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Energy landscapes provide a conceptual framework for structure prediction, and a detailed under-
standing of their topological features is necessary to develop efficient methods for their exploration. The
ability to visualize these surfaces is essential, but the high dimensionality of the corresponding
configuration spaces makes this visualization difficult. Here, we present stochastic hyperspace embedding
and projection (SHEAP), a method for energy landscape visualization inspired by state-of-the-art
algorithms for dimensionality reduction through manifold learning, such as t-SNE and UMAP. The
performance of SHEAP is demonstrated through its application to the energy landscapes of Lennard-Jones
clusters, solid-state carbon, and the quaternary system Cþ Hþ Nþ O. It produces meaningful and
interpretable low-dimensional representations of these landscapes, reproducing well-known topological
features such as funnels and providing fresh insight into their layouts. In particular, an intrinsic low
dimensionality in the distribution of local minima across configuration space is revealed.
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I. INTRODUCTION

Potential (and free) energy surfaces (PESs) provide a
conceptual and mathematical framework for describing the
structures, kinetics, and thermodynamics of systems of
interacting atoms [1–4]. The exploration of these surfaces
forms the basis for the field of (computational) structure
prediction, where the central task is the location of low-
lying minima [5]. In order to develop efficient methods for
their exploration, the ability to visualize these landscapes is
crucial, enhancing our understanding of their complex
topologies and providing insight into how we can improve
techniques for structure prediction and global optimization.
However, the potential energy of a system of atoms varies
with the relative positions of all of its nuclei, meaning that
for all but the simplest of systems the true surface cannot be
depicted in the three spatial dimensions that we can easily
visualize.
There are many successful approaches to structure

prediction, from minima and basin hopping [6–8], particle
swarm [9,10], and evolutionary algorithms [11,12] to

ab initio random structure searching (AIRSS) [13,14].
These methods generate a diverse range of structures for
any given system, and AIRSS, in particular, emphasizes a
broad sampling of the energy landscape. This approach
has been successful in identifying novel and interesting
phases of crystalline systems, particularly at high pressures
[15–17]. Such a random search for local minima produces
meaningful samples of configuration space, relating
directly to the underlying distribution of the basins of
attraction. However, these samples are generated in huge
quantities (around 100 000 for modern application), and the
resulting datasets can be hard to fully comprehend, making
it difficult to determine how a given search might be
improved. A means to extract and depict information
contained in these large datasets of local minima, such
that insight into the landscape being searched can be
obtained, would be valuable.
The desire to visualize high-dimensional objects is not

restricted to energy landscapes. A similar challenge is
encountered for loss functions defining other optimization
tasks, such as statistical regression schemes [18], and
machine learning algorithms for classification, clustering,
and neural networks [19–22]. For any such cost function
surface, it would be revealing if an approximate low-
dimensional representation could be produced which pre-
serves as faithfully as possible the key features of the
landscape, such as the location of stationary points. For the
PESs sampled by methods for structure prediction, the
important features include the relative layout of the local
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minima, the connectivity of the corresponding basins of
attraction, the relative volumes of the basins, and the
presence of “superbasins” or funnels [2,3,23–27]. Here,
we propose a method for energy landscape visualization
which captures these features.
PES visualization can be viewed as a data science task in

which we would like to project a high-dimensional source
dataset (consisting of vectors describing structures in the
configuration space of interest) into one, two, or three
Euclidean dimensions. We base our approach on state-
of-the-art algorithms for dimensionality reduction for
visualization, such as t-distributed stochastic neighbor
embedding (t-SNE) [28] and uniform manifold approxi-
mation and projection (UMAP) [29,30], drawing inspira-
tion from their increasing application to datasets arising in
physics [31–33], materials science [34,35], and cell biology
[36–39]. We call this approach stochastic hyperspace
embedding and projection (SHEAP).
There are a number of existing tools which allow the

depiction of certain features of high-dimensional PESs in
lower dimensions, including (metric) disconnectivity graphs
[27,40–43] and “sketchmaps” [44–46]. These approachesdo
not focus on faithfully preserving the spatial layout of
minima on the true PES but rather on understanding the
system dynamics.
Disconnectivity graphs display the connectivity of local

minima in terms of minimum energy pathways between
them, illustrating which structures are likely to be accessible
and interchangeable at a given temperature [27,40,41]. They
do not indicate the proximity of minima in the configuration
space according to some defined distance metric, which
basins are actually adjacent on the PES, or give a clear
indication of the relative basin volumes [42].
Metric disconnectivity graphs retain some structural

information about the minima by arranging them along
one or two metric axes [42,43]. However, since they use
one of the two or three plot dimensions to represent the
energies of the structures depicted, there is one fewer
dimension which can be used to represent the relative
positions of the minima on the surface. Furthermore,
techniques such as t-SNE and UMAP have been demon-
strated to outperform the dimensionality reduction methods
considered for metric disconnectivity graphs in the context
of visualization [28,29].
Sketch maps follow a similar framework to the state-of-

the-art methods that we build on here to produce SHEAP
(see Sec. II). The algorithmic choices made within this
framework deal with issues specific to the high-dimen-
sional data produced in molecular dynamics trajectories,
such as poor sampling at the transition states, and the high-
dimensional nature of thermal fluctuations. Sketch maps
ensure that data points from the same basin are close and
separates clusters of structures from different basins
[44,46]. However, it puts less emphasis on accurately
reproducing the distances between the structures from
different basins. Thus, the approach is less suited to dealing

with other forms of structural data, such as the minima
produced from a structure search, for which there are no
thermal fluctuations (although a sketch map has been
applied to this type of data with success [47]).
In the next section, we introduce dimensionality reduc-

tion in the context of visualization, focusing on manifold
learning approaches. We then outline our method, SHEAP,
designed for PES visualization. We explore the perfor-
mance of SHEAP by applying it first to model systems of
atoms interacting through a Lennard-Jones (LJ) pair poten-
tial and then to structures of solid-state carbon, as well as
the quaternary system Cþ Hþ Nþ O. We show that
SHEAP yields meaningful low-dimensional representa-
tions of these landscapes, for example, reproducing well-
known topological features such as funnels, using only the
structural information contained in minima data obtained
from random structure searches. Furthermore, and impor-
tantly, we reveal an intrinsic low dimensionality to the
distribution of minima across these surfaces.

II. DIMENSIONALITY REDUCTION BY
MANIFOLD LEARNING

Dimensionality reduction refers to the mapping of
a high-dimensional dataset into a space of lower dimen-
sionality [48]. Here, we refer to a source dataset X ¼
fx1;x2;…;xNg ⊂ RD and a low-dimensional representa-
tion Y ¼ fy1; y2;…; yNg ⊂ Rs, where N is the number of
data points and D and s are the dimensionalities of the
corresponding spaces. If the dimensionality of the map is
low enough (s ≤ 3), the so-called “map points” can be
visualized in a scatter plot. The aim is to preserve latent
features of the source data in the reduced representation.
Manifold learning is a nonlinear approach to dimension-

ality reduction which assumes that the source data lie on, or
close to, some low-dimensional manifold embedded within
the original high-dimensional space [49,50]. The idea is to
produce a low-dimensional representation of the source
data by deducing its projected layout across the manifold—
this principle is illustrated in Fig. 1. This approach has
advantages over linear methods such as principal compo-
nent analysis (PCA) [51] in that it allows the manifold onto
which the data are projected to adopt a folded geometry
within the original space, making no assumptions about
this geometry. The faithfulness of the projection depends
on how close the source data are to actually lying on some
embedded manifold of the desired dimension, how good
the cover of the source data across this manifold is, and how
well the given algorithm is able to capture the key features
of the manifold from the spread of the source data.
There are many manifold learning algorithms, generally

differing in the geometrical properties of the underlying
manifold that they seek to preserve. Some aim to maintain
distances or similarities across the entire dataset, e.g.,
isomap [52] or kernel PCA [53]. Others prioritize the pre-
servation of local proximities, e.g., Sammon mapping [54],
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locally linear embedding [55], or Laplacian eigenmaps [56].
For source data that are nonlinear, it is usually more
important to keep the low-dimensional representations of
similar points close together rather than trying to accurately
reproduce a givenmetric at all length scales [28]. The t-SNE
[28], LargeVis [57], and UMAP [29] algorithms also follow
this principle but are able to patch together the local
representations in such a way that global features are
captured more faithfully than with other local methods
[28,29]. These approaches proceed by constructing a
weighted graph describing the structure of the source data
and then projecting this description into a space of fewer
dimensions through the optimization of a nonconvex cost
function. SHEAP is formulated within the same framework,
the outline of which is provided next, followed by a
discussion of themotivation for the development of SHEAP.

