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Summary. Variable-order Markov chains have been used to model discrete se-

quential data in a variety of fields. A host of methods exist to estimate the history-

dependent lengths of memory which characterize these models and to predict new

sequences. In several applications, the data-generating mechanism is known to be

reversible, but combining this information with the procedures mentioned is far from

trivial. We introduce a Bayesian analysis for reversible dynamics, which takes into

account uncertainty in the lengths of memory. The proposed model is applied to the

analysis of molecular dynamics simulations and compared to several popular algo-

rithms.

Keywords: Bayesian analysis, reinforced random walk, reversibility, variable-

order Markov model.

1. Introduction

Time reversibility characterizes numerous stochastic models, from queueing net-

works (Kelly, 1979) to models of physical systems governed by reversible mechanics
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(Van Kampen, 1992). This property is commonly associated to Markov chains.

However, in several applications the Markovian assumption is restrictive, and one

needs to model higher-order dependencies. Higher-order Markov models require the

investigator to deal with the problem of a rapidly increasing number of unknown

parameters. Here, we propose a Bayesian approach to this problem, tailored to

reversible processes.

Our motivating application is the analysis of molecular dynamics simulations.

These are computer experiments which mimic the structural transitions of macro-

molecules in time using a physics-based Hamiltonian operator. The simulation is a

reversible Markov chain representing the trajectory of hundreds of atoms in a three

dimensional space. This high-dimensional process is typically projected onto a par-

tition of the space of molecular structures, to produce a discrete time series which

is still reversible, even though it is not necessarily a Markov chain. An accurate

characterization of the projected dynamics provides the biologist with estimates of

the rates of transitions between biologically relevant states. Such estimates, with

associated uncertainty measures, are also useful in the design of adaptive simula-

tions which can significantly reduce the computational burden of these experiments

(Prinz et al., 2011).

In variable-order Markov models, the length of memory is a function of the

previously observed states. If all possible sequences of states are arranged in a

context tree, where every branch is truncated, then it is only necessary to specify

transition probabilities at the nodes where truncations occur. The length of each

branch is a context-specific length of memory. The literature on variable-order

Markov chains can be traced back to Rissanen (1983) and Weinberger et al. (1995)

who developed algorithms based on context tree pruning. Statistical properties of

these algorithms were developed by Bühlmann and Wyner (1999) and Bühlmann

(2000). Begleiter et al. (2004) review relevant algorithms, such as Context Tree

Weighting which is similar in spirit to Bayesian model averaging methods.

Bayesian nonparametric priors have been recently proposed for higher-order

Markov chains. In the hierarchical Dirichlet language model (MacKay and Peto,

1995), there are transition distributions Gu out of every point u in ∪n
i=1X

i, where
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X is the state space and n is the length of memory. If, for instance, X corresponds

to the alphabet, then the prior for Gword is a Dirichlet distribution with mean iden-

tical to the ancestor Gord. Teh (2006), Wood et al. (2009) and Mochihashi and

Sumita (2008) developed successful nonparametric extensions of this construction

for language modeling.

However, it would be difficult to combine the hierachical structure of these

Bayesian models with our goal of doing inference for a reversible process. An-

nis et al. (2010) have shown that when the data-generating process is known to be

reversible, models that enforce reversibility can have superior asymptotic proper-

ties. In order to develop a procedure that incorporates reversibility, we introduce

the random walk with amnesia. This process generalizes the variable-order Markov

model and is related to Probabilistic Suffix Automata, a construction introduced

by Ron et al. (1996). Relying on the conjugate prior for reversible variable-order

Markov chains introduced by Bacallado (2011), we define a Bayesian analysis for

the random walk with amnesia. Our main contribution is an efficient procedure

for Bayesian inference of reversible dynamics when the context-specific lengths of

memory are unknown.

We note that an alternative, and widely used, modeling approach for sequential

data is offered by hidden Markov models and extensions such as tiered hidden

Markov models; see Cappé et al. (2005) for a comprehensive treatment. These

models introduce memory through a latent process instead of explicitly modeling

the dependence on history, like the methods considered in this paper. Reversible

versions have been applied recently (Palla et al., 2014).

2. Reversible dynamics

2.1. The random walk with amnesia

We define a random walk with finite memory taking values in a finite space X . Our

random walker remembers only the last portion of his trajectory, and the length of

this vector of states changes in time. At every step, the walker can either (i) lose

the first element of his memory, or (ii) proceed to a new state in X . For example,
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when X = {a, b, c} a path could be

abc
(i)
→ bc

(i)
→ c

(ii)
→ ca

(ii)
→ cab, (1)

where
(i)
→ denotes a transition of the first kind and

(ii)
→ a transition of the second

kind.

