Numerical example illustrating the calculation of the distance measure between single armed studies

1. Data example :

trial	treatment	prior lines (median)	age (median)	baseline stage (mean)	female (\%)
Avet-Loiseau et al. [54]	dex+len	3	65	1.7	44
Fukushima et al. [56]	bor+dex	2	69	2.1	41

2. Normalise outcomes on baseline characteristics using the assumed range of possible values and calculate absolute differences

Trial	treatment	prior lines	age	baseline stage	female (\%)
Assumed range	-	$1-4$	$20-100$	$1-3$	$0-100$
weight	-	4	3	2	1
Avet-Loiseau et al. [54]	dex+len	0.75	0.56	0.57	0.44
Fukushima et al. [56]	bor+dex	0.50	0.61	0.70	0.41
Δ individual characteristics		0.250	0.050	0.133	0.030

3. Calculated the weighted average as the distance measure between the two trials

$$
\Delta_{t o t}=\frac{4 \cdot 0.250+3 \cdot 0.050+2 \cdot 0.133+1 \cdot 0.030}{10}=0.145
$$

