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Abstract1

1. Supervised learning of behavioral modes from body-acceleration2

data has become a widely used research tool in Behavioral Ecology3

over the past decade. One of the primary usages of this tool is to4

estimate behavioral time budgets from the distribution of behaviors5

as predicted by the model. These serve as the key parameters to6

test predictions about the variation in animal behavior. In this pa-7

per we show that the widespread computation of behavioral time8

budgets is biased, due to ignoring the classification model confusion9

probabilities.10

2. Next, we introduce the confusion matrix correction for time bud-11

gets – a simple correction method for adjusting the computed time12

budgets based on the model’s confusion matrix.13

3. Finally, we show that the proposed correction is able to eliminate the14

bias, both theoretically and empirically in a series of data simulations15
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on body acceleration data of a fossorial rodent species (Damaraland16

mole-rat, Fukomys damarensis).17

4. Our paper provides a simple implementation of the confusion matrix18

correction for time budgets, and we encourage researchers to use it19

to improve accuracy of behavioral time budget calculations.20

Keywords— body-acceleration, bio-logging, behavioral time budget, bioteleme-21

try, machine learning, animal behaviour22

1 Introduction23

The availability of affordable miniaturized bio-logger devices has revolutionized the24

field of behavioral ecology over the past decade [Kays et al., 2015]. Inertial measure-25

ment units, and especially accelerometers, provide information that can be translated26

to behavioral modes, typically using a supervised machine learning classification ap-27

proach [Nathan et al., 2012, Resheff et al., 2014]. The detailed understanding of be-28

havior and its location is key in the pursuit of questions at the heart of animal ecology29

[Nathan et al., 2008, Hays et al., 2016, Williams et al., 2020].30

The process of inferring animal behavior from acceleration measurements using31

supervised machine learning requires, first, obtaining observations of animals fitted32

with the bio-logging devices to generate a training set of acceleration records cou-33

pled with known behaviors. These data are used to train machine learning mod-34

els, that are then used to classify behavioral modes for body acceleration data of35

unobserved animals. Finally, the proportion of the classified behaviours, which are36

generally referred to as behavioral time budgets, are used to answer ecological ques-37

tions about the distribution of behaviour across population in space and time (E.g.38

[Harel et al., 2016, Rotics et al., 2017, Chimienti et al., 2021, Weegman et al., 2017]).39

Behavioral time budgets are commonly the key metric used for inferring animal40

behaviour and ecology based on body acceleration data. However, the regular practice41

of computing time budgets from the distribution of the classified behaviours does not42

consider the information regarding the classification model’s accuracy. This informa-43
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tion includes the probability of classifying each behaviour incorrectly by confusing it44

with any of the other behaviours. The table of these probabilities is summarized in the45

model’s ‘confusion matrix’— a standard output of testing supervised machine learn-46

ing accuracy using cross validation [Hastie et al., 2009]. For example, assuming we47

are interested in the ‘running’ behaviour, and the confusion matrix shows that in 10%48

of cases ‘running’ is wrongly classified by our model as ‘walking’ (whereas ‘walking’49

is wrongly classified as ‘running’ in 5% of the cases), it would be important to adjust50

the calculated proportion of ‘running’ according to this information.51

This problem has previously been discovered and studied in the field of machine52

learning, in a setting called domain adaptation, where the aim is to compute the53

distribution of classes in test data [Lipton et al., 2018] in order to train classifiers54

better suited for it. The authors found that simply counting classifier predictions55

leads to biased estimates of the distribution of classes in the test data, but a simple56

confusion-matrix based correction is enough to alleviate this problem. Following these57

results, we examined whether the computation of time budgets which ignores the58

classification model’s confusion probabilities introduces a systematic bias, and it can59

be reduced by accounting for these probabilities.60

Supervised machine learning models are optimized for the data distribution they61

are trained upon [Hastie et al., 2009]. If the distribution of behaviours in the training62

data differs considerably from the distribution of behaviours in the unobserved data63

that are to be classified by the supervised model, the classification accuracy is likely64

to drop. In such cases we hypothesize that the systematic bias of the time budget65

computation will increase, and its correction based on the model’s confusion matrix66

will become even more important. A case of differing behavioral distributions between67

training and unobserved data may be fairly common in animal field studies. This is68

because the training data are usually collected under specific conditions under which69

observing the animal is more feasible (sometimes even in captivity, [Graf et al., 2015,70

