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Abstract

The dissertation presents three essays on asset pricing in the context of Macroeconomics. Each

chapter develops upon a central theme: that asset price bubbles act to drive fluctuations in

the aggregate economy and conversely are themselves a symptom of economic conditions. The

dissertation presents arguments and evidence in support of this theme. The implication is

that these types of asset price fluctuations are important to study if we wish to develop a full

understanding of the macroeconomy as a larger integrated system.

In my first chapter, I study the effects of bubbles on a secular stagnation economy. In such a

setting, a negative natural rate of interest drives a deficit of demand and a persistent output gap.

I find that bubbles act to increase the natural rate of interest, hence they alleviate the cause of

secular stagnation. This suggests a positive role for bubbles, however bubbles are intrinsically

unstable. Larger bubbles are shown to be more unstable, and upon collapse the natural rate of

interest falls, potentially triggering secular stagnation.

In the second chapter, I offer a demographic explanation to the secular decline in interest

rates. Fertility rates fell dramatically in the early 1970s, which created a distortion in the age

distribution with the cohort born just before the fertility fall being disproportionately larger than

the cohorts born both before and after. As this large cohort accumulates assets for retirement,

their savings flood the capital market leading to a collapse in interest rates. The model offers

an explanation for the fall in interest rates over the last three decades. Furthermore, it predicts

that real interest rates will continue to fall until hitting a trough around the year 2035. Despite

the fall in interest rates, the model does not provide a rationale for the rise in land prices. This

chapter is a co-authored work with Coen Teulings.

In the final chapter, I develop a model for house price dynamics driven by short and long-

term shocks to housing fundamentals. I consider households who have incomplete information

and cannot directly observe underlying changes in fundamentals. Instead, they solve a Bayesian

signal extraction problem to infer fundamentals from prices. In contrast to the complete in-

formation benchmark, my model replicates the observed empirical short-term momentum and

long-term reversal in prices, which are often associated with speculation in housing markets. Fur-

thermore, I show that a sequence of positive short term shocks generates an expectations-driven

boom and bust in housing that is of far greater magnitude than in the complete information

benchmark. Finally, I demonstrate an application of my model to identify episodes of bubbles

in US house price data.
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Chapter 1

Bubbles in a Secular Stagnation

Economy

1.1 Introduction

The secular stagnation hypothesis argues that low interest rates can be the cause of a persistent

fall in output. Specifically, Summers (2013) argues that long-run trends have pushed the natural

rate of interest, the real interest rate consistent with full output, to be negative.1 This negative

natural rate of interest poses a problem because monetary policy, when controlling the nominal

interest rate, is constrained below by the Zero Lower Bound (ZLB). As a result, the central bank

can only deliver at minimum a real interest rate of zero minus the rate of inflation. When this

minimum level is above the natural rate of interest, there is necessarily a mismatch in interest

rates which results in an output gap. The resulting output gap persists as long as the mismatch

remains, which could be until some unknown date in the far future.

Summers (2013) discusses the relevance of bubbles to the secular stagnation hypothesis,

however the precise mechanism by which bubbles play a role in secular stagnation is not yet

understood, nor formally addressed. In this chapter I propose such a mechanism. Building

upon the secular stagnation model by Eggertsson and Mehrotra (2014), I find that bubbles act

to increase the natural rate of interest by providing additional assets which absorb excess savings.

This directly alleviates the initial cause of secular stagnation, namely a negative natural rate

of interest. I find that a bubble of sufficient size can eliminate a secular stagnation equilibrium

altogether, although this solution to the problem is not without its trade-offs. I show that the

stability of a bubble is negatively associated with its size, and that when a bubble collapses, the

natural rate of interest falls potentially resulting in secular stagnation.2 Government enforced

1The real interest rate equals to the natural rate of interest only when there is full output. Nonetheless the fall
in real interest rates is indicative of a fall in the natural rate of interest, under the assumption that the economy
has been on average operating at full output.

2This mechanism is in line with empirical estimates of the natural rate of interest. Laubach and Williams
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fiscal policies, of the type considered in Samuelson (1958), can likewise increase the natural rate

of interest by a similar mechanism. These policies can generate the same desirable outcome of

a bubbly equilibrium, but without the potential instability that bubbles bring.

I do not look to explain the long-run fall in the natural rate of interest. Instead, I take

a negative natural rate of interest as given, and then analyse the effects of bubbles in this

environment. The model by Eggertsson and Mehrotra (2014) serves as my point of departure.

Within their Keynesian overlapping generations framework, a sufficiently negative natural rate

of interest results in an output gap of indefinite duration. In this equilibrium, monetary policy

is forever at the ZLB, but nonetheless there is no self-correcting force to full employment. My

analysis begins by allowing for the trade of a bubbly asset. I consider rational bubbles of the

kind studied by Tirole (1985), where the underlying asset generates no dividends and therefore

has a fundamental value of zero. Although this asset has no inherent value, a household is

willing to purchase this asset under the rational expectation that they can sell this asset at a

positive price in the future. In such a setting, there is a multitude of equilibria, one for each

feasible size of the bubble up to an upper bound which I find analytically. I do not attempt

to explain the origins of the bubble. While I consider rational bubbles in my model, the same

mechanism would apply if the bubble was irrational. Indeed, a bubble regardless of origin, has

a positive effect on the natural rate of interest, which has reduces the output gap through the

standard secular stagnation channel described in Eggertsson and Mehrotra (2014).

The literature on secular stagnation is closely related to the previous literature on liquidity

traps, which differs to secular stagnation mainly in terms of the duration of the output gap (see

e.g. Krugman (1998) and Eggertsson and Krugman (2012)). Originally referencing Japan in

the 1990s, the liquidity trap literature considers similarly the effect of a negative natural rate of

interest, coming to broadly the same conclusions. Their analysis, however, assumes the negative

natural rate of interest to be temporary and of known duration, hence when the natural rate of

interest returns to normal levels, the output gap will similarly close. Our experience since then

has shown that a negative natural rate of interest may not be so short-lived, and certainly it

is difficult to forecast when interest rates will return to “normal” levels. For example, Japan’s

low interest rates has persisted since the early 1990s. While duration is the primary difference

between the two branches of the literature, the implications of the liquidity trap literature can

differ greatly once allowing for an indefinitely negative natural rate of interest. In particular, a

rational bubble is unsustainable when the natural rate of interest is high. Hence, if an increase

in the natural rate of interest is foreseeable or expected, then by backwards induction the bubble

must not be feasible under rational expectations today. That is to say, the mechanism for rational

(2016) provide estimates of the natural rate of interest in the U.S., which show a sudden fall in the natural rate
of interest following the collapse of the housing bubble in 2007.
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bubbles considered in this chapter can only apply under an indefinitely negative natural rate of

interest, and will not hold under a temporarily negative natural rate of interest as is considered

in the liquidity trap studies.

My analysis relates also to the literature investigating the role of bubbles in driving the

business cycle (see e.g. Ventura (2003) and Martin and Ventura (2012)), which looks to resolve

the contrary prediction of Samuelson-Tirole models that bubbles are contractionary. Specifically,

standard Samuelson-Tirole models find that bubbles increase the real interest rate, which reduces

the equilibrium level of capital and therefore lowers output. This is the reverse of our experience,

where we witness that episodes of bubbles are associated with investor optimism, high investment

(as opposed to low), and also high growth.3 My chapter offers an alternative mechanism of how

bubbles can be expansionary. By increasing the natural rate of interest, trade in the bubbly

asset can increase output despite the assets having no inherent value. The caveat, however,

is that this channel operates only under the condition that the natural rate of interest in the

fundamental economy is sufficiently negative. Whereas this is a reasonable premise for recent

decades, it will not apply in past business cycles when interest rates were higher.

The structure of the rest of this chapter shall be as follows. In section two I describe a basic

endowment economy model which demonstrates the effect of a bubble on the natural rate of

interest. In section three I describe a Keynesian production economy, which shows that a bubble

increases output in a secular stagnation economy by increasing the natural rate of interest. In

section four I consider the stability of bubbles and show that the stability of a bubble is negatively

associated with its size. Further I give a brief discussion on the role of fiscal policy. In section

five I conclude.

1.2 Bubbles and the natural rate of interest

In this section I show that bubbles act to increase the natural rate of interest by providing

an additional store of value for saving generations. This simple mechanism provides the main

insight of how bubbles relate to the secular stagnation hypothesis.

I consider an endowment economy that follows closely the endowment model by Eggertsson

and Mehrotra (2014). Here, I do not consider production, monetary policy, nor the ZLB. Income

is endowed and hence exogenously determined, so the only question that remains to be answered

is: what real interest rate clears markets? The market-clearing real interest rate is also the real

interest rate consistent with full output in the full model, i.e. the natural rate of interest. Hence,

the analysis in this section directly maps to the mechanics for the natural rate of interest in the

full model considered later.

3In welfare terms, bubbles are often positive even in these settings as they exist only when the economy is
dynamically inefficient.
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Eggertsson and Mehrotra (2014) represent the negative natural rate of interest as the result

of a reduction in the debt limit, D, which acts to impose loan market frictions that lowers

borrowing demand. Instead I propose to think of the parameter D as a capture-all variable

representing various forces that have acted to reduce the natural rate of interest over recent

decades. These include, for example, ageing demographics, slowing technological progress, or

a glut of external savings, to name a few. I prefer this interpretation as it maps closer to the

original Summers (2013) discussion, and because these forces are long term and therefore can

better support a rational bubble. However, the interpretation is not central to the analysis and

is mostly a matter of taste. My main point is that I take a negative natural rate of interest in

the fundamental economy as given, and within this setting I analyse the effect of bubbles.

The bubble part of the model draws from the previous literature on rational bubbles. In

particular we know that rational bubbles are sustainable in overlapping generations economies

when the economy is dynamically inefficient, i.e. when the real interest rate, r, is less than the

growth rate of the economy, g. Bubbles act to increase r, which takes on a new meaning when

the real interest rate is mapped to the natural rate of interest in the full model.

1.2.1 The model

Households live for three periods. They are initially young, in the next period they are middle

aged, and eventually they are old. Generations may borrow and lend through a bond market:

the young borrow subject to a debt limit D, the middle aged receive an endowment income some

of which they save for retirement, and the old consume their savings.

Households born in period t have the following utility function

log(Cyt ) + βlog(Cmt+1) + β2log(Cot+2), (1.1)

where Cyt , C
m
t+1, C

o
t+2 denote respectively the levels of consumption for the cohort born in period

t, in period t when young, in period t+ 1 when middle aged, and in period t+ 2 when old.

Borrowing and lending occurs through the trade of a one period risk-free bond at the market

real interest rate rt. With three generations, the middle aged accesses the bond market to buy

bonds from the young. Next period, the previously middle aged (now old) is repaid for their

loan by the previously young (now middle aged).

In addition to the bond market, I allow for the trade of a bubbly asset which generates

no dividends. In each period the middle aged purchase the bubbly assets from the old. This

rewards the old as they consume the price of the bubbly assets they sell. Likewise the middle

aged will resell their bubbly assets to the next generation in retirement. Altogether the bubbly

asset provides an additional asset to save with. The budget constraints faced by households
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born at period t are given by

Cyt = By
t (1.2)

Cmt+1 = Yt+1 − (1 + rt)B
y
t +Bm

t+1 − pt+1A
m
t+1 (1.3)

Cot+2 = −(1 + rt+1)Bm
t+1 + pt+2A

m
t+1 (1.4)

(1 + rt)B
i
t ≤ Dt, (1.5)

where Bi
t represents the bond issuance (or borrowing) by generation i in period t, Amt represents

the quantity of bubbly assets purchased at period t by the middle aged, pt represents the price

of the bubble at period t, and Dt represents the exogenous borrowing limit at time t.

The debt limit depends on the young’s ability to repay in the next period and it includes

debt appreciation. Furthermore I assume that the debt limit is binding for the young, hence

By
t =

Dt

(1 + rt)
. (1.6)

Denote by Nt the size of the middle-aged cohort at time t, which evolves according to

Nt = (1 + gt)Nt−1, (1.7)

where gt is the growth rate of cohort size from period t − 1 to period t. Market clearing for

bonds implies

(1 + gt)B
y
t = −Bm

t (1.8)

Taking the supply of the bubble to be fixed at Ā, market clearing for the bubbly asset implies

that the middle aged purchases the entire supply from the old, hence

Amt =
Ā

Nt
. (1.9)

Bubbles generate no utility, and with perfect foresight they also are not expected to collapse.

Hence, owning the bubbly asset is a perfect substitute to owning bonds and no-arbitrage between

these two assets gives

pt+1 = (1 + rt)pt. (1.10)

The old will always consume all remaining wealth, hence

Cot = −(1 + rt−1)Bm
t−1 + ptA

m
t−1, (1.11)
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whereas the middle aged are at an interior solution that follows the Euler equation,

1

Cmt
=
β(1 + rt)

Cot+1

, (1.12)

which follows from the utility function given by equation (1.1).

1.2.2 Loan market equilibrium

Definition 1. An equilibrium in the endowment economy is defined as a path for the collection of

quantities {Cyt , Cmt , Cot , B
y
t , B

m
t , A

m
t }, and a path for prices {rt, pt}, that solve equations (1.3),

(1.4), (1.5), (1.6), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) given an exogenous path for

{Yt, Dt, gt}.

To solve for the equilibrium path in the endowment economy model, it is sufficient to consider

market clearing in the bond market. This requires that the bond supply of the young matches

the bond demand of the middle aged

(1 + gt)B
y
t = −Bm

t . (1.13)

Denoting the left-hand side of the above equation to be the demand for loans, Ldt , and the

right-hand side of the equation to be the supply for loans, Lst , it follows from equation (1.6) that

Ldt =
1 + gt
1 + rt

Dt, (1.14)

and using the Euler equation given by equation (1.12), substituting for Cmt and Cot+1 using

equations (1.3), (1.4), and (1.6) to solve for Bm
t and find that the the supply of loans is given

by

Lst =
β

1 + β
(Yt −Dt−1)−At, (1.15)

where At ≡ ptĀ
Nt

, is the value (or size) of the bubble per capita, and At = 0 represents the

fundamental economy case with the value of the bubbly asset equal to zero.

Note that the introduction of the bubbly asset does not affect the demand for loans. The

young borrow the maximum they are able to subject to the borrowing limit which is assumed

to be binding. An increase in the size of the bubble per capita reduces the supply of loans

one-to-one, as the bubbly asset is a perfect substitute for bonds at any given real interest rate.

Equating the supply and demand for loans in equations (1.14) and (1.15) gives the equilibrium

real interest rate

1 + rt =
(1 + gt)Dt

β
1+β (Yt −Dt−1)−At

, (1.16)
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which says that the equilibrium real interest rate is an increasing function of the size of the

bubble, At.

Proposition 1. Given constant levels for {Yt, Dt, gt} = {Y,D, g} ∀t, if

1 + rf ≡ (1 + g)D
β

1+β (Y −D)
< 1 + g,

there is a set of equilibria, with each equilibrium characterised by a particular size of the bubble

per capita at time t, At, in the following range

At ∈
[
0,
βY − (1 + 2β)D

1 + β

]
.

For a given At, the equilibrium real interest rate at time t is

1 + rt =
(1 + g)D

β
1+β (Y −D)−At

,

which is an increasing function of the size of the bubble per capita, At.

Proof. The proof is similar to that of Tirole (1985). Firstly I claim that for a bubble to be

sustainable in equilibrium, rt must never exceed g.

Consider the path of At. Because At ≡ ptĀ
Nt

, the size of the bubble per capita grows at rate

rt − g. Suppose that this growth rate was positive for any one period, i.e. if rt > g for some t,

then in the next period At+1 must be strictly greater than At. If At+1 > At, then by equation

(1.16) it follows that rt+1 > rt. Hence by induction, if rt > g for one period, it follows that

{ri}i>t > rt > g.

Knowing that rf , the equilibrium real interest rate in the fundamental economy (with At =

0), is strictly less than g, then rt > g implies At > 0. So if rt > g for one period, then At > 0

and {ri}i>t > rt > g. Then it must be the case that at some point in the future At exceeds

β
1+β (Y −D), i.e. the middle aged are no longer willing to buy up the entire stock of the bubbly

asset. At this point the bubble is no longer sustainable, and the final old generation can no longer

sell their holdings of the bubble. As households have perfect foresight, that old generation who

loses out on their savings would not purchase the bubble in the first place, and by backwards

induction it must be the case that no households, even now, would value the bubbly asset. Hence

for rational bubbles to emerge, it must be the case that rt ≤ g for all periods. This implies a

maximum size for the size of the bubble At ≤ βY−(2+β)D
1+β .

Given that At ≤ βY−(2+β)D
1+β , then in the next period rt ≤ g. Hence the size of the bubble per

capita (weakly) gets smaller, and hence rt is (weakly) decreasing. By induction rt is decreasing

with time. Given this, the size of the bubble is likewise permanently (weakly) getting smaller,

7
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Figure 1.1: Loan market equilibrium following a decrease in D.

1 + r

L

Loan
Demand

Loan
Supply

A
B

1 + r1

1 + r2

Figure 1.2: Loan market equilibrium following an increase in bubble size.

and hence the middle aged will always be able to purchase the entire stock of the bubbly asset.

This ensures that the bubble is sustainable.

When rt < g, the bubble shrinks at an increasing rate of rt − g, where asymptotically rt

tends to rf and At tends to 0. When rt = g, the size of the bubble is constant and therefore rt

is constant at the level of g.

The natural rate of interest in the fundamental equilibrium of this simple economy is given

by 1 + rf ≡ (1+g)D
β

1+β
(Y−D)

, which is a function of the parameters g, Y , and D. We see in Figure 1.1

that a fall in D leads to a reduction in loan demand and an increase in loan supply. The result

is a fall in the real interest rate to a level that is potentially negative.

From Proposition 1 we see that a bubble of some size is sustainable whenever rf , the real

interest rate in the fundamental economy, is less than g, the growth rate of the population.

In a situation of secular stagnation, rf is strongly negative, and hence this condition is more

likely fulfilled. Also from Proposition 1, we know that any bubble of size up to a maximal level

βY−(1+2β)D
1+β , is sustainable. Figure 1.2 shows the effect of an increase in bubble size on the

equilibrium real interest rate.
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An increase in the size of the bubble leads to a decrease in loanable fund supply, and hence

an increase in the real interest rate. This comparative exercise explains the difference between

a bubbly equilibrium versus a fundamental equilibrium. If one introduces a bubble to a funda-

mental economy, the result would be an increase in the real interest rate.

Likewise, the reverse scenario to Figure 1.2 informs us that a fall in the size of the bubble

leads to a fall in real interest rate. In particular, this says that if a bubble collapses, the real

interest rate would revert back to the lower fundamental level rf .

1.3 Bubbles in a secular stagnation economy

Given the effect of bubbles on the natural rate of interest, what are the implications for the wider

economy? Eggertsson and Mehrotra (2014) demonstrate that a negative natural rate of interest

may lead to secular stagnation in equilibrium. In this section I show that trade in bubbles can

lift the natural rate of interest and hence restore full output, however the collapse of a bubble

has the opposite effect and can result in a secular stagnation equilibrium.

To formally characterise a secular stagnation economy, a few minimal Keynesian ingredients

are necessary. These ingredients generate an environment where a strongly negative natural rate

of interest can generate a secular stagnation equilibrium with a binding ZLB and a persistent

output gap. I give a description and a brief discussion for each ingredient below.

