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Abstract

Recent advancements in computing, telecommunications, and metrology have propelled
data-driven decision making across the industries. Industrial health management in particular
has been increasingly reliant on Machine Learning techniques for data-driven prognosis as
modern assets are exhaustively monitored by their embedded sensors.

Data-driven prognosis constitute the bedrock for the emerging highly-flexible predictive
maintenance policies. The original equipment owners and customers also mutually enjoy
its cost benefits via servitisation for example, where the customers pay for asset uptimes
rather than ownerships. Such business offerings are possible only due to the recent advent of
distributed control systems and real-time prognosis.

However, the diversity in asset operating conditions results in non-ergodicity which is
often a challenge while modelling the asset fleet data. A fleet-wide model trained by pooling
the data from all the assets is associated with a high bias, whereas the independent assets-
specific models are associated with high variance for the assets with sparse data. Thankfully
there exist similarities due to age, upkeep, manufacturing processes, etc. across the assets
that enable learning possibilities within the asset fleet, via collaborative prognosis.

This thesis proposes, and demonstrates, that statistical hierarchical modelling is a sys-
tematic technique for collaborative prognosis and also for anomaly detection in the asset
condition data. Hierarchical models presented herewith extend the independent models by
formulating distributions at multiple levels, such that the parameters of the lower level assets-
specific models are commonly sampled from the corresponding higher level distributions.
This encourages learning for the assets with sparse data as they inherit prior information
about the operations from the other similar assets comprising the fleet.

It is concluded that, for prognosis and anomaly detection, the hierarchical models out-
perform the independent and the fleet-wide models in terms of accuracy and variance for
the assets with sparse data. Hierarchical models model the asset fleets in their natural order
and also enable manual intervention for modelling the asset similarities via the higher level
distributions. As data is accumulated along the asset operations, both hierarchical and in-
dependent models converge similarly. The conclusions are also supported by a case study
presented for an industrial fleet of long-haulage trucks.
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Chapter 1

Introduction

Unprecedented advancements in the fields of computing, telecommunications, and metrology
over recent years have revolutionised various sectors. The industrial sector in particular is
undergoing the fourth industrial revolution with technologies such as the Internet of Things,
Machine Learning, Virtual Reality, etc. now widespread [178]. Combined benefits of the
low-cost computations, high-speed communication, and a plethora of sensing technologies
specifically are propelling the increasing applications of data-driven techniques for optimising
the industrial operations [178]. This thesis contributes towards one such application, of data-
driven prognosis for industrial asset fleets.

Data-driven prognosis involves Machine Learning techniques to model the relationships
between the operational data from the assets such as their condition, age, specifications,
human inputs, etc. and their remaining useful lives (RULs) [161]. Apart from adding to
the ease of use, data-driven prognosis also forms the bedrock for the emerging maintenance
planning strategies such as predictive maintenance [178]. It is therefore critical for asset
management in general that aims at maximising the overall life-cycle value of the industrial
assets [67].

Unfortunately the assets often do not posses sufficient failure data by themselves for
training the prognosis models as the operational data are incrementally collected throughout
the asset life-cycles [133, 23]. Moreover, the data pertaining to certain failure types or
unusual operating conditions are extremely rare [139]. It poses a challenge as failure data are
necessary for data-driven prognosis.

Unavailability of failure data is particularly challenging because the assets operate in
diverse conditions and environments, rendering the asset fleet a statistically non-ergodic
system [139, 158]. Therefore, the prognosis models corresponding to the assets with sparse
training data must identify and learn from the failures observed in other similar assets
comprising the fleet to optimise failure predictions [158].



2 Introduction

Collaborative prognosis is a concept that aims at enabling the models corresponding to
the assets with sparse training data to identify similar other assets in the fleet and enhance
their locally available information [158]. However, a systematic technique for enabling
collaborative prognosis is a critical research gap.

This chapter introduces the reader to data-driven prognosis, the research questions
addressed in this thesis, and also presents a structure of this thesis. The following chapter is
structured as: Section 1.1 introduces the reader to data-driven prognosis, followed by a brief
discussion about the state-of-the-art collaborative prognosis and problem formulation. The
significance of anomaly detection for prognosis is also explained in Section 1.1. Section 1.2
outlines the research questions and research objectives addressed in this thesis. Section 1.3
describes the research methodology followed to address and achieve the research questions
and objectives respectively. The structure of this thesis is provided in Section 1.4 in the
form of descriptions of the following chapters and mentioning the corresponding research
objectives achieved in each of them.

1.1 Conceptual Introduction

This section introduces the reader to data-driven prognosis in Section 1.1.1, and provides a a
brief discussion about the state-of-the-art collaborative prognosis for problem formulation
in Section 1.1.2. The significance of anomaly detection for prognosis is explained in
Section 1.1.3

1.1.1 Introduction to Data-Driven Industrial Prognosis

An asset’s life-cycle comprises of plan, acquire, use, maintain, and dispose phases, out
of which majority of their lives are spent by the assets in use and maintain phases [116].
Resultantly, industries also bear the maximum cost while operating and maintaining their
assets.

Maintenance planning in particular is necessary for the upkeep of the assets and is an
optimisation problem of preventing asset failures with minimal maintenance interventions.
This is graphically represented in Figure 1.11.

In Figure 1.1, preventive maintenances refer to the regular checkups that prevent failures,
whereas corrective maintenances refer to the emergency responses to the unexpected asset
failures. The total maintenance cost is minimised by strategically planning the preventive

1sourced from https://risktec.tuv.com/risktec-knowledge-bank/asset-integrity-management/
emit-optimisation-getting-more-out-of-existing-equipment-for-less/

https://risktec.tuv.com/risktec-knowledge-bank/asset-integrity-management/emit-optimisation-getting-more-out-of-existing-equipment-for-less/
https://risktec.tuv.com/risktec-knowledge-bank/asset-integrity-management/emit-optimisation-getting-more-out-of-existing-equipment-for-less/
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maintenance interventions so that they lie in the optimal maintenance zone depicted in
Figure 1.1. The location of the optimal maintenance zone depends on the application and the
ratio of the preventive to the corrective maintenance costs, along with the definition of the
costs from the application’s perspective [178, 180].

Fig. 1.1 Graph describing optimal maintenance planning.

Industrial managers popularly rely on asset reliability estimations for maintenance plan-
ning, where asset reliability refers to the probability that the asset will perform its required
function under the given conditions for the stated interval of time [133, 174]. Instantaneous
asset reliability is mathematically expressed as the probability of success, or non-failure, R(t)
at time interval [t, t + dt] as the time interval dt tends to zero [133]. Asset reliability also
loosely translates to asset health such that assets in good health are characterised by high
reliabilities or for the case of prognosis, longer RULs.

Industrial prognosis is dedicated to predicting an asset’s RUL, often via estimating its
reliability. Data-driven prognosis has been gaining increasing popularity in the industries,
thanks to the computational and metrological advancements [161]. Modern assets are
embedded with sensors that monitor a variety of internal and external condition parameters in
real-time [161]. These include parameters such as temperature, vibrations, etc. that resemble
the asset’s health at the given instance. The time-series of condition data ranging from the
start of the asset deteriorations until their failures, called failure trajectories, are used to train
models using Machine Learning techniques that predict their future occurrences for the given
asset’s condition [161]. It should be noted that the asset condition data comprise of, but are
not limited to, the time-series of sensor measurements.
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Data-driven prognosis forms the bedrock for the state-of-the-art predictive maintenance
policies, characterised by real-time asset failure predictions and maintenance interventions on
as-needed basis [157]. Predictive maintenance has has unlocked unmatched cost savings for
the original equipment manufacturers (OEMs), and at the same time new business offerings
like servitisation for the customers [129].

1.1.2 Problem Formulation

The failure trajectories are often characterised by the diversity in asset operating conditions
due to age, upkeep, operations, manufacturing process, etc [139, 158]. Nonetheless, the
industries either commonly model the asset failures across the fleet, or rely on independent
models that are trained using the asset-specific data only. Both these approaches are asso-
ciated with drawbacks because often a fleet-wide model trained using all the data pooled
together is bound to be associated with a high bias, whereas independent assets-specific
models are associated with high variances especially if an asset has sparse number of failure
occurrences [104, 155]. An over-parameterised fleet-wide model can potentially address the
problem of high bias but at the same time require a larger training dataset, or lead to problems
of overfitting on the other hand [8, 27]. As such, a systematic technique of modelling asset
condition data arising from a fleet of assets is much needed.

Thankfully the factors leading to non-ergodicity in the fleet are systematic, in the sense
similarities often exist across the assets. The literature presents evidence that collaborative
learning can be achieved for data-driven prognosis, such that the lack of failures to train an
independent model for the asset with sparse data is mitigated by identifying and learning
from similar other assets in the fleet. The concept of collaborative prognosis involves
identifying the sub-fleets of similarly deteriorating assets and exchanging the information
within these sub-fleets. Collaborative prognosis is especially useful while predicting failures
in the early asset operations or for the assets operating in dynamic environments such
that the data pertaining to a given environment or individual assets are not sufficient for
prognosis [158, 7, 156, 135, 157]. However, a critical hinderance to enable collaborative
learning in the industries is the lack of a systematic technique to share information within the
sub-fleets of assets undergoing similar deterioration.

Problem Statement: To present a systematic technique for modelling the failure data in
asset fleets, and enabling collaborative prognosis for the assets with sparse data.

This thesis proposes and demonstrates that the statistical hierarchical modelling is a
systematic technique to enable collaborative prognosis for those assets with sparse data, and
in the presence of similarly deteriorating data-rich assets in the fleet. Hierarchical models
are characterised by shared higher level distributions for the parameters of the independent
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models of similar assets [52, 53]. In such a hierarchy, the asset data are sampled from the
independent models, and the parameters of the independent models are in turn sampled
from the corresponding higher level distributions. When an asset does not have sufficient
data, the higher level distributions incorporate the failure data from other similar assets to
learn prior information for the asset with sparse data. The higher level distributions in a
hierarchical model represent the general behaviour of similar assets, whereas the individual
asset behaviours are described by the parameters sampled from corresponding higher level
distributions [52, 53].

1.1.3 Anomaly Detection as a part of Prognosis

Furthermore, it should be noted that the failures are often not incipient since the start of asset
operations. The incipience of the failures manifest as anomalies in the time-series of asset
condition data while they are operating [134]. This makes anomaly detection crucial for
data-driven prognosis for two reasons:

1. Anomaly detection acts as a trigger for activating the prognosis algorithms for an
asset under operation. An ideal anomaly detection algorithm instantaneously identifies
deviations in the time-series of asset condition data in real time, and activates the
prognosis algorithm. An inefficient anomaly detection algorithm instead could let
anomalies go undetected, or flag many anomalies that turn out to be benign and not
require any intervention [88].

2. Anomaly detection is essential for identifying failure trajectories corresponding to the
observed failures in the asset fleet. A failure trajectory ranges from the point where
the anomaly was detected, marking the incipience of failure, until the asset failure
was observed. Since historical failure trajectories constitute the training dataset for
prognosis, learning capabilities of the prognosis models primarily depend on accurate
anomaly detection [134].

Most industries rely on rule based systems for anomaly detection. These comprise of
preset warnings and trip limits on the sensor measurements [199, 160]. Force tripping an asset
often results in avoidable production losses if a planned maintenance was carried out earlier.
Moreover, the warning-trip systems are inherently non-responsive as an asset, for example,
could be operating well within the limits but also be deviating from its normal behaviour.
This deviation would not be flagged by a warning-trip system until sensor measurements
exceed the preset limits, which could be too late to plan maintenance interventions. This
drawback is explained in Figure 1.2.
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Fig. 1.2 Schematic explanation of the drawback of conventional warning-trip systems.

Statistical classifiers are also used for anomaly detection in the time-series of asset
condition data. Statistical classifiers posit that the condition monitoring data generated during
normal asset operations can be described using underlying distributions. Assuming that an
asset commences operating in normal condition, the underlying density function p(q), q
being its parameters, can be estimated to model that asset’s normal operation data. Upcoming
anomalies in asset operations cause a change in system dynamics, and induce deviation from
its estimated density function. Statistical tests are used to evaluate if a newly recorded data
point is significantly different to be deemed anomalous [88, 151].

But independent modelling of assets, that is using an independent statistical classifier
for each asset in the fleet, is accompanied with distribution instabilities. Depending on the
variance in asset data, distribution parameters would not be stable until certain amount of data
describing the asset’s working regime is obtained. Moreover, collective modelling of the fleet
wide data is challenging given the statistically diverse nature of the asset operations [158, 30].

The problem of anomaly detection is therefore critical for data-driven prognosis, and it is
discussed here that a similar problem as that for prognosis exists for anomaly detection for
asset fleets. Statistical hierarchical modelling is proposed in this thesis also as a technique to
enable collaborative learning for anomaly detection for assets with sparse data. The following
section outlines the research questions, and the research objectives targeted and achieved in
this thesis to address the identified research problem.

1.2 Research Questions and Objectives

This section outlines the research questions, and the research objectives targeted and achieved
in this thesis.
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1.2.1 Research Questions

The following research questions are outlined to address the research problem described in
Section 1.1.2:

• Question 1: How to model the asset fleet data systematically to enable collaborative
prognosis and anomaly detection? This research question aims at addressing a crucial
research gap in collaborative prognosis literature for a systematic technique to model
and enable collaborative learning in a fleet comprising of clusters of similarly operating
assets. Statistical hierarchical modelling is proposed in this thesis as a solution for
enabling collaborative prognosis.

• Question 2: How effective are the statistical hierarchical models for collaborative prog-
nosis and anomaly detection? This research question aims at exploring the advantages
and the limitations of using statistical hierarchical models for collaborative prognosis.
It is demonstrated, using simulated and industrial datasets, that the hierarchical models
outperform the independent and the fleet-wide models for prognosis and anomaly
detection in terms of accuracy and variance for the assets with sparse data.

1.2.2 Research Objectives

The research questions defined in Section 1.2.1 are further distilled into specific objectives,
which if achieved would address the research questions.

• Research Objective 1: Explore the existing collaborative learning techniques in
industrial health management and other applications involving distributed data similar
to that of an asset fleet.

• Research Objective 2: Propose a technique for collaborative anomaly detection.

• Research Objective 3: Analyse the proposed statistical hierarchical model for anomaly
detection.

• Research Objective 4: Propose a technique for collaborative prognosis.

• Research Objective 5: Analyse the proposed statistical hierarchical model for collab-
orative prognosis.

• Research Objective 6: Analyse the applicability of the proposed statistical hierarchi-
cal model for collaborative prognosis of an industrial fleet.
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1.3 Research Methodology

In order to address the research problems and achieve the research objectives, the research
presented in this thesis was conducted in six stages. It was ensured that while being the-
oretically sound the proposed solutions were also feasible and practical for the industries.
Figure 1.3 summarises the stages of the research methodology followed herewith.
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Fig. 1.3 A summary of the stages followed in the research methodology for this thesis

The initial stages 1 and 2 involved (i) studying the concepts of maintenance planning and
the state-of-the-art in the industrial prognosis, and (ii) identifying the relevant techniques
from similar other domains to address the problem of collaborative prognosis in asset fleets.
It was in these phases that the need for a systematic technique for collaborative prognosis
was identified, and concluded that statistical hierarchical modelling is a relevant solution
for enabling the same. These stages of the research methodology also involved ensuring the
relevance of this problem for the industries via discussions with the experts and surveying the
asset condition data in the telecommunications, power generation, railways, and automotive
industries.
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Stages 3 and 4 involved the testing and development phases of the proposed solution
for collaborative prognosis. Relevant datasets available in public domain were identified
for evaluation of the proposed technique, and where not publicly available it was ensured
that the self-generated data were realistic. Using simulated datasets ensured that the efforts
were concentrated on analysing and improving the performance of the proposed techniques
rather than on preprocessing the data which is often the case with the real world datasets.
The proposed hierarchical models for collaborative anomaly detection and prognosis were
then separately tested or modified using the simulated datasets in a feedback loop presented
in Figure 1.3.

Finally in stages 5 and 6, the proposed hierarchical model for collaborative prognosis was
implemented for an industrial dataset. To that end, data from a large fleet of long-haulage
trucks was obtained, where the trucks were monitored across a long enough timespan ranging
since the start of their operations until the failure of the targeted components. As a result, key
challenges and constraints while implementing the hierarchical model for an industrial dataset
were identified. The implementation of the proposed hierarchical model for collaborative
prognosis for an industrial dataset is presented in this thesis as a case study.

1.4 Thesis Outline

This section describes the structure of the following thesis in the form of brief summaries of
the following chapters and also mentioning the corresponding research objectives addressed
in the chapters, in the following points. The chapter summaries along with the research
questions and objectives answered/ achieved in the corresponding chapters are also presented
in Figure 1.4.

• Chapter 2: Research Background The aim of this chapter is to highlight specific
challenges and research gaps for collaborative prognosis, based on a review of literature
of data-driven prognosis of asset fleets, collaborative prognosis, and anomaly detection.
Concepts of Federated Learning and statistical hierarchical models are also briefly
discussed to provide the foundational concepts for the algorithms presented in this
thesis. This chapter addresses the research objective 1.

• Chapter 3: Statistical Hierarchical Model for Collaborative Anomaly Detection
Anomaly detection is critical for triggering the prognosis algorithms, and also to extract
the failure trajectories from the historical data. A hierarchical model for anomaly
detection capable of identifying the sub-fleets of similar assets and collaborative
learning is presented in this chapter. Analytical solution to update the model parameters
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is derived such that the assets with sparse data can identify and learn from other similar
assets. The experiments are conducted using a simulated data resembling an asset
fleet and compare independent models, fleet-wide model, and a hierarchical model for
varying proportions of sparse-data assets. Experiments are also conducted to analyse
the effect of increasing amount of data in the sparse-data assets. This chapter addresses
the research objectives 2 and 3.

• Chapter 4: Collaborative Prognosis using a Statistical Hierarchical Model Chap-
ter 4 proposes a technique for identifying the sub-fleets of similarly deteriorating assets
using the observed failure trajectories, followed by modelling the times-to-failures
observed across the fleet using a statistical hierarchical model of Weibull density
functions. The experiments are conducted with a simulated fleet of turbofans, and
compare the performance of the independent, fleet-wide, and hierarchical models with
increasing number of failures observed in a cluster, and also the effect of higher level
models on modelling for the case of the hierarchical model. This chapter also presents
the procedure for implementing the hierarchical model for real-time collaborative prog-
nosis and analyses the effect of clustering on the prediction performance. Chapter 4
addresses the research objectives 4 and 5.

• Chapter 5: Industrial Case Study: Modelling Failures in a Fleet of Heavy-duty
Trucks This chapter discusses a case study where the proposed hierarchical Weibull
model is implemented for modelling the times-to-failures in a fleet of heavy-duty trucks.
Apart from proving the necessity of collaborative prognosis, this case study enables
identifying the major challenges faced while implementing the statistical hierarchical
models for an industrial dataset. This chapter addresses the research objective 6.

• Chapter 6: Conclusion and Future Research Directions This chapter presents the
general conclusions to this thesis along with a summary of the academic contributions,
limitations of the proposed techniques, and the future research directions.
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Fig. 1.4 A summary of Research Questions addressed in this thesis. Research Objectives and
the corresponding chapters are also mentioned.





Chapter 2

Research Background

This chapter presents a literature review of data-driven prognosis, collaborative prognosis,
and anomaly detection in the industrial asset management domain to highlight specific
challenges and research gaps for collaborative prognosis. The foundational concepts for
the algorithms presented in this thesis and popular applications of statistical hierarchical
modelling are also discussed. Moreover, other popular collaborative learning techniques
prevalent in the industries, or targeting similar problems are discussed towards the end to
compare with the technique of statistical hierarchical modelling. This chapter addresses
research objective 2 outlined in Chapter 1.

The following chapter is structured as: Section 2.1 introduces the concept of mainte-
nance planning and reliability, and reviews the literature pertaining to data-driven prognosis,
collaborative prognosis, and anomaly detection in the industries. Section 2.2 provides a
brief discussion of various collaborative learning techniques, and motivates the choice of
statistical hierarchical modelling as a suitable technique for modelling asset fleet data, and
thus being a systematic technique for collaborative learning. Section 2.3 provides an example
implementation of a hierarchical linear regression model for asset fleet data in addition
to discussing various engineering applications of the hierarchical models, and finally the
conclusions from this chapter are summarised in Section 2.4.

It should be noted that asset management in the context of this thesis refers to the physical
asset management, which is defined as “the practice of managing the entire life cycle (design,
construction, commissioning, operating, maintaining, repairing, modifying, replacing and
decommissioning/disposal) of physical and infrastructure assets such as structures, production
and service plant, power, water and waste treatment facilities, distribution networks, transport
systems, buildings and other physical assets” [67]. In other words, asset management aims at
maximising the overall life-cycle value of the assets. International Standard for Organization
describes the formal terminologies, requirements, and guidance for asset management, and
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also the practices for implementing, maintaining and improving an asset management system
in their ISO 55000 series [67]. The updated ISO 55001 series further incorporates the
cloud-computing, and internet of things (IoT) technologies into the framework of asset
management [58].

2.1 Data-driven Prognosis

2.1.1 Introduction to Data-driven Prognosis

This section introduces the concept of maintenance planning and reliability, and reviews the
literature pertaining to anomaly detection, data-driven prognosis, and collaborative prognosis
in asset management.

The industries bear maximum costs from the operations and maintenance phases of an
asset’s life-cycle [116]. Maintenance planning in particular is critical for asset management
and has substantially evolved over the years, through reactive, preventive, predictive, and
now the emerging concept of prescriptive maintenance strategies [5].

Manufacturers design for maintainability to ensure effective, safe and economic main-
tenance interventions during the asset’s life-cycle [176]. Nonetheless, the maintenance
interventions are associated with labour, downtime, and spare parts costs, and are conven-
tionally classified as preventive or corrective [180]. Preventive maintenances are the regular
checkups and interventions that prevent imminent failures, whereas corrective maintenances
are the emergency responses to unexpected asset failures [180].

Corrective maintenances are often significantly more expensive than the preventive
maintenances. This is because of the additional cost of reduced output or downtime resulting
from the unplanned procurement of the repair equipment, spare parts, and crew required
for corrective maintenances [180]. E.g. An asset’s downtime in an automotive industry can
result in a loss of upto $1,000 per min [167]. A failing wind turbine bearing can result in
a maintenance operation multiple times higher than the actual cost of the component [96].
For safety critical assets, such as aircrafts, the costs of an unexpected failure potentially also
includes intangible social losses.

Industries aim at minimising the asset failures, and in turn the corrective maintenance
costs, via regular preventive maintenances. But at the same time, over-maintenance of the
healthy assets should also be avoided to optimise the total maintenance costs [180]. Ideally,
maintenance planning distills to an optimisation problem of minimising the total maintenance
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cost by strategically planning the preventive maintenances, which is graphically represented
in Figure 2.11.

Fig. 2.1 Graph describing optimal maintenance planning.

An extreme strategy, represented by the Excessive preventive maintenance region in
Figure 2.1 corresponds to entirely avoiding the asset failures by conducting preventive
maintenances with high frequency. This causes a situation where the healthy assets also
undergo maintenance resulting in increased costs to the owners. The other extreme strategy,
represented in Insufficient preventive maintenance region in Figure 2.1, corresponds to not
conducting any preventive maintenances, leading to widespread asset failures. An ideal
maintenance plan must lie between these two, and is represented as the Optimal maintenance
zone of the plot shown in Figure 2.1. In the optimal maintenance zone, the asset failures may
not entirely prevented but the total maintenance cost is minimised.

The location of the optimal maintenance zone depends on the application and the ratio
of the preventive to the corrective maintenance costs, along with the definition of the costs
from the application’s perspective. Industrial managers popularly rely on reliability-centered
maintenance policies, to mitigate the asset failures by maximising asset reliabilities via
optimally timed interventions [15].

Asset reliability is defined as the probability that an asset will perform its required
function under given conditions for a stated interval of time. Reliability is mathematically

1This figure is sourced from https://risktec.tuv.com/risktec-knowledge-bank/
asset-integrity-management/emit-optimisation-getting-more-out-of-existing-equipment-for-less/

https://risktec.tuv.com/risktec-knowledge-bank/asset-integrity-management/emit-optimisation-getting-more-out-of-existing-equipment-for-less/
https://risktec.tuv.com/risktec-knowledge-bank/asset-integrity-management/emit-optimisation-getting-more-out-of-existing-equipment-for-less/
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expressed as the probability of success, or non-failure, R(t) at time interval [t, t +dt] as the
interval of time dt tends towards zero [133, 174].

Industrial prognosis is dedicated to predicting an asset’s reliability by estimating its
remaining useful life (RUL) or the probability of the asset’s failure in a future time horizon,
given the asset’s operating conditions and historical failures [197]. In the context of prognosis,
asset reliability also loosely translates to asset health such that assets in good health are
characterised by high reliabilities or longer RULs. The broader Prognostics and Health
Management (PHM) framework links prognosis with the measures to mitigate the impact
of the predicted failures via measures such as maintenance activities, load sharing, human
intervention, etc. [197].

Asset prognosis is classified as physics-based prognosis or data-driven prognosis, al-
though hybrid prognosis techniques are also emerging in the recent literature such as
in [152, 127]. Physics-based prognosis relies on expert knowledge and physical laws of
failure to predict an asset’s RUL [152, 174]. Industrial experts study the failure modes in
laboratories via accelerated life testing, to functionally formulate the relationship between an
asset’s operating condition and its estimated RUL. An example of physics-based prognosis
model is the crack growth equation [2]. Physics-based prognosis is unfortunately limited to
only certain components/ failure modes for which sufficient theory exists.

Nevertheless, modern assets are characterised by embedded sensors that continuously
record a variety of internal and external operating parameters [152, 60]. Time-series of asset
condition data such as vibration, temperature, creep, or even automatic alarms representing
the asset health histories are now, thanks to the declining costs of sensors, standard across
the industries. The increase in the availabilities of asset condition data in the industries
have propelled the growth of data-driven prognosis over the recent years [161, 80, 152].
The time-series of condition data ranging from the start of the asset deteriorations until
their failures, called failure trajectories, are used to train models using Machine Learning
techniques that predict their future occurrences for the given asset’s condition [161, 152].

In fact, the potential of using computational models to enable real-time prognosis has
been known since the 1980’s but their application was hindered by lack of data and expensive
computations [19]. The analytics pipeline for data-driven prognosis involves (1) identifying
a failure type for given operating conditions of assets, (2) training prediction model using
historical trajectories of that failure, and (3) implementing the optimised prediction model
in real time [98, 161]. For the applications where prognosis is treated a regression problem,
the independent variables comprise of the asset health indicators and the dependent variable
is the corresponding time to failure. A classification problem can also be formulated for
prognosis, where a given set of health indicators corresponds to either failure or non-failure
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data. It should be noted that the asset condition data comprise of, but are not limited to, the
time-series of sensor measurements [152].

The literature presents exceeding examples where almost all categories of algorithms-
fuzzy logic, neural networks, bayesian learning, decision trees, support vector regression, etc.
have been implemented for prognostics, each with their own benefits and limitations [152].
the review [38] shows the common algorithms used for different machine components. In
another review [99], the authors have compiled the different types of data from the assets
and matched them with the suitable prognostics algorithms. An example comparison of
neural networks, gaussian process regression, and relevance vector machine in terms of
their rate of convergence and accuracy for a common dataset is presented in [56]. It can be
concluded from these reviews that the data-driven prognosis is widespread across several
industries, mostly due to its ease of applications. The choice of prognosis algorithm is
often dependant on the component, and the nature of its condition data. For example, [192]
introduce Random Forests for regression, and show that they are more accurate than feed
forward back propagation neural networks, and SVMs for predicting failures in milling
cutters.

