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1 Introduction

One of the great advantages of the holographic correspondence is that it provides tools to

calculate the properties of quantum field theories (QFTs) in the limit of strong interactions

that would otherwise be intractable. This approach has been used extensively to investi-

gate the real-time thermal Green’s functions of strongly interacting quantum field theories

with classical asymptotically anti-de Sitter (AdS) gravity duals. These Green’s functions
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characterize the near-equilibrium physics of systems, including their transport properties

and spectrum of collective excitations.

The real-time formulation of holography initiated in [1] (see also [2–11]) relates the

Fourier space retarded Green’s functions GR(ω, k) of boundary operators to the solutions

of classical bulk equations for perturbations obeying ingoing boundary conditions at the

black hole horizon. While applying the prescription of [1] is in principle straightforward,

in practice it can be difficult to evolve the ingoing solution from the horizon to the AdS

boundary in order to determine GR(ω, k). This evolution requires numerical methods even

for simple spacetimes like Schwarzschild-AdS, and also makes it clear that generically the

retarded Green’s functions depend in a complicated way on the details of the particular

QFT state (i.e. the particular spacetime) under consideration.

However, there are elements of certain retarded Green’s functions for which one can

obtain simple and general results for holographic theories. One example of this is the

observation that a holographic theory’s shear viscosity (set by the k, ω → 0 limit of the

retarded Green’s function of the stress tensor) is set by its entropy density [12]. This

general result arises because the radial evolution of the corresponding bulk perturbation is

extremely simple for k, ω → 0. The corresponding limit of the retarded Green’s function

can therefore be expressed solely in terms of the near-horizon region of the gravitational

solution, and is insensitive to the details of the rest of the spacetime [13]. Simplifications of

this type occur for the k, ω → 0 limits of retarded Green’s functions of conserved charges

in general, and as a consequence the dissipative d.c. transport properties of holographic

systems are sensitive only to the region of the spacetime near the horizon.

In [14] it was shown that the near-horizon dynamics of the gravitational description

are also directly responsible for certain features of the retarded Green’s function of energy

density ε far from the origin of (complex) Fourier space. In other words there are elements

of the response of a holographic QFT at ω of order the temperature T that can be easily

determined by examining only the properties of perturbations near the horizon, and are

therefore independent of many details of the particular theory. Specifically, it was shown

in [14] that near the points ω∗ = +i2πT , k∗ = ±i2πT/vB (where vB is a specific velocity

set by the near-horizon metric1), the retarded Green’s function of energy density takes the

special form

GRεε(ω∗ + δω, k∗ + δk) = C
δω − vzδk
δω − vpδk

, (1.1)

for a large class of holographic systems dual to Einstein gravity with general matter con-

tent. The form (1.1) of the Green’s function was called ‘pole-skipping’ in [14, 18–20]: the

retarded Green’s function has a pole and a zero intersecting at (ω∗, k∗) and as a result is not

uniquely defined at this location. The fact that the location (ω∗, k∗) at which there is ‘pole-

skipping’ in GRεε(ω, k) is universally related to the form of the out-of-time ordered correlator

in holographic theories has led to the suggestion that this instance of pole-skipping is a

signature of many-body quantum chaos [14, 18–20]. Pole-skipping in GRεε(ω, k) at (ω∗, k∗)

1vB is the ‘butterfly velocity’ [15–17] of the dual quantum field theory.
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was first seen numerically in a holographic theory dual to pure Einstein gravity in AdS5

in [18], and also arises as a prediction of the effective theory of chaos proposed in2 [19].

As we emphasised earlier in the introduction the radial evolution of the perturbations

is generically complicated and spacetime-dependent at the scales (ω, k) ∼ (ω∗, k∗). Never-

theless it was possible in [14] to show that the energy density Green’s function in general

takes the ‘pole-skipping’ form (1.1) because the boundary conditions of perturbations near

the horizon are very special for this choice of ω, k. In particular, for given asymptotic

boundary conditions, one finds that there is not a unique solution for the perturbations at

(ω∗, k∗) that is ingoing at the horizon [14]. Close to this location there is a unique ingoing

solution but this solution now depends on the direction δω/δk, leading to the form (1.1)

for the Green’s function.

Our intention in this paper is to illustrate that the approach of [14] can be generalised to

provide constraints of the form (1.1) on the retarded Green’s functions of generic operators

in thermal quantum field theories with classical AdS black brane descriptions. Specifi-

cally we will show that at the negative imaginary Matsubara frequencies3 ωn = −i2πTn
(n = 1, 2, 3, . . .) and appropriate complex values of the wavenumber kn, the retarded

Green’s functions of scalar, U(1) current, and energy-momentum tensor operators take

the pole-skipping form (1.1). The locations k2
n of the pole-skipping points can be easily

and systematically determined by an analysis of the near-horizon region of the gravitational

solution. They are operator-dependent and the number of them typically grows linearly

with n. The values of k2
n become progressively more sensitive to the gravitational solution

further from the horizon as n is increased. The relation between the pole-skipping frequen-

cies ωn and the Matsubara frequencies is a consequence of the near-horizon Rindler metric

seen by the perturbations.

The existence of pole-skipping points constrains the spectrum of poles and zeroes of

GR(ω, k), as one of each must pass through each pole-skipping point (ωn, kn). Our analysis

therefore provides exact constraints on the dispersion relations ω(k) of the collective modes

(i.e. the poles of the retarded Green’s functions) of holographic systems. These constraints

are encoded in a direct way in the properties of perturbations in the near-horizon region of

the gravitational solution. We will provide simple examples in which the dispersion relation

of a single hydrodynamic collective mode passes through a sequence of pole-skipping points

(ωn, kn) as real k is progressively increased to access shorter and shorter distance and time

scales. The ‘UV completion’ of these hydrodynamic dispersion relations can therefore be

understood in a direct way from a near-horizon analysis of the corresponding perturbation.4

There are two important differences between the instances of pole-skipping we describe

2Pole-skipping in GRεε at (ω∗, k∗) was also shown to hold in holographic theories dual to higher derivative

gravity in [20].
3The symbol ωn is more conventionally used to refer to the real set of Matsubara frequencies ωE = 2πTn

at which the Euclidean Green’s function is defined. Here we are interested in studying the real time

correlator GR(ω, k) and will abuse the more common notation somewhat by using the symbol ωn to refer to

the special pure imaginary frequencies ω = ωn = −i2πTn. These are referred to as the ‘negative imaginary

Matsubara frequencies’ for obvious reasons.
4A contemporaneous study of pole-skipping has been performed in [21]. Where our results overlap,

they agree.
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in this paper, and that identified in the energy density retarded Green’s function in [14, 18–

20]. Firstly, the pole-skipping point identified in [14, 18–20] is the only example for which

the frequency is in the upper half of the complex plane i.e. it is the only example related

to a mode that grows exponentially in time. Secondly, the momenta kn where lower half-

plane pole-skipping occurs depend not only on the spacetime metric near the horizon,

but also on the action and profiles for the matter fields. Therefore the values of kn are

in general unrelated to the speed vB that universally controls the upper half-plane pole-

skipping wavenumber for GRεε described in [14, 18–20]. Therefore unlike the case described

in [14, 18–20], we believe it is unlikely that the pole-skipping phenomena that we describe

in this paper are related in a straightforward way to the underlying quantum chaotic

properties of holographic systems.

The paper is organised as follows. In section 2 we derive the existence of pole-skipping

at ω = −i2πT for the simple case of a minimally coupled scalar field, before systematically

generalising this in section 3 to derive the existence of pole-skipping for a scalar field

at higher frequencies ω = −i2πTn. In section 4 we turn to the explicit examples of

scalar fields in BTZ and planar AdS-Schwarzschild spacetimes, and confirm that pole-

skipping occurs as we predict using exact analytic and numerical results for GR(ω, k)

these cases. In section 5 we further generalise our pole-skipping analysis beyond scalar

operators to the retarded Green’s functions of conserved U(1) currents and the energy-

momentum tensor, and illustrate (in simple cases) that the real pole-skipping wavenumbers

kn constrain the short distance properties of hydrodynamic excitations. Finally, in section 6

we close with an extended discussion of the implications of our results for quantum chaos,

hydrodynamics and transport, as well as of a number of interesting open questions and

future research directions.

2 Minimally coupled scalar field

We begin by studying the pedagogically simple case of a minimally coupled scalar field ϕ

with bulk action

S =

∫
dd+2x

√
−g
(
R− 2Λ− 1

2
(gµν∂µϕ∂νϕ+m2ϕ2)

)
+ Smatter, (2.1)

where Λ = −d(d+ 1)/2L2. In Smatter we have allowed for extra matter fields in the theory

besides ϕ. In the standard quantization of the scalar field, ϕ is dual to a scalar boundary

operator O of dimension ∆, given by the larger of the two roots to

∆(∆− d− 1) = m2L2. (2.2)

Our goal in this section is to derive the phenomenon of pole-skipping by computing the

Fourier-transformed retarded Green’s function GROO(ω, k) of the scalar boundary operator

O in the thermal state of the dual quantum field theory. Henceforth we will set the AdS

radius L = 1.

We assume that the action admits a planar black hole solution (with ϕ = 0) that can

be written in the form

ds2 = −r2f(r)dt2 +
1

r2f(r)
dr2 + h(r)d~x2, (2.3)
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with t, ~x giving coordinates on the asymptotically planar AdS boundary as r → ∞. We

assume that f(r) and h(r) can be expanded in Taylor series around a horizon located at

r = r0 (i.e. f(r0) = 0) with Hawking temperature 4πT = r2
0f
′(r0). The precise form of f(r)

and h(r) will depend on Smatter and we will leave them unspecified in much of what follows.

For Smatter = 0, the appropriate solution is just the planar AdSd+2-Schwarzschild metric

f(r) = 1−
(
r0

r

)d+1

, h(r) = r2. (2.4)

To calculate the retarded Green’s function for O, it is convenient to introduce the

ingoing Eddington-Finkelstein coordinate v

v = t+ r∗,
dr∗
dr

=
1

r2f(r)
, (2.5)

in terms of which the metric is

ds2 = −r2f(r)dv2 + 2dvdr + h(r)d~x2. (2.6)

The retarded Green’s function for the boundary operator O dual to ϕ can be extracted

by finding solutions to the equation of motion

∂µ
(√
−ggµν∂νϕ

)
−m2√−gϕ = 0, (2.7)

that obey the ingoing wave boundary condition at the horizon. In practice we implement

this by Fourier transforming ϕ = φ(r)e−iωv+ikx and then imposing that φ(r) has a Taylor

series expansion near the horizon. For generic ω, k this boundary condition is sufficient to

yield a unique ingoing solution to (2.7), up to an overall normalisation. Expanding this

solution as φ = φA(ω, k)r∆−d−1 +φB(ω, k)r−∆ + . . . near the AdS boundary, the boundary

retarded Green’s function is then specified uniquely by

GROO(ω, k) = (2∆− d− 1)
φB(ω, k)

φA(ω, k)
, (2.8)

up to the possible existence of contact terms.

The purpose of this paper is to emphasise a simple but general new aspect of holo-

graphic Green’s functions such as (2.8). Specifically, at frequencies ωn = −i2πTn and

certain complex values of momentum kn, the imposition of the ingoing boundary condi-

tion at the horizon is not sufficient to uniquely specify ϕ (up to an overall normalisation

constant). In fact, at these special points in complex Fourier space any solution to (2.7)

is regular at the horizon in ingoing coordinates. The locations of these special points

can easily and systematically be determined by expanding (2.7) near the horizon of the

black hole, and can be used to obtain highly non-trivial information about the boundary

Green’s function GROO(ω, k). Generically we will find that GROO(ω, k) is not uniquely de-

fined at (ωn, kn) but rather depends on the slope δω/δk at which one approaches these

special points. Further we will show that the GROO(ω, k) must have both a line of poles

and a line of zeroes passing through such points, which have thus recently been christened
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‘pole-skipping’ points [14, 18–20]. As such we will show how to directly obtain non-trivial

information about the dispersion relations of poles and zeroes of GROO(ω, k) from a simple

analysis of perturbations near the black hole horizon, and will demonstrate this explicitly

in several examples.

2.1 Existence of multiple ingoing solutions

We first explain why there are certain special values of ω, k at which imposing ingoing

boundary conditions is not sufficient to uniquely specify a solution to (2.7) (up to an overall

normalisation). Following the Fourier transform, the equation (2.7) in the coordinate

system (2.6) is

d

dr

[
hd/2

(
r2f∂rφ− iωφ

)]
− iωhd/2∂rφ− hd/2−1

(
k2 +m2h

)
φ = 0, (2.9)

and we are interested in solutions that are regular around the horizon i.e. those with a

Taylor series expansion

φ(r) =
∞∑
p=0

φp(r − r0)p = φ0 + φ1(r − r0) + . . . . (2.10)

For generic ω, the two independent power law solutions φ = (r− r0)α to (2.9) near the

horizon are5

α1 = 0, α2 =
iω

2πT
. (2.11)

These are independent of k,m and are only sensitive to the metric through the value of T

because they are set by the perturbation equation in the near-horizon region, where the

metric looks like that of Rindler space. The solution with exponent α1 is the ‘ingoing’

solution as it is of the form (2.10), while the ‘outgoing’ solution with exponent α2 gener-

ically is not. The choice of ingoing boundary conditions therefore generically picks out

a solution of the form φ = φ0 + . . . near the horizon, which is unique up to an overall

normalisation constant.

However at the special frequencies ωn = −i2πTn (n = 1, 2, 3, . . .) both power laws

α1 = 0 and α2 = n naively appear to correspond to regular ingoing solutions. In fact, a

more careful analysis shows that logarithmic corrections to the leading power law solutions

generically destroy the regularity of one solution (see appendix A) such that there is still a

unique ingoing solution. But we will focus on the non-generic case and show that at certain

complex values of the wavevector kn, logarithmic corrections are absent and therefore there

are two independent ingoing solutions, which take the form

φ = φ0 [1 + c1(r − r0) + . . .] + φn(r − r0)n [1 + d1(r − r0) + . . .] , (2.12)

where φ0, φn are independent parameters in the expansion (2.10) and c1, d1 etc are constants

fixed by the background spacetime and by the mass m. As such we find that at these

5Because we are working in Eddington-Finkelstein coordinates (r, v) these are shifted from the usual

power laws ±iω/4πT one finds in (r, t) coordinates.
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locations (ωn, kn) there is not a unique ingoing solution to (2.9) and hence there is an

ambiguity in defining the Green’s function GROO(ωn, kn).