1.3.1 Price levels and the zero lower bound

A nominal price level is introduced by assuming that the one period bond is denominated in

money, the interest rate of which is determined by the central bank. This gives the nominal

analog of the Euler equation
1

Cmt
= β(1 + it)

Pt
Pt+1

1

Cot+1

, (1.17)

where it and Pt are respectively the nominal interest rate and the price level. The ZLB on

nominal interest rates, due to no-arbitrage between holding money versus holding bonds, is

imposed by

it ≥ 0. (1.18)

Euler equations (1.12) and (1.17) together give the Fisher equation

1 + rt = (1 + it)
Pt
Pt+1

. (1.19)

The ZLB on nominal interest rates implies the following lower bound for real interest rates

1 + rt ≥
1

Πt+1
,

9



where Πt+1 is the inflation rate in period t+ 1 defined by Πt ≡ Pt+1

Pt
. Hence for a given inflation

rate, the ZLB on nominal interest rates implies a corresponding lower bound for real interest

rates. In particular if the inflation rate is low, the lower bound imposed on real rates is harsher.

When the lower bound on real interest rates is above the natural rate of interest, then there is

by definition of the natural rate of interest an output gap.

Already one can understand the problem of the ZLB in the situation of a negative natural

rate of interest. However, the inflation rate is endogenously determined in equilibrium by the

meeting of aggregate demand with aggregate supply. To understand the effect of ZLB, it yet

requires a description of the production side of the economy.

1.3.2 Firms and the labour market

Firms hire labour to produce output. Each firm’s production function features decreasing

marginal productivity, therefore firms earn a profit. Every middle-aged household is endowed

with L̄ units of labour, which they supply inelastically to firms, and the ownership of one firm’s

associated profits. Note that although capital does not feature in this production function, it’s

inclusion does not change the mechanisms in this model (although it will affect the likelihood

of dynamic inefficiency, see the Appendix for a derivation of the model with capital).

The budget constraint for the middle aged becomes

Cmt+1 =
Wt+1

Pt+1
Lt+1 +

Zt+1

Pt+1
− (1 + rt)B

y
t +Bm

t+1 − pt+1A
m
t+1, (1.20)

where Zt is the nominal profit of the firms, and Lt is the quantity of labour supplied to the firm.

Note that although labour supply is inelastic, firms may not be able to hire all of the labour

supply due to wage frictions, hence Lt ≤ L̄. Firms have the following production function

Zt = max
Lt

PtYt −WtLt

subject to

Yt = Lαt ,

and the firm’s first-order condition with respect to labour hired gives labour demand as the

following function of the real wage
Wt

Pt
= αLα−1

t . (1.21)

Supposing that the economy was frictionless, in equilibrium the nominal wage will adjust

such that all of the available labour supply is hired, with Wt
Pt

= αL̄α−1. In this case there is no

10



unemployment and hence production is always at its maximum (potential) level. This is exactly

equivalent to the endowment economy considered in section two, therefore the equilibrium real

interest rate without frictions is equal to the natural rate of interest. Following Eggertsson and

Mehrotra (2014), a nominal friction in the form of a wage rigidity is introduced. Due to this

rigidity it is now possible that the nominal wage may fail to adjust to clear the labour market.

Wages follow

Wt = max{W̄t, PtαL̄
α−1}, where W̄t ≡ γWt−1 + (1− γ)PtαL̄

α−1. (1.22)

The above process says that the nominal wage tries to adjust to clear the labour market,

however it is downwardly bounded by a wage norm. The wage norm reflects a compromise

between the wage last period, and the market-clearing wage this period. This compromise is

summarised by the parameter γ, where full downwards rigidity case is given by γ = 1, and γ = 0

gives the flexible wage case.

Note that in order for the above wage norm to be binding in a steady state equilibrium,

there needs to be deflation. With any positive inflation rate, the wage last period would be less

than the wage this period, hence the wage norm cannot be binding. This is not to say that

in general, a secular stagnation equilibrium cannot occur with positive inflation. It is only for

simplicity that this particular wage norm does not adjust for nominal wage growth, in which

case positive inflation can still be consistent with a binding wage norm.

1.3.3 Monetary policy

The central bank sets the nominal interest rate following a Taylor rule that is constrained by

the ZLB

1 + it = max

(
1, (1 + i∗)

(
Πt+1

Π∗

)φΠ
)
, (1.23)

where φΠ > 1, Π∗, and i∗ are parameters of the policy rule. The Taylor rule attempts to

stabilise inflation around an inflation target Π∗ using the nominal interest rate. As φΠ > 1,

when inflation increases above Π∗, the nominal interest rate increases by a bigger amount. As

the real interest rate is given by the nominal interest rate minus the rate of inflation, the Taylor

rule ensures that following an increase in the inflation rate, the net effect on real interest rates

is an increase. Conversely suppose that the rate of inflation falls below Π∗, then the nominal

interest will fall by a bigger amount to deliver a lower real interest rate. For the second regime,

the nominal interest rate when responding to deflation can only fall to zero, after which the

nominal interest rate cannot further adjust. Further reductions in Πt+1 results in an increase of

the real interest rate, as opposed to a decrease which the Taylor rule is designed to achieve.

The level of inflation at which the ZLB becomes binding is denoted to be Πkink. This is

11



Π

1 + r
B

A

Πkink

Π−1
kink

Figure 1.3: Taylor rule subject to the zero lower bound.

given by

Πkink =

(
1

1 + i∗

) 1
φΠ

Π∗. (1.24)

The ZLB, together with the Taylor rule, has implications on the set of steady-state real

interest rates that a central bank can possibly deliver. Consider the steady-state inflation rate

given by Π = Πkink. For an increase in the inflation rate above Πkink, φΠ > 1 means that the

Taylor rule delivers a higher steady-state real interest rate than at Πkink. Likewise for a fall in

the inflation rate below Πkink, the ZLB means that the resulting steady-state real interest rate

is also higher than at Πkink. Hence at an inflation rate of Πkink, the steady-state real interest

rate is at its lowest at Π−1
kink − 1. See Figure 1.3 for a representation of the policy function in

(1 + r,Π) space.

Without the Taylor rule, it is possible to achieve a steady-state real interest rate of below

Π−1
kink− 1. For example imagine that the central bank always minimises the real interest rate by

setting the nominal interest to zero. Then any steady-state real interest rate, however negative,

is potentially possible with a high enough level of inflation. In general, any policy function curve

is possible so long as it stays to the right of the line joining A and B in Figure 1.3. It is only

because the central bank is unwilling to tolerate high inflation that there is a lower bound to

the real interest rate that can be delivered.

Given that there is a minimum steady-state real interest rate that can be delivered by the

central bank, by definition we cannot have full output if the steady-state natural rate of interest

is below Π−1
kink − 1. Note that this is irrespective of the inflation rate, whereas the lower bound

derived earlier is conditional on the rate of inflation.
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1.3.4 Equilibrium in the secular stagnation economy

Definition 2. An equilibrium in the production economy model is defined to be a path for

the following quantities {Cyt , Cmt , Cot , B
y
t , B

m
t , A

m
t , Lt, Yt, Zt}, and a path of the following prices

{Pt,Wt, pt, rt, it}, that solve equations (1.20), (1.6), (1.7), (1.8), (1.9), (1.10), (1.11), (1.12),

(1.19), (1.21), (1.22), and (1.23), given an exogenous path for {Dt, gt}.

In particular, as I want to consider a secular stagnation equilibrium that can hypothetically

last indefinitely, it is useful to examine my argument in a steady-state setting. To find a steady-

state equilibrium with bubbles, however, it is necessary to adjust my initial assumption of a

fixed supply for the bubbly asset.

What would happen if the supply of the bubbly asset was fixed? From section 2, loan supply

is given by equation (1.15)

Lst =
β

1 + β
(Yt −Dt−1)−At,

where At = ptAt
Nt

, and the supply of the bubbly asset is taken to be fixed at Ā. The size of the

bubble, At, grows at the rate of 1+rt
1+gt

. In order for the bubble to be sustainable it needs to be

the case that rt − gt ≤ 0 ∀t. A steady-state equilibrium requires the equilibrium real interest

rate to be constant, i.e. rt = r ∀t, but for a particular level of g it will not generally be true

that r − g = 0 exactly. In fact, as secular stagnation equilibria generally have r < 0, the case

of r − g = 0 is uninteresting for my analysis (assuming g > 0). Hence, the inequality is usually

strict. When r−g < 0, the size of the bubble per capita is decreasing, and therefore loan supply

is increasing. We know that the equilibrium real interest rate in the endowment economy, i.e.

the natural rate of interest, is given by equation (1.16)

1 + rt =
(1 + g)Dt

β
1+β (Yt −Dt−1)−At

,

which must similarly be decreasing over time. In fact, Tirole (1985) shows that a bubble with

rt − gt ≤ 0 must eventually tend to zero. This means that a fixed supply of the bubble is

inconsistent with a steady-state equilibrium.

To get around this problem, I now consider the supply of the bubbly asset At to grow over

time. In particular, the supply of the bubble is to grow at a rate of gt−rt−1

1+rt−1
≥ 0. This forces

the size of the bubble per capita to be constant, which is a necessary condition for the existence

of a steady-state equilibrium. Again the middle aged purchases the entire supply of the bubbly

asset. What differs is that the young generation (overall) is given an additional endowment of

gt−rt−1

1+rt−1
At−1 units of the bubbly asset. That is to say, they are given the additional units of the

bubbly asset, At − At−1. The size of the bubble (per capita) is now constant at a level which I

call A.
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I assume for simplicity that the young are given this endowment of the bubbly asset. The

advantage of this is that the young’s consumption is already at a corner solution. If we assume

that the young’s consumption is still at a corner solution after being given this endowment

(which will remain the case as long as the debt limit is sufficiently binding), the solution to

the household remains simple as the additional bubble endowment will not change the Euler

equation from section 2. Note, however, that the qualitative effect of the bubble is robust to

where the endowment of the bubble is given. This assumption is made only to simplify the

analysis.

Supposing that the young remain at a corner solution, replacing equation (1.6) the consump-

tion of the young increases due to their new endowment

Cyt =
Dt

1 + rt
+ pt

gt − rt−1

1 + rt−1

At−1

Nt+1
. (1.25)

With these adjustments, I define a steady-state equilibrium in the production economy model

as follows.

Definition 3. A steady-state equilibrium is defined to be a path for the following quantities

{Cyt , Cmt , Cot , B
y
t , B

m
t , A

m
t , Lt, Yt, Zt}, and for the following prices {Pt,Wt, pt, rt, it}, where each

quantity/price is constant or grows with constant rate, that solve (1.20), (1.25), (1.7), (1.8),

(1.9), (1.10), (1.11), (1.12), (1.19), (1.21), (1.22), and (1.23), given constant levels for {Dt, gt} =

{D, g}.

Proposition 2. Given constant levels for {Dt, gt} = {D, g} ∀t, if

1 + rf ≡ (1 + g)D
β

1+β (Y n −D)
< 1 + g,

where Y n ≡ L̄α, there exists a set of steady-state equilibria, with each equilibrium characterised

by a particular size of the bubble per capita, A, in the following range

A ∈
[
0,
βY n − (1 + 2β)D

1 + β

]
.

For a given A, the natural rate of interest is defined to be

rn =
(1 + g)D

β
1+β (Y n −D)−A

− 1,

which is an increasing function of the size of the bubble per capita, A. When the natural rate of

interest is below Π−1
kink − 1, given by equation (1.24), output is increasing in the natural rate of

interest. When the natural rate of interest is above Π−1
kink−1, output is at its maximum potential

level.
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Proof. The first part of Proposition 2 follows exactly the proof for Proposition 1. The second

part of Proposition 2 follows from the argument given in the discussion of the Taylor rule.

Proposition 2 states that when the natural rate of interest is below Π−1
kink − 1, a further fall

in the natural rate of interest leads to a fall in output. As bubbles act to increase the natural

rate of interest, an increase in the size of the bubble can lead to an increase in output. The

reason this occurs is due to the ZLB on nominal interest rates. In order for the central bank to

maintain full output, the real interest rate delivered in the economy needs to match the natural

rate of interest. However the lowest real interest rate that the central bank can deliver (due to

the Taylor rule) is Π−1
kink − 1. Hence a fall in the natural rate of interest beyond Π−1

kink − 1 leads

to a contraction in output.

To demonstrate Proposition 2 in a aggregate demand and supply framework, I derive the

steady-state aggregate supply and aggregate demand curves as a function of the size of the bubble

A. Aggregate supply and aggregate demand meet to determine the steady-state equilibrium,

and analysing the effect of bubbles on these curves allows one to deduce its effect on output,

1.3.4.1 Steady-state aggregate supply and demand

Steady-state aggregate supply is not affected by the introduction of the bubble. Aggregate

supply is divided into two regimes, one when the wage norm in equation (1.22) is not binding

and there is full output, and the other when wage is above market clearing and there is an

output gap.

For the first regime where there is full output (Y = L̄α), it follows that the wage norm is

not binding in the steady state. This gives the following condition

W

P
≥ γW

P
Π−1 + (1− γ)αL̄α−1.

As the wage norm is not binding, W
P = αL̄α−1, therefore the condition above is satisfied

whenever Π ≥ 1. This implies that the division of the aggregate supply curve into its two

regimes is separated by when Π < 1, and when Π ≥ 1. The first regime is given by

Y = L̄α ≡ Y n for Π ≥ 1. (1.26)

Now consider the scenario when the wage norm is binding with Π < 1, then it follows that

W = W̄ . Therefore the real wage is given by

W

P
=

(1− γ)αL̄α−1

1− γΠ−1
.

For a particular real wage, the quantity of labour hired is given by equation (1.21). Com-
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bining this with the production function gives

γ

Π
= 1− (1− γ)

(
Y

Y f

) 1−α
α

for Π < 1, (1.27)

which defines the second regime of the aggregate supply curve where there is an output gap.

See the Appendix for a full derivation of equation (1.27).

The two regimes given by equations (1.26) and (1.27) together specify the steady-state ag-

gregate supply curve, which is shown in (Y,Π) space in figure 1.4. The first regime represents

the vertical part of the aggregate supply curve. Here, Π > 1, the wage norm is not binding,

and therefore there is market clearing in the labour market with Y = L̄α. The second regime

has a positive slope and represents when the wage norm is binding. To explain the positive

slope, consider a further decrease of Π < 1. The rate of deflation increases resulting in a higher

steady-state real wage. This leads to a lower level of labour employed, and hence a further

output reduction. Therefore the fall in Π leads to a fall in Y .

Now I describe the steady-state aggregate demand curve which is affected by the introduction

of bubbles. Combining the policy function given by equation (1.23), the Fisher equation given

by equation (1.19), and summing up consumption across all three cohorts using equations (1.25),

(1.3) and (1.11), I find

Y = D +
(1 + β)(1 + g)D

β(1 + r)
+

1 + β

β
A. (1.28)

Aggregate demand is also separated into two regimes. The first regime corresponds to when

the Taylor rule is active with i > 0. The second regime corresponds to when the ZLB is binding

with i = 0. Substituting for r using Π in the first regime gives

Y = D +
(1 + β)(1 + g)DΓ∗

β

1

ΠφΠ−1
+

1 + β

β
A for i > 0, (1.29)

and for the second regime I find

Y = D +
(1 + β)(1 + g)D

β
Π +

1 + β

β
A for i = 0, (1.30)

where Γ∗ ≡ (1 + i∗)−1(Π∗)φΠ . See the Appendix for a full derivation of the above result.

Equations (1.29) and (1.30) describe the steady-state aggregate demand curve, which is also

shown in (Y,Π) space by Figure 1.4. For the first regime when the ZLB is not binding, the

Taylor rule ensures that an increase in Π results in an increase in r. This leads to a reduction

in aggregate demand, hence the first regime of the curve has a negative slope. In the second

regime, the ZLB means that a decrease in Π leads to an increase in r. The increase in r reduces

aggregate demand, hence the positive slope in the second regime. The two regimes meet at
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Figure 1.4: Fundamental equilibrium following a decrease in D.
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Figure 1.5: Effect of a bubble when the natural rate of interest is strongly negative.

the level of inflation when the zero lower bound is weakly binding. This is given by Πkink in

equation (1.24).

The exact slopes of the aggregate demand and aggregate supply curves depend on the par-

ticular parameter specification. In particular looking at Figure 1.4, the existence of a secular

stagnation equilibrium represented by point B depends on the condition that the second regime

of the aggregate demand curve is more steep than the second regime of the aggregate supply

curve. Eggertsson and Mehrotra (2014) show that this is true for sensible parameter values

which they present in their paper.

As seen in Figure 1.4, a fall in D leads to a fall in the natural rate of interest which can

result in secular stagnation. In particular, as I am describing the steady-state equilibrium, the

output gap at point B will last indefinitely. In the fundamental economy, we see the effect of a

fall in D in {Y,Π} space as a shift to the left of the aggregate demand curve. In this example,

the intersection of aggregate supply and aggregate demand moves from full output, at point A,

to secular stagnation, at point B.
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Figure 1.6: The policy function and the natural rate of interest.

Figure 1.4 shows the effect of a strongly negative natural rate of interest in the fundamental

economy. Figure 1.5 shows the effect of introducing a bubble to this economy. The bubble shifts

out the aggregate demand curve as it acts to increase the natural rate of interest. By shifting

out the aggregate demand curve through a higher natural rate of interest, the equilibrium at

the intersection of aggregate demand and aggregate supply now occurs at the full output regime

of the aggregate supply curve. Specifically, as there is full output in the bubbly equilibrium

it follows that the natural rate of interest is above Π−1
kink − 1. In general, it is possible that

there still remains secular stagnation, however the bubble will nonetheless make the output gap

smaller.

1.3.4.2 Natural rate of interest versus the real interest rate delivered

To better understand how the natural rate of interest affects the resulting equlibrium, it is

insightful look closely at the natural rate of interest versus the real interest rate delivered (by

the central bank).

Suppose that the natural rate of interest in the fundamental economy is less than Π−1
kink − 1,

what is the resulting steady state equilbrium? Figure 1.6 shows that for a natural rate of interest

that is below Π−1
kink − 1, the real interest rate delivered by the central bank cannot possibly be

equal to the natural rate of interest. In particular suppose that there are no nominal rigidities.

Then wages are always at the market-clearing level and there cannot be an output gap. As the

real interest rate required to clear the goods market, rn, cannot be the same as the real interest

rate delivered by the central bank, r, the economy with no frictions would mean no possible

equilibrium.

The argument above explains the necessity of r = rn if we are to have full output, Y = Y n.

In a world without rigidities, full output is necessary, so r 6= rn leads to a contradiction. If one

allows for the possibility of less than full output, it is now plausible to have an equilibrium with
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Figure 1.7: The policy function and the market-clearing real interest rate.

r 6= rn. The introduction of nominal rigidities leads to the Keynesian IS curve, which says that

the size of the output gap is increasing in the mismatch between the real interest rate delivered

and the natural rate of interest.

The red line in Figure 1.7 shows how the market-clearing real interest rate depends on Π. A

fall in Π beyond Π < 1 results in a fall of aggregate supply (see the second regime of the aggregate

supply curve). Aggregate demand is falling in the real interest rate, therefore the reduction in

output leads to a higher market-clearing real interest rate. This gives the negative slope of the

market-clearing real interest rate below Π < 1. The intersection of the policy function and the

market-clearing real interest rates curve determines the steady-state equilibrium. This second

regime of the market-clearing real interest rate curve (for Π < 1) is the Keynesian IS curve,

generated by the simple nominal friction of the wage rigidity. By suffering an output gap, it

is possible for market clearing to occur at a higher real interest rate which is consistent with

the policy function. Note again the importance of relative slopes of the two curves. For a

contractionary equilibrium to exist it must be the case that the slope of the policy function

is more steep than the slope of the market-clearing real interest rate curve. This maps to the

analogous condition on relative slopes for aggregate demand versus aggregate supply, which

Eggertsson and Mehrotra (2014) show is satisfied for a sensible parametrisation.