Feature extraction and preprocessing have also received popular attention, primarily
aiming at reducing the dimensionality of the condition data, while retaining the prognosis
ability. Several instances can be found in the literature where the expert knowledge and data
science techniques are used to achieve this. For example, the authors in [181] developed
feature selection algorithms based on Fast Fourier-Transform which reduce the need for
domain expertise while selecting the features. In yet another paper [91], authors propose a
feature extraction and selection from the non-trending data. They do this by first de-noising
the data using discrete wavelet transform, and subsequently selecting the features using an
autoregressive model to identify the relevant features. [74] is a recent publication where the
authors rank the features in the raw dataset for the compressor failure modes detection.

Unlike physics-based prognosis, data-driven prognosis significantly reduces the need for
expert knowledge or the theory of physical laws of the failure [152]. Moreover, real-time
prognosis of the operating assets is possible via data-driven failure prediction models. Data-
driven prognosis therefore forms the bedrock for the state-of-the-art predictive maintenance
policies, characterised by real-time asset failure predictions and maintenance interventions
on as-needed basis [173, 66, 112].

Predictive maintenance has led to unmatched cost savings for the original equipment
manufacturers (OEMs) [173, 66, 112]. Especially with advent of remote monitoring and
distributed control of the industrial fleets, predictive maintenance have enabled business
offerings that only rested in theory until the recent years. Servitisation is one such example
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where the consumers pay for the asset usages rather than asset ownerships [60]. Servitisation
was conceptualised in 1988, but the early offerings of servitisation were only seen in 2013 by
Rolls Royce [182, 166, 103, 61]. A large number of firms today rely on substitution “pay-per-
use” services that replace the purchase of the product with purchase of the service [16, 119].
Such services are heavily dependent on reducing the unplanned downtime of the assets
controlled by the original equipment manufacturer, and therefore on effective predictive
maintenance. As a critical precursor to the modern maintenance planning strategies, accurate
prognosis can significantly boost the efficiency of an industrial system [98, 81].

2.1.2 Data-driven Prognosis of Asset Fleets

This thesis focuses on data-driven prognosis of a ‘fleet’ of assets. The term fleet was originally
used to refer to a group of floating vessels but the modern usage covers a whole range of
assets including ships, aircrafts, trains to drivetrains, electric transformers, lifts in a building,
or machines in a factory [145].

It should be noted that the performance of data driven prognosis relies heavily on the
historical failure data used for training the prediction models [152]. An asset fleet however is
often characterised by the diversity in operating conditions, model types, or the presence of
multiple failure modes. In other words, an asset fleet is a non-ergodic system where every
asset has its own unique operating and deteriorating pattern. Prognosis is therefore most
accurate if the prediction model learns from a single asset’s failure data only [158]. However,
a single asset would need to fail a certain number of times so that necessary training data
is available [152, 158]. This is especially true for the high reliability assets, that might not
posses the failure trajectories necessary for training a prediction model [158]. Scaling up
the algorithms developed for individual asset prognosis to a fleet of assets therefore poses
statistical challenges, as the data is horizontally distributed across the assets.

Multiple industrial assets are independent, but not identical in statistical sense. Yet, their
Independent and Identically Distributed (IID) natures are assumed on several occasions for
the ease of modelling. E.g. In [142] authors use the fleet-wide statistics and the fault history
to set thresholds on the operating condition, based on which the maintenance activities are
planned. [188] use a similarity-based approach assuming the fleet comprises of identical
units. [114] developed models which are common for the whole fleet but subsequently, which
however undergo changes based on the operating conditions of a single asset. In [153],
authors apply the maintenance solution from one system in the fleet to another similar asset.
Such approaches are ineffective especially for the asset fleets where the comprising assets
are customised, or where the operating conditions of the assets vary widely across the fleet.
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For the modern industrial automation almost entirely relying on a series of decision
making algorithms, such oblivion to the statistically heterogeneous nature of industrial data
poses ever greater risk [95]. For example, a maintenance planning procedure comprises
of anomaly detection, failure prediction, maintenance planning, and finally the resource
allocation stages [95]. In such a serial dependency, inefficiencies or inaccuracies of an
algorithm governing any of these steps perpetuate through the control pipeline and deteriorate
the overall efficiency of the system.

Applied mathematicians have stressed on understanding the heterogeneous nature of the
industrial assets since 1967. [29] proposed the use of a simple statistical trend test to quantify
the evolving reliability of independent industrial assets. The underlying argument was that
a single poisson process model could not describe the times between failures occurring
in multiple independent assets. [28] further highlighted the importance of understanding
inter-asset heterogeneity with an illustration of “happy”, “noncommittal”, or “sad” assets,
corresponding to increasing, constant, or decreasing times between failures respectively.
[28] showed that using the trend test proposed by [29] followed by a non-homogeneous
poisson processes model, independent industrial assets could be described significantly more
accurately.

The algorithms developed for individual assets can naively be deployed for a fleet in
either of the two frameworks. In one framework, the assets can be modelled independently
by training a prognosis models for each asset in the fleet. In this case the prognosis models
would require a large amount of failures to make confident predictions. On the other hand,
all assets in the fleet can be jointly modelled using a single model that was used for a single
asset. In this case, there is abundance of data as it is accumulated from the entire fleet. But
the uncertainty would be much higher than the asymptotic uncertainty of the independent
models because the fleet is a mixture of processes [8].

Nevertheless, similarities often arise among the assets comprising an industrial fleet. For
example, several levels of similarities may arise in the automobiles, such as the roads, the
manufacturer, the chassis design, the driving style, the operation served, etc. In this context,
collaborative prognosis is an emerging concept that aims at identifying sub-fleets of similarly
deteriorating assets (referred herewith as clusters of assets) and enable learning across these
sub-fleets (or clusters) to improve the overall prognosis performance [158, 7, 156, 135, 157].
This thesis proposes that technique of statistical hierarchical modelling can be suitably used
to achieve collaborative prognosis in asset fleets.
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2.1.3 Anomaly Detection in Industrial Assets

This section discusses that the problem of anomaly detection is critical for data-driven
prognosis, and also that a similar problem as that for data-driven prognosis exists for anomaly
detection for asset fleets. Statistical hierarchical modelling is proposed in this thesis also as a
technique to enable collaborative learning for anomaly detection for assets with sparse data.

Researchers often treat anomaly detection in asset operations as a one-class time series
classification problem [88]. Traditional applications of anomaly detection targeted system
diagnostics involving fault identification and classification, with the recent years seeing
an increase in online anomaly detection for the asset condition data. This thesis focuses
specifically on the statistical classifiers for online anomaly detection, which have been
proposed by several researchers for anomaly detection in the data originating from gas turbine
combustors, cooling fans, and general performance monitoring due to their versatility [88,
14, 195, 84].

Statistical classifiers posit that the condition monitoring data generated during normal
asset operations can be described using underlying distributions. Assuming that an asset
commences operating in normal condition, the underlying density function p(q), q being
its parameters, can be estimated to model that asset’s normal operation data. Upcoming
anomalies in asset operations cause a change in system dynamics, and induce deviations
from its estimated density function. Statistical tests are used to evaluate if a newly recorded
data point is significantly different to be deemed anomalous [88, 151].

But using an independent statistical classifier for each asset in the fleet is accompanied
with distribution instabilities. Depending on the variance in asset data, distribution parameters
would not be stable until certain amount of data describing the asset’s normal operating regime
is obtained. On the other hand, collective modelling of the fleet wide data is challenging as
the assets operate over a wide range of environments, in various operating regimes, and can
fail in multiple modes [90, 121]. Every asset has a unique behaviour and failure tendency,
and ideally requires a classifier particularly suited for its operations [158].

The literature presents examples where the researchers have tried to address the issue of
statistical instabilities. In the simplest form, similar assets are manually identified by the
operators based on predetermined indicators, and an overall model is trained using the data
from all units as a single dataset. This can be found in [203, 57, 97], where in every case the
operators use a relevant parameter for for identifying the sub-fleets of similarly operating
assets. Some researchers have also clustered the entire time series of condition monitoring
data based on their Euclidean distances like in the case of [115, 101, 1]. In a comparatively
complex collaborative approach, [123] modelled the functional behaviours of each unit using
deep neural networks and identified the similar ones based on the amount of deviation in
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the neural network parameters. However, each of these applications are associated with
their own set of constraints, which primarily are the lack of complete representation for
the case of [203, 57, 97], dimensional complexity while evaluating the Euclidean distances
in [115, 101, 1], and the necessary training data for each unit required to train the neural
networks in the case of [123].

The closest application of collaborative learning for anomaly detection to that presented
in Chapter 3 is found in [121]. [121] stresses the necessity of one class-classification for
industrial systems owing to a wide range of possible operating regimes and rarity of fail-
ures. [121] also focus on early life monitoring where a given asset would not have sufficient
data for training a robust classifier and propose that the asset rely on learning from other
similar assets. However, their proposed solution relies on accumulating data from similar
assets to a central location (or the target asset), and augmenting the features space to define
a boundary for normal operation common to all similar assets. It must be noted that while
the target problem is similar, [121] focus on feature alignment, whereas this thesis focuses
on modelling an overall fleet behaviour and modifying it to suit individual assets. As such,
the solution proposed in this thesis differs from the one presented in [121] in three aspects.
First, the proposed hierarchical model is capable of identifying the asset clusters in the
fleet, in contrast to [121] where it is assumed that all assets within the fleet are similar or
known beforehand. Second, the operating regime targeted in this thesis is that of earlier
durations compared to [121], where the assets they describe as new have 17,000 data points
for 24-dimensional data.

Anomaly detection in asset operations has become increasingly important in the recent
years due to widespread automation. Several researchers have shown that collaborative
learning amongst the assets can help improve the performances of fault classification models,
though with their own set of constraints. Anomaly detection is especially challenging during
the early stages of asset operations where sufficient data are not available to model the
corresponding regimes of operations.

2.1.4 Collaborative Prognosis

Collaborative prognosis is an emerging concept that aims at identifying clusters of simi-
larly deteriorating assets and enabling learning across these clusters to improve the overall
prognosis performance [158]. The earliest applications of collaborative prognosis involve
identifying clusters of assets that operate in similar conditions and have encountered same
failures, followed by sharing failure trajectories within these asset clusters. As a result, any
given asset’s data repository is enriched with failure trajectories imported from other assets.
Prediction models are then trained using the enriched dataset, resulting in reduced error in
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the predictions [156]. It has been theoretically shown that collaborative prognostics is more
cost-effective compared to self-learning (prognostics using the machine’s own data [138]),
and fleet-wide learning under the conditions when the individual assets do not have sufficient
data for training the prognosis models [136].

The term knowledge transfer is used generally in the probabilistic machine learning
literature to refer to methods that learn from multiple related datasets. In the context of
fleet monitoring the majority of literature focusses on transfer learning where the domains
share interpretable, parametrised models, and seek to improve predictions in a target domain
given the information in a (more complete) source domain [126]. For example, [40, 46, 82]
detect cracks over a number of domains by fine-tuning the parameters of a convolutional
neural-network trained on a source domain to aid generalisation in the target.

Domain Adaptation is viewed as another variant of transfer learning in engineering
applications (DA) [202, 109, 186]. These techniques define some mapping from domain
data into a shared space (possibly one of the original domains) where a single model is used
to make predictions. For example, [122] apply a neural network mapping for DA in the
condition monitoring of a fleet of power plants. DA has also been investigated by (kernelised)
linear projection, discussed in a structural health monitoring context by [51, 50] considering
methods for knowledge transfer between simulated source and target structures, as well
as a simulated source and experimental target structure [48]. Damage detectors have also
been transferred between systems via DA in a group of tailplane structures using ground-test
vibration data [21].

Identifying clusters of similar assets/ failures has also been the basis of many data-driven
prognosis techniques apart from collaborative prognosis, where the initial investigations
considered the quantification of similarity between the industrial systems [59], and tools
for the transfer of data and/or models from source to target domains [122, 21, 47]. For
example, [188] showed that in a system comprising of multiple assets and historical failures,
prediction of a given asset is improved by identifying similar historical behaviours from a
library of past failure data, and evaluating the best fit for the current failure’s degradation
curve. [43] used genetic algorithm to identify clusters of the most similar historical failure
trajectories, which in turn improved the prediction accuracy of models corresponding to each
of those identified clusters. Example implementation of this was shown for fatigue crack
growth, drilling bit degradation, and degradation of a turnout system applications. [113]
relied on collaborative learning to tackle the lack of sensing resources for the overall cohort
of units, for the cases of both medical patients and industrial assets. Collaborative learning
in this case was based on Markov models and selective sensing to address the problem
of incomplete data per individual units. [24] discuss a case study with more than 30,000
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machines for using clustering to identify a number of sets of assets with similar reliability
behaviours. But unlike the examples listed above where a common prognosis model was
used for the group of similar assets, collaborative prognosis aims at learning the deterioration
across the similar asset groups and tailoring it for the individual assets.

2.1.5 Multi-Agent Frameworks for Collaborative Prognosis

The late 20th century saw rapid progress in telecommunications, metrology, and computing
capabilities, propelling the realisation of Internet of Things, cloud computing, etc. [44, 163].
Embedded microprocessors in modern industrial assets enhance their digital capabilities,
specifically by enabling local data analytics [120]. A fleet of modern assets therefore resem-
bles a network of computers, enabling distributed deployment of the data-driven prognosis
models at the asset level. Several distributed system frameworks and protocols have recently
been postulated for the industrial systems [100, 9, 54]. One such distributed computing
framework widely used in the industries, and especially for collaborative prognosis, is the
framework of multi-agent systems (MAS) [73, 70].

The multi-agent systems framework originates from the field of Distributed Artificial
Intelligence [55]. In an MAS, the overall system-goal is subdivided into agent-level goals
depending on the knowledge and reasoning skills of the agents, which are the computing
entities comprising the MAS. the level of intelligence and relationships among the agents
can be defined by the user [17, 118, 125].

The use of MAS as a framework for decision-making/ control in manufacturing industries
has been proposed by several researchers [183, 164], with the first ones being [41]. Using
agents to represent parts, physical resources, and human operators [41] implemented a parts
oriented scheduling approach. In another earlier paper, the authors demonstrate the use of
Watchdog agent, which they have developed to prognose and diagnose the asset data based
on the data flowing in from the sensors of the asset. Part agents and machine agents in
[191] indulge in negotiation and cost evaluation to arrive at an optimal schedule. [105] use a
supervisor agent which continuously monitors the degradation machine agents. The workload
is assigned according to the machine’s condition to optimise the maintenance cost. In a
similar coordinator-based approach, [187] propose an MAS architecture where the agents
make local decisions, but are controlled by a coordinator which monitors the overall system.
The agents evolve by interacting with the coordinator via feedback loops. MAS are also used
to implement various optimization heuristics to solve the NP-hard combinatorial problems
of scheduling. [180] represented different departments, and machines with agents. These
coordinated with one another to form an enterprise wide optimal maintenance plan using a
memetic algorithm. While the distributed approach was not as economic as the centralised
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one, the time complexity (and thus scalability) was several orders of magnitude better. [193]
implemented Ant Colony Optimisation on part-agents and machine-agents for task allocation
and task sequencing. Several other use cases of collaborative agents for varied manufacturing
industries applications can be found in the literature [68, 69, 85]. Distributed computing
architectures such as the MAS have also been proposed for applications in supply chain
management for example in [194]. Use of MAS for water supply systems can be found in
[79, 71, 72]

Continuous learning in an MAS helps agents adapt to a real-life dynamic environment.
The recent research towards collaborative prognosis focuses on distributed deployment of all
constituting steps, ranging from identification of similar assets, training the models, and real
time failure prediction using the MAS framework [17, 118, 125]. The concept of collaborative
prognostics extends the concept of collaborative agents into the field of prognostics and
health management. Collaborative agents share local information with each other in order
to jointly achieve a given objective [171, 132]. [131] describe an analogy of such systems
with the social organisation of humans as: each unit human has its nervous systems made
up of the same physical components and operating laws, but individuals possess their own
sophisticated and unique consciousness and behaviour. When implementing collaborative
prognosis using an MAS framework, the assets (through their linked agents) behave like
social entities, communicating with one another and making their own decisions for the
prognosis applications [6]. It has been shown specifically for collaborative prognosis that the
MAS framework enables more adaptable, scalable, resilient, flexible, and lean deployment
than the former techniques which relied on centralised implementations [156]. Researchers
have also worked towards evaluating the cost implications of the MAS architecture for
collaborative prognosis, and in effect identifying the most suitable architecture for a given
fleet of assets [137, 32].

This thesis specifically targets the scenario where the asset condition data is incrementally
collected across a fleet of assets, and certain assets suffer due to sparse failure data, insufficient
for training their corresponding prognosis models. Based on the discussion in this section, it is
concluded that collaborative prognosis conceptually posits that a learning opportunity exits for
the assets with sparse data to learn from similar other assets in the fleet. Moreover, sufficient
infrastructural support exists for deploying the collaborative learning for the industrial fleets.
Majority of the research in collaborative prognosis also focused on evaluating the suitable
frameworks and architectures for deploying collaborative prognosis.

However, the literature does not present a solution to systematically achieve collaborative
prognosis, as most existing approaches rely on the naive exchange of failure trajectories
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across the assets. The technique of statistical hierarchical modelling proposed in this thesis,
and explained in Section 2.2, enables collaborative prognosis particularly for this purpose.

2.2 Statistical Hierarchical Modelling

This section introduces the reader to the concept of Statistical Hierarchical Modelling, and
discusses related work on modelling data originating from a fleet of assets. It is proposed and
demonstrated in this thesis that the technique of statistical hierarchical modelling potentially
enables collaborative prognosis for an industrial assets fleet. The content of this section is in
part taken or adapted from the co-authored paper [20].

2.2.1 Conceptual Introduction

Statistical hierarchical models provide solutions for those populations where the assumption
of independence of the individuals does not hold true. As such, a single model cannot be
justified for modelling the data. Common examples in a society can be found for example
while modelling the grades of children in a city, where multiple schools exist. In this case a
single model cannot be used to model the grades as the schools have an impact on a student’s
performance. And while the exact impact cannot be quantified, a hierarchical model enables
modelling the data in the form it originates (in different clusters, which in this case are
schools).

The intended application of the technique proposed in this thesis is for the assets with
very sparse data, for example those recently in operation, or new operating conditions. In turn,
model comparisons here are limited to parametric (or shallow [169]) methods of knowledge
transfer, centred around interpretable models.

Multi-task learning (MTL) approach provides a generalised view of the statistical hi-
erarchical modelling technique presented herewith. It assumes the predictors (tasks) are
correlated over the fleet, and the parameters across the individuals are learnt commonly
with equal importance. The combined inference enables domain-specific models to share
information across related tasks, thus improving the accuracy for the individuals where data
are limited [170].

Nevertheless, the examples of multi-task learning are less prevalent when modelling
engineering assets. [184] successfully use a Gaussian process (GP) to learn correlations
between tasks in a multi-output regression. The GP is built using a carefully specified
kernel [13] to capture the task and inter-task relationships. Similarly, [110] apply correlated
GPs to address the missing data problem over multiple sensors of a hydroelectric dam.
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The results demonstrate successful knowledge transfer between measurement channels.
Considering aerospace engines, [162] apply GPs for knowledge transfer between multiple
axial measurement planes when interpolating temperature fields within an aircraft engine.
Sharing information between planes significantly improves the spatial representation of the
response.

Statistical Hierarchical Modelling offers a multi-task framework where a model is built
with a ‘hierarchy’ of parameters, whereby domain-specific tasks are correlated via shared
latent variables. Some recent, related applications include [36], who use hierarchical models
to build corrosion models given evidence from multiple locations, and [140], where the
results from a series of materials experiments (i.e. coupon samples) are combined to inform
the estimation of material properties. Also, [30] implement hierarchical Gaussian mixture
models to cluster simulated data that represent novelty detection for asset management; the
model parameters are interpretable in terms of the data distribution, rather than the application
domain.

2.2.2 Bayesian vs ‘deep’ knowledge transfer

As discussed in Section 2.1.4, popular applications of collaborative prognosis in the literature
rely on deep learning techniques and are enabled by boosting the training dataset of the assets
with fewer samples. While being able to improve the prognosis performance, such a solution
does not provide for a formal technique to enable learning across the assets. In particular, the
proposed technique of statistical hierarchical modelling compares with the deep learning as
follows:

• Both address relative data sparsity across the assets, however the level of sparsity is
method dependent. Deep learning methods are often suitable for complex features and
big data whereas the hierarchical methods are suitable for standard measurements (e.g.
vibration-based, power data, survival analysis) and interpretable models.

• Both improve predictions over asset clusters; however, the proposed hierarchical
approach provides uncertainty quantification of the nested subgroups, enabling down-
stream (statistical) analyses, for example with experimental design or decision pro-
cesses.

• Encoding domain (engineering) expertise while using statistical hierarchical models.
For example, the knowledge that all turbines in a wind farm have the same maximum
power, but the rate at which they limit to a maximum will depend on turbine location.
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• Conversely, for neural networks, encoding domain expertise is difficult since they are
nonparametric; in turn, the inferences (and model constraints) at different levels of
fleet granularity are less intuitive.

A more general comparison of collaborative learning approaches for asset fleets is also
provided in Table 2.1, to motivate the proposed method (labelled Hierarchical Modelling,

MTL ) and its advantages for asset fleets monitoring.

2.2.3 Brief Review of Federated Learning

A discussion on Federated Learning technique is provided herewith, which is a technique that
targets a problem similar to that of collaborative prognosis but for mobile device applications.

Federated Learning (FL) technique originated for mobile device applications, primarily
aiming at protecting user privacy. It is characterised by distributed training of a global
predictive model, for applications such as text prediction or image classification. without the
need for directly accessing the user data in their corresponding devices. In the pioneering
paper from 2016, Federated learning was proposed by Google Inc to address the issue
regarding use of private user data from their mobile devices to train common predictive
models [93]. It was termed “Federated” because only a federation of network nodes, for
example the mobile devices, participated in training the model at a given instance.

Over the years FL techniques have been deployed by major service providers and popu-
larly proposed as an enabler of several data-sensitive applications such as text predictions or
image classifications [12, 76, 65]. It has gained recent popularity across various applications
also due to the increasing awareness about data privacy [196, 107]. FL today finds extended
applications for those distributed systems where the local computations are orders of magni-
tudes faster than the communications across the nodes due to network size, or where data
must not leave the nodes to protect the user privacies [93]. These constraints also apply to
several industrial applications, including prognosis of asset fleets [154, 157].

The generic FL optimisation problem involves training a single global statistical model
representing data stored across the nodes. This model is trained by optimising an objective
function describing the overall system performance, which in turn involves jointly optimising
local objective functions at the nodes [93]. The local objective functions might as well
be different from the global objective function. The global objective function F(w) for a
network of m nodes is mathematically represented in (2.1) where the local objective functions
are denoted by Fk for the kth node, with w being their corresponding model parameters. pk

is weight associated with the kth node. Choice of pk varies across applications but popular
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choices are pk =
nk
n or pk =

1
m , where nk is the amount of data at kth node and n is the total

data across the entire network.

min
w

F(w), where F(w) :=
m

Â
k=1

pkFk(w) (2.1)

While (2.1) is the generic mathematical formulation, FL literature has instances where
multiple objective functions have also been proposed [108].

The earliest adopting of FL beyond the field of mobile device communications was seen
in medical sciences for the applications relying on the patient data to train the statistical
models. Medical data is distributed across different locations such as hospitals, clinics,
home-based devices, and even a person’s smartphone. This includes personal data that cannot
be shared across different locations. This poses a major challenge for the use of machine
learning in healthcare, that can potentially be addressed using FL. The authors in [18] for
example use FL to address the problem of sparse medical data. They use FL to train an
SVM based binary classifier to predict hospitalisations during a target year for patients with
heart diseases. The features used to train the algorithm were the patient history recorded in
hospitals, or in their smartphones. In another paper, experiments have shown positive results
when a Bayesian learning network was implemented to predict dyspnea in a distributed
manner [86]. Here the data was distributed across five medical institutes and the model was
circulated around each of the institutes during training, followed by the final model shared
with all the institutions.

Majority of FL applications involve optimisations relying on Stochastic Gradient Descent
as the basic training algorithm, which is popularly used for back-propagating the error in
the SNNs [11, 201]. FedAvg is among the pioneering FL techniques for learning a single
Artificial Neural Network (ANN) model for data distributed across network nodes. This is
the underlying principle of FedAvg is that loss surfaces of sufficiently over-parameterised
artificial ANNs are well behaved and escape bad local minima. Therefore, when two ANN
models with the same parameter initialisations are trained independently on different subsets
of IID data, naive averaging of their updated parameters can be used to obtain a single model
describing combined data. Though primitive, Federated Averaging (FedAvg) is popular
across domains like healthcare, mobile devices, home security systems, etc [107].

FedAvg has also been used for collaborative prognosis for sharing the failure information
within the clusters of similar assets. For the case of asset prognosis, the training dataset
comprises of the historical failure trajectories, which are distributed across several assets.
Assets lie at the nodes of the network, that have varying instances of failure occurrences.
The primary motivation for using FL for prognosis is that operators often do not want their
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asset data to be shared with their competitors [154, 165]. Exchanging failure trajectories to
share information across the sub-fleets of similar assets also increases avoidable network
communication costs [157]. In a series of papers the authors in [34, 35, 33] show that FedAvg
is capable of training the recurrent neural network models for prognosis for using the failure
trajectories form the sub-fleets of similarly deteriorating assets. However, the application
of FedAvg was limited to the case where the assets only fail in a single failure mode. Since
FedAvg requires data to be IID, each failure type has a prediction model specifically trained
for its prediction. The performance of FedAvg steeply decreases with increasing diversity in
the failure mode, and is strictly reliant on accurate identification of similarly deteriorating
assets.

Nevertheless, FL is gaining increasing popularity in the industrial applications, with one
of the main research focus being its ability to incorporate non-IID data for training the global
model [146]. The problem of non-IID data is prevalent in prognosis applications and also in
other general applications of FL [11, 106]. It should be noted that the motivation for using FL
in the industries arises from the data security rather than collaborative learning [146, 130].
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Table 2.1 A general comparison of collaborative learning approaches for asset fleets that
highlights the advantages of statistical hierarchical modelling technique. This table is taken
from [20].
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2.3 Statistical Hierarchical Model for Asset Fleet data Mod-
elling

This section provides an example of using a hierarchical linear regression model for fleet data,
comprising of asset clusters and discusses various engineering applications of the statistical
hierarchical modelling technique. The content of this section is taken from the co-authored
paper [20] with minor adaptations.

2.3.1 Example using a Linear Regression Model for Asset Fleet Data

Consider an asset fleet with K clusters. The population data can then be denoted,

{xk,yk}K
k=1 =

n
{xik,yik}Nk

i=1

oK

k=1
(2.2)

where yk is target response vector for inputs xk and {xik,yik} are the ith pair of observations
in cluster k. There are Nk observations in each cluster and thus ÂK

k=1 Nk observations in total.
The aim is to learn a set of K parameters, one for each cluster, related to classification or
regression tasks. Without loss of generality, this example focusses on the regression setting,
where the tasks satisfy,

{yik = fk(xik)+ eik}K
k=1

i.e. the output is determined by evaluating one of K latent functions with additive noise eik.
The mapping fk is assumed to be correlated between asset clusters. In consequence, the

models should be improved by jointly learning the parameters over the whole asset fleet. In
machine learning where this is referred to as multi-task learning, hierarchical models enable
modelling such data in statistical sense [94, 53].

In practice, while certain asset clusters might have rich, historical data, others (particularly
those recently in operation) will have limited training data. In this setting, learning separate,
independent models for each cluster will lead to unreliable predictions. On the other hand, a
single regression of all the data (complete pooling) will result in poor generalisation. Instead,
hierarchical models can be used to learn separate models for each cluster while encouraging
task parameters to be correlated [126] – the established theory is summarised here.

