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ABSTRACT 

Drosophila eggs are highly polarised cells that use RNA-protein complexes to regulate 

storage and translational control of maternal RNAs. Ribonucleoprotein granules are a 

class of biological condensates that form predominantly by intracellular phase separation. 

Despite extensive in vitro studies testing the physical principles regulating condensates, 

how phase separation translates to biological function remains largely unanswered. In 

this perspective, we discuss granules in Drosophila oogenesis as a model system for 

investigating the physiological role of phase separation in development. We review key 

maternal granules and their properties while highlighting ribonucleoprotein phase 

separation behaviors observed during development. Finally, we discuss how concepts 

and models from liquid-liquid phase separation could be used to test mechanisms 

underlying granule assembly, regulation and function in Drosophila oogenesis.  
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Introduction 

Intracellular localisation of messenger RNAs (mRNAs) is a conserved mechanism for 

achieving compartmentalised protein expression in polarised cells such as neurons and 

fibroblasts (1–5). To generate precise protein synthesis and prevent ectopic expression, 

mRNA localisation is often coupled to translational regulation. One way to achieve this 

regulation is through binding of trans-acting RNA binding proteins (RBP) to cis-acting 

sequences in the mRNA, which together form micron-sized compartments called 

ribonucleoprotein (RNP) granules (6–10). These granules function in the packaging, 

transport and translational control of mRNAs, and can rapidly respond to cellular and 

external stimuli. With the ability to control spatial and temporal gene expression, 

understanding how RNP granules form and disassemble is a key question in cell biology.   

 

RNP granules belong to a class of organelles which lack a physical membrane that 

separate their contents from the cytoplasm. Different from the commonly known 

membrane-bound organelles such as the Endoplasmic reticulum and Golgi apparatus, 

membrane-less granules (also referred to as biomolecular condensates) constitute an 

additional level of macromolecular organization in the cell (11–13). Most commonly 

forming via liquid-liquid phase separation (LLPS), these condensates function as 

microenvironments for cellular reactions (14–16). This process of “de-mixing” allows RNA 

and protein molecules to condense into a concentration dependent dense phase which 

coexists with the soluble cytoplasmic phase (17–20). The idea that cellular contents 

exhibit liquid-like characteristics was proposed by multiple groups over the past century, 

but received renewed interest when P granules in the C. elegans embryo were shown to 
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exhibit liquid-like behavior (21,22). This discovery has since led to a dramatic increase in 

the research of biomolecular condensates (18,23–35). For a more extensive discussion 

on the physics of condensates, we refer readers to several excellent reviews (36–42).  

Our current understanding of the physicochemical principles regulating condensates has 

been primarily elucidated through in vitro studies of purified RNP components under 

idealised conditions (43). This approach has been instrumental in describing the role of 

non-equilibrium features of living cells including post-translational modifications and ATP 

driven processes, in addition to identifying sequence and structural determinants that 

control condensate phase behavior (14,23,44–49). However, why cells need these 

compartments, when are they utilised, and what their biochemical and biological functions 

are remain largely unanswered.  

 

RNP granules, which typically form in response to accumulation of RNAs, are abundant 

in diverse oocytes, including C. elegans, Drosophila and Xenopus (50–53). Oocytes are 

highly specialized cells which often rely on RNP granules to localise maternal transcripts 

for pattern formation in the early embryo (5,54–56). Oocytes therefore offer a unique 

opportunity to test the physicochemical principles of phase separation in a living system 

and further explore the biological role of RNP condensation.   

 

Drosophila oocytes rely on maternal RNAs and proteins produced in the adjacent, 

supporting nurse cells which are subsequently deposited into the oocyte (1,2,7,57). To 

support egg development in the absence of transcription in the oocyte, many RNP 

granules are highly optimised to ensure long term storage and translational repression of 
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maternal mRNAs until fertilisation (7,58–60). Importantly, homologues and orthologues 

of Drosophila RNPs have been shown to phase separate in other systems, including 

yeast, C.elegans and zebrafish (15,61–63). Together with the many experimental 

advantages, Drosophila eggs offer a powerful system to investigate the physical 

principles and biological role of RNP condensation in early development.  