Given that the effect of bubbles is to increase the natural rate of interest, this shifts the

market-clearing real interest rate curve to the right. As seen in Figure 1.8, the effect of this

is a decrease in the equilibrium real interest rate, and therefore a higher level of output. In

particular when the natural rate of interest equals to Π−1
kink − 1, the economy no longer requires

an output gap to achieve market clearing while remaining consistent with the policy function.

This means that whenever the natural rate of interest is above Π−1
kink − 1, there exists a steady-

state equilibrium with full output.
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Figure 1.8: Effect of bubbles on the market-clearing real interest rate.

1.4 Bubble stability and fiscal policy

While bubbles may have a positive effect through its effect on the natural rate of interest, this

generally is considered to be not without trade-offs. In particular, the defining characteristic of

bubbles is that its price today depends importantly on investors’ expectations for its future resale

value. When investors’ expectations shift, the bubble that was sustained by such expectations

will likewise collapse.

Within my model, there is no aspect of uncertainty. In such a framework it is expected that

bubbles continue indefinitely. To analyse stability, I offer to consider the thought experiment of

introducing exogenous shocks to economic fundamentals. This allows me to analyse the stability

of bubbles without needing to deviate from the existing modelling framework, however a more

rigorous approach would allow the agents to internalise the probability of collapse as a feature

of the model. To proceed, from Proposition 1 we know that a bubble is unstable whenever the

real interest rate greater than the growth rate of the economy g. When r > g, the bubble grows

relative to the aggregate economy, which means that eventually the bubble will be too large

to be sustained. I show in this section that bubbles of larger sizes are relative less stable, as

they are more likely to become unstable following a fundamental shock. Following the standard

analysis of dynamic efficiency, policies that generate the equivalent intergenerational transfers as

bubbles act as a substitute for trade in bubbles, which can produce the same desirable outcome

as bubbles without the associated instability.

For simplicity I shall make my above argument in the endowment economy model, although

the same argument can be applied to the production economy’s steady-state equilibrium. Given

that rt must never exceed g, the upper bound to real interest rates maps to an upper bound

to the maximum size of the bubble. Suppose we consider a shock to economic fundamentals,

namely Y , D or g. Such a shock threatens the stability of a bubble if it decreases this upper
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bound. When the the upper bound falls below the actual size of the bubble, then the bubble

must collapse due to forward-looking expectations. The larger the bubble, the closer it is to the

initial upper bound, and hence the smaller the shock that is required to burst it. In particular

for a bubble that is already at its maximum size, any reduction in the upper bound would result

in the bubble collapsing.

According to proposition 1 the upper bound for the size of the bubble is given by

At ≤
βY − (2 + β)D

1 + β
,

which is not violated whenever

At ≤
β

1 + β
Y − 2 + β

1 + β
D.

Hence the upper bound falls due to either an increase in D or a fall in Y . Both an increase

in D and a fall in Y act to reduce the desired savings per capita, β
1+β (Y −D). As At units of per

capita savings is necessarily invested into the bubble, this amount can become too large relative

to desired savings per capita after an increase in D or a fall in Y . The larger the bubble At, the

closer we are to violating this stability condition, and hence the smaller the shock to either Y

or D would be sufficient to violate this condition, thereby making the bubble unstable.

Similar to a change in Y or D, a reduction in the growth rate g can achieve the same effect

but from the other direction. To demonstrate this I need to however adjust an assumption

made earlier. Right now a reduction in g leads to a fall in rt at a one-to-one rate, hence rt

will never exceed g following a fall in g. However this fact owes entirely to the life-cycle income

endowment structure. If instead I allow for a smaller endowment income to the old, which

follows the endowment economy specification in Eggertsson and Mehrotra (2014), in this setting

rt may exceed g following a reduction in g.

Allowing for an endowment income to the old of level Y o, loanable fund supply becomes

Lst =
β

1 + β
(Y m −D)− 1

1 + β

Y o

1 + rt
−At,

which implies that the market-clearing real interest rate is now

1 + rt =
(1 + g)D + 1

1+βY
o

β
1+β (Y m −D)−At

.
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A bubble’s stability requires 1 + rt ≤ 1 + gt. This condition may be rewritten as

1
1+βY

o

β
1+β (Y m −D)−At −D

≤ 1 + g.

Hence following a negative shock to g, it is possible that a bubble becomes suddenly unstable.

Again the size of the bubble is negatively associated with its relative stability. For larger sizes

of the bubble, At, a smaller shock to g will make the bubble collapse.

Bubbles raise the natural rate of interest because they create intergenerational transfers when

the economy is dynamically inefficient. Whether or not the economy is actually dynamically

inefficient is a somewhat open question. Whereas Abel et al. (1989) find evidence that the

U.S. was never dynamically inefficient, Geerolf (2013) finds evidence to the contrary with access

to new data on the return of land. Nonetheless for the purpose of my discussion, I make

the assumption that the fundamental secular stagnation economy is dynamically inefficient.

Whereas this assumption is innocuous for my analysis previously on the effect of bubbles in

secular stagnation, the effect of policies in my framework depends on this assumption as they

target specifically the transfers that rational bubbles provide.

Following the standard dynamic efficiency logic, trade in bubbles generates transfers away

from the middle aged to the old. In every period, the middle aged purchase the stock of the

bubbly asset from the old, which the old uses to finance consumption in retirement. The middle

aged is willing to do this because they rationally expect that the current young generation will

likewise do the same the next period. This transfer facilitates consumption smoothing across

the periods of a household’s life cycle, as it redistributes income away from when the household

is rich (in the middle period when it is working), to when the household is poor (in the final

period of retirement). As this transfer occurs at a return of 1 + g, it is efficient whenever the

real interest rate is less than the growth rate of population.

Understanding the effect of rational bubbles in this way, it follows similarly that the gov-

ernment can substitute for bubbles by reproducing the same transfers by force of policy, see

e.g. Samuelson (1958) and Diamond (1965). Consider a PAYG transfer scheme enforced by

the government where the middle aged as a whole is taxed in period t a quantity of Qt. This

quantity is then redistributed evenly among the old generation. Furthermore suppose also that

this quantity Qt grew by a rate of 1 + rt, so that

Qt+1 = (1 + rt)Qt.

This guarantees that the middle aged know that they will likewise receive a transfer back in

retirement, with the transfer received accumulating an equivalent return. This PAYG transfer
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is designed to be exactly equivalent to the same quantity of trade in bubbles, hence it acts as a

perfect substitute for the bubbly asset. In this situation, the same allocation is achieved with a

bubble that is Qt units smaller. Therefore, the PAYG transfer reduces the size of the bubble by

that same quantity (keeping allocations constant). In the context of the fundamental economy

secular stagnation equilibrium, it follows that PAYG transfers reduce the output gap by raising

the natural rate of interest with exactly the same mechanism as bubbles. Any other policy

that enforces similar transfers will similarly substitute for bubbles, for example the issuance

of sovereign debt by the government, where repayments for sovereign debt is funded by the

taxation of the working generation, see Diamond (1965). By reducing the size of the bubble,

there is a reduction in the impact of its potential collapse. This may make the economy more

robust to unpredictable changes in investor sentiments, at least with regards to the possibility

of secular stagnation. While a bubble’s stability is shown to be negatively associated with its

size, a bubble that is smaller due to a substituting policy is not more stable. This is because

although the bubble is smaller, the maximum stable size of that same bubble is smaller by the

same quantity. Nonetheless by achieving a smaller bubble, the effect of its collapse is dampened.

1.5 Conclusion

Although often associated with negative economic outcomes, in an environment of secular stag-

nation I show that bubbles can play a positive role by absorbing savings and increasing the

natural rate of interest. This alleviates the central cause of secular stagnation, thereby in-

creasing output and employment. While bubbles can do this, it likely comes with associated

instability. The collapse of a bubble leads to a reduction in the natural rate of interest, which

can act as the trigger to secular stagnation. I show in a stylised thought experiment that the

stability of a bubble is likely decreasing in its size, hence the bubble solution to secular stagna-

tion is imperfect. Within the framework of rational bubbles, other policies may have the same

effect without the associated instability. The basic premise for analysing a bubble’s stability

and its relation to government policies is introduced in this chapter, however the canonical ex-

amples I give are simplified and lack certain features necessary for a comprehensive analysis of

the question. An extension where agents internalise the probability of a bubble’s collapse will

be insightful, however this is left for for future research.
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1.6 Appendix

1.6.1 Production economy with capital

The introduction of capital does not qualitatively change the mechanisms described in section

3. Again bubbles act to increase the natural rate of interest, which can increase output when

the natural rate of interest was strongly negative to begin with.

With capital, there is now a one-to-one relation between the real interest rate to the level of

capital per worker. The equilibrium level of capital per worker is higher for lower real interest

rates. Hence, low real interest rates leads to a secondary positive effect on output through a

higher level of capital. Capital does not necessarily preclude negative real interest rates. As a

savings vehicle, capital generates a return of the MPKt+1 + 1− δ. While the marginal product

of capital is certainly greater than zero, once accounting for depreciation it possible for capital

as an asset to offer a negative real interest rate.

Firms are perfectly competitive and they produce output following a Cobb-Douglas produc-

tion function

Yt = K1−α
t Lαt . (1.31)

Households save by purchasing capital. In purchasing one unit of capital, a household must

forgo pk − rk units of consumption in the current period, which in the next period allows for

pk(1 − δ) units of additional consumption. The savings return on capital equals to the savings

return on bonds by arbitrage

pk(1− δ)
pk − rk

= 1 + r,

=⇒ rk = pk
(

1− 1− δ
1 + r

)
,

which gives equations (1.33) and (1.39).

The contemporaneous rental rate on capital equals to its marginal product in production

rk = (1− α)
Y

K
,

which gives equations (1.34) and (1.40).

When Π < 1, W = W̄ .

W

P
= γ

W

P
Π−1 + (1− γ)αPtK

1−αL̄α−1,

=⇒ W

P
=

(1− γ)αK1−αL̄α−1

1− γΠ−1
.
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Because W
P equals to the marginal product of labor, equation (1.38) follows

αK1−αLα−1 =
(1− γ)αK1−αL̄α−1

1− γΠ−1

=⇒ L =

(
1− γΠ−1

1− γ

) 1
1−α

L̄.

Bonds yield the same return as capital and the bubbly asset, hence its demand from the

middle aged is perfectly crowded out by both capital and the bubbly asset, thus

Bm
t = − β

1 + β
(Yt −Dt−1) +

ptAt
Nt

+ (pk − rk)K.

For a particular steady-state level of capital per capita, investment is needed to account for

depreciation and population growth

K =
1− δ
1 + g

K +
I

pk

=⇒ I = pk
(

1− 1− δ
1 + g

)
K,

where I is the investment needed to sustain a particular steady-state level of capital K.

As before, consumption across all generations must sum to output minus investment, it then

follows that

Y − I = (1 + g)Cy + Cm +
Co

1 + g

=⇒ Y − pk
(

1− 1− δ
1 + g

)
K =

(1 + g)

(
D

1 + r
+
g − r
1 + r

A 1 + r

(1 + g)2

)
+

1

1 + β
(Y −D) +

1 + r

1 + g

β

1 + β
(Y −D)

=⇒ Y = D +
1 + β

β

1 + g

1 + r
D + pkK

(
1 +

1− δ
β(1 + r)

)
+

1 + β

β
A,

which gives equation (1.37), and substituting 1 + r = Π−1when i = 0 gives equation (1.42).

1.6.2 Steady-state equilibrium and aggregate demand and supply

A steady-state equilibrium is summarised by the following set of equations below.
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Figure 1.9: The effect of a bubble in an economy with capital.

For Π ≥ 1 we have

rk = pk
(

1− 1− δ
1 + r

)
, (1.32)

rk = (1− α)
Y

K
, (1.33)

1 + r =
ΠφΠ−1

Γ∗
, (1.34)

Y = K1−αL̄α, (1.35)

Y = D +
1 + β

β

1 + g

1 + r
D + pkK

(
1 +

1− δ
β(1 + r)

)
+

1 + β

β
A. (1.36)

For Π < 1 we have

L =

(
1− γ

Π

1− γ

) 1
1−α

L̄, (1.37)

rk = pk
(

1− 1− δ
1 + r

)
, (1.38)

rk = (1− α)
Y

K
, (1.39)

Y = K1−αLα, (1.40)

Y = D +
1 + β

β
Π(1 + g)D + pkK

(
1 + Π

1− δ
β

)
+

1 + β

β
A. (1.41)

For Π ≥ 1, equations (1.32), (1.33), (1.34) and (1.35) can be combined to eliminate K, rk and

r to find the aggregate supply curve, and (1.32), (1.33), (1.34) and (1.36) may be combined to

eliminate K, rk and r to find the aggregate demand curve. For Π < 1, equations (1.37), (1.38),

(1.39) and (1.40) may be combined to eliminate L,K and rk to find the aggregate supply curve,

and (1.37), (1.38), (1.39) and (1.41) may be combined to eliminate L,K and rk to find the

aggregate demand curve. A bubble again acts to shift out the aggregate demand curve. Figure

1.9 shows the effect of a bubble when the natural rate of interest in the fundamental economy
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Figure 1.10: Expansionary versus contractionary bubbly episodes.

is strongly negative.

Aggregate demand and the second regime of aggregate supply do not qualitatively change

with the introduction of capital. The first regime of aggregate supply representing full em-

ployment is no longer vertical but now has a negative slope. The negative slope is due to the

secondary effect of real interest rates on output. An increase of Π in the first regime of aggregate

supply again corresponds to an increase in the real interest rate. This now means a reduction

in the steady-state level of capital per worker, which reduces output, hence the negative slope

of the first regime.

Martin and Ventura (2012) identify that models of bubbles from Samuelson (1958) and Tirole

(1985) associate bubbly episodes with periods of lower output. A bubble increases real interest

rates and reduces the capital stock, hence lowering output. This feature of Samuelson-Tirole

models is hard to reconcile with experience. In this model, bubbles can be either expansionary

or contractionary depending on the initial natural rate of interest in the fundamental economy.

Suppose that the fundamental economy was already at full output. Then a bubble shifts out

aggregate demand from AD1 to AD2, which reduces output through the standard Samuelson-

Tirole mechanism. But if the fundamental economy generates a secular stagnation equilibrium,

a bubble shifts out aggregate demand from AD3 to AD4, which results in an increase in output.

Hence a bubble can be either expansionary or contractionary.

1.6.3 Aggregate supply

When the wage norm is not binding (Π ≥ 1), then Y = L̄α = Y n.
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However when the wage norm is binding, it follows that

W

P
= γ

W

P
Π−1 + (1− γ)αL̄α−1

=⇒ W

P
=

(1− γ)αL̄α−1

1− γΠ−1
.

Using the labour demand function we get

W

P
= αLα−1

=⇒ L =

(
W

P

) 1
α−1

=⇒ Y =

(
W

P

) α
α−1

.

Substituting for W
P , rearranging, and accounting for L̄α = Y n, I find:

γ

Π
= 1− (1− γ)

(
Y

Y n

) 1−α
α

,

which gives equation (1.28) for the second regime.

1.6.4 Aggregate demand

The consumption of each generation at time t is given respectively by equations (1.26), (1.3),

and (1.4)

Cyt = By
t + pt

gt − rt−1

1 + rt−1

At−1

Nt+1
,

Cmt = Yt − (1− rt−1)By
t−1 +Bm

t − ptAmt ,

Cot = −(1 + rt−1)Bm
t−1 + ptA

m
t−1,

where Yt = Wt+1

Pt+1
Lt+1 + Zt+1

Pt+1
, and By

t = Dt
1+rt

. Using the Euler equation, we further get

Bm
t = − β

1 + β
(Yt −Dt−1) +

ptAt
Nt

.

In addition, market clearing for the bubbly asset gives

Amt =
At
Nt
.

At a steady-state equilibrium, aggregate consumption across all three generations totals to
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Y , thus

Y = (1 + g)Cy + Cm +
Co

1 + g

=⇒ Y = (1 + g)

(
D

1 + r
+
g − r
1 + r

A 1 + r

(1 + g)2

)
+

1

1 + β
(Y −D) +

1 + r

1 + g

β

1 + β
(Y −D)

=⇒ Y = D +
(1 + β)(1 + g)D

β(1 + r)
+

1 + β

β
A.

Next, substitute for 1 + r using equations below:

1 + r =
ΠφΠ−1

Γ∗
for i > 0,

1 + r = Π−1 for i = 0,

where Γ∗ ≡ (1 + i∗)−1(Π∗)φΠ . Equations (1.30) and (1.31) then fully specify the aggregate

demand curve.
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Chapter 2

The Decline in Fertility Rates and

its Effects on Interest Rates and the

Value of Land

2.1 Introduction

Real interest rates have fallen substantially in the past few decades across the advanced economies.

They have been near zero or negative in the United States and the Euro-zone since late 2008,

and for Japan since the mid 1990s. This trend has received intense academic scrutiny in recent

years as it has important implications on the wider economy, for example on the operation of

monetary policy subject to the zero lower bound and on financial stability. See Teulings and

Baldwin (2015) for an overview of the secular stagnation debate. In this paper we show that a

decline in fertility rates can drive a large fall in real interest rates, like which we have witnessed.

A sudden fall in fertility rates leads to a shifting of the age distribution starting from the early

1970s, where today we witness an age imbalance with a disproportionately large number of

middle-aged people, aged about 45-54. The consequence of this imbalance is a disruption of

the life-cycle saving patterns across generations; the savings of the large cohort drives down the

return of capital and hence interest rates. One might wonder if the surplus of saving can also

explain the rise in land prices and consequently the rise in house prices, where land acts as a

vehicle that absorbs some part of the additional savings. Our analysis surprisingly finds evidence

to the contrary, at least from the perspective of a fully rational model driven by fertility rates

and life-cycle saving motives.

Fertility rates underwent a dramatic decline for all advanced economies since the early 1970s,

although the timing and the magnitude of this fall varies from country to country. Goldin

and Katz (2002) document this fall for the US, where fertility rates were high and well above
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replacement in the two baby-boom decades following WWII, and the subsequent fall led to a

Total Fertility Rate (TFR) of about 1.8, a level that is below replacement. The timing of this

aligns with the contraceptive pill becoming widely available towards the late 1960s and early

1970s, as well as increasing career and higher education opportunities for women. Fertility rates

have been relatively stable since then, hence we propose to think about this fall as an exogenous

one-time shock. The fall in fertility rates drives a shift in the dynamics for cohort size, with the

cohorts born thereafter being smaller in size. Because the population was growing rapidly in

most countries in the baby-boom decades before the fertility shock, this large pre-shock cohort

is also greater in size than the cohorts born before. Altogether, the cohort currently aged

between 45-54 is the largest cohort across all age groups, and this leads to a diamond-shaped

age distribution which we find common across the advanced economies. The notable caveat to

this pattern is Japan, which has an additional large cohort aged 65-69.