We use an nth-order Markov chain (Xi)i∈N on the enriched space Xs = X ∪

{sk; k = 1, . . . , n} to represent this process. The maximum number of X -valued

states that the random walker can remember is n− 1. If for some k > 0, x1 = · · · =

xk = sk and (xk+1, . . . , xn) ∈ X n−k we say that (x1, . . . , xn) belongs to Z ⊂ X n
s .

This n-gram represents a state in which the random walker only remembers the

sequence (xk+1, xk+2, . . . , xn) ∈ X n−k; the first k states x1, . . . , xk are equal to sk,

denoting a loss of memory. The sequence of n-grams belonging to Z in the process

(Xi)i∈N will mirror a trajectory like the one in (1). Definition 1 puts restrictions

on the nth-order Markov chain (Xi)i∈N which ensure that it represents the process

described informally above. In the nth-order Markov chain (Xi)i∈N the only random

transitions occur from n-grams (Xj , . . . ,Xj+n−1) in Z, while the remaining ones are

deterministic. The random transitions determine whether (i) the random walker

forgets the first state in her memory or (ii) adds a new X state to his trajectory.

After each random transition, a series of deterministic transitions will brings the

process to the subsequent n-gram in Z.

Definition 1 A random walk with amnesia is an nth-order Markov chain (Xi)i∈N

on the space Xs. With probability 1, (X1, . . . ,Xn) ∈ Z. Given (Xj , . . . ,Xj+n−1) =

(x1, . . . , xn) = x, for any j > 0, the next state Xj+n satisfies the following con-

straints. If x ∈ Z and x1 = · · · = xk = sk, then Xj+n can be (i) sk+1, provided

k < n, or (ii) a state in X , provided k > 1. If x /∈ Z, the state Xj+n is chosen

deterministically according to the following rules:

(a) if x1 = · · · = xk−1 = sk and (xk, . . . , xn) ∈ X n−k+1 for some 1 < k ≤ n, then

Xj+n = sk−1;

(b) if xn−m = · · · = xn = sk and xn−m−1 ̸= sk for some m ≤ k − 2 ≤ n− 2 , then

Xj+n = sk;
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(c) if xm+1 = · · · = xm+k = sk and xm ̸= sk for some 0 < k < k +m ≤ n, then

Xj+n = x1.

If we consider the path in (1) and set n = 4, then, by Definition 1, the corre-

sponding transitions of the nth-order Markov chain (Xi)i∈N on the enriched space

Xs are

s1abc
(i)
→abcs2→bcs2s2→cs2s2b→s2s2bc

(i)
→s2bcs3→bcs3s3→cs3s3s3→s3s3s3c

(ii)
→

s3s3ca→s3cas2→cas2s2→as2s2c→s2s2ca
(ii)
→ s2cab→cabs1→abs1c→bs1ca→s1cab,

where
(i)
→ and

(ii)
→ denote random transitions from n-grams in Z, displayed in bold,

and → denotes deterministic transitions. In this example (X1,X2, . . .) = (s1, a, b, c,

s2, s2, b, c, s3, s3, . . .).

One can easily verify that the process (Xi)i∈N only goes through n-grams covered

by Definition 1. The law of the process is specified by the distribution of (X1, . . . ,

Xn) ∈ Z and the transition probabilities out of the n-grams in Z.

Clearly, the definition of (Xi)i∈N does not allow every possible path. However,

if (x1, . . . , xr) ∈ X r
s , r > n, is a realization of the process with (xr, . . . , xr−n+1) ∈

Z, then its inverse (xr, xr−1, . . . , x1) is also an allowed path. In other words, if

(x1, . . . , xr) is consistent with the deterministic constraints (a,b,c) in Definition

1 and (xr, . . . , xr−n+1) ∈ Z, then (xr, xr−1, . . . , x1) is also consistent with these

three requirements. For instance, with n = 3 and X = {a, b, c}, the path (x1, . . . ,

xr) = (s1, a, b, s2, s2, b, c, s1) corresponds to a random walker in b who forgets a

previous visit to a and then goes to c, while the reverse sequence (s1, c, b, s2, s2, b,

a, s1) corresponds to a random walker in b who forgets a previous visit to c and

then goes to a. Every loss of memory in the forward path (x1, . . . , xr) is associated

with a specular transition in (xr, . . . , x1) to an X -valued state and viceversa. This

will be a key property to introduce reversible random walks with amnesia in the

sequel. It will also be useful in Section 3 to describe our Bayesian approach to infer

the transition probabilties of (Xi)i∈N, under the assumption of reversibility, as a

model-based reinforcement learning procedure.

An irreducible nth-order Markov chain (Xi)i∈N on Xs is canonically represented

by a balanced function wn+1 : X n+1
s → [0,∞), which satisfies for any (x1, . . . ,
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xn) ∈ Xs,
∑

v∈Xs

wn+1(x1, . . . , xn, v) =
∑

v∈Xs

wn+1(v, x1, . . . , xn) = wn(x1, . . . , xn) and (2)

pr(Xn+m+1|X1, . . . ,Xn+m) =
wn+1(X1+m, . . . ,Xn+m+1)

wn(Xm+1, . . . ,Xm+n)
. (3)

Note that wn is a stationary measure of this nth-order Markov chain. Without loss

of generality, in what follows, we will assume
∑

xwn+1(x) = 1.