To demonstrate the existence of ingoing solutions of the form (2.12), we will explicitly

construct them order-by-order in the near-horizon expansion (2.10). This can be achieved

by inserting (2.10) into (2.9) and then expanding the scalar equation of motion in powers

of (r − r0). Denoting the scalar equation (2.9) as S = 0 with

S =

∞∑
p=0

Sp(r − r0)p = S0 + S1(r − r0) + . . . , (2.13)

we then obtain a series of equations Sp = 0 that are recursion relations for the parameters

φp in the expansion (2.10).

For now we will focus on the simplest example of pole-skipping, which occurs at ω1 =

−i2πT . For this case it will be sufficient to focus just on the equation S0 = 0, which is

equivalent to evaluating the scalar equation of motion (2.9) on the horizon. This equation is

−
(
k2 +m2h(r0) +

iωdh′(r0)

2

)
φ0 + (4πT − 2iω)h(r0)φ1 = 0. (2.14)

For a generic ω, k it is clear that (2.14) fixes φ1 in terms of the initial value φ0 on the

horizon. After solving (2.14) for φ1 it is then possible at generic ω, k to iterate this process

using the equations of motion Sp = 0 to solve for the higher order coefficients φp uniquely

in terms of φ0 and thus construct a regular solution to (2.9) that is unique up to the overall

normalisation φ0.

At ω1 = −i2πT we are unable to construct the solution in this manner. Precisely at

ω = ω1 the coefficient of the φ1 term in (2.14) vanishes, and hence φ1/φ0 is no longer fixed

by this equation. Instead, at ω = ω1 (2.14) reduces to(
k2 +m2h(r0) + dπTh′(r0)

)
φ0 = 0. (2.15)

For a generic value of k2, (2.15) therefore sets φ0 = 0 in the near-horizon solution (2.10)

and φ1 then becomes the free parameter. The remaining equations Sp = 0 can then be

solved iteratively to determine the higher order coefficients φp in terms of φ1 and produce

an ingoing solution that is unique up to the normalisation φ1.

However it is now possible to see that there is a very special location in complex Fourier

space given by

ω = ω1 = −2πT i, k = k1, k2
1 = −m2h(r0)− dπTh′(r0). (2.16)

At this location, (2.14) is trivially satisfied by any value of φ0 and φ1 and thus both coef-

ficients are free parameters in the general series solution (2.10). One can then iteratively

solve the remaining equations Sp = 0 to yield a family of regular ingoing solutions to (2.9)

in terms of the two independent parameters φ0 and φ1. As such we conclude that both in-

dependent solutions to the differential equation (2.9) are consistent with ingoing boundary
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conditions at (2.16), and can be expanded near the horizon in a Taylor series expansion of

the form (2.10).6

Note that the special value of the wavenumber k2
1 is sensitive only to the near-horizon

region of the black hole. In general k2
1 does not have to be positive and thus the special

locations can be at complex values of k1. When we examine specific cases in sections 4

and 5 we will find examples with both real and complex values of kn.

2.2 Green’s functions near special location

We have just demonstrated that at the special location in (2.16) there are two independent

ingoing solutions to (2.9), rather than the one found at generic points (ω, k). The existence

of an extra ingoing solution for metric perturbations was recently observed in [14], where

it was argued to have dramatic consequences for the boundary retarded Green’s function

(of energy density). Here we will demonstrate that a similar analysis applies to the scalar

Green’s function near (2.16). In particular we will argue that generically there must be

both a line of poles and a line of zeroes in GROO(ω, k) that pass through the locations (2.16),

a phenomenon known as ‘pole-skipping’.

In particular as there are two independent ingoing solutions at (2.16), it is clear that

GROO(ω, k) cannot be uniquely defined by working at this location. In order to define

GROO(ω, k) it is necessary as in [14] to move infinitesimally away from (2.16) to ω = −i2πT+

εδω, k = k1 + εδk. After doing so, the horizon equation (2.14) becomes non-trivial in the

limit ε→ 0 and is given by

−
(
iδωdh′(r0)

2
+ 2k1δk

)
φ0 − 2iδωh(r0)φ1 = 0. (2.17)

The horizon equation (2.17) is now well-defined and fixes φ1 in terms of φ0. One can then

construct a solution of the form (2.10) that depends only on the overall normalisation φ0.

However the ingoing solution φ(r) obtained by solving (2.17) for φ1 will clearly depend

on the slope δω/δk with which we move away from the special location (2.16). The re-

tarded Green’s function one extracts using (2.8) therefore also depends on the slope δω/δk.

GROO(ωn, kn) is therefore not uniquely defined but is infinitely multivalued, depending on

how the point (2.16) is approached.

Furthermore, the slope δω/δk now plays the role of the aforementioned extra free

parameter in the ingoing solution, and so an arbitrary solution to (2.9) obeys ingoing

boundary conditions for an appropriate choice of slope. In particular we can always pick a

slope (δω/δk)p so that the ingoing solution is normalisable in the UV — i.e. is a solution

φ(n) to (2.9) for which φA = 0 as r → ∞. Near the horizon the normalisable solution

to (2.9) at (2.16) can formally be expanded as

φ(n) = φ
(n)
0 + φ

(n)
1 (r − r0) + . . . , (2.18)

6Note that by constructing a two parameter family of solutions of the form (2.10) we have demonstrated

that the regularity of one of the solutions in (2.11) is not destroyed by subleading logarithmic correc-

tions. Indeed in appendix A we provide another perspective on the location in (2.16) by showing that the

wavenumber k1 is precisely the value at which the logarithmic corrections to (2.11) vanish.
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for some fixed coefficients φ
(n)
0 , φ

(n)
1 determined by solving (2.9) subject to the normalis-

able boundary condition in the UV. We can therefore ensure that the ingoing solution is

normalisable simply by moving away from (2.16) infinitesimally along the direction(
δω

δk

)
p

=
4ik1φ

(n)
0

4h(r0)φ
(n)
1 + dh′(r0)φ

(n)
0

. (2.19)

Since the normalisable solution corresponds to a pole in the Green’s function we therefore

conclude that GROO(ω, k) must contain a line of poles passing through (2.16) with a slope

(δω/δk)p given by (2.19).

Alternatively we could instead move away from (2.16) along a different slope such

that the ingoing solution instead matches on to the solution φ(nn) with no normalisable

component in the UV (i.e. the ingoing solution has φB = 0 as r →∞). This implies there

must also be a line of zeroes in GROO(ω, k) passing through (2.16) with a slope (δω/δk)z

that will just be given as in (2.19) but where φ
(n)
0 , φ

(n)
1 are replaced by the corresponding

coefficients for the near-horizon expansion of φ(nn).

For a general choice of δω/δk the ingoing solution is a linear combination of φ(n) and

φ(nn) that depends on the slope (see appendix B). The retarded Green’s function extracted

from such a solution takes the form

GROO(ω1 + εδω, k1 + εδk) ∝ δω − (δω/δk)zδk

δω − (δω/δk)pδk
, (2.20)

which manifestly displays both a line of poles and a line of zeroes passing through (2.16).

This is the same as the ‘pole-skipping’ form described in [14]. The values of (δω/δk)p and

(δω/δk)z cannot be deduced from our near-horizon analysis alone: they depend on the

radial evolution of the normalisable and non-normalisable solutions from the boundary to

the horizon.

Whilst the phenomenon of ‘pole-skipping’ in GROO(ω, k) was easy to deduce from

analysing the properties of perturbations near the horizon, it has provided us with highly

non-trivial information about properties of the retarded Green’s function. In particular,

as a consequence of the additional ingoing solution we have deduced that there must be a

line of poles (and zeroes) with dispersion relation ω(k) that pass through the point (2.16).

Moreover, we will shortly see that the existence of an extra ingoing solution also occurs at

higher frequencies ωn = −i2πTn and appropriate wavevectors k2
n that can be similarly de-

termined. From the locations (ωn, kn) of these higher ‘pole-skippings’ we are therefore able

to obtain a whole tower of constraints on the dispersion relations of poles in GROO(ω, k).

Note that the locations of pole-skipping points, and the slope (δω/δk)p of the line of poles

passing through (2.16), are generically independent of contact terms. In contrast, the

slope (δω/δk)z of the line of zeroes passing through (2.16) is sensitive to any contact terms

added to (2.8).

Finally we note that although the above discussion generically applies to the retarded

Green’s function near (2.16), our analysis breaks down if the location at which multiple

ingoing solutions exists is k1 = 0. In this case we see from (2.17) that we can no longer

generate an arbitrary solution by varying the slope δω/δk in (2.17). As such the Green’s
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function near (2.16) will not have the pole-skipping form (2.20) if k1 = 0, even though there

are multiple ingoing solutions. In this paper we will refer to such locations at which multiple

ingoing solutions exists but for which the Green’s function does not take the form (2.20) as

‘anomalous points’, and will shortly see that they can also arise at higher ωn = −i2πTn.

Whilst such ‘anomalous points’ are not generic we will discuss several explicit examples

of them in sections 4.1, appendix E and appendix C. Interestingly we will find that in all

these explicit examples there are still poles whose dispersion relations pass through the

anomalous points, even though the form of the Green’s function near these locations is not

that of (2.20).

3 Pole-skipping at higher Matsubara frequencies

In the last section we demonstrated that for a minimally coupled scalar field there can

be pole-skipping in the boundary retarded Green’s function GROO(ω, k) at a frequency

ω1 = −i2πT and appropriate wavenumber k1. Here we extend our analysis and show that

the same phenomenon can also occur at higher Matsubara frequencies ωn = −i2πTn. In

particular at ω = ωn we find that there are generically n wavenumbers k2
n at which there

will be pole-skipping in GROO(ω, k). The locations k2
n at which pole-skipping occurs follow

from the determinant of an n by n matrix M(n)(ω, k), whose coefficients are determined

by the near-horizon expansion (2.13) of the scalar equation of motion. This prescription

therefore allows us to systematically identify a whole tower of pole-skipping points (ωn, kn)

that constrain the dispersion relations of poles at frequencies ωn = −i2πTn.

3.1 Multiple ingoing solutions at ωn = −i2πTn

We first demonstrate that at Matsubara frequencies ωn = −i2πTn there are certain choices

of (complex) wavenumber kn for which the general ingoing solution to the equation of

motion (2.9) is not uniquely specified by the overall normalisation. That is at the locations

(ωn, kn) we show that there is a two-parameter family of regular ingoing solutions of the

form (2.10), labelled by independent parameters φ0 and φn.

In section 2 we were able to see the existence of multiple ingoing solutions at (ω1, k1)

solely from the horizon equation of motion S0 = 0. At higher n it is also necessary to look

at the equations Sp = 0 that arise from our expansion of (2.9) around the horizon. We

will show that the locations (ωn, kn) at which pole-skipping occurs can be easily extracted

from a matrix M(n)(ω, k) defined using the first n equations arising from this expansion

around the horizon.

In order to illustrate how to find these locations it is useful for us to write out the first

few equations Sp = 0 somewhat explicitly. In particular, the first three equations in the

expansion of (2.9) are

0 = M11(ω, k2)φ0 + (2πT − iω)φ1,

0 = M21(ω, k2)φ0 +M22(ω, k2)φ1 + (4πT − iω)φ2,

0 = M31(ω, k2)φ0 +M32(ω, k2)φ1 +M33(ω, k2)φ2 + (6πT − iω)φ3,

(3.1)
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where the coefficients Mij(ω, k
2) take the form

Mij(ω, k
2) = iωaij + k2bij + cij , (3.2)

with aij , bij , cij determined by the background spacetime metric (2.6), its derivatives at the

horizon, and m. The explicit forms of the coefficients aij , bij , cij are rather complicated,

and will not be needed for our general discussion in this section. Nevertheless they can

be easily computed by the expansion of (2.9), and we include explicit expressions for the

matrix elements in (3.1) in appendix E.1. Generally Mij is sensitive to the ith derivative

of the spacetime metric functions f(r) and h(r) at the horizon. In this sense, higher

coefficients in the equation’s near-horizon expansion are progressively more sensitive to the

spacetime metric away from the horizon.

Although we have only written out the first few equations explicitly, the general struc-

ture of the equations (3.1) continues at higher order. Constructing an ingoing solution is

then equivalent to finding a solution to a set of linear equations of the form

M(ω, k2) · φ ≡


M11 (2πT − iω) 0 0 . . .

M21 M22 (4πT − iω) 0 . . .

M31 M32 M33 (6πT − iω) . . .

. . . . . . . . . . . . . . .



φ0

φ1

φ2

. . .

 = 0. (3.3)

In what follows a key role will be played by the n by n matrixM(n)(ω, k2) that corresponds

to keeping the first n rows and n columns of M(ω, k2). Note that this matrix M(n)(ω, k2)

is nothing more than the coefficients of the φ0, . . . , φn−1 terms in the first n equations (3.1)

in our expansion of (2.9) around the horizon.

In order to explain why M(n)(ω, k2) is important in characterising the pole-skipping

locations, let us first note that at a generic frequency ω 6= −i2πTn it is straightforward to

solve the equations (3.3) iteratively to determine a unique (up to normalisation) ingoing

solution in the manner we outlined in section 2. One simply starts by solving the first

equation in (3.1) to determine φ1 in terms of φ0. After inserting this solution into the

second equation in (3.1) one can then determine φ2 in terms of φ0. By repeating this

iterative process one can solve for all the coefficients φp in terms of a single φ0.

However at frequencies ω = ωn we can see from the structure of (3.3) that it is

not possible to construct the solution iteratively in terms of φ0 in this manner. This is

because the coefficient of the parameter φn vanishes in the nth row of (3.3). This has two

important consequences. Firstly it implies that φn can no longer be fixed in terms of the

lower coefficients φ̃ = (φ0, . . . , φn−1) by iteratively solving (3.3), and hence φn becomes a

free parameter in the general near-horizon solution. Secondly it implies that the first n

equations in the expansion around the horizon (3.3) decouple to form a closed system of

equations for the coefficients φ̃ = (φ0, . . . φn−1). This equation takes the form

M(n)(ωn, k
2) · φ̃ = 0. (3.4)

For a generic choice of k2 the matrix M(n)(ωn, k
2) will be invertible, and hence (3.4) has

the solution φ̃ = 0. In these cases there will be a unique ingoing solution of the form

φ = φn(r − r0)n + . . . , characterised by the free parameter φn.
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However it is immediately clear from above discussion that there will be an extra

ingoing solution for certain complex wavevectors k2 for which the matrix M(n)(ωn, k
2) is

not invertible. At such values of k2 there will now be a non-trivial solution φ̃ = φ̃a to (3.4).7

This extra non-trivial solution will then result in an extra free parameter in our expansion

that we can take to be the value of φ0 in φ̃a We therefore conclude that at the locations

ωn = −i2πTn, k2 = k2
n, detM(n)(ωn, k

2
n) = 0, (3.5)

the regular solutions to (2.9) are labelled by two independent parameters φ0, φn in our

expansion (2.10). Note that since the elements of Mij are of the form (3.2) then the equation

detM(n)(ωn, k
2) = 0 is a polynomial in k2 of degree n. As such there will generically be

n distinct complex roots k2
n to this equation and hence the number of locations in (3.5)

grows with n. Furthermore, due to properties of the elements Mij mentioned above, kn
is typically sensitive to the nth derivative of the spacetime metric functions f(r) and h(r)

on the horizon. In this sense, the locations (3.5) are progressively more sensitive to the

spacetime away from the horizon as n is increased.