The long-term effects of the fall in fertility rates on savings and interest rates is well under-

stood. The seminal work by Samuelson (1958) analyses the long-term Balanced Growth Path

(BGP) equilibrium as a function of the population growth rate. The fall in fertility rates results

in a fall in the long-term population growth rate, which lowers the real interest rate along the

BGP equilibrium. The subject of this paper, however, considers the shorter-run transitional

dynamics following a sudden fall in fertility rates. These dynamics are characterised by the life

cycle of the large cohort described previously, which presents the significant deviation from the

age distribution of the BGP equilibrium. The transition features a sharp decline in real inter-

est rates, one that overshoots the long-run fall in interest rates along the BGP. Although the

overshooting is transitional, it nonetheless lasts several decades and is therefore important to

analyse and understand. Our model predicts that real interest rates shall continue to fall until

around 2035, and thereafter there will be a partial reversal as we converge to the new BGP.

To analyse the transitional dynamics following a fertility shock, we consider a large OLG

model where fertility rates iteratively determine the size of the new-born cohort. Time is discrete

at the annual level, and an individual in this economy lives on the order of some 70 periods. We

abstract from cross-sectional heterogeneity within birth cohorts and instead focus on heterogene-

ity across birth cohorts. We do not consider idiosyncratic and uninsurable shocks to income and

instead assume that labour income is deterministically derived from the value of the individual’s

labour endowment. We also do not consider price level fluctuations and instead consider only

the full output equilibrium. We believe this is an appropriate simplification as we are interested

in the longer-term dynamics of real interest rates and land prices and not medium-term cyclical

fluctuations. The objective of the individual is then to consume and save optimally so as to

maximise its welfare, subject to its perfect foresight for the path of prices. In the extension

where we consider the price determination of land, land serves simultaneously as a store of value
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and as a good that generates utility. An individual optimally selects the quantity of land to

rent depending on its rental price, and individuals also buy and sell land over its life cycle to

facilitate consumption smoothing. As is typical for the life-cycling consumption smoothing for

an individual, in our model each cohort saves during the years it is active on the labour market

to accumulate assets, which it uses to finance their consumption in retirement. The desired asset

holdings by a generation peaks at the age of retirement, which is around 65 in most countries,

and this pattern of asset accumulation is smoothly accommodated by the other birth cohorts

whom are at different stages of their life cycles along a BGP. The large cohort born before

the negative fertility shock disrupts this accommodating process; they are accumulating assets

while the usual absorbers of these savings (the retirees and the youngsters) are in relative short

supply. We find that the saving of this large cohort drives a sharp collapse in real interest rates

and our model predicts near zero or negative real interest rates from 2010 onwards. Further,

our model predicts that this period of low interest rates will continue for another 1.5 decades,

overshooting the new BGP level until hitting a trough around the year 2035. After which the

large cohort begins to retire and deplete their assets, leading to an increase in the real interest

rate that tends towards the new BGP level. Despite the accumulation in assets, our model does

not predict an increase in land prices but rather a decline.

Our model assumes closed capital markets. Due to the close synchronicity of demographic

trends across the advanced economies, international capital markets may offer little help to the

problem of demography-driven over-saving. While developing economies experienced a lesser

fall in fertility rates, there are greater frictions to those markets which limits the movement

of capital. Nonetheless, it is still insightful to consider a global capital market with a global

interest rate. Our analysis may be extended to a global scale with open and partially frictional

capital markets, however we leave this as an avenue for future research.

We also make the assumption of no technological progress. Hence the long-term growth

rate of the economy, g, is simply the growth rate of population. To include a constant rate for

technological progress would be equivalent to having a faster rate of effective labour growth. Our

results would be qualitatively unchanged with this inclusion, but an increase in g would imply

a shift upwards in interest rates by a similar margin. Gordon (2012) in his study of historical

U.S. growth makes the argument that innovations of recent decades are comparatively minor

when compared to the innovations of the industrial revolution, leading to slowing productivity

growth in recent decades. His findings imply a downwards pressure on per-capita output growth

through the unobserved technology term, as well as a corresponding additional negative effect

on interest rates. Gordon’s perspective fits into the broader discussion of long-term stagnant

growth. In particular, Summers (2013) proposes the secular stagnation hypothesis, where a

persistently low natural rate of interest can lead to a persistent New-Keynesian output gap due
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to the zero lower bound on nominal interest rates. Our analysis offers a potential demographic

explanation for the decline of the natural rate of interest, which could serve as the premise for

a secular stagnation equilibrium.

This chapter builds upon literature that looks to investigate the effect of demographics on

real interest rates. Rachel and Smith (2015) find that changes in demography has resulted in

changes to the support ratio, the ratio of workers to the overall population. They find that an

increase in the support ratio can explain an increase in savings supply accounting for a 0.9%

fall of real interest rates. Carvalho, Ferrero and Nechio (2016) make a similar argument and

find that they can account for a reduction in the natural rate of interest of 1.5%. Goodhart

and Erfurth (2014) consider future support ratios and project that support ratios will fall in

the future, thereby reversing the period of high savings and low interest rates. Similarly to

this model, they predict that by 2025 real interest rates shall return to their historical norm of

2.5-3%.

While the above studies vary in their approach, we distinguish our analysis by our focus

on transitional dynamics. Their studies have in common the fact that they consider a static

effect following a shift in demography. Consider for example an analysis based on the level

of the support ratio, which argues that within a steady-state equilibrium high support ratios

correspond to low interest rates. The contribution of this paper is to highlight the importance

of the acute medium-term effects on the age distribution along the transition. It is precisely the

concentration of mass towards for the older part of the labour force that generates our results.

The implication is a much larger response for real interest rates, which would not be captured

in static comparisons.

The structure of the remainder of this chapter is as follows. Section 2 presents the evolution

of the age distribution common to all advanced economies in recent decades, and we demonstrate

that these trends can be explained by a fall in fertility rates in the early 1970s. In section 3, we

present the model that maps a collapse in fertility rates to its effects on saving and real interest

rates. In section 4 we present a calibration of our model framework to simulate real interest

rates for various advanced economies. In section 5 we present an extension of our model to

consider the value of land during the demographic transition. In section 6 we conclude.

2.2 The evolution of age distributions

Figure 2.1 provides the age pyramids for the world’s four largest economies, the United States,

China, Japan, and Germany, in 20161. The same figure for the six largest economies in the

Eurozone is included in the Appendix.

1Figure 2.1 is composed from figures taken from https://www.cia.gov/library/publications/the-world-
factbook/fields/2010.html
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Figure 2.1: Age pyramids of the world’s four largest economies.

All countries reveal a clear difference compared to the traditional graphs that applied 50

years ago and that do still apply for many developing countries: the age pyramid been replaced

by a diamond shape with a concentration of mass in the middle section, aged 45 to 54. However

at a more detailed level, the graphs also reveal clear differences between countries. For the sake

of our discussion, we ignore the tops of the pillars above the age of 65, which largely reflects the

effect of mortality at old age. Instead, we focus on the size of cohorts at the lower ages, which

reflects differences in the fertility rates over time and also subsequent migration flows. First,

we may identify the relative size of the large cohort born before the early 1970s, who are aged

around 45-54 in 2016. This large cohort is most extreme in Germany, and somewhat less so in

the United States. Other countries in the Eurozone look closer to Germany than the United

states, and we include their age pyramids in the Appendix. In China the fertility shock comes

about 5 years later with the introduction of the One Child Policy, hence the largest cohort is

also around 5 years younger. In Japan, we see two large cohorts with an additional large cohort

aged 65-69.

The large cohort dominates the age distribution. In the mid-1980s, the large cohort is around

age 20, at which point they enter the labour force. In the mid-2000s, the large cohort is around

age 40 and they are in the peak of their working careers. In 2016, the large cohort is around age

50, approaching retirement. The goal of our analysis is to understand the impact of this large
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cohort and the overall age distribution transition on the evolution of real interest rates and the

value of land.

Figure 2.2: TFR for the world’s four largest economies.

Fertility rate data across the four largest economies explains the origin of the large cohorts.

The Total Fertility Rate (TFR) is defined as the average number of children a woman is expected

to have in her lifetime. In each country in the decades preceding the large cohort, population was

growing rapidly. Following a sudden collapse in the TFR, the final cohort before the fertility

shock become large relative to both the cohorts born before and after. As the large cohorts

approach middle age, they generate the diamond shape in the age pyramid that we are familiar

with today. For all countries, there is an echo effect of the elderly large cohort some 20 to 25

years later, when the large cohort of fertile women gives rise to a boom in newborn babies. In

Japan today, the echo cohort of the original large cohort, aged 40 to 44, is close in size to the

cohort of their parents due to mortality at the higher ages.

2.2.1 A model of the cohort size transition

We develop a simple model of cohort size and its evolution. Suppose that an individual lives for

a total of J years (periods). Define the size of the cohort born at period t to be Nt. The total
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population of all those alive at period t is Pt, which is given by

Pt =

J−1∑
i=0

Nt−i. (2.1)

Those between the ages of F and F are fertile. They determine the size of the newborn

cohort according to

Nt = bt

F−1∑
i=F

Nt−1−i, (2.2)

where bt is the birth rate at time t, where the birth rate is derived from the TFR by bt =

TFR/(F − F ). From these equations, we may derive the constant rate of population (and

cohort size) growth for a given fixed birth rate b. By equation 2.1, we see that if population

grows at a constant rate of gP and cohort size grows at a constant rate of gN , then it must

be the case that gP = gN . From here we shall refer to this common growth rate as simply g.

Rewriting equation (2.2) to

b =
(F−1∑
i=F

(1 + g)−i
)−1

, (2.3)

which gives us a monotonically increasing relationship between the birth rate b and the constant

rate of population growth g.

We consider the case of a sudden fall in fertility rates. Suppose that the population was

initially growing at the high constant growth rate associated with b = bH , given by equation

(2.3). The effect of the fertility shock leads to a reduction in birth rates described by

bt =


bH , t < t∗

bL t ≥ t∗
, where bH > bL. (2.4)

Using equation (2.2), and noting that the initial demographic state was that of constant

growth, we may derive the demographic transition thereafter. The transition occurs over many

periods, however we find that the growth rate of the population will eventually stabilise at the

new constant growth rate given by equation (2.3) with b = bL.

2.2.1.1 Application to Germany

Germany, out of the four largest economies, comes closest to the case of a sudden negative

fertility shock. Taking the fertile sub-population to be those between the ages of 20 to 30,

we begin under the assumption that the population was initially growing at a constant rate

consistent with a TFR of 2.5. We model the fertility shock as a sudden drop in TFR from 2.5
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Figure 2.3: Germany’s fertility shock and the simulated age distribution in 2016.
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to 1.4 in the year of 1970 (see figure 2.3). Figure 2.3 shows the fit of our model. We see that

our assumption of a sudden fertility shock captures the decline in fertility rates. In addition, we

see that our model of the age distribution fits the age distribution of Germany well. We note

that the success of this fit is despite using only two numbers, 2.5 before and 1.4 thereafter, to

fit the fertility rate decline.

An important point to note is that the current age distribution for Germany, in terms of its

ratio between those approaching retirement to those who are young, is more extreme than the

long-run state of constant rate population decay. There is considerably less mass in the young

cohorts’ part of the Germany’s age distribution. This highlights the relative size of the large

cohort born before the fertility shock, and the relative scarcity of the absorbers of their savings,

the younger cohorts.

2.3 OLG model of real interest rates

We take our model of the cohort size transition as our point of departure. In the this section we

embed our model of the age distribution in a large but otherwise standard OLG model. Using

our OLG model we derive the implied path for real interest rates.

Households live for a total of J periods (years). Following Barro and Becker (1989) and

Curtis et al. (2015), we consider each household to be headed by a singular adult, who provides

for their offspring due to their parental altruism. An offspring reaches adulthood at age χ.

Before an offspring reaches adulthood they make no economic decisions, but they have an effect

on the aggregate economy due to their indirect effect on their parent’s expenditure. Upon

reaching adulthood, an offspring leaves the care of their parent(s) and enters the labour force.

A specification of this kind generates a “hump-shaped” consumption pattern for (single-parent)

households over their life cycles, which is observed empirically (see Attanasio et al. (1999)).

The utility function for a household born in period τ is of the following form:

Uτ =


∑J−1

i=χ β
i

(
µ(nτ,i)

η (ccτ,i)
1−θ

1−θ +
(caτ,i)

1−θ

1−θ

)
for θ 6= 1

∑J−1
i=χ β

i
(
µ(nτ,i)

ηlog(ccτ,i) + log(caτ,i)
)

for θ = 1,

where caτ,i denotes the expenditure on consumption dedicated to herself/himself, ccτ,i denotes

the per-child expenditure on consumption for her/his offspring, θ measures the elasticity of

intertemporal substitution, β measures the rate of time discounting, η measures the elasticity

of a single child’s consumption with respect to the number of children, µ measures the overall

weighting on offspring consumption, and finally nτ,i measures the number of dependent children

a household born in period τ has at age i (which we allow to be continuous).
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The number of dependent children for a household born in period τ at age i is given by

nτ,i =

min{F ,j}∑
j=F

bτ,j −
min{F ,i−F}∑

j=F

bτ,j . (2.5)

The optimal distribution between offspring consumption versus the adult’s own personal

consumption is given by
ccτ,i
caτ,i

= (µnη−1
τ,i )1/θ.

Using the above optimality relation, we may rewrite the original utility function in terms of

the household’s overall expenditure on consumption:

Uτ =


∑J−1

i=χ β
i (cτ,i)

1−θ

1− θ
(1 + µ1/θn

η/θ−1/θ+1
τ,i ) for θ 6= 1

∑J−1
i=χ β

ilog(cτ,i)(1 + µ1/θn
η/θ−1/θ+1
τ,i ) for θ = 1,

(2.6)

where cτ,i is the household’s overall expenditure on consumption, defined as cτ,i ≡ ccτ,inτ,i + caτ,i.

The rewritten utility function allows us to derive an Euler equation. Households may borrow

or save at the market real interest rate, the utility function given by equation (2.6) generates

the following Euler equation

cτ,i+1 = β1/θ(1 + rτ+i+1)1/θ

(
1 + µ1/θn

η/θ−1/θ+1
τ,i+1

1 + µ1/θn
η/θ−1/θ+1
τ,i

)1/θ

cτ,i, (2.7)

which differs from the standard Euler equation due to the third term that is a function of the

number of dependent children. Suppose that if the number of dependent children is zero, or if

the number of the dependent children does not change from this period to the next, then the

new Euler equation collapses to the familiar standard Euler equation.

Each household receives a unitary labour endowment each year it is active on the labour

market, which begins at age χ and ends at age ψ. Households derive no utility from leisure and

hence inelastically supply their labour to firms at the going market wage. A household born in

period τ has the following budget constraint:

J−1∑
i=χ

cτ,i

i−1∏
j=0

(1 + rτ+j+1)−1 ≤
ψ−1∑
i=χ

wτ+i

i−1∏
j=0

(1 + rτ+j+1)−1, (2.8)

where wτ+i is the wage at period τ + i.
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Furthermore the aggregate labour supply is given by

Lt =

ψ−1∑
i=χ

Nt−i, (2.9)

where Lt is the aggregate labour supply. Firms produce subject to a Constant Elasticity of

Substitution (CES) production function using two inputs, capital and labour

Yt =



(
αK

σ−1
σ

t + (1− α)L
σ−1
σ

t

) σ
σ−1

for σ 6= 1

Kα
t L

1−α
t for σ = 1,

(2.10)

where σ measures the elasticity of capital labour substitution, and the limiting case of σ tending

to 1 gives the Cobb-Douglas production function. Furthermore, the limiting case of α equal to

0 gives the endowment income special case.

We complete the model with some market-clearing conditions. Capital depreciates at rate

δ ∈ (0, 1]. The equation for capital accumulation is given by

Kt+1 = (1− δ)Kt + It. (2.11)

Further the aggregate resource constraint is given by

Yt = It +
J−1∑
i=χ

ct−i,iNt−i. (2.12)

Perfect competition in the capital rental market further gives

rt + δ =


αk
− 1
σ

t

(
αk

σ−1
σ

t + 1− α
) 1
σ−1

for σ 6= 1

αkα−1
t for σ = 1,

(2.13)

and perfect competition in the labour market gives

wt =


(1− α)

(
αk

σ−1
σ

t + 1− α
) 1
σ−1

for σ 6= 1

(1− α)kαt for σ = 1,

(2.14)

where kt denotes the level of capital per worker.
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Definition 4. An equilibrium in this economy is defined as a path for the following quantities:

{ct,χ, ..., ct,J−1, rt, wt, kt, Lt,Kt, It, Yt},

given an exogenous path for:

{bt, nt,χ, ..., nt,J−1, Nt},

that satisfies equations (2.2) and (2.5), and given parameters {α, β, γ, η, µ, θ}, so that the fol-

lowing market-clearing equations: (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13) and (2.14) are

satisfied in all periods. Furthermore, a Balanced Growth Path equilibrium is a special case of an

equilibrium, as defined above, where Nt grows at a constant rate g, and where the real interest

rate and hence all per capita variables are constant.

To characterise the BGP equilibrium, it suffices to find the BGP real interest rate. To do

this, we first solve the household and firm problems as a function of the unknown real interest

rate. Next we find the implied size of the aggregate capital stock by aggregating the individual

households’ savings. This corresponds to the demand for assets as a function of the real interest

rate. The implied size of the aggregate capital stock must also be consistent with the level of

capital per worker derived from the real interest rate. This corresponds to the supply of assets

as a function of the real interest rate. Combining these two relations determines the BGP real

interest rate uniquely. We derive analytically the equation determining the BGP real interest

rate in the Appendix.

We apply our OLG environment to the fertility application of Germany from section 2. We

begin with the assumption that the population was initially growing at the high constant rate

consistent with a TFR of 2.5. We suppose further that the economy was initially following a

BGP equilibrium consistent with a TFR of 2.5 until the moment of the shock, and that house-

holds did not anticipate the shock. Upon the shock, households are tasked with deriving their

optimal consumption/saving decisions for all future periods in their horizon in response to the

unexpected shock. We consider a perfect foresight equilibrium thereafter, where households

correctly evaluate the future trajectories for all economic variables and optimally consume with

respect to this. To calculate the economic transition following the shock, we employ a com-

putational algorithm that iteratively calculates the entire real interest rate path following the

shock. Upon convergence of the iterative procedure, we stop our search and check directly the

market-clearing conditions. We describe our iterative algorithm in the Appendix.

We show the results of the baseline specification for the Germany simulation. Following

section 2 we take J , χ, ψ, F and F to be 75, 20, 65, 20 and 30 respectively. Furthermore, we

pin down household and firm parameters, with α = 0.5, β = 0.99, δ = 0.1, η = 0.76, µ = 0.65,
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θ = 2 (i.e. an elasticity of intertemporal substitution of 0.5) and σ = 0.4.2

Figure 2.4: Germany application’s real interest rate over a long horizon.

Figure 2.5: Application to Germany.

2See Chirinko (2004), Havránek (2015), Curtis et al. (2015) and Nadiri (1996) for the rationale of the baseline
specification parameters.
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Figure 2.5 shows the evolution of cohort size after a negative fertility shock in 1970, over

a very long horizon. Before the shock, population was growing at a constant rate of 1%. The

growth rate shall eventually converge to a constant rate of decline at 1.5% per annum. In

the process of converging to the future long-run growth rate, the age distribution undergoes

a transition period of many decades. Following the shock there is an immediate decline in

cohort size. This is followed by a short period of gradual increase, as the size of the fertile sub-

population is still increasing. This gradual increase is exhausted after 20 years, and following

on from this the first smaller cohorts begin entering the fertile sub-population. This leads to an

echo effect of the original fertility shock and hence cohort size falls again. There are additional

echos of the original shock, which die out over time as the age distribution tends to the long-run

distribution. The periodicity of the echos is 25 years, which corresponds to the average age of a

mother.

