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Abstract

The mathematical description of a new detailed particle model for polydis-
perse aggregate particles is presented. An aggregate particle is represented
as a collection of overlapping spherical primary particles and the model re-
solves the composition, radius and position coordinates of each individual
primary to form a detailed geometrical description of aggregate morphol-
ogy. Particles transform under inception, coagulation, surface growth, sin-
tering and coalescence processes. The new particle description is used to
model the aerosol synthesis of titanium dioxide (TiO2) aggregates from tita-
nium tetraisopropoxide (TTIP) precursor. TiO2 particles are formed through
collision-limited inception and growth reactions of Ti(OH)4 from the gas-
phase, produced from the thermal decomposition of TTIP. Coupling between
the particle population balance and detailed gas-phase chemistry is achieved
by operator splitting. A numerical study is performed by simulating a sim-
ple batch reactor test case to investigate the convergence behaviour of key
functionals with respect to the maximum number of computational particles
and splitting time step. Finally, a lab-scale hot wall reactor is simulated to
demonstrate the advantages of a detailed geometrical description. Simulated
particle size distributions were in reasonable agreement with experimental
data. Further evaluation of the model and a parametric sensitivity study are
recommended.
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Titanium dioxide

1. Introduction

Population balance models (PBMs) are commonly used to study partic-
ulate processes, such as aerosol synthesis. PBMs describe the population
dynamics governing the growth of particles and provide a means to inves-
tigate the mechanisms controlling the evolution of particle properties. A
variety of modelling approaches have been developed in the literature. The
particular approach chosen for a modelling study involves two main consid-
erations: the model used to describe the particles and particle processes, and
the method employed to solve the population balance equations. The chosen
approach should be informed by the nature of the system being modelled and
the desired degree of detail. Menz and Kraft [1] emphasise the importance
of selecting an appropriate model for the system being simulated, and warn
against using an over-simplified model to interpret experimental data. An
equally important consideration in selecting a suitable particle model and
numerical method is the complexity of the overall system being modelled;
for example, spatial inhomogeneity and particle transport. More complex
systems typically require the use of computational fluid dynamics and are
generally restricted to particle models with fewer internal coordinates due to
computational cost.

A range of particle models exist in the literature with varying degrees of
detail in the particle description. The simplest, one-dimensional coalescent
sphere model [2] describes only the mass, volume or monomer composition
of a particle. Two-dimensional models, typically describing a particle by its
surface area and volume, can represent a simple aggregate structure and al-
lows sintering to be modelled [3, 4]. Often an assumption of monodisperse
primary particles is made to allow primary number and volume to be de-
termined, but bivariate models can also incorporate primary polydispersity
[5]. More detailed multivariate models are capable of resolving the mass of
individual primary particles, their connectivity [6, 7], and even their detailed
internal composition [8]. The most detailed models usually represent an ag-
gregate particle as a union of intersecting spheres [9, 10, 11, 12], providing a
full geometrical description of fractal-like particles.

Various methods have been applied to solve the particle population dy-
namics. These include moment methods [13, 2, 14, 15, 16, 17, 18, 19], sec-
tional methods [20, 21, 3, 22, 23, 24, 5, 25] and stochastic methods [26, 27, 28,
29, 30]. Moment methods are typically fast and easily coupled to gas-phase
chemistry and flow dynamics, but do not resolve the particle size distribution
(PSD). Sectional methods allow for some resolution of the PSD by dividing
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the distribution into a number of sections, but at greater computational ex-
pense. Both methods are generally limited to particle models with one or
two internal dimensions.

Stochastic methods allow the number of internal dimensions in the parti-
cle model to be extended to include a very detailed description of particles.
However, these methods can be computationally expensive; and, spatial inho-
mogeneity and particle transport are not easily incorporated. Thus, detailed
population balance models have traditionally been restricted to modelling
batch and plug-flow reactors. Although, attempts have been made to apply
stochastic methods to systems in which transport effects and spatial inho-
mogeneity are important. For example, very detailed particle models have
been applied to flame simulations using a post-processing methodology. A
simple population balance model is first employed in a fully coupled sim-
ulation to model the flame profile and capture the coupling of the particle
system to the mass and energy balance in the system. The flame data is
then post-processed with the detailed particle model. This approach has
been used successfully to simulate the internal structure of soot formed in
laminar flames [31, 11, 32, 8] and recently extended to stagnation flame syn-
thesised aggregate nanoparticles [33, 34]. Another approach, used to model
industrial reactors [35, 36], is to compartmentalise a spatially inhomogeneous
system into a network of cells or reactors [37, 38, 39].

Discrete element methods (DEMs) are another useful tool for modelling
the evolution of particles with large numbers of interacting primaries. DEMs
have been used to perform very detailed studies of particle process dynamics
and investigate their effects on the evolution of particle morphology, incor-
porating a high level of physical detail. Studies have often focussed on un-
derstanding the effect of a limited number of processes at one time, such as
sintering [12, 40], coagulation [41, 42], and coagulation and surface growth
[43, 44]. In addition, DEMs can be combined with stochastic methods to
incorporate a specific process description into a detailed population balance
model, such as sintering [45].

Population balance models incorporating a detailed particle description
provide a powerful tool to investigate the mechanisms that control particle
morphology and facilitate the simulation of quantities that are directly com-
parable to experimental observations. For example, size distributions and
mass spectra of particles [46, 8], transmission electron microscopy (TEM)
images and optical band gap measurements [32]. Such models also enable
the option to include key physical details in the model. For instance, models
where the particle growth is a function of the aggregate composition [47, 48],
or where sintering and neck growth are resolved for pairs of neighbouring
primary particles [49, 50, 6, 51]. Moreover, physical properties are strongly
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influenced by particle morphology such as the collision diameter [52], mobility
diameter [53, 54], or optical properties [55]; thus, the degree of model detail
can a have significant impact on the interpretation of simulation results and
comparison with experimental measurements. Models that capture sufficient
physical detail also make it possible to further post-process simulation data
to study the post-synthesis treatment of particles [56].

In this paper, we develop a new detailed population balance model for
polydisperse aggregate particles. The new particle description, or type-space,
represents an aggregate particle as a collection of overlapping spheres. This
is based on the approach used by Mitchell and Frenklach [9, 10] to model
aggregation with surface growth for a single collector particle, and later ex-
tended by Morgan et al. [11] to an ensemble of particles. An overlapping
spheres model was also employed by Eggersdorfer et al. [12, 40] to simulate
multiparticle sintering. We utilise the overlapping spheres approach to model
surface growth, sintering, primary particle coalescence and coagulation, in-
corporating a ballistic cluster-cluster collision model [57] to determine the
particle configuration following a coagulation event. The radius, composi-
tion and position of each individual primary particle are resolved allowing
the morphological evolution of each aggregate to be simulated.

The new model overcomes some of the limitations identified in earlier
models [6, 7] while preserving their efficient data structures. These earlier
models did not track the coordinates of individual primary particles but
rather their connectivity, which required an assumption on the fractal di-
mension when calculating the radius of gyration and collision diameter, or
when simulating a TEM-style image. Furthermore, sintering was resolved
by a common surface area for each pair of neighbouring primaries. While
this allowed individual necks to sinter at different rates, the model did not
account for the effect of sintering on the primary diameter, resolving only a
spherical equivalent diameter.

The particle model developed in this work is presented in the context of
titanium dioxide (titania, TiO2) synthesised in flame from titanium tetraiso-
propoxide (TTIP) precursor – a widely studied system. The underlying type-
space and process transformations, however, are general and easily applied
to different systems.

Titanium dioxide particles are an important industrial product, manufac-
tured mainly for use in pigments. Aerosol synthesis, typically from titanium
tetrachloride (TiCl4) in industry and often from TTIP in lab-scale studies,
is a key route for the production of TiO2 particles. The functionality of the
product is strongly influenced by the size, morphology and crystalline phase
of the particles. However, despite its commercial importance, a comprehen-
sive understanding of the formation of TiO2 and the mechanisms that control
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the particle properties is still lacking. Thus, the system is of significant in-
terest in detailed modelling studies.

The purpose of this paper is to present the mathematical description of
a new particle model; specifically, to give the model equations and describe
how the particle geometry is manipulated under individual processes. The
algorithms used to effect these changes are also provided. We briefly study
the numerical behaviour of the model, investigating the convergence of a
number of average properties for a simple batch reactor test case. Finally,
we simulate the hot wall reactor experiment of Nakaso et al. [25] to examine
some of the features of the model. A more comprehensive evaluation of
the model against experimental data and a sensitivity study of the model
parameters is proposed for a future work.