Consider K linear regression models,

⇢
yk = Fkak + ek

�K

k=1
(2.3)
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where Fk = [1,xk] is the Nk⇥ 2 design matrix; ak is the 2⇥ 1 vector of weights; and the
noise vector is Nk⇥1 and normally distributed2 ek ⇠ N

�
0,s2

k I
�
. 1 is a vector of ones, I is

the identity matrix, and N(m,s) is the normal distribution with mean m and (co)variance s.
The likelihood of the target response vector is then,

yk|xk ⇠ N
�

kak, s2
k I
�

(2.4)

) yik|xik ⇠ N
⇣

a(k)
1 +a(k)

2 xik, s2
k

⌘

In a Bayesian manner, one can set a shared hierarchy of prior distributions over the
weights (slope and intercept) for the groups k 2 {1, . . . ,K},

{ak}K
k=1

i.i.d⇠ N
�
µa ,diag

�
s2

a
 �

(2.5)

µa ⇠ N(ma ,diag{sa}) (2.6)

sa
i.i.d⇠ IG(a,b) (2.7)

In words, (2.5) assumes that the weights {ak}K
k=1 are normally distributed N(·) with mean

µa and covariance3 diag{s2
a}. Similarly, (2.6) states that the prior expectation of the weights

ak is normally distributed with mean ma and covariance diag{sa}; (2.7) states that the prior
deviation of the slope and intercept is inverse-Gamma distributed IG(·) with shape and scale
parameters a and b respectively.

Selecting appropriate prior distributions, and their associated hyperparameters {ma ,sa ,a,b},
is essential to the success of hierarchical models. In this work, prior elicitation is justified
by encoding engineering knowledge in each case study as weakly informative priors [52].
The Directed Graphical Model (DGM) in 2.2 visualises the general hierarchical regression.
The nodes show observed/latent variables as shaded/non-shaded respectively; arrows show
conditional dependencies, and plates show multiple instances of sub-scripted nodes.

The K weight vectors ak are correlated via the common latent variables {µa ,s2
a}. This

does not restrict the covariance structure of the posterior distribution for {ak}K
k=1 here since

it is approximated using Markov Chain Monte Carlo (MCMC).
Via correlations in the posterior distribution, sparse clusters borrow statistical strength

from those that are data-rich. Crucially, to share information between tasks, the parent nodes
{µa ,s2

a} must be inferred from the population data. In this way, the cluster parameters
ak are (indirectly) influenced by the wider population. Consider that, if {µa ,s2

a} were

2In this first introductory example, the additive noise variance s2
k is observed – in the next example, it is

unobserved.
3The operator diag{a} forms a square diagonal matrix with the elements from a on the main diagonal and

zeros elsewhere.
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yik ak

µa

sa
KNk

Fig. 2.2 DGM of hierarchical linear regression. This figure is taken from the co-authored
paper [20].

fixed constants, rather than variables inferred from data, each model would be conditionally
independent, preventing the flow of information between clusters [126].

2.3.2 Mixed-effects modelling

The hierarchical structure allows effects (i.e. interpretable latent variables) to be learnt at
different levels, as well as ‘prior’ information. Specifically, the parameters of the model itself
(2.3) can be learnt at the system, sub-fleet, or population level.

Returning to the regression example (2.3), consider that the variance s2
k of the noise

ek is in fact unknown. While one could learn K cluster-specific noise variance terms s2
k ,

it is typically assumed that the noise is equivalent across tasks. Sharing the parameter and
inferring it from the population can significantly reduce the uncertainty in its prediction.
Of course, this assumption should be justified given an understanding of the problem at
hand; for example, the same sensing system collects all the asset condition data. In terms
of notation, (2.3) remains the same, however, the domain-specific noise vector ek is now
distributed ek ⇠ N

�
0,s2I

�
. The removal of subscript-k from the noise variance implies that

the size of s2 remains the same while the number of the sub-fleets K increases (unlike ak).
Intuitively, s2 is now a tied parameter [126].

Similarly, it makes sense to also infer effects at the population level, to further reduce
model uncertainty4. Throughout this work, it is assumed that shared effects also enter the
model linearly, for the target response vector yk and inputs xk,

⇢
yk = Fkak| {z }

random

+Ykb|{z}
fixed

+ek

�K

k=1
(2.8)

Where Yk is some design matrix of inputs, and b is the corresponding vector of weights.
Again, there is no subscript-k for b (like s2) as it is tied between sub-fleets. Following [94],

4For example, the intercept would be a shared parameter, with zero-mean, in a related linear regression of
Hooke’s law for several materials tests.
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the b coefficients as considered fixed effects, as they are learnt at the population level and
shared, while ak are random effects, as they vary between individuals. Intuitively, a model
with both fixed and random effects can be considered a mixed (effects) model [190, 52].
2.3 shows the modified DGM of the hierarchical regression. The key differences are nodes
outside of the K plate – these are the tied parameters, learnt at the population level.

yik akb

s

µa

sa
KNk

Fig. 2.3 DGM of hierarchical linear regression with mixed effects. This figure is taken from
the co-authored paper [20].

One should also consider that interpreting mixed-effects models remains challenging,
even when models are parametrised. If the effects are not (linearly) independent, the fixed
and random coefficients can influence each other, making it difficult to reliably recover
their relationships. In turn, the modelling assumptions must be carefully considered when
emphasising interpretability.

2.3.3 Engineering Applications of Statistical Hierarchical Models

For the industries, statistical hierarchical models enable combined inference from the asset
fleet data by learning a set of correlated models via shared higher level distributions. The
shared higher level distributions ensure that the behaviour observed across other similar assets
in the fleet is incorporated when the assets have sparse data. The parameters of the overall
model are learnt using hierarchical Bayesian inference and provide robust variance reductions
compared to the independent models inferred for the assets with sparse data [185, 52].
Hierarchical models therefore automatically incorporate collaborative learning across similar
assets or sub-fleets, such that the assets with sparse data borrow statistical strength from
those that are data-rich [126, 185]. Comprehensive information about statistical hierarchical
modelling can be found in [52, 53].

The concept of knowledge transfer, from one machine to another, has often led to the
development of population-based models [22, 59, 49] for prognosis applications in the
industries [198]. One of the earliest applications use hierarchical models for inferring the
Bernoulli parameters for reliability estimation of emergency diesel generators in separate
nuclear power plants. They show that the hierarchical Bernoulli model was more accurate for
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modelling the collective “composite” and individual reliabilities of the generators, compared
to the prevalent approach of analysing data from all generators as a single dataset. [36] use
hierarchical models to build corrosion models given the data from multiple sources. An
interesting application can also be found in [87] where hierarchical modelling was used for
reliability estimation of new space crafts, which had only experienced few failures or in
some cases no failures. Most other applications in the asset reliability estimations target
modelling the times between failures. For example, used a hierarchical poisson process
model to describe the times between failures of closing valves in the safety systems of nuclear
plants. They used hierarchical modelling for median times between failures for a collection
of valves experiencing different rates of failures over a period of observation. Similar other
applications include [42], all commonly modelling the times between failures for various
equipment. In structural health monitoring, hierarchical models find applications for learning
multiple and correlated regression models for modal analysis [78, 77].

Of the more recent but fewer condition data-driven prognosis applications, demonstrated
the benefits of hierarchical bayesian modelling for inferring the deterioration pattern of gas
turbines operating in various conditions. Their model involved inferring the health index
regression pattern of several gas turbines with respect to operating time, and was shown that
hierarchical modelling is a statistically robust solution while learning the prediction function
from data spanning across a large fleet of machines. [89] used hierarchical Bayesian neural
networks for predicting the failure times of fatigue crack growth, where the focus was on
quantifying the systemic heterogeneities across the assets rather than enhancing individual
predictions.

It should be noted that it is critical to to establish an appropriate level of knowledge
transfer between systems or domains while implementing multi-task learning for asset fleets.
If information is inappropriately shared, this can lead to negative transfer, whereby population
models prove worse than conventional (single task) learning. Importantly, the proposed
model automatically determines an appropriate level of knowledge transfer, by learning the
inter-task correlations from the data and combining this with engineering knowledge encoded
as prior distributions within the hierarchical structure.

The resultant approach permits formal uncertainty quantification at various levels of the
predictive model, and, in turn, various granularities of fleet behaviour (e.g. system-specific,
condition-specific, or population-wide). Multiple levels of uncertainty quantification enable
natural integration with decision processes, or experimental design procedures, considering
the whole fleet. In turn, the model can be used to inform fleet interactions within a wider
asset management programme.
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The proposed technique of statistical hierarchical modelling makes inferences from
observations at various levels – including larger groups and the aggregated population, apart
from the cluster-level predictions. Inference of the joint population model (from task-specific
observations) presents the knowledge transfer mechanism. The resultant structure produces
both shared and task-specific models – this is not true for any of the benchmarks, which
learn one of the two options (i.e. single-task learning, complete pooling, domain adaptation –
2.3.3).

2.4 Conclusions

This chapter presented a literature review of data-driven prognosis, collaborative prognosis,
and anomaly detection in the industries to highlight the research gaps and identify a suitable
technique to achieve collaborative learning for asset fleets. The technique of statistical
hierarchical modelling is proposed to enable collaborative learning, after discussing and
comparing various techniques from the literature such as deep learning. single-task learn-
ing, federated learning, etc. A brief discussion on engineering applications of statistical
hierarchical modelling is also provided.

Based on the review presented in Section 2.1 it is concluded that data-driven prognosis is
critical for modern industrial operations such as predictive maintenance. Primary business of-
ferings of several companies now rely on data-driven prognosis at their foundation. However,
a peculiar challenge exists for data-driven prognosis in the form of unavailability of failure
data for certain assets. This is a challenge as the asset condition data is often incrementally
obtained which requires a lead time before sufficient failure data can be collected, and partic-
ularly so for the rare failure modes or for unusual operating conditions. Failure-prediction
models corresponding to the assets with sparse data are characterised by increased variance
and unreliable predictions.

To that end, collaborative prognosis is an emerging concept that posits that the prognosis
performance of the models associated with the assets with sparse data can be improved by
identifying and learning from other similar assets in the fleet. The discussion in Section 2.1.4
explains that conceptual and infrastructural support exists for collaborative prognosis, but a
technique to enable collaborative prognosis is a critical research gap. Similar problem also
exists for anomaly detection in the asset condition data. The discussion in Section 2.1.3
explains how the problem of anomaly detection is interlinked and similar to the problem for
data-driven prognosis of the asset fleets.

Section 2.2 highlights that statistical hierarchical models provide for a systematic tech-
nique modelling the failure data in asset fleets. Hierarchical models are characterised by
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multi-level modelling, such that the data is sampled from the independent models but the
parameters of the independent models of the similarly operating assets in the fleet are sampled
from the shared higher level distributions. Such a hierarchy ensures that the prognosis or
anomaly detection models associated to the assets with sparse data can in fact rely on similar
other data-rich assets to learn the failure behaviour.

The following chapter presents a hierarchical model for anomaly detection in the asset
condition data.





Chapter 3

Statistical Hierarchical Model for
Collaborative Anomaly Detection

It was highlighted in Chapter 1 and 2 that anomaly detection is critical for prognosis as
the incipience of asset failures often manifest as anomalies in the time-series of condition
data. Moreover, anomaly detection is also necessary to extract the failure trajectories
corresponding to the historical failures. Historical failure trajectories are used as inputs while
training prognosis models, adding to the criticality of anomaly detection.

Statistical classifiers are commonly used for anomaly detection in the time-series of asset
condition data, which require training data corresponding to the asset’s normal operations
before acceptable accuracy and certainty can be achieved. But when deployed for the
data originating from each asset independently, sufficient data corresponding to the normal
operations is often not available in the early durations.

This chapter addresses research questions 1 and 2 and research objectives 2 and 3 outlined
in Chapter 1 by presenting a solution to the above problem in the form of a hierarchical
statistical model for anomaly detection. Analytical solutions to update the hierarchical
model parameters are derived to enable anomaly detection in the assets with sparse data
by identifying and learning from other similar assets. The hierarchical model presented
herewith is capable of simultaneously identifying the sub-fleets of similarly behaving assets
and enabling collaborative learning within these sub-fleets.

Results obtained with the hierarchical model show a significant improvement using the
hierarchical model in terms of accuracy and variance for assets with sparse data, compared
to independent modelling or a common fleet-wide model. Experiments are conducted to
evaluate the classifier’s performance for a range of proportion of the sparse data assets.

The continuing chapter is structured as: Section 3.1 presents the mathematical description
of the independent and fleet-wide classifier models for anomaly detection, and also the
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description for extending the independent model to a hierarchical model. Asset fleet compris-
ing of sub-fleets of similarly operating assets simulated for the experiments herewith and
implementation of the hierarchical model for the simulated fleet are presented in Section 3.2.
The same section also compares the performance of the hierarchical model with the case
where the asset parameters were independently estimated. Section 3.3 summarises the key
conclusions to this chapter.

3.1 Mathematical Description

This section introduces the reader to the independent and hierarchical models, in Sec-
tions 3.1.1 and 3.1.2 respectively, of the classifier used for anomaly detection.

Statistical classifiers are often recommended for anomaly detection in the time-series
of asset condition data [88]. Statistical classifiers posit that the condition monitoring data
generated during normal asset operations can be described using underlying distributions.
Assuming that an asset commences operating in normal condition, the underlying density
function p(q), q being its parameters, can be estimated to model that asset’s normal operation
data. Upcoming anomalies in asset operations cause a change in system dynamics, and induce
deviation from its estimated density function. Statistical tests are used to evaluate if a newly
recorded data point is significantly different to be deemed anomalous [88, 151].

The asset condition data are associated with intrinsic and extrinsic measurement errors
caused by system instabilities and inefficiencies, even while the asset is operating in stable
conditions. The combined random effect of error and fluctuations in the sensor measurements
has been treated as multivariate Gaussian [14, 92, 160]. This chapter also considers a
multivariate Gaussian for anomaly detection.

3.1.1 Independent Model for Anomaly Detection

Consider, a fleet comprising of I assets. Any given asset i is monitored using d sensors,
measuring the internal and external parameters such as temperature, vibrations, pressure,
etc. Each of which is a feature describing that asset’s behaviour, and thus the nth set of
measurements from ith asset can be represented as a vector xi,n 2 Rd .

If Ni measurements recorded from asset i over a given time period, then that asset’s data
can be represented as a vector Xi = [xi,1,xi,2, ...,xi,Ni ],Xi 2 Rd⇥Ni .

Owing to the random nature of measurement noise, and assuming no manual interventions,
the underlying distribution of an individual asset’s data can be modelled using a multivariate
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Gaussian xi,n⇠N (µ i,Ci) where µ i 2Rd is the mean vector and Ci 2Rd⇥d is the covariance
matrix.

p(xi,n|µ i,Ci) =
1p

(2p)d|Ci|
exp
⇣
� 1

2
(xi,n�µ i)

T C�1
i (xi,n�µ i)

⌘
(3.1)

Maximum likelihood estimation can be used to evaluate µ̂ i and Ĉi values for Xi. A
graphical representation of an isolated independent asset model is shown in Figure 3.1. The
following section describes extending the independent asset model to a hierarchical model.

Fig. 3.1 Graphical representation of modelling an asset’s data as multivariate Gaussian

3.1.2 Hierarchical Model for Anomaly Detection

A fleet often comprises of assets which are similar by their operational behaviour. This could
be because certain assets have the same base model, or they may be operating in similar
conditions [83, 102]. It gives rise to the presence of statistically homogenous asset clusters
within the fleet. The challenges related to distribution instabilities introduced in Sections 1.1.3
and 2.1.3 can be alleviated if the individuals comprising such a cluster are jointly modelled
with a common overlying distribution of their individual distribution parameters.

Hierarchical model of the asset fleet presented here mathematically formulates this idea by
defining distributions at two levels. The parameters describing the distributions of individual
asset data are considered to be sampled from their corresponding higher level distributions.
The higher level distributions are shared by the asset clusters, and therefore jointly resemble
the operating regimes of the assets comprising those clusters. The higher level distributions
are chosen as the conjugate priors of the asset level distribution parameters. Estimated asset
level parameters are weighed more towards the higher level distribution when the asset does
not possess sufficient data. However, as more data is accumulated over time, the weight shifts
towards the asset’s own data and eventually becomes equivalent to an independent model.
This enables an asset with insufficient data in its early phase of operations to collaboratively
learn from similar other assets containing more data.
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For the case of asset fleets, Normal-Inverse Wishart are chosen as the higher level
distributions. These are the natural conjugate priors for a multivariate Gaussian with unknown
mean and covariance. Concretely, the parameters (µ i,Ci) describing ith asset are believed to
be sampled from higher distributions as µ i ⇠N (mk,b�1

k Ci) and Ci ⇠I W (Lk,ak) where
k = 1,2, ...,K represents the cluster index and (mk 2Rd,bk 2R,Lk 2Rd⇥d,ak 2R) are the
parameters of cluster level distributions.

p(µ i|mk,bk,Ci) =N (µ i|mk,b�1
k Ci) =

s
b d

k
(2p)d|Ci|

exp
⇣
� bk

2
(µ i�mk)

T C�1
i (µ i�mk)

⌘

(3.2)

p(Ci|Lk,ak) = I W (Ci|Lk,ak) =
|Lk|ak/2

2akd/2Gd(
ak
2 )

|Ci|�(ak+d+1)/2 exp
⇣
� 1

2
Tr(LiC�1

i )
⌘

(3.3)
where G is the multivariate Gamma function, and Tr() is the trace function.
As it can be observed that, at higher level lies a mixture of Normal-Inverse Wishart

distributions from which pairs of (µ i,Ci) are sampled. The probability density function for a
given (µ i,Ci) pair conditional on higher level parameters therefore can therefore be written
as:

p(µ i,Ci|mk,bk,Lk,ak) =
K

Â
k=1

⇥
pkN (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤

(3.4)

Where pk 2 R and ÂK
k=1 pk = 1 is the proportion of assets belonging to kth cluster.

Individual asset data are further sampled from this (µ i,Ci) pair.
Therefore, probability density function for complete data for an asset i is:

p(xi,1,xi,2, ...,x1,Ni) =
Ni

’
n=1

h
N (µ i,Ci)

K

Â
k=1

⇥
pkN (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤i

(3.5)

probability density function of the entire fleet data across all assets (represented by X) is:

p(X) =
I

’
i=1

 Ni

’
n=1

h
N (µ i,Ci)

K

Â
k=1

⇥
pkN (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤i�

(3.6)
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For a given set of (µ i,Ci,mk,ak,), the above function is also the likelihood of the data.
Obtaining estimates of (µ i,Ci,mk,ak,) parameters would therefore require maximising the
log of above probability function with respect to the parameters. The required log-likelihood
objective function of the entire dataset for given parameter values is:

log(p(X)) =
I

Â
i=1

Ni

Â
n=1

log(N (µ i,Ci))+
I

Â
i=1

log
⇣ K

Â
k=1

pkN (µ i|mk,b�1
k Ci)I W (Ci|Lk,ak)

⌘

(3.7)
However, it can be observed that, due to presence of summation ÂK

k=1 within log()
function in the second term, analytically evaluating partial derivatives and equating them to
zero is not straightforward, because both LHS and RHS of the final equations would comprise
of unknown parameters. The next section explains an iterative expectation maximisation
(EM) algorithm that solves this problem.

Model Parameters Estimation

Maximising the log-likelihood in (3.7) is difficult specifically because the clusters within
the fleet and their constituent assets are not predetermined. The data is therefore in a sense
incomplete.

A latent (hidden) binary variable matrix z 2 {0,1}I⇥K is introduced to complete the data,
such that zi,k = 1 if the ith asset belongs to the kth cluster. For a given asset i and set of
distribution parameters, the probability of zi,k = 1 is therefore given by:

p(zi,k|q) = pk (3.8)

This, if evaluated across all values of k, and zth
i vector of z would be:

p(zi|q) =
K

’
k=1

[pk]
zi,k (3.9)

Where q represents the set of parameters (mk,bk,Lk,ak,pk).

Moreover, The probability of (µ i,Ci) conditioned on zi,k = 1 is:

p(µ i,Ci|zi,k = 1,q) = N (µ i|mk,b�1
k Ci)I W (Ci|Lk,ak) (3.10)

This, again if evaluated across all values of k is given by:
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p(µ i,Ci|zi = 1,q) =
K

’
k=1

⇥
N (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤zi,k (3.11)

Probability of (µ i,Ci,zi) can therefore be evaluated simply by multiplying (3.9) and
(3.11) as:

p(µ i,Ci,zi|q) =
K

’
k=1

⇥
pkN (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤zi,k (3.12)

Continuing similar to (3.5) and (3.6), the complete data probability for a given set of
parameters q is given by:

p(X,z|q) =
I

’
i=1

 Ni

’
n=1

h
N (xi|µ i,Ci)

K

’
k=1

⇥
pkN (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak)
⇤zi,k
i�

(3.13)
The graphical representation shown in Figure 3.2 describes the hierarchical modelling

for whole fleet data, including the hidden cluster indicator z.

Fig. 3.2 Graphical representation of hierarchically modelled fleet data. Individual asset data
are modelled as multivariate Gaussians, whose mean and covariance parameters are sampled
from higher level Normal-Inverse Wishart distributions respectively

The complete data log-likelihood for a given set of parameters q thus equates to:

log(p(X,z|q))=
I

Â
i=1

Ni

Â
n=1

log(N (xi|µ i,Ci))+
I

Â
i=1

K

Â
k=1

zi,k log
⇣

pkN (µ i|mk,b�1
k Ci)I W (Ci|Lk,ak)

⌘

(3.14)
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To maximise the complete data log-likelihood function in (3.14), (3.14) must be differen-
tiated with respect to individual parameters to obtain the corresponding maxima. However,
the values of zi,k are unknown, and therefore the partial derivative equations are not solvable.

The Expectation Maximisation (EM) algorithm addresses this problem of parame-
ter estimation via looped iterations through two steps: the Expectation(E)-step, and the
Maximisation(M)-step which are explained in the following subsections. Here again, q are
the model parameters and the parameters corresponding to tth iteration are written as q t .

In the E-step, a function Q(q ,q t) is computed which is the expectation of the complete
data log-likelihood w.r.t. the distribution of hidden variable z conditioned over the incomplete
data X and q t parameter values. Concretely,

Q(q ,q t) = Ez|X ,q t�1{log(l(X,z|q))} (3.15)

Therefore the z terms are replaced by their expected values for the given incomplete data
X and q t parameter values, and the other terms in Q(q ,q t) depend on q .

In the M-step, the values of parameters for the next (t +1)th iteration q t+1 of the E-step
are evaluated by maximising Q(q ,q t) over q , but treating z terms as constants.

q t+1 = argmax
q

Q(q ,q t) (3.16)

Estimated values of model parameters at M-step of every EM iteration are presented in
(3.17) to (3.22), where the “g i,k” terms are the expected zi,k values from the previous E-step.
The estimates for ak at M-steps can be obtained using any non-linear optimisation routine.
Derivations of the E- and M- steps for our application are shown in Appendix A.

1
b̂k

=
ÂI

i=1 g i,k(µ i�mk)
T C�1

i (µ i�mk)

d ÂI
i=1 g i,k

(3.17)

m̂k =

 I

Â
i=1

g i,kC�1
i

��1 I

Â
i=1

g i,kC�1
i µ i

�
(3.18)

L̂k =


ak

I

Â
i=1

g i,k

� I

Â
i=1

g i,kC�1
i

��1
(3.19)

p̂k =
ÂI

i=1 g i,k

I
(3.20)

µ̂ i =
1

Ni +ÂK
k=1 bkg i,k

 Ni

Â
n=1

xi,n +
K

Â
k=1

bkg i,kmk

�
(3.21)
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Ĉi =
ÂNi

n=1(xi,n�µ i)(xi,n�µ i)
T +ÂK

k=1 bkg i,k(µ i�mk)(µ i�mk)
T +ÂK

k=1 g i,kLk

Ni +ÂK
k=1 g i,kak +d +2

(3.22)

Parameters for the zeroth iteration are randomly initialised, and the estimates are believed
to have converged when their evaluated values are consistent over consecutive iterations or
when the complete data log likelihood in (3.14) ceases to increase any further with more
iterations.

The initialisation of parameters can also vary by application. Generally it was observed
here that, the asset level parameters (i.e. (µ i,Ci) 8 i 2 {I}) were best initialised by the stan-
dard maximum log-likelihood estimator for the asset’s Gaussian model. While initialising the
higher level parameters, bk were best initialised at low values and ak as equal to the dimen-
sion of the data. These ensured wider search space in the early iterations. (mk,Lk) 8 k 2 {K}
initialised randomly around the observed data values, but ensuring that the initial Lk were
positive definite matrices.

The steps followed for hierarchical model parameters estimation, including the initialisa-
tion in the experiments described here and EM iterations, are summarised in Algorithm 1. In
Algorithm 1, E(xi,n) represents the expectation of xi,n vector, rand(d) and rand(d,d) func-
tions generate random real numbered matrices of (d) and (d⇥d) dimensions respectively,
and p(clusti = k) represents the overall data likelihood for the ith asset, assuming that the ith

asset belongs to the cluster k. Moreover, the terms on the RHS in the M-step are the values
from the previous iterations, except g i,k which are evaluated at the corresponding E-step.



3.1 Mathematical Description 47



48 Statistical Hierarchical Model for Collaborative Anomaly Detection

Algorithm 1: Estimating the parameters for K sub-fleets and d dimensional data
Result: Estimated hierarchical model parameters

1 for each asset i do

2 µ i 
ÂNi

n=1 xi,n
Ni

;

3 C(n,m)
i  E

�
(xi,n�E(xi,n))(xi,m�E(xi,m)

�
;

4 end
5 for each cluster k do
6 bk 0.001;
7 ak d;
8 (mk,Lk) 

�
rand(d),rand(d⇥d)

�
;

9 end
10 space
11 while Iter < 20 do
12 The E-step:
13 for each asset i and cluster k do
14 gi,k p(clusti=k)

p(clusti=1)+p(clusti=2)+...+p(clusti=k) ;

15 end
16 The M-step:
17 for each asset i do

18 µ̂ i 1
Ni+ÂK

k=1 bkg i,k


ÂNi

n=1 xi,n +ÂK
k=1 bkg i,kmk

�
;

19 Ĉi 
ÂNi

n=1(xi,n�µ i)(xi,n�µ i)
T+ÂK

k=1 bkg i,k(µ i�mk)(µ i�mk)
T+ÂK

k=1 g i,kLk

Ni+ÂK
k=1 g i,kak+d+2 ;

20 end
21 for each cluster k do

22 1
b̂k
 ÂI

i=1 g i,k(µ i�mk)
T C�1

i (µ i�mk)

d ÂI
i=1 g i,k

;

23 m̂k 


ÂI
i=1 g i,kC�1

i

��1
ÂI

i=1 g i,kC�1
i µ i

�
;

24 L̂k 


ak ÂI
i=1 g i,k

�
ÂI

i=1 g i,kC�1
i

��1
;

25 p̂k 
ÂI

i=1 g i,k
I ;

26 ak BFGSmax

✓
1
2ak log |Lk|Âi g ik� d

2 log(2)ak Âi g ik�

log
✓

Gd
�ak

2
�◆

Âi g ik� 1
2(ak +d +1)Âi g ik log |Ci|

◆
;

27 end
28 Iter Iter+1;
29 end
30 return: (µ i,Ci,bk,ak,Lk,mk) 8 i,k 2 I,K respectively.
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3.2 Example Implementation

This section discusses the experiments conducted to demonstrate and evaluate the perfor-
mance of the hierarchical model for anomaly detection. Performance of the hierarchical
model is also compared with independent and fleet-wide modelling of the assets.

Independent modelling does not consider the presence of similar assets in the fleet. There-
fore, the (µ̂ i,Ĉi) estimates for every asset, obtained via independent modelling, correspond
to their maximum likelihood estimates based on that asset’s data only. These estimates are
evaluated according to (3.23) and (3.24).

µ̂ i =
ÂNi

n=1 xi,n

Ni
(3.23)

Ĉ(n,m)
i = E

�
(xi,n�E(xi,n))(xi,m�E(xi,m)

�
(3.24)

Where Ĉ(n,m)
i represents the (n,m)th entry of the estimated covariance matrix Ĉi, and

E(xi,n) represents the expectation of xi,n data vector.
Experimental cases, and the performance metric used for evaluating and comparing both

modelling approaches are described in the following subsections. Section 3.2.1 explains the
synthetic dataset used for the experiments, Section 3.2.3 describes the evaluation metric, and
finally Sections 3.2.2 and 3.2.4 presents the experimental results to compare the performances
of hierarchical and independent modelling techniques.