Figure 2.4 shows the trajectory of the equilibrium real interest rate for Germany under the

baseline parameter specification. Initially the real interest rate moves up. The composition of

the population is hardly affected at that time since the number of post-shock cohorts is still

low, however the older cohorts feel richer because they realise that in subsequent years the size

of future cohorts will be smaller, relaxing the tension on the goods market and making their

claim of future output more valuable. Hence, they increase consumption, which drives up the

real interest rate. From about 1985 onwards, the large cohort enters the labour market and

consequently the real interest rate starts declining steeply, from nearly 1% to -1.5% in 2035, a

decline of some 2.5%, crossing 0% around the year 2000. What is striking is the duration of the

period for which the real interest rate is declining. The downward pressure continues into the

2030s, just as the large cohort begins to retire. The depth of the trough significantly overshoots

below the new BGP level.

After 2035, there is some recovery in real interest rates as the large cohort depletes their

savings in retirement. This leads to a reduction in the capital stock and hence an increase in the

return of capital investment/saving. The echos of the cohort size distribution, discussed above,

generates residual cyclicality in the real interest rate path. Because the first post-shock cohort

was much smaller in size than the previous cohorts, when they enter the fertile sub-population

their smaller size leads to a reduction in the number of births that year. Subsequent generations

of the first post-shock cohorts are likewise also smaller, although the magnitude of this disruption

fades out over time. With the birth of each new generation of the original post-pill cohort, cohort

size undergoes a dampened residual shock similar to that of the original fertility shock. This

leads to a fall and a subsequent uptick in real interest rates, which leads to the cyclicality of

real interest rates. As noted before the periodicity of the cohort size distribution is 25 years,

the average age of a fertile mother. Likewise the periodicity of the real interest rate cycles is
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also 25 years. As the magnitude of the shock fades out over time, as does magnitude of the real

interest rate cycles. By the year 2250 the transition to the new BGP is essentially complete.

Real interest rates generates market clearing by shifting consumption across time. Through

the Euler equation, low interest rates shifts consumption forward in time whereas high interest

rates rewards the postponement of consumption. We may understand the fall in interest rates

since the mid-1980s as the response to the overwhelming demand for the postponement of con-

sumption from the large cohort. Hence in order to clear markets the response is low interest

rates. A simple comparison sums up this channel. Whereas the growth rate of the labour force

measures approximately the growth rate of consumption supply, the growth rate of the adult

population measures approximately the growth rate of consumption demand. The difference

between the two leads to a mismatch of consumption supply and demand, and market clear-

ing requires interest rates to bridge the gap. In equilibrium we see a clear contemporaneous

correlation between this difference in growth rates and the real interest rates.

Regarding welfare, we see that the cohort hurt most due to the fertility shock is the cohort

born in 1950. This is because they proceed the largest cohort by exactly 20 years. Hence they

save during many a period of steep interest rate decline. Furthermore, although they retire

during a resource-rich period while the large cohort is still in the labour force, they are unable

to trade for the resources from the large cohort at a good price as they do not offer the in-demand

resource for the large cohort, i.e. retirement consumption for the large cohort. Altogether, we

see a life-time 2 percent fall in welfare for this cohort.

The Appendix shows the real interest rate trajectory for some alternative parameter specifi-

cations, however we summarise the intuition here. An increase in life expectancy or a decrease

in the retirement age acts to increase the number of years the large cohort needs to finance

consumption for in retirement, which leads to a deeper trough in real interest rates. A decrease

in the elasticity of intertemporal substitution deepens the trough in real interest rates, as the

elasticity measures the degree to which the large cohort substitutes to saving more when the

returns to saving falls. Likewise a decrease in the elasticity of capital labour substitution also

deepens the trough in real interest rates, as this means that capital is less able to absorb savings

at any given real interest rate.

2.4 Application to fertility rate data

We apply our OLG model developed in the previous section and calibrate it to fertility rate data

for the four largest economies in the world. The calibration exercise for the six largest Eurozone

countries is included in the Appendix. Again we take our model of the cohort size transition as

our starting point. However instead of the stylised sudden fertility shock we utilised before, we
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take recorded fertility rate data to calibrate our demographic model.

Our new birth rate specification is as follows

bt =


bH , t < t∗

TFRt/(F − F ) t ≥ t∗
, where TFRt/(F − F )→ bL < bH . (2.15)

Here TFRt is derived from the fertility data from a particular country. bH is calibrated so

that it matches the initial population growth rate of a country, and bL is calibrated so that it

matches the projected terminal population growth rate of a country. For the US we consider a

TFR fall from 3 to 1.8, for China from 3.5 to 1.7, for Japan from 2.1 to 1.4, and for Germany

from 2.5 to 1.4.

We solve the model using the same computational method as before. Again we assume

that households do not expect the change in fertility rates prior to period t∗. We include our

simulation of real interest rates based on the calibrated birth rates below.

Figure 2.6: Simulated real interest rates for the four largest economies.

We see that the same broad pattern for real interest rates from the simulation based on a

sudden fertility shock is true also for our calibrated simulation for the four largest economies.

The same exercise for the six largest Eurozone economies is included in the Appendix.
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There are however differences in timing and magnitude for the real interest rate response

across the four largest economies. Out of the four, the United States suffered the smallest fertility

fall. Likewise the trough for real interest rates in the United States simulation is the shallowest.

China begins with the highest interest rate as China experienced the fastest population growth

prior to the fertility fall. China’s trough is however of similar depth due to the low fertility rates

today. Furthermore China’s real interest rate trough is delayed by some 5 to 10 years relative

to the other three countries as the fertility fall came 5 to 10 years later. Japan’s earlier large

cohort means that the decline of real interest rates began some 20 years before the other three

countries. It’s decline is extended and the final trough occurs at a similar time as Germany and

the United States, around 2035. The figure for Germany is closely reminiscent of the stylised

simulation from the previous section. Other Eurozone countries share a similar demographic

and simulated real interest rate transition as Germany.

Note that our simulation assumes that each economy begins at the BGP equilibrium. That

is, each economy is assumed to begin on its steady-state level of capital per worker, consistent

with the initial population growth rate. This assumption is unrealistic especially for China,

which underwent a process of capital accumulation in recent decades. The implication is that

China had far less capital saturation than is assumed in our simulation, and in which case real

interest rates will be much higher due to the higher returns to capital. As China approaches

saturation in capital investment, this would imply China’s real interest rates to approach a

similar level to that of the other economies in the top four.

2.5 Extension to land

We extend our OLG model from sections 3 and 4 to include the asset land. We develop this

extension to evaluate the following hypothesis: can the demographic shift towards saving explain

the rising value of land in recent decades? To the extent that land serves as a store of value, this

might be a plausible explanation for the appreciation of land and consequently also housing.

We model land as an asset in addition to capital, which is available in fixed supply in the

economy. Households derive utility from the utilisation of land, which they rent in each period in

a competitive and frictionless rental market. The intraperiod utility function is Cobb-Douglas

with respect to non-durable consumption and land utilisation. The previous lifetime utility

function given by equation (2.6) is replaced by

Uτ =


∑J−1

i=χ β
i
(c1−λ
τ,i l

λ
τ,i)

1−θ

1− θ
(1 + µ1/θn

η/θ−1/θ+1
τ,i ) for θ 6= 1

∑J−1
i=χ β

ilog(c1−λ
τ,i l

λ
τ,i)(1 + µ1/θn

η/θ−1/θ+1
τ,i ) for θ = 1.
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Owing to the Cobb-Douglas form of the intraperiod utility function, optimal distribution

between consumption expenditure and land rental expenditure is given by

cτ,i
1− λ

=
lτ,iRτ+i

λ
. (2.16)

Hence it follows that

λeτ,i = lτ,iR
L
τ+i, (2.17)

where eτ,i is the overall household expenditure by the cohort born in period τ at age i, defined

to be cτ,i +Rτ+ilτ,i.

Using the above optimality relation, we may rewrite the final extended utility function above

to

Uτ =


∑J−1

i=χ β
i (eτ,i)

1−θ

1− θ
(1 + µ1/θn

η/θ−1/θ+1
τ,i ) for θ 6= 1

∑J−1
i=χ β

ilog(eτ,i)(1 + µ1/θn
η/θ−1/θ+1
τ,i ) for θ = 1.

(2.18)

Note that the utility function in terms of expenditure is the same as the previous utility

function in terms of consumption. The new Euler equation relating intertemporal substitution

for expenditure is given by

eτ,i+1 = β1/θ(1 + rτ+i+1)1/θ

(
1 + µ1/θn

η/θ−1/θ+1
τ,i+1

1 + µ1/θn
η/θ−1/θ+1
τ,i

)1/θ

eτ,i. (2.19)

The budget constraint for a household born in period τ at age i is given by

(2.20)eτ,i + Lτ,i+1pτ+i +Kτ,i+1 +Bτ,i+1 ≤ Lτ,i(pτ+i +RLτ+i) +Kτ,i(R
K
τ+i + 1− δ)

+Bτ,i(1 + rτ+i) + wτ+ili

where Lτ,i, Kτ,i and Bτ,i are the holdings of land, capital and the risk-free bond respectively for

cohort τ entering age i, RLτ+i and RKτ+i are the rental rates of land and capital respectively, r is

the interest rate of the risk-free bond, p is the price of land, δ is the depreciation rate of capital,

w is wage rate, and l is the labour endowment of a household at i.

Substitution between land ownership and the risk-free bond gives

1 + rt+1 =
RLt+1 + pt+1

pt
,

whereas substitution between capital investment and the risk-free bond is already given.

Hence, the price of one unit of land is given by the sum of its future discounted dividends

pt =
∞∑
i=1

Rt+i

i∏
j=1

(1 + rt+j)
−1. (2.21)
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Substitution across assets means that we may aggregate across asset classes

eτ,i +Aτ,i+1 ≤ Aτ,i(1 + rτ+i) + wτ+ili,

where total assets for cohort τ at age i is given by

Aτ,i = Lτ,ipτ +Kτ,i +Bτ,i.

The budget constraints across time can be summarised as the following intertemporal budget

constraint
J−1∑
i=χ

eτ,i

i−1∏
j=0

(1 + rτ+j+1)−1 ≤
ψ−1∑
i=χ

wτ+i

i−1∏
j=0

(1 + rτ+j+1)−1. (2.22)

Market clearing for the land rental use and land ownership is given

J−1∑
i=χ

Nt−ilt−i,i =
J−1∑
i=χ

Nt−iLt−i,i = L, (2.23)

where L is the aggregate fixed supply for land.

Aggregating eq (2.17) across cohorts, the rental price of land is pinned down by the supply

of land and aggregate expenditure

λEt = LRLt , (2.24)

where Et ≡
∑J−1

i=χ (1− γ)et−i,iNt−i is the economy’s aggregate expenditure.

Aggregating eq (2.20) across cohorts in period t gives

Et + Lpt +Kt+1 = L(pt +RLt ) +Kt(R
K
t + 1− δ) + wtLt,

which once rearranged gives

Et − LRLt + It = KtR
K
t + wtLt,

where Lt is the aggregate labour force.

The RHS of the above equation is aggregate output given that the production function has

constant returns to scale. Hence, substituting using eq (2.24) gives the following aggregate

resource constraint

(1− λ)Et + It = Yt. (2.25)

Definition 5. An equilibrium in this economy is defined as a path for the following quantities:

{et,χ, ..., et,J−1, rt, pt, wt, kt, Lt,Kt, It, Yt},

given an exogenous path for:

{bt, nt,χ, ..., nt,J−1, Nt},
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that satisfies equations (2.2) and (2.5), and given parameters {α, β, γ, η, µ, θ, λ}, so that the

following market-clearing equations: (2.19), (2.22), (2.9), (2.10), (2.11), (2.25), (2.21), (2.13)

and (2.14) are satisfied in all periods. Furthermore, a Balanced Growth Path equilibrium is a

special case of an equilibrium, as defined above, where pt and Nt grows at a constant rate g, and

where the real interest rate and hence all per capita variables are constant.

Our model is solved using a similar computational algorithm to our previous model. The

main difference in this extended model is the need to calculate and track the price of land and its

evolution through time. In each iteration of our adjustment algorithm, we also need to update

the transition path for land prices. We present the results of our simulation, again for a sudden

TFR fall from 2.5 to 1.4, as in section 2.

Figure 2.7: Simulated real interest rates for the model with land.

We see that the same pattern for interest rates holds in the model with land. However, no-

tably interest rates are higher in the model with land, consistently above zero in this simulation.

This is due to the availability of another store of value to facilitate saving.
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Figure 2.8: Simulated value for land.

Contrary to our initial hypothesis, the value or price of land is not predicted to increase

following the fertility shock. There is a small sudden fall in the value of land at the moment

of the shock, due to the sudden arrival of new information. Following from this, the value of

land rises for two decades, however the value of land reaches a peak well before the year 2000.

Thereafter the value of land falls consistently, at a rate that approaches the new BGP level.

To understand this transition, we decompose the drivers that affect land prices. In our perfect

foresight model where land is valued as the sum of discounted dividends, there are two forces

influencing the value of land. Firstly the value of land is affected by the path for real interest

rates, which determines the discount factor for future dividends. A fall in the real interest rate,

ceteris paribus, increases the value of land. Secondly, the value of land is affected by aggregate

expenditure. A constant proportion of consumption expenditure is diverted towards land rent,

and this determines the stream of dividends that land entitles one to in the future. A rise

in consumption expenditure, ceteris paribus, increases the value of land. Below we show the

evolution of the value of land, scaled by GDP.
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Figure 2.9: Simulated value of land relative to output.

We see that following the fertility fall, the value of land relative to GDP immediately falls.

It adjusts to a level around the BGP, at 1.55, by around 2015. There is a short uptick in the

value of land relative to GDP around the year 1985, just as the large cohort enters the labor

force and begins renting land. This channel is similar to the mechanism considered in Mankiw

and Weil (1989). Nonetheless, the overall effect on the value of land as a proportion of output

is negative, which we understand in the following way.

The BGP equation for the value of land as a proportion to GDP can be written in the

following way
Lpt
Yt

=
λ

1− λ
Yt − It
Yt

1 + g

r − g
.

The fall in fertility rates leads to a fall in g and a simultaneous fall in r. Furthermore, the fall

in r is smaller than the fall in g, due to the ability for capital to absorb capital at an increasing

rate as r falls. The largest source of variation in the above equation is the third fractional term of

the right-hand side. A fall in g and an increase in r−g leads to an unambiguous fall in the value

of land relative to GDP. Importantly, the rise in r− g has a large effect as r− g is close to zero.

The dependence on (r − g)−1 measures the discounting of future dividends, once incorporating

the growth rate of consumption expenditure. The fall in the interest rate is dominated by the

fall in growth rates, hence the overall effect on land value as a proportion of GDP is negative.

53



2.6 Conclusion

In this chapter we demonstrate that changes in the age distribution of the population, common

across most advanced economies in recent decades, can explain the pattern of high savings and

low interest rates witnessed today. These changes were driven by a sharp decline in fertility

rates in the early 1970s, and the consequences of this event are intuitive and foreseeable. We

evaluate the hypothesis of whether this surplus of savings can explain inflated asset prices, in

particular for land which we model as extracting dividends in each period proportional to overall

consumption expenditure. Our conclusion is however in conflict with this hypothesis; despite

the surplus of savings the value of land should fall from the late 1990s onwards.

We note the broader discussion of how low interest rates pose a problem for monetary policy

due to the ZLB on policy rates. Beyond an increase in the retirement age, which would reduce

the targeted savings of current working cohorts and thereby raise interest rates, there is little

guidance for policy responses. An increase in government debt may offset the excess savings. In

particular how the debt shall be funded in repayment shall determine how households respond to

these changes. Further analysis is required to better understand the impacts of such an option,

which we feel to be an insightful avenue for future research.

54



2.7 Appendix

Figure 2.10: Age pyramids of the Eurozone’s six largest economies.
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Figure 2.11: Simulated real interest rates for the Eurozone’s six largest economies.

2.8 BGP real interest rate

To find the BGP equilibrium real interest rate in the OLG economy without land, we need to

find the supply and demand of assets (i.e. capital) as a function of the hypothetical real interest

rate. Equating supply and demand and solving for the hypothetical real interest rate gives the

BGP equilibrium real interest rate.
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Consider a BGP equilibrium, rt = r, wt = w,, kt = k and

Nt = (1 + g)t ,

where N0 is normalized to unity without loss of generality. Define:

Pi(r) ≡ (1 + r)−i (2.26)

=⇒ Pi(g) = N−i

Ri(r) ≡
i−1∑
j=χ

Pj(r) =

 r−1 (Pχ−1(r)− Pi−1(r)) for r 6= 0

i− χ for r = 0,
,

W ≡ w

ψ−1∑
i=χ

Pi(r) = wRψ(r), (2.27)

where W is lifetime wealth of the representative household at birth, and Pi(r) is the intertem-

poral price of period t+ i consumption in terms of period t income, which does not depend on

t since rt = r does not depend on t. Using this notation, the Euler equation given by equation

2.7 can be written as

cj+1 = β1/θ(1 + r)1/θ

(
1 + µ1/θn

η/θ−1/θ+1
j+1 (b)

1 + µ1/θn
η/θ−1/θ+1
j (b)

)1/θ

cj .

where cj is the consumption of the representative household at age j, and ni(b) is the number

of dependent children a representative parent has at age i, given by

ni(b) ≡
min{F ,i}∑
j=χ

b−
min{F ,i−χ}∑

j=χ

b.

Define:

gcj(b) ≡

(
1 + µ1/θn

η/θ−1/θ+1
j+1 (b)

1 + µ1/θn
η/θ−1/θ+1
j (b)

)1/θ

.

The Euler equation before implies

cj = βj/θPj(r)
−1/θ

(
j−1
l=χg

c
l (b)

)
c,

where c is a constant to be determined.
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We next define:

Bi(r, b) ≡
i∑

j=χ

βj/θPj(r)
(θ−1)/θ

(
j−1
l=χg

c
l (b)

)
,

i∑
j=χ

Pj(r)cj =
i∑

j=χ

Pj(r)β
j/θPj(r)

−1/θ
(
j−1
l=χg

c
l (b)

)
c

= Bi(r, b)c

=⇒W =

J−1∑
i=χ

Pi(r)ci = BJ−1(r, b)c

=⇒ c =
W

BJ−1(r, b)
.

Let Ai(r) be the stock of assets accumulated by the representative agent at age i. It is equal

to the present value of the labour income up to age i, minus the present value of consumption

up to that age i:

Ai(r) =
i∑

j=χ

Pj−i(r)
(
wIj∈[χ,ψ−1] − cj

)
.

where Ix = 1 if x = true and Ix = 0 if x = false. This equation is intuitive. The factor Pj−i(r)

accounts for the discounting of savings and debts. The first term, for the case i ∈ [χ, ψ − 1],

is the present value of labour income up to age i. The second term is the present value of

consumption up to age i. The exhaustion of the budget constraint gives

w

ψ−1∑
i=χ

Pi(r) =

J−1∑
i=χ

Pi(r)ci,

therefore we have AJ(r) = 0, i.e. households spend their full life time wealth on consumption.