A.Manifold learning through weighted graph matching

A weighted graph is constructed, consisting of similar-
ities pij between each pair of data points i and j,
corresponding to a measure of how close they are in the
original space RD according to some distance metric
d∶X × X → R. It is usually beneficial to an algorithm’s
speed and scalability to compute weights only to the points
in the region local to each data point (e.g., the k nearest
neighbors), with all other weights being set to zero—as is
done in LargeVis [57], UMAP [29], and accelerated
(approximate) implementations of t-SNE [58,59]. An
initial distribution of N data points is then produced in

a space Rs of many fewer dimensions (typically 2 or 3).
This distribution may be generated at random, possibly
according to some bias(es) and/or constraint(s), or through
the application of some more primitive algorithm for
dimensionality reduction, such as PCA or random projec-
tion (see the Appendix C). Another graph of weights qij is
then constructed for the nodes defined by these map points,
Y, possibly taking a different functional form from those
defined between the high-dimensional points. The low-
dimensional representation of the data is then computed by
adjusting the layout of the map points such that the
faithfulness with which the weights qij model each pij

is optimized. An optimal layout is achieved by minimizing
some cost function CðY;XÞ designed to penalize any
mismatch. For a nonconvex cost function, local optimiza-
tion schemes are necessary. Since there is usually some
element of randomness in the initialization of the map
points and/or the optimization of the cost function, different
local minima can be obtained. Hence, these methods are
considered stochastic. Note that the resulting projection is
not associated with any physically meaningful set of axes
(unlike PCA, for example)—it is only the relative position-
ing and clustering of the mapped data that are significant.
Because there are numerous stages at which there is

scope for different possible and justifiable algorithmic
choices, many algorithms are possible. These choices
include how the weighted graphs describing the connec-
tivity in the high and low dimensions are constructed, what
cost function is optimized, how the map points are
initialized, and what optimization scheme is used.

B. Motivation for SHEAP

t-SNE has become perhaps the most widely used
manifold learning algorithm for visualization. However,
in many test cases, the more recent methods LargeVis
(2016) and UMAP (2018) appear to offer improvements in
terms of the quality of the visualization, run-time speed,
and scalability [29,57]. Approximate implementations,
such as Barnes-Hut-SNE [58] and fast Fourier transform
accelerated interpolation-based t-SNE (FIt-SNE) [59] dra-
matically accelerate the computation of t-SNE, though
these too appear inferior to UMAP for many test data-
sets [29].
Here, we focus on the relative visualization qualities

of these algorithms, leaving speed and scaling to future
work. As demonstrated in Ref. [29], UMAP produces a
local structure that is comparable to the projections of
t-SNE (and LargeVis) but appears able to provide a more
faithful global representation. This result is likely because
of a better cost function—UMAP’s choice provides a more
sophisticated treatment of the repulsive contribution to the
interaction between map points during optimization by
introducing greater dependency on the layout of the source
data. This choice is addressed further in Sec. III and
discussed in detail in Appendix A.

FIG. 1. Data dimensionality reduction by manifold learning.
(A) shows a three-dimensional dataset that is close to lying on a
two-dimensional surfacewhich is embeddedwithinR3. (B) shows
the projection of the source data onto this embedded manifold,
which is folded into a Swiss roll in the original 3D space.
(C) shows the distribution of the data across the embedded
manifold, providing a 2D visual representation of the source
data.
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However, UMAP does not truly optimize the cost
function it defines. Rather, the algorithm relies on its
specific choice for the optimization procedure, an approxi-
mate implementation of stochastic gradient descent (SGD)
which uses probabilistic edge sampling and negative
sampling [29,57], to deexaggerate the repulsive part of
the cost function gradient. This reliance on an approximate
optimization scheme is somewhat unsatisfactory and limits
the flexibility of the algorithm. For example, UMAP is
incompatible with our approach to incorporating basin
volumes into the maps—this approach involves represent-
ing the structures in the map as hard spheres or circles
rather than single points (see Sec. III B) and is straightfor-
ward to incorporate within t-SNE. Thus, we develop
SHEAP, a hybrid of UMAP and t-SNE which captures
some of the advancements made by UMAP, while still
producing an algorithm that (i) truly optimizes a well-
defined and theoretically justified cost function and (ii) is
compatible with the hard-sphere scheme we introduce in
Sec. III B.

III. SHEAP

In SHEAP, the weighted graph in the high-dimensional
space is constructed according to the same scheme as in
t-SNE. Following Ref. [28], the weight pij between source
data points i and j is defined as

pij ¼
pjji þ pijj

2N
; ð1Þ

where

pjji ¼
exp ½−dðxi;xjÞ2=2σ2i �P
k≠i exp ½−dðxi;xkÞ2=2σ2i �

: ð2Þ

Here, dðxi;xjÞ is some metric for computing the distance
between xi and xj in the high-dimensional space. t-SNE
uses the Euclidean distance: dðxi;xjÞ ¼ kxi − xjk2. The
value of σi is chosen such that the so-called perplexity of Pi
takes some desired value, where Pi is the conditional
probability of all other data points given xi. The perplexity
of Pi, PerpðPiÞ, is computed as

PerpðPiÞ ¼ 2HðPiÞ; ð3Þ

where

HðPiÞ ¼ −
X
j

pjji log2 pjji: ð4Þ

The perplexity PerpðPiÞ can be interpreted as a smooth
measure of the effective number of neighbors of i and is
set to the same value for all data points. It can be thought
of as defining how far each point “looks out” to describe
its local environment. A smaller perplexity favors a

faithful representation of the local connectivity of the
data, while a larger value favors the global distribution. A
“good” choice for this parameter results from a com-
promise between these two competing goals. A potential
drawback arises in that the perplexity is a global
parameter; there may be no single value that is suitable
for all source data points and their local regions. It may
be the case that a range of perplexities must be explored
in order to gain the greatest insight from these projec-
tions. Which single perplexity value leads to the most
complete picture can then be assessed.
Given a user input perplexity, each σi is computed using

a straightforward binary search. Because the distributions
of any two data points i and j will likely require different
σ’s in order to correspond to the same perplexity, the
conditional probabilities pjji and pijj will, in general, be
different. To obtain a symmetric measure for the weight pij

between the pair of data points, the joint probability of pjji
and pijj is computed, as in Eq. (1).
In the low-dimensional space, the weight between i

and j is computed according to a Student t distribution,
similarly to in t-SNE but using a different normalization:

qij ¼
ð1þ kyi − yjk22Þ−1

NðN − 1Þ : ð5Þ

As outlined in Ref. [28], the use of a heavier-tailed
distribution for the low-dimensional weights allows
moderate distances in the high-dimensional space to be
faithfully represented by much larger distances in the
projection, encouraging (larger) gaps to form in the low-
dimensional map between the natural clusters present in
the source data, alleviating the so-called crowding
problem.
The key difference of the SHEAP algorithm from t-SNE

is the choice of the cost function:

C ¼
X
i;j

pij log

�
pij

qij

�
þ ð1 − pijÞ log

�
1 − pij

1 − qij

�
: ð6Þ

The above is the fuzzy set cross-entropy between the two
sets of weights, as in UMAP, rather than Kullback-
Leibler (KL) divergence [Eq. (A2)], used in t-SNE.
Recall that we attribute the improved global structure
in UMAP’s projections over t-SNE’s to this choice of the
cost function, due to a better treatment of the repulsive
contribution to the interaction between the map points
(see Appendix A). In t-SNE, this repulsion arises due to
the constraint that all of the weights qij sum to 1,
providing a uniform repulsion between the map points. In
UMAP, the repulsive contribution arises directly from the
second, additional term in the cost function and is much
more dependent on the structure of the source data. This
contribution also allows us to discard the computationally
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costly normalization appearing in the weights qij in t-
SNE, which must be recomputed at every step during
optimization. The constant normalization factor that
replaces this term here is chosen such that weights qij
are consistent with the weights pij in the limit that all
data points lie on top of one another in both the source
data and the projection, giving pij ¼ qij ¼ ½1=NðN − 1Þ�
for all i and j.
Given the above choices, the cost function gradient in

SHEAP is given by

∂C
∂yi ¼ 4NðN − 1Þ

X
j

�
pij − qij

ð1 − pijÞ
ð1 − qijÞ

�
qijðyi − yjÞ:

ð7Þ

Optimization of the low-dimensional layout is achieved
using the two-point steepest descent (TPSD) scheme
of Barzilai and Borwein [60], and the option of early
exaggeration is also implemented, as in t-SNE [28,61]. We
can replace the use of early exaggeration with an initial
use of SGD, though this alternative scheme does not appear
to improve performance.
The layout of map points is initialized with an algorithm

for random projection—see Appendix C. Initializing in this
way tremendously accelerates the cost function optimiza-
tion, relative to a random (confined) distribution of points.
Here, we produce low-dimensional depictions of energy

landscapes by applying this algorithm to sets of structures
in the relevant configuration space. Primarily, we consider
datasets containing only local minima, obtained through
random structure searching (RSS) [14,15] to promote broad
sampling of the space. In Sec. IV, we demonstrate that these
data are sufficient for capturing PES features of interest in
the context of structure prediction. In Sec. IV C, we also
explore the projection of unrelaxed structures obtained
through random sampling.