Hammond et al., 2016, Clarke et al., 2021]), and which may not reflect the behavioral71

distribution when not observed. We therefore tested the time budget computation72

bias as well as its correction under data scenarios that simulate varying degrees of73
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difference between the behavioral distributions in the training and test data.74

In this paper, we mathematically formulate and analyze the sources of bias in time75

budgets that are computed based on supervised machine learning models. Based on76

data simulations on acceleration records matched with known behaviours, collected in77

Damaraland mole-rats, we show that the standard time budget computation can be78

inaccurate, and that accounting for the confusion probabilities (the confusion matrix)79

substantially improves the accuracy of the computed time budgets. We demonstrate80

the implementation of the confusion matrix correction for time budgets and explore in81

which data situations it is particularly needed.82

2 Estimating behavioral time-budgets83

The standard method of computing time budgets as the distribution of classified be-84

haviours introduces errors related to accuracy properties of the classifier. There are85

two sources of error when estimating the proportion of any specific behavior. Consider86

for instance the estimate of the proportion of Eating. Some of the samples where the87

correct behavior was Eating may be mistakenly classified as other behaviors (this is88

known as type II error; false negative). Conversely, some of the samples where in89

reality other behaviors took place may be wrongly classified as Eating (known as type90

I error; false positive). In case the two types of error happen to cancel each other out91

the estimation will be correct, whereas in any other case type I and type II errors will92

produce a systematic bias. This bias and method to correct for it were first formulated93

by Lipton et al. (2018) in the machine learning literature. We adapt the derivation94

here to elucidate the sources of the bias in a comprehensive way in the context of95

behavioral time budgets.96

We can quantify the amount of estimation error in terms of the unknown correct97

time-budget and the predictor’s confusion matrix. The proportion of false negative98

for a specific behavior is defined as the probability of the reality being the specific99

behavior, and the classifier predicting otherwise:100
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Pr
(
y = i and f(x) 6= i

)
(1)

where x denotes an acceleration (ACC) sample of a corresponding behavior y, f is the101

classifier (see Appendix A for a full notation table). Using bi to denote Pr
(
y = i

)
, the102

proportion of behavaior i in the data, equation (1) can equivalently be written as:103

bi · Pr
(
f(x) 6= i | y = i

)
(2)

Similarly, the proportion of false positive for the i − th behavior is defined as the104

probability of the classifier predicting the i − th behavior when the correct label for105

the sample is a different behavior:106

Pr
(
y 6= i and f(x) = i

)
(3)

as before, equation (3) can be written as:107

(1− bi) · Pr
(
f(x) = i | y 6= i

)
(4)

and in total, the bias in the estimation of the proportion of time spent in the i − th108

behavior, is the difference of the two:109

∆i = (1− bi) · Pr
(
f(x) = i | y 6= i

)
− bi · Pr

(
f(x) 6= i | y = i

)
(5)

We denote by oi the observed proportion of time spent in the i − th behavior as110

computed from the classified behaviors, we can express the expected bias in estimation111

for the i− th behavior as:112

bi + ∆i = oi (6)

For each behavior i ∈ {1, ..., n} there is a single linear equation (6). This gives a113

collection of n linear equations in n variables, the simultaneous solution of which114

provides the corrected time budget. In matrix form, this set of equations can be115

written as:116
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o = CT b (7)

where o is the vector [o1, ..., on] of observed time budget per behavior, C is the (row-117

normalized) confusion matrix (the ij−th element of C is the fraction of samples of118

behavior i in the validation data, that were classified as behavior j), and b = [b1, ..., bn]119

is the unknown real time budget (see proof in Appendix B). Inverting C yields:120

b = (CT )−1o (8)

which gives a corrected time-budget. The intuitive way to interpret this relation is121

that we ask what the real time-budget must have been, so that together with the122

known confusion matrix for our classifier, we would get the computed time budget.123