We can now calculate the aggregate net demand for assets for all cohorts at period 0, S(r):

S(r) =
J−1∑
i=χ

N−iAi(r) = w

ψ−1∑
i=χ

N−i

i∑
j=χ

Pj−i(r) + w

J−1∑
i=ψ

N−i

ψ−1∑
j=χ

Pj−i(r)−
J−1∑
i=χ

N−i

i∑
j=χ

Pj−i(r)cj

= w

ψ−1∑
i=χ

Pi(g)

Pi(r)

i∑
j=χ

Pj(r) + w

J−1∑
i=ψ

Pi(g)

Pi(r)

ψ−1∑
j=χ

Pj(r)−W
J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)

= w

ψ−1∑
i=χ

Pi(g)

Pi(r)
Ri+1(r) + w

J−1∑
i=ψ

Pi(g)

Pi(r)
Rψ(r)− wRψ(r)

J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)

Since the capital stock satisfies Kt = kLt, the total net demand for assets minus the next

period’s capital stock in period 0, S∗(r), is given by

S∗(r) = S(r)−K1 = S − (1 + g) kL0.

58



To find the BGP equilibrium real interest rate, it suffices to solve S∗(r) = 0. This is given

by

ψ−1∑
i=χ

Pi(g)

Pi(r)
Ri+1(r) +

J−1∑
i=ψ

Pi(g)

Pi(r)
Rψ(r)−Rψ(r)

J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)
− (1 + g)

k

w
Rψ(g) = 0,

where k
w is given by

k

w
=

1

r + δ

α

( r+δα )σ−1 − α
.

2.8.1 BGP real interest rate in the model with land

Consider a general BGP equilibrium. Here rt = r, wt = w, and kt = k and

Nt = (1 + g)t ,

where N0 is normalised to unity without loss of generality. Analogous to section 4, define:

Pi(r) ≡ (1 + r)−i (2.28)

=⇒ Pi(g) = N−i,

Ri(r) ≡
i−1∑
j=χ

Pj(r) =

 r−1 (Pχ−1(r)− Pi−1(r)) for r 6= 0

i− χ for r = 0
,

W ≡ w

ψ−1∑
i=χ

Pi(r) = wRψ(r), (2.29)

where W is lifetime wealth at birth and Pi(r) is the intertemporal price of period t+ i consump-

tion in terms of period t income, which does not depend on t since rt = r does not depend on

t. Using this notation, the Euler equation can be written as

cj+1 = β1/θ(1 + r)1/θ

(
1 + µ1/θn

η/θ−1/θ+1
j+1 (b)

1 + µ1/θn
η/θ−1/θ+1
j (b)

)1/θ

cj .

Define:

gcj(b) ≡

(
1 + µ1/θn

η/θ−1/θ+1
j+1 (b)

1 + µ1/θn
η/θ−1/θ+1
j (b)

)1/θ

⇒ cj = βj/θPj(r)
−1/θ

(
j−1
l=χg

c
l (b)

)
c,
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where c is a constant to be determined. We firstly define

Bi(r, b) ≡
i∑

j=χ

βj/θPj(r)
(θ−1)/θ

(
j−1
l=χg

c
l (b)

)
,

i∑
j=χ

Pj(r)cj =
i∑

j=χ

Pj(r)β
j/θPj(r)

−1/θ
(
j−1
l=χg

c
l (b)

)
c

= Bi(r, b)c

=⇒W =

J−1∑
i=χ

Pi(r)ci = BJ−1(r, b)c

=⇒ c =
W

BJ−1(r, b)
.

Let Ai(r) be the stock of assets accumulated by a person of age i at time t = 0. It is equal

to the present value of the labour product up to age i minus the present value of consumption

up to that age

Ai(r) =

i∑
j=χ

Pj−i(r)
(
wIj∈[χ,ψ−1] − cj

)
.

where Ix = 1 if x = true and Ix = 0 if x = false. The factor Pj−i(r) accounts for the

discounting of savings and debts to time t = 0. The first term, for the case i ∈ [χ, ψ − 1] , is the

present value of labour income. The second term is the present value of consumption. Since the

exhaustion of the budget constraint gives

w

ψ−1∑
i=χ

Pi(r) =

J−1∑
i=χ

Pi(r)ci,

we have AJ(r) = 0: households spend their full life time wealth on consumption. We can now

calculate the aggregate net demand for assets S(r) for all cohorts at time t = 0:

S(r) =

J−1∑
i=χ

N−iAi(r) = w

ψ−1∑
i=χ

N−i

i∑
j=χ

Pj−i(r) + w

J−1∑
i=ψ

N−i

ψ−1∑
j=χ

Pj−i(r)−
J−1∑
i=χ

N−i

i∑
j=χ

Pj−i(r)cj

= w

ψ−1∑
i=χ

Pi(g)

Pi(r)

i∑
j=χ

Pj(r) + w

J−1∑
i=ψ

Pi(g)

Pi(r)

ψ−1∑
j=χ

Pj(r)−W
J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)

= w

ψ−1∑
i=χ

Pi(g)

Pi(r)
Ri+1(r) + w

J−1∑
i=ψ

Pi(g)

Pi(r)
Rψ(r)− wRψ(r)

J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)

The total value of land is
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LpL0 =
∞∑
i=1

γ

1− γ
Yi − Ii
(1 + r)i

=
γ

1− γ
(Y0 − I0)

1 + g

r − g

=
γ

1− γ
1 + g

r − g
Rψ(g)(y − (g + δ)k)

Since the capital stock satisfies Kt = kLt, the total net demand for assets minus next period’s

capital stock, S∗ (still at t = 0), reads

S∗(r) = S(r)−K1 − LpL0 = S − (1 + g)K0 − LpL0 .

Asset balance is given by S∗ = 0, that is, if

w

ψ−1∑
i=χ

Pi(g)

Pi(r)
Ri+1(r) + w

J−1∑
i=ψ

Pi(g)

Pi(r)
Rψ(r)− wRψ(r)

J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)
=

(1 + g)kRψ(g) + LpL0

⇔
ψ−1∑
i=χ

Pi(g)

Pi(r)
Ri+1(r) +

J−1∑
i=ψ

Pi(g)

Pi(r)
Rψ(r)−Rψ(r)

J−1∑
i=χ

Bi(r, b)

BJ−1(r, b)

Pi(g)

Pi(r)
=

(1 + g)
k

w
Rψ(g) +

γ

1− γ
1 + g

r − g
Rψ(g)(

y

w
− (g + δ)

k

w
)

Since

r + δ = αk−
1
σ

(
αk

σ−1
σ + 1− α

) 1
σ−1

,

w = (1− α)
(
αk

σ−1
σ + 1− α

) 1
σ−1

,

k and k/w satisfy

k
σ−1
σ =

1− α
( r+δα )σ−1 − α

,

k

w
=

α

1− α
k
σ−1
σ

r + δ
=

1

r + δ

α

( r+δα )σ−1 − α
.

2.8.2 Adjustment algorithm

As demography tends from an initial state of high population growth to an eventual state of

low population growth, the equilibrium real interest rate must likewise transition from a high

level to a low level (the BGP real interest rate is calculated using the equation described above).

Note that real interest rates characterise the entire transition, as all allocations may be derived

as a function of the real interest rate path (although the allocation in any period shall depend on
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future interest rates due to forward-looking agents). For the transition between the two BGP’s,

the real interest rate transition is calculated iteratively using an adjustment mechanism that we

describe below.

We assume that the transition period lasts a maximum of 10J periods (where J is the

life span of a household), i.e. after 10J periods the economy has converged to the terminal

BGP. For the first iteration, we make the assumption that the real interest rate transition is a

linear interpolation between the initial level to the final level. Each successive iteration is then

calculated in the following way.

In the k+ 1th iteration of our adjustment algorithm, we begin with the past iteration’s real

interest rate path, which we denote to be {rkt } (the initial linear interpolation is denoted by

{r0
t }), and derive from this the implied path for wages, output, and so on. Using {rkt } and the

implied path of wages, we solve the household problem in every period for every cohort. This

allows us to calculate aggregate consumption demand in each period t:

Ck+1
t =

J−1∑
i=0

Nt−ic
k+1
t−i,i,

where ck+1
t−i,i is the demanded consumption in period t by the cohort born in period t − i, in

iteration k + 1.

Using the path we calculate for aggregate consumption demand, we can calculate aggregate

savings supply by

Sk+1
t = wk+1

t Lt − Ck+1
t .

Note the distinction between savings and investment. Savings equals to investment minus capital

returns, i.e. savings is the additional quantity devoted to asset accumulation after capital returns

is already reinvested. Using savings supply, we can calculate the desired aggregate asset position

through time by

Ak+1
t+1 = Ak+1

t (1 + rkt+1) + Sk+1
t ,

where rkt+1 denotes the real interest rate in period t, iteration k, and the initial asset position

is given by Ak+1
t∗−1 = Kt∗ . This allows us to derive the implied capital stock, consistent with the

desired asset position, by

Kk+1
t+1 = Ak+1

t .

All assets in our economy our real, i.e. in equilibrium it follows that At+1 = Kt. In principle

there could be financial assets, e.g. money, which would mean that the total amount of assets

accumulated by households exceeds the level of the capital stock. Note that the implied capital

stock is derived from the desired asset accumulation of households. The actual quantity of asset
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accumulated may differ as 1 + rkt 6= RKt , the return on capital investment. For the purpose of

our algorithm however, we are interested in the desired asset position of households, hence we

assume that assets grow at the real interest rate of the past iteration, 1 + rkt .

Using the implied capital stock, we may calculate the implied level of capital per worker, and

hence induce the implied real interest rate path. We call the path of the implied real interest

rates {rIt }. The real interest rate path for the next iteration is finally given by

rk+1
t = (1− φ)rkt + φrIt ,

where φ is a parameter that controls the degree to which we adjust per iteration. Note that for

a stable adjustment, we use a conservative level for φ, around the level of 0.05. A larger φ leads

to over-adjustment and explosive behavior of the algorithm.

Finally, we compare {rkt } and {rIt }. If the Euclidean distance between these two vectors

is sufficiently small, we have reached convergence and we end our search for the equilibrium

transition path at {rk+1
t }. Note that market clearing is directly guaranteed by convergence, as

when rkt = rIt ∀t, it must be the case that in each period aggregate consumption demand equals

to aggregate labour income, plus aggregate capital income, minus aggregate capital investment.

2.8.3 Alternative parameter specifications

We offer alternative parameter specifications for our simulations in section 3.

OLG model
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Chapter 3

Incomplete Information and Housing

Booms and Busts

3.1 Introduction

Extensive research has studied the effect of the housing market on the aggregate economy. The

consensus of this research finds that house price variation has widespread effects on household

spending, household borrowing and default, and local employment (see e.g. Campbell and

Cocco (2007,2015), Cloyne et.al. (2019), Guren et.al. (2018), and Mian and Sufi (2011), Mian

et.al. (2013), Mian and Sufi (2014). In contrast, there is disagreement over the source of the

house price variation. One trend of literature views price changes in the housing market as

primarily efficient (see e.g. Himmelber et.al. (2005), Wu et.al. (2012), and Landvoigt et.al.

(2015), whereas others view the housing market as primarily inefficient (see e.g. Shiller (2007),

Case et.al. (2012), Glaeser and Nathanson (2017)). This poses a challenge as depending on

one’s views on this matter, the design of models and potentially the results of one’s analysis

can differ. Overall, although there is compelling empirical evidence in favour of the latter

view of an inefficient housing market, see Piazzesi and Schneider (2016) for a summary, models

that contend with inefficient housing markets often need to impose restrictions on the decision-

making of households. For example, some papers consider extrapolative expectations on the

part of homebuyers, as opposed to the standard rational expectations framework. Assumptions

such as these nevertheless offer the scope for study of housing in a wider setting, however they

invite debate about the validity of the assumptions and consequently the validity of the results.

Much of the theoretical work on housing simply goes around this issue by considering exogenous

movements in prices or fundamentals, however there is a question of whether it is possible to

generate the observed house price behaviour without needing to impose on the decision-making

of households.
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In this chapter I develop a search and matching model of housing markets where the key

innovation is that households do not observe the underlying fundamentals and instead must infer

fundamentals from prices. This leads to a Bayesian signal extraction problem that households

solve optimally. Importantly, I do not impose assumptions on the decision-making of households.

My model reproduces the main empirical features associated with housing market inefficiency,

namely short-term price momentum, long-term price reversal, and boom and bust cycles in

house prices. Furthermore, I show that these features are directly generated by the price in-

ference mechanism: in the complete information benchmark, where households directly observe

fundamentals, prices resemble a random walk and hence do not exhibit features associated with

market inefficiency.

The fundamentals in my model are summarised by short- and long-term shocks that realise

in every period. These stochastic shocks drive housing demand and serve as the basis for a

dynamic model of house prices. Importantly, long-term shocks have a larger effect on the housing

market because they are persistent. The long-term component to housing demand, defined as

the aggregated contributions of the history of long-term shocks, is of particular interest to

households as it pertains to the value of continued search on the housing market both from the

perspective of a home buyer and a seller. The Bayesian signal extraction problem can then be

restated as the problem of how to infer this long-term component based on information from

the path of prices.

At the start of each period, every buyer is matched with a house that is for sale and this

generates a quality draw that measures the utility flow of the buyer living in that matched

house. While the quality draw is revealed, this draw reflects the sum of the short-term shock,

the long-term component to housing demand, as well a stochastic idiosyncratic draw, and the

contributions of each component is not known. Nash bargaining occurs over the transaction

price if there is a joint surplus. At the end of the period the average transaction price across

all transactions is revealed to the households. I show that the average transaction price is a

monotonic function of the sum of the short and long-term components, which I define as the

price signal. This result is the solution to the Bayesian signal extraction problem, and it states

that the contribution of the stochastic idiosyncratic draw is averaged out once households learn

of the average transaction price. Households then optimally update their expectations of the

long-term component based on this price signal. However, as the price signal is a noisy measure

of the long-term component due to the contribution of the short-term shock, household are

conservative and adjust their expectations towards the price signal only partially. Persistent

changes to the price signal do nonetheless become fully internalised as expectations adjust and

converge towards the new level.

This type of updating of expectations based on prices is novel to this paper. The updating
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process leads to “adaptive expectations” for the long-term component that is generated endoge-

nously as a result of optimal household decision-making, which contrasts to much of the existing

literature where adaptive expectations are simply assumed. Furthermore, I show that expecta-

tions for the long-term component can be written explicitly as a backward-looking average of

the price signal. This similarly provides a rationale for “backward-looking expectations” that is

often considered a central feature of housing markets. The implication of this type of expectation

formation is the possibility of bubble episodes. A long period of sustained short-term shocks

can deceive households, leading them to believe a persistent long-term shift has occurred when

this is not the case. Specifically I show that the same sequence of short-term shocks generates a

large boom and bust in prices in the incomplete information model, while there is little response

in prices for the complete information model.

This chapter relates to the broader discussion of efficiency in financial markets. The Efficient

Market Hypothesis (EMH) states that at any given time in a market prices reflect all available

information, see Malkiel and Fama (1970). Empirically, there has been extensive investigation

regarding whether the EMH holds in the stock market, see e.g. Lim and Brooks (2011) for a

summary. The conclusions vary and depend on the time-period, dataset, asset pricing model

used for calculating the market return, and the exact EMH testing methodology. One of the

main critics of the EMH, Robert Shiller, received his Nobel prize for his work showing that

markets move too much to be explained by rational investors responding to changing fundamen-

tals. In particular, Shiller highlights that the housing market is especially inefficient, where he

claims the market is speculative and prone to bubbles. The following empirical works document

various “puzzles” which are in conflict with the EMH in the housing market. Case and Shiller

(1990), Englund and Ioannides (1997) and Glaeser and Nathanson (2015), Titman et.al. (2014),

Guren at.al. (2018) and Armona et.al. (2018) document short-term momentum and long-term

reversal in prices, which contrasts with the EMH where prices form a random walk. Piazzesi and

Schneider (2016) document the excess volatility puzzle of house prices. Flavin and Yamashita

(2002), Burnside et.al. (2016) document boom-bust cycles in housing. Mart́ınez-Garćıa and

Grossman (2018) formally detect bubbles in housing prices with a formal test of Phillips et.al.

(2015). For a broader discussion of housing market efficiency see also Pavlidis et.al. (2017);

Engsted et.al. (2016); Shi (2017); Hu and Oxley (2018).

Many factors affect the housing market and house prices. These factors are varied in the

context of how they play a role and they differ also in their persistence. In my model I simplify by

categorising any shock to these factors as either being short versus long term, however I do not go

beyond this to consider these factors individually in their original contexts. Demography is one

example of a long-term factor that affects the housing market. Faster population growth leads

to increased demand and prices. Furthermore, the decision to purchase housing is a life-cycle
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one. In order to purchase a house, one is required to make a large financial commitment in the

form of a down payment that often requires many years to accumulate. Chambers et.al. (2009)

shows that the homeownership rate increases from roughly 40% for young households (aged

20-34 years) to twice that share for older households (aged 65-74 years). The homeownership

rate then declines slightly for very old households. Furthermore, housing is special in that it

provides simultaneously a consumption good, namely housing services, while also serving as an

asset for investment. The type and size of housing demanded evolves over time and with the

age of the household, see for example Morrow-Jones and Wenning (2005). As an investment

vehicle housing also serves the purpose of precautionary savings through various means of equity

extraction, see for example Ong et.al. (2013) and Bhutta and Keys (2016). Consequently, long

term socioeconomic trends in demography, family structure, labour force structure, to name

a few, all contribute to determining the current state as well as the future trajectory of the

housing market. The above are all examples of factors that drive housing appetite and I look

to summarise them as a long-term shock or the long-term component to demand. In addition,

changes in household income and savings, the employment rate, and household prospects for the

future, each serve to drive the housing market in the short run, see Hwang and Quigley (2006). I

look to summarise these factors as the short-term shock/component to housing demand. Jointly,

these two components generate the basis for my dynamic model of house prices.

This chapter also relates to the broader behavioural finance literature, specifically in rela-

tion to the study of housing markets. Barberis et.al. (2018) examine the ways extrapolative

expectations can generate short term bubbles of different magnitudes and durations. Glaeser

and Nathanson (2017) consider a similar framework where households take boundedly rational

approximations to approximate fundamentals, which they show can generate bubbly housing

markets. Kaplan et.al. (2018) find that shifts in beliefs about future housing demand were the

dominant force behind the observed swings in house prices and the rent-price ratio around the

Great Recession. Case and Shiller (2012) and Kuchler and Zafar (2015) document correlations

between past home price changes and subjective home price expectations. Burnside et.al. (2016)

develop a model where agents optimistic beliefs about future house prices can spread like an

infectious disease. Boz and Mendoza (2014) show that a model with Bayesian learning about a

regime shifting loan-to-value limit can produce a pronounced run-up in credit and land prices

followed by a sharp and sudden drop. Gete (2018) shows that introducing the backward-looking

survey expectations from Case et.al. (2012) into a DSGE model with housing can help account

for movements in U.S. house prices over the period 1994 to 2012. Gelain et.al. (2018) show

that specification with random walk expectations outperforms one with rational expectations in

plausibly matching the patterns in the data.

The rest of the chapter shall be organised as follows. In section 3.2 I describe the basic setup
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of my model. In section 3.3 I present the results of my model and how the price behaviour of

the incomplete information model contrasts to the complete information benchmark. In section

3.4 I consider the application of model to identify bubbles in US house price data. Finally, in

section 3.5 I consider several extensions which generalise various assumptions made in the basic

setup in section 3.5. Section 3.6 concludes.

3.2 The model

In this section I describe the setup of the model and three main theoretical results that summarise

the solution to the Bayesian signal extraction problem.

The housing market is made up of a measure 1 of households and a measure 1 of the indivisible

housing asset. Each house is owned by some household, that is to say in any period there is

an ownership function from the measure 1 of houses to the measure 1 of households. It is

possible for one household to own multiple houses so this function is not generically injective.