Mathematically, the existence of multiple ingoing solutions is tied to the nature of the

differential equation (2.9) at the horizon r = r0. For a generic Fourier mode (ω, k) the

horizon is a regular singular point of the equation with indicial exponents 0 and iω/2πT ,

and thus there is only one analytic solution near r = r0. For the mode (ω1, k1), the regular

singular point reduces to simply a regular point of the differential equation and therefore

both solutions are analytic. For the higher-order modes (ωn>1, kn>1), while the horizon

is a regular singular point, it is an apparent singularity (as opposed to a real singularity)

as both solutions are analytic in the vicinity of this singular point. Sufficient conditions

for a singularity to be apparent are that the indicial exponents are non-negative integers

and that there are no logarithmic terms in the solution near the singular point [22]. In the

above, we have described a procedure by which one can systematically identify values of

(ω, k) at which the singularity at the horizon is only apparent and therefore the ingoing

solution is non-unique.

Whilst the above discussion has been somewhat abstract we wish to emphasise that

equation (3.5) provides a systematic way of identifying the pole-skipping locations (ωn, kn)

for any given n. In particular the matrix M(n)(ω, k2) that characterises these locations

simply corresponds to reading off the coefficients of φ0, . . . , φn−1 that appear in the first n

equations in the near-horizon expansion (3.1). As such for small n it is straightforward to

explicitly compute detM(n)(ωn, k
2) for a given theory and hence identify these locations.

We will shortly discuss several explicit examples of this in detail in section 4. However we

first examine the form of the Green’s functions near (3.5) and hence argue that generically

we should expect pole-skipping in GROO(ω, k) at the locations (ωn, kn).

3.2 Green’s function near special locations

We have just argued that there is a two parameter family of ingoing solutions to (2.9)

at the locations (ωn, kn) in (3.5). In other words both independent solutions to (2.9)

7As (2.9) can have at most two independent solutions, (3.4) can have only one non-trivial solution.
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are consistent with ingoing boundary conditions, and thus it is unclear how to uniquely

define GROO(ωn, kn). We will now show that near (3.5) GROO(ω, k) generically takes the

pole-skipping form (2.20). In order to do this it’s helpful to first give a slightly differ-

ent perspective on the origin of the extra ingoing mode at (3.5). This will allow us to

straightforwardly generalise the matching argument of section 2.2 to these higher instances

of pole-skipping.

There is a more explicit way to reach the conclusion that there is an extra ingoing

solution at the locations (3.5). For a generic ω 6= −i2πTn we have commented that a

unique ingoing solution (up to overall normalisation) can be constructed by solving (3.3)

iteratively. Whilst this iterative process breaks down exactly at the special frequencies

ω = ωn, near ω = ωn we can always use it to uniquely solve for the solution up to φn−1

in terms of φ0. After determining the coefficients φ̃ = (φ0, . . . , φn−1) in terms of φ0 in this

manner we can then insert these expressions into the nth line of (3.3) to obtain an equation

relating φn to φ0. The resulting equation can be written as

1

N (n)(ω)
detM(n)(ω, k2)φ0 + (n2πT − iω)φn = 0, (3.6)

where M(n)(ω, k) is the matrix we introduced previously and we have defined8

N (n)(ω) = (iω − 2πT )(iω − 4πT ) . . . (iω − (n− 1)2πT ). (3.7)

The equation (3.6) is a direct analogue of the horizon equation (2.14) that we used

to demonstrate pole-skipping at (ω1, k1). In particular we see that at generic ω, k (3.6)

provides a constraint relating φn to φ0 that can be used to construct an ingoing solution

with a single parameter φ0. However, precisely at the locations identified in (3.5) we see

that (3.6) becomes trivial and is satisfied by any φ0, φn. As such we again see that at the

location in (3.5) there is a two-parameter family of ingoing solutions.

Furthermore it is now straightforward to expand (3.6) near the location (3.5) as in our

matching analysis in section 2.2. In particular, if we move away from the location (3.6) to

ω = ωn + εδω, k = kn + εδk we find an equation relating φn to φ0

1

N(ωn)

(
∂k detM(n)(ωn, k

2
n)δk + ∂ω detM(n)(ωn, k

2
n)δω

)
φ0 − iδωφn = 0, (3.8)

with N(ωn) = (n− 1)!(2πT )n−1.

As in section 2.2 the equation (3.8) can now be solved to determine φn in terms of

φ0 and continue the iterative construction of the general ingoing solution dependent on a

single parameter φ0. However we see that this solution, and in particular the ratio φn/φ0,

will now generically depend on the slope δω/δk with which we move away from (3.5). As

such by varying the slope we can ensure that an arbitrary solution to (2.9) is ingoing.

Following a similar logic to in section 2.2 we then conclude that there will be both a line

8Note that the factor of 1/N (n)(ω) in (3.6) diverges at lower Matsubara frequencies ωm = −i2πTm with

m < n. In writing down (3.6) we have assumed we are not at such a frequency. We are predominantly

interested in studying (3.6) near ω = ωn, where it is always well-defined.

– 13 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
7

of poles and and a line of zeroes passing through the locations in (3.5), and the Green’s

function GROO(ω, k) will generically have the pole-skipping form (2.20) near (ωn, kn).

Whilst generically we expect pole-skipping at the locations in (3.5) it is worth not-

ing that there can be anomalous cases if we have a location k2
n which satisfies both

detM(n)(ωn, k
2
n) = 0 and also the condition9

∂k detM(n)(ωn, k
2
n) = 0. (3.9)

At such locations there are two independent ingoing solutions to (2.9), but from (3.8) we see

that it is no longer possible to match to an arbitrary linear combination of these by moving

away from (3.5) along an appropriate slope δω/δk. These cases are further examples of

the anomalous points we mentioned at the end of section 2.2, and the Green’s function

GROO(ω, k) will not take the pole-skipping form (2.20) near these points. We will show

in section 4.1 that examples of anomalous points at n > 1 arise for the retarded Green’s

function GROO(ω, k) of a scalar field with integer ∆ in the BTZ spacetime.

4 Scalar field examples

Until now we have rather abstractly discussed the phenomenon of pole-skipping for a

minimally coupled scalar. In particular we argued that at frequencies ωn = −i2πTn there

are special wavenumbers kn given by (3.5) at which there are multiple ingoing solutions

to the bulk equation (2.9). As a result, the retarded Green’s function near such locations

generically takes the form (2.20), and in particular there will be both a line of poles and

a line of zeroes in GROO(ω, k) passing through these locations. We now wish to illustrate

these statements by considering several explicit examples.

4.1 BTZ black hole

We begin with the simplest example: a minimally coupled scalar field in the BTZ

background

ds2 = −(r2 − r2
0)dt2 +

1

(r2 − r2
0)
dr2 + r2dx2, (4.1)

which is dual to a (1+1)-dimensional conformal field theory with temperature 2πT = r0.

A minimally coupled scalar field of mass m propagating in this spacetime is dual to an

operator of conformal dimension ∆ via (2.2). For standard quantisation ∆ is the largest

root to the equation ∆(∆ − 2) = m2, whilst for alternative quantisation ∆ is the smaller

root of the same equation.

Predictions from near-horizon analysis. We first consider the pole-skipping at ω1 =

−i2πT discussed in section 2. From (2.16) we see that for a background of the form (4.1)

there should be pole-skipping at

ω1 = −i2πT, k2
1 = −r2

0(∆− 1)2, r0 = 2πT. (4.2)

9Note that since the equation detM(n)(ωn, k
2) = 0 is just a polynomial of degree n in k2 then points

satisfying (3.9) correspond to special cases where either we have a solution with k2
n = 0 or for which there

is a solution with k2
n 6= 0 that corresponds to a repeated root of detM(n)(ωn, k

2
n) = 0.
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To look for instances of pole skipping at higher frequencies ωn = −i2πTn we expand the

equation of motion as described in section 3 and compute the determinant of the matrix

M(n). This computation is straightforward and for the first few values of n yields (up to

overall normalisation factors)

detM(1) =
[
k2 + (∆− 1)2r2

0

]
,

detM(2) =
[
k2 + ∆2r2

0

] [
k2 + (∆− 2)2 r2

0

]
,

detM(3) =
[
k2 + (∆ + 1)2r2

0

] [
k2 + (∆− 1)2 r2

0

] [
k2 + (∆− 3)2 r2

0

]
,

(4.3)

from which we read off the first few pole-skipping locations to be

ω1 = −i2πT, k2
1 = −r2

0(∆− 1)2,

ω2 = −i4πT, k2
2 = −r2

0(∆− 2)2,−r2
0∆2,

ω3 = −i6πT, k2
3 = −r2

0(∆− 3)2,−r2
0(∆− 1)2,−r2

0(∆ + 1)2.

(4.4)

The same pattern continues at higher n such that detM(n)(ωn, k
2) takes the form (up to

overall normalisation)

detM(n)(ωn, k
2) =

n∏
q=1

(k2 − k2
n,q), k2

n,q = −r2
0(n− 2q + ∆)2, (4.5)

for any n ∈ {1, 2, . . .} and where q ∈ {1, . . . , n}. For the purposes of our discussion in the

main text we will assume that ∆ is generic (i.e. non-integer), for which there are n distinct

to solutions to detM(n)(ωn, k
2) = 0 corresponding to the values k2 = k2

n,q in (4.5).10 In

turn this then yields 2n imaginary wavenumbers kn at which we expect pole-skipping

ωn = −i2πTn, kn,q = ±2πiT (n− 2q + ∆), (4.6)

where again q ∈ {1, . . . , n}. From our discussion in sections 2 and 3 we then expect

that the retarded Green’s function near the locations (4.6) should have the pole-skipping

form (2.20). In particular there should be both a line of poles and a line of zeroes passing

through each of the locations in (4.6).

Comparison to exact Green’s function. For the BTZ metric (4.1) exact analytic

expressions are available for the entire retarded Green’s function GROO(ω, k) for an operator

of any dimension ∆, and hence we can easily verify the predictions of our near-horizon

analysis. As we discuss in appendix D, the ω and k dependence of the retarded Green’s

function for non-integer ∆ is given by a ratio of Gamma functions

GROO(ω, k) ∝
Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

∆
2 −

i(k+ω)
4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 −

i(k+ω)
4πT

) . (4.7)

10The case of integer ∆ is described in appendix C.
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Figure 1. The left hand plot shows the locations (4.6) where our study of near horizon perturba-

tions predicts pole-skipping for a field in the BTZ background with ∆ = 2.5 and for n = 1, 2, 3, 4.

The right hand plots shows the dispersion relations (4.8) and (4.9) of the lines of poles (dashed) and

zeroes (solid) in the ∆ = 2.5 Green’s function (4.7). These lines can be seen to intersect precisely

at the pole-skipping locations (4.6), as expected from our analysis in section 3.

The Gamma function never vanishes, and has simple poles at non-positive integer values

of its argument. Thus there are poles of GROO(ω, k) at the frequencies

ωpL,m(k) = k − i2πT (∆ + 2m), ωpR,m(k) = −k − i2πT (∆ + 2m), (4.8)

and zeroes at the frequencies

ωzL,m(k) = k − i2πT (2−∆ + 2m), ωzR,m(k) = −k − i2πT (2−∆ + 2m), (4.9)

for any m ∈ {0, 1, 2, . . .}.
The first (n = 1) examples of pole-skipping involve the poles and zeroes closest to the

origin (m = 0). It is simple to see that the dispersion relations of the left (right) moving pole

and the right (left) moving zero intersect at the first pole-skipping frequency: ωpL,0(k1) =

ωzR,0(k1) = −i2πT and ωpR,0(−k1) = ωzL,0(−k1) = −i2πT where k1 = i2πT (∆ − 1). The

retarded Green’s function (4.7) therefore has exactly the pole-skipping property predicted

by our near-horizon analysis of section 2.

Indeed the expression (4.7) exhibits pole-skipping at the entire tower of frequencies

ωn = −i2πTn. To see this note that we should get examples of pole-skipping whenever one

of the lines of poles in (4.8) intersects with one of lines of zeroes in (4.9). This happens at

the locations

ωn = −i2πTn, kn,q = ±2πiT (n− 2q + ∆), (4.10)

for any n ∈ {1, 2, . . .} and q ∈ {1, . . . , n}, and hence precisely matches the locations (4.6)

indicated by our near-horizon analysis. The intersections between the lines of poles and

zeroes in (4.7) are illustrated in figure 1, where it is easy to see the existence of the whole

tower of pole-skipping points.

A slightly more sophisticated analysis is required for integer ∆, as in this case some

of the apparent pole-skipping points are in fact anomalous (in the sense described in sec-

tion 3.2). We discuss this case in detail in appendix C and again find that the locations of

the pole-skipping predicted from our near horizon analysis agree perfectly with the exact
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analytic expression for the BTZ Green’s function. It is interesting to note that in this

example the anomalous points coincide with locations at which two lines of poles intersect.

Therefore poles do still pass through the anomalous points in this example, even though

the Green’s function does not have the pole-skipping form (2.20) there.

Our pole-skipping analysis is in a sense redundant for the BTZ example, as we already

know the exact Green’s functions. We present it to demonstrate that there are non-trivial

features of these Green’s functions that can be exactly determined by a simple analysis of

the properties of perturbations near the horizon. In the following sections we will generalise

to cases where expressions for the Green’s functions are not known.

4.2 Higher dimensional AdS-Schwarzschild

In higher dimensions, or in the presence of matter fields, it is usually impossible to obtain

analytic expressions for the dispersion relations of poles and zeroes of GROO(ω, k) in the

theories (2.1). However, for a given theory these dispersion relations can be computed

exactly by numerical evaluation of (2.8). We will now study the case of a (massless)

minimally coupled scalar field in the AdSd+2-Schwarzschild spacetime (2.4) and verify that

the exact Green’s functions do have poles passing through the locations we derived from a

near-horizon analysis.

Following the analysis of section 2 for this particular spacetime we find that the first

(n = 1) instance of pole skipping in GROO(ω, k) occurs at the wavenumber

k2
1 + r2

0

(
∆ (∆− d− 1) +

d (d+ 1)

2

)
= 0, (d+ 1)r0 = 4πT. (4.11)

Similarly by constructing M(2)(ω2, k
2) as described in section 3 we conclude the location

of the n = 2 pole-skipping wavenumber k2 obeys

k4
2 + 2k2

2r
2
0 [∆ (∆− d− 1) + d (d+ 1)]

+ r4
0

{
[∆ (∆− d− 1) + d (d+ 1)]2 − (d+ 1) [2∆ (∆− d− 1) + d (d+ 1)]

}
= 0.