The nth-order Markov chain (Xi)i∈N is reversible if and only if

wn+1(x1, . . . , xn+1) = wn+1(xn+1, . . . , x1) for every (x1, . . . , xn+1) ∈ X n+1
s . (4)

The following is a simple approach to define a function wn+1 consistent with this

notion of reversibility. The resulting Markov chain is not necessarily a random

walk with amnesia. Consider a cyclic sequence (x1, . . . , xr) ∈ X r
s , with r > n and

(x1, . . . , xn) = (xr−n+1, . . . , xr), and define

wn+1(y1, . . . , yn+1) =
1

2(r − n)
×

r−n
∑

i=1

1 ((xi, . . . , xi+n) = (y1, . . . , yn+1)) + 1 ((xi, . . . , xi+n) = (yn+1, yn, . . . , y1))

for every n-gram (y1, . . . , yn+1) ∈ X n+1
s , where 1(·) denotes an indicator function.

The resulting function wn+1 satisfies equation (2) and allows one to specify the

transition probabilities of a reversible nth-order Makov chain through the identity

(3). This construction can be used to prove the following result.

Proposition 1 There exist random walks with amnesia with a reversible parameter

wn+1.

Proof. The random walk with amnesia is a class of nth-order Markov chains

on Xs where certain transitions are not allowed. Therefore, it is sufficient to follow

the constructive approach that we described in the previous paragraph to specify

a reversible wn+1. In this case we define wn+1 through a cyclic sequence (x1, . . . ,

xr), with (x1, . . . , xn) = (xr−n+1, . . . , xr), which is in addition consistent with the

constraints in Definition 1. The remark that, if (x1, . . . , xr) is consistent with the

constraints in Definition 1, then so is the reversed sequence (xr, . . . , x1), completes

the proof.
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We note that if wn+1 = λ × w′
n+1 + (1 − λ) × w′′

n+1, λ ∈ (0, 1), where both w′
n+1

and w′′
n+1 are reversible parameters for random walks with amnesia, then wn+1

satisfies equations (2) and (4). This fact implies that reversible parameterizations

for random walks with amnesia wn+1 constitute a convex space.

2.2. The observable random sequence

We use random walks with amnesia to model sequences with higher-order depen-

dencies. Recall that the state space of the amnesia model is Xs. We assume to

observe only the sequence (Zj)j∈N of X -valued states visited by our random walker.

To make the definition precise, let τ0 = n and τj = min{τ ; τ > τj−1, (Xτ−n, ...,

Xτ−1) ∈ Z,Xτ ∈ X}. The observable process is Zj := Xτj , j ≥ 1. In the example

displayed in (1) Z1 = a and Z2 = b. The observable process does not need to be a

Markov chain of any finite order, even though, as we show in the sequel, reversible

variable order Markov chains are a special case.

Proposition 2 Suppose that, givenX1, . . . ,Xn+1, the process (Xi)i∈N is a reversible

and irreducible random walk with amnesia with parameter wn+1, and let

pr(X1 = x1, . . . ,Xn+1 = xn+1) ∝ wn+1(x1, . . . , xn+1)1 ((x1, . . . , xn) ∈ Z, xn+1 ∈ X ) .

(5)

Then the observable process (Zi)i∈N is stationary and reversible, i.e.

pr(Z1 = z1, . . . , Zm = zm) = pr(Z1 = zm, . . . , Zm = z1), (6)

for any m > 1 and z = (z1, . . . , zm) ∈ Xm.

In the following, we neglect the condition in (5), as we are interested in estimating

the transition probabilities in the latent process (Xi)i∈N from observations which are

not stationary. Nonetheless, assumption (5) is unnecessary to verify the following

notion of reversibility.

Proposition 3 Let (Xi)i∈N be a reversible and irreducible random walk with am-

nesia. For any m>1 and z = (z1,. . ., zm)∈Xm, with probability 1,

lim
k→∞

k
∑

i=1

1(Zi = z1, . . . , Zi+m−1 = zm)

k
= lim

k→∞

k
∑

i=1

1(Zi = zm, . . . , Zi+m−1 = z1)

k
.

(7)
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The proofs of Propositions 2 and 3 are in the Supplementary Materials. We con-

clude this section showing that reversible variable order Markov chains are included

within the family of observable processes (Zi)i∈N defined above. A variable order

Markov chain (Ui ∈ X )i∈N with maximum order n− 1 and histories H ⊂ ∪n−1
i=1 X

i,

satisfies the equality

pr(Uj = xj|U1 = x1, . . . , Uj−1 = xj−1) = pr(Uj = xj |Uj−k = xj−k, . . . , Uj−1 = xj−1)

for every (x1, . . . , xj) whenever (xj−k, . . . , xj−1) ∈ H. We will assume without loss

of generality that (U1, . . . , Un−1) are fixed. We also assume that (Ui)i∈N is reversible.