A. Representing structural data

The configuration of a system of atoms can be repre-
sented in terms of a structure descriptor—a vector of real-
valued functions of the atomic coordinates which descri-
bes their relative arrangement [62]. To allow comparisons
between structures, a good descriptor is invariant with
respect to permutations of equivalent atoms, as well as
global translations, rotations, and reflections, and uniquely
determines the structure up to these symmetries.
Two descriptors are considered here. The first is a sorted

list of the pairwise distances between atoms. It is known
that this descriptor is not complete [62]. However, for the
simple systems of LJ particles considered (for which the
energy depends only on pairwise distances), we find it to
capture a sufficient proportion of the structural information
and variation.

The second descriptor considered is the smooth overlap
of atomic positions (SOAP) [62]. SOAP encodes relative
nuclear geometry in the neighborhood of a given atom
using an atomic density field, represented by 3D atom-
centered Gaussian functions expanded in a basis of
spherical harmonics and radial basis functions. A global
SOAP descriptor for a given structure can be computed by
taking the average SOAP fingerprint between all atomic
environments [63]. When multiple species are present, one
can either compute a single average incorporating all
species or average separately for each species and then
concatenate the species-specific averaged vectors [64]—
here, we adopt the former approach. Recent work by
Cheng et al. [64] finds success in pairing SOAP descriptors
with kernel PCA to produce low-dimensional maps for a
wide variety of structural datasets.
The distance metric d used here is the Euclidean

distance, as in t-SNE [28]. This choice implicitly assumes
that the source data are locally linear on the underlying
manifold [28]. The SHEAP map produced from a given set
of structures is expected to depend on both the chosen
descriptor and distance metric. Here, we explore the former
through a comparison of SHEAP maps produced from
sorted lists of distances and from SOAP, for a single LJ
system. An investigation into other distance metrics will be
the subject of future work.

B. Basin volumes conserved using hard spheres

A shortcoming of using only the spread of local minima
to depict a PES is that it gives no sense of how large each of
the basins of attraction are. To address this limitation, we
extend the methodology outlined in Secs. II A and III by
representing each local minimum in the map as a hard n-
sphere ðn ¼ s − 1Þ rather than a point, with volume (area in
2D) proportional to the (approximate) volume of its basin.
The number of times that structure i is located in a search

is labeled ci. We consider structures to be equivalent if the
distance between their descriptor vectors falls below an
appropriate similarity threshold. For a suitably large search,
these counts should give representative estimates for the
relative volumes of the corresponding basins. We represent
each structure in the map by a sphere of radius

Ri ¼ ðciÞ1=sR0; ð8Þ

such that the volume Vi ∝ Rs
i is proportional to the count

ci. The quantity R0 is the minimum sphere radius appearing
in the map, taken by any structure that has been found just
once—the choice of this parameter is important and is
discussed in detail in Appendix (B1).
The hard spheres are incorporated into the framework

outlined in Sec. II A through the addition of an extra term to
the cost function. This hard-sphere potential is defined as
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UHS ¼
1

2
γHS

X
i

X
j≠i

α2ij; ð9Þ

where γHS is the hard core strength and

αij ¼
� RiþRj−kyi−yjk2

2
if kyi − yjk2 < Ri þ Rj;

0 otherwise:
ð10Þ

For a sufficiently large value of γHS, the repulsion between
any overlapping spheres (when present) is the dominant
contribution to the gradient, meaning the layout is forced to
contain no overlaps.
The inclusion of the hard-sphere potential from the start

of the optimization is problematic. The spheres become
jammed as they try to move across one another, particularly
for densely packed spheres, resulting in convergence being
drastically slow or not attainable at all. This problem can
be avoided by allowing the spheres to access additional
dimensions during the optimization, using the geometry
optimization of structures from hyperspace method [65].
Alternatively, an efficient solution is to initially run the
optimization without the hard-sphere contribution, switch-
ing it on only when the algorithm is close to convergence.
With this approach, convergence is more easily attained if
the hard spheres are introduced at a fraction of their final
value and expanded over the course of a few hundred
optimization steps. In this scheme, the hard spheres have
minimal impact on the optimization, essentially just dis-
torting the optimal layout once it has already been reached.
Again, we point out that this approach is incompa-

tible with the SGD optimization scheme relied on by the
UMAP algorithm—large overlaps between spheres are
produced due to the omission of certain contributions to
the gradient, resulting in instability in the optimization. A
similar problem is encountered with the use of hard spheres
at the same time as early exaggeration, though this issue
can straightforwardly be circumvented by ensuring that the
hard-sphere interaction is not switched on until after the
exaggeration period has ended.

C. Energy represented with color

Energy is depicted across our plots through the colo-
ration of the circles or spheres representing each structure.
In Sec. IV, we also demonstrate that insight can be gained
by illustrating the variation of other quantities across the
projected configuration space.

IV. RESULTS

The results of applying SHEAP to various systems are
now presented. First, we consider the PESs defined by LJ
clusters, with pairwise interactions governed by

vLJðrÞ ¼ 4ϵLJ

�
σ12LJ
r12

−
σ6LJ
r6

�
; ð11Þ

where ϵLJ is the depth of the potential energy well for a
given particle pair and σLJ is the finite distance at which the
interparticle potential is equal to zero. We set ϵLJ ¼ 1 and
σLJ ¼ 2 throughout. Clusters of 13, 38, and 55 atoms are
considered.
For each dataset of LJ clusters, structures are represented

as a sorted list of all pairwise distances between atoms,
unless explicitly stated otherwise. In Appendix E, we also
explore the use of a sorted list of inverse pairwise distances
for LJ13.
Following the study of these model systems, datasets of

realistic solid-state systems, modeled by first-principles
density-functional theory calculations, are addressed.
The examples considered illustrate the applicability of

dimensionality reduction by manifold learning to minima
data obtained from RSS and demonstrate the insight that
can be gained from the resulting maps. A key finding is the
intrinsic low dimensionality in the distributions of minima
across the corresponding PESs.

A. Computational details

SHEAP is implemented in an OpenMP parallelized Fortran

package, available under the GPL2 license [66]. Also imple-
mented in this package are the t-SNE algorithm, as well as a
simplified version of UMAP—the qualitative performance of
SHEAP on standard datasets is compared against these in
Appendix D. The maps presented in this work are plotted
with Ovito, the open visualization tool [67]. The structural
data presented in each map are generated using the AIRSS

structure prediction package [68]. SOAP vectors are com-
puted using the implementation in the Automatic Selection
And Prediction (ASAP) package [64].
SHEAP is stochastic, so the final map differs for

independent projections of the same source dataset, even
for identical parameters. However, we find that, for an
appropriately chosen parameter set, distinct runs con-
sistently provide qualitatively equivalent results in all
cases—for each dataset, we present the map for a single
random seed.

B. LJ13
LJ13 has a relatively simple energy landscape. It is

described as having a “single funnel” topology, meaning
there is a general decrease in the energy of local minima
with increasing structural similarity to the global minimum.
This ground state structure is a filled 12-vertex icosahe-
dron, and all local minima are within three rearrangements
of it [69].

1. Relaxed versus unrelaxed structures

Figure 2 shows a 2D SHEAP map produced from local
minima on the LJ13 PES. The search, which comprises of
50 000 samples, uses a confinement sphere of radius 5.0σLJ
for the initial random structures, with an imposed minimum
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separation of 2.0σLJ. Structures are relaxed to nearby local
minima using TPSD [60], resulting in a dataset of 1108
distinct minima.
The funneled structure of the landscape is apparent, with

minima energies correlating well with their distance from
the global minimum (a) in the map. In addition, SHEAP
clusters together structures of similar energies and arrange-
ments. For example, the structures labeled (b) all result
from one external atom of the icosahedron being moved
from its ground state position to a different surface site.
Structures in the cluster labeled (c) result from two external
atoms from the icosahedron being moved to different
surface sites.
The success observed in the application of SHEAP to the

dataset of minima is in stark contrast to the map presented

in Fig. 3, which displays the 2D SHEAP projection of the
50 000 unrelaxed structures. Figure 3 contains no obvious
clustering. The structures are arranged in a featureless,
elongated “blob,” roughly ordered according to energy.
Similar results are observed when projecting into 3D.
The disparity between Figs. 2 and 3 is striking. It sug-

gests that the PES itself is truly high dimensional, and one
cannot produce a meaningful representation of the land-
scape from a projection of points drawn randomly from it.
In the language of Sec. II, the randomly sampled points do
not appear to lie on or close to any low-dimensional
manifold. The distribution of minima on this surface, on
the other hand, does appear to have some inherent low
dimensionality, according to the choice of structure
descriptor and distance metric.