(4.12)

It is straightforward to determine the polynomial equations governing k3 and higher, but

the expressions expressions quickly become rather lengthy and so for conciseness we will

not present them here.

For the special case of a massless scalar field ∆ = d + 1, the expressions for the

pole-skipping wavenumbers simplify to

k2
1 = −r2

0

d (d+ 1)

2
, k2

2 = −r2
0d (d+ 1)

(
1± d−1/2

)
. (4.13)

As in the BTZ example, this corresponds to imaginary values of k1 and k2. At k = 0, the

locations of the poles of the ∆ = d + 1 retarded Green’s functions have been calculated

numerically. They form a ‘Christmas tree’-like pattern in the complex ω plane (see e.g. [23]

or the top left panel of figure 2) and as a consequence, must move significantly as imaginary

k is increased in order that they pass through the pole-skipping locations we have predicted.

This is in fact what happens.
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Figure 2. Blue dots denoting the location of poles of the boundary retarded Green’s function for

a massless scalar field in AdS6-Schwarzschild. The locations were determined numerically (using

the procedure described in section 4.2 of [24]) for four values of k/r0: 0 (top left), 3.0i (top right),

3.1i (bottom left) and 3.16i (bottom right). The pole locations are consistent with our near-horizon

analysis, which indicates that k1/r0 = k2/r0 =
√

10i ∼ 3.16i is a pole-skipping wavenumber for the

first two pole-skipping frequencies ω1 and ω2.

In figure 2 we present the result of a numerical calculation showing how the poles of

a massless scalar in AdS6-Schwarzschild move in the complex ω plane as imaginary k is

increased from 0 to k1. Two poles approach the imaginary axis and collide, one of which

moves up the imaginary ω axis and passes through ω = ω1 exactly at the wavenumber

k = k1 predicted by our near-horizon analysis. A similar phenomenon occurs for AdS4,5-

Schwarzschild. For the particular case of AdS6-Schwarzschild, (4.13) implies that poles

should pass through both ω1 and ω2 when k = k1, and this is also confirmed by our

numerical results in figure 2.

We have thus confirmed that our simple near-horizon analysis of bulk perturbations

does precisely capture non-trivial features of the exact Green’s functions GROO(ω, k).

5 Current and energy-momentum tensor Green’s functions

So far in this paper we have focused on discussing the phenomenon of pole-skipping in

the retarded Green’s functions of scalar operators dual to minimally coupled bulk scalar

fields. This focus was for pedagogical reasons. We believe that this phenomenon is in fact

a generic feature of Green’s functions in holographic theories, and in particular that it also

occurs in the retarded Green’s functions of conserved U(1) current and energy-momentum

tensor operators. In this section, we explore these latter examples.
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The Green’s functions of these operators characterise energy and charge dynamics

and thus the pole-skipping locations provide us with non-trivial information about the

collective modes responsible for charge and energy transport in holographic systems. For

example, by examining simple cases we will show that a pole-skipping anlaysis provides

exact information on how the dispersion relations of long wavelength hydrodynamic modes

evolve to shorter distances and timescales.

In the interests of brevity, in the main text we will focus on the results of the analysis.

The mathematical details (see appendix E) are conceptually very similar to the case of a

scalar field described in sections 2 and section 3. We restrict to the cases d ≥ 2 where

conventional hydrodynamics (see e.g. [25]) is valid.

5.1 U(1) current Green’s functions

We first study the Green’s function of a conserved U(1) charge current operator Jµ in a state

with 〈Jµ〉 = 0. This is dual to a bulk U(1) gauge field Aµ in a black hole spacetime (2.6).

We assume the following general action for the field strength

SMaxwell =

∫
dd+2x

√
−g
(
− 1

4
Z(Φ)FµνFµν

)
, (5.1)

where Φ(r) is a scalar field and where we assume that the black hole solution has a vanishing

gauge field.

The boundary retarded Green’s functions GRJµJν (ω, k) can be extracted by solving the

following equations of motion for small perturbations of the gauge field

∂µ(
√
−gZ(φ)Fµν) = 0, (5.2)

in an analogous manner to our discussion for the scalar field. There are two independent

components of these Green’s functions, corresponding to whether the current is parallel or

perpendicular to the direction of the wavenumber k of the perturbation (which we call the

x direction).

In the perpendicular case, the relevant bulk equation of motion is very similar to that

of the minimally coupled scalar field. It is therefore straightforward to apply the analysis

of sections 2 and 3 and verify that there will be pole skipping at frequencies ωn = −i2πTn
and appropriate wavenumbers kn (which are different from those of the scalar field). Due

to its similarity to the scalar field case, we will not discuss this case further.

We will focus on the more interesting case of the retarded Green’s function of the

current parallel to the wavenumber GRJxJx(ω, k). This is related by a simple Ward identity

to the charge density correlator GRJtJt(ω, k) and supports a gapless hydrodynamic charge

diffusion mode with the small-k dispersion relation

ωh(k) = −iDck
2 + . . . . (5.3)

The relevant bulk perturbations are δAx, δAv, δAr, which are coupled. After Fourier

transforming it is convenient to algebraically solve one equation of motion for δAr, leaving
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the single equation of motion

d

dr

[
hd/2Z

ω2h− k2r2f

(
r2fψ′1 − iωψ1

)]
+

hd/2−1Z

ω2h− k2r2f

(
−iωhψ′1 − k2ψ1

)
= 0, (5.4)

for the variable ψ1 ≡ ωδAx + kδAv. While (5.4) is more complicated than the scalar

equation (2.9), its near-horizon limit is very similar. We can therefore perform a similar

analysis to that in sections 2 and 3 (see appendix E.2) and conclude that there is pole

skipping in GRJxJx(ω, k) at ωn = −i2πTn and appropriate values of k = kn. The first

instance of pole skipping occurs when

k2
1 = (d− 2)πTh′(r0) + 2πTh(r0)

Z ′(r0)

Z(r0)
, (5.5)

where the prime denotes a derivative with respect to r. Note that k1 is sensitive not just

to the metric near the horizon, but also to the effective Maxwell coupling Z.

While hydrodynamic arguments impose the constraint that there must be a pole of

GRJxJx(ω, k) passing through ω = 0 and k = 0 (with the dispersion relation (5.3)), our

pole skipping analysis is complementary to this and constrains the pole structure at higher

frequencies and wavenumbers. To illustrate this, we now look at the particular example of

the AdSd+2-Schwarzschild black brane metric (2.4) with Z(Φ) = 1, for which the charge

diffusion constant is 4πTDc = (d+ 1) / (d− 1) (see e.g. [13]). In appendix E.2, we show

that for each pole skipping frequency ωn, one of the n pole skipping wavenumbers k2
n is

positive. For example, for d = 3 the first few pole skipping points with positive values of

k2
n are

k2
1 = 2r2

0, k2
2 = 4

(√
3− 1

)
r2

0, k2
3 =

(
4
√

6− 6
)
r2

0. (5.6)

For these cases, the pole skipping analysis therefore produces constraints on dispersion

relations ω(k) of modes at real values of k, which are those most commonly studied.

In the left hand panel of figure 3 we plot (for real k) the exact dispersion relation

ωh(k) of the pole of GRJxJx(ω, k) that is hydrodynamic at small k, with the pole-skipping

points (5.6) overlaid. This shows that the dispersion relation ωh(k) passes through a

succession of pole-skipping points as real k is increased, and we expect the same to be

true in higher dimensional AdS-Schwarzschild. The special case of d = 2 is discussed in

appendix E.2. We have not checked whether the poles passing through the pole-skipping

points with non-real kn are also related to the hydrodynamic dispersion relation ωh(k), but

it would be interesting to do so.

Figure 3 is quite remarkable from the point of view of hydrodynamics, in which the dis-

persion relation (5.3) is normally calculated order-by-order in a small k expansion. The re-

quirement that the pole passes through the locations (5.6) provides exact (non-perturbative

in k) information about this dispersion relation at ω ∼ T . In this way, the corrections to

diffusive hydrodynamics (5.3) can potentially be constrained by a very simple analysis of

near-horizon dynamics, and and we discuss this further in section 6.
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Figure 3. Dispersion relation of the charge diffusion mode from AdS5-Schwarzschild (left) and

of the momentum diffusion mode from AdS4-Schwarzschild (right). Black dots show the exact

dispersion relation determined by numerical integration of the appropriate perturbation equations

in (t, r) coordinates, solid blue lines show the diffusive hydrodynamic dispersion relations ((5.3)

and (5.11) respectively), and the intersections of the black dashed lines correspond to the (real

k) pole-skipping points ((5.6) and (5.12) respectively). The short-distance corrections to diffusive

hydrodynamics are such that the pole passes through a succession of pole-skipping points.

5.2 Energy-momentum tensor Green’s functions

We now turn to the case of the retarded Green’s functions of boundary energy-momentum

tensor operators Tµν . There are again multiple independent Green’s functions depending

on the relative orientation of the component of Tµν and the wavevector k [26]. We will

focus on the two independent Green’s functions which contain hydrodynamic poles at

small k: those of transverse momentum density (i.e. the components of the momentum

density perpendicular to k) and of longitudinal momentum density (i.e. the components of

the momentum density parallel to k).11 The latter example is related by a simple Ward

identity to the retarded Green’s function of energy density, one of whose pole-skipping

properties was explored in [14, 18–20].

Transverse momentum density. We firstly study the Green’s function of transverse

momentum density. In the main text, we will focus on the action

S =

∫
dd+2x

√
−g
(
R− 2Λ− 1

2
gµν∂µΦ∂νΦ + V (Φ)

)
, (5.7)

where we have allowed for a scalar field Φ(r) supporting a background metric of the

form (2.6). In appendix E.5, we discuss the generalisation to charged black branes.

We choose the wavenumber k to point in the x-direction, and thus the transverse

momentum density is dual to the perturbation δgvy of the metric where y is a field theory

spatial direction perpendicular to x. δgvy couples to the perturbations δgxy and δgry of

11The components of the Tµν Green’s functions that do not support any hydrodynamic modes are con-

trolled by bulk fields obeying equations of the same form as the scalar equation (2.9). It is therefore

straightforward to show (using the techniques of the preceding sections) that these Green’s functions ex-

hibit pole-skipping at ωn, although we will not present the results here.
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the metric. After Fourier transforming and solving algebraically for δgry, we are left with

a single equation

d

dr

[
hd/2+1

ω2h− k2r2f

(
r2fψ′2 − iωψ2

)]
+

hd/2

ω2h− k2r2f

(
−iωhψ′2 − k2ψ2

)
= 0, (5.8)

for the field

ψ2 ≡
1

h(r)
(ωδgxy + kδgvy) . (5.9)

This equation is very similar to the equation (5.4) for Maxwell field perturbations. Note

that the scalar profile Φ(r) does not enter explicitly in this equation, and thus the pole-

skipping points can be expressed in terms of the metric functions only.

Performing a very similar analysis to that for the Maxwell field (see appendix E.3),

we again find that there is pole-skipping at the frequencies ωn = −i2πTn for appropriate

values of the wavenumber kn. The first instance of pole-skipping occurs when

k2
1 = dπTh′(r0). (5.10)

As in the previous subsection, we will again demonstrate that the dispersion relation

ωh(k) of a hydrodynamic mode passes through pole-skipping points. The transverse mo-

mentum correlator GRT tyT ty(ω, k) has a hydrodynamic pole corresponding to the diffusion

of momentum with the small-k dispersion relation

ωh(k) = −iDpk
2 + . . . , (5.11)

where the shear viscosity η sets the momentum diffusion constant such that Dp = η/(sT ) =

1/(4πT ) (see e.g. [13]).

For the simplest case of the AdSd+2-Schwarzschild metric (2.4) with Φ = 0, one of the

n values of k2
n is positive for each frequency ωn (see appendix E.3). For the particular case

of AdS4-Schwarzschild, the first few pole-skipping locations with real kn are

k2
1 = 3r2

0, k2
2 = 3

√
2r2

0, k2
3 = 3

√
3r2

0. (5.12)

In the right hand panel of figure 3 we show the exact dispersion relation ωh(k) for real

k, overlaid with the diffusive approximation (5.11) and the pole-skipping locations (5.12).

This again shows that the ωh(k) passes through a succession of pole-skipping locations as k

is increased, and thus that a simple analysis of near-horizon boundary conditions provides

a series of non-perturbative constraints on how the hydrodynamic mode behaves at energy

scales ω ∼ T .

While we have only presented numerical results for the AdS4-Schwarzschild black

brane, we expect these results are representative of those for higher-dimensional gener-

alisations of this solution.12 It would again be worthwhile to investigate whether the

pole-skipping points with non-real values of kn are also related to the dispersion relation

ωh(k) of the hydrodynamic mode.

12Note added: numerical results analogous to ours were found in [21] for the AdS5-Schwarzschild

black brane.
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Energy density and longitudinal momentum density. Finally, we turn to the

Green’s function of the longitudinal momentum density GRT txT tx(ω, k), which is related

to the retarded Green’s function of energy density by the Ward identity

GRT txT tx =
ω2

k2
GRT ttT tt(ω, k). (5.13)

The pole-skipping properties of these correlators were studied in [14, 18–20], motivated

by their close relation to the many-body quantum chaotic properties of the system. In

particular, it was shown in [14] that for gravity coupled to very general matter fields they

exhibit pole skipping in the upper half of the complex ω plane at the location

ω∗ = +i2πT, k2
∗ = −

(
2πT

vB

)2

= −dπTh′(r0), (5.14)

where vB is the butterfly velocity associated to many-body chaos. This pole-skipping arises

due to the non-uniqueness of ingoing solutions to the relevant equations of motion at this

special point in Fourier space, as in the other examples we have discussed in this paper.

We will not repeat the arguments of [14] here, but instead we will show that

GRT ttT tt(ω, k) and GRT txT tx(ω, k) also exhibit pole-skipping in the lower half of the complex

plane at frequencies ωn and appropriate wavenumbers kn, as for all of the other examples

described in this paper.