This sheds light on some properties of the time-budget correction.124

First, as expected, the estimate of any behavior that is perfectly classified, in125

terms of recall and precision, will not be changed at all by the correction. This is true126

because the associated ∆ for this behavior will necessarily be 0 (Equation 5). Second,127

due to equation (5), behavioral classes of lower proportion and lower classification128

precision will tend to be over-estimated before the correction. Classes with high correct129

proportion and low recall will tend to be under-estimated.130

For more information on statistical properties of the estimates produced by (8),131

and a broader discussion of label shift in machine learning, we refer the reader to132

[Lipton et al., 2018] where to the best of our knowledge this correction was first intro-133

duced.134

3 Methods135

3.1 Body acceleration data136

We examined the adjustment of the time budgets according to the confusion matrix137

using data simulations (detailed below) on an empirical dataset of body-acceleration138

records of known behaviours. We obtained this dataset from 16 Damaraland mole-139
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Behavior Eat Dig Rest Sweep Stand Walk total
count 2238 1807 745 729 662 410 6591

Table 1: Overall distribution of labels

rats (DMRs) that were collared with acceleration loggers (Technosmart LTD, Italy)140

for 1-3 weeks, and videotaped during this period to match the acceleration records141

with known behaviours. The collars were fitted under isoflurane anesthesia, with142

collar weight (2.8 (g)) being less than the 3% of the smallest collared animal used143

in this study (108 (g)). Acceleration was recorded by the loggers continuously at144

25Hz in each of three perpendicular axes. The collaring and videotaping took place145

in a laboratory facility in the southern Kalahari (Kuruman River Reserve, South-146

Africa), wherein several groups of mole-rats are housed in a large system of tunnels147

that mimic their underground habitat [Zöttl et al., 2016, Houslay et al., 2020]. These148

tunnels are built of mostly transparent tubes, allowing to observe the DMRs behaviours149

(see [Zöttl et al., 2016], for details). We recorded 57, 10-minutes videos of the collared150

individuals and labelled the behaviours when they were clearly visible using the Boris151

software [Friard and Gamba, 2016]. The ACC data were then coupled with labelled152

behaviours and the analysis was conducted on 2-sec segments of acceleration records153

of a single behaviour (shorter behaviours were omitted). Only the most frequent154

behaviours were included in the analysis, which were: resting, eating, walking, digging,155

sweeping, and standing (See Table 1 for the behavioral distribution of the dataset156

collected). There were another 26 classes of behaviours, consisting in total 17% of157

the labelled behaviours, which were not included in the analysis in order to simplify158

our study which solely aimed to examine a methodological concept (rather than the159

DMRs biology). For additional validation, we repeated the main analysis with all the160

beahviours included, with the infrequent behaviors aggregated to an ”Other” class.161

The results did not change qualitatively (see Appendix E). All research including the162

housing and collaring of the DMRs were done with approval of University of Pretoria163

Animal Ethics Committee (permits EC089-12, SOP-004-13, EC059-18).164
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3.1.1 Data processing165

For each 2-sec acceleration record, 55 statistics were computed (e.g., Mean, Median,166

and Standard Deviation of each axis), and used as input to train the supervised ma-167

chine learning models (See [Resheff et al., 2014] for a detailed manual of supervised168

learning of behavioral modes from sensor measurements). The models were trained169

to classify samples to one of the target behaviors (resting, eating, walking, digging,170

sweeping, and standing). In all experiments, the data were divided into three parts,171

designated train, validation, and test respectively. The size of each partition was172

reported for each experiment separately. The machine learning models (random for-173

est with 250 trees, [Buitinck et al., 2013]) were trained using the train partition only.174

A confusion matrix was computed using the validation partition only. Time budget175

results were reported based on the test partition only.176

3.2 Simulation experiments177

The purpose of the following simulation experiments is twofold: first, to measure the178

amount of bias in the regular computation of behavioral time budgets (from the distri-179

bution of the classified behaviours) under various data scenarios; second, to quantify180

the ability of the confusion-matrix based correction described above to improve the181

accuracy of the calculated time budgets.182

In the first set of simulations we examined the basic case where the training and183

test datasets have the same behavioral distribution. This reflects the ideal setting, in184

which the behavioral distribution during training is identical to that in the unobserved185

dataset. To do so, the entire data was evenly split at random into 3 equal sized186

partitions designated train, validation, and test, the classifier was trained on the train187

partition, the confusion matrix was generated based on the validation partition, and188

the regular and corrected time budgets were calculated on the test partition. To189