Proposition 4 The sequence (Ui)i≥n is identical in distribution to a sequence (Zi)i∈N

of X valued states from a random walk with amnesia whose parameter wn+1 :

X n+1
s → [0,∞) is equal to zero in a subset SH of X n+1

s specified by H. A se-

quence (x1, . . . , xn+1) with xn+1 ∈ X belongs to SH whenever (x1, . . . , xn) ∈ Z has

k elements in X and contains a suffix of length shorter than k belonging to H.

3. A conjugate prior for reversible random walks with amnesia

We will infer the transition probabilities of a reversible random walk with amnesia

(Xi)i∈N using the sequence of X -valued states (Z1, . . . , Zm). Our model, like the

special case of a variable-order Markov chains, mitigates the need of estimating a

large number of transition probabilities for dynamics with long memory in a subset

of contexts. The major advantage of the approach we propose is that it does not

require model selection or model averaging over the possible sets of histories H. We

propose to infer the law of a reversible sequence (Z1, Z2 . . . ) using a Bayesian model

for random walks with amnesia. We specify a prior distribution that concentrates

on amnesia processes with short memory. These are random walks with stationary

measures wn that tend to assign higher weights on the low memory states in Z, such

as (sn−1, . . . , sn−1, xn), compared to the high memory states, such as (s1, x2 . . . , xn),

where (x2, . . . , xn) ∈ X n−1.

Let w0
n+1 : X

n+1
s → [0,∞) be a balanced function, which determines the transi-

tion probabilities of a reversible recurrent random walk with amnesia. This function

will specify a prior for wn+1, the unknown parameter of the process (Xi)i∈N. We

first define a reinforced process (Yi)i∈N parameterized by w0
n+1. We then show it is
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a mixture of reversible random walks with amnesia. The mixing distribution is a

conjugate prior for estimating, given a path X1, . . . ,XN , with N > n, the transition

probabilities of the nth-order random walk with amnesia. As in other reinforcement

schemes, such as the Pólya urn and the edge-reinforced random walk (Diaconis and

Rolles, 2006), the parameter of the prior, in our case w0
n+1, and the unknown pa-

rameter wn+1 that we want to estimate, are functions defined on X n+1
s which share

two characteristics: they are both balanced and reversible.

Definition 2 The process (Yi)i∈N takes values in Xs. With probability 1, (Y1, . . . ,

Yn) is a palindrome, i.e. (Y1, . . . , Yn) = (Yn, . . . , Y1), and w0
n(Y1, . . . , Yn) > 0. For

i > n, the transition probabilities

pr(Yi|Y1, . . . , Yi−1) =
wi−n−1
n+1 (Yi−n, . . . , Yi)

∑

v∈Xs
wi−n−1
n+1 (Yi−n, . . . , Yi−1, v)

are specified by the recursive reinforcement equations

wj+1
n+1(u) = wj

n+1(u)+ (8)

1(Yj+1 = u1, . . . , Yj+n+1 = un+1) + 1(Yj+1 = un+1, . . . , Yj+n+1 = u1),

where j ≥ 0 and u = (u1, . . . , un+1) ∈ X n+1
s . The weights w0

n+1 parameterize the

law of (Yi)i∈N.

The reinforced processes (Yi)i∈N in Definition 2 constitutes a subclass of the

reinforced random walks with memory introduced in Bacallado (2011) [Definition

3.1]. Each process within our subclass is identified by a reversible balanced function

w0
n+1 which parametrizes an Xs-valued reversible random walk with amnesia. Sim-

ilarly, reinforced random walks with memory are defined using reversible balanced

functions that parametrize reversible nth-order Markov chains. The reinforcement

mechanisms in Definition 2 and in reinforced random walks with memory are identi-

cal. The next proposition shows that (Yi)i∈N can be used as Bayesian model to infer

the transition probabilities of (Xi)i∈N. The proof of the proposition, together with

a few additional remarks on the process (Yi)i∈N, is included in in the Supplementary

Materials.
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Proposition 5 The process (Yi)i∈N is a mixture of reversible random walks with

amnesia. For every N > n

pr(Y1, . . . , YN |Y1, . . . , Yn) =

∫ N−n
∏

i=1

wn+1(Yi, . . . , Yi+n)
∑

v∈Xs
wn+1(Yi, . . . , Yi+n−1, v)

dµ(wn+1), (9)

where µ is a distribution on the space of balanced functions that parametrize re-

versible random walks with amnesia.