 

In this perspective, we provide a brief overview of RNP granules in Drosophila oogenesis 

and highlight examples of liquid-like behavior observed during early development. We 

then discuss how key concepts and models from LLPS could be used to understand the 

physical, structural and molecular principles regulating granule assembly and function 

during oogenesis. We conclude by highlighting how a multi-disciplinary approach using 

in vitro and in vivo studies, along with modelling, could better illustrate the physiological 

role of biomolecular condensates. 

 

Overview of maternal RNP granules in oogenesis 

Body axis patterning of Drosophila depends on the localisation, storage, translational 

control and degradation of maternal RNAs throughout oogenesis and early 

embryogenesis (1,2,58,64). Several aspects of RNA metabolism during development are 

known to be regulated by membrane-less organelles, primarily RNP granules. Based on 

the presence of specific RNP components, both cytoplasmic (e.g. Balbiani bodies and U 

bodies) and nuclear granules (e.g. Cajal bodies, histone-locus bodies and induced 

nuclear bodies) have been described in Drosophila egg chambers (65–69). As a 

comprehensive discussion of all RNPs identified in oogenesis is beyond the scope of this 
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perspective, we summarise key similarities and differences among the well-studied 

cytoplasmic maternal RNP granules namely; nuage, sponge bodies, Processing bodies 

(P bodies) and polar granules (Figure 1). We acknowledge that the nomenclature in this 

field is not always consistent and that the contents of certain “bodies” can be contentious. 

Here, we discuss the granules based on existing structural and compositional evidence. 

  

RNP granule similarities and differences  

The first similarity is the absence of an outer membrane, thereby allowing RNP granules 

to rapidly and reversibly alter their composition in response to changes in cellular 

conditions such as pH, temperature and osmolarity. At egg activation, for example, 

change in osmolarity is thought to cause P bodies in the mature oocyte to rapidly dissolve 

and release stored mRNAs for translation (69–71). A second similarity is internal 

structuring within granules which creates an additional level of macromolecular 

organisation. Certain maternal mRNAs and RBPs for instance, are shown to be 

differentially partitioned within P bodies (62,69,72). A third, obvious, similarity is that they 

all classify as RNP granules due to the presence of both proteins and RNAs. Therefore, 

physical principles underlying their biogenesis and regulation could be similar.   

 

Despite these similarities, maternal RNP granules have unique functions at different 

stages of development. Nuage, the earliest visible RNP granules localised around nurse 

cell nuclei, are proposed to be sites of piwi-interacting RNA (piRNA) processing and 

transposon silencing while sponge bodies package and transport translationally 

repressed maternal mRNAs (65,73–76). P bodies and polar granules are unique as their 
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roles extend beyond oogenesis into embryogenesis. While P bodies help facilitate RNA 

storage and translational regulation, polar granules at the posterior of the oocyte function 

to sequester factors required for the formation of the embryonic germ cells (77–79). A 

second key difference is compositional diversity among the different granules (Table 1). 

Importantly, granules such as sponge bodies, P bodies and polar granules, are not static 

in their protein composition, but rather are able to dramatically alter their composition to 

facilitate specific functions. Sponge bodies, for example, change their composition and 

dynamics immediately upon entry into the oocyte from the adjacent nurse cells (65). Other 

notable differences such as size and morphology between maternal granules may exist, 

however, these features are less well characterised. It is likely that the morphological and 

compositional differences between granules dictate their material states. Even with these 

differences, structural and molecular similarities suggest that common underlying 

physical principles regulate the properties of maternal RNP granules.    