2. Detailed chemistry

The chemical model consists of a TTIP decomposition mechanism com-
bined with hydrocarbon combustion chemistry described by the USC-Mech
II model [58]. The TTIP decomposition model contains 25 Ti species and
65 reactions, and describes two of the main decomposition pathways identi-
fied by Buerger et al. [59]. The decomposition product for both pathways is
titanium tetrahydroxide (Ti(OH)4), which is treated as the collision species
for the particle inception and growth reactions in the particle model.

3. Particle model

In this section the new detailed particle model is presented. First we de-
scribe the particle type-space – the mathematical representation of a particle
– followed by the particle processes. Particles evolve through: inception,
coagulation, growth, sintering and coalescence. Details on the implementa-
tion of the model, including the data structure and algorithms are provided
in Appendix A and Appendix B. In this work, the inception and growth
processes are assumed to be collision limited reactions consuming Ti(OH)4
from the gas-phase. Relatively simple reactions are chosen to avoid making
unnecessary assumptions about the interaction between the gas-phase and
particles – an area that is not well understood in the literature. However, the
model framework is easy to extend to new inception and growth processes in
future studies.

3.1. Type-space

The type-space is the mathematical description of a particle. The detailed
particle type-space is illustrated in Fig. 1. An aggregate Pq containing np(Pq)
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Figure 1: An illustration of the detailed particle model type-space. An aggregate particle
composed of primary particles (solid lines) modelled as overlapping spheres (indicated by
dashed lines).

primary particles, modelled as overlapping spheres [12], is represented by

Pq = Pq(p1, ..., pnp(Pq),C), (1)

where a primary particle pi, with i ∈ {1, ..., np(Pq)}, is represented by

pi = pi(ηi, ri,xi). (2)

ηi is the primary composition and can represent the number of units of TiO2,
as in this work, or could contain a more detailed description of the internal
primary structure; for example, the crystal phase composition. ri is the
radius of the primary, and xi is the position of the primary centre. It is
convenient to express the primary coordinates relative to the centre of mass
of the aggregate particle because this simplifies some computations, such
as calculating the radius of gyration or performing rotations of the particle
during coagulation. For the purpose of calculating the aggregate centre of
mass we assume that the primaries are point masses. The degree of overlap
between two neighbouring primaries, pi and pj, is resolved by their centre to
centre separation

dij = |xi − xj|. (3)

The primary particles are stored in a binary tree data structure as in ear-
lier works [6, 7]. The data structure enhances computational performance by
allowing very efficient selection of primaries and interrogation of their prop-
erties, but does impose some constraints on the primary connectivity within
a particle. It would be possible to determine primary connectivity using
only the coordinates; however, for the purpose of performing computations
the binary tree connectivity is used. A binary tree is ideal for representing
branched structures, but closed loops cannot be represented. A closed loop
(shown in Fig. 18(b)) is a path that can be taken from a primary that returns
to the primary passing through successive neighbours only once.
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The binary tree is represented in Eq. (1) by the connectivity matrix C.
The connectivity matrix is a binary lower triangular matrix of dimension
np(Pq)× np(Pq) with matrix elements

Cij =

{
0, if pi and pj are not neighbouring;

1, if pi and pj are neighbouring.
(4)

The following assumptions are made in the model equations:

1. Neck cross-sections are circular;

2. Neighbours are determined by the binary tree connectivity.

The first assumption implies that the effect of multiple overlaps between pri-
maries (as shown in Fig. A.19) are not considered. This is also a consequence
of the second assumption – the binary tree connectivity which does not al-
low for looped structures. Further detail on the binary tree data structure,
connectivity and the assumptions is provided in Appendix A.

Under these assumptions a number of primary particle properties can be
derived for the model of overlapping spheres [12]. The volume of a primary
pi is given by the volume of a sphere of radius ri minus the volume of the
caps created by overlaps with its neighbours

vi = Vsph(ri)−
∑
j

Vcap(ri, xij),

=
4

3
πr3i −

1

3
π
∑
j

(2r3i + x3ij − 3r2i xij), (5)

where we sum over j neighbours of pi, and xij is the distance from the centre
of primary pi to the neck formed with a neighbour pj

xij =
d2ij − r2j + r2i

2dij
. (6)

Primary particles are assumed to be composed of units of TiO2, so ηi =
ηTiO2,i, and the volume can also be calculated as

vi =
ηTiO2,iMTiO2

ρTiO2NA

, (7)

where MTiO2 is the molar mass of TiO2, ρTiO2 is the density of TiO2 (taken
to be that of anatase, ρTiO2 = 3.9 g cm−3), and NA is the Avogadro constant.
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The partial derivatives of vi give the area of the neck created by the
overlap with a neighbour pj

An,ij =
∂vi
∂xij

= π(r2i − x2ij), (8)

and the free surface area of the primary pi

Ai =
∂vi
∂ri

= 4πr2i − 2π
∑
j

(r2i − rixij). (9)

3.2. Particle processes

3.2.1. Inception

Inception is modelled as a bimolecular collision of two Ti(OH)4 molecules
forming a particle consisting of a single spherical primary containing two
units of TiO2:

Ti(OH)4 + Ti(OH)4 −−→ PN(p1) + 4 H2O. (10)

The rate of inception is calculated using the free molecular kernel:

K fm
inc = ε

√
πkBT

mTi(OH)4

(
2dTi(OH)4

)2
, (11)

where mTi(OH)4 and dTi(OH)4 are the mass and diameter of a single Ti(OH)4
molecule respectively. The collision diameter dTiOH4 = 0.5128 nm, is esti-
mated from the geometrical parameters calculated by Buerger et al. [60]. ε
is the size-dependent collision enhancement factor. Here it is assumed to
be size-independent and taken as ε = 2.2 as in previous studies on titania
[61, 62, 63]. This value is the average size-independent enhancement fac-
tor due to van der Waals forces calculated by Harris and Kennedy [64] for
spherical soot particles.

3.2.2. Coagulation

An aggregate is formed when two particles stick together following a col-
lision:

Pq(p1, ..., pnp(Pq),C(Pq))+Pr(p1, ..., pnp(Pr),C(Pr))→ Ps(p1, ..., pnp(Pq)+np(Pr),C(Ps))
(12)

The rate of coagulation is given by the transition kernel [65]

Ktr
cg(Pq, Pr) =

(
1

Ksf(Pq, Pr)
+

1

K fm(Pq, Pr)

)−1
, (13)
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(a) Particles Pr and Pq before collision.
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mary pi from Pr and pj from Pq.

Figure 2: Ballistic cluster-cluster aggregation with a random impact parameter.

where the slip flow kernel is

Ksf(Pq, Pr) =
2kBT

3µ

(
1 + 1.257Kn(Pq)

dc(Pq)
+

1 + 1.257Kn(Pr)

dc(Pr)

)
(dc(Pq) + dc(Pr)) ,

(14)
and the free-molecular kernel is

K fm(Pq, Pr) = ε

√
πkBT

2

(
1

m(Pq)
+

1

m(Pr)

)
(dc(Pq) + dc(Pr))

2 . (15)

ε is the collision enhancement factor, dc is the particle collision diameter and
m is the particle mass. µ is the viscosity of the gas-phase and Kn is the
Knudsen number

Kn(Pq) =
2λ

dc(Pq)
, (16)

where λ is the mean free path of the gas. The mean free path and viscosity
are approximated as those of air at pressure p and temperature T

λ = 2.371× 10−5
T

p
m, (17)

µ = 1.458× 10−6
T
√
T

T + 110.4
kg m−1 s−1. (18)

Once two particles are selected for coagulation based on the rate given
by Eq. (13), the orientations and point of contact between the colliding par-
ticles are determined by ballistic cluster-cluster aggregation (BCCA) with
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a random impact parameter [57]. This process is illustrated in Fig. 2. To
model a collision three random parameters are generated: the particles are
randomly rotated around their centres of mass using the method described
by Arvo [66]; a random direction is generated by uniformly picking a point on
a sphere centred on one of the particles; and, a random impact parameter is
applied by placing the second particle at a random point in the plane perpen-
dicular to the collision direction. The random impact parameter offsets the
collision trajectory from the centres of mass. The collision is initialised such
that the particle bounding spheres, estimated using the method described
by Ritter [67], do not overlap. A detailed algorithm for performing BCCA is
given in Appendix B.2.

Following the collision, two primaries pi and pj (one from each colliding
particle determined by the BCCA algorithm) are assumed to be in point
contact and the connectivity is updated as

C(Ps) =



...

C(Pq) · · · 0 · · ·
...

...

· · · Cij · · · C(Pr)
...


, (19)

where Cij = 1.

Collision diameter. The diameter of gyration dg is commonly used as the
collision diameter dc in both the free-molecular and continuum regimes. The
diameter of gyration is given by the standard fractal relationship

np = kf

(
dg

dp,avg

)Df

, (20)

where dp,avg is the average primary diameter, Df is the fractal dimension and
kf is the fractal pre-factor.