2. Projecting relaxed and unrelaxed
structures together

The question then is, where do these unrelaxed structures
lie relative to the minima? One might intuitively predict that
they should fall into the gaps between the minima, but this
prediction is not what is observed using SHEAP.
Figure 4 shows a 2D SHEAP map constructed from a

dataset comprised of local minima and unrelaxed structures
on the LJ13 PES. The dataset contains the same relaxed
structures that are presented in Fig. 2, as well as a series of
unrelaxed random structures generated according to differ-
ent constraints. These are (i) a specified number of
symmetry operations, from 2 up to 5, with a fixed confine-
ment sphere radius of 5.0σLJ, and (ii) no symmetry
constraints, with varying confinement sphere radius, from
3.0σLJ up to 5.0σLJ in increments of 0.5σLJ. There are 1000
structures included for each set of constraints. Note that the
distribution of minima is distorted by the addition of the
unrelaxed structures. We attribute this change to a reduced
sensitivity in the relations between the minima, due to
having to represent similarities to structures not on the
manifold occupied by the minima. A lower perplexity is
found to alleviate the distortion somewhat.
The majority of unrelaxed structures lie well away from

the minima in a single, elongated cluster. As with Fig. 3,
these unrelaxed structures are arranged roughly according
to energy. Here, we also see that denser packings (smaller
confinement sphere radius) tend to lie toward the low-
energy end of the cluster, closest to the minima, while the
higher-symmetry packings tend to lie toward the edges.
Interestingly, a few of the unrelaxed structures actually
cluster with the minima, despite being of significantly
higher energies. Each of these structures is found to
possess five symmetry operations, and all contain at least
11 atoms that are close to the ideal icosahedral close
packing. This result demonstrates one aspect of the
AIRSS philosophy—that sensible random structure gen-
eration does much of the work in efficiently locating
local minima.

FIG. 2. Labeled 2D SHEAP map produced from a set of 1108
distinct minima on the LJ13 PES, located with RSS, described by
sorted lists of all pairwise distances. The projection uses a
perplexity of 30, with a minimum sphere radius R0 ¼ 0.005.
The circles representing each structure are colored according to
energy per atom in Lennard-Jones units; see the color bar at the
top of the figure. Basin volumes are represented by the area of
each circle. (a)–(g) denote clusters of structures of similar energy
and configuration; representative structures from each are shown.
Structures in (h) are less obviously clustered and tend to be
comprised of less-ordered packings of atoms.

FIG. 3. 2D SHEAP map produced from 50 000 unrelaxed,
randomly sampled structures on the LJ13 PES, described by
sorted lists of all pairwise distances. The projection uses a
perplexity of 30, with a minimum sphere radius R0 ¼ 0.01.
The circles representing each structure are colored according to
energy per atom in Lennard-Jones units; see the color bar at the
top of the figure.
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3. Projecting a steepest descent pathway

In order to reveal the connection between the prerelaxed
structures and the central layout of local minima in Fig. 4, a
SHEAP map is produced for a source dataset consisting of
the same set of minima, plus selected structures visited
along the pathway of steepest descent from an unrelaxed
structure generated without symmetry constraint, down to
the global minimum. The resulting projection is provided
in Fig. 5.
We observe that this pathway traverses the space in the

map between the unrelaxed structures and the minima and
passes by many local minima on its way to the icosahedral
ground state. The presence of the descent pathway leads to
slight distortions in the distribution of minima in the map,
relative to Fig. 2, likely due to oversampling of the regions
on the PES visited during the relaxation.
These SHEAP maps for LJ13 provide an interesting

perspective on the structure of its energy landscape. They
suggest that the surface consists of clusters of minima
which all sit very close to one another, with the unrelaxed
structures predominantly residing outside the region
occupied by these minima. Furthermore, they imply the
existence of some inherent low dimensionality in the
distribution of these minima across the surface.

FIG. 4. 2D SHEAP map constructed from a dataset of minima and unrelaxed structures on the LJ13 PES, described by sorted lists of all
pairwise distances. The projection uses a perplexity of 8. Circles in the main figure are colored according to energy per atom in Lennard-
Jones units, given by the color bar at the top of the figure. Minima (all in the bottom-left cluster) are faded, with basin volumes
represented by the area of each circle, using a minimum sphere radius R0 ¼ 0.005. Circles representing unrelaxed structures are enlarged
to highlight them. The figure inset provides different colorations of the top cluster, which contains only unrelaxed structures. Coloring is
according to (a) energy per atom in Lennard-Jones units, (b) the confinement radius in Lennard-Jones units, and (c) the number of
imposed symmetry operations—see corresponding color bars to the right of the inset. The few unrelaxed structures that cluster with the
minima (all possessing five symmetry operations) are labeled with their energy per atom in Lennard-Jones units, alongside two
perpendicular perspectives of their configuration.

FIG. 5. 2D SHEAP map produced from a dataset consisting of
local minima on the LJ13 PES, plus selected structures visited
along the pathway of steepest descent from an unrelaxed structure
generated without symmetry constraint, down to the global mini-
mum. Structures are described by sorted lists of all pairwise dis-
tances. The projection uses a perplexity of 30. Circles are colored
according to energy per atom in Lennard-Jones units, given by
the color bar at the top of the figure. For the minima, basin
volumes are represented by the area of each circle, with a mini-
mum hard-sphere radius R0 ¼ 0.005. Circles representing struc-
tures visited during the relaxation are enlarged to highlight them.
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C. LJ38
In previous work, LJ38 is described as having an

archetypal double funnel energy landscape; this arrange-
ment of its local minima is depicted clearly in disconnec-
tivity graphs, such as in Ref. [70]. The 38-atom system
stands out in the context of LJ clusters due to its octahedral
global minimum—most other cluster sizes exhibit ground
states based on icosahedra [71]. While the octahedron is the
lowest-energy arrangement for LJ38, there is an icosahedral
metastable configuration that is only very slightly higher
in energy. These two minima reside at the bottom of the
two separate “funnels” in the landscape, with the funnel

corresponding to the icosahedral structure being much
broader than that corresponding to the global minimum,
i.e., containing many more minima [72]. For this reason,
LJ38 is well known to be a relatively difficult test for
structure searching algorithms.

1. Two-dimensional map of minima data

Figure 6(A) shows a 2D SHEAP map produced from
minima on the LJ38 PES. The search consists of 100 800
samples and uses the same parameters and relaxation
scheme as for the 13-atom system, resulting in a dataset
of 89464 distinct minima.

FIG. 6. (A) shows a 2D SHEAP map for 89464 minima on the LJ38 PES, generated with RSS, described by sorted lists of all pairwise
distances. The projection uses a perplexity of 30, with a minimum sphere radius R0 ¼ 0.008. The circles representing each structure are
colored according to energy per atom in Lennard-Jones units; see the color bar at the top of the figure. Basin volumes are represented by
the area of each circle. (a)–(d) label proposed funnels in the LJ38 PES; structures shown alongside correspond to the lowest-energy
minima residing in each. (a) contains the octahedral global minimum; (b) and (c) could be considered subfunnels of this minimum.
(d) contains the icosahedral lowest metastable structure. (e) labels a small island of structures occupying the space between (a)–(c) and
(d). (f) and (g) label low-energy minima residing in funnel (d) and are closely related to icosahedral structure. (h)–(j) label representative
structures from the large, “brainlike” cluster of minima which contains the majority of structures—these are predominantly of low
symmetry. (B) and (C) depict the same SHEAP map as in (A) but colored according to different physical parameters. Circles in (B) are
colored according the convex hull volume of each cluster. Circles in (C) are colored according to the number of contacts per atom in each
cluster (see the main text for details). Corresponding color bars are provided below these subfigures.
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LJ38 has many more degrees of freedom than LJ13,
leading to a far more complex landscape topology, with
many more local minima. This difference is reflected in the
searches, with almost 90 times more distinct minima being
located for the larger cluster from little over twice as many
samples and a much lower disparity between the largest and
smallest basin volumes. The map for LJ38 exhibits greater
connectivity than that for LJ13, with the former showing
much less clear-cut clustering of structures and a more
continuous variation in the energy. We attribute this differ-
ence to the vastly greater number of minima compared to
LJ13, with the variation between minima being much more
incremental for the larger system. For example, starting
with the global minimum and moving one atom from its
ground state position to a surface site leads to a relatively
much greater deviation from the ground state structure for
LJ13 than for LJ38.
The standout features in Fig. 6(A) are the large “brainlike”

cluster of minima (mostly low-symmetry, amorphous struc-
tures) and the strands of minima leading away from this
cluster with progressively decreasing energies.With regards to
the latter, there is an obvious connection to be drawn to the
supposed funnels. We find that the octahedral global mini-
mum and the icosahedral lowest metastable minimum reside
at the ends of two of these different strands, labeled (a) and
(d), respectively. Preceding them are closely related structures,
e.g., those labeled (g), which all result from a single external
atom of the icosahedral structure being relocated to a different
surface site. Satisfyingly, the existence of these “funnels”
arises purely from an analysis of the minima, through the
structural information captured in the descriptor vectors. In the
construction of the corresponding disconnectivity graph,
funneling is inferred through an examination of transition
state data and an evaluation of minima connectivity in the
context of minimum energy pathways via these transition
states. However, note that one can construct approximate
disconnectivity graphs based solely on the structural relation-
ships between minima (using fingerprint distances), circum-
venting the expensive transition state calculations by
computing estimates for the energy barriers in the system [73].
The following question arises: What are the remaining

branches of structures appearing in the SHEAP map? In
Fig. 6, the most apparent of these additional strands of
structures are labeled (b) and (c), alongside illustrations of
the lowest-energy structure residing in each. We propose
these to be previously unreported funnels in the LJ38 PES,
both of which could potentially be considered subfunnels
of a superfunnel also containing (a)—they appear to be part
of the same branch, eventually separating off to comprise
independent funnels.