 

Examples of phase separation during early Drosophila development 

Despite sharing several proteins, how maternal RNP granules regulate their composition 

is a long-standing question. Our understanding of the biophysical and biochemical 

principles that govern granule diversity, assembly and disassembly has recently benefited 

from new conceptual frameworks. LLPS has emerged as an attractive model to explain 

the observed properties of membrane-less organelles, including RNP granules 

(11,48,80–83). The earliest example of maternal RNP structures shown to exhibit liquid-

like behavior were induced “bodies” found in the Drosophila oocyte nucleus. These bodies 

are highly dynamic, with frequent fusion events and exchange of molecules between the 
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bodies and the nucleoplasm. Interestingly, their formation was induced by changes in the 

salt concentration, indicating that weak electrostatic interactions may govern their 

assembly (84,85).  

 

Another example from oogenesis occurs in the cytoplasm when axis patterning maternal 

mRNAs, bcd and oskar (osk), enter the oocyte at the anterior margin from the adjacent 

nurse cells and independently coalesce into larger particles. These separate RNP 

associations localise to opposite poles of the oocyte, where they are anchored (86,87). 

While the biological importance of coalescence and the impact on granule properties is 

not clear, it is plausible that coalescence leads to increased interactions that stabilise over 

time, likely to assist in anchorage.  

 

In the early embryo, a key nuclear protein associated with heterochromatin assembly and 

function, Heterochromatin Protein 1 alpha (HP1α), phase separates to form dynamic 

liquid-like individual heterochromatin modules that become less dynamic, more stable 

with time (88). This phase transition is accompanied by changes in the morphology and 

material state of HP1α, likely enabling stronger DNA compaction. Similarly, polar granule 

components such as Osk protein, exists as phase separated compartments exhibiting 

liquid-like and hydrogel-like properties (89). Together, these examples suggest that RNP 

liquid-like properties and LLPS are a common phenomenon in Drosophila development. 

This is an appealing prediction as RNP granules can be regulated by developmental cues 

and dynamic molecular interactions. Below we ascribe the current knowledge of 
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condensate properties for investigating RNP granules to elucidate their physiological role 

in development.  

 

Compositional control 

Establishing a condensed network of interacting macromolecules is an essential step in 

granule assembly (90). According to the ‘scaffold and client’ model, scaffolds are 

essential proteins that help promote granule assembly, while clients are proteins that 

transiently interact with scaffolds and regulate condensate properties (91–93). While this 

model has primarily been explored in vitro, RNP granules in the developing egg are a 

powerful in vivo system to test the model and have the advantage of overlapping RBPs 

associated with different granules. This is exemplified by the piRNA binding protein 

Aubergine (Aub), which behaves as a scaffold or client depending on the granule it is 

associated with. While aub mutants result in a partial loss of nuage in the nurse cells, 

these mutants completely disrupt polar granule formation at the posterior of the oocyte 

(94,95). Identifying and testing scaffold and client proteins in vivo with genetics would be 

challenging since many RNPs are essential for egg chamber development in Drosophila. 

Therefore, reconstituting maternal granules in vitro through a minimal system of scaffold 

and client proteins, under physiological conditions, is an important alternative strategy 

(96). This approach will provide insights into how RNP interactions regulate granule 

composition and enable systematic experimentation to identify the underlying sequence 

and structural determinants of scaffolding proteins.  
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Material properties  

RNP granules can exist in diverse material states, such as liquid, gel or solid, each of 

which has a distinct functional consequence (22,62,96–99). Balbiani bodies, for example, 

exhibit solid-like material state likely facilitating stable storage of organelles and 

macromolecules during oocyte dormancy (61,96). Material states of RNPs have been 

largely explored in vitro, but how these properties impact biological function is less well 

understood. 