For simplicity, we will consider the AdSd+2-Schwarzschild solutions (2.4) to Einstein-

Hilbert gravity with a negative cosmological constant. The relevant metric perturbations

are δgvv, δgvx and those that they couple to. After Fourier transforming and solving alge-

braically for δgrr, δgvr, δgxr, the dynamics of these fields reduce to the single second-order

differential equation

d

dr

[
rd
(
r2fψ′3 − iωψ3

)(
ω2 − k2f − k2

2drf
′(r)
)2
]

+
rd−2(

ω2 − k2f − k2

2drf
′(r)
)2 (−iωr2ψ′3 − k2ψ3

)
− (d− 1) k2rd+2f ′(r)2

2d
(
ω2 − k2f − k2

2drf
′(r)
)3ψ3 = 0,

(5.15)

for the field

ψ3 ≡
1

r2

(
2ωkδgvx + ω2δgxx + k2δgvv −

(
ω2 − k2f − 1

2k
2rf ′(r)

)
d− 1

δgxixi

)
, (5.16)

where i = 1, . . . , d. Having written the relevant equation (5.15) in a form similar to that

of the scalar equation (2.9), we can perform similar analyses to that of sections 2 and 3 to

uncover the pole-skipping locations. This is described in appendix E.4.

The results are that, in addition to the pole-skipping point (5.14) in the upper half

plane, there is also pole-skipping in the lower half plane at ωn and k = kn, where the first
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few values of kn obey the polynomial equations

0 = k4
1 − (d− 2) (d+ 1) k2

1r
2
0 +

d2 (d+ 1)2

4
r4

0,

0 = k4
2 − 2 (d− 2) (d+ 1) k2

2r
2
0 + (d+ 1)2 d (d− 1) r4

0,

0 = k6
3 −

1

2
(d− 12) (d+ 1) k4

3r
2
0 −

1

4
(d+ 1)2 (21d2 − 56d+ 16

)
k2

3r
4
0

+
3

8
d (d+ 1)3 (15d2 − 28d+ 16

)
r6

0.

(5.17)

The order of the polynomial equation for k1 is different to the previous cases we have

discussed due to the more complicated equation of motion for ψ3.

We emphasise that while the pole-skipping in the upper half of the complex ω plane

at (5.14) is obscured by formulating the dynamics in terms of the field ψ3, it also arises due

to the non-uniqueness of ingoing solutions and can be seen transparently in the fundamental

form of the Einstein equations themselves (as described in [14]). See appendix E.4 for how

the upper half-plane pole-skipping point (5.14) can be derived from a careful near-horizon

analysis of equation (5.15).

In [18] it was shown numerically for the case of AdS5-Schwarzschild that the disper-

sion relation of hydrodynamic sound passes through the upper half-plane pole skipping

point (5.14). It would be interesting to determine whether the poles passing through the

pole-skipping points (5.17) in the lower half-plane are related to the hydrodynamic poles,

and also how the locations (5.17) change upon the inclusion of bulk matter fields.

6 Discussion

In this paper we have shown that a simple analysis of the near-horizon properties of classical

perturbations leads to a series of non-trivial constraints on the properties of holographic

Green’s functions at frequencies ω ∼ T . In particular, we have demonstrated that at the

negative Matsubara imaginary frequencies ωn = −i2πTn (n = 1, 2, 3, . . .) and appropriate

complex wavenumbers kn, the retarded Green’s functions of generic bosonic operators

typically have the ‘pole-skipping’ form (2.20). As a consequence, the dispersion relations

ω(k) of poles and zeroes of the retarded Green’s functions are constrained such that one of

each must pass through every pole-skipping point (ωn, kn). In a number of simple examples,

we illustrated that short-distance properties of the dispersion relations of hydrodynamic

modes (at real values of k) are captured by our pole-skipping analysis.

To close our paper we will now place our results in the context of the previous work [14,

18–20] that studied instances of pole-skipping in the context of many-body quantum chaos,

and also outline a number of interesting open questions that deserve further study.

Field theory interpretation. As we mentioned in the introduction, the instances of

pole-skipping described in this paper are qualitatively different to those discovered in the

retarded Green’s function of the energy density in [14, 18–20]. Unlike the cases discussed

in this paper, the pole-skipping point identified in [14, 18–20] is universally related to the
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exponential growth observed in out-of-time-ordered correlators of the theory, a feature that

is also predicted by the hydrodynamic effective theory of chaos proposed in [19]. Specifically

the pole-skipping frequency ω identified in [14, 18–20] lies at a location in the upper half of

the complex plane related to the Lyapunov exponent, while the pole-skipping wavenumber

k is universally related to the butterfly velocity.13 The pole-skipping points described in

this paper are in general unrelated to the exponentially growing mode and the butterfly

velocity present in out-of-time-ordered correlators14 and so we do not expect these cases are

directly linked to chaos. Nevertheless, our general analysis of pole-skipping here provides

context for appreciating the remarkable robustness of the results in [14].

It is clearly important to work to place our pole-skipping results in the context of

quantum field theories more generally. With a better understanding of pole-skipping in

quantum field theories, our conclusion that pole-skipping at ωn is generic in thermal states

with classical black hole descriptions could be used to help deduce when and why grav-

itational descriptions of quantum field theories exist. In this direction, further study of

thermal states of CFTs would be very useful. In (1+1)d CFTs, pole-skipping occurs even

in non-gravitational theories: for integer ∆ it was shown that the thermal retarded Green’s

functions of scalar operators of a (1+1)d CFT in general are equivalent to those computed

from the BTZ black hole [1], and so the pole-skipping properties are present even if there

is not a gravitational description of the CFT.15 In order to more directly understand the

field theory origin of these pole-skipping properties, it would also be very interesting to

determine what pole-skipping properties are exhibited by higher-dimensional CFTs (see

e.g. [28]) and the SYK chain model of [29].

Implications for hydrodynamics and transport. In section 5 we showed that the

dispersion relations of hydrodynamic modes pass through pole-skipping points in simple

holographic examples. It would be very advantageous to understand in general when it is

the dispersion relation of the hydrodynamic modes that are constrained in this way as this

would open a number of paths for a greater understanding of hydrodynamics and transport

in holographic systems.

First, it would allow us to determine whether the pole-skipping can be interpreted

as arising due to underlying symmetries in a quantum effective action for hydrodynamic

degrees of freedom. This was the case for the pole-skipping of the hydrodynamic mode

in the energy density correlator studied in [19], which is produced by the imposition of

a non-perturbative shift symmetry in a quantum theory of hydrodynamics [30, 31]. The

further study of higher-dimensional CFTs advocated previously would also be helpful in

this regard.

13In holographic theories, this happens because the Einstein equation responsible for determining the

gravitational shock wave profile that controls the out-of-time-ordered correlators is the same equation that

controls the location of the pole-skipping point [14, 20].
14While in some cases kn is related to vB (e.g. (5.10)), this is only true for sufficiently simple bulk theories.

As we demonstrate in appendix E.5, the pole-skipping wavenumber (5.10) is not robust to the generalisation

to charged black holes.
15Furthermore, in [27] it was shown that the upper half-plane pole-skipping predicted in [19] is also

present in all (1+1)d CFTs, although a large c limit is required to identify the butterfly velocity vB .
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Second, the constraints imposed on the dispersion relations ωh(k) of the hydrodynamic

modes by the pole-skipping analysis could potentially be used to obtain constraints on the

thermodynamic and transport coefficients of holographic systems. Within the realm of

validity of the hydrodynamic gradient expansion, it is these coefficients that control the

dispersion relations ωh(k) and thus this may be possible if the pole-skipping points lie

within this realm of validity (see [21, 32] for work in this direction).

We can already use the results of this paper to better understand the observations

in [17, 33–37] relating the diffusivities, D, of certain strongly interacting quantum field

theories to horizon data. The pole-skipping arguments developed in [14] and section 5

provide a more precise and general relationship between the dispersion relations of hydro-

dynamic poles in boundary Green’s function and properties of the near-horizon geometry,

that provides a new perspective on these previous results. Assuming the dispersion relation

of the hydrodynamic mode is relatively smooth up until ω ∼ T then we can use the first

pole-skipping location (ωH , kH) of this mode to obtain a natural speed v = |ωH |/|kH | and

timescale τ = |ωH |−1 to characterise the diffusivity (i.e. D ∼ v2τ [38]). This reasoning

(see also [14, 19]), combined with the result (5.14) for the pole-skipping in the energy

density retarded Green’s function, therefore explains the form of the thermal diffusivity

DT ∼ v2
B/T near a large variety of holographic quantum critical points [33]. Further-

more, it was shown in [17] that the diffusivity of transverse momentum also takes the form

Dp ∼ v2
B/T near quantum critical points of neutral holographic theories. This can now be

similarly understood from the more precise pole-skipping condition (5.10) of the retarded

transverse momentum correlation function. The fact that it is only the energy density

pole-skipping point studied in [14] that is robustly related to vB is therefore consistent

with the observations that the only diffusivity that is robustly related to vB is the thermal

diffusivity [33, 39–44]. Further study of the regime of applicability of diffusive hydrody-

namics and of pole-skipping in charged black holes (where a single Green’s function has

multiple hydrodynamic poles) would be helpful to sharpen these arguments.

Further constraints from near-horizon perturbations. Whilst we have given a thor-

ough overview of the constraints on retarded Green’s functions resulting from the properties

of perturbations near the horizon, it has certainly not been exhaustive and there a number

of related phenomena that we sketch below which are worthy of fuller investigation.

The first concerns the properties of perturbations at frequencies ωn but away from the

pole-skipping momenta kn. As we discussed in section 2.1, at these points the solution pro-

portional to φ0 contains logarithmic terms near the horizon and so the general ingoing solu-

tion depends on the single coefficient φn (see appendix A and specifically equation (A.2)).

Furthermore, this solution is also the only regular solution in outgoing coordinates. That

is there is one solution (A.2) which is regular in both ingoing and outgoing coordinates,

and a second solution that (because of the logarithms) is not regular in either coordinate

system. Analogous statements also hold at Matsubara frequencies in the upper half plane

ω = i2πTn and general k. This implies that in general there is a non-trivial relation-

ship between the retarded and advanced correlation functions GROO(ω, k) and GAOO(ω, k)
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of holographic theories

GROO(ω, k) = GAOO(ω, k) + . . . , (ω = ±i2πTn, k2 6= k2
n), (6.1)

where . . . denote potential contact terms that may differ between the retarded and ad-

vanced functions.16 For the exceptional case k = kn there is still a solution that is regular

in both coordinate systems, but it is not the only regular solution and thus the Green’s

functions are not both uniquely defined there. From this we can conclude that the only

poles of GROO(ω, k) that pass through ωn = −i2πTn at real k are those found at pole-

skipping points k = kn, as GAOO(ω, k) has no poles in the lower half plane for real k. It

would be interesting to investigate further consequences of the relation (6.1), and also to

determine the appropriate generalisations for U(1) current and energy-momentum tensor

Green’s functions.17

The second are the meaning of the ‘anomalous points’ described in sections 2.2 and 3.2.

These are points (ω, k) at which the ingoing solution to the perturbation equations (with

appropriate asymptotic boundary conditions) is not uniquely defined, but where never-

theless the retarded Green’s function does not take the ‘pole-skipping’ form (2.20). The

pole-skipping form is not realised because whilst there is a unique solution slightly away

from the anomalous point, this solution does not depend continuously on the direction

δω/δk. We have encountered examples of anomalous points in both the BTZ and AdS-

Schwarzschild spacetimes, and saw empirically that these points coincided with unusual

analytic structures in the corresponding boundary retarded Green’s functions. In the BTZ

case discussed we found that two distinct poles of the Green’s function intersected at the

anomalous points (appendix C) while for a conserved U(1) current Green’s function in

Schwarzschild-AdS4 (appendix E.2) we found that a pole and a zero intersected. It would

be interesting to calculate the generic form of Green’s functions near anomalous points

and to determine what implications this has for their analytic properties. As an immediate

application, such analysis could tell us what is happening at the anomalous point identified

for the retarded Green’s function of energy density in Schwarzschild-AdS spacetimes (see

appendix E.4).

Thirdly, while in this paper we have exploited the one-sided prescription of [1] for

calculating retarded Green’s functions in holographic theories, it would be illuminating to

rephrase our discussion in terms of the more general real-time holography prescriptions

of [6–10, 45]. In addition to potentially giving us a clearer perspective on the origin of

pole-skipping, this formulation would also be the starting point for a generalisation to

higher-order correlation functions.

Fourth, while we have shown that pole-skipping occurs for a variety of different op-

erators there remain further interesting examples that we did not address. One natural

extension would be to the case of fermionic operators. For example, the boundary re-

tarded Green’s function GRψψ(ω, k) dual to a bulk Dirac fermion of (non-half-integer) mass

16It is simple to check that the analytic expressions for the boundary Green’s function of scalar fields in

BTZ studied in section 4.1 exactly satisfy the identity (6.1) (without any extra contact terms).
17The relation (6.1) is not true for the small ω limit of the retarded Green’s function of energy density

in the SYK chain [29].

– 27 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
7

m propagating in the BTZ spacetime (4.1) is [46]

GRψψ(ω, k) ∝
Γ
(
m
2 + 1

4 + i(k−ω)
4πT

)
Γ
(
m
2 + 3

4 −
i(k+ω)

4πT

)
Γ
(
−m

2 + 3
4 + i(k−ω)

4πT

)
Γ
(
−m

2 + 1
4 −

i(k+ω)
4πT

) . (6.2)

In a similar manner to our discussion in section 4.1 then for non-half-integer m the various

Gamma functions in (6.2) give rise to lines of poles and zeroes in GRψψ(ω, k) that intersect

at locations

ωn = −iπT (2n+ 1), kn,q1 = 2πiT (n− 2q1 +m),

kn,q2 = 2πiT (n+ 1− 2q2 −m), (6.3)

for any n ∈ {0, 1, . . .} and with q1 ∈ {0, . . . , n}, q2 ∈ {1, . . . , n}.18 We therefore find

that this Green’s function again exhibits pole-skipping, this time at fermionic Matsubara

frequencies, and so we expect that the locations (6.3) can similarly be derived from a

near-horizon expansion of the fermionic bulk wave-equation. Another extension is to study

correlation functions of higher spin operators: for instance it was observed in [27] that the

Green’s function of a spin-3 current operator in (1+1)d CFTs exhibits pole-skipping at

frequencies ω = ±i2πT,±i4πT .

Finally, it would be interesting to uncover the implications of our reasoning when gener-

alised to other types of spacetimes. One interesting generalisation would be to the spinning

BTZ solution: its out-of-time-ordered correlators depend on both horizon radii [47–50] and

so could be used to further clarify the relation between pole-skipping and chaos. A second

area worthy of exploration would be spacetimes that are not asymptotically AdS. As it is

the horizon of the spacetime (rather than the asymptotics) that is key in our analysis, our

approach may prove useful for constraining the quasinormal mode spectra of more general

spacetimes and of understanding general features of possible holographic field theory du-

als. However we note that the analogue of our continuous parameter k is in many cases

a discrete angular momentum number, and obtaining constraints may require us to treat

this as a complex number.19
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A Ingoing and outgoing solutions at ω = ±ωn

As we discussed in section 2, the phenomenon of pole-skipping for a minimally coupled

scalar field is intimately connected to the fact that at frequencies ωn = −i2πTn the two

naive power-law exponents in the near-horizon solution (2.11) both appear to give regular

solutions. However, as is well known, this does not necessarily mean that both solutions

to the wave-equation (2.9) are regular at these frequencies. Since at ωn = −i2πTn the two

asymptotic power laws in (2.11) differ by an integer, one generically expects that there will

be additional subleading logarithms in one of these solutions. Such logarithms result in

derivatives of φ(r) diverging at the horizon and hence only one of the solutions to (2.11)

(the one without logarithms) is really a regular solution of the form (2.10) near the horizon.