robustly collect statistics of estimation error, we repeated the process for 250 iterations190

with a different random split of data each time.191

Next, we examined scenarios where a behaviour was represented disproportionately192
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in the training set versus the test set. This addresses the case when during observations193

for obtaining the training set, the animals were conducting some behaviours more or194

less frequently than when not observed. Keeping the test set uniform (100 samples195

of each behavior), we simulated cases where one of the behaviors was under or over-196

expressed (20 to 200 with increments of 10) in the training set while the others were197

held constant (at 60 samples each for all other behaviours). All the remaining data198

were assigned to the validation set. The process was repeated 10 times for each value199

of under or over expression, for each behavior, and the regular and corrected time200

budget tables were calculated.201

Third, we examined a similar scenario to the above but this time keeping the202

training set distribution constant (60 samples per behaviour) and varying the extent of203

representation of a single behaviour in the test dataset (20-200 samples at increments204

of 10), while the others remained constant (100 samples per behaviour). All the205

remaining samples were assigned to the validation set. Again, the process was repeated206

10 times for each value of expression, for each behavior, and the regular and corrected207

time budget tables were calculated.208

4 Results209

Train and test data with equal behavioral distributions. Our first, basic210

set of simulations with training and test sets of equal behavioral distributions showed211

that there is a bias in time budget estimates (Fig. 1, left column). For example,212

eating behaviour was estimated to constitute 22% of the total behaviour whereas its213

true proportion was 16.6%. The simulations also showed that on average the bias214

was eliminated completely when the ‘confusion-matrix correction’ is implemented to215

adjust the time budget estimates (Fig. 1, right column).216

Train data with varying behavioral distributions. A series of simulations217

in which a single behaviour in the training set varied in its proportion (from under218

to over representation) showed that the time budget estimate (calculated on the test219
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Figure 1: Distribution of deviation from correct time budget per behavior in
250 simulations for the regular time budgets (left column) and corrected time
budgets (right column). Deviation is presented as the proportion (percentages)
of the behaviour in the classified (annotated) behaviours minus its correct pro-
portion (See Table 1.) Vertical dashed line represented the average of each
distribution. Classifier performance (F1 mean ± std) per behavior across the
250 iterations: Dig 88.07 ± 0.92, Eat 85.5 ± 0.74, Rest 97.13 ± 0.66, Sweep
80.25 ± 1.75, Stand 56.41 ± 2.96, Walk 63.72 ± 3.15
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set) increased monotonically with the proportion of the behaviour in the training set220

(Fig 2). Thus, under or over representation in the training set was a source of bias in221

estimating the true proportion (time budget) of the behaviour in the test data. The222

range of estimation error was highly variable, depending on the behaviour, with, for223

example, estimates in the range of 5% - 30% for Stand (true value is always 16.66%),224

versus a range of roughly 16%- 18% for Rest (Fig 2). However, for all behaviours, the225

corrected time budget estimates (generated using the ‘confusion matrix correction for226

time budgets’) were uncorrelated with the behavior’s proportion in the training set,227

showing that the correction eliminated the bias even in cases of large over (or under)228

expression of a behavior in the training data, and generally provided more accurate229

estimates than the regular, uncorrected time budget estimates (Fig 2).230

Test data with varying behavioral distributions. A series of simulations231

in which a single behaviour in the test set varied in its proportion (from under to over232

representation) showed that the corrected time budget (using the confusion matrix233

correction) follows the true time budget more closely than the regular time budget,234

indicating the former is more accurate (Fig 3).235

5 Discussion236

When behaviours are classified from sensor measurement data using a supervised ma-237

chine learning classifier, the straightforward approach of calculating behavioral time238

budgets is from the distribution of the classified behaviours. The drawback in this239

common approach is that it considers only the final output of the classification model240

- the classified behaviours, and neglects information regarding the rates of confusion241

between behaviours.242

Our paper shows both theoretically and by using data simulations that the current243

standard method of computing time budgets is biased by the asymmetric confusion244

properties of the classifier. We show that this bias can be corrected by adjusting245

the time budget according to the confusion matrix of the classifier. We introduce246
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Figure 2: Effect of over or under expression of a single behavior in the training
data on computed time budget in the wild for the same behavior. Test data is
uniform. Blue - regular time budgets, Orange - corrected time budgets. Black
line indicates the correct value. Dots indicate single trial results, solid lines are
the averages.
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Figure 3: Effect of over or under expression of a single behavior in the test
data on computed time budgets. Training data is uniform. Blue - regular time
budgets, Orange - corrected time budgets. Black line indicates the correct value.
Dots indicate single trial results, solid lines are the averages.