2. Other color schemes

To better interpret the layout of structures across the
map, two further schemes for coloring the circles are
considered, in addition to the energy per atom. These

are the convex hull volume of the structure per atom and the
number of contacts in each structure per atom, provided in
Figs. 6(B) and 6(C), respectively.
The convex hull volume shows a very similar distribu-

tion to the energy, both in the main cluster of structures
(albeit with slightly less variation) and in the funnels. We
attribute this similarity to the LJ energy being entirely
dependent on the pairwise distances between atoms; there
are no three-body or higher terms. Hence, the energy is
expected to be closely correlated to the packing density
within the structures, which, in turn, should correlate well
with the map position.
In order to produce Fig. 6(C), a contact is defined as any

pairwise separation that is less than 2.3σLJ, 2.5% above the
minimum separation in the LJ pair potential. We observe
that the funnels in the map correspond to regions of very
high numbers of contacts per atom, and the number of
contacts steadily reduces with increasing separation from
these funnels, roughly from the bottom to the top of the
main cluster.

3. Projecting into the third dimension

So far, SHEAP maps have been presented for only two
map dimensions. However, we find that often there is a
non-negligible improvement in the quality of visualization
by accessing an extra dimension and projecting into 3D.
To illustrate this point, in Fig. 7, we present three
perpendicular perspectives of a 3D SHEAP map produced

FIG. 7. Three perpendicular perspectives of a 3D SHEAP map
produced from the same set of LJ38 minima that are presented in
Fig. 6. The projection uses a perplexity of 30, with a minimum
sphere radius R0 ¼ 0.008. The spheres representing each struc-
ture are colored according to energy per atom in Lennard-Jones
units; see the color bar at the top of the figure. Basin volumes are
represented by the volume of each sphere. Each viewpoint looks
down one of the axes displayed at the bottom right of the figure;
the axes have no other physical meaning.
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for the same dataset of LJ38 minima. Note that the axis
system is arbitrary.
The 3D map is qualitatively very similar to that in 2D;

the 2D map looks almost identical to a projection of the
3D distribution onto the x-y plane. However, one can see
from the other two perspectives that there are features
protruding out of this plane that are not represented
faithfully in 2D. Most notably, the separation between
the icosahedral funnel (d) and the three other large (sub)
funnels (a)–(c) is more pronounced with the extra
dimension. The classification of (a)–(c) as subfunnels
of a single, larger “superfunnel” is also more obvious in
this projection.

4. Using a different descriptor: SOAP

The distance-based descriptor employed so far is appro-
priate for LJ systems, since their energy is determined
entirely by pairwise separations. However, the picture of
an energy landscape obtained with SHEAP should be
qualitatively robust to the choice of descriptor, as long
as the relevant structural information is captured. To test
this hypothesis, we compare the above results for LJ38,
which use sorted lists of distances, with the use of SOAP
vectors [62].
Unlike the sorted list of distances (for which the only

parameter is the cutoff distance), the SOAP vector for a
given structure is dependent on many parameter choices:

FIG. 8. 2D SHEAP maps for 10 000 minima (prior to similarity check) on the LJ38 PES, described using SOAP with various
parameters. (A), (B), and (C) show results for nmax; lmax ¼ 15, 9, 12,6, and 8,4, respectively. rcut is consistent across each row, values
given on the far left in σLJ. σ is consistent across each column, values given at the bottom in σLJ. Projections use a perplexity of 15, with
R0 computed by Eq. (B1). The circles representing each structure are colored according to energy per atom in Lennard-Jones units; see
the color bar at the top of the figure. Basin volumes are represented by the area of each circle. Maps in the bold, dashed, red perimeters
represent “suitable” SOAP parameter choices, producing the same key features as Fig. 6. Maps in the faded, dashed, red perimeters also
show these features but less clearly.
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rcut specifies the distance beyond which neighbor atoms
are not taken into account, nmax specifies the number of
radial basis functions to be used for each local descriptor,
lmax specifies the maximum degree of the spherical
harmonics, and σ specifies the standard deviation of
the Gaussians. This level of freedom can be beneficial,
allowing the descriptor to be tailored to better suit a given
system, but it demands more input on the part of the user.
The choice of radial basis functions is also important but
is not addressed in detail here. By default, ASAP uses
spherical Gaussian-type orbitals [74] rather than the
original polynomial radial basis set [62], allowing much
faster analytic computation [75].
Figure 8 shows 2D SHEAP maps for a subset of the LJ38

dataset studied in Sec. IV C, described by SOAP vectors
using a range of parameters. A reduced dataset (10 000
structures) is used to lessen the computational cost.

ASAP permits up to 15 radial and nine spherical
harmonic SOAP basis functions. Figure 8(A) illustrates
the effect of varying σ and rcut for these values of nmax
and lmax. Note that no structure in the dataset contains a
separation greater than 10.0 σLJ. There are no maps for
rcut ¼ 2.5 σLJ (as with other nmax and lmax considered),
since this cutoff is too low relative to the number of
radial basis functions, preventing normalization of the
latter. While the exact structure of the map varies with
each set of parameters, there is a broad range (inside the
bold, dashed, red perimeter) for which the key features
are consistent with the maps produced using sorted lists

of distances. Within this range of parameters, the large
cluster of low-symmetry structures that is present in
Figs. 6 and 7 is clear, the largest funnel [(d) in
Fig. 6] is clearly revealed, and at least two other funnels
are also discernible. For σ values too large, the definition
of the map diminishes, and the funnels are absorbed into
the main cluster. For σ values too small, the smooth
variation in energy across the cluster of low-symmetry
structures is lost.
Figures 8(B) and 8(C) depict results using fewer basis

functions: nmax; lmax ¼ 12, 6 and 8,4, respectively. Com-
paring these to Fig. 8(A), we see that the band of suitable σ
shifts to lower values with lower nmax and lmax. We also
observe that the scope of acceptable parameters is of similar
size for Figs. 8(A) and 8(B) but is significantly restricted in
Fig. 8(C), for which only the midrange rcut is able to
produce the expected map features for any σ.
In general, the funnels labeled (a) and (b) in Fig. 6 are

not as well separated in the maps in Fig. 8. We attribute
this difference to the smaller sample size used for these
projections—2D and 3D maps produced using SOAP from
the full dataset (Fig. 9, for which rcut ¼ 10.0 σLJ,
nmax ¼ 15, lmax ¼ 9, and σ ¼ 0.3 σLJ) provide clear sep-
aration of these funnels.
We conclude that, with the right choice of SOAP

parameters, the picture of the LJ38 energy landscape
obtained through SHEAP is qualitatively equivalent for
the two descriptors. Furthermore, we find that the range of
suitable SOAP parameters is relatively broad, and easy to

FIG. 9. 2D and 3D SHEAP maps produced from the same set of LJ38 minima that are presented in Fig. 6, described using SOAP with
parameters rcut ¼ 10.0 σLJ, nmax ¼ 15, lmax ¼ 9, and σ ¼ 0.3 σLJ. The projections use a perplexity of 30, with a minimum sphere radius
R0 ¼ 0.006 for the 2D map and R0 ¼ 0.01 for 3D. The circles and spheres representing each structure are colored according to energy
per atom in Lennard-Jones units; see the color bar at the top of the figure. Basin volumes are represented by the area (volume) of each
circle (sphere). Each viewpoint of 3D map looks down one of the axes displayed, as labeled; the axes have no other physical meaning.
(a)–(d) in the 2D map label proposed funnels in the LJ38 PES, analogous to those labeled in Fig. 6, with the same low-energy minima
residing at the ends.
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identify for this system, via a scan of possible values,
visualized through SHEAP.