These logarithmic terms can be seen explicitly by constructing series solutions to (2.9)

at ωn in an expansion around the horizon without directly imposing an ansatz of the

form (2.10). The general solutions are of the form

φ =φ0

[
1 + c1(r − r0) + . . .

+ (r − r0)n log(r − r0) detM(n)(ωn, k
2) (c̃0 + c̃1(r − r0) + . . .)

]
+ φn(r − r0)n

[
1 + d1(r − r0) + d2(r − r0)2 + . . .

]
,

(A.1)

where φ0 and φn are free parameters and detM(n)(ωn, k
2) is the determinant of the matrix

introduced in section 3. The coefficients ci, di, c̃i have a fixed dependence on n, k, the

background metric and the scalar mass.

For a generic choice of k there is only one solution in (A.1) that is regular (the one

proportional to φn), and a second solution which is not regular to due the logarithms

(the one proportional to φ0). The solution that is regular in ingoing coordinates therefore

generically takes the form20

φ = φn(r − r0)n
[
1 + d1(r − r0) + d2(r − r0)2 + . . .

]
, (ω = −i2πTn k2 6= k2

n), (A.2)

which agrees precisely with our discussion below (2.15).

However, for the purposes of pole-skipping, the key point is that at special values

of k2 = k2
n then there are no logarithmic terms at all in the near-horizon expansion.

This can explicitly be seen from the form of the general near horizon solutions in (A.1).

Precisely at the wavenumbers k2 = k2
n in (3.5), both solutions in (2.11) really do give rise

to regular solutions of the form (2.10) and there is therefore a two-parameter family of

ingoing solutions of the form

φ = φ0 [1 + c1(r − r0) + . . .] + φn(r − r0)n
[
1 + d1(r − r0) + d2(r − r0)2 + . . .

]
, (A.3)

near the horizon. This is the origin of pole-skipping, as explained in sections 2 and 3.

20The fact that at ωn = −i2πTn series solutions to the minimally coupled scalar wave-equation can have

the leading near horizon behaviour φ = φn(r− r0)n of an ‘outgoing’ wave was previously observed in [5]. It

was observed for metric perturbations of the Schwarzschild black hole in [51], where the potential absence

of logarithmic corrections was also discussed.
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Note that for the case of n = 0, there are always logarithmic terms irrespective of the

value of k and so for a scalar field there is no pole-skipping at this frequency.

Whilst we focus mostly on the retarded Green’s function in this paper, it is also of

interest to consider the advanced Green’s function GAOO(ω, k) at frequencies ωn = −i2πTn.

This can be extracted by constructing the outgoing solution to (2.7). In this case one finds

that there is aways a unique outgoing solution to (2.7) at ωn, which is simply the solution

in (A.1) proportional to φn. Away from pole-skipping wavenumbers kn this solution coin-

cides with the ingoing solution which results in the interesting identity between retarded

and advanced Green’s functions discussed in section 6.

Even at the special pole-skipping wavevectors k2
n there is still only a single outgoing

solution, since the solution proportional to φ0 in (A.1) is never regular in outgoing co-

ordinates for any choice of k. The advanced Green’s function GAOO(ω, k) therefore does

not show pole-skipping in the lower half-plane. However by studying (2.7) in outgoing

coordinates it is simple to see that the entire pole-skipping analysis will be mirrored in

outgoing coordinates if we swap ω → −ω. GAOO(ω, k) will therefore exhibit pole-skipping

in the upper half plane at the positive imaginary Matsubara frequencies ω = i2πTn and

at the same wavevectors k2
n in (3.5).

B Pole-skipping form of Green’s functions

In this appendix we wish to show explicitly how the matching argument in section 2.2

leads to the pole-skipping form of the Green’s function GROO(ω, k) presented in (2.20). As

we have argued in section 2, at the special locations in (2.16) both linearly independent

solutions to (2.9) are consistent with ingoing boundary conditions. In particular there

are ingoing solutions that are normalisable in the UV (i.e. have φA(ω1, k1) = 0) and also

ingoing solutions with no normalisable component (i.e. with φB(ω1, k1) = 0).

To be precise we define a normalisable solution φ(n) as the solution to (2.9) at (2.16)

such that we have φA(ω1, k1) = 0 and φB(ω1, k1) = 1. Similarly we define a solution with

no normalisable component φ(nn) as the solution to (2.9) at (2.16) such that φA(ω1, k1) = 1

and φB(ω1, k1) = 0. Precisely at (2.16) both of these solutions are consistent with ingoing

boundary conditions and hence can be expanded near the horizon r = r0 as series solutions

of the form (2.10)

φ(n) = φ
(n)
0 + φ

(n)
1 (r − r0) + . . . ,

φ(nn) = φ
(nn)
0 + φ

(nn)
1 (r − r0) + . . . . (B.1)

Since all solutions to (2.9) are consistent with ingoing boundary conditions the retarded

Green’s function GROO(ω, k) is not well-defined at (2.16). To get a well-defined Green’s

function it is necessary to move infinitesimally away from (2.16) to ω = ω1 + εδω and

k = k1 + εδk. After doing so there is a unique ingoing solution φig(r) from which we

can extract the Green’s function GROO(ω, k) near (2.16). In order to compute this Green’s

function we note that to leading order in ε we can express φig(r) as a linear combination

of φ(nn) and φ(n). Hence after choosing a convenient normalisation for φig(r) we can write

φig(r) = φ(nn)(r) + B(δω/δk)φ(n)(r), (B.2)
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from which the Green’s function can be extracted as

GROO(ω1 + εδω, k1 + εδk) = (2∆− d− 1)B(δω/δk). (B.3)

All that remains is to determine the coefficient B(δω/δk). This can be achieved by

inserting the expansions in (B.1) into the equation (2.17). This yields an explicit expression

for B(δω/δk) in terms of the expansion parameters (B.1) of the solutions φ(n) and φ(nn)

to (2.9) at (2.16)

B(δω/δk) = −(iδωdh′(r0) + 4k1δk)φ
(nn)
0 + 4ih(r0)δωφ

(nn)
1

(iδωdh′(r0) + 4k1δk)φ
(n)
0 + 4ih(r0)δωφ

(n)
1

, (B.4)

from which one can see that GROO(ω, k) has both a line of poles and a line of zeroes passing

through (2.16). Through simple algebra then (B.4) or equivalently (B.3) can be written

in pole-skipping form (2.20) with the slope (δω/δk)p of the line of poles given by (2.19)

and the slope (δω/δk)z of the line of zeroes given by an expression involving φ
(nn)
0 , φ

(nn)
1 .

To explicitly determine the coefficients in (B.1) which control the slopes (δω/δk)p and

(δω/δk)z, one must know the radial evolution of the normalisable and non-normalisable

solutions. Therefore these slopes cannot be determined from just our near-horizon analysis.

Whilst for the sake of clarity we have presented this explicit argument only for the

case of n = 1 pole-skipping points, an entirely analogous discussion can be applied to the

higher order pole-skipping examples discussed in section 3 so long as detM(n)(ωn, k
2
n) 6= 0.

In this case (3.8) can now be used to determine B(δω/δk) in terms of the expansion pa-

rameters φ
(nn)
0 , φ

(nn)
n , φ

(n)
0 , φ

(n)
n of solutions to (2.16) at (3.5). As such the Green’s function

near (3.5) again generically takes the pole-skipping form (2.20), albeit with more compli-

cated expressions for the slopes (δω/δk)p, (δω/δk)z.

C Pole-skipping in BTZ with integer ∆

Whilst the discussion in section 4.1 holds for non-integer ∆ it is necessary to perform a more

careful analysis when ∆ is an integer. In this case not all solutions k2
n to detM(n)(ωn, k

2) =

0 necessarily correspond to conventional pole-skipping locations: for sufficiently large n

there are now also examples of ‘anomalous points’ for which ∂k detM(n)(ωn, k
2
n) = 0.

Whether or not there will be such anomalous points depends on the relative size of

n and ∆. We will consider cases with ∆ > 0. For n < ∆ we find that there are no

anomalous points, and that the solutions to detM(n)(ωn, k
2) = 0 give rise to conventional

pole skipping at the 2n wavevectors in (4.6) exactly in the same manner as in the non-

integer case. In contrast for n ≥ ∆ we find that the form of (4.5) implies that there is only

conventional pole-skipping at wavevectors corresponding to the largest ∆−1 values of k2
n,q

in (4.5). For integer ∆ we therefore expect conventional pole-skipping at the locations

ωn = −i2πTn, kn,q = ±2πiT (n− 2q + ∆), (C.1)

for n ∈ {1, 2, . . .} and q ∈ {1, . . . ,min(n,∆− 1)}.
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For the case of n ≥ ∆ the anomalous points arise due to solutions to detM(n)(ωn, k
2) =

0 which correspond either to repeated roots for this equation or to k2
n = 0. Such solutions

satisfy ∂k detM(n)(ωn, k
2
n) = 0 and therefore the matching procedure of sections 2.2 and 3.2

breaks down. In general for n ≥ ∆ we find there will be (n−∆ + 1) such anomalous points

(ωn, kn) and that the locations of these points depends on whether n −∆ is zero, an odd

integer or an even integer. For odd n − ∆ then our near horizon analysis predicts there

should be anomalous points at

ωn = −i2πTn, kn,q = ±2πiT (n− 2q + ∆), (C.2)

with n ∈ {1, 2, . . .} and q ∈ {∆, . . . , (n+ ∆−1)/2}. In contrast if n−∆ is an even positive

integer then there should be anomalous points at

ωn = −i2πTn, kn,q = 0,±2πiT (n− 2q + ∆), (C.3)

for n ∈ {1, 2, . . .} and q ∈ {∆, . . . , (n + ∆ − 2)/2}. Finally if n − ∆ = 0 there will be a

single anomalous point at the location

ωn = −i2πTn, kn = 0. (C.4)

For integer ∆ we can again compare the predictions of our near-horizon analysis to

an exact analytic expression for the Green’s function. In this case there are additional

logarithmic terms in the bulk scalar wavefunction and the expression for the boundary

Green’s function GROO(ω, k) in (4.7) is modified to

GROO(ω, k) ∝
Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

∆
2 −

i(k+ω)
4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 −

i(k+ω)
4πT

)
×
[
ψ

(
∆

2
+
i(k − ω)

4πT

)
+ ψ

(
∆

2
− i(k + ω)

4πT

)]
, (C.5)

where ψ(z) is the digamma function. One needs to be careful in analysing the lines of

zeroes and poles in (C.5) because the arguments of the Gamma functions in the prefactor

of (C.5) now differ by an integer and hence there can be cancellations between poles in

the numerator and denominator. Specifically for integer ∆ the ratio of Gamma functions

in (C.5) can be simplified using the identity Γ(z + 1) = zΓ(z) to write

Γ
(

∆
2 + i(k−ω)

4πT

)
Γ
(

1− ∆
2 + i(k−ω)

4πT

) =

(
1−∆

2
+
i(k − ω)

4πT

)(
2−∆

2
+
i(k − ω)

4πT

)
. . .

(
∆

2
−1 +

i(k − ω)

4πT

)
︸ ︷︷ ︸

∆−1 factors

,

(C.6)

and similarly one can obtain an analogous expression for the ratio of the other two Gamma

functions in (C.5).

As such for integer ∆ the ratios of Gamma functions in (C.5) does not contribute any

poles, but just gives rise to 2∆ − 2 lines of zeroes with dispersion relations

ωzL,m = k − 2πiT (2−∆ + 2m), ωzR,m = −k − 2πiT (2−∆ + 2m), (C.7)

for m ∈ {0, 1, . . . ∆− 2}.
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Figure 4. The left hand plot shows the pole-skipping locations (C.1) predicted from our near

horizon analysis for ∆ = 3 and n = 1, 2, 3, 4. The right hand plots shows the lines of zeroes (blue)

and poles (dashed) in the ∆ = 3 Green’s function (C.8). The intersections of these lines give rise

to min(2n, 2∆− 2) instances of pole skipping at frequencies ωn = −i2πTn.

In addition to these lines of zeroes there are also lines of poles in (C.5) which now

come from the digamma functions in (C.5). These give rise to infinitely many lines of poles

along

ωpL,m = k − 2πiT (∆ + 2m), ωpR,m = −k − 2πiT (∆ + 2m), (C.8)

for m ∈ {0, 1, 2 . . .}. These lines of poles intersect with the lines of zeroes in (C.7) at

ωn = −i2πTn, kn,q = ±2πiT (n− 2q + ∆), (C.9)

for n ∈ {1, 2, . . .} and q ∈ {1, . . . ,min(n,∆− 1)} and hence we have pole-skipping exactly

at the locations predicted by our near horizon analysis (C.1). This pattern of pole-skipping

is demonstrated in figure 4 in which we have plotted the lines of poles and zeroes in (C.7)

and (C.8) for the special case of ∆ = 3. Note that when ∆ = 1 there are no zeroes coming

from the prefactors (C.6) and thus no pole-skipping points, which is consistent with our

near-horizon analysis.

Finally we will examine what happens in the expression (C.5) near the loca-

tions (C.2) (C.3) and (C.4) at which our near horizon analysis found ‘anomalous points’.

Intriguingly we find that at each of these locations there is an intersection of one of the

left-moving poles and one of the right-moving poles of (C.8). This can be seen in the plot

of the lines poles and zeroes in the ∆ = 3 Green’s function in figure 4, for which there are

anomalous points at (ω, k) = (−i6πT, 0) and (ω, k) = (−i8πT,±i2πT ). As we discuss in

section 6, it would be interesting to further study these anomalous points in future work.

D Exact scalar Green’s functions in BTZ

For completeness, in this appendix, we rederive the real-time Green’s function of a scalar

field in the three-dimensional BTZ black hole background. These calculations were origi-

nally done in [1] (see also [6, 8, 52–55]).

The metric of the non-extremal BTZ black hole [56, 57] is given by

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dθ − r+r−

r2
dt

)2

,
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where r = r± are the locations of the inner and outer horizons. The geometry is locally

AdS3. The mass and angular momentum of the black hole are related to the horizon

radii via

M =
r2

+ + r2
−

8GN
, J =

r+r−
4GN

,

where GN is Newton’s constant. The dual 2d CFT has non-vanishing left and right tem-

peratures

TL =
r+ − r−

2π
, TR =

r+ + r−
2π

.

