiocGenerics_0.28.0
## [21] RColorBrewer_1.1-2 matrixStats_0.54.0
## [23] GenomeInfoDbData_1.2.0 plyr_1.8.4
## [25] stringr_1.4.0 zlibbioc_1.28.0
## [27] Biostrings_2.50.2 munsell_0.5.0
## [29] gtable_0.3.0 evaluate_0.13
## [31] labeling_0.3 Biobase_2.42.0
## [33] IRanges_2.16.0 GenomeInfoDb_1.18.2
## [35] parallel_3.5.2 Rcpp_1.0.1
## [37] scales_1.0.0 BSgenome_1.50.0
## [39] DelayedArray_0.8.0 S4Vectors_0.20.1
## [41] XVector_0.22.0 Rsamtools_1.34.1
## [43] digest_0.6.18 stringi_1.3.1
## [45] bookdown_0.9.2 dplyr_0.8.0.1
## [47] GenomicRanges_1.34.0 grid_3.5.2
## [49] tools_3.5.2 bitops_1.0-6
## [51] lazyeval_0.2.2 RCurl_1.95-4.12
## [53] tibble_2.1.1 crayon_1.3.4
## [55] pkgconfig_2.0.2 BSgenome.Celegans.UCSC.ce11_1.4.2
## [57] Matrix_1.2-17 assertthat_0.2.1
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## [59] rmarkdown_1.12.6 R6_2.4.0
## [61] GenomicAlignments_1.18.1 compiler_3.5.2
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Appendix D

periodicDNA: an R package to

investigate nucleotide periodicity

This appendix introduces a manuscript entitled “periodicDNA: an R package to

investigate nucleotide periodicity”. During my thesis, I designed a methodology to

measure the periodicity of oligonucleotides in DNA sequences. This manuscript

presents periodicDNA, the package I created to investigate dinucleotide periodicity

in di�erent classes of regulatory elements. This manuscript will soon be submitted

to Journal of Open-Source Software for peer-reviewed publication.
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1 Statement of Need

periodicDNA provides a framework to quantify oligonucleotide periodicity over individual or multiple DNA
genomci loci.

2 Summary

periodicDNA is an R package o�ering a set of functions to identify local periodic elements in short sequences
such as regulatory elements. Many oligonucleotides are periodically occurring in genomes across eukaryotes,
and some are impacting the physical properties of DNA. Notably, DNA bendability is modulated by 10-bp
periodic occurrences of WW (W = A/T) dinucleotides. The package relies on Biostrings and GenomicRanges
packages to handle DNA sequences and genome assemblies. It uses the Fourier Transform to measure the
periodicity of a given oligonucleotide in sets of sequences. It also provides methods to generate continuous
tracks of oligonucleotide periodicity over genomic loci, as well as visualization tools to interpret these tracks.
The use of periodicDNA has already shed light on fundamental di�erences in sequence features in functional
classes of promoters (Serizay et al. (2020)). We hope that the integration of this open-source package into
genomic assay analysis workflows will help further improve our understanding of chromatin organization.

3 Methodology

periodicDNA can be used to estimate the power spectral density (PSD) of a given dinucleotide (motif argument)
at specific periods (period argument) in a set of sequences of interest (seqs argument), using a simple wrapper
function:

�The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom, jacquesserizay@
gmail.com

†The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom, ja219@cam.ac.uk
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Figure 1: Output of plotPeriodicityResults() function. A- Distribution of all the TT pairwise distances. B-
Normalized TT pairwise distance frequency. C- Power Spectral Density (PSD) of TT occurrences. D- PSD
signal-to-noise ratio.

library(periodicDNA)
library(magrittr)
library(ggplot2)
## The periodicity can be calculated from DNAStringSet objects:
data(ce_proms_seqs)
score <- getPeriodicity(

seqs = ce_proms_seqs,
motif = �TT�,
cores = 4

)
## Alternatively, the periodicity can be calculated
## from a GRanges object in combination with a genome:
data(ce_proms)
score <- getPeriodicity(

granges = ce_proms[ce_proms$which.tissues == �Ubiq.�] %>%
�[�(strand(.) == �+�) %>%
resize(width = 1, fix = �end�) %>%
resize(width = 300, fix = �start�),

genome = �ce11�,
motif = �TT�,
cores = 120

)
## Results can be plotted using the plotPeriodicityResults() function:
## See Figure 1
plots <- plotPeriodicityResults(score) %>%

cowplot::plot_grid(plotlist = ., nrow = 1)

The intermediate steps internally performed when calling this function are the following (Figure 2):

1. In each sequence of a set of n sequences (the seqs argument), all the pairs of the dinucleotide of interest
(the motif argument, e.g. TT) are identified and their pairwise distances are measured.