A number of studies [68, 4, 69] employing bivariate models with monodis-
perse primaries use the fractal relationship to define the collision diameter
as

dc = dpn
1/Df
p . (21)

Kruis et al. [4] note that the characteristics of this collision diameter are:

1. For np = 1: the collision diameter is equal to the primary particle
diameter.
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2. For np � 1: the collision diameter approaches the diameter of gyration
of the aggregate.

Lavvas et al. [46] proposed a collision diameter, also based on the fractal
relationship, for a multivariate model with polydisperse primaries:

dc =

(
6V

A

)(
A3

36πV 2

)1/Df

, (22)

with

A =
Asph

savg(1− n1/3
p ) + n

−1/3
p

, (23)

where Asph is the spherical surface area of the particle and savg is the average
sintering level of the aggregate.

The drawback of these definitions is that the fractal dimension Df is a
model parameter, typically assumed to be Df ≈ 1.8, and does not evolve as
particles grow and sinter. Moreover, the pre-factor is often assumed to be
kf ≈ 1 or absorbed into the constant of proportionality between the collision
and gyration diameters. In our new model, the ability to track individual
primary coordinates permits the diameter of gyration of an individual aggre-
gate to be calculated without assuming a value for kf and Df. This can then
be used as the collision diameter.

The diameter of gyration is defined [70] as

d2g =
4∑
imi

∑
i

mi(|xi|2 + r2gp,i), (24)

where rgp,i is the radius of gyration of primary pi and |xi| is the distance from
the centre of mass of the aggregate to the centre of the primary. For a sphere
rgp,i =

√
5/3ri; however, following Filippov et al. [55] we choose rgp,i = ri,

the radius of the primary, so that in the limit of np = 1 the collision diameter
yields the primary diameter. The collision diameter can then be defined as

d2c =
4∑
imi

∑
i

mi(|xi|2 + r2i ). (25)

In the limit of large np this tends to the diameter of gyration. This definition
shares the same characteristics of the Eq. (21) as discussed by Kruis et al. [4].
Furthermore, in the case of two primaries of the same size in point contact
the collision diameter (dc = 2

√
2rp) is close to that obtained by Zurita-Gotor

and Rosner [52] (dc = 2.892rp).
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3.2.3. Growth

Particles can grow by condensation of gas-phase species and surface reac-
tions. In both cases, geometrical adjustments to the particle are performed
the same way. In the present application, we consider only a collision limited
condensation-like growth process, consuming Ti(OH)4 from the gas-phase
and adding TiO2 to surface of a particle. The rate of collision is based on
the free molecular kernel and assumes that the mass and diameter of the
condensing species is much smaller than that of the particle

K fm
cond = ε

√
πkBT

2mTiO2

(dc(Pq))
2 . (26)

The mass of the condensing species is assumed to be similar to TiO2.

surface-growth-v3.xml https://www.draw.io/

1 of 1 05-Dec-17, 6:34 PM

Figure 3: A surface growth event. Mass is added to the free surface of primary pi (dark
shaded region). The new particle geometry is shown by the red dashed line. Immediate
neighbours of pi are labeled pj , and neighbours of neighbours are labeled pk.

Fig. 3 shows a particle undergoing a growth event. A primary, pi, is se-
lected with probability proportional to its relative free surface area, Ai/A(Pq).
The condensing mass is added to the free surface of pi (shaded region in
Fig. 3) increasing the primary radius ri. We assume that the primary posi-
tions xi, and all other primary radii rj remain unchanged during the event.
The change in radius given a change in the aggregate particle volume V (Pq)
is

dri
dt

=
1

Ai

dV (Pq)

dt
. (27)

Following a growth event, the positions of the necks between pi and its
neighbours pj will have changed as illustrated by the red dashed lines in
Fig. 3. This amounts to a redistribution of mass between primaries and
requires an adjustment to the compositions of pi and its neighbours pj. The
adjustment is performed in discrete units of TiO2, with unit volume

vTiO2 =
MTiO2

ρTiO2NA

. (28)
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The change in volume of a neighbour pj is

dvj
dt

=
∂vj
∂rj

drj
dt

+
∑
k

∂vk
∂xjk

dxjk
dt

, (29)

where we sum over the neighbours pk of primary pj. Under the assumption
that the radius of pj remains constant and noting that the position of the
neck between pj and some other neighbour pk (k 6= i) does not change, this
is reduced to

dvj
dt

= An,ji
dxji
dt

, (30)

where we have used Eq. (8). Under the same assumptions, differentiating
Eq. (6), allows the change in volume of pj to be expressed in terms of the
change in the radius of pi:

dvj
dt

= −An,ij
ri
dij

dri
dt
. (31)

from which the integer change in composition of pj can be determined:

∆ηTiO2,j =
∆vj
vTiO2

. (32)

The surface adjustment algorithm and a discussion of the consequence of
limiting the mass redistribution to discrete unit changes can be found in
Appendix B.3.

3.2.4. Sintering

 

dij

 

rj

pk 

pj

 

pi

xji ri

vj

vi

 

Δri

Ai

Anij

Δrj

Δdij

dik

Δdik

Figure 4: Sintering of a single neck between primaries pi and pj . Neighbours not sintering
are labelled pk. The centre to centre separation decreases by ∆dij . To conserve mass, the
radii of the sintering primaries increase by ∆ri and ∆rj respectively and the separation
with neighbouring primary pk increases by ∆dik.
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Sintering is performed on each neck individually. A single sintering event
on primaries pi and pj is shown in Fig. 4. The centres of primaries pi and
pj approach each other, increasing their overlap and neck radius. For titania
particles the sintering rate is evaluated using a grain boundary diffusion
model [40]. Mass conservation requires that the primary radii ri and rj
increase. It is assumed that all other neighbours pk and their respective
necks remain unchanged during the event. This requires that the separation
dik increases in response to the change in ri.

Grain Boundary Diffusion.. Following Eggersdorfer et al. [40], the change in
distance from the centre of pi to the neck formed with pj is

dxij
dt

= −2πDvCv0δgbγΩ

kBTAn,ij

(
1

ri − xij
− 1

Rij

)
, (33)

where Rij is the neck radius, An,ij is the neck area, and ri is the primary
radius. The product of the vacancy diffusion coefficient, Dv, the equilibrium
vacancy concentration, Cv0, and grain boundary thickness, δgb, is taken from
Astier and Vergnon [71],

DvCv0δgb = 1.6× 10−14 exp

(
−258 kJ mol−1

RT

)
m3 s−1. (34)

The surface free energy, γ = 0.6 J m−2, and vacancy volume, Ω = 1.57× 10−29 m3,
are from Anderson [72].

The rate of change in centre to centre separation is

ddij
dt

=
dxij
dt

+
dxji
dt

,

=
−6.859× 10−20

TAn,ij

(
1

ri − xij
+

1

rj − xji
− 2

Rij

)
· exp

(
−258 kJ mol−1

RT

(
1− dp,crit

min(dp,i, dp,j)

))
.

(35)

Here we have introduced a critical sintering diameter dp,crit into the expo-
nential term, of a form similar to that first introduced by Tsantilis et al.
[73] for silica, to allow effectively instantaneous coalescence of primaries with
dp < dp,crit. Rapid coalescence of very small particles is consistent with find-
ings from molecular dynamics studies [74], and has also been suggested in
other works [75]. Buesser et al. [74] found that primaries with dp < 4 nm
sinter significantly faster than what would be predicted by the models of
Kobata et al. [76] and Seto et al. [75]. In this work we use dp,crit = 4 nm.
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Conservation of mass.. Assuming that the density does not change, mass
conservation implies that primary particle volume is conserved. The volume
conservation of primary pi is [12]

dvi
dt

=
∂vi
∂ri

dri
dt

+
∑
k

∂vi
∂xik

dxik
dt

= 0, (36)

where pk is some neighbour of pi. Rearranging and substituting Eqs (8) and (9):

dri
dt

=
−
∑

k An,ik
dxik

dt

Ai

. (37)

The time derivative of xik, the distance from the centre of pi to the neck with
a neighbour pk, is

dxik
dt

=
ri
dik

dri
dt
− rk
dik

drk
dt

+

(
1− xik

dik

)
ddik
dt

. (38)

For k 6= j (i.e. a neighbour not sintering)

drk
dt

= 0 and
dxki
dt

= 0. (39)

Eq. (38) can then be reduced to

dxik
dt

=
ri
dik

dri
dt

+

(
1− xik

dik

)
dxik
dt

,

=
ri
xik

dri
dt

for k 6= j, (40)

and Eq. (37) becomes

dri
dt

=
−An,ij

dxij

dt
−
∑

k 6=j An,ik
ri
xik

dri
dt

Ai

,

=
−An,ij

Bij

dxij
dt

,

=
−An,ij

dijBij + riAn,ij

(
−rj

drj
dt

+ xji
ddij
dt

)
, (41)

where

Bij = Ai +
∑
k 6=j

An,ik
ri
xik

, (42)

(43)
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A similar expression can be derived for rj

drj
dt

=
−An,ij

dijBji + rjAn,ij

(
−ri

dri
dt

+ xij
ddij
dt

)
. (44)

Combining Eqs (41) and (44) gives the change in radius as a function of the
change in centre to centre separation:

dri
dt

=
−rjA2

n,ij − xjiBjiAn,ij

dijBijBji + rjAn,ijBij + riAn,ijBji

ddij
dt

. (45)

The centre to centre separations of neighbours not sintering are adjusted
according to Eq. (40). The sintering algorithm is presented in Appendix B.4.