In order for a particular household to enjoy the services from a house it must own the house

and occupy that house. Otherwise, the households will be a renter and earn a baseline level of

rental utility. Each household can only occupy one house at a time, which implies that there is a

bijective function from the subset of owner-occupant households to the subset of owner-occupied

houses. Any household that does not occupy a house they own is a prospective home buyer in

the market and any house that is not owner-occupied is available for sale. Given that the the

function between owner-occupant households and owner-occupied houses is bijective, this means

that the measure of home buyers and houses for sale is equal. An owner-occupancy relationship

begins when a home buyer is matched with a house that is for sale and decides to buy it from

a seller. An owner-occupancy relationship ends stochastically with exogenous probability φ in

every period after the initial match.
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Figure 3.1: Several cases of the household to housing mapping.

3.2.1 Market structure

In every time period there is a sequence of events detailed as follows. At the start of the period, a

proportion φ of all owner-occupant households are separated from their houses. These separated

households become house buyers and house sellers simultaneously. Next, each home buyer is

matched with a house that is for sale. The matching gives each home buyer indexed by i a

stochastic draw εi,t, which shall be described next, that measures the quality of this potential

match. The quality draw gives the utility flow in each period for this home buyer to occupy this

particular house. A transaction occurs whenever the joint surplus is above the zero threshold,

and Nash bargaining occurs to determine the transaction price. After this round of housing

transaction, any household that remains unmatched is allocated at random to an unmatched

house for rental use. This rental use generates a baseline level of utility urent but incurs a rental

charge of R and a search cost of csearch. Likewise, each for-sale house entitles the seller to

receive R in rental income however it must pay cpost to continue its sell posting. At the end

of the period, the prices of all transactions are averaged and this is revealed to all households,

which may or may not provide a price signal depending on the information set of the households.
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The quality draw is made up of an aggregate short-term component, At, an aggregate long-

term component, χt, and an idiosyncratic stochastic component, ηi,t

εi,t = At + χt + ηi,t. (3.1)

In addition, components in the above equation have the following distributions:

At ∼ N(0, σ2
A), (3.2)

ηi,t ∼ U(−Mη,Mη), (3.3)

χt = ρχt−1 + et, (3.4)

with et ∼ N(0, σ2
e), (3.5)

where ρ ∈ [0, 1) is the AR(1) coefficient. The key distinction between the two aggregate compo-

nents is the difference in persistence. Here I take the position that the short-term component is

noise in every period, however it is possible to reproduce my results where the short-term com-

ponent is persistent but less nonetheless persistent than the long-term component. See section

3.5 on extensions for a derivation of this alternative model.

I assume that the exchange of money in a housing transaction translates directly to a transfer

of utility. This can be for example generated as the result of optimal behaviour from households

having quasilinear utility with respect to consumption or quasilinear disutility from providing

labour, see for example Lagos and Wright (2005). In section 3.5 I consider a version of my

model where there is endowment income for households and there is quasi-linear utility over

consumption; this version of the model generates these value functions endogenously. For now,

I simply state the Bellman equations that describe the household problem, in a manner similar

to Ngai and Tenreyro (2014). The Bellman equation for a home buyer after observing the

realisation of the quality draw is given by

VB(Ω, ε) = max

{
urent −R− csearch + β[VB(Ω′, ε′)],

ε− p(Ω, ε) + β[φ(VB(Ω′, ε′) + VS(Ω′, ε′)) + (1− φ)VM (Ω′, ε)]

}
,

(3.6)

where Ω is the set of observable aggregate states (the contents of which depends on the informa-

tion structure under consideration), VB, VS and VM are the value functions for buying, selling

and matched states respectively, and p is the Nash bargaining price function.

The Bellman equation for a seller when considering the value of a particular house for sale

is given by

VS(Ω, ε) = max

{
R− cpost + β[VS(Ω′, ε′)], p(Ω, ε)]

}
. (3.7)
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Note that this is the Bellman equation for an additional house that is for sale. One household

may own multiple houses however given that my model is linear it is sufficient to consider the

selling problem from the perspective of a single house for sale.

The Bellman equation for a owner-occupant household is given by

VM (Ω, ε) = ε+ β[φ(VB(Ω′, ε′) + VS(Ω′, ε′)) + (1− φ)VM (Ω′, ε)]. (3.8)

3.2.2 Information structure

In order to contrast the results of the incomplete information model, I consider a complete

information case where both the short-term and long-term components are observable at the

start of the period. That is to say Ω = {A,χ}. In this situation the average price revealed at the

end of the period provides no additional information as a price signal, and indeed this price is

perfectly predictable at the start of the period, given Ω, by taking averages over all realisations

of the idiosyncratic draw.

In the incomplete information model, I suppose that households in period t have priors (or

expectations) for the long-term component last period equal to χet−1. This is the only information

brought into the start of the period t and hence Ωt = χet−1. Next, housing is transacted and the

rental market is cleared which reveals the average transaction price pt at the end of the period.

Note that because the innovation to the long-term component and the short-term shock are

both mean zero, the priors for the long-term component overlap with the expectations for the

long-term component. Figure 3.2 below graphically shows how the average transaction price is

formed depending on the signal. Here ε? is the threshold for the idiosyncratic draw such that

there is zero surplus, and the average transaction price is the mean surplus given to seller over

the transaction region.

s−Mη s+Mηs+ δ −Mη

δ

δ

s+ δ +Mηε?

transaction region

transaction region

Figure 3.2: Average transaction price depending on the signal.

In the incomplete information framework, revealed prices have informational content and in
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particular one can state the following result.

Proposition 3. Given expectations for long-term component last period, the average transaction

price is a strictly increasing function of the sum of the short-term and long-term components,

At + χt, which I shall refer to as the price signal, st. Hence the knowledge of pt at the end of

the period t directly maps to the period t price signal.

Proof. The surplus of a potential match as a function of the match quality ε is given by

S(ε) = ε+ β[φ(VB(Ω′, ε′) + VS(Ω′, ε′)) + (1− φ)VM (Ω′, ε)]

−(R− cpost + β[VS(Ω′, ε′)] + urent −R− csearch + β[VB(Ω′, ε′))]).
(3.9)

Let ε? be the threshold at which the above surplus is zero, which we assume always exist

due to assumptions on the parameters of the idiosyncratic shock, Mη. It follows that the Nash

bargaining price for this transaction is given by

p(Ω, ε) =
1

2
S(ε) if ε > ε∗. (3.10)

Recall also that

ε = At + χt + ηi,t

= st + ηi,t.

Hence the average transaction price at the end of the period is given by

pt =
1

st +Mη − ε∗

∫ st+Mη

ε∗
p(Ω, ε) dε. (3.11)

Consider now a higher signal s
′
t, such that s

′
t = st + δ for some δ > 0. For this higher signal,

the average transaction price is given by

p
′
t =

1

st + δ +Mη − ε∗

∫ st+δ+Mη

ε∗
p(Ω, ε) dε. (3.12)

This average transaction p
′
t is higher than pt as VM (Ω′, ε) and consequently p(Ω, ε) is strictly

increasing in ε. This establishes the claim in Proposition 3.
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The price signal is a noisy measure for the long-term component. It matters for home

buyers and sellers alike how much of the price signal is comprised of the long-term component

as opposed to the short-term component due to the fact that long-term component is persistent.

Specifically, the long-term component affects the value of continued search on the behalf of home

buyers and continued posting on the behalf of sellers. Note also that information realised in

period t is partially revealed only at the end of period t, after transactions have already been

completed at the start of the period. Hence households at best can only respond with a lag to

new information arrival.

After the extraction of the price signal, how should households update their priors or ex-

pectations? I derive the analytical expression for optimal χet updating which is formally stated

in Proposition 4 below, however in fact this problem can be restated as special case of the

Kalman filtering problem (see Ljungqvist and Sargent (2018) for an overview of the application

of Kalman filters in economics).

Proposition 4. Conditional on period t priors of the long-term component of χt−1 = χet−1, the

maximum likelihood updating of χet based on a revealed price signal in period t of st is

χet = ρχet−1 +

(
σ2
e

σ2
A + σ2

e

)
(st − ρχet−1). (3.13)

Proof. Given expectations of the long-term component last period, the signal this period from

the perspective of the households is given by

st = ρχet−1 + et +At. (3.14)

The joint density of At and et is given by

f(At, et) =
1

2πσAσe
exp(−A2

t /2σA − e2
t /2σe). (3.15)

Given knowledge of the signal, we may therefore rewrite the likelihood function in terms of

et in the following way

L(et) =
1

2πσAσe
exp(−(st − et))2/2σA − e2

t /2σe). (3.16)

The first-order condition is given by

1

2πσAσe
exp(−(st − eML

t ))2/2σA − (eML
t )2/2σe)((st − eML

t )/σA − eML
t /σe) = 0 (3.17)
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Solving for eML
t gives

eML
t =

(
σ2
e

σ2
A + σ2

e

)
(st − ρχet−1), (3.18)

which establishes the claim in Proposition 4.

To visualise the above result, consider Figure 3.3 below:

sρχet−1 χet st

(st − ρχet−1) σ2
e

σ2
e+σ2

A

Figure 3.3: Updating of χe.

Any deviation of st from ρχet−1 is a “surprise” to the household as the short-term shock and

the innovation to the long-term component are both mean zero. Given the close relationship

between the price signal and the long-term component, Proposition 4 states intuitively that

households will update their priors positively with st. Households update χet towards the signal,

however they are conservative in their updating. The updating proportion, σ2
e/(σ

2
A + σ2

e) < 1,

depends positively on σe and negatively on σA. The final result derives immediately from

Proposition 4:

Proposition 5. Supposing households update priors according to Proposition 4, priors at the

end of period t is a backward-looking average of the history of price signals given by

χet =
t−1∑
i=0

(
σ2
e

σ2
A + σ2

e

)(
σ2
A

σ2
A + σ2

e

)i
ρist−i +

(
σ2
A

σ2
A + σ2

e

)t
ρtχe0. (3.19)

Proof. The proof immediately follows from Proposition 4 by backward substitution of χet−1.

Proposition 5 summarises how the history of price signals affects today’s priors/expectations.

Consequently the coefficient of persistence for the price signal is given by ρσ2
A/(σ

2
A+σ2

e) < 1. The

implication is that priors are persistent due to their backward-looking nature, and furthermore

they are slow in adjusting to new information due to conservatism in response to a noisy signal.
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3.3 Simulation and impulse response functions

I solve the model via standard value function iteration techniques, however one needs to obtain

the Nash bargaining price function, which maps the state vector to the average transaction price,

as well as the three value functions.

For the incomplete information model, the aggregate state vector is simply the expectation of

the long-term component from the last period. In each value function iteration, for all points on

a grid for the aggregate state home buyers and sellers match over all possible realisations of the

idiosyncratic draw. For each level of the idiosyncratic draw, households evaluate the transaction

surplus conditional on the value functions from the previous value function iteration. This yields

the entire distribution of transaction prices, for all points on a grid for the aggregate state. I

use equations (3.6) - (3.8) to update the three value functions; the expectation of next period

values is obtained by taking expectations of the last iteration’s value functions evaluated over all

possible innovations to the long-term component today, and the contemporaneous contributions

to the value functions are already obtained from solving the household problem above. Finally,

using the distribution of transaction prices I am able to calculate the mean transaction price as

a function of the state vector. I iterate upon the value functions and the price function until

convergence.

Solving the complete information model is entirely analogous to solving the incomplete in-

formation model. In this case, the aggregate state vector is the realised long-term component for

the this period. In each value function iteration, for all points on a grid for the aggregate state

home buyers and sellers match over all possible realisations of the idiosyncratic draw. For each

level of the idiosyncratic draw, households similarly evaluate the transaction surplus conditional

on the value functions from the previous value function iteration. This again yields the entire

distribution of transaction prices, for all points on a grid for the aggregate state. I use equations

(3.6) - (3.8) to update the three value functions, however this time the expectation of next period

values is obtained by taking expectations of the last iteration’s value functions evaluated over

all possible innovations to the long-term component tomorrow. The contemporaneous contri-

butions to the value functions are again already obtained from solving the household problem

above. Finally, I calculate the mean transaction price and I iterate this entire procedure until

convergence.

Next I describe the calibration of my model before showing the results of my simulations

and the impulse response functions.
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3.3.1 Calibration of the incomplete information model

The calibration of my model utilises two datasets. The first dataset is the annual US national

house price index data from the Federal Housing Finance Agency between 1975 and 2018. This

house price index is based on repeated sales of houses which ensures comparability of the index

over time as the composition of houses that are transacted is liable to change.

Furthermore, I also use the annual US national homeownership rate data provided by the

United States Census Bureau between 1965 and 2018. Although homeownership rate is not

a direct equilibrium outcome in the model, it is possible to track the homeownership rate by

tracking the proportion of home buyers that become owner occupants. This allows me to further

discipline the dynamics of my model by matching moments of my model to the data.

Table 3.1: List of Parameters

Type Parameter Value Meaning

Externally Calibrated β 0.98 discount rate of households

φ 1/13 rate of ownership separation

Internally Calibrated σA 1.1 standard deviation of short-term shock

σe 1.2 standard deviation of long-term component’s innovation

Mη 3 dispersion of idiosyncratic draws

ρ 0.9 persistence of long-term component

Table 3.1 describes the set of parameters that are necessary to calibrate. Specifically, the

duration of homeownership based on the assumption of my model follows a geometric distribution

with parameter φ. The rate of ownership separation is selected to match the average duration

of homeownership, which according to National Association of Home Builders is 13 years in the

USA. Hence φ is chosen to be 1/13.

Table 3.2: Targeted Moments for Incomplete Information Model

Type Moment Empirical Value Model Value

Targeted volatility of price levels 0.04 0.03

autocorrelation coefficient of price levels 0.9 0.91

mean ownership rate 0.66 0.68

standard deviation of homeownership rate 0.02 0.03
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The four internally calibrated parameters are used to jointly match the four targeted mo-

ments in my incomplete information model to the equivalent four moments from the data de-

scribed in Table 3.2. Intuitively, the standard deviation of the short-term shock versus the

standard deviation of the long-term shock affects the updating parameter described in Proposi-

tion 4. When the standard deviation of the short-term shock is large relative to the long-term

shock, households are conservative in updating expectations and this affects both the average

volatility of price levels and the mean homeownership rate. The dispersion of the idiosyncratic

draws controls the importance of the two aggregate shocks; when the dispersion of the idiosyn-

cratic draw is large, the relative importance of both aggregate shocks is smaller. This parameter

closely relates to the standard deviation of the homeownership rate as when the idiosyncratic

draw is dominant, homeownership rates are more stable over time. Finally, the persistence of

the long-term component directly relates to the autocorrelation coefficient (i.e. persistence) of

price levels as the parameter ρ is the only source of persistence in the model.

The relationship between the parameters and the moments is highly nonlinear, hence it

is difficult to match all four moments exactly. I solve and simulate the model to obtain the

moments at each point in a large grid over the four parameters. I then select the point on the

grid that most closely matches the moments in my data and this provides the values of my

internally calibrated parameters described in Table 3.1.

Table 3.3: Non-targeted Moments

Type Moment Empirical Value Model Value

Incomplete information One-period autocorrelation in price changes 0.65 0.41

Ten-period autocorrelation in price changes -0.14 -0.09

Complete information One-period autocorrelation in price changes 0.65 0

Ten-period autocorrelation in price changes -0.14 -0.01

The calibration of my model results in the following non-targeted moments in my model

which I also compare to the data. Specifically, these moments relate to the short-term mo-

mentum in house prices, namely one-period autocorrelation in price changes, and the long-term

reversal of house prices, namely ten-period autocorrelation in house price changes. I show these

non-targeted moments for both the incomplete information model, as well as the complete in-

formation model, with the same parameters. We see that the incomplete information model

generates both these features of house price data to a quantitatively similar magnitude, whereas

the complete information model generates essentially zero house price momentum short term

and near zero house price reversal long term.
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Note that the parameters for the model are based on the calibration of incomplete information

model to data, hence Table 3.3 is a somewhat unfair comparison between the performance of the

incomplete information model versus the complete information model. However, the calibration

of the complete information model to the same moments in data generates broadly similar

parameter values and likewise the resulting untargeted moments are robust insofar as generating

zero house price momentum and near zero house price reversal. Indeed, the rationale for these

findings is better understood in the later subsection on impulse response functions shown later.

3.3.2 Simulations

To examine the behaviour of the incomplete information model versus the complete information

model, I simulate generate T = 100 periods (years) of the short-term and long-term shocks.

These add together to give the price signal.

For the incomplete model, Proposition 4 gives the updated long-term component expecta-

tions given the last period’s long-term component expectations and the price signal today. Hence

I am able to calculate the entire path of long-term component expectations, subject to an initial

level for the long-term component expectations which I set to the unconditional mean of zero

for simplicity.

For the complete information model all information is observed and there is no need for any

additional tracking of the aggregate state. In each period, I explicitly calculate the distribution

of transaction prices over all realisations of the idiosyncratic draw for both versions of the

model. I take the means of these price distributions to obtain the average transaction prices and

furthermore I calculate the proportion of matches that generate transactions. The proportion

of matches that generate transactions is used to update the homeownership rate, given an

initial level which I set to the long-term average of 0.68 for simplicity. I show the results of

the simulation in Figure 3.4 for both the incomplete information model versus the complete

information benchmark for comparison.
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Figure 3.4 is organised in the following way. Both figures on the left-hand side are relating

to the dynamics of the incomplete information model and how it relates to the signal, which

is the sum of the short and long term components. Both figures on the right-hand side are

relating to the dynamics of the incomplete model and how it compares to the dynamics of the

complete information model. Both figures on the upper half relate to the behaviour of prices

whereas both figures on the lower half relates to the behaviour of homeownership rates. The

blue lines identify the incomplete information model whereas the red lines identify the complete

information model. The black dashed line represents the price signal.

Prices in the incomplete information model follow closely the price signal. Homeownership

rates also follow the price signal although this co-movement is less strong. Prices following the

signal shows intuitively that the average joint surplus given a transaction occurring is increasing

in the signal. This is also a consequence of Proposition 4, which says that price is a positive

monotonic function of the signal. Homeownership rates following the signal indicates that the

probability of a match to generate a owner-occupancy relationship is increasing in the signal.

This is intuitive as the average quality draw is increasing in the signal and high quality draws

generate transactions.

Prices in the complete information model follow closely prices in the incomplete information

model. This shows that prices in the complete information model also follow closely the signal,

as a higher signal similarly drives a higher average joint surplus of transactions. Given that

the prices co-move closely, the difference between prices in the two models primarily stems

from differences in fluctuations around a trend that is driven by a common signal. Nonetheless

this difference in fluctuations around this trend generates the drastically different behaviour of

the models with respect to short-term momentum and long-term reversal. Overall, prices in the

incomplete information model are smoother as households are optimally conservative in updating

their expectations. Similarly to prices, homeownership rates in the complete information model

co-moves closely with that of the incomplete information model. Both are driven by the signal

with a higher signal increasing the likelihood of a match resulting in a transaction.
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Figure 3.5: Signal versus (lead) expected signal.

Figure 3.5 shows the relationship between the signal and the expected long-term compo-

nent/signal1 by households in the incomplete information model. The expected long-term com-

ponent is able to closely follow the path of the realised signal on a grand scale, hence households

in the incomplete information model are able to extract information from prices in an over-

all successful manner. However, due to the conservatism of households in the Bayesian signal

extraction problem, the expected signal is slow to adjust and less volatile. We see that sharp

movements in the signal are updated in expectations only in the next period and furthermore

that expectations are more smooth than the path for the signal.

