Numerical example illustrating the calculation of the distance measure between single armed studies

1. Data example:

trial	treatment	prior lines (median)	age (median)	baseline stage (mean)	female (%)
Avet-Loiseau et al. [54]	dex+len	3	65	1.7	44
Fukushima et al. [56]	bor+dex	2	69	2.1	41

2. Normalise outcomes on baseline characteristics using the assumed range of possible values and calculate absolute differences

Trial	treatment	prior lines	age	baseline stage	female (%)
Assumed range	-	1-4	20-100	1-3	0-100
weight	-	4	3	2	1
Avet-Loiseau et al. [54]	dex+len	0.75	0.56	0.57	0.44
Fukushima et al. [56]	bor+dex	0.50	0.61	0.70	0.41
Δ individual characteristics		0.250	0.050	0.133	0.030

3. Calculated the weighted average as the distance measure between the two trials

$$\Delta_{tot} = \frac{4 \cdot 0.250 + 3 \cdot 0.050 + 2 \cdot 0.133 + 1 \cdot 0.030}{10} = 0.145$$