3.2.1 Experimental Data

Synthetic datasets representing a fleet of assets, containing sub-populations of similar assets,
were used for the experiments. These constituted the training and the testing datasets.

Training dataset

The data generation method described here ensured that the fleet comprised of coherent
sub-populations of assets, and also that no two assets in the fleet were identical.

The training dataset comprised of multidimensional samples of assets’ condition data
over a period of their normal operation and collected across the entire fleet. The condition
data for each asset comprised of points randomly sampled from a Gaussian distribution, with
constant mean and covariance. This ensured that the simulated asset data was equivalent to
a real asset operating in steady condition but with associated noise and fluctuations. The
means of the underlying Gaussians were considered to be the equivalents of the asset model
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types, and the covariances of the Gaussians were considered to be the equivalents of their
operating conditions.

Different asset model types are designed to operate in different ranges. Therefore, the
assets belonging to the same model type are expected to operate within a certain permissible
range. This was represented in the training dataset by defining ranges for the Gaussian means
of assets belonging to separate model types. Similarly, the operating condition of an asset
determines how much variation is caused in its condition data. For example, older engines are
expected to have higher vibrations than the newer ones, and therefore induce larger variation
from their mean vibrations value. This was represented in the dataset by defining a set of
possible covariance matrices that an asset’s Gaussian can be associated with.

Before simulating the assets, separate ranges for each feature were defined. Each set of
ranges represented a separate model type present in the fleet. Moreover, a set of covariance
matrices was also defined. While simulating an asset, its model type and operating condition
were first characterised. Following which, the multidimensional mean of that asset’s underly-
ing Gaussian distribution was randomly selected within the range of its corresponding model
type. Similarly, the covariance matrix corresponding to the asset’s operating condition was
selected from the predefined set of covariances. From this Gaussian, number of points were
sampled, which represented that asset’s condition data collected over a period of its normal
operation. The same process was repeated for all assets comprising the fleet, and the final
collection of points for assets constituted the training dataset.

Testing dataset

The testing dataset for any given simulated asset described in Section 3.2.1 was a mixture
of points sampled from that asset’s true underlying distribution and points sampled from an
anomalous distribution. The anomalous distribution was generated by inducing systematic
deviation from the true underlying distribution. This deviation was induced in the form of
change in the mean and covariance of the true distribution. A large number of points were
sampled from both true and anomalous distribution to ensure good statistics.

Consider a given asset i in the fleet, whose true underlying distribution had the mean and
covariance values µi and Ci respectively. The anomalous distribution for this asset would be
a multivariate Gaussian of the same dimension, but with its underlying mean and covariance
being µi + l and L. ⇤Ci where, l and L are the deviations induced into the true mean and
covariance values. The induced deviations were constant across all assets. Moreover, both l
and L were varied across a wide range to study the sensitivity of the classifiers with respect
to the Gaussian’s mean and covariance.
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A schematic description of how the normal and anomalous data for the simulated assets
were generated is shown in Figure 3.3. This figure shows an example of generating normal
and anomalous data for a two dimensional data set, where the regions defined for separate
model types are shaded in colour and the set of covariances are shown using ellipses. And
while the procedure is the same for five dimensional data, the regions in space representing
the model types have been widened in Figure 3.3 for easier representation.

Fig. 3.3 A schematic representation describing how the normal and anomalous data were
generated for the experiments. The procedure is shown here for a two dimensional dataset as
an example.

Experimental specifications

The simulated fleet used for the experiments discussed here comprised of 800 assets. The
assets could each belong to either of the two possible operating conditions and to either of
the two possible model types. Therefore, the fleet comprised of total four clusters of assets,
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represented by each combination of the operating condition and the model type. All clusters
contained the same number of assets (i.e. 200 assets per cluster).

The simulated condition data was five dimensional. All asset means for those belonging
to the first model type lay within the range (�25,25), and for the second model type lay
within the range (275,325). Similarly, the two covariance matrices corresponding to the
operating conditions are shown in (3.25) and (3.26). The ranges for means and the two
covariance matrices were arbitrarily chosen.

C1 =

2

6666664

16.68 5.43 3.28 �2.31 1.76
5.43 22.05 �3.74 �1.11 �1.14
3.28 �3.74 18.72 3.91 �3.19
�2.31 �1.11 3.91 20.87 4.00
1.76 �1.14 �3.19 4.00 23.12

3

7777775
(3.25)

C2 =

2

6666664

55.59 3.39 3.24 �2.00 �3.95
3.39 55.75 1.22 �24.02 �3.76
3.24 1.22 55.83 15.29 1.78
�2.00 �24.02 15.29 63.69 11.21
�3.95 �3.76 1.78 11.21 23.12

3

7777775
(3.26)

Where the superscript represents the cluster id. Moreover, the assets comprising the fleet
held different amount of data (number of points sampled from its underlying Gaussian). Each
asset could have either low, medium, or high amount of data. Assets belonging to the low
data category held only 5 data points. Assets belonging to the medium and high data category
contained 20 and 100 data points respectively. To make the setup clear, the corresponding
values of the variables defined and derived in Section 3.1 are summarised in Table 1.

Table 3.1 The values of various parameters introduced in Section 3.1.

Parameter Value
I 800
d 5
K 4

Ni

5 (for low data category);
20 (for medium data category);

100 (for high data category)
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As an example, consider an asset belonging to the first model type and first operating
condition. Let this asset belong to the “medium” data category. To simulate this asset, its
mean was first selected as a random point with features lying within the range (�25,25).
This mean was (10.05,�15.95,4.94,�4.24,0.68). Next, with this mean and C1 from (3.25
and 3.26) as the covariance, 20 points were randomly sampled. 20 points were sampled
because this asset belonged to the medium data category. An example of the condition
data for this asset is shown in Table 2. The remaining 799 assets in the fleet were similarly
simulated based on their model type, operating condition, and the category they belonged
to. The complete training and testing datasets can be found at: https://github.com/Dhada27/
Hierarchical-Modelling-Asset-Fleets

Table 3.2 An example of condition data for a medium data category asset.

Measurement
number

x1 x2 x3 x4 x5

1 17.33 -23.02 1.88 -3.38 6.06
2 12.29 -14.77 2.87 -0.40 -2.80
3 9.93 -15.19 6.12 2.69 -2.52
... ... ... ... ... ...
19 8.28 -16.18 4.05 -0.21 -2.76
20 11.39 -13.20 12.56 -8.65 -1.26

The proportion of assets belonging to the low data category were varied across a wide
range from 0.1 to 0.9. The remaining assets were evenly divided into medium and high
data categories. For example, if 0.3 proportion of assets belonged to the low data category,
then 0.35 proportion of assets belonged to high and medium data category each. Moreover,
all clusters contained the same number of assets belonging to either of the three categories.
Given this dataset, the goal for an anomaly detection algorithm was to model the assets’
normal operation by estimating the parameters of the underlying Gaussians. There was no
indicator for the algorithm to know which cluster a given asset belonged to.

The testing dataset for each asset comprised of 1500 points randomly sampled from the
true underlying distribution, and 1500 points sampled from the anomalous distribution. The
deviations l and L for the anomalous distributions were each varied while keeping the other
constant, so that the sensitivity of the algorithms with respect to either parameters could be
studied. Values of l were varied across {0,5,10,20,50,100} while keeping L fixed at 1, and
the values of L were varied across {1,1.5,2,5,10} while keeping l fixed at 0.

https://github.com/Dhada27/Hierarchical-Modelling-Asset-Fleets
https://github.com/Dhada27/Hierarchical-Modelling-Asset-Fleets
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3.2.2 Experimental Design

The experiments conducted to study the hierarchical model for anomaly detection were aimed
at analysing the performance of the hierarchical model, and also comparing its performance
with the independent and fleet wide models to address research objectives 2 and 3 outlined in
Chapter 1 for collaborative anomaly detection. As such, the experiments involved comparing
four learning scenarios as explained below

1. Independent Learning In the first scenario, the assets were capable of learning from
their own data only. This means that the only source of information for estimating
the parameters of the underlying Gaussian was the given asset’s condition data only.
The mean and covariance estimates in this scenario were evaluated according to the
standard maximum likelihood estimation in (3.23) and (3.24).

2. Learning from similar assets In this scenario, the hierarchical model for the fleet was
implemented. Clusters of similar assets were identified, and the parameters for the
hierarchical model were estimated using the EM algorithm as explained in Section 3.1.
The EM steps were iterated 20 times, and the values of µ̂i and Ĉi after the 20th iteration
were treated as the final estimates of hierarchical modelling. 20 iterations were deemed
sufficient for parameter estimation because the overall data log likelihood did not
increase any further. The value of K, which are the number of clusters present in the
fleet was set to its true value 4.

3. Learning from all The third scenario was similar to the one in case 2 above, but with
the difference being in this scenario the assets did not have a sense of identifying
similar assets. This means that a given asset here learnt from all other assets in the
fleet. To model this scenario, the same steps as those in case 2 were followed, but the
value of K was set to 1. As a result, the entire fleet was treated as one cluster and the
density function parameters of all assets shared a common underlying distribution.

4. Only the low data assets learn from others Lastly, a combination of hierarchical
and independent modelling was considered in the experiments. This scenario involved
clustering and hierarchical modelling similar to the one in case 2. But while all 800
assets here participated in estimating hierarchical model parameters, only those assets
belonging to the low data category used the final estimates for classifying the testing
dataset. The medium and high data category assets used independent modelling to
estimate their Gaussian parameters. Concretely, the final estimates for the assets be-
longing to the low data category were derived from the hierarchical model, whereas
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the final estimates for the assets belonging to the medium and high data category were
derived from their independent models.

It was observed during the experiments that the accuracy of clustering using EM algo-
rithm relied on the initialisation of parameters, especially the bk and ak parameters. These
parameters must be initialised such that the algorithm’s search space is wide enough and is
not trapped in local optima during the early iterations. The approximate initialisations of
parameters to ensure a wider search space are mentioned in Section 3.1. However, even with
the optimal initialisation, the EM algorithm was unable to cluster the assets due to the wide
range of means chosen.

This problem is highlighted in Figure 3.4, where a sample of 50 assets from each of the
asset clusters was taken and the total 200 assets thus formed were clustered based on the
available 5 and 6 data points only. The figures show both cases- where all assets had the
same amount of data, and where the assets are divided into “low", “medium", and “high”
data categories explained in Section 3.2.1. In the figures corresponding to the latter case, the
assets belonging to the “low”, “medium”, and “high” data categories are represented in red,
orange, and green colours respectively. Also, the number of data points with assets belonging
to the low data category were 5 and 6, and were constant for the remaining assets. In all
figures, the assets with ids 1 to 50 belonged to the same cluster, 51-100 belonged to the next
cluster, and so on. Therefore, these asset ids are expected to be clustered together, which was
not the case for only initial 5 or 6 data points. The wrongly clustered assets are marked with
the dotted red circle.

In the real world, this problem can be addressed by including certain categorical data
along with the time series data. Categorical data can arise from the operational experience,
such as asset’s environment, upkeep, operation, etc. However, for the experimental results
presented here, it was assured that the assets were correctly clustered in these cases. If it was
found that an asset was wrongly clustered, it was manually reassigned to its correct cluster
and the results evaluated again. The goal of the experiments is to demonstrate the advantage
of hierarchical modelling over the conventional independent modelling on the effectiveness
of collaborative learning between assets.
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(a) All assets have 5 data points each (b) All assets have 6 data points each

(c) Low data assets have 5 data points only (d) Low data assets have 6 data points only

Fig. 3.4 The figures represent the clustering done by the EM algorithm when the assets (low
data category assets in (c) and (d)) have 5 and 6 data points only. The incorrectly clustered
assets are marked with dotted red circle.

3.2.3 Performance Evaluation

After the estimated model parameters are obtained, the operator must define a region in mul-
tidimensional space that encompasses the asset’s normal operations data. For the statistical
classifiers, this region is often defined based on a critical value from the probability density
function (PDF) values, such that any point having the PDF value less than the critical value
will lie outside the region and be deemed anomalous. The critical value corresponds to an a
significance level, which separates the most likely 100⇤a% points from the rest. In other
words, the critical value separates 100⇤a percentile data sampled from the rest.

For the case of multivariate Gaussians, this region is an ellipsoid, and determining its
boundary corresponding to the required a level is numerically complex. This is because
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one cannot simply integrate the tails of the multivariate Gaussian and obtain the boundary
corresponding to the required a level. However, for a multivariate Gaussian with dimension
d, the squared Mahalanobis distance (Dmd) of any point with respect to that Gaussian is
standard chi-squared with d degrees of freedom1. For a standard chi-squared distribution,
it is easy to obtain the PDF value separating the most likely 100⇤a% points from the rest.
This fact can be used to determine if a given data point from the multivariate Gaussian falls
within the a level set by the operator or not.

For example, if the a level is set at 0.8, then the corresponding PDF value for a standard
chi-squared distribution can be obtained which would in fact be the critical value for the
squared Dmd of the points. Any point having the squared Dmd greater than the critical value
would be deemed anomalous. The p�values corresponding to various a levels for a standard
5-dimensional chi-squared distribution are shown in Table 3. These also act as the critical
values for the squared Dmd while generating the ROCs.

Table 3.3 Various a levels used while plotting the ROCs, and the corresponding Dmd values
for the current experiment. These correspond to a standard chi-squared distribution with 5
degrees of freedom

a level D2
md value a level D2

md value
0.995 0.412 0.5 4.251
0.99 0.554 0.1 9.236
0.975 0.831 0.05 11.071
0.95 1.145 0.025 12.833
0.9 1.61 0.01 15.086

0.75 2.675 0.005 16.75

The squared Mahalanobis distance for any point X from a given Gaussian distribution
with the estimated mean and covariance µ̂ and Ĉ is obtained as:

D2
md = (X� µ̂)T Ĉ�1(X� µ̂) (3.27)

Areas under the Receiver operator characteristic (ROC) curves were used as the perfor-
mance metric for comparing hierarchical modelling and with the conventional independent
modelling technique. This is a widely used evaluation metric for classification tasks and is

1Proof shown in Appendix C
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often called the c-statistic. It provides an aggregate measure of classification performance
across a wide range of a levels.

To plot an ROC, the a levels while classifying the testing dataset were varied across
{0.995,0.99,0.975,0.95,0.9,0.75,0.5,0.1,0.05,0.025,0.01,0.005}. An ROC curve was ob-
tained for a single asset and its corresponding testing dataset by plotting the true positive rate
(TPR) vs false positive rate (FPR) for each of the alpha levels mentioned above.

Consider a testing dataset with NP and NN number of real positive and negative class
data points respectively. For the current use case, testing data points sampled from the
true underlying distribution were labelled as “negative” class and those sampled from the
anomalous distribution were labelled as “positive” class. If a classifier is tested using this
dataset and the resulting output comprises of NT P and NFP true positives and false positives
respectively, the TPR and FPR are evaluated according to:

T PR =
NT P

NP
FPR =

NFP

NN
(3.28)

The Area Under the ROC Curve (AUC) was used as an indicator of the model’s perfor-
mance for a given asset. From (3.28), it can be observed that a higher AUC is characterised by
a high TPR and a low FPR for some a level. A higher AUC means that the classifier is better
capable of separating the positive and the negative class in the testing dataset. Therefore,
higher the AUC, the better is the classifier. An example ROC for a medium data category
asset and its corresponding AUC are shown in Figure 3.5. This ROC was evaluated for the
parameters estimated based on hierarchical modelling.

Fig. 3.5 An example ROC for asset id 52 evaluated for testing dataset with l and L equal to 0
and 10 respectively
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Such AUCs were evaluated for hierarchical modelling across the fleet and for each testing
dataset, and were compared with those obtained using independent modelling.

3.2.4 Experimental Results

Using the Areas under the Receiver Operating Characteristic curves as the perfor-
mance metric

For each of the four scenarios, the AUCs were evaluated for the assets in the fleet as explained
in Section 3.2.3. Box plots for each low, medium, and high data category assets for the
same testing dataset are shown in Figure 3.6, where “HL” stands for “Hierarchical Learning”
where the final estimates are estimated based on the higher level model. Figure 3.6 also
includes a combined box plot for all assets in the fleet and for the above described scenarios.
These AUCs are presented as box plots. Results corresponding to a subset of test cases are
presented here, and the same conclusions hold across all testing datasets. The corresponding
testing dataset deviations for all figures are mentioned in their captions.

As an interesting extension to the above described scenarios, the number of data points
held by the low data category assets were gradually increased. The number of data points
were increased from 5 till 21, so that classifier performances throughout the transition of
the assets from low to the medium data category and beyond could be analysed. While
doing this, the number of points held by the medium and high data category assets were kept
constant at their initial values. Figure 3.7 presents the effect of increasing data at the low data
category assets, where 0.2 proportion of assets initially belonged to the low data category.
The corresponding testing datasets are mentioned in the sub-captions.

Furthermore, a learning scenario where all 800 assets held the same amount of data
was also studied. This was done by simulating the fleet where all assets initially had 5 data
points only, which were gradually increased to as high as 500 together across all assets.
The classifier performances were studied throughout this transition. Figure 3.8 present the
classifier performances when all assets contained the same amount of data. Other results
obtained from the experiments described in Section 3.2.2 are presented in Appendix C.1.
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(a) AUCs across low data category assets only. (b) AUCs across medium data category assets only.

(c) AUCs across high data category assets only. (d) AUCs across all assets, and for all the cases
included in the experiments.

Fig. 3.6 Shown here are the AUCs measured for the experiment cases. The subset of assets
across which the AUCs are measured are indicated in the corresponding captions. For all the
above four plots, the deviation for anomalous data in the testing dataset was set at 1 and 10
for l and L respectively

Figure 3.6 shows that learning from similar assets is more helpful than learning from all
assets in the fleet. Learning from all resulted in higher variance in AUCs recorded across all
assets, as shown in Figures 3.6a to 3.6c.

The aforementioned points are further highlighted by Figures C.2 and C.3 in Appendix C.1
where the classifier performances for the low data category assets across various testing
datasets are presented. In these figures again, the hierarchical model is seen to consistently
outperform the independent model, and learning from similar assets shows much lesser
variance than learning from all assets in the fleet.
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(a) l = 0; L = 1 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10

Fig. 3.7 Box plots presenting the effect of gradually increasing data contained by the low
data category assets. The captions denote the corresponding deviations in the testing dataset

It is observed in Figures 3.6a to 3.6c that hierarchical modelling is beneficial for the
assets belonging to the low data category only. For the assets belonging to the low data
category, the classifiers obtained using hierarchical modelling show significantly higher
AUCs and lower variances than the independent models learning from their own data. This
is true especially until the proportion of low data assets in the fleet is less than or equal to
0.6. The same fact is reiterated by Figures 3.7 and 3.9 where until a certain amount of data is
accumulated by the asset, it is better for it to rely on hierarchical model estimates. While the
threshold corresponds to 13 data points in Figures 3.7 and 3.9, the exact data requirement for
the independent model depends on the intra-cluster asset similarities and variance in data,
and therefore varies across applications.
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(a) l = 0; L = 1.5 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10

Fig. 3.8 Box plots presenting the effect of gradually increasing the data across all assets,
when they all had same amount of data. The corresponding testing dataset deviations are
denoted in the captions

Figure 3.8 shows that independent modelling is always the better option when all assets in
the fleet contain same amount of data. This is true across the entire range from 5 data points
until 500 and beyond. But Figure 3.8 also represents that hierarchical modelling eventually
converges and becomes similar to independent modelling when the assets keep generating
data over time. This confirms our hypothesis that initially the hierarchical model estimates
are weighted more towards the general fleet behaviour. The trend seen in Figure 3.8 is an
expected outcome because when all assets in the fleet have same amount of data, none of
which are clearly indicative of the assets’ operating regime. Therefore, the general fleet
behaviour, which is a combined behaviour observed across all assets, was not indicative of
the correct operating regime as well.
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Using the Bhattacharyya Distance as the performance metric

Apart from the performance evaluation metric presented in Section 3.2.3, the Bhattacharyya
distance (DB) was also used to compare the performances of hierarchical and independent
asset models.

DB is a distance measure for two multivariate Gaussians, and is calculated according to
(3.29) for the Gaussians parameterised by (µ1,C1) and (µ2,C2) [10]. A lower value of DB

signifies that the given Gaussians are more similar. For the current application, DB between
the true and estimated Gaussians for all the assets were evaluated.

DB =
1
8
(µ1�µ2)

T

 
C1 +C2

2

!�1

(µ1�µ2)+
1
2

ln

 
Det
�C1+C2

2
�

p
Det(C1)Det(C2)

!
(3.29)

The plots for the evaluated DB are presented in Figure 3.9. Subfigures 4.10a and 4.10b
present DB evaluated across all assets in the fleet, according to (3.29), as the data points in
the low data category assets were sequentially increased. Figure 4.10a corresponds to the
case where the range of individual asset means lay within the range (�25,25) and (275,325)
for the two model types. Figure 4.10b corresponds to the narrower range of means (�5,5)
and (295,305) for the two model types. Covariances used to represent the asset operating
conditions were the same for both figures and mentioned in (3.25 and 3.26). The results
presented in Figure 3.9 correspond to the same experimental setup as for Figure 3.7.
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(a) Asset means 2 (�25,25) and (275,325)

(b) Asset means 2 (�5,5) and (295,305)

Fig. 3.9 Box plots presenting the DB recorded across the assets belonging to the low data
category. A lower value of DB signifies that the given Gaussians are more similar

It was observed that the performance of hierarchical model was affected by the choice of
range of means mentioned in 3.2.1. A shorter range of means would signify that the assets
were more similar to one another, resulting in an improved performance of the hierarchical
model. This fact can be observed from the results from the same experiment with shorter
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ranges of means, (�5,5) and (295,305), presented in Appendix C.2 and Figure 3.9 for both
performance metrics.

3.3 Conclusions

The framework of hierarchical model is proposed here as a systematic technique for the
similar assets within a fleet to collaboratively learn from one another, and improve the
performances of their statistical classifiers for anomaly detection. The asset condition
monitoring data are modelled using multivariate Gaussians. But the hierarchical model,
unlike conventional maximum likelihood estimation, involves higher level distributions
from which the asset level Gaussian parameters are sampled. The higher level distributions
are shared by the clusters of similar assets, where similarities arise by the virtue of the
assets operating in similar conditions or being of the same model type. The higher level
distributions for the covariances and the means of the asset level Gaussians are modelled
using their conjugates, i.e. Inverse-Wishart and Gaussian respectively.

A better classifier for a given asset and a testing dataset is characterised by a higher AUC,
and a lower DB. However, while analysing the performance of that classifier across the entire
fleet, its consistency also plays a key role. An operator would prefer having a classifier
showing consistent but slightly worse performance rather than an unreliable classifier which
shows high AUC for some assets in the fleet but low for others. Comparing the Bhattacharyya
distance for the two techniques, it can be concluded that hierarchical modelling significantly
improves the performances of conventional classifiers in the early periods of asset operations.
This is the period when sufficient training data are not available to estimate the Gaussian
parameters using maximum likelihood methods. The higher level distributions are also
representative of the general behaviour of the asset fleet, that is of interest to the operators
who want an overall understanding the fleet performance.

Moreover, an important conclusion in this chapter is that when all the assets in a fleet
have sparse data, it is better to rely on the independent models rather than the hierarchical
model. This observation can be noted in Figure 3.8.





Chapter 4

Collaborative Prognosis using a
Statistical Hierarchical Model

This chapter contributes towards addressing research questions 1 and 2 and achieving research
objectives 4 and 5 outlined in Chapter 1, and is divided into two parts.

The first part presents a statistical hierarchical model for modelling the times-to-failures
observed in a fleet comprising of sub-fleets, or clusters, of similarly deteriorating assets. Sim-
ilar to the hierarchical model for anomaly detection presented in Chapter 3, the hierarchical
model for modelling the times-to-failures mitigates the problem of high variance encountered
while independently modelling the times-to-failures observed in the asset clusters with sparse
data. Given its popularity in Reliability Engineering, a hierarchical model of Weibull density
functions is shown in this chapter as an example. It should be noted that distributions other
than Weibull shall also be used to model the times-to-failures.

The second part describes the procedure for real-time collaborative prognosis using the
proposed hierarchical Weibull model, and demonstrates it for a fleet of simulated turbofans.
This represents a scenario where the observed failures and the corresponding failure trajecto-
ries are used as the training dataset for estimating the Remaining Useful Lives (RULs) of
the operating assets part way through their failure trajectories, which constitute the testing
dataset. Given the observed failures, the experiments presented herewith analyse the predic-
tion accuracies along the life of an operating asset and also the effect of clustering on the
prediction accuracy.

The following chapter is structured as follows: the simulated turbofans dataset used
for the experiments is described in Section 4.1. Section 4.2 describes the simulation of
real-time asset operations using failure trajectories using the simulated dataset. Sections 4.3
and 4.4 describe the steps to preprocess and cluster the turbofan data respectively, which
are used for analyses in the later sections. The problem of estimating the Weibull density
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function using the fleet-wide and independent cluster-specific data is discussed in Section 4.5.
The proposed hierarchical model is described and its implementation to model the times-to-
failures is presented in Section 4.6. Section 4.7 presents the results from the experiments
that were conducted to analyse the efficacy of the hierarchical model. Section 4.8 describes
the procedure to estimate the RUL of an operating asset, which is then implemented for
prognosis of the simulated asset operations in Section 4.9. Section 4.9 subsequently presents
an experiment conducted to analyse the effect of clustering on collaborative prognosis using
the hierarchical Weibull model. The conclusions are summarised in Section 4.10.

4.1 Example Dataset Description

This section introduces the publicly available Turbofan Engine Degradation Simulation
dataset used for the experiments discussed herewith. This dataset was generated using a
Matlab based simulation software called Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) [159]. It is subsequently referred as the C-MAPSS dataset.

C-MAPSS software is capable of simulating turbofan engines operating in various user-
defined conditions. The conditions include the altitude at which the engine is operating,
its Mach number, and the temperature at sea-level. Thermodynamic equations are used to
calculate fluid flow parameters, and the health conditions of the engines are reflected in
their sensor measurements from various internal locations. The simulated turbofans are each
monitored using 21 sensors [160].

The turbofans comprise of independent sub-systems including regulators, limiters and
control systems. The limiters resemble the warning-trip mechanisms typically present
in the industrial turbo-machinery that prevent the machines from exceeding their pre-set
tolerances. In C-MAPSS, there are limiters for the core speed, the engine-pressure ratio,
for the high pressure turbine exit temperature, and for the static temperature at the high-
pressure compressor. An engine is deemed inoperable/ failed when any of the limiters are
exceeded [160].

The C-MAPSS dataset represents a fleet of turbofans with continuously degrading health
since the start of their operations, until they all eventually fail. A turbofan’s degradation is
manifested in the simulations as the percentage reduction in the constituting component’s
efficiency(e(t)) and flow( f (t)) values at timestep (t) compared to those at its healthy state (at
timestep t = 0). The overall health index of a machine at time t is a combined function of
flow and efficiency of the overall engine: H(t) = g( f (t),e(t)).

The e(t) and f (t) values of a given component are simulated to degrade with time
according to an inverse exponentially decreasing function. However, no two simulated
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Table 4.1 A Sample of FD_001 Dataset

AssetID Cycles OC1 OC2 OC3 s1 ... s21

1 1 -0.0007 -0.0004 100 519 ... 23.419
1 2 0.0019 -0.0003 100 519 ... 23.424
... ... ... ... ... ... ... ...

2 1 -0.0018 0.0006 100 519 ... 23.458
... ... ... ... ... ... ... ...
2 287 -0.0005 0.0006 100 519 ... 23.084

... ... ... ... ... ... ... ...
100 200 -0.0032 -0.0005 100 519 ... 23.052

turbofans are identical because the parameters governing inverse exponential function are
randomly chosen from their corresponding permissible ranges of values. The turbofans also
commence operation with a slight but random initial deterioration to replicate the real world
manufacturing inefficiencies, and noise was added to the sensor measurements to replicate
the real world errors. Comprehensive information about the simulator can be found in [160].