3.2.5. Coalescence
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Figure 5: Primary particle coalescence. Primary pj is merged into pi. Neighbours of pj
are added to pi preserving the neck radius.

The sintering level for a neck is defined as the ratio of the neck radius to
the radius of the smaller primary

sij =
Rij

rj
where rj ≤ ri. (46)

Note that 0 ≤ sij ≤ 1. Both sintering and growth increase the sintering
level. Once the sintering level exceeds 0.95, the two primaries are assumed
to have coalesced into a single primary. Two primaries, pi and pj, are shown
coalescing in Fig. 5. During a coalescence event the smaller primary, in this
case pj, is merged into the larger primary pi. The other neighbour of pj,
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labelled pl, is added to the new merged primary preserving the neck radius
such that Rik,new = Rjl. The primary is translated along vector xl−xi to its
new position. The other neighbour of pi, labelled pk, also preserves its neck
radius.

Following the merger, the radius of pi has changed to ri,new, which requires
the neighbour separations to be recalculated since we assume the neighbours
are unchanged by the merger. The volume of the new merged primary is

vi,new = vi + vj, (47)

and expressed in terms of the new radius, the volume (Eq. (5)) is

vi,new =
4

3
πr3i,new+

π

3

∑
m∈{k,l}

(
2r3i,new +

(
r2i,new −

An,im

π

)3/2

− 3r2i,new

(
r2i,new −

An,im

π

))
,

(48)
where we sum over all the neighbours, pk and pl, of new merged primary
pi,new. Equation (48) is solved for ri,new using the Newton-Raphson method
and the new primary separation can be determined using Eq. (6). For more
detail on the merger algorithm refer to Appendix B.5

4. Numerical method

The detailed population balance equations are solved using a stochastic
numerical method: a direct simulation algorithm with various enhancements
to improve efficiency. The method uses a majorant kernel and fictitious
jumps [26, 27, 65] to improve the computational speed of calculating the
coagulation rate. A linear process deferment algorithm (LPDA) [29] is used
to provide an efficient treatment of the sintering and growth processes. The
direct simulation Monte-Carlo algorithm (DSA) is presented in Appendix B.

Coupling of the particle population balance to the gas-phase chemistry,
solved using an ODE solver, is achieved by the operator splitting technique
described by Celnik et al. [77]. The technique employs a refinement intro-
duced by Strang [78], which staggers the two operators by half a splitting
time step, ∆ts/2.

The population balance solver uses a variable size particle ensemble with
a predefined maximum number of computational particles Nmax. The parti-
cle ensemble represents a real population of particles contained in a sample
volume

Vsmpl =
N

M0

. (49)

The sample volume is adjusted due to gas-phase expansion and contraction,
and ensemble contraction and doubling. Ensemble contractions occur when a
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new particle is incepted into an already saturated ensemble. Since the max-
imum ensemble size Nmax cannot be adjusted during simulation a random
particle is discarded instead and the sample volume is contracted propor-
tionately to represent a smaller volume in the real system. Contractions,
however, results in a loss of information and can significantly alter the par-
ticle size distribution. Therefore, it is important to select an appropriate
initial sample volume size to minimise the number of contractions. This is
done by estimating the maximum value of the particle number density over
the course of the simulation, M0,max, such that initially

Vsmpl =
Nmax

M0,max

. (50)

To maintain a statistically significant number of computational particles,
the ensemble is doubled if N(t) < Nmax/2. In this case, each computational
particle is duplicated and the sample volume is doubled. Therefore, during
the simulation (except at early times) the actual number of computational
particles lies approximately in the range [Nmax/2, Nmax].

5. Numerical studies

The numerical behaviour of the model is investigated using a simple test
case. A zero-dimensional batch reactor was simulated with 500 ppm of tita-
nium tetraisopropoxide (TTIP) precursor in nitrogen gas. The temperature
was kept constant at 1200 K and the pressure at 1 atm. The reactor residence
time was 0.5 s. These conditions were chosen to yield a reasonable degree of
aggregation and sintering to fully demonstrate the model. Simulations were
performed on 2.80 GHz Intel R© Xeon R© CPUs.

The numerical parameters that affect the numerical error are:

• Maximum number of computational particles (Nmax);

• Number of runs (L);

• Splitting time step (∆ts).

First, we look at the convergence behaviour with respect to the splitting
time step in order to select an appropriate splitting time for the rest of the
study. Then we investigate the convergence of six macroscopic properties
with respect to to the maximum number of computational particles Nmax,
while keeping Nmax × L constant. The functionals studied are given in
Table 1.
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Table 1: Functionals studied

Functional Formula

Zeroth moment M0(t) =
N(t)

Vsmpl(t)

Volume fraction Fv(t) =
1

Vsmpl(t)

N(t)∑
q=1

V (Pq(t))

V : aggregate volume

Average collision diameter
d̄c(t) =

1

N(t)

N(t)∑
q=1

dc(Pq(t))

dc defined in Eq. (25).

Average number of primaries per particle
n̄p(t) =

1

N(t)

N(t)∑
q=1

np(Pq(t))

np(Pq): number of primaries in Pq

Average primary diameter
d̄p(t) =

1

N(t)

N(t)∑
q=1

dp,avg(Pq(t))

dp,avg(Pq): average primary diameter of Pq

Average sintering level
s̄(t) =

1

N(t)

N(t)∑
q=1

savg(Pq(t))

savg(Pq): mean sintering level of Pq

5.1. Error calculations

The systematic and statistical errors can be assessed by generating L
independent estimates of the particle system and comparing the macroscopic
quantities of the system ξl(t) for a given set of parameters. The empirical
mean at time t is

µ1(t) =
1

L

L∑
l=1

ξl(t), (51)

and the variance is

µ2(t) =
1

L

L∑
l=1

[ξl(t)]
2 − [µ1(t)]

2 . (52)
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The half-width of the confidence interval for µ1(t) is calculated using the
central limit theorem:

cP (t) = aP

√
µ2(t)

L
. (53)

For a confidence level of P = 0.999, a critical value of aP = 3.29 is obtained
from the standard normal distribution. The confidence interval IP within
which there is a probability P of finding the solution is then given by

IP (t) = [µ1(t)− cP (t), µ1(t) + cP (t)] . (54)

The relative error at time t is

er(t) =
|µ1(t)− ζ(t)|

ζ(t)
(55)

where ζ(t) is an approximation for the true solution which is obtained from
a high-precision calculation with a very large number of particles. In this
case, Nmax = 217 and L = 10 is used. The total relative error, averaged over
M time steps is

etot =
1

tres

M∑
j=1

er(tj)∆tj, (56)

where

tres =
M∑
j=1

∆tj. (57)

5.2. Numerical results

5.2.1. Convergence with respect to splitting time step

The length of the operator splitting time step size ∆ts affects the ac-
curancy and stability of the coupling between the gas-phase and particle
population balance. If the time step is too long, the operator splitting can
cause unphysical oscillations to arise in the concentrations of species that
have source terms in the gas-phase and sink terms in the particle-phase (or
vice versa). For example, Ti(OH)4 is first formed in the gas-phase as a prod-
uct of the decomposition of TTIP and then consumed by the particle phase
as the inception and growth species. On the other hand, taking unnecessar-
ily small time steps when species concentrations are varying slowly increases
the computational time due to the cost of initialising the ODE solver. Thus,
an appropriate time step needs to be chosen to maintain adequate coupling
while keeping computational cost at a minimum.

The convergence behaviour with respect to the splitting time step of three
key particle ensemble properties (M0, Fv and d̄c) and the concentration of
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Ti(OH)4, the collision species, is investigated. Simulations were performed
with a sufficiently large number of particles and number of runs for conver-
gence: Nmax = 8192 and L = 4. The relative error is measured against a high
precision solution: Nmax = 131072, L = 10 and ∆ts given by the variable
splitting time scheme discussed below.

(a) Mean Ti(OH)4 concentration. (b) Total relative error in Ti(OH)4 conc.

Figure 6: Mean Ti(OH)4 concentration as a function of time and the total relative error
for different splitting step sizes. The horizontal dashed line indicates the value for the
variable splitting scheme (Eq. (58)).