 

Mature Drosophila oocytes can be stored for multiple days without affecting RNA levels 

(100). This efficient storage of RNAs is likely through RNP granules adopting a stable 

material state. P bodies are an example of storage sites for maternal mRNAs during 

oogenesis. However, P bodies are more complex as grk mRNA associated with P bodies 

is translated during mid-oogenesis while bcd mRNA is stored in P bodies until egg 

activation (69). How P bodies change material states to perform different functions in 

development is key to understanding their role in translational regulation. One clue comes 

from experiments on Maternal expression at 31B (Me31B), a conserved RNA helicase 

found in many storage granules including C. elegans germ granules and mammalian 

somatic P bodies (62,66,101). While knockdown of Me31B shows premature translation 

of stored mRNAs during early oogenesis (66), whether Me31B mutants affect P body 

material state remains unknown. However, it is exciting to consider that these mutant P 

bodies could have less stable material properties resulting in premature mRNA release 

and subsequent translation. Interestingly, P bodies from arrested C. elegans oocyte adopt 

a semi-liquid, viscoelastic material state which allow both stability and flexibility for RNA 
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regulation (62). Comprehensive characterisation of material properties using a 

combination of genetics and quantitative live imaging of RNP components will provide 

key insights into how granule physical states are regulated in response to cellular and 

developmental cues.  

 

Multilayered organisation  

Although RNP condensates contain thousands of diverse macromolecules, for a long time 

they were considered homogenous in organisation. High resolution microscopy revealed 

that condensates can possess structured internal organisation on multiple scales. The 

nucleolus, for example, shows multiple liquid phases co-existing in the same granule 

giving rise to its heterogenous internal organization (102,103). While multi-phase 

organisation has also been reported in stress granules, P bodies, and P granules, the 

biological significance remains less clear (62,69,72,104).  

 

Nuage during early Drosophila oogenesis exhibits levels of internal structuring with at 

least two sub-domains, one with Aub and another with Aub and Argonaute-3 (105). Each 

internal level regulates a different step in the piRNA processing pathway in the nuage, 

supporting a model where proteins in different layers of an RNP granule can execute 

different functions. Drosophila P bodies are another example of granules shown to 

possess structured internal organisation, in this case a shell and core architecture is 

proposed. Specific mRNAs and RBPs are shown to be enriched in different layers of the 

P body, thereby facilitating differential translational regulation (69).  
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To resolve how different components contribute to the overall material state and function 

of RNP granules, a combination of super resolution imaging and quantitative single 

molecule assays should be used (106). This would reveal finer details and localisation of 

specific molecules along with the material state of the RNP in question.  

 

The role of RNA 

RNA storage and translational control is likely a major function of RNP granules in 

oogenesis as they form in response to high levels of untranslated mRNAs and disperse 

at a time when many mRNAs are translated. While proteins are typically considered to be 

the key scaffolds for granule assembly, more recently RNA has also been shown to both 

phase separate and drive the assembly of RNP condensates (80,83,107,108).  

 

In the oocyte, certain localised mRNAs appear to coalescence into larger, less dynamic 

particles at their destination. This apparent change in the physical state is also 

accompanied by their association with RNP granules, such as P bodies or polar granules. 

Separate studies have also demonstrated that RNAse treatment results in the breakdown 

of RNP granules, highlighting the importance of RNA in maintaining the integrity of RNP 

granules (66,78). 

 

These observations suggest a model whereby “sticky” mRNAs promote granule 

nucleation by concentrating key scaffold proteins through sequence specific binding and 

subsequently regulate stability and material property. Testing this model in vivo requires 

developing techniques to selectively disrupt mRNAs while observing the effect on the 
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RNP granules (80). Complementarily, in vitro transcribed RNAs could be used in 

combination with specific scaffold proteins to reconstitute RNP granules. If successful, in 

vitro studies would be amenable to testing RNA sequences, for example in the 

untranslated regions, in the formation and regulation of RNP granules. 

 

Concluding remarks 

The field of phase separation has made clear progress towards deciphering the 

physicochemical rules governing biomolecular condensates. Since majority of the data 

are derived from in vitro reconstitution and cell culture studies, there is still much to learn 

about the functional role of phase separation at a biological level. Here, we have 

highlighted how granule properties impact function and discussed the potential for 

Drosophila oogenesis to be used for investigating fundamental principles of phase 

separation in RNP granule assembly, organisation and material properties (Figure 2).  