As a result of a turbofan’s health degradation, the fluid flow parameters recorded by
sensors across various components deviate from their healthy operation regimes. During the
simulations, the time series of sensor measurements ranging from a given turbofan’s healthy
state until its failure are recorded with their corresponding cycles of operations and operating
conditions. The failure trajectories generated by the C-MAPSS software are analogous to the
real-world trajectories.

The C-MAPSS dataset is divided into four files, each comprising of failure trajectories
for turbofans operating in various conditions and incipient failure modes. Files FD_001 and
FD_003 are used for the experiments discussed herewith and comprise of total 200 turbofans
operating at sea-level conditions. All turbofans represented in FD_001 were simulated to
fail because of their high-pressure compressor degradation, and turbofans in FD_003 could
fail either due to high-pressure compressor degradation or fan degradation. The data shown
in Table 4.1 as an example is sampled from the FD_001 file where the columns correspond,
from left to right, to the turbofan ID, cycle of operation, three parameters describing the
operating conditions, followed by the 21 sensor values recorded at every cycle of operation.
The following Sections 4.3 and 4.4 describe the steps for preprocessing and identifying the
clusters of similarly deteriorating turbofans in the C-MAPSS dataset respectively.
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4.2 Simulating Real-time Asset Operations

Train_FD001 and train_FD003 files from the C-MAPSS dataset jointly contain failure
trajectories of 200 simulated turbofans operating in sea-level conditions and that fail over a
period of time in either of the two failure modes: high pressure compressor failure, or fan
degradation. The failure trajectories are in the form of time-series of condition data recorded
from the turbofans’ healthy state until failures, represented here as x0:t f

n
n for a single turbofan

n where t f
n represents the time at which the turbofan n failed. The condition data recorded

at each time-step comprises of a vector xn of sensor values measuring the internal/ external
operating parameters of the turbofan.

170 simulated turbofans from the failure trajectories obtained after preprocessing were
used as the training dataset while the remaining 30 were used as the testing dataset. Complete
time-series of the condition data were available from the 170 turbofans comprising the
training datasets, whereas the remaining 30 were simulated to be operating in real-time such
that only part of their time-series were available for RUL predictions. Concretely, for the nth

turbofan in the testing dataset operating until tn time-steps, only the x0:tn
n datapoints from its

failure trajectory were used for predictions.

4.3 Preprocessing the Dataset

This section describes the steps to preprocess the C-MAPSS dataset. For the experiments
discussed herewith, preprocessing the C-MAPSS dataset involved the following steps:

1. Removing the noise: Since a mixture of Gaussian white noise is added to the sensor
measurements in the simulator, a rolling mean for a window of 20 cycles was evaluated
for each sensor and turbofan across the fleet to clean the data.

2. Normalising the data: Normalising the data is particularly important for the assets
such as turbofans because the sensors measure diverse thermodynamic parameters.
These parameters are associated with units and sensor measurements that vary over a
wide range of values. In the case of C-MAPSS dataset, the thermodynamic quantities
corresponding to the sensor indicators, obtained from the introductory paper [160],
are represented in Table 4.2. The diversity of thermodynamic parameters and their
quantitative ranges is clear form Tables 4.2 and 4.1. The measurements for every
sensor were therefore normalised across the fleet.

3. Removing the redundant sensors: This was done to minimise the dimension of the
input. The redundant sensors were identified as the ones that did not show any deviation
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Table 4.2 Sensor IDs and the corresponding thermodynamic quantities measured in the
C-MAPSS fleet. This table is obtained from [160], and the sensors considered for analysis
after preprocessing the dataset are indicated in bold text.

Sensor
ID

Description of the
measured quantity

Unit of
measurement

s1 Total temperature at fan inlet �R
s2 Total temperature at LPC outlet �R
s3 Total temperature at HPC outlet �R
s4 Total temperature at LPT outlet �R
s5 Pressure at fan inlet psia
s6 Total pressure in bypass-duct psia
s7 Total pressure at HPC outlet psia
s8 Physical fan speed rpm
s9 Physical core speed rpm
s10 Engine pressure ratio (P50/P2) –
s11 Static pressure at HPC outlet psia
s12 Ratio of fuel flow to Ps30 pps/psi
s13 Corrected fan speed rpm
s14 Corrected core speed rpm
s15 Bypass Ratio –
s16 Burner fuel-air ratio –
s17 Bleed Enthalpy –
s18 Demanded fan speed rpm
s19 Demanded corrected fan speed rpm
s20 HPT coolant bleed lbm/s
s21 LPT coolant bleed lbm/s

in the measurements throughout the failure trajectories. Moreover, the sensors showing
no predictive behaviour were also manually identified and removed from the analysis.
Figure 4.1 shows the normalised and clean sensor values for a randomly selected failure
trajectory/ asset from the fleet. The sensors showing no deviations are marked in red.
The set of redundant sensors were different for the two failure modes present in the
fleet, therefore the sensors comprising an intersection of the two sets of the redundant
sensors were eliminated. The sensors that were selected for analyses are marked in
Table 4.2 in bold text.
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4.4 Clustering for the C-MAPSS dataset

This section describes the process of clustering the turbofans comprising the C-MAPSS
dataset. Assets comprising a cluster are expected to be homogeneous in the sense they com-
mence operations in a similar health state, and undergo similar rate of deterioration. Unlike
jointly clustering and estimating the hierarchical model parameters for anomaly detection,
the clustering and the model parameters estimations are treated herewith independently
and sequential steps. This is because for collaborative prognosis the clusters of similarly
deteriorating assets need to be identified by comparing the failures trajectories comprising
of the time-series of asset condition data. Often there exist categorical indicators such as
make type, operators, applications, etc. that enable clustering at a higher level. In the case
of C-MAPSS dataset, since there are no such indicators to identify the asset clusters, only
the time-series asset condition data is used herewith to identify the clusters of similarly
deteriorating turbofans.

The turbofans comprising the C-MAPSS dataset commence their operations with a
random level of degradation in healthy range (not equivalent to failure), and continuously
deteriorate at different rates. As such, the lengths of failure trajectories span over a wide
range as shown in Figure 4.2. The diversity in initial health state of the turbofans and the
deterioration rates are also reflected in the sensor values throughout the failure trajectories.
As an example, the values of sensor s15 for a random sample of 15 turbofans are shown in
Figure 4.3a.

The diversity in degradation behaviours observed in the C-MAPSS data is furthermore
apparent in their hazard and log-hazard plots, shown in Figure 4.4. Hazard (l (t)) of an asset
at time t is defined as the instantaneous rate of failure. It is the probability of an asset failing
at time t, given that it has survived until time t. Hazard of a given asset at time (l (t)) can be
mathematically expressed as:

l (t) = P(t  T < t +dt|T � t)
dt

(4.1)

For the plot shown in Figure 4.4, l (t) it is calculated as the fraction of turbofans failing
in a given time interval to the number of turbofans that survived until that interval. The
interval in the case of C-MAPSS dataset was 1 cycle, and hazard was calculated for time
until all turbofan failures were observed. The intervals for which there were no failures
were associated with hazard 0, and were ignored while transforming the plot into log-hazard.
Figure 4.4 indicate the existence of asset clusters following diverse increasing hazard trends
(marked in the log-Hazard plot, where it is clearer).
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Figure 4.4 amplifies the diversity in failure behaviours across the C-MAPSS dataset.
Figure 4.4b especially shows distinct, nearly linear, functions that give a direct indication
of presence of at least 5 clusters. The effect of the presence of sub-fleets of similarly
deteriorating assets on the empirical log-hazard curve is described with an experiment in
Section 4.4.1.

Fig. 4.1 Clean and normalised sensor values for a randomly selected failure trajectory/ asset
(asset ID 27) from the fleet. The sensors showing no deviation are highlighted in red.

The given number of sensors, lengths of failure trajectories, and number of turbofans
renders the comparison of multivariate time-series a non-trivial problem. To enable the
comparison, quadratic polynomials were fit to the time-series of sensor values ranging from
the initial till the failed state of the turbofans, for every sensor and turbofan.

The coefficients corresponding to the polynomial fits effectively quantify the rate of
deterioration and the initial health state of the turbofans. Moreover, the dimensions are
consistent and irrespective of the lengths of the trajectories. This greatly reduces the dimen-
sionality of the data while retaining the necessary information. The polynomials were fit to
the normalised sensor values, and normalised trajectory lengths for the turbofans comprising
the fleet. Figure 4.3b shows an example of a quadratic polynomial fit for the sensor s15
values corresponding to the same set of turbofans shown in Figure 4.3a.
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Figure 4.3b shows that fitting polynomials to the constituent sensor data of a failure
trajectory is an efficient technique to represent the underlying information about the asset’s
degradation behaviour. This is especially useful while using independent algorithms for
clustering and modelling the observed failures.

In the transformed dataset thus obtained, an array of sensor values was reduced to three
coefficients of the corresponding fitted polynomial. The transformed failure trajectory of each
turbofan was represented by total 10⇥3 features. Principal component analysis (PCA) was
further implemented, and the first 10 components were chosen for clustering the turbofans.
The first 10 components explain upto 99.72% of the variance in original data.

It should be noted that PCA forms the part of the data preprocessing step in the analytics
pipeline, whereas the explainability refers to the proposed collaborative learning technique
of the statistical hierarchical modelling. The claim that statistical hierarchical modelling is
advantageous in terms of explainability refers to the explainability of the model parameters.
The higher level parameters represent the overall fleet behaviour, whereas the lower level
parameters represent the individual asset behaviours. Explainability should not be confused
here with causality, where the root cause of the failure can be traced back as feedback to the
operator.

Fig. 4.2 Histogram showing the range of failure trajectory lengths observed in the C-MAPSS
dataset.
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(a) The values of sensor ‘s15’ for a random
sample of 15 turbofans, each represented
by a different colour.

(b) Quadratic polynomials fitted to the same
subset of turbofans. The fitted quadratic
polynomials are represented in solid black lines.

Fig. 4.3 The trends in ‘s15’ values across a random set of turbofans, and the quadratic
polynomials fitted to the same set of values.

(a) A plot showing the turbofan
hazards across the entire timeline until all
turbofans have failed.

(b) A plot showing the logarithm of turbofan
hazards
across the entire timeline until all turbofans
have failed.

Fig. 4.4 Hazard and log-Hazard evaluated at every time-step for the C-MAPSS fleet.

Finally, the k-means clustering algorithm was implemented for clustering the transformed
coefficients corresponding to the turbofans. To identify optimal number of clusters, number
of clusters for k-means were iteratively increased until a new cluster caused a reduction in
the total inertia (sum of squared distances from the cluster centroids) by less than 10%. Total
11 clusters were obtained for the C-MAPSS fleet, each comprising of 37, 35, 30, 21, 17, 16,
11, 11, 9, 8, and 5 turbofans.
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The flowchart in Figure 4.6 describes the steps involved in preprocessing and clustering
the C-MAPSS dataset. The steps preprocessing and clustering the C-MAPSS dataset are also
summarised in the pseudocode presented in Algorithms 2 and 3 respectively.

Algorithm 2: To preprocess the C-MAPSS dataset
Result: Processed failure trajectories.

1 for each turbofan i do
2 t = 0
3 while t < (t f

i �20) do
4 xi

t =
Ât+20

t xi
t

20
5 t = t +1
6 end
7 end
8 for each parameter x do
9 x = x�min(x)

max(x)�min(x)

10 if var(x) = 0 or x 2 redundant sensor then
11 drop(x)
12 end
13 end
14 return: Processed failure trajectories.
15

Algorithm 3: To cluster the similarly deteriorating turbofans comprising the C-
MAPSS dataset

Result: The cluster ID for each simulated turbofan.
1 for each asset i do
2 for each parameter xi do
3 xi

c f f = f itQuad(xi
0:t f

i
)

4 end
5 Xi

pca = PCA(Xi
c f f ,10)

6 end
7 k = 2
8 while True do
9 inertiaRed = inertia(k+1)

inertia(k)

10 if inertiaRed < 0.1 then
11 cluster ID = kMeans(Xpca,k)
12 break
13 end
14 k = k+1
15 end
16 return: The cluster ID for each simulated turbofan.
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Referring to the Algorithms 2 and 3, the fleet comprises of total I turbofans with each
indexed as i. The failure time of turbofan i is represented as t f

i . The set of condition
parameters recorded for the turbofan i at time t is represented as xi

t and the same across
the entire fleet is represented as x. Functions max(),min() and var() are used to calculate
the maximum, minimum, and the variance of the corresponding condition parameter. The
functions f itQuad(), PCA(), and kMeans() are used for fitting the quadratic polynomial
to return the coefficients, implementing the PCA to return the components, and evaluating
the clusters using the k-means algorithm to return the cluster IDs respectively, with the
corresponding values of components chosen/ the number of components indicated as the
inputs. The failure trajectory of a turbofan i is represented as Xi and across all the turbofans
is represented as X.

Figure 4.7 shows the log-hazard plots across the clusters, which is plotted using the
same method as for the plot in Figure 4.4. The cluster IDs are also indicated in Figure 4.7
for reference in the following text in this chapter. It can be observed in Figure 4.4 that the
log-hazard plots span across a narrower range and comprise of singular functions, unlike the
fleet-wide log-hazard plot in Figure 4.4.

Figure 4.8 shows the values of sensor s15 in failure trajectories across the clusters.
The diversity in failure rates and starting condition across the clusters is apparent in the
figure. Moreover, the two different failure modes in the fleet are indicated by the upward vs
downward trends in the sensors values. The clustering algorithm clearly separates these two,
and further identifies the sub-clusters beyond the basis of just the failure modes.

(a) Percentage of variance in data explained
vs the number of PCA components chosen.

(b) Reduction in inertia for every added cluster
in the k-means algorithm.

Fig. 4.5 Reason for choosing the first 7 principle components, and setting the number of
clusters to 7 in the analyses.
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Fig. 4.6 Flowchart describing the steps to preprocess and cluster the
C-MAPSS data.
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Fig. 4.7 Values of sensor s15 in failure trajectories across the clusters, each represented in a
separate colour. The same colour code to represent the clusters is followed in this chapter.
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Fig. 4.8 Values of sensor s15 in failure trajectories across the clusters.
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4.4.1 On the Effect of Sub-fleets on the Empirical Log-Hazard Plot

The effect of presence of sub-fleets on the empirical log-hazard curve is described herewith
using a simple experiment. Times-to-failures in four fleets of 500 assets each with varying
diversity of asset deteriorations were simulated in this experiment. Four levels of diversities
in the asset deteriorations were simulated, where the final level corresponded to a case where
all the assets comprising the fleet were identical.

It is believed that the similarities in the asset deteriorations manifest in the times-to-
failures observed within the fleet, which are the only inputs needed to obtain the empirical log-
hazard plots. In this experiment, the times-to-failures of the assets belonged to one of the five
zones, corresponding to 100,200,300,400,500 time-steps of operations. These zones further
comprised of four points each, separated by a gap of 20 time-steps with the corresponding
zone at centre. For example, the zone at 100 comprised of points 70,90,110,130. As such,
there are total 20 points across the timeline. An asset’s time-to-failure was simulated using a
Gaussian with one of these points as its mean and a variance of 15.

A fleet corresponding to high level of diversity would comprise of assets showing a wide
range of times-to-failures. To simulate the times-to-failures in the fleet characterised by
high diversity of the asset deteriorations, the assets were randomly allocated one of the 20
points and the above described method was used to simulate their times-to-failures. For the
fleet corresponding to medium diversity, the assets were randomly allocated a point but this
time belonging to the same zone (300) and the above method was used to simulate their
times-to-failures. For the fleet with low diversity, all the assets belonged to the the same
point (300), and their times-to-failures were simulated using a Gaussian with mean 300 and
variance 15. Lastly, the fleet comprising of assets with identical deterioration, where all the
assets had the same initial health and also the same rate of degradation, the assets had the
same time-to-failure.

The empirical log-hazard curves obtained for each of these clusters are presented in
Figure 4.9, with the corresponding clustering accuracy mentioned in the sub-captions. It
should be noted that a high diversity in the asset deteriorations are represented by a wider
range in the empirical log-hazard plot for that fleet. Moreover, the log-hazard plot of such a
fleet is split into multiple functions. This means that the efficiency of the clustering algorithm,
for identifying the sub-fleets of similarly deteriorating assets, manifests as the reduction in
the range of the empirical log-hazard curves of the resulting asset clusters and also them not
splitting into multiple functions.

Comparing with the log-hazard plots obtained for the C-MAPSS dataset, it can be
observed that the fleet-wide log-hazard curve presented in Figure 4.4 shows a wide range
and is split into multiple functions. However, after clustering the log hazard plots become
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narrower which proves that the clustering procedure presented in Section 3 enables identifying
the sub-fleets of similarly deteriorating turbofans.

(a) Fleet 1: High diversity (b) Fleet 2: Medium diversity

(c) Fleet 3: Low diversity (d) Fleet 4: Identical assets

Fig. 4.9 The effect of diversity in the asset deteriorations on the empirical log-hazard curves.

4.5 Fleet-wide and Cluster-specific Weibull Density Func-
tions

This section demonstrates the problem of high bias and high variance, associated with
estimating the fleet-wide and independent cluster-specific estimates of Weibull density
functions respectively.

The times to failures observed for a fleet of machines are often modelled in reliability
engineering using a Weibull distribution, due to its versatility. Consider a fleet comprising of
K 2 Z+ asset clusters indexed as {1,2, ...,k}, each comprising of IK 2 Z+ assets indexed
as {1,2, ..., i}. The probability of failure f (t(i,k),ak,bk,gk,) at time t for the ith asset in kth
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cluster is given according to a 3-parameter Weibull distribution as:

f (t(i,k),ak,bk,gk,) =
ak

bk

⇣t� gk

b

⌘ak�1
e�
�

t�gk
bk

�ak

(4.2)

Where a , b , and g are the shape, scale, and location parameters of the Weibull distribu-
tion.

The shape parameter a plays an essential role in planning the maintenance activities.
Weibull distributions with a < 1 indicates a decreasing hazard with time, which is also
known as infantile failure rate as it mostly occurs in the early life of a machine due to
manufacturing defects. Similarly, constant and increasing hazard are indicated by a = 1 and
a > 1 respectively. The increasing failure rate is often observed towards the end of life of
the assets. The effect of a values on the shape of Weibull distribution and on the failure rate
is shown in Figure 4.10. Hazard rate (l (t)), also called as the instantaneous rate of failure,
for a two-parameter Weibull failure density function is formulated as:

l (t) =
⇣a

b

⌘⇣ t
b

⌘(a�1)
(4.3)

b represents the characteristic life of the fleet, or the point at which 63.2% assets have
failed. The location parameter g is used to shift the x-axis for assets whose RUL must be
predicted from a non-zero point in time axis. The location parameter is not applicable to the
C-MAPSS as the turbofans in C-MAPSS fleet all commence their operations at time 0, and
undergo a single failure only. The location parameter g is therefore set to 0 in the current
analysis, and ignored.



84 Collaborative Prognosis using a Statistical Hierarchical Model

(a) Effect of the shape parameter (a) on
the Weibull density function.

(b) Effect of the shape parameter (a) on
the Weibull hazard function.

Fig. 4.10 The above figures show the effect of the shape parameter (a) on the Weibull density
and hazard functions, with the scale parameter (b ) fixed at 100.

4.5.1 Fleet-wide Weibull Density Function

The fleet-wide model corresponds to a single Weibull density function, from which the
times-to-failures observed across the fleet are sampled. This is equivalent to complete
pooling of the data, and ignores the diversity of degradation behaviours observed across the
fleet. Let T denote the array of times-to-failures across the fleet. In a Bayesian manner, the
Weibull parameters are inferred by treating the entire fleet as a single cluster and placing a
non-informative uniform prior over the Weibull parameters as:

a ⇠N (0,1000)
b ⇠N (0,1000)

T⇠W (a,b )
(4.4)

Where W represents the Weibull distribution. The parameters of Weibull are inferred
using MCMC, via the no U-turn implementation of Hamiltonian Monte Carlo in the proba-
bilistic programming language Stan [168] 1. Figure 4.11 shows the mean and first standard
deviation of the posterior of Weibull density function obtained from a fleet-wide model.

1The same inference technique is used throughout the results presented in this Chapter.
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Fig. 4.11 Mean and first standard deviation of the Weibull density function posterior obtained
from a fleet-wide model.

Figure 4.12 shows the mean and first standard deviation of the posterior of Weibull hazard
and log-hazard functions inferred from a fleet-wide model. Log-hazard plots are shown here
as they make the advantage of the hierarchical model more interpretable compared to the
density function plots. Figure 4.12 shows the empirical and inferred curves for the fleet-wide
data.

(a) Inferred Weibull hazard function vs the em-
pirical data.

(b) Inferred Weibull log-hazard function vs the
empirical data.

Fig. 4.12 Inferred hazard and log-hazard plots from the fleet-wide model.
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4.5.2 Independent Weibull Density Functions

Similar to the fleet-wide model, the Weibull parameters are again estimated with non-
informative uniform priors for each of the clusters independently. In the case of cluster-
specific models however, it is believed there exists independent Weibull distributions from
which the times-to-failures of all the assets in that cluster are sampled. Again, let Tk

denote the array of times to failures observed in the cluster k. These are sampled from the
corresponding independent Weibull distributions as:

ak ⇠N (0,1000)
bk ⇠N (0,1000)
Tk ⇠W (ak,bk)

(4.5)

Figure 4.13 shows the mean and first standard deviations of the inferred posteriors for
each of the cluster-specific models. The clusters are represented with separate colours and the
corresponding cluster IDs are mentioned alongside the plots. A similar plot for the inferred
Weibull log-hazard is shown in Figure 4.14
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Fig. 4.13 Mean and first standard deviation of the Weibull density function posteriors inferred
from the cluster-specific independent models.



88 Collaborative Prognosis using a Statistical Hierarchical Model

Fig. 4.14 Mean and first standard deviation of the Weibull log-hazard function posteriors
inferred from the cluster-specific independent models.
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4.5.3 Observations

Figures 4.11 to 4.14 show that while insufficient information for robust independent cluster-
specific models, the data across the fleet are too dissimilar to be approximated by a single
function for the observed failures.

1. The posteriors in Figures 4.13 and 4.14 show larger uncertainties, especially in clusters
with sparse data (clusters 2 and 5). The cluster-specific models poorly approximate
the Weibull density functions, as they fail to consider valuable information that can be
shared across the asset clusters.

2. The posterior in Figures 4.11 and 4.12, although showing very low uncertainty, does
not accurately describe the failures observed in the fleet. This is depicted by the high
variance of the estimated Weibull distribution itself.

However, since the turbofans are derived from a fleet of assets operating in same condi-
tions/ underlying failure modes, it is the Weibull distributions are similar between the clusters.
The independent cluster-specific models might therefore improve by learning the parameters
in a joint inference over the whole population. The following Section demonstrates using a
statistical hierarchical model to learn a separate (but correlated) Weibull density function for
each cluster in combined inference, where the parameters are encouraged to be similar.

A note on downward shift of the log-hazard curves:

The inferred log-hazard curves shown in Figures 4.12, 4.14, and 4.17 show a downward
trend compared to the empirical data. This occurs because of the existence of intervals with
no turbofan failures between the first and last failures. The intervals with no failures are
associated with a hazard equal to 0, and therefore pull the hazard curve downwards.

This phenomenon is more apparent in Figure 4.12a where the inferred hazard curve is
affected by the intervals associated with 0 hazard, compared to the clusters in Figures 4.17
and 4.14 with fewer intervals with no failures, such as in clusters 1, 3, 4, 6, and 7 (blue,
yellow, green, grey, and red) for example. The pull towards the x-axis in Figure 4.12a is
amplified while taking the logarithm, where the intervals associated with 0 hazard using the
are ignored while plotting the empirical log-hazard curves (because log(0) is not defined).
From a reliability perspective, the signage of the Weibull shape parameter is what matters,
and in all the clusters identified here there is a need of maintenance as all of them are
characterised by an increasing failure rate.
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4.6 Hierarchical Weibull Model for Modelling Times-to-
Failures

The hierarchical model for prognosis used here is an extension of the independent cluster-
specific models defined in Section 4.5.2. While similar to Section 4.5.2 where the data
for each cluster are independently sampled from the corresponding Weibull distributions, a
hierarchical model defines two Normal distributions at a higher level from which the Weibull
parameters of the clusters are sampled. Concretely, the ak and bk parameters of the clusters
are each sampled from their corresponding Normal distributions at a higher level. This
hierarchical Weibull model, shown as a block diagram in Figure 4.15, is mathematically
described as:

µa ⇠N (0,1000)
sa ⇠I G (1,1)

µb ⇠N (0,1000)
sb ⇠I G (1,1)

ak ⇠N (µa ,sa)

bk ⇠N (µb ,sb )

Tk ⇠W (ak,bk)

(4.6)

Fig. 4.15 Block diagram of the hierarchical Bayesian model.
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The higher level parameters µa and µb denote the average behaviour of the corresponding
Weibull parameters observed in the fleet. The variance parameters sa and sb govern the
extent of learning across the clusters. A higher variance indicates that the clusters must be
dissimilar, and vice versa. While the variance can be manually defined based on operational
knowledge, it can also be inferred from the data. To enable being inferred from the data,
the mean and variance parameters of the higher level Normal distribution are provided with
their conjugate hyper-priors, i.e. Normal and Inverse-gamma distributions respectively, at a
further higher level.

Figures 4.16 and 4.17 show the inferred Weibull density functions and the Weibull
log-hazard functions for the corresponding clusters, obtained from the hierarchical model.
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Fig. 4.16 Mean and first standard deviation of the Weibull density function posteriors inferred
from the hierarchical models.



4.6 Hierarchical Weibull Model for Modelling Times-to-Failures 93

Fig. 4.17 Mean and first standard deviation of the Weibull log-hazard function posteriors
inferred from the hierarchical models.
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4.7 Experimental Results

This section presents the results obtained from a set of experiments conducted to analyse the
efficacy of the proposed hierarchical model. Three experiments were conducted in total, each
analysing the effect of the number of failures observed in the cluster, the effect of higher
level parameters on the extent of learning, and the prediction capability of the hierarchical
model for the testing dataset.

4.7.1 Hierarchical vs Independent model for Incremental Failures

The first experiment was conducted to compare the performances of the hierarchical and
independent models, for the increasing number of failures observed in an asset cluster. To
that end, the number of failures observed in the asset cluster 3 (selected randomly) were
gradually increased from 2 until both, hierarchical and independent, models converged. The
number of failures observed in the other clusters were kept constant at their original values
while the failures in the cluster 3 were increased. Figure 4.18 presents the inferred values
of the shape (a) parameter, which is critical for maintenance planning, as the number of
observed failures in cluster 3 were increased.

Fig. 4.18 Inferred values of a3 vs increasing number of failures in cluster 3.

Figures 4.12, 4.14, and 4.17 show that the variance is almost equivalent throughout all the
three models considered here - i.e. fleet-wide, independent cluster-specific, and hierarchical.
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This is due to the fact that sufficient data is available in this fleet for all the models to
converge.

However, Figure 4.18 shows that the hierarchical model shows less variance where the
data is sparse (less than 7 failures in this case) compared to the independent cluster-specific
model. The median estimates of the hierarchical model are much closer to the converged
value as the number of failures were increased. The hierarchical model also shows less
variance in the estimations than the independent cluster-specific model.

4.7.2 Effect of Higher Level Variance Parameters

The second experiment was conducted to analyse the effect of the variance parameters (sa

and sb ) of the higher level Normal distributions on the corresponding inferred Weibull
parameters. The hyper-priors of sa and sb were iteratively replaced with a manually set
value, that varied from low to high. While the value of either sa or sb was varied, the
value of the other higher level variance parameter was kept constant at the inferred value
using a cluster-specific independent model. This resembles a mixed effect model, where
one of the Weibull parameters is learnt hierarchically whereas the other is learnt from the
cluster-specific data only. Such a mixed effect model enabled isolating the variance of only
the parameter (a or b ) being analysed.