It is convenient to switch to another coordinate system (t, θ, r)→ (T,X, ρ) defined by

r2 = r2
+ cosh2 ρ− r2

− sinh2 ρ,

T +X = (r+ + r−)(t+ θ),

T −X = (r+ − r−)(t− θ).

The metric in terms of these coordinates simplifies considerably

ds2 = − sinh2 ρ dT 2 + cosh2 ρ dX2 + dρ2.

We will now consider a massive scalar field ϕ on this rigid background and take a plane

wave ansatz on constant ρ slices. The plane wave can be written in either the new (T, x)

or the old (t, θ) coordinates

ϕ(T,X, ρ) = e−ikTT+ikXXϕ(ρ) = e−iωt+ikθϕ(ρ),

where the momenta (ω, k) are related to (kT , kX) by

kT + kX =
ω + k

2πTR
, kT − kX =

ω − k
2πTL

.

Even though θ is an angular variable, in the following we will view the conjugate momentum

k as a continuous parameter. The wave equation for ϕ(ρ) turns out to be

ϕ′′(ρ) + 2 coth 2ρϕ′(ρ) +

(
k2
T

sinh2 ρ
−

k2
X

cosh2 ρ
−m2

)
ϕ(ρ) = 0.

After changing to a new radial coordinate given by z = tanh2 ρ, we get

ϕ′′(z) +
ϕ′(z)

z
+

[
k2
T

4z2(1− z)
−

k2
X

4z(1− z)
− m2

4z(1− z)2

]
ϕ(z) = 0.

In this coordinate system, the event horizon is located at z = 0 while the boundary of

spacetime is at z = 1.
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The general case. For generic values of kT and kX the ingoing solution is given by

ϕin(z) = z−
ikT

2 (1− z)
∆−

2 2F1

(
kT − kX

2i
+

∆−
2
,
kT + kX

2i
+

∆−
2

; 1− ikT ; z

)
, (D.1)

while the outgoing solution is

ϕout(z) = z+
ikT

2 (1− z)
∆−

2 2F1

(
−kT − kX

2i
+

∆−
2
,−kT + kX

2i
+

∆−
2

; 1 + ikT ; z

)
. (D.2)

Near the event horizon these solutions are ingoing or outgoing waves

ϕin(z) ∝ z−
ikT

2 , ϕout(z) ∝ z+
ikT

2 .

Near the boundary they generically behave as

ϕ(z) ≈ (1− z)
∆+

2

[
c

(0)
+ + c

(1)
+ (1− z) + . . .

]
+ (1− z)

∆−
2

[
c

(0)
− + c

(1)
− (1− z) + . . .

]
, (D.3)

where ∆± = 1±
√

1 +m2. In normal (alternative) quantization, ∆+ (∆−) is the dimension

of the bosonic operator dual to the bulk scalar field. In the following, we will consider ∆ >

0.

Up to an unimportant constant factor, the retarded (advanced) Green’s function is

computed by taking the ratio c
(0)
+ /c

(0)
− for the ingoing (outgoing) solution. The expansion

of the hypergeometric functions near z ≈ 1 gives

GR(kT , kX) ∝
Γ
(

∆+

2 − i
kT+kX

2

)
Γ
(

∆+

2 − i
kT−kX

2

)
Γ
(

∆−
2 − i

kT+kX
2

)
Γ
(

∆−
2 − i

kT−kX
2

) , (D.4)

for the retarded Green’s function, and

GA(kT , kX) ∝
Γ
(

∆+

2 + ikT+kX
2

)
Γ
(

∆+

2 + ikT−kX2

)
Γ
(

∆−
2 + ikT+kX

2

)
Γ
(

∆−
2 + ikT−kX2

) ,
for the advanced Green’s function. In alternative quantization [58], one obtains the recip-

rocal of these functions, which exchanges poles and zeroes.

Pole-skipping. If we set T = TL = TR, then the black hole is static. In this case, one

obtains the following retarded Green’s function in terms of ω and k.21

GR(ω, k) ∝
Γ
(

∆+

2 + i(k−ω)
4πT

)
Γ
(

∆+

2 −
i(k+ω)

4πT

)
Γ
(

∆−
2 + i(k−ω)

4πT

)
Γ
(

∆−
2 −

i(k+ω)
4πT

) .
As discussed in the main text, pole-skipping occurs at special values of the frequency and

wavenumber where poles of the Gamma functions in the numerator and the denominator

coincide. This gives a series of pole-skipping points

ωn = −i2πTn, kn,q = ±i2πT (n− 2q + ∆+), (D.5)

for any n ∈ {1, 2, . . .} and q ∈ {1, . . . , n}. In alternative quantization one simply needs to

exchange ∆+ ↔ ∆−.

21The Green’s function is proportional to (4.16) in [1] if ω and k are both real.
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At Matsubara frequencies. At generic kX , the hypergeometric function in (D.1) is

well-defined unless its third argument 1 − ikT is a non-positive integer. Let us now in-

vestigate what happens at such points by taking the limit ikT → n where n is a positive

integer. For the non-spinning black hole, these values correspond precisely to the Matsub-

ara frequencies ωn = −i2πTn. As we take ikT → n, the ingoing solution blows up. A

finite limit can be defined by dividing by another infinite factor (which gives a regularized

hypergeometric function)

ϕ̃in(z) ≡ lim
ikT→n

ϕin(z)

Γ(1− ikT )
.

Although this is well-defined, the two solutions are now degenerate

ϕ̃in(z) =
Γ
(

∆++n−ikX
2

)
Γ
(

∆++n+ikX
2

)
Γ(1 + n) Γ

(
∆+−n−ikX

2

)
Γ
(

∆+−n+ikX
2

)ϕout(z).

Consequently, the retarded and advanced Green’s functions are equal at these frequencies.

Another, independent, solution is provided by the Meijer G-function

ϕ̃out(z) = z−
n
2 (1− z)

∆−
2 G2,0

2,2

(
∆++n−ikX

2
∆++n+ikX

2

0 n

∣∣∣∣∣ z
)
.

The near-horizon expansion of the G-function contains a logarithm at the expected order

(see appendix A). Its coefficient vanishes at pole-skipping kX values and the function

becomes regular. In fact, the solutions drastically simplify at such points. For instance, if

we pick n = k = 1 then (D.5) gives kT = −i and kX = ±i(∆+ − 1). The two independent

solutions can be chosen to be

ϕ±(z) =
(1− z)∆±/2

√
z

, (D.6)

which is related to our earlier basis in (D.1), (D.2) via

ϕin(z)|pole-skipping = ϕ+(z), ϕout(z)|pole-skipping =
ϕ−(z)− ϕ+(z)

∆+ − 1
.

At integer ∆. At integer ∆+ values, the calculation of the Green’s function is slightly

more involved. In this case, the exponents in (D.3) differ by an integer and logarithms

appear in the near-boundary expansion. This is related to matter conformal anomalies.

The following expansion of the hypergeometric function is relevant in this case,22

2F1(a, b; a+ b+ n; z)

=
(n− 1)!Γ(a+ b+ n)

Γ(a+ n)Γ(b+ n)

n−1∑
j=0

(a)j(b)j(1− z)j

j!(1− n)j

+
Γ(a+ b+ n)

Γ(a)Γ(b)
(z − 1)n

∞∑
j=0

(a+ n)j(b+ n)j
j!(j + n)!

[
− log(1−z) + ψ(j+1) (D.7)

+ψ(j+n+1)− ψ(a+j+n)− ψ(b+j+n)
]
(1− z)j ,

22The expansion above is valid for ∆+ ≥ 2. At ∆+ = 1 one can instead use

2F1(a, b; a+ b; z) =
Γ(a+ b)

Γ(a)Γ(b)

∞∑
j=0

(a)j(b)j
(j!)2

[− log(1− z) + 2ψ(j + 1)− ψ(a+ j)− ψ(b+ j)] (1− z)j .
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where n is an integer, (x)j ≡ Γ(x+j)
Γ(x) is the Pochhammer symbol, and ψ(x) is the digamma

function. In the case of the ingoing solution the constants are

a =
kT − kX

2i
+

∆−
2
, b =

kT + kX
2i

+
∆−
2
, n = ∆+ − 1.

In order to compute the retarded Green’s function, we will need terms up to order (1− z)n

in the expansion. The source is the leading term, while the expectation value is the sum

of non-logarithmic terms multiplying (1− z)n [59]. The Green’s function can be computed

by taking their ratio (up to a normalization factor). There are no integer values of ∆+ for

which alternative quantization is possible with positive conformal dimension. Note that

the prefactor z±
ikT

2 in (D.1) also contributes and thus it has to be expanded near z ≈ 1,

z−
ikT

2 =
∞∑
j=0

1

j!

Γ(− ikT
2 + 1)

Γ(− ikT
2 − j + 1)

(z − 1)j . (D.8)

Terms in this expansion multiply terms in the first sum in (D.7) and contribute to the

finite piece at order (1− z)n. However, these contributions turn out to be contact terms.23

The final result for the Green’s function at integer ∆ is (up to contact terms)

GR(kT , kX) ∝
Γ
(

∆+

2 − i
kT+kX

2

)
Γ
(

∆+

2 − i
kT−kX

2

)
Γ
(

∆−
2 − i

kT+kX
2

)
Γ
(

∆−
2 − i

kT−kX
2

)
×
[
ψ

(
∆+

2
− ikT + kX

2

)
+ ψ

(
∆+

2
− ikT − kX

2

)]
,

which differs from the generic case (D.4) by the extra factor in the square brackets.

E Details of near-horizon expansions

In this appendix, we present the details of the near-horizon expansions of the equations of

motion discussed in sections 3 and 5.

E.1 Minimally massless scalar field

As explained in the main text, a Taylor series solution to the minimally coupled scalar

equation of motion (2.9) exists when the matrix equation (3.3) is satisfied. The first few

elements of this matrix are

M11 = − 1

4h(r0)

(
2k2 + 2m2h(r0) + iωdh′(r0)

)
,

M21 =
1

16h(r0)2

[
− 2h′(r0)

{
(d− 2) k2 + dm2h(r0)

}
− iωd

{
(d− 2)h′(r0)2 + 2h(r0)h′′(r0)

} ]
,

23Note that including such contact terms is important if one wants to check the identity GR = GA at

Matsubara frequencies discussed in section 6.
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M22 =
1

8h(r0)

[
− 2k2 + dh′(r0)

{
2r2

0f
′(r0)− 3iω

}
+ h(r0)

{
2r2

0f
′′(r0) + 8r0f

′(r0)− 2m2
} ]
,

M31 =
1

96h(r0)3

[
−2 (d− 2)h′(r0)2

{
(d− 4) k2 + dm2h(r0)

}
− iωd

(
d2 − 6d+ 8

)
h′(r0)3

− 6iωd (d− 2)h(r0)h′(r0)h′′(r0)

− 4h(r0)h′′(r0)
{

(d− 2) k2 + dm2h(r0)
}
− 4iωdh(r0)2h′′′(r0)

]
,

M32 =
1

48h(r0)2

[
(d− 2)h′(r0)

{
−4k2 + dh′(r0)

(
3r2

0f
′(r0)− 4iω

)}
+ 2dh(r0)h′(r0)

{
3r2

0f
′′(r0) + 12r0f

′(r0)− 2m2
}

+ 2dh(r0)h′′(r0)
{

3r2
0f
′(r0)− 4iω

}
+ 24h(r0)2f ′(r0) + 4r0h(r0)2

{
6f ′′(r0) + r0f

′′′(r0)
}]
,

M33 =
1

12h(r0)

[
− 2k2 + dh′(r0)

{
6r2

0f
′(r0)− 5iω

}
+ h(r0)

{
6r2

0f
′′(r0) + 24r0f

′(r0)− 2m2
} ]
. (E.1)

It is straightforward to calculate further elements, but the expressions are lengthy and so

we will not write them explicitly. The explicit results for pole-skipping locations in BTZ

and AdSd+2-Schwarzschild spacetimes presented in section 4 can be calculated from (E.1)

as described in the main text.

E.2 Gauge field perturbations

Perturbations of the gauge field parallel to the wavenumber k are described by the equa-

tion (5.4). Assuming that Z(Φ) is normalised such that Z → 1 near the r →∞ boundary

of the spacetime, the retarded Green’s functions of the dual field theory are related to the

ingoing solutions ψ1 of (5.4) by

GRJtJt(ω, k) =
k2

ω2 − k2

ψ
(d−1)
1

ψ
(0)
1

, GRJxJx(ω, k) =
ω2

k2
GRJtJt(ω, k), (E.2)

up to an overall prefactor and contact terms. This can be shown by an analysis analogous

to that in [26]. ψ
(m)
1 here denotes the coefficient of the r−m term in the near-boundary

expansion of the solution ψ1(r).

The equation (5.4) obeyed by ψ1 is structurally similar to the scalar equation (2.9) we

studied previously. The main difference is the (ω2h − k2r2f) terms appearing in denomi-

nators, but provided ω 6= 0 these denominators are non-zero at the horizon and thus the

near-horizon expansion of (5.4) has a similar form to that of the scalar equation. In par-

ticular, making a Taylor series ansatz for ψ1 near the horizon, the near-horizon equations

of motion can again be written in the matrix form (3.3) where the first few non-trivial

elements are

M11 =− i

4ωh(r0)

[
2k2r2

0f
′(r0) + ω

{
−2ik2 + (d− 2)ωh′(r0)

}
+ 2ω2h(r0)

Z ′(r0)

Z(r0)

]
,

M21 =− i

16ω3h(r0)2

[
8k4r4

0f
′(r0)2 + 4k2ωr0f

′(r0)
{
−ik2r0 + 4ωh(r0) + (d− 4)ωr0h

′(r0)
}
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+ ω2
{
−2iωk2 (d− 4)h′(r0) + ω2

(
d2 − 6d+ 8

)
h′(r0)2

+ 4k2r2
0f
′′(r0)h(r0) + 2 (d− 2)ω2h(r0)h′′(r0)

}
+ 4ω4h(r0)2Z

′′(r0)

Z(r0)

+ 4ω2h(r0)
Z ′(r0)

Z(r0)

{
2k2r2

0f
′(r0)− iωk2 + (d− 2)ω2h′(r0)

}]
,

M22 =
1

8ω2h(r0)

[
4k2r4

0f
′(r0)2 + 2r0ωf

′(r0)
{
−3ik2r0 + 4ωh(r0) + (d− 2)ωr0h

′(r0)
}

+ ω2
{
−2k2 − 3iω (d− 2)h′(r0) + 2r2

0h(r0)f ′′(r0)
}

+ 2ω2h(r0)
(
2r2

0f
′(r0)− 3iω

) Z ′(r0)

Z(r0)

]
. (E.3)

The presence of ω in the denominators is because the near-horizon expansion is different

when ω = 0 as mentioned above. We will address the ω = 0 case at the end of the

subsection.