D. LJ55
LJ55 is referred to as a structure seeker, meaning it

has a very distinct global minimum that is easily located
in a structure search, with no competing morphologies
separated by high barriers [76]. Here, we present a
representation of this landscape obtained with SHEAP,
highlighting its contrast to that of LJ38.
Figure 10 shows 2D and 3D SHEAP maps produced

from minima on the LJ55 PES. The search consists of 50
000 samples and uses the same parameters and relaxation
scheme as the above LJ systems, giving 49813 distinct
minima.
There is clearly a funneled structure to the arrangement

of minima, terminating with the icosahedron and closely
related configurations, such as those labeled (b), which all
have the structure of the Ih ground state but with one
external atom moved to a different surface site. However,
the maps also suggest that describing the landscape as a
single funnel would be an oversimplification. There is a
second strand of structures which branches off from the
funnel to the global minimum, leading to a relatively low-
energy D5h configuration. This structure is related to the Ih

configuration via a twist about the fivefold axis [2]. It
stands out in the corresponding disconnectivity graph due
to its relatively low energy and high barrier for transition to
the global minimum [69]; this picture is complemented by
the detail in the structural similarity and subfunnel arrange-
ment provided by SHEAP.
Another band of (sub)funnels is present, well separated

from those leading to the Ih and D5h structures in the 3D
map [in a similar manner to the separation of (d) from
(a)–(c) in Fig. 6]. However, these are all of relatively high
energy [unlike (d) in Fig. 6] and so are not competitive with
the global minimum.
Despite some similarities, it is apparent from the SHEAP

maps why LJ55 is a more straightforward problem than LJ38
in terms of global optimization. With LJ55, the competing
funnel(s) or strand(s) are shallow compared to that of the
global minimum, and there are no similarly low-energy
structures outside of the main funnel—the D5h structure
exceeds the global minimum by approximately 0.1ϵ per
atom. With LJ38, competing funnels are deep and terminate
with structures similar in energy to the global minimum
(only approximately 0.01ϵ per atom higher). Furthermore,
for LJ38 the most voluminous funnel is not the one
containing the global minimum, and the maps also possess
a region of low-energy structures within the amorphous
bulk of configurations, which is not the case for LJ55.

FIG. 10. 2D and 3D SHEAP maps for 49813 minima on the LJ55 PES, generated with RSS, described by sorted lists of all pairwise
distances. Projections use a perplexity of 30, with a minimum sphere radius 0.01. The circles representing each structure are colored
according to energy per atom in Lennard-Jones units; see the color bar at the top of the figure. Basin volumes are represented by the area
of each circle. (a)–(f) label selected structures in the landscape: (a) Ih, global minimum; (b) Cs, all have one surface atom relocated
relative to global minimum; (c) D5h, lowest-energy structure in funnel branching off from that to global minimum; (d) C1, one atom
relocated relative to D5h; (e) C5v and (f) C5, high-symmetry structures outside the main (sub)funnels to Ih and D5h. Each viewpoint of
3D map looks down one of the axes displayed, as labeled; the axes have no other physical meaning.
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E. Carbon

To demonstrate the applicability of SHEAP to realistic
periodic systems, we consider a dataset of solid-state
carbon structures, taken from the Materials Cloud
Archive [77]. The set contains 11370 structures obtained
with AIRSS performed at 10 GPa for a range of cell sizes
(up to 24 atoms), with 2–4 symmetry operations imposed
on the prerelaxed structures. All structures are based on
sp=sp2=sp3 hybridized carbon, but they exhibit a wide
range of topologies. The interactions in this system contain
significant three-body contributions [78], meaning the
sorted list of pairwise distances is not a suitable structure
descriptor. Hence, we use SOAP, which is capable of
describing these relationships completely [62].
As demonstrated with LJ38, the SOAP descriptor has a

number of parameters which effect the appearance of a
SHEAPmap. With that model system, we are able to obtain
suitable values relatively easily via a scan of the parameter
space. However, it would, of course, be preferable to have a
systematic way to obtain good parameter choices for any
given system. For systems of real atoms, we find a
satisfying solution is the heuristic approach of Cheng et al.
[64], providing a set of so-called “universal” parameters.
These come in three flavors: “smart,” which computes a
suitable set of parameters by considering the typical and
minimum bond lengths of each of the species involved,
“minimal,” which is similar to smart but uses fewer basis
functions, and “long-range,” which again is similar to smart

but aims to capture more of the long-range structure. For
the smart and long-range cases, two sets of SOAP param-
eters are computed, at slightly different length scales. A
single structure descriptor is constructed by concatenating
the global SOAP vectors for each set. Here, we provide a
SHEAP map for the above carbon dataset produced using
the smart parameters—see Fig. 11.
Most structures lie within a single, elongated arrange-

ment. Several have distinctly large basins; most of these are
low energy and lie toward the edge of the distribution.
Many of these correspond to well-known carbon arrange-
ments, including diamond (a) and graphite (g), which
reside at opposite ends of the map, as well as lonsdaleite
(b) and the chiral framework structure (d) of Ref. [79].
These and other standout clusters are labeled to provide a
representative picture of the distribution of structures.
Comparing the SHEAP map for carbon to those for the

LJ systems highlights key differences in their energy
landscapes. With the LJ systems, neighboring minima tend
to be close in energy. With carbon, there is a large degree of
“mixing” between high- and low-energy structures; basins
of high-energy minima are often surrounded by those of
much lower energy, and vice versa. Furthermore, the
variation in the energy of minima across the carbon map
shows less clear long-range trends than for the LJ clusters.
While the LJ landscapes possess clear funnels of minima,
such features do not appear to be prevalent in the carbon
PES. Through this comparison, it is easy to see why LJ

FIG. 11. 2D SHEAP map for 11370 structures of solid-state carbon, obtained with AIRSS at 10 GPa for a range of cell sizes—dataset
taken from the Materials Cloud Archive [77]. Structures in the source-data represented as concatenated global SOAP vectors using
universal “smart” parameters: rcut; nmax; lmax; σ ¼ f2.4 Å; 8; 4; 0.3 Åg; f2.0 Å; 8; 4; 0.25 Åg. The projection uses a perplexity of 30,
with R0 ¼ 0.0147, as computed by Eq. (B1). The circles representing each structure are colored according to their energy per atom in
eV; see the color bar at the top of the figure. Basin volumes are represented by the area of each circle. (a)–(n) label selected structures,
including (a) diamond, (b) lonsdaleite, (d) the chiral framework structure of Ref. [79], (g) graphite, and (h) graphene layers with
nongraphite packing. The inset shows the same map, colored according to volume per atom in Å3; see the color bar at the top of the inset.
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landscapes lend themselves very well to structure predic-
tion algorithms such as simulated annealing [80] and basin
hopping [6,7], which utilize the presence of funnels to
locate progressively lower-energy minima, while the study
of carbon requires more heuristic approaches, such as
in Ref. [81].
As illustrated in the inset in Fig. 11, in contrast to the

energy variation, the volume per atom of each carbon
structure follows a clear global trend across the map.
These results demonstrate the additional complexity in
the energy landscape resulting from three-body inter-
actions, leading to less correlation between the energy
and density than is seen for a simple pairwise interaction.

F. C+H+N+O

As a final demonstration of SHEAP, we present results
obtained for a dataset of structures containing multiple
species. The set considered consists of 50000 solid-state
structures containing carbon, hydrogen, nitrogen, and
oxygen (the four most common elements in organic
chemistry and biology) at varying stoichiometries, which
reduces to 21239 distinct structures following a similarity
check. These configurations, taken from a larger set on the
Materials Cloud Archive [77], were generated with AIRSS
performed at 1 GPa. Structures in the source dataset are
represented as concatenated global SOAP vectors, using
the smart universal parameters, including the crossover

terms between different species. Presented in Fig. 12 are 2D
and 3D SHEAP maps for this system.
The 2D map contains four distinct corners, each corre-

sponding to arrangements of one of the four elements, as
labeled. One can easily identify clusters of basins corre-
sponding to low-energy configurations of binary mole-
cules, most notably H2O, CO2, and NH3. Intuitively, each
of these molecular structures resides closest to the corner
corresponding to the element it contains with the highest
stoichiometry. The edges of the map represent structures
containing predominantly the elements of the adjacent
corners, also in agreement with intuition. The same is true
for the structures occupying the regions between opposite
corners (H, N and C, O). The lowest-energy structures
containing each element in equal stoichiometry correspond
to polymers of isocyanic acid (O ¼ C ¼ NH), which reside
close to the center of the map, as labeled. A few other
standout clusters of basins are labeled, according to the
molecule(s) whose polymorphs are mapped there, to
provide a representative picture of the distribution of
structures and stoichiometries.
The 3D map also contains a distinct corner for each of

the four elements. However, the extra dimension facilitates
the emergence of an edge between every pair and provides
clearer separation of different stoichiometries, particularly
for structures residing toward the center of the 2D map.
The result resembles an irregular tetrahedron, with slight

FIG. 12. 2D and 3D SHEAP maps for 21239 structures containing carbon, hydrogen, nitrogen, and oxygen at varying stoichiometries,
obtained with AIRSS performed at 1 GPa, taken from the Materials Cloud Archive [77]. Structures in the source data are represented as
concatenated global SOAP vectors using smart universal parameters: rcut; nmax; lmax; σ ¼ f2.7 Å; 8; 4; 0.33 Åg; f2.0 Å; 8; 4; 0.25 Åg.
Projections use a perplexity of 30, with R0 computed by Eq. (B1). Circles and spheres representing each structure are colored according
to their formation energy per atom in eV; see the color bar at the top of the figure. Basin volumes are represented by the area (volume) of
each circle (sphere). Each viewpoint of the 3D map looks down one of the axes displayed, as labeled; the axes have no other physical
meaning. Regions containing polymorphs of various molecular species are labeled in the 2D map.
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outward curvature of the faces and edges. This layout is
reminiscent of a quaternary convex hull plot [82]; it is
striking that the similarities to this construction emerge
naturally from our projection of the energy landscape.
Both maps depict a higher density of structures at the

edges (and between opposite corners in 2D), where the
binary (and unary) configurations reside. This result dem-
onstrates that SHEAP is able to highlight nonuniformity or
biasing in the sampling of a configuration space.