This result relies on a de Finetti type representation theorem for Markov chains,

which relies on the notion of Markov exchangeability (Diaconis and Freedman, 1980;

Fortini and Petrone, 2014). We say a discrete process is Markov exchangeable if

the probability of any finite path, can be expressed as a function of the initial state

and the transition counts in the path between every pair of states in the state

space. Important properties of (Yi)i∈N, including both Markov exchangeability of

the sequence of n-grams visited by the process and recurrence follow directly from

the study of reinforced random walks with memory in Bacallado (2011). It is not

hard to verify Markov exchangeability directly using a simple closed form expression

for the conditional probabilities

pr(Yn+1=yn+1, . . . , YN =yN | Y1=y1, . . . , Yn=yn)=
∏

i

1
[

w0
n+1(yi, . . . , yi+n)>0

]

×

∏

x:w0
n+1(x)>0

g
[

x, (y1, . . . , yN )
]

×
∏

x:w0
n(x)>0

g′
[

x, (y1, . . . , yN )
]

,

(10)

where, (y1, . . . , yn) = (yn, . . . , y1), w0
n(y1, . . . , yn) > 0,

g
[

x, (y1, . . . , yN )
]

=
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Γ

(

w0
n+1(x)+

∑
i 1x(yi,...,yi+n)+1x(yi+n,...,yi)

)1/2

Γ

(

w0
n+1(x)

)1/2 if (x1, . . . , xn+1) ̸= (xn+1, . . . , x1),

Γ

(

w0
n+1(x)/2+

∑
i 1x(yi,...,yi+n)

)

×2
∑

i 1x(yi,...,yi+n)

Γ

(

w0
n+1(x)/2

) if (x1, . . . , xn+1) = (xn+1, . . . , x1),
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for every x = (x1, . . . , xn+1) ∈ X n+1
s that satisfies w0

n+1(x) > 0, and

g′
[

x, (y1, . . . , yN )
]

=
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Γ

(

w0
n(x)

)1/2

Γ

(

w0
n(x)+

∑
i 1x(yi,...,yi+n−1)+1x(yi+n−1,...,yi)

)1/2 if (x1, . . . , xn) ̸= (xn, . . . , x1),

Γ

(

[1−1x(y1,...,yn)+w0
n(x)]/2

)

×2−

∑
i 1x(yi,...,yi+n−1)

Γ

(

[1−1x(y1,...,yn)+w0
n(x)]/2+

∑
i 1x(yi,...,yi+n−1)

) if (x1, . . . , xn) = (xn, . . . , x1),

for every x = (x1, . . . , xn) ∈ X n
s such that w0

n(x) =
∑

xn+1
w0
n+1(x1, . . . , xn, xn+1) >

0. The above expression specifies the law of (Yi)i∈N using the gamma function,

Γ : R+ → R+, and has similarities with other well known reinforcement schemes

such as the edge-reinforced random walk (Diaconis and Rolles, 2006) and the Pólya

urn model. The expression shows that, conditional on (Y1 = y1, . . . , Yn = yn), the

probability of the event (Y1 = y1, . . . , YN = yN), N > n, depends only on the counts

∑

i≤N−n

1x(yi, . . . , yi+n); x ∈ X n+1
s .

Therefore, the sequence of n-grams (Y1, . . . , Yn), (Y2, . . . , Yn+1), . . . , is Markov ex-

changeable.

In what follows we use the mixing distribution µ in proposition (5) as Bayesian

prior for the unknown parameter wn+1 of our amnesia process (Xi)i∈N. Under

this Bayesian model we can sample from the predictive distributions pr(YN+1 | Y1,

. . . YN ). The computation of these predictive probabilties reduces to the evaluation

of the reinforced weights wN
n+1 in Definition 2.

The fact that the initial n-gram in (Yi)i∈N is a palindrome is a necessary hy-

pothesis for Proposition 5. However, we can define priors for a random walk with

amnesia with initial n-gram (y1, . . . , yn) ̸= (yn, . . . , y1) by using the distribution of

(Yi)i>m conditional on Y1 = y1, . . . , Ym = ym, with (y1, . . . , ym) specified upfront

together with w0
n+1.

Remark 1 Consider a prior parameter w0
n+1 with w0

n+1(x) > 0 for every x =

(x1, . . . , xn+1) such that the transition from (x1, . . . , xn) ∈ X n
s to xn+1 is allowed

by the definition (1) of random walk with amnesia. Assume that the investigator
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observes the trajectory (X1, . . . ,Xs) of a recurrent random walk with amnesia with

unknown transition probabilities, and fix a recurrent n-gram (x1, . . . , xn) ∈ X n
s .