13



this correction following Lipton et al. (2018), and we call it the ‘confusion matrix247

correction for time budgets’. The implementation of this method is simple, using the248

three-lines of code provided in appendix D. We demonstrate that using it improves249

the accuracy of time budgets (or of frequency of behaviours) that are derived from250

machine learning models.251

In our first, basic series of simulations, where train and test distributions were252

identical (See Table 1 for the precise distribution), results showed varying degrees of253

time budget bias for the different behaviours. The bias was minor for behaviours with254

very high classification accuracy (e.g., rest, see for example a confusion matrix in Table255

2, Appendix C), but other, less accurately-classified behaviours such as eat or stand256

were over or under estimated by up to 30% of their true proportion.257

The bias increased when behaviours were over (or under) represented in the train258

data versus the test data (in which their proportion stayed fixed at 16.66%), with259

estimates biased as high as three times the true proportion of the behaviour. These260

simulation results showed a positive association between the behavior’s representation261

in the training data and its estimated proportion, even though its true proportion262

stayed constant. Thus, the bias in time budget estimates increased with increasing263

disparity between the train and test data distributions. Consequently, one could rea-264

sonably obtain a wide range of behavioral time budgets for the same body acceleration265

data set, depending solely on the behavioral distribution in the data collected to train266

the classifier. This effect may have significant consequences for the validity of results267

obtained using the standard time budget estimation method without correction for268

this systematic bias.269

In practice, we believe that a scenario of differing training and test behavioral dis-270

tributions is common in wildlife research. Training data is usually confined to being271

collected when animal observation conditions are feasible or convenient. In some stud-272

ies, it is collected from animals in captivity (e.g. [Graf et al., 2015, Hammond et al., 2016,273

Clarke et al., 2021]), in others only during more approachable life phases of the animal,274

such as only during breeding period in migrating birds (e.g. [Rotics et al., 2016]). Such275

training data is, therefore, unlikely to reflect precisely the distribution of behaviours in276
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the entire free-ranging data. Moreover, since research questions involve a comparison277

of time-budgets in different situations potentially having different budgets, it is not278

possible for training data to fit all the behavioral distributions.279

In our last series of simulations, in which behaviours were over (or under) repre-280

sented in the test data versus the train data (in which their proportion stayed fixed at281

16.66%), we found a ‘regression to the mean’ bias in the time budgets estimation. i.e.,282

behaviors with small actual proportions are over-estimated, and conversely behaviors283

with large actual proportions are under-estimated, where the pivot point is around the284

proportion used in training data (16.66% for each behaviour). It is noteworthy that285

these simulation results with uniform training data show smaller overall estimation286

bias, compared to the simulations in which behaviours were over (or under) expressed287

in training data.288

Our simulation results indicate that using the proposed ‘confusion matrix correc-289

tion for time budgets’ improves the time budget accuracy and on average eliminates290

the bias completely, regardless of the behavior’s classification accuracy and the degree291

of disparity between the train and test data distributions.292

Other methods for inferring animal behavior from acceleration measurements that293

do not rely on supervised learning include algorithms that characterize elements of294

movement such as turning points [Potts et al., 2018], and trajectory segments [Resheff, 2016].295

These methods may also be susceptible to the bias arising from the confusion proper-296

ties of the algorithm, and thus could benefit from the confusion matrix correction.297

6 Conclusion298

The current standard method for computation of behavioral time-budgets based on299

supervised learning of behavioral modes from acceleration data [Resheff et al., 2014,300

Nathan et al., 2012] ignores information about the confusion probabilities of specific301

behaviors and frequently leads to biased estimates of time budgets. This is especially302

the case for behaviours of lower classification accuracy, for small behavioral categories,303

and for behaviors that were over or under represented in training data. The corrected304
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time-budget estimates take the classifier’s confusion matrix into account leading to305

more accurate results. These findings suggest that the confusion matrix correction for306

time budgets should generally be used whenever computing behavioral time-budgets.307