Figure 6 shows the time evolution and the total relative error of the
concentration of Ti(OH)4 for different splitting time step sizes. The solution
converges rapidly with decreasing step size and appears converged with ∆ts =
10 µs. Figure 6(a) shows that the collision species is consumed rapidly and
its concentration becomes negligible by t = 0.1 s. This suggests that a small
splitting time step is only necessary during this initial phase of the simulation
where there is a strong coupling between the gas-phase and particle-phase.
Once the precursor and collision species have been consumed a longer time
step can be taken. The dashed horizontal line in Fig. 6(b) shows the total
relative error for a variable splitting time scheme in which the step size is
increased after t = 0.1 s:

∆ts =

{
10 µs, t ≤ 0.1 s;

100 µs, t > 0.1 s.
(58)

The variable splitting scheme achieves the same total relative error as ∆ts =
10 µs.
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Figure 7: Computational time as a function of simulation time for different splitting time
steps. Variable refers to the splitting scheme given in Eq. (58).

The computational time for one run using each of the different step sizes
is shown in Fig. 7. There is a clear increase in computational cost with
decreasing step size: almost an order of magnitude increase in CPU time
with an order magnitude decrease in step size. The CPU time for the variable
step size (Eq. (58)) is also shown, and demonstrates a significant reduction
in computational cost compared to the ∆ts = 10 µs case for approximately
the same total error.

Figure 8 shows the convergence behaviour of M0, Fv and d̄c with respect
to splitting step size. Similar convergence behaviour is observed for these
functionals as for the concentration of Ti(OH)4, with all converging by ∆ts =
10 µs. The variable splitting scheme (Eq. (58)) shows similar convergence
properties to ∆ts = 10 µs. Due to the computational time advantage, this
splitting scheme was selected for the remaining numerical studies.

5.2.2. Convergence with respect to number of particles

The maximum number of computational particles should be chosen such
that systematic error is sufficiently small. In practice this means choosing
the maxmimum number of computational particles so that increasing Nmax

is not statistically significant. The number of runs is selected such that the
statistical error is acceptable. The convergence behaviour of the functionals
given in Table 1 was investigated with respect to the maximum number of
computational particles Nmax, while keeping the product of the number of
computational particles and number of runs constant: Nmax × L = 217.

The time evolution of each of the functionals within their confidence in-
tervals IP(t) is shown in Fig. 9 for three different values of Nmax and the high

22



(a) Mean number density, M0. (b) Total relative error in M0.

(c) Mean volume fraction, Fv. (d) Total relative error in Fv.

(e) Mean collision diameter, d̄c. (f) Total relative error in d̄c.

Figure 8: Mean functional value as a function of time and the total relative error for
different splitting step sizes. The horizontal dashed line is the variable splitting scheme
(Eq. (58)).
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(a) Number density, M0. (b) Volume fraction, Fv.

(c) Average collision diameter, d̄c. (d) Average number of primaries, n̄p.

(e) Average primary diameter, d̄p. (f) Average sinteirng level, s̄.

Figure 9: Time evolution of functionals given in Table 1 within their confidence intervals
IP(t) for different values of Nmax, and the high precision solution.
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precision solution. The evolution of M0 and Fv indicate the rapid conver-
sion of gas-phase precursor to TiO2 in the particle phase. There is an initial
spike in M0 as many small single primary particles are incepted, followed by
a rapid decrease in M0 and corresponding increase in d̄p and d̄c as particles
grow via condensation and coalescence. Aggregate formation, shown by the
increase in n̄p, begins after Fv has plateaued i.e. the gas-phase precursor
has been consumed, and once the primary size exceeds the critical sintering
diameter. At this point primary diameter growth slows and further growth
is due to sintering. The initial sintering level is s̄ = 1: the value assigned to
single primaries. Once aggregates begin to form the average sintering level
falls rapidly before plateauing at around s̄ = 0.886.

The functionals plotted in Fig. 9 display different rates of convergence
with respect to the maximum number of computational particles and different
statistical errors as evidenced by the width of the confidence intervals. For
example, M0 shows very rapid convergence to the high precision solution
and small statistical error, while Fv also displays rapid convergence but larger
statistical error. On the other hand, the average sintering level s̄ and average
number of primaries n̄p both demonstrate a slower rate of convergence and
larger statistical error.

The rates of convergence with respect to the maximum number of com-
putational particles of the functionals are investigated further in Fig. 10: a
plot of the total relative error etot as a function of Nmax. A first order slope is
also plotted as a guide. All the functionals are observed to converge as Nmax

is increased. The volume fraction displays the smallest total error, likely due
to the fact that the gas-phase precursor is consumed rapidly and Fv reaches
a steady value within the first 0.1 s as seen in Fig. 9(b). The ensemble
properties M0 and Fv, and average collision diameter d̄c are the fastest to
converge at Nmax = 2048. The average number of primaries n̄p shows the
slowest convergence at Nmax = 8192.

The computational times for a single run with different values of Nmax

are plotted in Fig. 11 together with the total relative error for M0, n̄p and s̄.
The total computational time and computational time of the Monte-Carlo
algorithm are shown. The CPU time of the Monte-Carlo algorithm increases
steadily as a function Nmax. The total CPU time, however, is constant for
small Nmax. At low Nmax, changing the number of particles does not affect the
total computational time very much because most of the CPU time is spent
on the ODE solver, which is independent of the number of computational
particles. For large Nmax the majority of the computational time is spent on
the Monte-Carlo algorithm. M0 converges the fastest with Nmax = 2048 in
approximately 9 min, while n̄p is the slowest, converging with approximately
Nmax = 8192 in 27 min.
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(a) Number density, M0. (b) Volume fraction, Fv.

(c) Average collision diameter, d̄c. (d) Average number of primaries, n̄p.

(e) Average primary diameter, d̄p. (f) Average sinteirng level, s̄.

Figure 10: Total relative error as a function of Nmax for the functionals given in Table 1.
Nmax × L = 217 is kept constant. A first order slope (dotted line) is plotted as a guide.
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Figure 11: Total and Monte-Carlo algorithm CPU time per run (RHS), and total relative
error for number density M0, average number of primaries n̄p and average sintering level
s̄ (LHS) for different values of Nmax.

6. Hot wall reactor simulations

In this section we simulate the hot wall reactor experiment of Nakaso et al.
[25]. The original investigation produced TiO2 particles from TTIP precusor
evaporated into nitrogen carrier gas in a tubular hot wall flow reactor. In our
simulation we impose the temperature profile modelled by Nakaso et al. [25,
Fig. 4] for maximum furnace temperature Tmax = 1200◦C. The temperature
profile is expressed in terms of reactor residence time by assuming constant
mass flow and accounting for the thermal expansion of the gas-phase. The
initial TTIP mole fraction was calculated as 18.7 ppm for an initial concen-
tration of 7.679 × 10−7 mol/l in nitrogen gas at 24◦C and 1 atm. The total
reactor residence time was calculated to be tres = 3.60 s.

6.1. Time evolution

Figure 12 shows the simulated time evolution of key gas-phase species, the
imposed temperature profile and average particle properties. The simulation
was performed using the model parameters given Section 3. In Fig. 12(a) we
see the rapid decomposition of TTIP as the temperature increases, accom-
panied by a spike in the concentration of Ti(OH)4, the collision species. The
Ti(OH)4 concentration has two peaks, a consequence of the different speeds
of the two reaction pathways in the chemical reaction model. The time evolu-
tion of average particle size, plotted in Fig. 12(b), follows a similar trajectory.
An initial peak in particle size is observed corresponding to the first Ti(OH)4
peak, which causes particle inception followed by growth through conden-
sation and coalescence. A subsequent decrease in average primary size is
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(a) Gas-phase species. (b) Particle properties.

Figure 12: Time evolution of ((a)) key gas-phase species and imposed temperature profile,
and ((b)) particle properties.

a consequence of the second peak in Ti(OH)4 resulting in the inception of
new small particles. In the high temperature region, the particles remain
spherical due to their small size and the high sintering rate resulting in rapid
coalescence of coagulating particles. Only once the temperature begins to
decrease at t ≈ 1.5 s we observe the beginning of aggregate formation. After
this point, primary particle growth stops and aggregate growth proceeds via
coagulation in the low temperature region of the reactor.

6.2. Sensitivity

In Fig. 13, we compare our detailed particle model simulations against
the experimental and simulated aggregate and primary particle size distri-
butions of Nakaso et al. [25, Fig. 9-2]. Our base case simulation results,
using the parameters given in Section 3, are shown by the solid blue lines.
Simulated primary particle diameters, dp,i = 2ri, are compared directly to
the experimental primary diameters obtained from TEM measurements. The
experimental aggregate mobility size measurements are compared to a mod-
elled aggregate mobility diameter dm for the free-molecular regime, estimated
from the projected area Apr [79]:

dm =

√
Apr

π
. (59)

Aggregate projected areas of 2048 randomly selected particles were obtained
from image analysis, using the method described in [80], of projections pro-
duced using the algorithm given in Appendix B.6.
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(a) Aggregate particle size distribution. (b) Primary particle size distribution.