The linear reinforcement (8) indicates that, the Bayesian estimate, of the transition

probability wn+1(x1,...,xn+1)∑
v wn+1(x1,...,xn,v)

, defined as the posterior mean, converges in probability

to the empirical estimate
∑s

j=1 1(Xj = x1, . . . ,Xj+n = xn+1) + 1(Xj = xn+1, . . . ,Xj+n = x1)
∑s

j=1 1(Xj = x1, . . . ,Xj+n−1 = xn) + 1(Xj = xn, . . . ,Xj+n−1 = x1)

when the the length of the trajectory s diverges. This fact follows from the conver-

gence in probability, for any (x1, . . . , xn) ∈ X n
s and (x1, . . . , xn+1) ∈ X n+1

s , of the

ratios
∑s−n

j=1 1(Xj = x1, . . . ,Xj+n = xn+1)

s
, and

∑s−n+1
j=1 1(Xj = x1, . . . ,Xj+n = xn)

s

to the parameters wn+1(x1, . . . , xn+1) and wn+1(x1, . . . , xn) respectively.

4. Posterior simulations

The process (Yi)i∈N in Definition 2 is used as a prior distribution for the random

walk with amnesia. This process is driven by a random nth-order transition matrix

(Proposition 5). Recall that the observable sequence (Zj)j∈N takes values in X . Let

Zj = Yτj , where τj = min{τ ; τ > τj−1, (Yτ−n, ..., Yτ−1) ∈ Z, Yτ ∈ X} and τ0 = n.

The length of memory of the process (Zj)j∈N at each transition is captured by a

sequence of latent variables Tj := max{t : τj−t > 0, (Yτj−1, . . . , Yτj−t) ∈ X t}, j ≥ 1.

Without loss of generality, assume Y1 = . . . = Yn = sn.

The observed states Z1, . . . , Zr−1 and the lengths of memory T1, . . . , Tr−1 identify

the path Y1, . . . , Yτr−1 , which in turn can be used to obtain the reinforced weights

{wτr−1−n
n+1 (u);u ∈ X n+1

s } and to compute the predictive distribution

pr(Y1+τr−1 , . . . , Yτr | T1, . . . , Tr−1, Z1, . . . , Zr−1) = pr(Y1+τr−1 , . . . , Yτr | Y1, . . . , Yτr−1).

This makes it straightforward to sample Tr conditional on (T1, . . . , Tr−1, Z1, . . . , Zr),

which will be useful in the sequential importance sampling algorithm (Gordon et al.,

1993) proposed below.

The goal of the algorithm is to infer the lengths of memory T1, . . . , Tm given

a sequence of observations Z1, . . . , Zm. The algorithm is initialized with particles
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t(i)1 = 0 and importance weights v(i)
1 = 1 for all i = 1, . . . , N . For each r = 2,

. . . ,m, the particle t(i)r is sampled from the conditional distribution of Tr given the

observed random variables (Z1 = z1, . . . , Zr = zr) and (T1 = t(i)1 , . . . , Tr−1 = t(i)r−1)

for all i = 1, . . . , N . At each step, the importance weights are updated by

v(i)
r = v(i)

r−1pr(Zr = zr | Z1 = z1, . . . , Zr−1 = zr−1, T1 = t(i)1 , . . . , Tr−1 = t(i)r−1).

Finally, we approximate the posterior distribution of the lengths of memory using

the weighted particles,

pr(T1, . . . , Tm | Z1, . . . , Zm) ≈
N
∑

i=1

ṽ(i)
m 1(T1 = t(i)1 , . . . , Tm = t(i)m ), (11)

where

ṽ(i)
r =

v(i)
r

∑N
j=1 v

(j)
r

.

It is well understood that in many cases, a better approximation is obtained by

combining the structure of sequential importance sampling with resampling oper-

ations (Gordon et al., 1993). We will apply a simple strategy known as sequential

importance resampling, or the bootstrap particle filter. A resampling operation at

time r consists of the following two steps. First, after the weights ṽ(i)
r , i = 1, . . . , N ,

have been computed, N random variables ai, i = 1, . . . , N, taking values in {1, . . . ,

N} are independentely generated with pr(ai = j) = ṽ(j)
r , j = 1, . . . , N . Second,

each particle (t(i)1 , . . . , t(i)r ) is replaced by (t(ai)
1 , . . . , t(ai)

r ), and the weights v(i)
r are

set equal to 1, for i = 1, . . . , N . The algorithm is then ready to proceed as described

in the previous paragraph.

Let r1, . . . , rk be the times at which resampling steps are made, and let v̂r be

the average of v(1)
r , . . . ,v(N)

r before the resampling operation at time r. Then, it

can be shown that
∏k

j=1 v̂rj is an unbiased estimate for the marginal probability of

the observation pr(Z1, . . . , Zrk); see Proposition 7.4.1 in del Moral (2004). This will

be convenient in the following sections for estimating predictive probabilities of the

form pr(Zr+1, . . . , Zm | Z1, . . . , Zr).