 

Fundamentally, it is extremely challenging to control all of the variables and factors that 

regulate condensates in vivo. Therefore, in vitro studies, including RNP granule 

purification, are important for identifying key features, such as sequence determinants, 

the role of non-equilibrium factors and multivalent RNP interactions (109,110). Together, 

a combination of in vitro studies, modelling and in vivo assays will be required to fully 

comprehend the physiological functions of biomolecular condensates in cell and 

developmental biology.   
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Summary points 

• Liquid-liquid phase separation is an emerging paradigm to understand 

biomolecular condensates and their roles in regulating cellular processes. 

• RNP granules are highly conserved biomolecular condensates involved in 

regulating RNA metabolism.  

• Diverse maternal mRNAs are regulated by RNP granules during Drosophila 

oogenesis. 

• Studying the physicochemical principles of RNP granules in the Drosophila egg 

chamber could provide insights into the biological role of phase separation.  
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Figure 1: Schematic and role of maternal granules in egg chambers 

Nuage is localised around the nurse cell nuclei, while sponge bodies are dispersed 

throughout the cytoplasm of the nurse cells. P bodies are enriched at the anterior margin 

of the oocyte (especially in the dorso-anterior corner). They are also observed throughout 

the oocyte and nurse cell cytoplasm. Polar granules are present at the posterior pole of 

the oocyte. Fifteen nurse cells, positioned to the anterior, produce the components 

(mRNAs, proteins, etc.) required for the development of a single oocyte. These germline-

derived cells are interconnected through cytoskeletal bridges, allowing for cytoplasmic 

movement between them, and are surrounded by somatic-derived layer of follicle cells. 

(Representative cell types of the egg chamber are outlined with black dotted lines. 

Representative nuclei are outlined with white dotted lines and marked with an “n”). 

Created in BioRender. 

 

Table 1: Compositional diversity and location of selected maternal RNP granules 

Proteins shown to be enriched/localised in selected maternal granules. In bold are 

proteins associated with more than one granule. Whilst this is not an exhaustive list of 

proteins, those included are the most well-understood relative to each granule. With many 

shared proteins, it is important to consider testing a combination of different markers when 

studying RNP granules in development. 

	

Figure 2: Model for RNP granule assembly and maturation in Drosophila egg 

chambers  

In the cytoplasm, key scaffolding proteins and mRNAs, through multivalent interactions, 
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come together to form RNP complexes. Multiple RNP complexes nucleate to assemble a 

primary granule via LLPS. Depending on the partitioning of specific client proteins and 

RNAs, granule diversity maybe achieved. Although client-scaffold interactions may 

already be present during primary granule assembly, our model proposes that higher 

partitioning of clients regulate granule material states by modulating the strength of the 

resulting molecular interactions. While liquid-like and gel-like physical states are more 

commonly observed in vivo, other material states can exist based on specific 

developmental and environmental cues. Created in BioRender. 
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Granule type Proteins enriched Location

Nuage Ago3, Armitage, Aubergine, Krimper, Maelstrom, 
Me31B, Papi, Qin, Spindle-E, Squash, Tejas, 
Trailer hitch, Tudor, Vasa, Zucchini

nurse cells

Polar granules Aubergine, Dcp-1, eiF4A, Me31B, Oskar, Piwi, 
Pyruvate kinase, 6-phosphofructokinase, Staufen, 
Ter 94, Tudor, Vasa

oocyte, 
embryo

P bodies Ago-3, Bruno, Cup, Dcp-1, Dcp-2, Edc3, eiF4E, 
Exuperentia, Growl, Hpat, Hrb27C, Me31B, Orb, 
Pacman, Staufen, Squid, Trailer hitch

nurse cells, 
oocyte, 
embryo, adult 
neurons

Sponge bodies BicC, Bruno, Btz, Cup, Dcp-1, Dcp-2, eiF4E, 
Exuperentia, Gus, Hrb27C, Me31B, Orb, Oskar, 
Squid, Trailer hitch

nurse cells, 
oocyte