G. Cost versus dimensionality

In Secs. IV C, IV D, and IV F, we demonstrate that the
visualization quality produced by SHEAP can be improved
by projecting into three dimensions rather than two. How
do we know that there are no important features in a given
minima distribution that would be revealed if we were able
to view a projection into higher dimensions? We address
this question by considering the optimal cost (in the
absence of the hard-sphere interaction) achieved by pro-
jections into a range of map dimensionalities.
This analysis is conducted for datasets of 10 000 local

minima of each of the systems studied above as well as
datasets consisting of 10 000 points drawn uniformly at
random inside the unit hypercubes of 2–6 dimensions. For
the structural data, ten independent SHEAP projections are
carried out, without switching on the hard-sphere inter-
action, for 1–6 map dimensions s. For the points inside
hypercubes, SHEAP projections are conducted for up to
eight dimensions. The lowest cost obtained at each map
dimension, for each dataset, is plotted against s in Fig. 13.
Note that the cost is restricted from approaching zero as

s → D (and beyond) by the use of different functional
forms for the weights in the high and low dimensions; there
is an inherent cost associated with the use of different
distributions, even when s ≥ D.
For all datasets of structural minima, we observe a

dramatic reduction in the (lowest) relative cost in going
from 1D to 2D. We also see a non-negligible reduction
from increasing the map dimensionality from two to three
(except in the case of carbon), which is most pronounced
for Cþ Hþ Nþ O. However, it appears that in each case
there is nothing of significance to be gained in going
beyond 3D.
We compare to the plots for uniformly drawn random

points within hypercubes of varying dimensionality.
According to SHEAP, in order to faithfully represent the
distribution of points in the hypercube of dimensionality D
(which must contain long-range D-dimensional features),
at least s ¼ Dmap dimensions are required. For each cube,
using fewer than D dimensions in the map leads to a
penalty in the optimal cost that is obtained, which increases
with decreasing map dimensionality.
These results suggest that the distribution of minima on

the landscapes we consider are inherently low dimensional
(according to the given combination of structure descriptor

and distancemetric), providingvalidation for our approach to
producing visual representations of high-dimensional PESs.

V. DISCUSSION

The striking observation of local minima being approx-
imately distributed across low-dimensional manifolds
within configuration space could have profound conse-
quences for structure prediction. The ability to sample
directly from this manifold would be a highly efficient
means of searching for stable structures. Unfortunately,
SHEAP (as with all algorithms in the same family) does not
yield a transformation matrix between the original and
reduced spaces, and the latter is not defined with respect to
a meaningful set of axes. Thus, there is no clear way to
generate new structures on the manifold learned by

FIG. 13. Lowest cost obtained through SHEAP projections
(without hard-sphere interactions) of datasets of 10 000 local
minima for five systems, plotted against the number of map
dimensions. Also shown are (lowest) cost versus map dimension
plots for 10 000 points drawn uniformly at random inside the unit
hypercubes of 2–6 dimensions, on a single set of axes. Each
SHEAP projection uses a perplexity of 30.
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SHEAP. However, our findings are promising for the
use of other machine learning methods such variational
autoencoders [83] and generative adversarial networks [84]
for structure prediction (see Ref. [85]) and suggest that
learning from previously located minima would be an
effective strategy, e.g., by pairing with a non-learning-
based approach such as AIRSS. SHEAP could be deployed
to illuminate differences in the sampling of a given surface
by different approaches or by different parameter choices
within a given approach.
Other pioneering work in developing a greater under-

standing of energy landscapes through visualization is
Ref. [3], which also analyzes similarities between local
minima to reveal topological features. Oganov and Valle
employ a fingerprint structure descriptor based on pair-
wise separations of atoms [86] and compute the similarities
between fingerprints with a cosine distance metric. They use
this similarity measure to construct plots of energy versus
distance to the global minimum for local minima on a
given landscape, as well as mappings of the minima
distributions which aim to produce “distances between
points in the graph that are maximally close to the distances
between the corresponding fingerprints” (see multidimen-
sional scaling [87]). Their analysis reveals funnels in the
landscapes of crystalline systems of few atoms per unit
cell. While Ref. [3] does not focus on the quality of the
mapping between their description of a given PES and
the low-dimensional space it is visualized in and deals
with only relatively small sample sizes (a few thousand
structures), the tools developed there have been demon-
strated to facilitate improved structure searching [88].
Dimensionality reduction by SHEAP furthers the potential
of such an approach.
In this work, we represent real crystalline systems using

SOAP. However, it is important to note that the develop-
ment of good structure descriptors is an active field, and
there are numerous justifiable choices we could have made
for the descriptor-metric pairing. Of course, the entire form
of a map is dependent on the choice of descriptor and
distance metric, and a map’s features cannot be interpreted
without knowledge of the descriptor-metric pair used. With
SOAP, a global representation of a given structure is
constructed by averaging the local fingerprints of each
atomic environment. As with any instance of averaging,
this step introduces a loss of structural information, which
becomes severe for large unit cells. A potential solution is
to build on the work of Ref. [89]. Rather than comparing
averaged SOAP descriptors via a Euclidean distance
metric, one could use the Hungarian algorithm to best
match the atomic environments in a pair of structures,
summing over the individual distances between matching
environments. Any such, more sophisticated approach
would need to be assessed with regard to the balance
between increased fidelity of the map versus the computa-
tional cost of the algorithm.

VI. CONCLUSION

In conclusion, SHEAP enables us to produce meaningful
and interpretable low-dimensional representations of a
range of PESs, requiring only the structural information
contained in minima data obtained from random structure
searches as input, providing fresh insight into their topol-
ogies. The maps presented contain distributions and clus-
ters of structures that we have been able to rationalize and
reveal long-range topological features, including funnels
(or the lack thereof).
By evaluating the costs at higher map dimensionalities,

we have assessed the validity of SHEAP projections into the
low number of dimensions that we can comprehend. In
doing so, we have revealed an intrinsic low dimensionality to
the distributions of minima, as represented by the descriptors
and metrics considered, across both model PESs, and those
corresponding to realistic, solid-state systems. We observe
that, with all systems studied, no more than three map
dimensions are required to represent all of the structural
variation captured in our descriptions of the local minima,
with two map dimensions also enabling useful projections.
We have demonstrated that SHEAP has the potential to

be a useful tool in the field of structure prediction (and
beyond), providing a convenient and concise way to
visually represent and compare the large quantities of data
that are generated in structure searches. The insight gained
from these projections could provide inspiration for
approaches to improving the sampling of a given landscape
for a desired purpose.
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APPENDIX A: UMAP VERSUS t-SNE

For algorithms that follow the framework outlined in
Sec. II A, the optimization procedure is usually dictated by
a cost-function gradient that can be separated into a sum of
attractive and repulsive pairwise interactions between map
points:

dC
dY

¼
X
i

X
j>i

Fattðyi; yjÞ − Frepðyi; yjÞ: ðA1Þ

The t-SNE algorithm exploits this separation with its use of
early exaggeration to accelerate the optimization [28]. This
technique works by the temporary enhancement of the
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attractive contribution to the gradient, achieved through
multiplying these terms by some positive scalar α > 1 for
the first few hundred iterations of optimization, promoting
the formation of clusters in the projected data.
In t-SNE, the cost function measuring the faithfulness

with which the probabilities qij model their corresponding
pij is the KL divergence of the former distribution from the
latter [28]:

Ct-SNE ¼
X
i;j

pij log

�
pij

qij

�
: ðA2Þ

The attractive contribution to the gradient in t-SNE is a
direct result of the form of the cost function and is what
drives the algorithm to accurately reproduce the local
connectivity of the source data in the projected map.
The repulsive contribution is a result of the constraint that
the low-dimensional weights qij sum to 1. This constraint
can be incorporated either through the treatment of the
optimization with an additional Lagrangian multiplier term
or directly in the definition of the weights. Without this
constraint, the KL divergence would be minimized by all
points in the map collapsing onto one another.
UMAP chooses to minimize the fuzzy set cross-entropy

between the two distributions [29]:

CUMAP ¼
X
i;j

pij log

�
pij

qij

�
þ ð1 − pijÞ log

�
1 − pij

1 − qij

�
:

ðA3Þ

The first term is identical to the KL divergence used by
t-SNE and produces the attractive contribution to the
gradient. In UMAP, this term acts only between map points
that are considered to be nearest neighbors in the source
data, meaning pij ¼ 0 for all pairs of points i and j for
which neither is considered one of the kth nearest neighbors
(k is a user-specified hyperparameter) of the other, accord-
ing to the defined distance metric. The second, additional
term introduces a repulsion between every pair of map
points that is greater the further apart the corresponding
points are in the source data. This choice of cost function is
the key reason that UMAP is able to provide improved
performance over t-SNE.
First, in t-SNE, the repulsive term in the gradient appears

only because of the constraint that the low-dimensional
weights qij sum to one, which requires the renormalization
of all of these weights at each iteration of the optimization
procedure. In UMAP, the cost function introduces a repul-
sive contribution to the gradient without the need for this
constraint, meaning the costly normalization step can be
avoided.
Second, the repulsive term contribution to the gradient

in UMAP is more dependent on the actual data than that in
t-SNE. Thus, UMAP tends to do a better job than t-SNE in

producing a faithful representation of the global structure of
the source data.
Finally, the removal of the need to normalize the weights

qij means that the cost function is amenable to optimization
via SGD, which replaces the true gradient with an estimate
that requires only a stochastically chosen subset of the
components to be evaluated. UMAP implements an effi-
cient approximate SGD algorithm which makes use of
probabilistic edge sampling and negative sampling [29].
The improvements in speed and scaling achieved by
UMAP over t-SNE are largely a result of the use of
SGD rather than some other full gradient descent method.
However, a fairly subtle caveat arises with UMAP’s

implementation of SGD. The repulsive part of the interaction
between map points is treated with negative sampling [90].
While this approach vastly reduces the number of repulsive
interactions that need to be evaluated, it also has the effect of
deexaggerating the repulsion between the map points,
relative to their interaction as described by the true cost
function. We find that this effect is crucial to UMAP
producing a meaningful projection. However, this effect
also means that UMAP’s optimization scheme does not
actually minimise the defined cost function, and the algo-
rithm “converges” only because the step size is forced to go
to zero. Thus, while UMAP is very efficient and produces
low-dimensional projections that appear to improve on those
by the t-SNE algorithm, it is rather unsatisfactory in that the
cost function defined within the algorithm is not truly
minimized in the construction of the final map.

APPENDIX B: CHOOSING R0

The choice of the minimum circle or sphere radius R0 is
critical. If, in the absence of the hard spheres, the separation
between a given pair of map points is smaller than the sum
of their hard-sphere radii, then the introduction of the hard-
sphere interaction forces these structures apart. Thus, if R0

is large enough for this separation to be the case for a single
pair of structures, the introduction of hard spheres results in
a distortion of the layout of the map. On the other hand, if
R0 is too small relative to the spread of data in the map,
some (or all) of the spheres may be barely visible. Hence, a
good choice for R0 compromises between ensuring that all
of the structures in the map are clearly visible, while
minimizing the distortion of the layout of structures.
By default, R0 ¼ 0.01. Also implemented is the option to

compute a suitable R0 in the same iteration at which the
hard-sphere interaction is switched on, as a fraction of the
average separation of the map points from their center of
mass:

R0 ¼
2s

10

�
NP
N
i¼1 ci

�
1=s

�
kyi − yc:m:k2

�
HS
; ðB1Þ

where
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�
kyi − yc:m:k2

�
HS

¼ 1

N

XN
i¼1

kyi − yc:m:k2; ðB2Þ

evaluated at the onset of the hard-sphere interaction. The
premultiplying factor is selected by empirical investigation
and may be altered in the future. Alternatively, the value of
R0 can be input by the user, allowing interactive feedback.

APPENDIX C: RANDOM PROJECTION

Random projection relies on the Johnson-Lindenstrauss
lemma [91], which states that any set of N points in a high-
dimensional Euclidean space can be embedded into a
k ≥ O logðN=ϵ2Þ-dimensional Euclidean subspace without
distorting the distances between any pair of points by more
than a factor of 1� ϵ, for any 0 < ϵ < 1. It can be proven
that, if the k-dimensional subspace is constructed by the
generation of k random but mutually orthogonal and
normalized vectors in the high-dimensional space, then this
is achieved with high probability. Furthermore, it is found
that, in practice, even if embedding into a low-dimensional
space of dimension s ≪ O logðN=ϵ2Þ, one can often still
obtain something useful from a random projection. In our
implementation of random projection, a source data point x
existing in the original D-dimensional space is projected
onto an s-dimensional subspace by transformation via a
s ×D matrix R whose s rows are orthonormal vectors in the
original space, to produce the projected data point:

yRP ¼ Rx: ðC1Þ

In addition, the descriptor vector of sorted pairwise dis-
tances contains only positive entries, meaning all of the data
points exist in the positive orthant of the D-dimensional
hyperspace—a 1=2d fraction of the total space. Hence, for
this descriptor, we choose the row vectors comprising R to
contain only positive entries. The same is true for the sorted
list of inverse distances descriptor—see Appendix E.

APPENDIX D: QUALITATIVE COMPARISON
OF SHEAP TO t-SNE AND UMAP

The visualization quality of SHEAP is compared against
our implementations of t-SNE and UMAP on two standard
image datasets: the Columbia University Image Library
(COIL-20) [92] and the Modified National Institute
of Standards and Technology database (MNIST) [93]. In
general, the improvements offered by UMAP over t-SNE
are maintained with SHEAP.
The COIL-20 [92] dataset contains 1440 images, pro-

duced by individually placing 20 objects on a motorized
turntable (against a black background) and photographing
them at 5° intervals, up to a complete rotation. Each image
is grayscale, containing 128 × 128 pixels, and is treated as
a 16384-dimensional vector. This dataset is expected to
contain well-defined clusters, corresponding to the sets of
images of each object. Furthermore, the submanifold on
which each cluster lies should have a relatively intuitive
form—objects containing no symmetry about the axis of
rotation are expected correspond to a closed loop of points,
with consecutive images of a given object neighboring one
another. In Fig. 14, both UMAP and SHEAP do a better

FIG. 14. Projections of the COIL-20 [92] and MNIST [93] datasets made by our implementations of the t-SNE, UMAP, and SHEAP
algorithms. The legend at the top of the figure labels distinct objects in the COIL-20 dataset; the legend at the bottom labels distinct
digits in the MNIST dataset.
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job than t-SNE at forming the clusters corresponding to
each object and keep more of the loops intact. The biggest
difference between the UMAP and SHEAP projections is
that SHEAP produces larger and more frequent distortions
of these closed loops—we argue that these distortions make
intuitive sense, occurring when there exist symmetries in
the objects being imaged.
The MNIST [93] (training) dataset contains 60 000

grayscale 28 × 28 images of handwritten digits (0–9), each
treated as a 784-dimensional vector. A given data point is
expected to be neighbored by other writings of the same
digit, and the dataset should contain well-defined clusters
corresponding to the distinct digits. These are expected to
be arranged such that similar digits reside close together
and dissimilar ones are well separated (a handwritten 3
is often hard to distinguish from an 8 but never mistaken
for a 4). In Fig. 14, all three algorithms do a good job of
clustering the images corresponding to each digit.
However, UMAP and SHEAP capture more of the global
relationships between the clusters, providing much clearer
separations between them and grouping together clusters
of similar digits (3,5,8 and 4,7,9) in similar layouts. A
noticeable difference between UMAP and SHEAP’s pro-
jections is that the latter seems to contain thinner, denser
bands of points in clusters that are particularly elongated.
Nonetheless, the two plots are qualitatively very similar.

APPENDIX E: LJ13 DESCRIBED WITH
INVERSE DISTANCES

Figure 15 shows a 2D SHEAP map for the same set of
LJ13 minima as considered in Sec. IV B. The difference
here is that, rather than describing structures with sorted
lists of all distances between pairs of atoms, we use sorted
lists of all inverse distances. We observe similar clustering
of structures as in Fig. 2; groups of structures in Fig. 15 are
labeled according to the corresponding cluster in Fig. 2.
However, the map obtained from inverse distances does not
result in a consistent global layout of the minima, failing to
reproduce the expected single funnel distribution across all
minima. We speculatively attribute this difference to the
emphasis the descriptor places on the shortest distances in
the structures, resulting in a poorer representation of global
information.
Also in Fig. 15 is a plot of the lowest cost (in the absence

of hard-sphere interactions) achieved with projections into
a range of map dimensionalities, similar to the plots in
Fig. 13. Again, this analysis is conducted for a reduced
dataset of 10 000 minima, with ten independent SHEAP
projections carried out for each number of map dimensions.
As with the other structural datasets considered, no more
than three map dimensions are required for convergence.
However, here, three map dimensions do not produce a
lower cost than two, whereas a slight reduction is observed
with the sorted list of distances descriptor for the same

system. This result is likely due to the less well represented
global features of the landscape.
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