The particles (t(i)1 , . . . , t(i)m ; i = 1, . . . , N) approximate the posterior distribution

of the length of memories T1, . . . , Tm. They can be used to approximately sample
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from the predictive distribution of the process (Zi)i∈N. A long simulation from the

predictive distribution yields, by de Finetti representation (Proposition 5) argu-

ments, an approximate posterior sample of the transition probabilities that drive

the random walk with amnesia. Posterior samples of wn+1 can be used, among

other things, to calculate predictive probabilities of the form pr(Zr+1, . . . , Zm | Z1,

. . . , Zr) via a forward-backward algorithm; this is an alternative to the estimates

mentioned above.

5. Simulation Study

We specify the prior model choosing, for every (x1, . . . , xn) ∈ Z,

w0
n+1(x1, . . . , xn+1) = c× (|X |b)−

∑
i 1(xi∈X ), (12)

for some b, c > 0, if the random walk with amnesia allows the transition (x1, . . . ,

xn) → xn+1 and zero otherwise. This reduces the set of hyperparameters that we

need to tune to the pair (b, c). The initial function w0
n+1 corresponds to a random

walker that, from any n-gram in Z, with some fixed probabilty forget the first X -

valued element in his memory. Also, under w0
n+1, transitions to the X -valued states

from any n-gram in Z are all equally likely.

The parameter b tunes the length of memory. The greater b, the shorter the

length of memory tends to be during the reinforced walk (Yi)i≥1. The parameter

c has an interpretation similar to the total initial mass of the the edge-weighted

graph in Diaconis and Rolles (2006) and tunes the concentration of wn+1 around

the prior mean. Figure 1b illustrates how the choice of the parameters (b, c) tunes

the complexity of a typical random walk with amnesia with 10 states sampled from

the prior. As a measure of complexity, we use the entropy rate limn→∞ n−1H(X1,

. . . ,Xn) of the random walk with amnesia, where H is the Shannon entropy.

We tested the proposed model using data simulated from a reversible fourth order

Markov chain in the space of nucleic bases {a, c, g, t}. The transition probabilities

of the Markov chain were the frequencies of every fourth order transition in a cyclic

DNA sequence of 37,243 bases read in both directions (RefSeq NC 021042). The

random walk with amnesia was fit to a simulated sequence by sequential importance

resampling, and the predictive probability of a different simulated sequence was

approximated using the importance weights as discussed at the end of Section 4.
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We used N = 1,000 particles, and performed resampling operations every 3 steps.

Figure 2 shows the log-predictive probabilities per step given training sequences of

lengths ranging between 100 and 1,900. The hyperparameters b and c were selected

to optimize the probability of the training sequence provided by the sequential

importance sampling algorithm over a grid with b ∈ {0.5, 1, 1.5, 2} and c ∈ {0.5, 1,

1.5, 2}.

For the purpose of comparison, Figure 2 shows the same statistics for a Bayesian

analysis of first order and fourth order reversible Markov models (Bacallado, 2011).

For each model, the concentration parameter, i.e. the initial weight of the palin-

drome in the model of Bacallado (2011), is optimized to maximize the probability

of the training sequence. Even though the sequence was generated from a fourth

order Markov chain, the fourth order model performs poorly compared to the ran-

dom walk with amnesia. We observe, as expected, that the inferred random walk

with amnesia adapts to the complexity of the training sequence, with longer lengths

of memory associated with the more frequent contexts.

Bacallado (2011) also defines a prior for reversible variable-order Markov mod-

els. We compared the random walk with amnesia to a Bayesian analysis based on

variable-order Markov models, with and without reversibility. In the non-reversible

case, we apply an independent Dirichlet prior to the transition probabilities out of

every context. Before applying these models, it is necessary to estimate the ap-

propriate lengths of memory. For this purpose, we applied a context tree pruning

algorithm similar in structure to the Context algorithm of Rissanen (1983).

We describe the main characteristics of the pruning algorithm. First, the al-

gorithm grows the largest possible context tree in which every context appears at

least 5 times in the training sequence and is no longer than 6. Then, we employ

a backward tree-pruning procedure with a local criterion. The criterion is a Bayes

factor comparing the variable-order model before and after pruning the tree. We

loop through the leaves in alphabetical order; in the Context algorithm, which uses

a slightly different local criterion, the order is irrelevant. The threshold for the

Bayes factor, and the concentration parameter of the prior for the variable-order

Markov models are used as tuning parameters and selected to optimize the probabil-
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ity of the training data under the model. The pruning strategy is slightly modified

in the reversible case, as the set of contexts must satisfy the closure properties in

Proposition 4.2 of Bacallado (2011).

Figure 2 shows that, as expected, the reversible models outperform non-reversible

models. The random walk with amnesia outperforms both of the model selection

schemes in this example.

To evaluate the performance of the methods above on data which is not re-

versible, we repeated the analysis using the original cyclic DNA sequence instead

of the reversible simulated data. Figure 3 shows that, as one would expect, models

that enforce reversibility pay a price in bias and perform worse than an appropri-

ately pruned variable-order Markov model for longer training sets. This is not the

case when reversibility is a given, as in the application of the following section.