The corresponding Weibull parameters estimated across the clusters for the various sa

and sb values are shown in Figures 4.19 and 4.20 respectively. In the same figures, the values
of the corresponding sa or sb inferred from the data (using a hyperprior) are also indicated.
The modes of the inferred higher level parameters (Figures 4.19b and 4.20b), are indicated in
the corresponding variance plots (Figures 4.19a and 4.20a) using vertical magenta dashed
line. 2

2This analysis, to present the effect of higher level parameters, is similar to that shown in https://github.
com/omarfsosa/tech-talk-hierarchical-models for the prediction of Radon gases in the American
households.

https://github.com/omarfsosa/tech-talk-hierarchical-models
https://github.com/omarfsosa/tech-talk-hierarchical-models
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(a) Effect of sa on the inferred ak for the clus-
ters.

(b) Inferred sa values using a hyperprior.

Fig. 4.19 The above plots show the effect of sa on the extent of learning ak across the
clusters

(a) Effect of sb on the inferred bk for the clusters. (b) Inferred sb values using a hyperprior.

Fig. 4.20 The above plots show the effect of sb on the extent of learning bk across the clusters

An added advantage of the hierarchical model is seen in Figures 4.19 and 4.20 where it
(i) enables the operators to manually specify the extent of learning across the fleet, and (ii)
provides a general high-level operating regime of the fleet. This also means that the Bayesian
hierarchical model proposed herewith is transparent, unlike the Machine Learning algorithms
such as neural networks. As the higher level variances keep increasing, the hierarchical
model becomes equivalent to a group independent cluster-specific models.
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4.8 Estimating the Remaining Useful Lives

This section describes the procedure for estimating the RULs of the operating assets. In the
context of this chapter it corresponds to estimating the RULs of the 30 turbofans comprising
the testing dataset.

Consider a turbofan A that has been operating for tA times-steps. It is known here that
the failure is incipient at time t = 0, and therefore the condition data available until time
tA is a part of its failure trajectory3, i.e. x0:tA

n . Conventionally, the RUL of the operating
asset is estimated based on the times-to-failures of the turbofans from the training dataset
deteriorating similarly until time tA. To estimate the RUL of the operating turbofan, a Weibull
distribution is often used to model the times-to-failures of the turbofans from the training
dataset deteriorating similarly. The mode of the inferred maximum a-posteriori (MAP)
Weibull distribution corresponds to the expected time of failure t fe

A , and therefore the RUL
estimate for the operating asset would then equate to (t fe

A � tA).
The Weibull parameters inferred by the steps described above are bound to be associated

with a high variance if the number of similarly deteriorating turbofans in the training dataset
are sparse. On the other hand, the inferred Weibull distribution would be associated with a
high bias if all the turbofans in the training dataset are used for estimating the RUL. The
problem of sparse data is especially true as the asset approaches failure, which is described
in the following paragraphs. Hierarchical model provides a systematically enables stabilised
RUL predictions when using a sparse sub-fleet of similarly deteriorating assets.

In the first step to implement the hierarchical model for real-time predictions, data
corresponding to the initial tA time-steps in the failure trajectories comprising the training
dataset are used to identify the sub-fleets of similarly deteriorating turbofans in the training
dataset. Sub-fleets are identified using the same procedure explained in Section 4.3 and
Algorithm 3 where a quadratic polynomial is fit to each condition parameter in the time-series,
followed by PCA, and k-means clustering.

Hierarchical Weibull model is then used to model the times-to-failures corresponding to
each of the sub-fleets, followed by identifying the sub-fleet most similar to the operating asset.
The closest sub-fleet is identified based on the closest centroid, resulting from the k-means
algorithm, for the observed failure trajectory of the operating turbofan. The same procedure,
including the scaler and the PCA parameters, used to transform the training dataset must be
used to transform the condition data from the operating asset before identifying the closest
sub-fleet. Finally the RUL is estimated for the operating asset using the mode of the MAP

3When the failure is not incipient at t = 0, the time tA is calculated from the time of failure incipience with

the failure trajectory being xt fi
A :tA

n , where t fi
A represents the time at which the failure was incipient.
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Weibull distribution of its closest cluster, as (t fe
A � tA) where time t fe

A corresponds to the mode
of the MAP Weibull distribution of the closest cluster representing the expected time of
failure.

The steps involved in RUL estimations for the turbofan operating until tA time-steps using
the historical failures, referred here as the training dataset, described above are summarised
in the following points:

1. Sub-fleets of similarly deteriorating turbofans in the training dataset are identified
using the data-points corresponding to the first tA time-steps of their corresponding
failure trajectories.

2. The hierarchical Weibull model is used to model the times-to-failures in the sub-fleets
identified above.

3. The closest cluster to the time-series of the operating asset is evaluated.

4. The RUL is estimated for the operating asset as RUL = t fe
A � tA, where t fe

A corresponds
to the mode of the Weibull distribution inferred for the closest cluster.

Figure 4.21 schematically presents the steps explained above, with a single condition
parameter shown along the y-axis as an example. The partial trajectory of the operating
asset is shown in thick red and the trajectories corresponding to the observed failures in
black. The time-series extending beyond tA are faded as these are not used for clustering
the trajectories. Four sub-fleets are present in the observed failures in this case, which are
identified in the second step, shown in the figure with different colours. The steps include
modelling the times-to-failures, identifying the closest sub-fleet, and calculating the RUL
which are indicated in Figure 4.21.
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Fig. 4.21 Schematic representation of the steps involved for collaborative prognosis using
the hierarchical Weibull model.

The steps shown in Figure 4.21 are repeated for RUL estimations throughout the life of
the operating asset, as shown schematically in Figure 4.22. It is shown in Figure 4.22 that
the sub-fleets become better defined as data is obtained from the operating asset, making
the RUL predictions more accurate and confident (represented by the variance of the MAP
Weibull distribution) as the failure approaches. Sub-fleets are not well defined using the data
corresponding to the initial time-steps as the turbofans commence their operations in the
same environment. However, with time the separation between the turbofans undergoing
different rates of deteriorations becomes apparent.
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Fig. 4.22 Schematic representation of the RUL predictions using the hierarchical Weibull
model along the life-time of an operating asset.

The representation in Figure 4.22 is shown for a turbofan from the testing dataset
used herewith in Figure 4.23. Predictions are made at different times along the failure
trajectory, shown by the corresponding MAP Weibull distribution of the closest cluster. The
corresponding operating time of the asset, the expected failure time, and the actual failure
time are also shown. The predictions become accurate and confident as the asset approaches
its failure, both in terms of the accuracy and the confidence of the predictions.
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Fig. 4.23 RUL predictions using the hierarchical Weibull model, along the life-time of a
turbofan from the testing dataset.

4.9 Experiments

This section describes the experiments conducted to evaluate the performance of the hi-
erarchical Weibull model for collaborative prognosis, and also presents the results from
the corresponding experiments. The discussions of the results presented in this section are
presented in the following Section 4.10.

4.9.1 Predicting Failures in Simulated Turbofan Operations

The first experiment aimed at evaluating the prognosis performance by calculating the
absolute differences in the actual and the predicted RULs throughout the turbofan operations
comprising the testing dataset. Given the varying lengths of the failure trajectories comprising
the testing dataset, the error of prediction was calculated after every 10% segment of the
corresponding trajectories so that the errors can be evenly measured across the testing dataset.
This evaluation is presented schematically in Figure 4.24 where two trajectories of different
lengths are shown along with the points at which the differences between the predicted and
estimated RULs are evaluated.

The absolute differences in the actual and the predicted RULs evaluated at every 10%
segments for the turbofans comprising the testing dataset are shown in Figure 4.25. For this
experiment, 15 PCA components were chosen during the clustering step that represented
more than 99.5% variance in the dataset. For clustering, the threshold for reduction in the
inertia4 for adding an extra cluster was kept at 0.1, which meant that adding another cluster
for the k-means algorithm would result in an overall reduction in inertia by less than 10%.

4inertia is the average absolute distance of the points from their cluster-centroids
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Fig. 4.24 A schematic representation of a short and a long failure trajectory, where the points
after every 10% segment are marked.

Fig. 4.25 Box-plot presenting the absolute differences in the actual and the predicted RULs
evaluated at every 10% segments for the turbofans comprising the testing dataset.

4.9.2 Analysing the Effect of Clustering on the Prognosis Performance

The second experiment is an extension of the first experiment, and aims at evaluating the effect
of the threshold for clustering on the prognosis performance. As explained in Section 4.3,
the clustering threshold is used to determine the optimal number of clusters present in the
fleet while using the k-means algorithm. The optimal number of clusters for the k-means
algorithm are determined by sequentially increasing the assumed number of clusters in the
fleet, until adding another cluster results in percentage reduction in the inertia below the
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threshold. In the experiment presented in Section 4.9.1, the threshold for clustering was set
at 0.1.

In this experiment the clustering threshold is varied across a range of values at 0.5,
0.3, 0.2, and 0.1. Setting a high threshold results in fewer number of clusters in the fleet.
Mathematically, a higher threshold results in higher intra-cluster distances and lower inter-
cluster distances. In the current experiment, this results in a wider range of deteriorations
and therefore a wider range of times-to-failures within the clusters. Figure 4.26 presents the
errors evaluated at every 10% segment of the failure trajectories in the testing dataset, similar
to that in Section 4.26, with a different clustering in every case.

(a) Threshold = 0.5 (b) Threshold = 0.3

(c) Threshold = 0.2 (d) Threshold = 0.1

Fig. 4.26 Errors in the predictions corresponding to various clustering threshold, mentioned
in the sub-captions. A higher threshold corresponds to a wider range of times-to-failures
observed within the clusters.
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4.10 Conclusions from the Experimental Results

A statistical hierarchical model is proposed in this chapter to model the times-to-failures
observed in an asset fleet. It is shown in this chapter that statistical hierarchical modelling
inherently encourages collaborative learning for the clusters with sparse data, as it defines
common prior distributions for the cluster-specific Weibull parameters at a higher level.
The hierarchical model is able to mitigate the problem of high variance in cluster-specific
independent models by incorporating prior knowledge about the times-to-failures from other
clusters comprising the fleet. Furthermore, hyper-priors of the higher level parameters also
automate the extent of learning across the asset clusters and enable manual intervention when
needed.

It is shown in this chapter, specifically in Figure 4.18, that the technique of using
hierarchical modelling for collaborative prognosis addresses the issue of high variance
observed while predicting failures in sparse data clusters. It can be observed in Figure 4.18
that the hierarchical model outperforms the independent model both in terms of accuracy and
variance of the estimates. It is therefore advantageous for the clusters with fewer observed
failures where the independent model fails to even converge to a solution, when a cluster
has fewer than 4 observed failures in this case for example. This is synonymous with the
conclusions of Chapter 3, where the hierarchical model outperformed the independent model
when an asset did not have sufficient data for convergence. Such clusters are ever more
prevalent in modern industrial fleets due to the operators resorting to custom configurations
and diverse operating conditions.

Moreover, the hierarchical model provides an added advantage to the fleet operators via
the higher level distributions. A hierarchical model systematically resembles the hierarchy of
information in the fleet, and therefore the distributions of the inferred parameters resemble the
state of the fleet at the corresponding levels. Operators can incorporate the expert knowledge
about the similarities across the fleet via the higher level parameters. This is clear from
Figures 4.19 and 4.20 where the hyper-priors corresponding to the higher level variance
parameters allow the model to learn the right balance of the extent of learning from the
observed data. The similarities among the clusters can also be perceived from the Figure 4.19,
based on the closeness of the inferred parameter values.

The procedure to implement the hierarchical Weibull model for collaborative prognosis
was also described in this chapter, and demonstrated for a fleet of simulated turbofans. The
conclusions derived from the results presented in Section 4.9 are summarised in the following
points:
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1. The length of the failure trajectories in the testing dataset range from 214 to 348 time-
steps. The interquartile range of the errors of predictions while using the hierarchical
Weibull model has been lower than 25 time-steps in the last two segments, and lower
than 50 time-steps in the last three segments as it can be observed in Figure 4.25. The
prognosis performance using the hierarchical Weibull model can therefore be deemed
comparable to using the recurrent neural-networks with FedAvg, shown in [34, 33] for
the case of a single failure mode. But unlike FedAvg, the hierarchical Weibull model
is able to retain the prognosis performance even for the case of dual failure modes like
shown in this chapter.

2. The fact that the clusters of similarly operating assets cannot be clearly identified in
the early time-steps of operations is confirmed by the errors shown in Figure 4.25. In
Figure 4.25 it is observed that the errors in predictions, in terms of accuracy and the
variance across the testing dataset, significantly reduce as the turbofans approach the
failures. The errors in predictions in the early time-steps of operations can be mitigated
if the clustering is supported by other sources of information such as expert knowledge
or specifications data.

3. The effect of clustering is highlighted by the results presented in Figure 4.26. In
Figure 4.26, the errors in the predictions are similar across all the clustering thresholds
in the early segments of the failure trajectories. In these segments, all the thresholds are
equally incapable of identifying the clusters in the training dataset. However, in the later
segments of the trajectories, the errors corresponding to lower clustering thresholds
are significantly lower than those corresponding to higher thresholds. Comparing the
errors corresponding to the thresholds 0.5 and 0.1, the errors in the final segment in the
case of threshold 0.1 are one-fourth of those in corresponding segment of threshold 0.5.
This is because a higher threshold results in the clusters comprising of larger number
of turbofans and exhibiting a wider range of the times-to-failures, corresponding to a
case of poorly clustered assets. The performance of the hierarchical Weibull model
for collaborative prognosis therefore critically depends on how well the clusters are
defined.





Chapter 5

Industrial Case Study: Modelling
Failures in a Fleet of Heavy-duty Trucks

This chapter presents a case study for modelling the times-to-failures observed in a real-
world industrial fleet using the hierarchical Weibull model presented in Chapter 4, addressing
research question 2 and research objective 6 outlined in Chapter 1. The case study presented
herewith is aimed at modelling the turbocharger and the alternator times-to-failures in two
separate fleets of heavy-duty trucks maintained by Scania Commercial Vehicles, Sweden.

Turbochargers and alternators are critical components in heavy-duty trucks as their
failures that can render the trucks immobile. Scania wishes to reduce reactive maintenance
costs; specifically the operations losses associated with late goods deliveries, re-loading, and
towing tucks to workshop, in addition to the spare parts and labour cost to Scania. Moreover,
Scania is facing increasing demands for operational availabilities from their customers, which
necessitates the shift of their maintenance policies towards predictive maintenance.

Modelling the times-to-failures is key for Scania realising their goal towards predictive
maintenance policies as it enables estimating the Remaining Useful Lives (RULs) of the
trucks as shown in Chapter 4. Moreover, it is beneficial for Scania to incorporate the presence
of sub-fleets, or clusters, of similarly operating trucks comprising the fleet as they offer
exhaustive customisation. For example, the customers are free to choose the components
such as the exhaust manifold, trailer connection, braking system, etc. used in their trucks as
per their liking. Customised trucks ensure best suitability for their end use, but at the same
time stratify the fleet into diverse operating conditions. Discussed later in Section 5.3, most
clusters are not large enough to generate sufficient failure data to model them independently
from the rest of the fleet. This necessitates collaborative prognosis for Scania, and in turn the
use of hierarchical modelling for the observed times-to-failures.
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The dataset used for this case study includes time-series of the operations data obtained
from the trucks comprising both fleets. Times-series corresponding to a given truck ranges
since its start of use until a failure was observed in the target component. The dataset is
referred in the following text as the Scania dataset, and the hierarchical Weibull model
introduced in Chapter 4 was implemented for modelling the times-to-failures in the Scania
dataset. Analyses and discussion of the results obtained along the course of this case study
highlight the insights and challenges faced while modelling the times-to-failures in a real-
world dataset in general, and for collaborative prognosis specifically. Moreover, since the
parameters describing truck health conditions were recorded as time-series of irregularly
recorded histograms, techniques to preprocess the same are also analysed as a research
contribution.

Section 5.1 explains the process of obtaining the operations data from the trucks and
highlights the features used for predicting the turbocharger and alternator failures for this
case study. Summary statistics of the dataset and preprocessing to select qualifying failure
trajectories are presented in Section 5.2. Section 5.2 also provides a brief discussion of
the prevalent techniques for using histogram data to train the statistical models. Three
techniques were explored to identify the clusters of similarly operating and deteriorating
trucks, which are described in Section 5.3. Section 5.4 presents and discusses the results
obtained after modelling the failures in the identified clusters using fleet-wide, cluster-specific,
and hierarchical Weibull models. The conclusions are drawn in the final Section 5.5.

5.1 Dataset Description

This section describes the Scania dataset. Brief introductions of the turbochargers and the
alternators are provided, followed by description of the structure of the dataset. Identical
steps were followed to obtain the data corresponding to either component failures, and the
dataset description including the structure and the features also applies to both components
similarly.

5.1.1 Targeted Components

1. Turbocharger is a modern improvement in internal combustion engines, that increases
the density of air going into the combustion chamber of the engines. It comprises of
a turbine that is driven by the engine exhaust and is connected to a compressor for
engine inlet air. The exhaust drives the turbine, which is connected to the compressor
that in turn increases the density of the air going into the combustion chambers.
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Increased density of the inlet air improves the power output and efficiency compared to
a naturally aspirated engine of the same size and capacity. Further information about the
turbochargers can be found in [189]. Turbochargers are critical for a truck’s operations,
failure of which results in unplanned vehicle downtime due to immobilisation and
increased service costs for the maintenance provider.

2. Alternator is another critical component that converts the mechanical energy of the
moving engine shaft into electrical energy (alternating or direct current depending
on the use). The output of the alternator drives the electrical units on board such as
the headlamps, windows, ignition, driver-support systems, etc. and also recharges the
battery. Principally, alternator comprises of a rotating shaft with an electromagnetic
coil, surrounded by a stator made of laminated sheets and copper wire coils. The
alternator shaft is connected to the engine shaft via a belt and pulley mechanism. As
the engine runs it causes the alternator shaft to rotate inside the stator and produce
alternating current. Alternators in actual use however need to be further enhanced with
accessories such as rectifiers and regulators. More information about the alternators
can be found in [144].

Figures 5.1a and 5.1b show the turbocharger and the alternator respectively 1.

(a) Turbocharger (b) Alternator

Fig. 5.1 Figures showing the components targeted for prognosis in this case study.

Failures commonly observed in the turbochargers include: (1) Wear WG shaft/ bushing -
this is mechanical wear which always eventually happens, (2) bearing wear - which is another
form of mechanical wear, and (3) Wear/ relaxation of the turbine sealing rings [147, 4, 150].
Whereas in the case of alternators, commonly observed failures include: (1) Worn out carbon

1These images are taken from https://www.eagleridgegm.com/
what-is-a-turbocharger-and-how-does-it-work/ and [172]

https://www.eagleridgegm.com/what-is-a-turbocharger-and-how-does-it-work/
https://www.eagleridgegm.com/what-is-a-turbocharger-and-how-does-it-work/
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brushes, (2) Stuck carbon brushes, (3) Broken components in PCB, (4) Broken diodes, (5)
Worn out ball bearings, (6) Broken stator winding, or (7) Broken rotor winding [149, 179].

The data used for this case study were obtained from a fleet of trucks continuously
monitored throughout a fixed period of time since the time of their production. Two separate
fleets comprising of more than 30,000 trucks each were monitored for the turbocharger and
the alternator failures, where just under 3000 and under 1000 failures respectively were
observed in the particular study period considered for this case study. Condition data from the
trucks that did not fail were used to compare the deviations with the trucks that encountered
failure, but only those trucks which encountered failures in the target components in the
corresponding fleets are considered for the purpose of modelling the times-to-failures. The
fleets monitored for the turbocharger and the alternator failures are referred herewith as the
turbocharger fleet and the alternator fleet respectively.

Data representing each truck was a time-series of datapoints, each datapoint comprising of
150 technical specifications and 37 operational parameters, ranging since the trucks were out
of production until a failure was observed in the target component. The datapoints including
the technical specifications, and the operational parameters in the time-series of a truck are
referred herewith as snapshots that represent the truck’s cumulative operating regime until
that time. Moreover, the snapshots were only recorded when certain conditions were met
which included the truck’s age, data contract with the customer, network capability, workshop
visits, etc. The time-series were therefore irregular and sometimes sparsely recorded, in the
sense that the gap between the consecutive snapshots was not consistent across the fleet or
even for a single truck.

The technical specifications are static categorical variables that describe the truck’s
characteristics such as model, engine type, cab type, wheel type, etc. The operational
parameters on the other hand are temporally dynamic, and obtained using sensors monitoring
various internal and external operating conditions of the given truck.

The operational parameters of the trucks were recorded as histograms, the bins being
the intervals spanning over the range of possible values for the corresponding parameter.
The values falling these bins represented the time spent by the corresponding truck in that
range of values. The histogram values were therefore additively updated along the trucks’
operation.

For example, the ambient temperature histogram comprised of 9 bins as [< �30],
[�30,�20], [�20,�10], [�10,0], [0,10], [10,20], [20,30], [30,40], [40 <]. The bins repre-
sent the range of ambient temperatures in which a given truck can possibly operate. Values in
the bins continuously increase and represent the time a given truck spends in that particular
temperature range. When the conditions are suitable the values of the bins are recorded and
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represent the range of temperature the truck has been operating in until that time. Subtracting
a given histogram from the previous one represents the range of temperature the truck has
been operating between the consecutive snapshots. An example of varying bin values over a
course of the truck’s usage is shown in Figure 5.2.

Some histograms were co-recorded as matrices, which are essentially two-dimensional
histograms with either feature on each of its axes. For example a matrix of axle load vs.
speed is a two-dimensional histogram, which records the time the truck spends in a given
load/ speed range combination. If a possible range of load is divided into 5 bins, and that of
speed into 8 bins then the total bins in a matrix would be 5⇥8 = 40 bins. An example of such
a matrix is shown in Figure 5.3. Matrices were converted into their constituent histograms by
adding the elements across the axes, illustrated in Figure 5.3.

Apart from the histogram and categorical types, certain parameters were also recorded
as scalars. As such, the trucks’ operating conditions and health data were a time-series of
sparsely recorded histograms along with some other categorical and scalar features. The
combined set of all histogram, categorical, and scalar parameters constituted the data describ-
ing a given truck in the fleet, and a representative sample of it is shown in Table 5.1. The
Date_recorded column in Table 5.1 represents modified date for the purpose of illustrating
the irregularity in the recorded data. The Failure indicator column indicates if the given
truck encountered a failure or not. For this case study, only the trucks which encountered a
failure are considered. A single row of the operations parameters recorded in a snapshot is
also shown schematically in Figure 5.4 using the corresponding histogram representation.

Various histogram (ambient temperature and pressure, axle loads, boost air pressure),
categorical (Cab type, engine type), and scalar (Turbocharger uptime, turbocharger load)
features were used for the failure prediction analyses for Scania trucks. These features were
identified to be relevant for prognosis by a combination of statistical recommendations, and
also from [39] where a case study for generating artificial failure data was conducted for the
components targeted herewith.
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Fig. 5.2 Example of evolution of normalised histograms corresponding to the Starter-motor
time operating parameter through a failure trajectory. X-axis represents histogram bins and
the bin values are shown plotted. As the truck ages, a rightward shift from bin 1 towards bin
2 is observed in the example shown.

� � ��

� � ��

� � ��

�

�

�

� � ��

� � �� � � �

2ULJLQDO�PDWUL[� 8QUDYHOOHG�

6XPPDWLRQ�DORQJ�WKH�FROXPQV�
DQG�WKH�URZV

Fig. 5.3 Example of two operations parameters co-recorded as a matrix, and transforming it
into the corresponding histograms.
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Fig. 5.4 A set of features recorded as histograms. The values in the array of recorded data
correspond to the heights of the histograms, which in turn are the time spent by the truck in
the corresponding bins
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5.2 Preprocessing and Summary Statistics

This section presents the summary statistics of the failure trajectories in the Scania dataset
including the times for which the trucks were monitored (failure trajectory length), average
time between the consecutive snapshots, number of snapshots per trucks, etc. Filters applied
for preprocessing the dataset, and the corresponding reasons are also discussed in this section.

Industries often record the asset health data as histograms due to their memory efficiency
and homogeneity across the variables [63, 117]. Formally, the histogram data used for
experiments in this case study are classified as categorical histogram data, where a frequency
is assigned to each bin [37]. Histograms are different than the often expected scalar input of
the ML algorithms, and must systematically be preprocessed to extract the information.

On a wider scale, complex data structures different from the commonly encountered
numeric and categorical variable types are studied under the field of symbolic data analy-
sis [37]. But to the best of authors knowledge, literature presents only few instances which
specifically target prognosis using histogram data. These include the works of [45], [148],
and [64, 62, 63] who investigated compressor, battery failures, and NOx sensor failures in
heavy-duty trucks respectively. [45] did not clearly outline the preprocessing steps while
using the histogram data, and the study of [148] was limited by the small fleet size used for
analysis. The closest of the above three works to the case study discussed in this paper is that
of [64, 62, 63] who used a dataset similar to the one used here, but for a different prognosis
technique and target component. The authors in [64, 62, 63] used random for classifying the
data corresponding to failure and non-failure class.

The degradation in the components while the trucks are idle is assumed to be negligible
compared to the degradation when the components are operating. In that regard, the operating
durations of the components were used to model the failures rather than the calendar days.
From here on, only the actual durations of operations of the target components are used in
the context of the analyses, and not the calendar days.

Moreover, the following filters were applied while choosing the failure trajectories for
further analyses:

1. A filter was applied on the minimum gap between the consecutive snapshots of the
operations data for a truck, because the snapshots were recorded repeatedly whenever
a truck visited the maintenance depot to ensure correct measurements. The repeated
measurements resulted in redundant and repeatedly identical measurements in the
dataset. Moreover, ensuring a large enough gap ensured that the histograms sufficiently
represented the operations profile of the trucks for the corresponding intervals. It was
ensured that the consecutive snapshots were separated by at least 100 time units. For
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example, if the first snapshot was recorded at 0th time unit, then all the snapshots
recorded until 100th time unit were ignored. If the next qualifying snapshot was
recorded at 110th time unit, then all the snapshots recorded until 210th time unit were
ignored, and so on.

2. Only those trucks with at least 5 snapshots, 4 of which lay in the final 2000 time
units of operations, were chosen for the analyses. This ensured sufficient number of
snapshots were available for clustering the trucks wherever possible.

3. Lastly, filter was applied to the minimum length of the failure trajectory, of 1000 time
units, to ensure that the failures occurring in the fleet are not infant mortality failures
occurring due to the manufacturing defects. The times shown in the current analyses
are evaluated post the infant mortality window of 1000 time units.

After the above filters were applied, total 1743 and 526 failure trajectories from the tur-
bocharger and alternator fleets were selected respectively for further analyses.

The summary statistics of both fleets are presented in Figures 5.5 to 5.8. Figure 5.5
presents the distribution of the trajectory lengths, in time units of operations, across the
turbocharger and alternator fleets. Figure 5.6 presents the distribution of number of snapshots
recorded across the turbocharger and alternator fleets respectively. Figure 5.7 presents
the distribution of average gap between consecutive snapshots across the turbocharger and
alternator fleets respectively. This illustrates that the time-series is irregular across the trucks
and also for the same truck. Figure 5.8 presents the empirical log-hazard curves corresponding
to the failures observed in the turbocharger and alternator fleets. Same procedure used for
the log-hazard plot in Figure 4.4b was used here for the two fleets. The idea that the Scania
dataset comprises of clusters of similarly operating trucks is supported by the empirically
obtained log-hazard curves, given the range of the failure trajectory lengths and that the
log-hazard curve is split into several functions - as discussed in Section 4.4.1.
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(a) Turbocharger (b) Alternator.

Fig. 5.5 Histograms showing the failure trajectory lengths of the turbochargers and the
alternators in time units of operations, the corresponding component mentioned in the
sub-captions.