3.3.3 Impulse response functions

I consider price and homeownership rate impulse response functions for i) a one-period one

standard deviation shock to A and ii) a one-period one standard deviation shock to e. In both

cases, the short-term effect on the signal is an increase of a similar magnitude. However, due to

the persistence of the increased signal in the case of a shock to e, the resulting responses for prices

and homeownership rates differ. Figure 3.6 demonstrates these impulse response functions.

The two figures to the left are the impulse response functions for an A shock, which is evident

1The expected long-term component equals the expected signal as the short-term shock and the innovation
to the long-term component are both have zero mean.
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by the short-term effect to the price signal. The two figures to the right are the impulse response

functions for an e shock, which is evident by the persistent effect to the price signal. The two

figures in the upper half contrast the behaviour of prices of the two models for both shocks.

The two figures in the lower half show the behaviour of homeownership rates. The blue lines

indicate the incomplete information model and the red lines indicate the complete information

model. The black dashed line represents the price signal.
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For the A shock, we see that there is a small effect on prices that immediately reverses

in the complete information model, while for the incomplete information model, there is a

similar contemporaneous effect to prices but there is a further increase of prices in the next

period. This delayed effect to prices for the incomplete information model is driven by the

change in expectations for the long-term component. The increase in the signal leads to an

increase in expectations, which in this case is mistaken. This raises the value of continued

search and this leads to a further increase in prices despite the short-term shock having already

reversed. Thereafter, expectations gradually decline back towards the true level and likewise

prices gradually decline to the long-term level. In the homeownership rate figure we see that

there is a short-term increase in homeownership rate that quickly declines as expectations for

the long-term component gradually correct itself after the shock.

For the e shock, we see that there is a larger long-term effect on prices in the complete

information model that dies out slowly due to the persistence of the long-term component. For

the incomplete information model, there is a smaller effect on prices at the moment that the

shock hits, however after a few more periods prices increase to almost exactly match the level of

the complete information model. This is intuitive as households are not immediately sure that

the change to the signal is a long-term change hence it takes several periods for households to be

convinced of the fact. For homeownership rates, we see interestingly that there is again a short-

term increase to homeownership rates that quickly declines in a manner very similar to the A

shock. This shows that the effect of a long-term shock is to primarily increase reservation values

rather than increasing the rate of matches leading to a transaction. This can be rationalised as

the long-term component is very persistent and hence there is no immediate urgency of finding

a house to occupy. Conversely if the long-term component was less persistent, then households

would have an incentive to find a house to occupy today to “lock in” the high level of the signal

today.

3.3.4 Boom and bust experiment

The distinction between the A shock versus the e shock from the perspective of a household

in the incomplete information model is entirely reflected in the transitory change of the signal

versus the persistent change of the signal respectively. This motivates the following boom and

bust experiment which considers sustained shock to A. Figure 3.7 shows the results for prices in

both models (incomplete information versus complete information) for a sustained one standard

deviation shock to A for five periods between t = 5 to t = 10.
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Figure 3.7: Price response of a sustained increase in A.

The five period increase in the signal leads to drastically different responses in prices in the

two models. In the complete information model, prices increase from the moment of the shock

begins until the end of the shock by exactly the same magnitude as in the A impulse response

function. In the incomplete information model, prices increase by a small magnitude at the

moment the shock hits by the same magnitude as in the A impulse response function. However

the sustained increase in the signal leads households to continuously update their expectations

of the long-term component upwards as they become increasingly sure that this increase in the

signal is long-term. At the of the period, they are suddenly surprised by the reversal of the

signal, which leads to the reversal in expectations and hence a reversal in prices. Indeed the

response in prices until period 10 before the reversal in prices looks similar to the first five

periods of the e impulse response function after the shock hits.

Importantly the dynamics shown in the above boom and bust experiment are driven entirely

by expectations in the incomplete information model. This happens endogenously due to the

price inference of households, and in this case it misleads households to firstly believe that there

was a long-term change leading to a price boom, and later to quickly reverse their beliefs leading

to a price bust.
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3.4 Empirical application

In this section I structurally deconstruct house prices ex-post and identify episodes of bubbles,

where households were overly optimistic about future long-term trends in the housing market.

To do this I use my model to analyse historical annual house prices in the US. The mechanism

of a bubble is the same as in the boom and bust experiment considered previously. A sequence

of positive short-term shocks leads households to believe that there was a long-term change in

demand, which turns out to be mistaken when the short-term shocks reverse leading to a reversal

in expectations. The broad strategy is to utilise Proposition 3 to extract the price signal from

price data, and use this price signal to identify episodes of bubbles.

3.4.1 Deconstruction of price data

The deconstruction procedure can be summarised in the following steps:

Step 1. Detrend log prices to obtain stationary log real house prices;

Step 2. Map price data to simulated prices by matching quantiles;

Step 3. Extract price signal from mapped simulated prices using Proposition 3;

Step 4. Obtain long-term component expectations;

Step 5. Optimally ex-post extract the long-term component from the price signal;

Step 6. Compare expectations with extracted long-term component to identify bubbles/over-

optimism.

The results of these summarised steps are demonstrated in Figure 3.8 below.
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The first step of detrending log house price data is necessary to make the price data station-

ary. Note that house prices in my model are stationary as the long-term component is stationary

with ρ < 1.

Price data and prices in my model are on different scales, hence it is necessary to map the

prior to the latter before I can apply Proposition 3. The mapping is done via a quantile to

quantile mapping. I simulate my model for T = 10000 periods which gives me an accurate

estimate for the statistical distribution of simulated prices. Similarly, my sample of price data

gives me 44 data points to form an empirical distribution for actual prices. Each point of the

price data is then compared to the whole sample to find its rank, which gives its empirical

quantile. This is then mapped to the same quantile in simulated prices. The upper left part of

Figure 3.8 shows the quantile plot of the price data versus simulated prices. The upper right half

of figure 8 shows this mapping applied to the price data to give the series of mapped simulated

prices.

The lower left part of Figure 3.8 shows the result of signal extraction from mapped simulated

prices by Proposition 3. The algorithm for signal extraction is as follows:

Step 1. Begin with long-term component expectations last period χet−1;

Step 2. Conditional on χet−1, invert the mapped simulated price today pt to find the extracted

signal today st;

Step 3. Update χet using χet−1 and st according to Proposition 4.

While Proposition 3 establishes the existence of a monotonic function between the signal

and the price, this function is not known in analytic form. In previous simulations the signal

was generated and hence known, and therefore it was sufficient to suppose that this function

was known to households and that the price extraction is performed correctly automatically. In

this empirical exercise, it is necessary to uncover the monotonic function and use it to perform

the signal extraction. To do this, in each period I obtain by simulation the average transaction

price at each level of the signal, conditional on χet−1. The relationship between the average price

and the signal gives the monotonic function. I use this function to invert the mapped simulated

price to the signal this period. Note that the monotonic function changes every period as it

depends on χet−1 which changes. Furthermore, I choose for simplicity that χe0 = 0, although my

results are robust to this choice. The signal extraction algorithm also simultaneously gives the

path for long-term component expectations, χet .

Obtaining the long-term component is also different to simulations where I simply observe

the path of the long-term component. In this application I need to optimally extract the long-

term component in a manner that is analogous to the household signal extraction problem.
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Proposition 4 describes how to optimally extract the long-term component with data up to

time t. However with ex-post data, i.e. hindsight, one is able to better extract the long-term

component than households with information up to period t. The signal gives the long-term

component plus noise introduced by the short-term component, hence if one observes an increase

in the signal in period t that reverses in period t + 1, one downwardly adjusts their best guess

for the long-term component in period t. This hindsight gives us an advantage to uncovering

the long-term component relative to households who have data only up to time t.

Formally, I solve for the optimal extraction of the long-term component via maximum like-

lihood, although this problem is similarly a special case of the Kalman filtering problem. My

data has T periods of the price signal, and I need to choose a path of length T of the long-term

component. Hence, my maximisation problem is exactly identified.

The likelihood function for the whole path is given by

L =
T∏
t=1

fA(st − χt)fe(χt − ρχt−1), (3.20)

where fA(·) and fe(·) are the density functions of A and e respectively, and χt is the long-term

component in period t.

The log-likelihood function is (up to scaling) given by

logL =
T∑
t=1

(st − χt)2

σ2
A

+
(χt − ρχt−1)2

σ2
e

.

First-order conditions for χt for t between 1 and T − 1 are given by

−σ2
est + χt((1 + ρ2)σ2

A + σ2
e)− ρσ2

Aχt−1 − ρσ2
Aχt+1 = 0.

This gives essentially a second-order Euler equation in terms of χt.

In addition, the first-order condition for the terminal χT is given by

−σ2
esT + χT (σ2

A + σ2
e)− ρσ2

AχT−1 = 0.

Solving for χt as a function of χt−1 and χt+1 gives

χt =
σ2
esT + ρσ2

Aχt−1 + ρσ2
Aχt+1

(1 + ρ2)σ2
A + σ2

e

. (3.21)
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Solving for the optimal χT as a function of χT−1 is given by

χT =
σ2
esT + ρσ2

Aχt−1

σ2
A + σ2

e

. (3.22)

Intuitively, the optimal χt is a weighted average of st, χt−1 and χt+1,. This reflects the

optimal maximum likelihood trade-off that desires χt to be close to st to minimise At, to be

close to χt−1 to minimise et, and to be close to χt+1 to minimise et+1. Similarly, χT is a weighted

average of sT and χT−1.

It is non-trivial to analytically solve for the optimal path using the above equations as the

optimal χt in each period depends on χt−1 and χt+1 which are not known. Instead I use the

following algorithm to iteratively solve for the optimal path:

Step 1. Begin with a path for {χt}t=1,···,T ;

Step 2. Update χt using equation (21) and substituting for χt−1 and χt+1 using the previous

path;

Step 3. Update χT using equation (22) and substituting for χT−1 using the previous path;

Step 4. Check for convergence {χt}t=1,···,T and continue if convergence is not achieved.

The lower right part of Figure 3.8 shows the results of solving for the extracted long-term

component using the algorithm described above. Specifically, the extracted long-term component

is more smooth than contemporaneous expectations of the long-term component. This is due

to the benefit of hindsight; the extracted long-term component does not respond as sharply to

short-term changes to the signal that are later reversed.

3.4.2 Identifying bubble episodes

Bubbles, when defined as a period of irrational price movements, do not exist in my framework.

Nonetheless, I can uncover periods where households were overly (but not irrationally) optimistic

about the long-term component. This is precisely the mechanism discussed in the boom and

bust experiment considered in the earlier section.

Based on the boom and bust experiment example, I define a bubble to be a period of continued

long-term component expectations increase that that exceeds the extracted long-term component

and at its peak exceeds by at least one standard deviation.
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Figure 3.9: Bubble episodes between 1975-2018.

In Figure 3.9 I show the extracted long-term component and long-term component expec-

tations. The episodes of bubbles are highlighted and they correspond to 1976-1979, 1986-1987,

and 2002-2006. The timing of these episodes map broadly to the housing bubbles documented

in the U.S. Specifically, the housing bubble in the early 2000’s stand out as being longer in

duration, a total of five years, as well as being larger in magnitude. If we consider short-term

shocks to the housing market as being driven primarily by the business cycle, this period maps

also to the period of the Great Moderation.

3.5 Model extensions

In this section I consider three extensions of my existing model. They enrich the model in

various ways but the basic mechanisms and insights from the basic model are preserved.

3.5.1 Intraperiod expectation updating

In the model described earlier, households update their expectations only at the end of the

period when they observe the price signal. In this extension I allow for each buyer and seller to

update their expectations based on the realisation of ε, as ε is the sum of the price signal plus

some idiosyncratic noise. Allowing for this means that households during the transaction period
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may have heterogeneous expectations due to receiving different realisations of the idiosyncratic

shock. However, at the end of period the price signal is revealed and as this is more informative

than ε, the distribution of expectations collapses and every household will again be in agreement.

The joint density of the three shocks is as follows

f(A, e, η) =
1

2πσAσe
exp(−A2/2σA − e2/2σe)

1

2Mη
. (3.23)

Due to the uniform distribution being flat, the maximum likelihood values for A, e and η,

given a value for ε, is always at a corner solution. This is unlike the previous example of updating

subject to the price signal at the end of the period where the optimum is always at an interior

solution. Specifically, in maximising the above density subject to ε taking a particular value, it

is always desirable to maximise the flexibility of η subject to the constraint of being within its

domain. In particular, whenever

|ε− ρχet−1|≤Mη (3.24)

the maximum likelihood values for A and e are both zero, and the maximum likelihood value

for η is ε− χet−1. This is evident by considering the marginal densities of A, e and η, which are

jointly maximised at (0, 0, ε− χet−1).

That indicates that the optimal behaviour is for households to be conservative and take the

view that a particular realisation of ε is due entirely to the idiosyncratic component rather than

a shift in the fundamentals.

sρχet−1 −Mη ρχet−1 ρχet−1 +Mη st

no updating region

(st − ρχet−1 −Mη)
σ2
e

σ2
e+σ2

A

Figure 3.10: Intraperiod updating scheme.

For ε outside of the above range, expectations are updated in the following way in order to

maximise the likelihood function

χet =


ρχet−1 + ( σ2

e

σ2
A+σ2

e
)(ε− ρχet−1 −Mη) for ε > ρχet−1 +Mη

ρχet−1 − ( σ2
e

σ2
A+σ2

e
)(ρχet−1 −Mη − ε) for ε < ρχet−1 −Mη

. (3.25)

This is evident by again considering the marginal densities. Without loss of generality, consider
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εt > ρχet−1 +Mη, then the solution for ηt is at the corner of Mη as this minimises the sum of At

and et, which maximises the overall likelihood. Conditional on At + et = εt − ρχet−1 −Mη, the

first-order condition implies the following maximum likelihood et given by

eML
t = (

σ2
e

σ2
A + σ2

e

)(ε− ρχet−1 −Mη), (3.26)

which establishes the above result for the case of εt > ρχet−1 +Mη.

The implications of this is that a large proportion of households do not update their ex-

pectations during the transaction period, and for those that do they update it only by a small

margin, see Figure 3.10 for a visual representation. Nonetheless, the overall effect of this is to

generate some small adjustment of expectations on average towards the signal in the intraperiod,

which slightly reduce the lag at which households update their expectations. After the transac-

tion period, households observe the price signal and the distribution of expectations collapses.

Otherwise the model follows the same steps.

3.5.2 Simple production economy with mortgage contracts

In the stylised model I present immediately the value functions after describing the shocks to

the economy. In this section I describe a simple production economy which generates the same

Bellman equations as a result of optimal households behaviour. Households supply labour and

earn a wage. Households have a per period utility function of the following form

u(ε, c, h) =


c− f(h) + ε if matched to a house

c− f(h) + urent if unmatched and renting

, (3.27)

where f(·) is a convex twice continuously differentiable function, c is consumption, h is the

quantity of labour supplied, and ε is the quality of the match between the household and the

house it is living in. Furthermore I assume that there exists a h∗ such that f ′(h∗) = 1. The fact

that utility is quasilinear with respect to consumption is important for the simple form of the

household Bellman equations.
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day night

period t

• housing market

• rental clearing

• mortgage payments

• consumption

• expectation updating

Figure 3.11: Timing

Similarly to Lagos and Wright (2005), I formally characterise the sequence of events within

each period to a day sub-period and a night sub-period, see Figure 3.11. During the day,

households meet and transact in housing in exactly the same manner as previously described.

Again Nash bargaining occurs over the price of the house, however the unit of denomination

is now in units of consumption, and this is to be repaid through a bilateral mortgage contract

that shall be described next. During the night, the average transaction price is revealed and

households update their priors in the same manner. Furthermore, households supply labour

and consume the consumption good by supplying labour. I assume that labour is exchanged

one-to-one to the consumption good, i.e. the marginal product of labour is one. Intraperiod

optimality between labour and consumption is summarise by

hi,t = h∗, (3.28)

which also gives the labour income in each period.

Supposing that a match between a buyer and seller generates a transaction of price p, the

households engage in a bilateral mortgage contracts which repay the sum of p in present value

over a fixed term of N periods. Specifically, the equal quantity to be repaid in each period is

given by

m =
p(1− β)

1− βN
, (3.29)

which is strictly greater than p/N due to accounting for discounting by β. Consequently β−1−1

is the implicit mortgage interest rate.

In summary, households trade in future labour income with the seller receiving a stream of

future labour income from the buyer. The transaction leads to an expansion in utility for the

seller by
N−1∑
i=0

mβi = p, (3.30)

and similarly a reduction in the buyer’s utility by the same amount, due to the quasilinearity

of utility with respect to consumption. The Bellman equation for a buyer after observing the
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realisation of the quality draw is therefore given by

VB(Ω, ε) = h∗+max

{
urent−R−csearch+β[VB(Ω′, ε′)], ε−p(Ω, ε)+β[φ(VB(Ω′, ε′)+VS(Ω′, ε′))+(1−φ)VM (Ω′, ε)]

}
,

(3.31)

where again Ω is the set of observable aggregate states. The Bellman equation for a seller is

given by

VS(Ω, ε) = h∗ + max

{
R− cpost + β[VS(Ω′, ε′)], p(Ω, ε)]

}
. (3.32)

Finally the Bellman equation for a matched household is given by

VM (Ω, ε) = h∗ε+ β[φ(VB(Ω′, ε′) + VS(Ω′, ε′)) + (1− φ)VM (Ω′, ε)]. (3.33)

Normalising the above three Bellman equations by subtracting h∗ obtains the original Bell-

man equations of the original model.

3.5.3 Short-term component persistence

The existing model considers the short-term component as noise and the long-term component

as a persistent AR(1) process. This assumption simplifies the analysis, however it is possible

to consider the short-term component to be also persistent. Importantly, I maintain that the

persistence of the short-term component is strictly less than that of the long-term component.

Recall that the long-term component follows the following process

χt = ρχt−1 + et,

where ρ ∈ [0, 1) is the AR(1) coefficient and et is normal with mean 0 and variance σ2
e . Next, I

consider the short-term component to follow

At = θAt−1 + ut, (3.34)

where θ ∈ [0, ρ) is the AR(1) coefficient and ut is normal with mean 0 and variance σ2
u. This

change necessitates a change in the state space for the households to Ωt = {χet−1, A
e
t−1} as the

short-term component is also of relevance for future periods. As a consequence, households now

formulate expectations by

χet = ρχet−1 +

(
σ2
e

σ2
u + σ2

e

)
(st − ρχet−1 − θAet−1). (3.35)

Aet = θAet−1 +

(
σ2
u

σ2
u + σ2

e

)
(st − ρχet−1 − θAet−1). (3.36)
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Similarly to Proposition 3, household expectations can be written as the history of price

signals χet
Aet

 = Mt

χe0
Ae0

+
t−1∑
j=0

Mj

 q

1− q

 st−j , (3.37)

where q = σ2
e

σ2
u+σ2

e
and M =

 ρ(1− q) −θq

−ρ(1− q) θq

.

3.6 Conclusion

This paper demonstrates that short-term momentum and long-term reversal in house prices,

well documented in the empirical literature, can be readily explained in a rational expectations

framework with incomplete information. The key signal extraction problem for the households

to solve is how to optimally interpret the ambiguous signal provided by prices, which results in

conservative adjustment in expectations in the same direction as prices and endogenously pro-

vides a rationale for backward-looking expectations over past prices. The resulting behaviour in

prices is broadly similar to the complete information model benchmark, however it differs in the

short/medium term fluctuations around the trend. This generates the momentum and reversal

mentioned earlier and also generates endogenous boom and bust episodes. The application of

my model to US house prices offers a new perspective on how to structurally identify bubbles

ex-post.
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