6. Molecular dynamics

We analyze a molecular dynamics simulation of a protein known as the WW domain

(Shaw et al., 2010). Markov models have become, in recent years, essential tools for

the analysis of this type of dynamical data (Prinz et al., 2011). The data consist of

a sequence of states representative of distinct conformations of the protein observed

at regular time intervals. In this application, the stochastic law of the process is

reversible due to the nature of Hamiltonian mechanics. We have 10 states in X and

a trajectory of length 10,000, with one observation every 20 nanoseconds. We use

the first half of the trajectory as a training dataset and the second as a test dataset.

Figure 1a plots the trajectory. The plot shows that the process alternates phases

during which it remains stable at state 0 with phases during which it rapidly moves

across states. These phases correspond to periods during which the protein is folded

and unfolded, respectively.

We trained a reversible random walk with amnesia with n = 6 by sequential

importance resampling. We used N = 1,000 particles and performed resampling

operations every 3 steps. The hyperparameters b and c were chosen to maximize

the probability of the training sequence under the model. Table 1 shows the selected

parameters and the loglikelihood of the test sequence. To evaluate the efficacy of

the sequential importance resampling algorithm, we replicated the computations
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Fig. 1. Left: Conformational states of the WW domain, indexed by 0, . . . , 9, observed

in a molecular dynamics simulation. The top panel shows the full sequence of 10,000

steps, while the bottom panel shows a magnified subsequence. Right: The entropy rates

limn→∞ n−1H(X1, . . . , Xn) of 100 random walks with amnesia sampled from the prior dis-

tribution under eight choices of (b, c).

Fig. 2. Reversible simulation example. Log-posterior predictive probabilities per transition

for a left-out test set, as a function of the length of the training sequence. The dashed line

shows the expected loglikelihood per step in the model used to simulate the sequence.
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Fig. 3. Non-reversible example. Log-posterior predictive probabilities per transition for a

left-out test set, as a function of the length of the training sequence.

10 times at every hyperparameter setting. The unbiased estimates of marginal

likelihood varied little in these iterations; for example, the estimate shown in the

last row of table 1 had a standard deviation of 67.

To compare our procedure with some common alternatives, we considered five

methods reviewed by Begleiter et al. (2004), none of which takes into account re-

versibility. Following the recommendations in Begleiter et al. (2004), we tuned the

parameters of each method via 3-fold cross-validation using only the training se-

quence. We then computed the loglikelihood of the test dataset at the optimal

parameters. Table 1 lists the methodologies, the tuning parameters selected, in the

notation of Begleiter et al. (2004), and the loglikelihood of the test trajectory. The

best of the methods in this example is Decomposed Context Tree Weighting. The

random walk with amnesia has a higher loglikelihood than all five methods.

Finally, we applied the Bayesian analyses of variable-order Markov models de-

scribed in Section 6, selecting the model selection threshold t and the concentration

parameter c which optimize the likelihood of the training data.

The results are summarized in Table 1. The reversible model outperforms the

non-reversible model, but both of the methods are outperformed by Decomposed

Context Tree Weighting and the random walk with amnesia. The tuning of the
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Table 1. Predictive performance of the random walk with amnesia compared to the methods

reviewed in Begleiter et al. (2004) and two model selection approaches for variable-order

Markov models. The tuning parameters of each method from Begleiter et al. (2004) were

chosen via cross-validation using 50% of the data. We report the range of values explored

for each tuning parameter and the optimal value in bold. We also report the corresponding

loglikelihood of the test dataset.

Method Test loglikelihood Tuning parameters

Decomposed Context Tree

Weighting

-3210.4 D ∈ {1, 3, 5, 7, 9,15, 20}

Prediction by Partial

Matching

-3359.8 D ∈ {1, 3, 5, 7, 9, 15, 20}

Lempel Ziv 78 -4041.4 None

Lempel Ziv MS -3862.1 M ∈ {0, 2, 4, 6, 8}

S ∈ {0, 2, 4,6, 8}

Probabilistic Suffix Trees -3280.9 Pmin ∈ {0.0001,0.001, 0.01, 0.1}

γ ∈ {0.0001,0.001, 0.01, 0.1}

D ∈ {1, 3, 5, 7, 9, 15, 20}, r = 1.05,

α = 0

Variable-order Markov

model

-3308.4 c ∈ {0.0001,0.001, 0.01, 0.1, 1},

t ∈ {−10,0, 10}

Reversible variable-order

Markov model

-3268.8 c ∈ {0.0001,0.001, 0.01, 0.1, 1},

t ∈ {−10,0, 10}

Random walk with

amnesia

-3015.4 b ∈ {0.1, 0.4,0.6, 1, 1.5},

c ∈ {0.5, 1, 1.5, 2}

random walk with amnesia was repeated using a 3-fold cross-validation strategy,

and this had a negligible effect on the results in Table 1.
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