The correction should be applied on each time-budget computed, based on the specific308

unit of the analysis, i.e., per individual’s time budget if individuals are being con-309

trasted, or for example per individual and period if individual behaviour is compared310

between different periods (like summer and winter, or day and night).311
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T. H. (2020). Benefits of cooperation in captive damaraland mole-rats. Behavioral365

Ecology, 31(3):711–718.366

[Kays et al., 2015] Kays, R., Crofoot, M. C., Jetz, W., and Wikelski, M. (2015). Ter-367

restrial animal tracking as an eye on life and planet. Science, 348(6240).368

[Lipton et al., 2018] Lipton, Z., Wang, Y.-X., and Smola, A. (2018). Detecting and369

correcting for label shift with black box predictors. In International conference on370

machine learning, pages 3122–3130. PMLR.371

[Nathan et al., 2008] Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon,372

R., Saltz, D., and Smouse, P. E. (2008). A movement ecology paradigm for unifying373

organismal movement research. Proceedings of the National Academy of Sciences,374

105(49):19052–19059.375

[Nathan et al., 2012] Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski,376

M., and Getz, W. M. (2012). Using tri-axial acceleration data to identify behavioral377

modes of free-ranging animals: general concepts and tools illustrated for griffon378

vultures. Journal of Experimental Biology, 215(6):986–996.379

[Potts et al., 2018] Potts, J. R., Börger, L., Scantlebury, D. M., Bennett, N. C., Ala-380

gaili, A., and Wilson, R. P. (2018). Finding turning-points in ultra-high-resolution381

animal movement data. Methods in Ecology and Evolution, 9(10):2091–2101.382

18



[Resheff, 2016] Resheff, Y. S. (2016). Online trajectory segmentation and summary383

with applications to visualization and retrieval. In 2016 IEEE international confer-384

ence on big data (Big Data), pages 1832–1840. IEEE.385

[Resheff et al., 2014] Resheff, Y. S., Rotics, S., Harel, R., Spiegel, O., and Nathan, R.386

(2014). Accelerater: a web application for supervised learning of behavioral modes387

from acceleration measurements. Movement ecology, 2(1):1–7.388

[Rotics et al., 2016] Rotics, S., Kaatz, M., Resheff, Y. S., Turjeman, S. F., Zurell,389

D., Sapir, N., Eggers, U., Flack, A., Fiedler, W., Jeltsch, F., et al. (2016). The390

challenges of the first migration: movement and behaviour of juvenile vs. adult391

white storks with insights regarding juvenile mortality. Journal of Animal Ecology,392

85(4):938–947.393

[Rotics et al., 2017] Rotics, S., Turjeman, S., Kaatz, M., Resheff, Y. S., Zurell, D.,394

Sapir, N., Eggers, U., Fiedler, W., Flack, A., Jeltsch, F., et al. (2017). Wintering395

in europe instead of africa enhances juvenile survival in a long-distance migrant.396

Animal Behaviour, 126:79–88.397

[Weegman et al., 2017] Weegman, M. D., Bearhop, S., Hilton, G. M., Walsh, A. J.,398

Griffin, L., Resheff, Y. S., Nathan, R., and David Fox, A. (2017). Using accelerome-399

try to compare costs of extended migration in an arctic herbivore. Current zoology,400

63(6):667–674.401

[Williams et al., 2020] Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I.,402
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10 Appendix A: Notation410

notation meaning

1 x Acceleration sample

2 y Behavior label of an acceleration sample

3 f classifier; f(x) is the predicted behavior for sample x

4 bi Time budget for the i− th behavior

5 oi Labelled (observed by classifier) time budget for the i− th behavior

6 ∆i Estimation error of time budget for the i− th behavior

7 C Confusion matrix; Cij is the fraction of samples of behavior i in the validation

data, for which the classifier assigned behavior j

411
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11 Appendix B: proofs412

Proposition 1. Let C denote the confusion matrix for a given classifier. The expected413

labeled time-budget o obeys: o = CT b where b is the correct time-budget.414

Proof. From equation (5) and (6):415

oi = bi + ∆i (9)

= bi + (1− bi) · Pr
(
f(x) = i) | y 6= i

)
− bi · Pr

(
f(x) 6= i) | y = i

)
(10)