2. The distribution of the all the resulting pairwise distances (also called “distogram”) is generated.
3. The following normalization steps are then performed:

• The distogram is transformed into a frequency histogram and then normalized by the following steps:
• The frequency histogram follows a marked overall decrease of frequencies with increased pairwise

distances. Indeed, for a 200-bp long sequence containing 20 WW dinucleotides exactly distant from
each other by 10 base pairs, there are 19 pairs with a pairwise distance of 10 but only 1 pair
of dinucleotides with a pairwise distance of 190. To overcome this distance decay, the frequency
histogram is smoothed using a moving average window of 10 and the resulting smoothed frequency
histogram is substracted from the frequency histogram. This e�ectively transforms the decreasing
frequency histogram into a dampened oscillating signal and improves the PSD estimation by Fourier
Transform.

• The dampened oscillating signal is then scaled (i.e. mean-centered and normalized) and smoothed
using a moving average window of 3. This e�ectively removes the e�ect of the latent 3-bp periodicity
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of most dinucleotides found in eukaryote genomes (Gutiérrez et al., 1994).

4. A Fast Fourier Transform (FFT) is then used to estimate the power spectral density (PSD) of the nor-
malized oscillating distribution at di�erent periods (the period argument).

The PSD can be used in itself to identify which dinucleotide frequencies are enriched in the provided set of
sequences. Its amplitude at a given frequency can also be used to compare dinucleotide frequencies across
samples.

4 Leveraging periodicDNA to understand chromatin organization

Soon after solving the structure of nucleosomes, Kornberg raised a fundamental question: whether the po-
sitioning of nucleosomes in vivo in regard to a DNA locus was “specific” or “statistical” (Kornberg (1981)).
Nucleosome “specific” positioning implies that the physicochemical properties of DNA sequences are enough to
explain how nucleosomes are arranged along a DNA double-helix (e.g. described in Segal et al. (2006)). On
the contrary, a “statistical” positioning postulates the presence of a “boundary” nucleosome (either a protein
or a strong intrinsic positioning sequence, or both) which specifies one end of a nucleosomal array not deter-
mined by the physicochemical properties of DNA sequence (e.g. described in Mavrich et al. (2008)). Later on,
biochemists and computational biologists found out that periodic dinucleotide sequences were associated with
positioned nucleosomes, suggesting that the “specific” model is contributing to nucleosome positioning - at least
to a certain extent (Jiang & Pugh (2009); Struhl & Segal (2013) for review). To test whether specific periodic
sequences were associated with the positioning of nucleosomes directly flanking regulatory elements, I leveraged
periodicDNA. I focused on ubiquitous and tissues-specific promoters and enhancers, splitting each element into
core (-70 to +70 base pairs around the center of the regulatory element), flanking (-210 to -70 base pairs and
+70 to +210 base pairs) and distal sequences (-350 to -210 base pairs and +210 to +350 base pairs) (Figure 3A).
Ubiquitous and germline-specific promoters exhibit a high TT 10-bp periodicity in the flanking sequences which
decreases remarkably in the neighboring distal sequences (Figure 3B). In contrast, ubiquitous and germline
enhancers both show a mild increase of TT 10-bp periodicity in flanking sequences as well as in distal sequences
of enhancers (Figure 3B). This suggests that the 10bp TT periodicity can act as a local positioning signal
at ubiquitous and germline-specific promoters, but not at ubiquitous and germline-specific enhancers (Figure
3C). This 10-bp TT periodicity is absent in other somatic tissue-specific promoters, as expected from previous
results (Serizay et al. (2020)), as well as in somatic tissue-specific enhancers (Figure 3B). This supports a
model whereby nucleosome organization at soma-restricted regulatory elements does not primarily depend on
the underlying DNA sequence (Figure 3C).
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Figure 2: Internal steps of the getPeriodicity() function. Each step is further described in the main text. The
dotted double-arrows in the first step represent the distances measured by periodicDNA between some of the
pairs of TT. For the single sequence shown here, there are 31 individual TT dinucleotides, resulting in

!31
2

"
= 465

di�erent pairs in total.
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Figure 3: TT periodicity in promoters and enhancers. A- Pictogram representing how regulatory elements
were divided into core, flanking and distal regions. The core sequence is the 140-bp long sequence at the
center of the regulatory element; the flanking sequences range from -210 to -70 and from +70 to +210; the
distal sequences range from -350 to -210 and from +210 to +350 (with the center of the regulatory element
being the reference). B- TT 10-bp periodicity scores obtained from periodicDNA. C- Model of sequence-driven
nucleosome positioning at di�erent sets of promoters or enhancers. Three di�erent situations are observed: (1)
a decrease of TT periodicity on both sides of the flanking nucleosomes favors their precise positioning, (2) a
weaker widespread TT periodicity favors nucleosome positioning without local enrichment and (3) absence of
TT periodicity does not favor nucleosome positioning. Note that these models do not illustrate the role of other
factors such as chromatin remodelers.
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