Figure 13: Aggregate and primary particle size distributions for the base case simulation
(tres) and for extended residence times (tres + 0.5, 1, 2 s). Note that the simulated primary
PSDs (coloured lines) are all coincident. Experimental and simulation data from Nakaso
et al. [25, Fig. 9-2] are included for comparison.

Our base case simulation underpredicts the peak of the aggregate PSD
(Fig. 13(a)) while overpredicting the number density of aggregates. The
predicted position of the peak in the primary PSD (Fig. 13(b)) is in excellent
agreement with the experimental results of Nakaso et al. [25]; however, a
narrower distribution and smaller primary number density are predicted.

Given the underprediction of aggregate size and overprediction of aggre-
gate number densty we consider extending the residence time to account for
uncertainty arising from possible coagulation in the sampling lines at the
end of reactor. Simulated TEM-style images produced using the method

(a) t = tres. (b) t = tres + 2 s.

Figure 14: Simulated TEM-style images.
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(a) Aggregate particle size distribution. (b) Primary particle size distribution.

Figure 15: Sensitivity of simulated aggregate and primary particle size distributions to
coagulation collision efficiency Acg and inception collision efficiency Ainc. Experimental
and simulation data from Nakaso et al. [25, Fig. 9-2] are included for comparison.

described in Appendix B.6 are presented in Fig. 14 for two cases: t = tres
and t = tres +2 s. Qualitatively, the images show primary particles of similar
size, but larger aggregates in the case with extended residence time. The pri-
mary and aggregate PSDs for tres + 0.5 s, 1 s, 2 s are plotted in Fig. 13. The
plots show that extending the residence time has no discernible effect on the
primary PSD, but does shift the aggregate PSD to the right and reduce the
number density towards the experimental data. However, to achieve agree-
ment with the experimental PSD would require additional residence time of
same order of magnitude as tres, suggesting the system is relatively insensitive
to possible uncertainty in the residence time.

In Fig. 15, we briefly look at the sensitivity of the aggregate and primary
PSDs to the collision efficiency of coagulation and inception. The inception
and coagulation rates are varied by introducing a multiplicative prefactor
Ainc and Acg to the respective kernels. Both the aggregate and primary
PSDs are insensitive to an increase in the inception efficiency. Meanwhile,
increasing the coagulation collision efficiency shifts both the aggregate and
primary PSDs to the right and reduces the number density of aggregates and
primary particles. The behaviour of the primary PSD is due to increased
coalescence of coagulating primaries in the high temperature region of the
reactor. A substantial increase in the coagulation efficiency improves the
agreement in the aggregate PSD, but this is accompanied by a shift in the
primary PSD away from the experimental data.
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(a) Aggregate particle size distribution. (b) Primary particle size distribution.

Figure 16: Sensitivity of simulated aggregate and primary particle size distributions to the
critical sintering diameter dp,crit. Experimental and simulation data from Nakaso et al.
[25, Fig. 9-2] are included for comparison.

The present coagulation model assumes ballistic aggregation of particles.
However, near the end of the reactor the largest aggregates are in the transi-
tion regime (Kn ≈ 1), so collisions may in fact be diffusion limited. The effect
of using a different aggregation model was investigated and simulations of the
hot wall reactor with diffusion limited cluster aggregation (DLCA) showed
no appreciable difference to the BCCA results.

Lastly, we look at the effect of the critical sintering diameter. Figure 16
shows the effect of varying dp,crit on the aggregate and primary PSDs. The
aggregate PSD is not very sensitive to the value of dp,crit, although a slight
increase is observed with increasing dp,crit. The primary particle size distri-
bution shows much greater sensitivity. For dp,crit = 0 nm we observe good
agreement with the left hand tail of the experimental data while larger val-
ues shift the distribution towards the right hand tail of the experimental
data. The best agreement in the position of the peak in the distribution is
obtained for dp,crit = 4 nm. In all cases the number density of primaries is
underpredicted.

In summary, the base case model parameters produced good agreement
in the position of the primary PSD. However, the predicted width was nar-
rower and primary number density was smaller. The position of the aggre-
gate PSD was underpredicted, and the number denisty of aggregates over-
predicted. The sensitivity of the aggregate and primary PSDs with respect
to four parameters was investigated. The PSDs were relatively insensitive to
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uncertainties in the residence time and insensitive to the collision efficiency
of inception. Both the aggregate and primary size distribution were shown
to be sensitive to the coagulation efficiency, while the critical sintering diam-
eter was observed to only affect the primary PSD. The findings suggest that
primary particle growth is driven by coagulation and sintering/coalescence in
the high temperature region of the reactor with aggregate growth occurring
in the subsequent low temperature region.

Given the observed sensitivity of the system to the coagulation and sin-
tering processes a more extensive study should start by exploring the multi-
dimensional parameter space for these processes in order to improve the
model. Note that in the present work only one parameter was varied at a
time, while the other parameters took their base case values. Moreover, the
process rates could have additional dependencies that were not considered in
the current work. For example, a recent study by Sharma et al. [81] showed
that the coagulation efficiency of TiO2 nanoparticles is strongly temperature
dependent with significantly larger values at low temperature. This suggests
that the coagulation rate may be underpredicted in the low temperature re-
gion of our simulations. If the rate was higher in this region, agreement in
the aggregate PSD would be expected to improve while leaving the primary
PSD unchanged. Furthermore, a molecular dynamics study on the sintering
of nano-sized titania [74] suggests that the characteristic sintering time has
a stronger dependence on the critical diameter than that used in the present
work. This will be investigated in a future work.

7. Conclusions

We presented a new detailed particle model for titanium dioxide aggre-
gates synthesised from TTIP precursor with inception, coagulation, conden-
sation, sintering and coalescence. The new particle description resolves the
radius, composition and position of each individual primary particle, repre-
senting an aggregate as a collection of overlapping spheres. The detailed ge-
ometrical description permits the morphological evolution of each aggregate
to be simulated. The particle model developed in this work was presented
in the context of titanium dioxide synthesised from TTIP precursor. How-
ever, the model can be easily adapted to wider applications such as different
precursor chemistry (e.g. TiCl4), materials (e.g. soot or silica) or particle
process models (e.g. viscous flow sintering). Crucially, the model type space
incorporates sufficient physical detail to relate particle processes to specific
morphological transformations and provides a framework suitable for testing
and discriminating between different process models.
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The new particle model overcomes some of the limitations identified in
previous models [6, 7] by adding more geometrical detail to the particle de-
scription; thereby permitting more physical detail to be incorporated into the
process models. For example, a detailed description of the aggregate struc-
ture obtained by tracking individual primary coordinates allowed a more
physical ballistic collision model to be implemented and avoided the need
to assume fractal dimension in calculations. Most importantly, the detailed
geometrical description allows for better comparison with experimental data.
For instance, through visualisation of particles using TEM images that can be
analysed in a similar manner to experimental TEMs (e.g. projected area) or
by considering the effect of particle morphology on mobility measurements.

A numerical study was conducted using a simple batch reactor test case
to investigate the convergence behaviour of a number of average proper-
ties. The study demonstrated that under conditions similar to the test case,
convergence can be achieved in key properties for a feasible number of com-
putational particles. Furthermore, the computational time for a converged
solution was shown to be reasonable given an informed choice of operator
splitting time step size.

Lastly, the hot wall reactor experiment of Nakaso et al. [25] was simu-
lated. This was not intended to be a comprehensive evaluation of the model
nor parameter fitting, but to briefly examine the model performance and
make suggestions for future work. The base case model parameters pro-
duced reasonable agreement with the PSDs of Nakaso et al. [25], particularly
the position of the peak of the primary size distribution. The simulated PSDs
were shown to be sensitive to the coagulation efficiency and critical sinter-
ing diameter, suggesting that future work should investigate these process
rates in more detail, paying particular attention to their size and tempera-
ture dependence. Next, it is important to further evaluate the model against
experimental data and perform a thorough parametric sensitivity study.
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Appendix A. Binary tree data structure

The primaries comprising an aggregate particle are stored in a binary
tree data structure [6]. An example of a binary tree is shown in Fig. A.17.
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Figure A.17: Binary tree data structure.