(a) Turbocharger. (b) Alternator.

Fig. 5.6 Histograms showing the number of snapshots across the turbocharger and the
alternator fleets, with the corresponding component mentioned in the sub-captions.
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(a) Turbocharger. (b) Alternator.

Fig. 5.7 Histograms showing the average durations between the turbocharger and alternator
fleets in time units of operations, the corresponding component mentioned in the sub-captions.

(a) Turbocharger. (b) Alternator.

Fig. 5.8 Empirical log-hazard curves obtained from the turbocharger and alternator fleets.

The idea that customisation of the trucks and the diversity of their operating environments
leads to presence of clusters of similarly operating trucks is supported by the summary
statistics of the fleet presented in this section. The failure trajectory lengths across the trucks
in both fleets observed in Figure 5.5 range from 1000 till more than 15000 time units. Such
range is significantly diverse and necessitates using a hierarchical model. The empirical
log-hazard curves shown in Figure 5.8 further confirm this fact as for both turbocharger and
alternator fleets, the log-hazard plots are split into several functions and span across a wide
range of operating time units. Comparing with the experiment discussed in Section 4.4.1,
this corresponds to the case where the simulated fleet comprised of clusters but no clustering
was implemented while plotting the log-hazard curves.
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5.3 Clustering the Scania Dataset

This section discusses three techniques for clustering the failure trajectories corresponding to
either component failures in the Scania dataset. The clustering efficiencies of the techniques
are also compared, based on the empirical log-hazard curves plotted for the clusters obtained
in each of the cases.

It should be noted that the collaborative anomaly detection technique presented in Chapter
3 is not implemented here in the case study to identify the failure trajectories. This is due to
(1) The asset condition data used for this case study were sparsely recorded in time domain,
and (2) the industry experts suggested that the heavy-duty trucks used for the case study did
not have any maintenance interventions until the failures, and also that they undergo steady
deterioration throughout the operations. Given this, it is assumed that anomaly detection is
not necessary and the beginning of the trucks’ lifecycle can be treated as the start of their
corresponding failure trajectories.

Observations noted in the experiment presented in Section 4.4.1 about the effect of the
quality of clustering on the empirical log-hazard curves are used as basis for comparing the
clustering techniques. It was shown in Section 4.4.1 that the log-hazard curves obtained
empirically from the clusters tend to become compact as the clustering is improved, both in
terms of the range of times-to-failures observed in the clusters and also by not being split
into multiple functions. As such, the technique herewith that showed maximum reduction in
the range of times-to-failures within a cluster was deemed suitable. The log-hazard curves
obtained without any clustering for the turbocharger and alternator failures are shown in
Figure 5.8 for reference of the reader.

Identifying the clusters of similarly deteriorating trucks in the Scania dataset was chal-
lenging particularly due to their operating parameters being recorded as histograms. Specific
challenges while using the histogram data for clustering the failure trajectories include com-
putational complexity while evaluating the distances, multi-modality of certain histograms,
and irregularities in the time-series.

Given the challenges, the first step in two of the following techniques were aimed at
transforming the time-series of histograms into corresponding point values for ease of
analyses. The transformed time-series of point values were subsequently compressed for
comparing across the trucks comprising the Scania dataset using the clustering technique
introduced in Section 4.3, where a polynomial function is estimated for the given time-series
followed by PCA and k-means clustering of the polynomial coefficients. The third technique
involves using specifications data to identify the clusters of similarly operating/ deteriorating
trucks in the Scania fleet.
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5.3.1 Using the Intersection Areas Across the Histograms

The aim of this technique is to quantify the shifts observed in the operating regimes, rep-
resented by the histograms, of the trucks along their failure trajectories as point values.
Underlying idea used to achieve this is to evaluate the similarities between two histograms in
the form of their percentage intersections [141]. For example, similarity of two distributions
with equal areas under the curves can be quantified by the proportion of their overlapping
area. If the overlap is 100% then the distributions would be identical and vice versa. This
is demonstrated in Figure 5.9 where the cases of high and low overlaps are shown. Since
the histograms in Scania dataset have same number of bins across all trucks, normalising
their values and evaluating overlapping areas should represent similarities between two given
histograms.

(a) High overlap. (b) Low overlap.

Fig. 5.9 An example of high and low overlapping areas in two distributions with equal area
under the curves. A high overlap indicates that the distributions are similar and vice versa.

The first step for implementing the above involves calculating differences across the
bin values of the consecutive histograms in the time-series (i.e. Ân

i=1[H
t
i �Ht�1

i ]), and
normalising them (i.e. Ht

i =
Ht

i�Ht
max

Ht
max�Ht

min
). Here Ht

i is the ith bin of the histogram consisting
of n bins and recorded at time-step t, and Ht

max and Ht
min are the maximum and minimum

bin values recorded for the histogram respectively. The differences between the consecutive
histograms represent the operating regimes of the trucks between the time intervals when the
corresponding histograms were recorded, and normalising them ensures that the histograms
had the same sum of bin values.

As the trucks were monitored since production, it is assumed they started operating in
a healthy condition, and that the first histogram represents the healthy operating regime of
the given truck. Evaluating the overlap of a later recorded histogram with the first recorded
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histogram therefore represents the similarity of the corresponding operating regime with a
healthy regime. Moreover, the immediate trends in the truck’s operations were quantified
by evaluating the overlaps between the consecutive histograms along its failure trajectory.
The area overlap across the consecutive histograms serves as a measure for deviation in the
truck’s condition compared to the previous snapshot, and therefore also immediate change in
its health compared to the initial condition. Evaluating the overlaps of a given histogram with
the initial and the previous histogram in the time-series also ensured that the directionality
was considered while reducing the histograms to point values.

To that end, each histogram was reduced to two values being: (1) its overlap with the
first recorded histogram representing the truck’s healthiest state, and (2) its overlap with
the antecedent histogram. The overlaps were evaluated by adding the minimum among
the corresponding bin values of the corresponding histograms. Mathematically, this was
evaluated as ÂN

i=1 min(Ata
i ,A

tb
i ) where A is the histogram feature containing N bins, i is the

bin index, and t is the indicator of the timestamp. Overlap of 1 would indicate that the
histograms are identical, and vice versa. Steps followed as a part of this technique explained
above are summarised in Figure 5.10.
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Fig. 5.10 Flowchart describing the steps followed to transform the histograms into point
values by comparing the overlaps.

Figure 5.11 presents the implementation of the above steps for transforming the time-
series of one of the operating parameters recorded as histograms, for both turbocharger
and alternator fleets. The implementation is shown for a randomly sampled subset of 20
trucks, comprising of both healthy trucks and the trucks that encountered component failures,
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from each of the fleets. Time-series of operations data for the healthy trucks is shown for
comparison with the failure trajectories.

(a) Turbocharger (b) Alternator

Fig. 5.11 An example of two operating parameters transformed by evaluating the overlap with
the initial histogram (for the example corresponding to turbocharger) and with the antecedent
histogram (for the example corresponding to alternator)

The clustering technique described in Section 4.3 was then implemented to identify the
clusters of similarly deteriorating trucks using the operations data. Given the variation in the
time-series of the transformed histograms, a third degree polynomial was fit to each of the
two overlaps evaluated across the operating parameters. This was followed by implementing
PCA to reduce the number of features (coefficients of the polynomials), and finally the
k-means clustering to identify the clusters of similarly degrading trucks.

The number of components chosen after PCA were such that they explained more than
99.5% variance in the data, and the number of clusters for k-means clustering were iteratively
increased until the reduction in overall inertia was less than 10%. These stopping conditions
are same as the implementation in Section 4.3. Total 11 PCA components and 7 clusters
were used for the case of turbocharger failures, and 10 PCA components and 6 clusters were
used for the case of alternator failures.

The empirical log-hazard curves obtained for each of the clusters, for the turbocharger
and alternator fleets, using this technique are presented in Figure 5.12 where the log-hazard
curves for every cluster are shown with a separate colour.
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(a) Turbocharger (b) Alternator

Fig. 5.12 Empirical log-hazard curves obtained from the first clustering technique.

5.3.2 Using the Centres-of-mass of the Histograms

Although representing the trends in a failure trajectory, a drawback of the technique presented
in Section 5.3.1 was that it could evaluate the similarities across the histograms only with
respect to the given time-series. In other words, the failure trajectories transformed using the
technique in Section 5.3.1 could not be used to compare across the trucks, as the trucks could
have different initial operating regimes and therefore different representations of a standard
healthy histogram. Since the histograms of the time-series are compared with the initially
and the previously recorded histograms, the differences in the initial operating regimes of
two trucks couldn’t be incorporated.

The technique presented in this section involves reducing the differences across the
consecutive histograms to a single point value, by evaluating their centres-of-mass along
the x-axis. Differences between the consecutive histograms were calculated to represent the
operating regimes of the trucks between the time intervals of the corresponding the histograms.
Evaluating the centres-of-mass of the differences across the consecutive histograms was
then equivalent to using a moving window to calculate the average value of that operations
parameter, where the width of the moving window corresponds to the time difference between
the consecutive histograms.

The first step, same as the technique presented in Section 5.3.1, was to calculate the
differences in the bin values of the consecutive histograms comprising the time-series. The
ranges of the corresponding histogram bins were normalised in the next step from [0,1].
The lower limit of the first bin of the histogram of a given operating parameter was kept to
0 and the upper limit of the last bin at 1, with the ranges in between corresponding to the
equal bin widths. For example, if a given histogram had four bins, then the normalised bin
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ranges would be [0,0.25], [0.25,0.5], [0.5,0.75], and [0.75,1]. Bin widths of a histogram with
normalised range of the corresponding parameter were therefore calculated as 1

n , where n
represents the number of bins.

The above obtained histogram differences were reduced to their corresponding point
values by evaluating the centre of masses as:

HCOM =
Ân

i=1(Hi)⇤ (MHi)

Ân
i=1 Hi

Where HCOM and Hi are the centre of mass and the value of the ith bin of the histogram
H comprising of n bins, and MHi is the centre of the range of the ith bin of the histogram.

An example of histogram and its corresponding centre of mass is shown in Figure 5.13,
and transformation of a time-series of histograms into their corresponding point values is
shown in Figure 5.14. An example of reducing an operating parameter to point values is
shown for four trucks in the fleet in Figure 5.14, where the transformation of the histogram
time-series is shown for one truck, and similar transformation for the remaining three trucks
is shown without the representation of their corresponding histograms.
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Fig. 5.13 An example of histogram and its corresponding centre of mass.
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Fig. 5.14 Transformation of a time-series of histograms into their corresponding point values,
shown for four trucks as an example.

Figure 5.15 presents the implementation of the above steps for transforming the time-
series of one of the operating parameters recorded as histograms, for both turbocharger and
alternator fleets. In this case, every recorded histogram was reduced to a single value (being
its corresponding centre-of-mass). The implementation is shown for a randomly sampled
subset of 20 trucks, comprising of both healthy trucks and the trucks that encountered
component failures, from each of the fleets. Time-series of operations data for the healthy
trucks is shown for comparison with the failure trajectories.

The clustering technique described in Section 4.3 was then implemented to identify the
clusters of similarly deteriorating trucks using the operations data. Given the variation in the
time-series of the transformed histograms, a third degree polynomial was fit to each of the
two overlaps evaluated across the operating parameters. This was followed by implementing
PCA to reduce the number of features (coefficients of the polynomials), and finally the
k-means clustering to identify the clusters of similarly degrading trucks.

The number of components chosen after PCA were such that they explained more than
99.5% variance in the data, and the number of clusters for k-means clustering were iteratively
increased until the reduction in overall inertia was less than 10%. These stopping conditions
are same as the implementation in Section 4.3. Total 8 PCA components and 6 clusters were
used for the case of turbocharger failures, and 8 PCA components and 6 clusters were used
for the case of alternator failures.
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The empirical log-hazard curves obtained for each of the clusters, for the turbocharger
and alternator fleets, using this technique are presented in Figure 5.16 where the log-hazard
curves for every cluster is shown with a different colour.

(a) Turbocharger (b) Alternator

Fig. 5.15 Examples of the histogram time-series transformed into point values for one
operating parameter.

(a) Turbocharger (b) Alternator

Fig. 5.16 Empirical log-hazard curves obtained from the second clustering technique.

5.3.3 Using the Specifications Data

The third technique used for identifying the clusters in the Scania dataset was to use the
technical specifications. The technical specifications provided in the Scania dataset reflect
the customisation opted for the corresponding trucks. And because the customisation is
chosen based on the anticipated usage of the trucks by their owners, clustering based on
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the technical specifications provides for the information needed to identify the clusters of
similarly operating trucks.

The names and the cardinalities of the technical specifications used for clustering the
failure trajectories for both alternator and turbocharger failures are mentioned in Table 5.2. It
should be noted that the grouping is unique to this study, where the trucks are believed to be
operating similarly if they share the same combinations of the technical specifications. Given
the large number of combinations possible for the set of specifications, the failures observed
in only those clusters were considered which had more than one truck.

Table 5.2 Technical specifications and corresponding cardinalities for clustering similarly
operating trucks.

Turbocharger
specification

Cardinality
Alternator

specification
Cardinality

Cab type 3 Cab type 3
Engine type 6 Battery system type 2
Exhaust break 1 Battery 4
Exhaust outlet direction 4 Auxiliary heating 5

Engine type 6
Alternator charge 3

Figure 5.17 presents the number of trucks corresponding to the possible combinations
of the specifications, for the failures observed in the turbocharger and alternator fleets.
Cluster ids shown along the x-axis correspond to the possible combinations of the technical
specifications. Figure 5.18 presents the empirical log-hazard curves obtained from the trucks
clusters identified using the specifications data.
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(a) Turbocharger (b) Alternator

Fig. 5.17 Number of trucks corresponding to the distinct possible combinations of techni-
cal specifications. Each point along the x-axis represents a combination, and only those
combinations representing at least 2 trucks are used as clusters.

In Figure 5.17 it is observed that a relatively high number of trucks belong to only the
first three and the first two combinations for turbochargers and alternator failures respectively.
The plots in Figure 5.17 show that majority of the clusters do not contained sufficient number
of observed failures, and therefore must rely on collaborative prognosis.

(a) Turbocharger (b) Alternator

Fig. 5.18 Empirical log-hazard curves obtained from the third clustering technique.

5.3.4 Comparing the Clustering Techniques

The clustering suitable for the Scania dataset was identified by comparing the empirical
log-hazard curves presented in Figures 5.12, 5.16, and 5.18 corresponding to the three
clustering techniques. Drawing from the experiment presented in Section 4.4.1, a good
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clustering algorithm is characterised by identifying sub-fleets with minimal diversity in the
deterioration rates of the comprising clusters. This is reflected in the log-hazard plots as
narrower ranges in the times-to-failures and not being split into multiple functions.

It is observed in Figures 5.12, 5.16, and 5.18 that using specifications data for clustering
results in the empirical log-hazard plots with minimum ranges in the corresponding times-
to-failures, and also the log-hazard plots corresponding to a single cluster are not split into
multiple functions. In the log-hazard plots of Figures 5.12 and 5.16, the clusters obtained
are highly skewed in the sense that most trajectories are clustered together, resulting in
negligible reduction in the ranges of the time-to-failures of the comprising trucks and also
the log-hazard curves being split into multiple functions. As such, the clusters obtained using
the specifications data of the trucks are used for further analyses presented herewith.

5.4 Modelling the Failures in Scania Dataset

This section presents the implementation of the fleet-wide, cluster-specific, and hierarchical
Weibull density models for the Scania dataset, with the formulations same as in Sections 4.5
and 4.6. The models are briefly summarised in Section 5.4.1.

5.4.1 Model Formulation Summaries

Consider a fleet comprising of K 2Z+ asset clusters indexed as {1,2, ...,k}, each comprising
of IK 2 Z+ assets indexed as {1,2, ..., i}. The probability of failure f (t(i,k),ak,bk,gk,) at
time t for the ith asset in kth cluster is given according to a 3-parameter Weibull distribution
as:

f (t(i,k),ak,bk,gk,) =
ak

bk

⇣t� gk

b

⌘ak�1
e�
�

t�gk
bk

�ak

(5.1)

Where a , b , and g are the shape, scale, and location parameters of the Weibull distribution.
The location parameter (g) is not considered here as the starting point of operations are all at
t = 0.

The fleet-wide model involves complete pooling of the data, and ignores the diversity
of degradation behaviours observed across the fleet. The Weibull parameters in the case of
the fleet-wide model are inferred by treating the entire fleet as a single cluster and placing a
non-informative uniform prior over the Weibull parameters as:

a ⇠N (0,1000)
b ⇠N (0,1000)

T⇠Weibull(a,b )
(5.2)
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In the case of cluster-specific models however, it is believed there exists independent
Weibull distributions from which the times to failures of all the assets in that cluster are
sampled. Nevertheless, non-informative priors are used for the Weibull parameters. Let Tk

denote the array of times to failures observed in the cluster k, which are sampled from the
corresponding independent Weibull distributions as:

ak ⇠Nk(0,1000)
bk ⇠Nk(0,1000)

Tk ⇠Weibull(ak,bk)

(5.3)

The hierarchical model is an extension of the independent cluster-specific models, where
two Normal distributions are defined at a higher level from which the Weibull parameters
of the clusters are sampled. This is in contrast to using non-informative priors and enables
learning across the clusters. Concretely, the ak and bk parameters of the clusters are each
sampled from their corresponding Normal distributions at a higher level which are common
to all the clusters present in the fleet. The hierarchical Weibull model is shown as a block
diagram in Figure 5.19 and mathematically described as:

Fig. 5.19 Block diagram of the hierarchical Weibull model.
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µa ⇠N (0,1000)
sa ⇠ InverseGamma(1,1)

µb ⇠N (0,1000)
sb ⇠ InverseGamma(1,1)

ak ⇠Nk(µa ,sa)

bk ⇠Nk(µb ,sb )

Tk ⇠Weibull(ak,bk)

(5.4)

For implementing the fleet-wide model, the times-to-failures of all the trucks were
treated as one single cluster thus pooling all the observed times-to-failures. However, it
was observed in the empirical log-hazard curves corresponding to the clustering techniques,
shown in Section 5.3, that clustering the fleet using technical specifications was deemed
most suitable. The corresponding clusters obtained for turbocharger and alternator failure
trajectories were used for implementing the cluster-specific and hierarchical models for the
results presented in this section.

5.4.2 Model Implementations

Figure 5.20 shows the results obtained when the fleet-wide model was implemented for
modelling the observed times-to-failures for the cases of turbocharger and alternator failures.
The background plot in Figure 5.20 represents the distribution of the times-to-failures across
the fleet as a histogram, and on top of which is plotted the mode and the central 80-percentile
of the inferred Weibull density distributions.
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(a) Turbocharger (b) Alternator

Fig. 5.20 Fleet-wide Weibull model inferred for the times-to-failures observed in turbocharger
and alternator fleets.

The results obtained from implementing the cluster-specific vs hierarchical Weibull
models are shown in a similar manner in Figures 5.21 and 5.22 for the turbocharger and the
alternator failures respectively. The cluster-specific vs hierarchical model inferences shown
together on the corresponding plots for the ease of comparison.

Given the large number of clusters in fleets corresponding to either targeted components,
only 12 clusters with fewest number of observed failures are shown. Nevertheless, all the
clusters were used in the inference process and the performances of the cluster-specific and
the hierarchical models were seen to converge as the number of observed failures increased
(ref. Section 4.7 for a comprehensive experiment on the impact of number of observed
failures conducted with the simulated dataset).
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Fig. 5.21 Cluster-specific and hierarchical Weibull models inferred for the clusters in the
turbocharger fleet.
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Fig. 5.22 Cluster-specific and hierarchical Weibull models inferred for the clusters in the
alternator fleet.
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The fleet-wide, cluster-specific, and hierarchical Weibull density models were imple-
mented for the Scania dataset in this section. The Weibull parameters in all three models
were associated with the same family of non-informative priors. The priors however were
modelled jointly for the hierarchical model and independently for the cluster-specific models.
It can be observed for the case of fleet-wide model in Figure 5.20 that the parameters are
associated with low uncertainty as the central 90-percentile inference shown by the shaded
region is extremely close to the mode. This is due to large amount of data pooled from all
the trucks. However, the times-to-failures across the fleet vary over a wide range causing the
inferred distribution itself to be highly spread out. On the other hand, the cluster-specific
distributions presented in Figures 5.21 and 5.22 tend to be relatively specific given a smaller
range of times-to-failures for a given cluster compared to the entire fleet. But the drawback
associated with the cluster-specific models is that the inferred distributions are associated
with a high uncertainty, due to presence of fewer number of observed failures. The inferences
are also biased when the time-to-failures observed in the corresponding cluster, leading to
the distributions with exceptionally low variance.

The above observation is true specifically for the clusters 2, 3, 5, 7, and 12 in Figure 5.21,
and nearly all the clusters in Figure 5.22 where using hierarchical model is recommended
due to fewer number of observed failures. The distributions inferred from the hierarchical
model are more certain compared to those inferred using the cluster-specific models as they
incorporate the knowledge from the rest of the fleet as well as are able to account for the
smaller range of times to failures observed in a cluster. For example the distributions inferred
using a hierarchical model for cluster 7 vs that inferred for cluster 5 in Figure 5.22. For the
clusters with high number of observed failures, the hierarchical and cluster-specific models
tend to converge like it is observed in clusters 8 and 11 in the turbocharger fleet.

5.5 Conclusions

This section summarises the insights and challenges while implementing a hierarchical
model for an industrial fleet, and for the case of Scania dataset specifically. Future research
directions for prognosis of the trucks maintained by Scania is also provided in the following
points:

1. A high prevalence of clusters are observed within the Scania fleet, most of which are
associated with insufficient number of failures for independent cluster-specific models.
This is often the case for most industrial fleets what comprise of diverse assets, or
assets operating in diverse environments. Hierarchical model is necessary in such
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instances for modelling the failures as the fleet-wide model is associated with high
bias whereas the cluster-specific models are associated with a high variance.

2. Clustering is critical for achieving optimal performance with the hierarchical model.
Asset condition data provides information about similarities across the assets within a
fleet, but other sources of information such as expert knowledge or technical specifica-
tions should not be ignored, like in the current case study. For the Scania dataset the
asset clusters could not be identified using the operating parameters and the techniques
presented herewith, but the technical specifications provided for a straightforward way
to reasonably cluster the assets. It is concluded from the estimated Weibull density
functions describing the times-to-failures presented in Section 5.4.2 that the hierarchi-
cal model is able to reduce the variance associated with the independent models for an
industrial dataset.

3. The empirical log-hazard curves presented in Section 5.3 show that meaningful clus-
ters could not be obtained using the operations data corresponding to the first two
techniques, and therefore the clusters obtained using the technical specifications were
deemed suitable for modelling the observed failures corresponding to the third tech-
nique. The main challenges while using the operating parameters from the Scania
dataset for clustering the failure trajectories was the histogram nature of the data and
irregularities across the time-series. The transformed time-series presented in Fig-
ures 5.15 show that the values of the histograms across the trucks and the failures were
concentrated around the same range throughout the trajectories with minimal trends.
Similarly in Figure 5.11 as well no significant trends were noticed in the intersection
across the consecutive histograms and with the initial healthy-regime histogram.

4. In the case study presented herewith, the condition data recorded from the trucks were
stored as histograms. Condition data recorded from the assets often exists in various
formats including continuous point values, categorical warning levels, discrete events,
or even human notes. While storing the asset condition data, the industries must be
aware of the information vs storage costs trade off. For the current case specifically
the storage costs decline as the number of bins and the frequency of the snapshots are
reduced, but at the same time it would not show any trends in the failure trajectories.

5. An important future research direction for prognosis of the trucks maintained by
Scania is to explore techniques for clustering the failure trajectories using operating
parameters, as the clusters obtained using technical specifications do not provide real-
time condition and RUL estimations for the trucks. When a new truck is introduced, its
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technical specifications can be used only to get a static estimate of the RUL based on
which cluster the truck belongs to. However, it is shown in Chapter 4 that a hierarchical
model can be implemented for real-time prognosis of an asset using the condition data,
as the clusters in the fleet are continuously updated as more data is acquired. Similar
implementation is possible for Scania is the operating parameters representing the
real-time conditions of the trucks are used for clustering.





Chapter 6

Conclusions and Future Research
Directions

This chapter presents the general conclusions to this thesis along with a summary of the
academic contributions, limitations of the proposed techniques, and the future research
directions. The following chapter is structured as: Section 6.1 presents a recap of the
research questions introduced in Chapter 1, and discusses the results presented in this thesis
in the context of the research questions. Section 6.2 presents a summary of the academic
contributions in the form of the peer-reviewed articles published or under review during the
course of this research. The shortcomings of the techniques presented in this thesis are listed
in Section 6.3, and the future research directions are presented in Section 6.4.

6.1 General Conclusions

This section presents a recap of the research questions introduced in Chapter 1, and discusses
the results presented in this thesis in the context of the research questions.

Chapter 1 highlighted that collaborative prognosis is critical for data-driven prognosis
because industrial fleets are non-ergodic systems comprising of assets operating in diverse
conditions. While modelling the condition data for prognosis applications, industries either
rely on a single fleet-wide model trained using all the data pooled together or on independent
models trained using the isolated data from a single asset. Both these techniques are
unsuitable for prognosis applications because the fleet-wide model is bound to be associated
with a high bias, whereas the independent clusters/ assets-specific models are associated
with high variance especially if an asset has sparse data [104, 155]. It was also explained
in Chapter 1 that anomaly detection is an essential element of the data-driven prognosis



140 Conclusions and Future Research Directions

pipeline, and a similar challenge exists for the prevalent anomaly detection techniques in the
industries.

The problem introduced in Chapter 1 was further supported and analysed through a
literature review presented in Chapter 2. It was explained in Chapter 2 that if an asset has
insufficient failure locally available data, it is beneficial for that asset to rely on other similar
assets in the fleet for health estimation. Collaborative prognosis is a technique that mitigates
the problem of sparse data by identifying clusters of similarly operating assets and learning
within the asset clusters. The advancements in the internet, computation, and communication
technologies have enabled distributed control and implementation of collaborative prognosis
in real time. However, a critical research gap exists due to lack of a systematic technique for
collaborative prognosis that enables knowledge transfer across the asset clusters. It is also
outlined in this chapter that statistical hierarchical modelling is a systematic technique for
enabling collaborative prognosis. Applications of statistical hierarchical modelling across
the industries for addressing similar problems are also discussed.

To that end, this thesis contributes towards bridging the research gap for a technique
to enable collaborative prognosis in industrial fleets. The following points summarise
the research questions outlined in Chapter 1 and the chapters contributing towards the
corresponding research questions:

1. Research Question 1: How to model the asset fleet data systematically to enable
collaborative prognosis and anomaly detection? Statistical hierarchical modelling is
identified and proposed in this thesis (in Chapter 2) as a solution for enabling collabo-
rative prognosis. The use of the hierarchical model is demonstrated for collaborative
anomaly detection (in Chapter 3), collaborative prognosis (in Chapter 4), and modelling
the times-to-failures in an industrial dataset (in Chapter 5).

2. Research Question 2: How effective is the technique of statistical hierarchical mod-
elling for collaborative prognosis and anomaly detection? This research question aims
at exploring the added advantages or drawbacks of using a hierarchical model for
collaborative prognosis, both for simulated and a real industrial dataset. The proposed
technique of hierarchical modelling is analysed in this thesis for real-time collaborative
anomaly detection and collaborative prognosis (in Chapter 3) applications in simulated
datasets. Moreover, an industrial dataset was also used to study a case for modelling
the observed times-to-failures using a hierarchical model (in Chapter 5).

Statistical hierarchical models are characterised by multi-level modelling. The data
are sampled from the lower level models and parameters of the lower level models are in
turn sampled from the shared higher level models [53]. For the collaborative prognosis
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applications, the lower level models model the data corresponding to each asset or a sub-fleet
of similarly operating assets. A hierarchical model encourages learning for those assets
with sparse data as the higher level models incorporate prior information about the general
behaviour observed in other similar assets comprising the fleet [30].