= bi +
∑
j 6=i

bj · Pr
(
f(x) = i) | y = j

)
− bi · Pr

(
f(x) 6= i) | y = i

)
(11)

= bi +
∑
j 6=i

bj · Cji − bi · (1− Cii) (12)

= bi +
∑
j 6=i

bj · Cji + bi · Cii − bi · Cii − bi · (1− Cii) (13)

= bi +
∑
j

bj · Cji − bi (14)

=
∑
j

bj · Cji (15)

which by the definition of matrix multiplication is the i− th element in CT b.416

note – in the second transition we use the fact that on the one hand:417 ∑
j 6=i Pr

(
f(x) = i ∩ y = j

)
= Pr

(
f(x) = i ∩ y 6= i

)
= (1− bi) · Pr

(
f(x) = i) | y 6= i

)
418

and on the other hand:419 ∑
j 6=i Pr

(
f(x) = i ∩ y = j

)
=
∑

j 6=i Pr(y = j) · Pr
(
f(x) = i) | y = j

)
=
∑

j 6=i bj · Pr
(
f(x) = i) | y = j

)
420

thus:421

(1− bi) · Pr
(
f(x) = i) | y 6= i

)
=
∑

j 6=i bj · Pr
(
f(x) = i) | y = j

)
.422

Proposition 2 (Alternative derivation of (7)). o = CT b423

Proof. [CT b]i =
∑

j bj · Pr(f(x) = i | y = j) =
∑

j Pr(y = j) · Pr(f(x) = i | y = j)424

=
∑

j Pr(f(x) = i , y = j) = Pr(f(x) = i) = oi425
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12 Appendix C: confusion matrix426

Dig Eat Forward Loco Rest Stand Sweep
Dig 1529 45 10 0 0 23
Eat 34 1970 10 0 16 8
Forward Loco 7 27 155 0 5 16
Rest 0 3 0 535 7 0
Stand 6 141 2 3 309 1
Sweep 28 19 4 0 2 476

Table 2: Confusion matrix. Training data: 200 samples of each behavior. Test
data is all the remaining samples. Overall accuracy: 92.26%. Rows indicate
observed labels. Columns indicate predicted labels.
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13 Appendix D: code example427

428

import numpy as np429

from sklearn.preprocessing import normalize430

431

432

def compute_correction_time_budget(conf_mat , observed_budget):433

"""434

:param conf_mat: numpy array (nxn)435

confusion matrix436

:param observed_budget : numpy array (n)437

observed time -budget438

:return: numpy array (n)439

corrected time -budget440

"""441

442

# make confusion matrix row - normalized443

cm = normalize(conf_mat.astype(float), norm="l1")444

445

# correction446

return np.linalg.pinv(cm.T) @ observed_budget447
448

23



14 Appendix E: Results with all behavioral classes449

In the results reported in the paper (Section 4), only the most frequent behaviours450

were included in the analysis, which were: resting, eating, walking, digging, sweeping,451

and standing. There were another 26 classes of behaviours, consisting in total 17% of452

the labelled behaviours, which were not included in the analysis in order to simplify453

our study which solely aimed to examine a methodological concept (rather than the454

DMRs biology). Here we repeat the main results (Figure 1) without excluding the455

remaining behavioral classes. Instead, they are grouped and designated the ”Other”456

label. The full distribution of samples is summarized in Table (3).457

Behavior Eat Dig Other Rest Sweep Stand Walk total
count 2238 1807 970 745 729 662 410 7561

Table 3: Overall distribution of labels including ”Over”

Results for this basic set of simulations with training and test sets of equal be-458

havioral distributions showed here again that there is a bias in time budget estimates459

(Fig. 4, left column). For example, eating behaviour was estimated to constitute ap-460

proximately 24% of the total behaviour whereas its true proportion was 14.3%. The461

simulations also showed that on average the bias was eliminated completely when the462

‘confusion-matrix correction’ is implemented to adjust the time budget estimates (Fig463

4, right column).464
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Figure 4: Distribution of deviation from correct time budget per behavior in
250 simulations for the regular time budgets (left column) and corrected time
budgets (right column). Deviation is presented as the proportion (percentages)
of the behaviour in the classified (annotated) behaviours minus its correct pro-
portion. Vertical dashed line represented the average of each distribution.
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