The tree consists of a number of nodes where each node connects to two
(child) nodes below it and a (parent) node above it – except for the top-most
root node and bottom-most leaf nodes. These connections are shown by the
solid lines in Fig. A.17. A leaf node (indicated by a circle) stores a single
primary particle: in this case primaries p1...p6. A non-leaf node (squares
labelled A...E) stores information pertaining to a single neck connecting two
primaries. At the very least, this information should identify the two pri-
maries connected by the neck. These connections are represented by the
dashed lines in Fig. A.17. An important feature is that the two primaries
must lie below their connecting node in the binary tree. For example, node
C represents the neck connecting primaries p3 and p6. Node C could not, for
instance, connect primary p2 to p3; this can only be achieved by a node above
both primaries in the tree i.e. node A. The connectivity matrix representation
for the binary tree structure is

C =



0 · · · 0

1 0

0 1 0
...

0 0 1 0

0 0 0 0 0

0 0 1 0 1 0


. (A.1)

Figure A.18 shows two possible particle structures represented by the
binary tree in Fig. A.17. The primaries are labelled p1...p6 and the necks are
indicated by a red dot and labelled A...E. Since the binary tree only stores
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(a) Branched structure.
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(b) Looped structure. Connectivity loop
formed between primaries p3, p5 and p6.

Figure A.18: Two different particle structures with the same binary tree connectivity –
shown in Fig.A.17.

the connectivity and not the actual relative positions of primaries multiple
particle structures are possible for a given binary tree. The actual positional
information for each primary is stored in leaf node (primary) itself. This is
fine for a branched structure such as that shown in Fig 18(a) but poses a
problem for a looped structure such as the one shown in Fig. 18(b), where
primary p5 is in contact with p3 but is not considered a neighbour. Such
scenarios tend to occur when primaries, that were not initially in contact,
sinter and grow producing a more compact structure with multiple overlaps
such as shown in Fig. A.19.

Region of
multiple
overlaps

Figure A.19: Multiple overlapping primaries.
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The consequence of a structure with multiple overlapping primaries is
that the key model assumption – that necks are circular in cross section –
no longer holds. This introduces inaccuracies into the the model equations
e.g. calculation of the primary volume, free surface and neck area. To reduce
the likelihood of this occurring, primaries can be merged sufficiently early
to avoid large deviations from circular necks, but at point at which it is
reasonable to approximate the sintered primaries as a single primary. This
is handled by the coalescence process (Section 3.2.5). Another scenario in
which looped structures arise is if two branches overlap. This cannot be
avoided through primary coalescence, but the likelihood is reduced for less
compact aggregates (small fractal dimensions).

p1 p2

B

p4p3 p6p5

D E

C

A

Figure A.20: Interrogating the binary tree for neighbours of p3 by moving up the binary
tree from the leaf node to root node along the path in bold red. The neighbours of p3 and
connections to non-leaf nodes are highlighted.

An important detail of the model equations is that they require summa-
tion over neighbours of a primary to calculate properties such as the primary
volume, free surface and neck area etc. The binary tree provides a very effi-
cient way to do this. Since each neck must be a non-leaf node located above
the primary, it is only necessary to take a path from the primary of interest
to the root node to find the neighbours; the rest of tree does not need to be
explored. Figure A.20 shows an example of interrogating the binary tree for
neighbours of p3. The path taken is shown by the solid red bold lines along
the route: p3-D-C-A.
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Appendix B. Algorithms

Appendix B.1. Direct simulation Monte-Carlo

The Direct Simulation Algorithm (DSA) is presented in Algorithm 1.
Condensation and sintering are treated as deferred processes and performed
using the Linear Process Deferment Algorithm (LPDA) [29]. The majorant
kernel for coagulation and method of selecting particles is discussed by Pat-
terson et al. [65]. Ensemble contractions and doublings are performed as
discussed in Section 4.

Appendix B.2. Ballistic cluster-cluster aggregation

The implementation of ballistic cluster-cluster aggregation with a random
impact parameter (BCCA) described by Jullien [57] is shown in Algorithm 2.
Particle rotations are performed using the method proposed by Arvo [66] and
particle bounding spheres are calculated using the method proposed by Ritter
[67].

Test case. A test case is presented in the Supplementary Material.

Appendix B.3. Surface adjustment

A surface adjustment as a results of a condensation event is performed
according to Algorithm 3. Note that we assume a primary is composed solely
of discrete units of TiO2. Therefore, a redistribution of composition (mass)
between primaries only takes place if the volume change of the neighbour
is sufficiently large. This can lead to some deviation between the volume
derived from the composition

vi =
ηTiO2,iMTiO2

ρTiO2NA

, (B.1)

and the volume derived from the primary geometry

vi =
4

3
πr3i −

1

3
π
∑
j

(2r3i + x3ij − 3r2i xij). (B.2)

The system, however, is to some extent self-correcting due to two processes.
First, the movement of a neck during a surface adjustment will to a cer-
tain degree be offset by an opposing change during a possible future surface
adjustment to the other primary. Second, the need to redistribute mass is
eliminated by the merger of the two primaries during a coalescence event.
Furthermore, the likelihood of the primaries coalescing is increased with more
surface growth of one primary at the expense of the other.
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Test case. A simple test case of constant growth is developed and compared
to two limiting cases in the Supplementary Material.

Appendix B.4. Sintering

Sintering is performed on a particle Pq using Algorithm 4. Where two
primaries are in point contact (i.e. their neck area is An,ij = 0 ) the sintering
rate is undefined. In this case, we assume a neck radius of 1% of the smaller
primary radius, Rij = min(ri, rj)/100.

Test case. A simple test case is presented and compared to a commonly
employed excess surface area based sintering model in the Supplementary
Material.

Appendix B.5. Coalescence

Neighbouring primaries pi and pj in a particle Pq are merged according
to Algorithm 5, once the sintering level (Eq. (46)) exceeds sij ≥ 0.95. The
sintering level is defined while the neck remains between the primary particle
centres and the primaries are merged as the neck leaves this region.

Appendix B.6. TEM images

A simulated TEM-style image is produced using Algorithm 6.

38



Algorithm 1: Direct simulation Monte-Carlo.

Input: State of system Q0 at t0; Final time tf.
Output: State of system Qf at tf.
begin

Q← Q0;
t← t0;
while t < tf do

Calculate total rate of non-deferred processes:

Rtot(Q) =
∑
m

Rm(Q),

with m ∈ {inc, cg} and where Rcg = R̂cg(Q);
Calculate an exponentially distributed waiting time:

τ = − lnU

Rtot

,

where U is a uniformly distributed random variable, U ∈ [0, 1];

Select a process with probability:

P (m) =
Rm(Q)

Rtot(Q)
;

if m = inc then
/* This is an inception event */

Create a new particle PN and add it to the ensemble;
if N > Nmax then

Uniformly remove a particle;
Contract ensemble;

else
/* This is a coagulation event */

Select two particles Pq and Pr;

Calculate majorant for two particles: K̂tr
cg(Pq, Pr);

Perform deferred processes for Pq and Pr (condensation
and sintering);

Calculate true kernel for the two particles: Ktr
cg(Pq, Pr);

With probability

P =
Ktr

cg(Pq, Pr)

K̂tr
cg(Pq, Pr)

,

perform BCCA coagulation: Pq + Pr → Ps;
if N < Nmax/2 then

Double the ensemble;

t← t+ τ ;

Perform deferred processes (condensation and sintering) for all
particles;
return Q
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Algorithm 2: Ballistic cluster-cluster algorithm with a random im-
pact parameter.

Input: Particles Pq and Pr chosen for coagulation.
Output: Daughter particle Ps.
begin

Randomly rotate Pq and Pr around their centres of mass (using
Ref. [66])

Calculate the bounding spheres rb(Pq) and rb(Pr) (using
Ref. [67])

Centre the bounding spheres
repeat

/* Determine random trajectory */

Uniformly select a point H1(θ, φ) on a unit sphere:

φ = 2πU and θ = arccos(2U − 1),

where U is a uniformly distributed random variable;
Construct a rotation matrix R that rotates the vector
(0, 0,−1) to the point H1;
/* Determine random impact parameter */

Uniformly select a point:

H2 = (R
√
r cos θ, R

√
r sin θ,−R),

on a disk of radius R = rb(Pq) + rb(Pr) centred on (0,0,−R)
in the z = −R plane with r = U , and θ = 2πU , where U is a
uniformly distributed random variable;
/* Set initial positions */

Apply the rotation to H2 giving a new point H3 = RH2 ;
Place particle Pr at point H3;
Place particle Pq at O = (0, 0, 0);
/* Perform the collision */

while No point of contact do
Translate Pr along a vector parallel to H1O by distance
R/100;

Check for contact;
if Pr has passed through the bounding sphere of Pq then

/* This is an unsuccessful collision */

Break;

if Single point of contact then
/* This is a successful collision */

New particle Ps created by connecting the binary trees of
Pq and Pr at a new head node;

Contacting primaries pi and pj connected at the new head
node;
return New particle Ps

until Successful collision
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Algorithm 3: Surface growth