In Chapter 3 a hierarchical model of multi-variate Gaussian is proposed and demonstrated
for anomaly detection in a simulated fleet of assets. The asset data were simulated for the
experiments from the underlying Gaussians characterised by clusters with different sets of
means and variances in the multi-dimensional space. This represented a non-ergodic fleet
of assets, and the actual cluster of the assets was unknown to the hierarchical model. A
latent variable was introduced that denoted the predicted cluster of the assets, and the model
parameters were optimised using the expectation maximisation algorithm. Bhattacharyya
distance was used to compare the true parameter values across the assets with those estimated
using (1) hierarchical model, (2) asset-specific models, and (3) a fleet-wide model. The
experimental results, in Figure 3.9, showed that the hierarchical model was significantly
better in the early periods of the asset operations when sufficient data were not available
locally, achieving more than 50% reduction in the Bhattacharyya distance compared to the
independent models. While both independent and hierarchical model estimates converged
to the true parameter values, the fleet-wide model failed to converge and showed highest
variance in the classification accuracies evaluated across the fleet for the testing dataset,
shown in Figure 3.6. It was also concluded from the experimental results shown in Figure 3.6
that the advantage of the hierarchical model depends on the proportion if the low-data assets
in the fleet.

Chapter 4 presented a hierarchical Weibull model, where the parameters of the Weibull
models used to model the times-to-failures observed in clusters of similarly operating assets
shared common non-informative Gaussian priors. The hierarchical Weibull model was used
to model the times-to-failures in a fleet of 200 simulated turbofans comprising the C-MAPSS
dataset. The turbofans operating in the same environment and could fail in either due to high
pressure compressor failure or fan degradation. The empirical log-hazard curves, shown in
Figure 4.4, suggested that the turbofan fleet comprised of sub-fleets of similarly operating
assets. The same was also observed when a single Weibull distribution was used to model
the times-to-failures across the fleet, in Figure 4.11. The procedure for identifying similarly
operating assets using the corresponding failure trajectories was described in Section 4.3. It
was observed that some of these clusters were associated with sparse number of failures and
therefore modelling them using independent Weibull models led to high variance, shown in
Figures 4.13 and 4.14. It was observed that the variance associated with the independent
Weibull models was significantly reduced especially when a cluster had sparse data, when
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the hierarchical Weibull model was used. This is shown in Figure 4.18 corresponding to the
experiment where the number of failures observed within a cluster of assets were sequentially
increased to compare the performances of the hierarchical and independent Weibull models.
Another experiment was also conducted where the higher level parameters were controlled
to show their effect on the lower level estimates, the results from which are presented in
Figure 4.19 and 4.20. It was concluded from this experiment that the higher level parameters
can be adjusted by the operators to incorporate the expert knowledge or other sources of
information about the similarity across the clusters while estimating the hierarchical model
parameters.

The procedure for real-time collaborative prognosis using the aforementioned hierarchical
model was also presented in Chapter 4 using a simulated turbofan fleet. The procedure for
implementing the hierarchical model for real-time collaborative prognosis can be summarised
in the following steps: (1) preprocess, (2) cluster, (3) model, and (4) predict which are shown
in Figure 4.21. Moreover, an experiment was conducted where the quality of clustering was
varied to analyse its effect on the overall predictive performance of the algorithm. It was
concluded that the performance of the hierarchical model critically depends on clustering. In
Figure 4.25 it is observed that the errors in predictions, in terms of accuracy and the variance
across the testing dataset, significantly reduce as the turbofans approach the failures. The
errors in predictions in the early time-steps of operations can be mitigated if the clustering is
supported by other sources of information such as expert knowledge or specifications data.
The importance of clustering for collaborative prognosis using hierarchical Weibull model is
further supported by the fact that the errors in the final segment in the case of threshold 0.1
(good clustering) are one-fourth of those in corresponding segment of threshold 0.5 (poor
clustering) in Figure 4.26.

In Chapter 5, a case study was presented that involved modelling the times-to-failures in
a fleet of long-haulage trucks. It was noted via the empirical log-hazard curves in Figure 5.12
that the fleet comprised of clusters of similarly operating trucks resulting from customisation
and diversity in their operating conditions. Section 5.3 discusses three techniques used for
identifying the clusters, two of which involved using the condition data for clustering. It
was concluded from Figures 5.12 and 5.16 that the clusters of similarly operating trucks
could not be identified using the condition data in its current form and preprocessing. The
technical specifications were therefore used to identify the clusters, the empirical log-hazard
curves obtained thereof are presented in Figure 5.18. Some of the identified clusters were
associated with sparse number of historical failures, and therefore the hierarchical Weibull
model was deemed appropriate for modelling the times-to-failures across the fleet. It was
concluded in this chapter that modelling the times-to-failures using a hierarchical Weibull
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model reduced the variance for the clusters with sparse data, compared to modelling their
times-to-failures using independent cluster-specific models for a real industrial fleet. The
most challenging aspect of implementing the hierarchical model for the industrial fleet in
this case study was identifying the clusters of similarly operating assets. Multiple sources of
information should be used for the purpose of clustering but the operators must be aware that
collaborative prognosis critically depends on identifying reasonable clusters of the assets.

6.2 Academic Contributions

This section presents a summary of the academic contributions in the course of this research.
The research questions, objectives, and publications stemming from the corresponding
contributions are also listed alongside:

1. Statistical hierarchical modelling for industrial asset fleets An extensive analysis
of industrial collaborative prognosis is conducted to identify the optimal use cases
and prevalent challenges. Furthermore, a survey of various learning techniques for
data arising from a population shows that the technique of hierarchical modelling is a
suitable solution to enable collaborative prognosis. By sharing information between
similar assets, hierarchical Bayes with mixed effects improves the predictive perfor-
mance of the asset-specific models. This is presented in Chapter 2, and addresses the
research objective 1. This contribution has also led to the journal article [20] Knowl-
edge Transfer in Engineering Fleets: Hierarchical Bayes for Multi-Task Learning with
Mixed Effects in Computer Aided and Civil Infrastructure Engineering by Lawrence A.
Bull, Maharshi Dhada, Olof Steinert, Tony Lindgren, Ajith Kumar Parlikad, Andrew
Duncan, Mark Girolami The paper proposes a population-level analysis to addresses
issues of data sparsity when building predictive models of engineering infrastructure.
It is shown that parameter estimation is improved when sub-fleets of assets are allowed
to share correlated information at different levels in the hierarchy. In turn, groups with
incomplete data (automatically) borrow statistical strength those that are data-rich. The
correlations can be inspected to inform which assets share information for which effect
(i.e. parameter).

2. Statistical Hierarchical Model for Anomaly Detection A hierarchical model for
anomaly detection is presented that systematically identifies similar assets and enables
collaborative learning within the clusters of similar assets. It addresses the problem
of anomaly detection with sparse data in asset fleets. Results obtained with the
hierarchical model show a marked improvement in anomaly detection for assets having
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low amount of data, compared to independent modelling or having a model common
to the entire fleet. Analytical solution to estimate the model parameters using the
asset data is also derived as an academic contribution. This is presented in chapter 3,
addresses the research questions 1 and 2, and research objectives 2 and 3. This work
also led to the journal article [30] Anomaly detection in a fleet of industrial assets with
hierarchical statistical modeling in Journal of Intelligent Manufacturing (2019) by
Maharshi Harshadbhai Dhada, Mark Girolami, Ajith Kumar Parlikad

3. Hierarchical Weibull model for modelling times-to-failures in an asset fleet A
hierarchical Weibull model is presented for modelling the observed times-to-failures
in an asset fleet. Furthermore, it is shown using a simulated fleet of assets that a
hierarchical model inherently encourages collaborative learning for the clusters with
sparse data. This is because it defines common prior distributions for the cluster-
specific Weibull parameters at a higher level. The hierarchical model is able to mitigate
the problem of high variance in cluster-specific independent models by learning from
the failures occurring in the other clusters comprising the fleet. This is shown in
Chapter 4, addresses the research questions 1 and 2, and research objectives 4 and
5. This work has also led to the publication of Modelling Failures in an Asset Fleet
using a Statistical Hierarchical Model in European Workshop on Structural Health
Monitoring (2022) by Maharshi Dhada, Lawrence A. Bull, Mark girolami, Ajith Kumar
Parlikad

4. Using the hierarchical Weibull model for real-time collaborative prognosis The
procedure for using the hierarchical Weibull model for real-time collaborative prog-
nosis is presented. The procedure involves clustering the existing failure trajectories,
followed by identifying the closest cluster to the operating asset. Experimental results
show the effect of the clustering threshold parameter on the predictive performance
and also the increasing certainty as more data is accumulated. This can be found in
Chapter 4, addressing the research questions 1 and 2, and the research objectives 4 and
5. This work has also led to the submission of Real-time Collaborative Prognosis using
a Hierarchical Weibull Model in Reliability Engineering Safety Systems by Maharshi
Dhada, Lawrence A. Bull, Mark Girolami, Ajith Kumar Parlikad

6.2.1 Additional, relevant contributions during the PhD Study

Additional contributions, in the form of academic publications, published during the course
of the PhD study are listed below:
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1. [34] Empirical Convergence Analysis of Federated Averaging for Failure Prognosis
in IFAC-PapersOnLine (2020) by Maharshi Dhada, Amit Kumar Jain, Ajith Kumar
Parlikad This paper empirically analyses the convergence of the Federated Averaging
(FedAvg) algorithm for a fleet of simulated turbofan engines. Federated Learning is an
emerging technique that has recently also been proposed as a fitting solution for prog-
nosis of industrial assets. However, even the most commonly used Federated Learning
algorithms lack theoretical convergence guarantees, and therefore their convergence
must be analysed empirically. Results demonstrate that while FedAvg is applicable
for prognosis, it cannot acknowledge the differences in asset failure mechanisms. As
a result, the prognosis framework needs to be modified such that similar failures are
clustered together before FedAvg can be implemented.

2. [31] Predicting Bridge Elements Deterioration, using Collaborative Gaussian Process
Regression in IFAC-PapersOnLine (2020) by Maharshi Harshadbhai Dhada, Georgios
M. Hadjidemetriou, Ajith Kumar Parlikad This paper presents a Gaussian Process
Regression (GPR) based collaborative model for predicting the condition of bridge
elements with limited available inspection data per bridge. This model has been
applied in 137 bridge decks, showing that collaborative prognosis has the potential to
predict the condition of different types of bridge elements, composing different types
of bridges.

3. [33] Secure and communications-efficient collaborative prognosis in IET Collaborative
Intelligent Manufacturing (2020) by Maharshi Dhada, Amit Kumar Jain, Manuel
Herrera, Marco Perez Hernandez, Ajith Kumar Parlikad This paper analyses the ability
of Federated Averaging for collaborative prognosis and ensuring sensitive operational
data is not shared between organisational boundaries. An example implementation is
demonstrated for the prognosis of a simulated turbofan fleet, where federated averaging
algorithm is used as an alternative for the data exchange step. The results confirm that
federated averaging retains the performance of conventional collaborative prognosis
while eliminating the exchange of failure data within assets. This removes a critical
hindrance in industrial adoption of collaborative prognosis, thus enhancing the potential
of predictive maintenance. However, the parameters need to be carefully tuned for
optimal performance, and Federated Averaging is not capable of incorporating multiple
failure modes in the fleet.

4. [32] Comparison of Agent Deployment Strategies for Collaborative Prognosis in 2021
IEEE International Conference on Prognostics and Health Management (ICPHM)
by Maharshi Dhada, Marco Perez Hernandez, Adrià Salvador Palau, Ajith Kumar
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Parlikad This paper analyses the effects of Digital Twin deployment strategies on the
effectiveness of predictive maintenance activities relying on distributed collaborative
prognosis. The results show that no single architecture or deployment strategy can be
deemed best across all failure rates and noise levels. The conclusion derived in this
paper provides guidance to the asset owners to choose the most suitable combination
for a given application.

5. In press Weibull Recurrent Neural Networks for Failure Prognosis Using Histogram
Data in Neural Computing and Applications by Maharshi Dhada, Olof Steinert, Tony
Lindgren, Ajith Kumar Parlikad This paper presents the first industrial use case of
Weibull Time To Event Recurrent Neural Networks (WTTE-RNN) for prognosis and
also a technique to preprocess the histogram data. WTTE-RNN combines the survival
analyses techniques with recurrent neural networks. It is concluded in this paper that
clustering is only beneficial as long as the training datasets per cluster are large enough
for the correponding models to not overfit. Moreover, the censored data from assets
that did not fail, are also shown to be incorporated while optimising the Weibull loss
function and improve prediction performance.

6. In press Population-Level Modelling for Truck Fleet Survival Analysis in European
Workshop on Structural Health Monitoring (2022) by Lawrence A. Bull, Maharshi
Dhada, Olof Steinert, Tony Lindgren, Ajith Kumar Parlikad, Mark Girolami This paper
stems from the work presented in chapter 5, addressing the research question 2, and
the research objective 6. Population-level modelling is used in this paper to address
issues of data sparsity in the survival analysis of a truck fleet. Specifically, hierarchical
Bayes with mixed effects improves the predictive capability of hazard models. A set
of correlated functions is learnt over the vehicle population, in a combined model, to
approximate fleet predictors. Model uncertainty is reduced when sub-fleets of vehicles
are allowed to share correlated information. In turn, vehicle groups with incomplete
data (automatically) borrow statistical strength from data-rich groups.

6.3 Limitations of the Proposed Techniques

This section presents the limitations of the techniques presented in this thesis, which are
listed below:

1. The hierarchical multi-variate Gaussian model for anomaly detection presented in
Chapter 3 assumes that the asset operations are static, in the sense that the means/
variances of the asset operations do not change during the operations. The proposed
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model is therefore not applicable for the scenarios where the assets perform cyclic or
multiple operations.

2. The hierarchical multi-variate Gaussian model requires the number of underlying asset
clusters in the fleet to be known a priori. The operators are often able to determine this
based on the expert knowledge or the number of clusters can be optimised similar to
the procedure presented in Section 4.3. Nevertheless, the hierarchical model is not a
standalone solution for a fleet of assets for which no information is available about the
asset operations.

3. The hierarchical Weibull model introduced in Chapter 4 considers the clustering and
preprocessing steps separately, unlike the hierarchical multi-variate Gaussian model
where the clusters and the hierarchical model parameters are jointly optimised. As
such, the Weibull model does not provide an end-to-end solution for collaborative
prognosis. The performance of the model critically relies on the clustering, and the
operators must ensure that the asset clusters are reasonably determined for the given
application. An example of this can be seen in Chapter 5 where the clusters of assets
could not be satisfactorily determined using the condition data, and therefore the
technical specifications had to be used for determining the asset clusters.

4. For both hierarchical multi-variate Gaussian and hierarchical Weibull models, imple-
menting them in real-time involves re-evaluating all the steps from clustering until
prediction. In other words, when a new data point is obtained for the operating assets,
the hierarchical model parameters are not updated but rather re-evaluated. This is
computationally expensive and therefore a critical drawback of the proposed technique
in the long run.

5. Lastly, it should be noted that the proposed methodologies of using the hierarchical
statistical models for industrial collaborative prognosis go hand-in-hand with expert
knowledge. The underlying idea is to identify similar assets or asset clusters, and
enable information sharing amongst them. Hierarchical modelling of the data enables
information sharing, however similarity across the assets in most cases is highly
subjective depending on the application. It can be noted that in Chapter 3 Figure 3.4
that relying solely on the data can result in sub-par clustering, and expert knowledge
is required to assist the same. Similarly also for the application in Chapters 4 where
the subjective nature of clustering and its effect on the prediction performance is
observed in Figures 4.5b and 4.26 respectively. Lastly, the industrial case study
presented in Chapter 5 also discusses in Section 5.3 that often for the industries no
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statistical method can identify the clusters and the expert knowledge must be used
for clustering. Clustering using the expert knowledge can rely on for example the
make or types of assets, or on their operating conditions. This knowledge can be
incorporated in the higher level distributions of the hierarchical model, such that a
higher variance corresponds to a fleet comprising of assets with minimal similarity and
vice versa. Figures 4.19 and 4.20 explain this concept where the effect of the higher
level distribution is shown for increasing variance.

6.4 Future Research Directions

This thesis proposes that statistical hierarchical modelling is a systematic technique to realise
collaborative prognosis for the industrial fleets. The research presented herewith paves way
for exciting extensions in various directions, which are listed in the following points:

1. An immediate extension of the research presented in this thesis is to develop dynamic
versions of the hierarchical models presented herewith. A dynamic hierarchical model
shall involve updating the model parameters rather than re-evaluating them as in
the current implementations. This should significantly reduce the computational
complexity and in turn the costs for managing large asset fleets.

2. A realistic extension of the hierarchical multi-variate Gaussian model for anomaly
detection presented in Chapter 3 would be to incorporate the fact that the asset opera-
tions are not static. This can be done by using a Kalman filter in conjunction with the
multi-variate Gaussians. Kalman filters excel at learning the cyclic and serial patters,
which are often the case for industrial asset operations [26].

3. The example implementation in Chapter 3 was shown using a simulation fleet of assets.
An interesting follow up work would be to analyse how the hierarchical anomaly
detection model performs for a real world fleet of assets. Such analysis can also
analyse the extent of improvement in overall maintenance cost to the organisation.
Moreover, the real world implementation would enable including the categorical data
for clustering the assets and improve the accuracy of the EM algorithm. This is
explained in Section 3.2.2.

4. An important conclusion from the experiments presented in Chapter 3 was that a low
data category asset benefits the most from the hierarchical model. Moreover, that asset
has nothing to contribute towards the general fleet knowledge. Therefore, it would be
interesting to analyse how a hierarchical model would perform if only the medium and
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high data category assets were allowed to contribute to the higher level distributions,
whereas the low data category assets only learn from them.

5. The clustering step of the hierarchical Weibull model introduced in Chapter 4 can be
implemented using techniques such as Dirichlet-processes Gaussian mixture models
to evaluate the number of sub-fleets of similarly operating assets [128]. Clustering
and prediction steps can also be jointly implemented, like in [124] for neural network
models. However, it should be noted that different formats of asset condition data re-
quire different clustering algorithms to identify the sub-fleets of similarly deteriorating
assets.

6. Future research should focus on implementing the proposed hierarchical models in a
distributed setting for a fleet of assets using the multi-agent system architectures. Using
distributed multi-agent system architectures enhances the Distribution, Flexibility,
Adaptability, Scalability, Leanness, and Resilience of collaborative prognosis for the
industrial fleets [136].

7. While this thesis focuses on evaluating the accuracy and confidence of the predictions
using hierarchical models, the future research can extend this to evaluating the overall
business cost of the predictive maintenance pipeline relying on the hierarchical models.
This involves evaluating the cost of operations incorporating the anomaly detection,
prognosis, maintenance planning, and maintenance resources.

8. Future research should also focus on evaluating the value of information of obtaining
and storing the condition data from the assets. As shown in Chapter 5, the industries
often optimise the data storage vs the information costs, which could result in sub-
optimal performances of the prognosis algorithms. An interesting future research
direction is therefore to evaluate the impact of reducing the granularity of the asset
condition data on the prognosis ability.

9. It should be noted that the procedure for clustering and real-time collaborative prog-
nosis presented in Chapter 4 assumes maintenance-free operations of the industrial
assets. This assumption is made to resemble a stable failure trajectory of the assets,
so that the asset deterioration depends only on the systemic wear and tear, and can be
modelled as a single function. In case of a maintenance intervention the asset health is
revived to different degrees and therefore adds an external element of uncertainty. If a
fleet comprises assets that undergo maintenance interventions, each segment of asset
operations between the maintenance operations must be treated independently.
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10. Collaborative prognosis relies on clustering the assets based on their operating con-
ditions, such that the clusters of assets in homogeneous operations can be identified.
Clustering therefore forms a critical segment of the collaborative prognosis pipeline.
Statistical clustering algorithms rely on the asset condition data, that in turn reflect
the asset operating conditions. For the industries this highlights the importance of
data, both quantitatively and qualitatively, as it is. From an algorithm’s perspective,
any failure corresponds to the deviation in sensor data. On the other hand, expert
knowledge can also be relied upon to identify such clusters.
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Appendix A

Derivations of the E and M steps

E-step

For the case of asset fleets, the E-step involves first evaluating the expectation of z w.r.t. distri-
bution conditioned on X for parameter values q = q t . Since zi,k is binary, E(zi,k|(µ i,Ci)t ,q t)=

p(zi,k = 1|(µ i,Ci)t ,q t) = p(zi,k = 1|(µ i,Ci)t ,q t). Using Bayes’ rule:

p(zi,k = 1|(µ i,Ci)
t ,q t) =

p((µ i,Ci)t |zi,k = 1,q t)p(zi,k = 1)
ÂK

k=1 p((µ i,Ci)t |zi,k = 1,q t)p(zi,k = 1)
(A.1)

from equations 3.8 and 3.10 we know,

p(zi,k = 1|(µ i,Ci)
t ,q t) =

(N (µ i|mk,b�1
k Ci)I W (Ci|Lk,ak))(pk)

ÂK
k=1(N (µ i|mk,b�1

k Ci)I W (Ci|Lk,ak))(pk)
(A.2)

Where all distribution parameters correspond to the values obtained at M-step of latest
(tth) iteration. Let, p(zi,k = 1|(µ i,Ci)t ,q t) = g i,k. Therefore, our function Q(q ,q t) can be
deduced from equation 3.14 by replacing zi,k with g i,k:

Q(q ,q t) =
I

Â
i=1

Ni

Â
n=1

log(N (µ i,Ci))+
I

Â
i=1

K

Â
k=1

g i,k log
⇣

pkN (µ i|mk,b�1
k Ci)I W (Ci|Lk,ak)

⌘

(A.3)
After substituting the symbolic representation with the corresponding distribution func-

tions and parameters, Q(q ,q t) (not including constant terms, because they would become
zero after differentiation) becomes:
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The g i,k are not included in summations because they are supposed to be treated as
constants in the M-step that follows.

M-step

In M-step, q t+1 values are obtained for following (t+1)th E-step by maximising the Q(q ,q t)

function obtained in equation A.4 with respect to each of the q parameters, and treating g i,k

as constants. Calculations for partial derivatives of Q(q ,q t) w.r.t. each parameter are shown
below:
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Evaluating m̂k
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Evaluating âk

The below stated f (ak) must be maximised w.r.t. ak:

f (ak) =
1
2

ak log |Lk|Â
i

g ik�
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2

log(2)ak Â
i

g ik�

log
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Gd
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2
�◆

Â
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g ik�
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(ak +d +1)Â
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g ik log |Ci| (A.5)

But the presence of log
✓

Gd
�ak

2
�◆

Âi g ik term makes differentiation w.r.t. ak complex.

Therefore, a nonlinear optimisation must be used for evaluating ak values at the M-step of
every iteration. For the experiments discussed in this paper, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm was used to minimise � f (ak), with limits set as ak 2 (d,d +20).
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Evaluating p̂k

Evaluating p̂k is a constrained optimisation problem, because pk also have to satisfy an
additional condition of Âk pk = 1. Therefore, we need to maximise [Q(q ,q t)+h(Âk pk�1)]
w.r.t. pk, where h is the Lagrange multiplier. From equation A.4, we have:

∂ [Q(q ,q t)+h(Âk pk�1)]
∂pk

=)
Âi g i,k

pk
+h = 0

=) pk =
�Âi g i,k

h

But since Âk pk = 1; h = h(Âk pk) = �Âi Âk g i,k (from above) = �I (by definition,
because these are also the expectations of zi,k) where I are total assets in the fleet. Substituting
value of h in above equation, we get:

p̂k =
ÂI

i=1 g i,k

I





Appendix B

Proof for the Chi-squared Nature of the
Squared Mahalanobis Distance

Proof for the standard chi-squared nature of the squared Mahalanobis distances (D2
md) of

points with respect to a d dimensional multivariate Gaussian is presented here. This proof is
provided for the sake of completeness, where basic knowledge of linear algebra is assumed.
The reader is advised to refer [175] for the complete derivation, and also the empirical proof.

For any given point X in space, its squared Mahalanobis distance (D2
md) with respect to a

multivariate Gaussian with mean µ and covariance S is evaluated as (assuming orthonormal
eigenvectors):

D2
md = (X�µ)T S�1(X�µ)

Upon performing he eigenvalue decomposition of S�1, one obtains:

S�1 =UL�1U�1 =ULUT =
d

Â
k=1

l�1
k ukuT

k

Where uk is the kth eigenvector of the corresponding eigenvalue lk.
Therefore,
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Dmd = (X�µ)T S�1(X�µ) (B.1)

= (X�µ)T
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l�1
k (X�µ)T ukuT
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d
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h
l
�1
2

k µT
k (X�µ)

i
(B.5)

=
d

Â
k=1

Y 2
k (B.6)

Where Yk is a new random variable based on affine linear transformation of the random
vector X .

We know that a random variable Z = (X�µ) can be expressed as Z⇠N (0,S). Similarly,

the random variable Yk introduced in (38) is of the form Yk = l
�1
2

k µT
k Z. It can therefore be

expressed as Yk ⇠N (0,S2
k) where:

S2
k = l

�1
2

k uT
k Sl

�1
2

k uk

= l�1
k uT

k Sµk

Upon substituting S = Âd
j=1 l ju juT

j ,

S2
k = l�1

k uT
k Sµk

= l�1
k uT

k

⇣ d

Â
j=1

l ju juT
j
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µk
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d
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l�1
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k l ju juT
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k l juT
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Since all eigenvectors ui are pairwise orthonormal, the dotted products uT
k u j and uT

j uk

will be zero for j 6= k. Only for the case j = k we get:

S2
k = l�1

k lkuT
k ukuT

k uk

= l�1
k lk||uk||2||uk||2

= 1

The last step follows because the norm ||uk|| of an orthonormal eigenvector is equal to
1. The squared Dmd can thus be expressed as D2

md = Âd
k=1Y 2

k where Yk ⇠N (0,1). This is
also the exact definition of a standard chi-squared distribution with d degrees of freedom,
i.e. the sum of the squared of d random variables which are standard normally distributed.
Therefore, the squared Dmd is chi-squared with d degrees of freedom and can therefore be
used to obtain a critical value for anomaly detection.
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Appendix C

Extended Results From the Experiments
in Chapter 3

C.1 Results demonstrating the benefit of hierarchical mod-
elling for the low data category assets.

(a) l = 0; L = 1 (b) l = 5; L = 1

(c) l = 20; L = 1 (d) l = 100; L = 1

Fig. C.1 Box plots presenting the effect of gradually increasing data contained by the low
data category assets. The captions denote the corresponding deviations in the testing dataset
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(a) l = 0; L = 1 (b) l = 0; L = 2

(c) l = 0; L = 5 (d) l = 0; L = 10

Fig. C.2 Box plots presenting AUCs recorded across the assets belonging to the low data
category. The corresponding testing dataset deviations are denoted in the captions
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(a) l = 5; L = 1 (b) l = 20; L = 1

(c) l = 50; L = 1 (d) l = 100; L = 1

Fig. C.3 Box plots presenting AUCs recorded across the assets belonging to the low data
category. The corresponding testing dataset deviations are denoted in the captions
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C.2 Results from the experiment conducted for a shorter
range of asset means.

Figure C.4 shows the comparison of performances of the hierarchical model and independent
learning for the clusters with a narrow range of means representing the asset model types. The
asset clusters comprised of means ranging within (�5,5) for one model type and (295,305)
for the other. The covariance matrices used to generate data were the same as the ones shown
in (3.25 and 3.25). A slight improvement in performance of the hierarchical model can be
observed, due to the fact that the assets in a cluster here are more similar to one another.
Figure C.4 is evaluated in the same manner as Figure C.1 but for the training and testing
datasets corresponding to a narrower range of means.

(a) l = 5; L = 1 (b) l = 20; L = 1

(c) l = 50; L = 1 (d) l = 100; L = 1

Fig. C.4 Box plots presenting AUCs recorded across the assets belonging to the low data
category, but for a narrower range of means
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