Input: Particle Pq; Number of units of TiO2 added ∆η
Output: Particle Pq

begin
Select a primary pi in particle Pq with probability

P (pi) =
Ai∑np(Pq)

j=1 Aj

;

Save old volume and radius: vi,old ← vi and ri,old ← ri;
Update primary composition: ηi ← ηi + ∆η;
Calculate new volume, vi;
while vi,old < vi do

/* Primary radius increased in 1% increments */

∆r ← ri/100;
∆v ← Ai∆r;
if vi,old + ∆v > vi then

∆r ← (vi − vi,old)

∆v
∆r;

Increase radius: ri ← ri + ∆r;
Update free surface area, Ai;
vi,old ← vi,old + ∆v;

/* Redistribution of composition between neighbours */

foreach Neighbour pj of pi do
Estimate change in volume of pj:

∆vj ← −An,ij
ri,old
dij

(ri − ri,old) ;

Calculate (integer) change in composition of pj:

∆ηj ←
∆vj

MTiO2/ (ρTiO2NA)
,

rounded down to the nearest integer;
if |∆ηj| > 0 then

Update the composition of pj: ηj ← ηj + ∆ηj;
Update the composition of pi: ηi ← ηi −∆ηj;

return Pq
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Algorithm 4: Sintering

Input: Particle Pq; Time to sinter particle tsint
Output: Particle Pq

begin
foreach Neck between two primaries pi and pj in particle Pq do

∆dij,max ← dij/100;
t← 0;
while t < tsint do

Calculate sintering rate:
ddij
dt

(Eq. (35));
Calculate time step:

∆t← ∆dij,max

ddij
dt

;

if tsint > t+ ∆t then

µ← 100;

else

µ← 100
(tsint − t)
∆dij,max

ddij
dt

;

Generate a Poisson random variate X with mean µ;
Calculate change in separation:

∆dij = − X

100
∆dij,max;

∆dij = −∆dij
xj − xi

|xj − xi|
;

Adjust centre to centre separation: dij ← dij + ∆dij;
/* Only need to adjust the coordinates of

primaries on one side of the neck, in this

case pi. */

Translate primary pi: xi ← xi + ∆dij;
Translate neighbours (pi; pj; ∆dij);
Compute change in radii using Eq. (45): ∆ri and ∆rj;
Adjust connectivity (pi; pj; ∆ri);
Adjust connectivity (pj; pi; ∆rj);
Update primary radii:

ri ← ri + ∆ri

rj ← rj + ∆rj

Update properties of primaries pi and pj;
t← t+ ∆t;
if Coalescence condition is met then

Merge primaries pi and pj;
Break;
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Algorithm 4: Sintering Cont.

/* Translates all the neighbours of a primary pi by ∆dij,

except for neighbour pj */

Function Translate neighbours (Primary pi; Neighbour pj;
Translation ∆d)

foreach Neighbour pk of pi, except for primary pj do
Translate pk by ∆d;

xk ← xk + ∆d;

/* Recursively translate the neighbours of pk,
except for primary pi */

Translate neighbours (Primary pk; Neighbour pi;
Translation ∆d);

/* Update centre to centre separations and coordinates of

neighbours pk of primary pi except for neighbour pj */

Function Adjust connectivity (Primary pi; Neighbour pj; ∆ri)
foreach Neck between primary pi and neighbour pk, except for
primary pj do

Calculate change in separation (Eq. (40)):

∆dik =
ri
xik

∆ri;

∆dik = ∆dik
xk − xi

|xk − xi|
;

Translate neighbour to update centre to centre separation:

dik ← dik + ∆dik;

xk ← xk + ∆dik;

Translate neighbours (Primary pk; Neighbour pi;
Translation ∆dik);
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Algorithm 5: Merger

Input: Particle Pq; Primaries pi and pj to merge
Output: Particle Pq with merged primary pi,new
/* We assume that pi is the larger primary: ri > rj */

begin
Solve Eq. (48) for the new merge primary radius of ri,new;
Update the composition of pi: ηi,new = ηi + ηj;
foreach Neck between pi and neighbour pk except pj do

xki =
d2ik − r2i + r2k

2dik
;

∆dik = max

(
xki ±

√
x2ki − r2k + ri,new

)
− dik;

∆dik = ∆dik
xk − xi

|xk − xi|
;

Translate neighbour pk:

dik ← dik + ∆dik;

xk ← xk + ∆dik;

Translate neighbours (Primary pk; Neighbour pi;
Translation ∆dik);
/* The function Translate neighbours is defined in

Algorithm 4 */

foreach Neck between pj and neighbour pl except pi do

xlj =
d2jl − r2j + r2k

2djl
;

∆dil = max
(
xlj ±

√
x2lj − r2l + ri,new

)
− dil;

∆dil = ∆dil
xl − xi

|xl − xi|
;

Translate neighbour pl:

dil ← dil + ∆dil;

xl ← xl + ∆dil;

Translate neighbours (Primary pl; Neighbour pj;
Translation ∆dil);

ri ← ri,new;
Remove primary pj and restructure binary tree ;
Update particle properties;
return Pq
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Algorithm 6: TEM images

Input: Ensemble Q; Frame size 2a× 2b; Particles per frame N ;
Number of images n

Output: n TEM images
begin

for n frames do
for N particles do

Uniformly select a particle Pq from ensemble Q;
Randomly rotate Pq around its centres of mass using the
method descibed by Arvo [66];

Generate (x, y) coordinates uniformly in the image plane
with −a ≤ x ≤ a and −b ≤ y ≤ b;

Position Pq in the image plane with its centre of mass at
(x, y);

Project Pq into the image plane;
Remove Pq from the ensemble;
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Nomenclature

Upper-case Roman

A Surface area
Ainc/cg Inception/coagulation rate prefactor

B Auxiliary sintering variable
C Aggregate particle connectivity matrix

Cv0 Equilibrium vacancy concentration
Cij Connectivity matrix element
Df Fractal dimension
Dv Vacancy diffusion coefficient
Fv Volume fraction

H1/2/3 Coordinates
IP Confidence interval
K Collision kernel

K̂ Majorant collision kernel
Kn Knudsen number
L Number of runs

M0 Zeroth moment/Aggregate particle number density
M Molar mass
M Total number of time steps
N Number of aggregate/computational particles
NA Avogadro constant
O Origin coordinates
P Probability
Pq Aggregate particle
Q State of system
R Rotation matrix
R Radius
R Rate

R̂ Majorant rate
Rij Neck radius
T Temperature
U Uniformly distributed random variable
V Volume
X Poisson distributed random variable
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Lower-case Roman

aP Critical value of the standard normal distribution for confidence level P
cP Half-width of the confidence interval
d Diameter
d̄ Population average diameter
dij Centre to centre separation of primaries pi and pj
er Relative error
etot Total relative error
kf Fractal pre-factor
kB Boltzmann constant
m Mass
np Number of primaries
n̄p Population average number of primaries
p Pressure
pi Primary particle
r Radius
s Sintering level
s̄ Population average sintering level
t Time
v Volume (primary particle)
xi Position vector of the centre of primary pi
xij Distance from the centre of primary pi to the neck with pj

Upper-case Greek

Ω Vacancy volume

Lower-case Greek

γ Surface free energy
δgb Grain boundary thickness
ε Collision enhancement factor
ζ High precision solution to general macroscopic quantity of system
η Primary composition: number of chemical units
θ Polar angle
λ Mean free path
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µ Gas-phase viscosity
µ Mean
µ1 Mean
µ2 Variance
ξl General macroscopic quantity of system measured for run l
ρ Density
τ Exponentially distributed waiting time
φ Azimuthal angle

Superscripts

const Denotes a constant kernel
fm Denotes the free molecular regime
sf Denotes the slip flow regime
tr Denotes the transition regime

Subscripts

0 Denotes an initial value
agg Denotes an aggregate property
avg Denotes the particle average value

b Bounding sphere
c Collision

cap Spherical cap
cg Coagulation

cond Condensation
crit Denotes the critical sintering diameter
sph Sphere

f Denotes a final value
g Gyration

gp Denotes the radius of gyration of a spherical primary particle
i/j/k/l/m Primary particle index

inc Inception
j Time step index
l Simulation run index
m Particle process index
m Mobility

max Maximum

48



n Denotes the neck
p Primary particle

pr Projected
q/r/s Aggregate particle index

res Denotes the reactor residence time
s Denotes a splitting step

sint Sintering
smpl Sample

tot Total

Abbreviations

BCCA Ballistic Cluster Cluster Aggregation
CPU Central Processing Unit
DEM Discrete Element Method
DSA Direct Simulation Algorithm

LPDA Linear Process Deferment Algorithm
ODE Ordinary Differential Equation
PBM Population Balance Model
PSD Particle Size Distribution

TEM Transmission Electron Microscopy
TTIP Titanium Tetraisopropoxide
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