With the equation in this form, we can repeat the arguments of sections 2 and 3

and conclude that for frequencies ωn and appropriate choices of k = kn (satisfying

detM(n)(ωn, k
2
n) = 0), the retarded Green’s functions of the conserved charge and cur-

rent (E.2) exhibit pole skipping at the special points (ωn, kn). The location of the first pole

skipping point k1 is given in equation (5.5). It is straightforward to calculate kn for higher

values of n but for conciseness we will not present them here.

Instead we will focus on the results for the simplest non-trivial spacetimes: the AdSd+2-

Schwarzschild metric (2.4) with Z(Φ) = 1, holographically dual to non-zero temperature

conformal field theories in d spatial dimensions. For these cases, the first few pole-skipping

wavenumbers kn are given by the solutions to the equations

0 = k2
1 −

(d− 2) (d+ 1)

2
r2

0,

0 = k4
2 + 2 (d+ 1) k2

2r
2
0 − (d+ 1)2 (d− 2) (d− 1) r4

0,

0 = k6
3 +

1

2

(
5d2 + 11d+ 6

)
k4

3r
2
0 −

1

4
(d+ 1)2 (9d2 − 64d+ 36

)
k2

3r
4
0

− 9

8
(d+ 1)3 (5d3 − 18d2 + 20d− 8

)
r6

0.

(E.4)

As in the scalar field examples, for each ωn there are generically n values of the

wavenumber k2
n at which pole-skipping occurs. One notable difference from the exam-

ples of scalar fields in BTZ and AdSd+2-Schwarzschild spacetimes (section 4) is that for

each n there is now one k2
n corresponding to real kn. In the main text (section 5.1) we

show the connection between hydrodynamics and pole skipping at real kn.

As mentioned above, the ω = 0 case is special and must be treated separately. An

explicit calculation shows that the general Taylor series solution for ψ1 near the horizon

is unique (up to an overall prefactor) provided that k 6= 0 and hence the only potential

pole-skipping point is at ω = k = 0. The retarded Green’s function at the origin of Fourier

space is subtle in our formulation due to the ω and k dependence in equation (E.2). As

hydrodynamic arguments already tell us the precise form of the retarded Green’s function

near the origin (see e.g. [25]), we will not attempt to re-derive this form using pole-skipping

arguments here.
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The AdS4-Schwarzschild spacetime. Electric-magnetic duality of a gauge field in

(3+1)-dimensions implies that the charge current retarded Green’s function in AdS4-

Schwarzschild is exactly GRJxJx(ω, k = 0) = iω [60]. This particular case also has special

pole-skipping properties: the results in (E.4) (for d = 2) imply that there are potential

pole-skipping points at kn = 0 for every ωn. However these points are anomalous (in the

sense discussed at the end of section 2) because if we solve the equation of motion for ψ1

at the location ω = −i2πTn + εδω and k = εδk, then the solution at leading order in ε

is unique. It does not depend on the ratio δω/δk and thus the Green’s function does not

take the pole-skipping form (2.20).

While in appendix C, anomalous points for a scalar field in the BTZ background were

shown to correspond to the intersection of two lines of poles, in this case we can show that

they do in fact correspond to an intersection of lines of poles and zeroes but in such a

way that the Green’s function takes a more complicated form than (2.20). Specifically, by

performing a procedure similar to that of appendix B but scaling the deviations from the

special location as ω = −i2πTn+ ε2δω, k = εδk (i.e. such that δω/δk2 ∼ ε0), one finds

GRJxJx(−i2πTn+ ε2δω, εδk) =
Anδk

2

−iδω +Bnδk2
+O(ε), (E.5)

at leading order in ε, where An and Bn are n-dependent constants that can be computed

explicitly but for conciseness we omit. The fact that poles and zeroes pass through these

points in Fourier space was observed numerically in [61]. Similarly, in [62] it was observed

that there are normalisable, ingoing solutions for perturbations of ‘axion’ black branes at

k = 0 and ωn for certain n and we think it is likely this property can be more directly seen

by the type of near-horizon analysis presented here.

E.3 Transverse metric perturbations

The retarded Green’s functions of the transverse momentum operator T ty are captured by

the bulk field ψ2 which obeys the equation of motion (5.8). Specifically, up to an overall

prefactor and ignoring contact terms,

GRT tyT ty(ω, k) =
k2

ω2 − k2

ψ
(d+1)
2

ψ
(0)
2

, GRTxyTxy(ω, k) =
ω2

k2
GRT tyT ty(ω, k), (E.6)

where ψ
(m)
2 denotes the coefficients of the r−m term in the near-boundary expansion of ψ2.

This can be shown by an analysis analogous to that in [26]. As in the previous subsection,

provided that ω 6= 0 a Taylor series ansatz for ψ2 near the horizon yields near-horizon

equations of motion of the matrix form (3.3), where the first few non-trivial elements are

M11 =− i

4ωh(r0)

[
2k2r2

0f
′(r0) + ω

{
−2ik2 + dωh′(r0)

}]
,

M21 =− i

16ω3h(r0)2

[
8k4r4

0f
′(r0)2 + 4k2ωr0f

′(r0)
{
−ik2r0+4ωh(r0)+(d−2)ωr0h

′(r0)
}

+ ω2
{
−2 (d− 2) iωk2h′(r0) + d (d− 2)ω2h′(r0)2

+ 4k2h(r0)r2
0f
′′(r0) + 2dω2h(r0)h′′(r0)

}]
,

– 40 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
7

M22 =
1

8ω2h(r0)

[
4k2r4

0f
′(r0)2 + 2ωr0f

′(r0)
{
−3ik2r0 + 4ωh(r0) + dωr0h

′(r0)
}

+ ω2
{
−2k2 − 3diωh′(r0) + 2r2

0h(r0)f ′′(r0)
}]
. (E.7)

Repeating again the arguments of sections 2 and 3, we find that there is generically

pole skipping in GRT tyT ty(ω, k) at frequencies ωn and wavenumbers k = kn satisfying

detM(n)(ωn, k
2
n) = 0. The first pole-skipping point is located at (5.10), and it is straight-

forward to compute the appropriate expressions for higher n.

For the explicit case of the AdSd+2-Schwarzschild metric (2.4) (i.e. Φ = 0) dual to a

non-zero temperature conformal field theory, the first few kn obey

0 = k2
1 −

d (d+ 1)

2
r2

0,

0 = k4
2 − (d+ 1)2 d (d− 1) r4

0,

0 = k6
3 +

5

2
d (d+ 1) k4

3r
2
0 −

3

4
d (d+ 1)2 (3d− 4) k2

3r
4
0 −

3

8
d (d+ 1)3 (15d2 − 28d+ 16

)
r6

0.

(E.8)

For each n, there is one value of k2
n for which kn is real. The relation between these

pole-skipping points and the hydrodynamic poles is shown in section 5.2.

As in the previous subsection, the ω = 0 point is special and requires a more careful

analysis. Due to the very similar form of the equations of motion for ψ1 and ψ2, we again

find that the only potential pole-skipping point of GRT tyT ty(ω, k) at ω = 0 is when k = 0.

As hydrodynamics fixes the form of GRT tyT ty(ω, k) near this point (see e.g. [25]), we will not

pursue this special case further.

E.4 Longitudinal metric perturbations

The retarded Green’s functions of the longitudinal momentum density T tx and energy

density T tt are related to the solutions of the equation (5.15) for ψ3 by (up to an overall

prefactor, and neglecting contact terms)

GRT ttT tt(ω, k) =
k4

(ω2 − k2)2

ψ
(d+1)
3

ψ
(0)
3

, GRT txT tx(ω, k) =
ω2

k2
GRT ttT tt(ω, k), (E.9)

where ψ
(m)
3 denotes the coefficient of the r−m term in the near-boundary expansion of

ψ3. This can be shown by an analysis analogous to that in [26]. To identify pole-skipping

locations we examine the properties of (5.15) near the horizon, where there are two distinct

possibilities. In the generic case, where ω2 6= k2(d+ 1)/2d, the denominators in (5.15) are

non-zero at the horizon and the near-horizon equations of motion have a similar structure

to those of the minimally coupled scalar field. Specifically, by making a Taylor series ansatz

for ψ3 near the horizon, one finds that the near-horizon equations can be written in the
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matrix form (3.3) where the elements of the matrix are

M11 =
1

2r2
0 [(d+ 1) k2 − 2dω2]

[
− (d+ 1) k4 + 2iω3d2r0 + k2

{
(d− 1) (d+ 1)2 r2

0

+ iωr0 (d− 2) (d+ 1) + 2dω2
}]
,

M21 =
1

4r3
0 [(d+ 1) k2 − 2dω2]2

[
(d+ 1)2 k4

{
dk2 − r2

0 (d+ 1) (d− 1) (4d− 1)
}

− iωk4r0 (d+ 1)2 (d− 1) (5d− 2) + 8iω3k2r0d
(
d2 − 1

)
− 4iω5r0d

3 (d− 1) + 2d (d+ 1) k2ω2
{
−2k2 + r2

0 (d− 1) (d+ 1) (d+ 2)
}

− 4d2 (d− 2) k2ω4
]
,

M22 =
1

4r2
0 [(d+ 1) k2 − 2dω2]

[
− (d+ 1) k4 − 2dr0ω

2
{

(d+ 1) (d+ 2) r0 − 3diω
}

+ k2
{
− (d+ 1)2 (2d− 5) r2

0 + 3ir0ω (d+ 1) (d− 2) + 2dω2
}]
.

(E.10)

As a consequence, we can apply the arguments of sections 2 and 3 and conclude that there

is pole-skipping at frequencies ωn and wavenumbers kn obeying detM(n)(ωn, k
2
n) = 0. The

explicit equations determining the first few values of kn are given in the main text in

equation (5.17) (with the implicit assumption that k2
n 6= 2dω2

n/(d+ 1)).

From [14] we know that there must also be pole-skipping in the upper half of the

complex ω plane. While this upper half plane pole-skipping can easily be seen by a direct

analysis of the Einstein equations [14], this feature is obscured by formulating the dynamics

in terms of the scalar degree of freedom ψ3. To observe it, we must consider the special case

k2 =
2d

d+ 1
ω2, (E.11)

of the equation of motion (5.15), where the vanishing of the denominators at the horizon

changes the near-horizon structure of the equation of motion. Specifically, after impos-

ing (E.11) on the equations of motion and looking for power law solutions ψ3(r) = (r−r0)α

near the horizon, we find that the allowed powers are

α = 1, 1 +
iω

2πT
. (E.12)

Eq. (E.12) suggests that there are three cases in which it is possible that both independent

solutions for ψ3(r) are regular at the horizon: ω = ±i2πT, ω = 0. For the cases ω = ±i2πT ,

an analysis of the near-horizon equations of motion confirms that at the general Taylor

series solution for ψ3 around the horizon has two free parameters. As in the previous two

subsections, we will not explore the case of ω = 0, k = 0 because hydrodynamics already

dictates the exact form of GRT txT tx(ω → 0, k → 0) [25].

We will therefore now focus on the potential pole-skipping points at ω = ±i2πT and

k2 = −2d(2πT )2/(d+1). Recall from the discussion in section 3.2 that for pole-skipping to

occur, it is not sufficient for there to be two independent solutions for ψ3 that are regular

at the horizon. Additionally, we require that moving slightly away from the potential
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pole skipping point picks out a unique ingoing solution (up to overall normalisation) that

depends on the slope δω/δk. To check this condition, we take

ω = ±i2πT + εδω, k2 =
2d

d+ 1
ω2 + r0εδk, (E.13)

make a near-horizon Taylor series ansatz for the field ψ3 and then solve the equation of

motion (5.15) in an expansion near the horizon. At lowest order in ε, the result is that for

the case ω = +i2πT ,

ψ3(r) ∝
[
1− d (iδk + (3d− 1)δω)

2 (iδk + 2dδω)

(r − r0)

r0
+
d
(
iδk + (d2 + 2d− 1)δω

)
2 (iδk + 2dδω)

(r − r0)2

r2
0

+ . . .

]
(E.14)

while for the case ω = −i2πT

ψ3(r) ∝ (r − r0)

[
1− (r − r0)

r0
−
(
d2 − d− 12

)
12r2

0

(r − r0)2 + . . .

]
. (E.15)

Thus there is pole skipping at the point (E.11) with ω = +i2πT but not with ω = −i2πT .

This latter case is in fact an example of an anomalous point as described in section 3.2.

For a scalar field in the BTZ spacetime, we showed in appendix C that anomalous points

correspond to intersections of multiple poles, and it would be very interesting to examine

whether that is also the case for the example presented here.

E.5 Transverse metric perturbations in a charged black hole

In this subsection, we will briefly describe how to identify the existence of pole-skipping

at ω = −i2πT in GRT tyT ty(ω, k) of the charged state dual to the AdS4-Reissner-Nordstrom

black brane. In addition to further exemplifying the generic nature of pole-skipping in

holographic theories, this also illustrates that unlike in the case of energy density correla-

tors [14], the pole skipping location kn for generic hydrodynamic correlators is in general

not related in a simple way to the butterfly velocity vB.

The AdS4 Reissner-Nordstrom solution

f(r) = 1−
(

1 +
µ2

4r2
0

)
r3

0

r3
+
µ2r2

0

4r4
, h(r) = r2, Av(r) = µ

(
1− r0

r

)
, (E.16)

is a solution to the classical equations of the action

S =

∫
d4x
√
−g
(
R+ 6− 1

4
F 2

)
. (E.17)

GRT tyT ty(ω, k) is controlled by the coupled perturbations of the metric δgvy, δgxy, δgry
and δAy. After Fourier transforming and solving algebraically for δgry, we are left with

the following two coupled equations for the variables δAy(r) and ψ2(r) (defined in equa-
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tion (5.9))

d

dr

[
r2

ω2 − k2f

(
r2fψ′2 − iωψ2

)]
+

1

ω2 − k2f

(
−iωr2ψ′2 − k2ψ2

)
+

kr2fA′v
ω2 − k2f

δA′y +
1

ω2 − k2f

(
−iωkA′v +

kω2r2f ′A′v
ω2 − k2f

)
δAy = 0,

d

dr

[
r2fδA′y − iωδAy

]
− iωδA′y −

(
k2

r2
+

ω2A′v
2

ω2 − k2f

)
δAy −

kr2fA′v
ω2 − k2f

ψ′2

+
ikωA′v
ω2 − k2f

ψ2 = 0.

(E.18)

Making an ansatz of Taylor series solutions at ω = −i2πT

ψ2 =
∑
n=0

ψ
(n)
2 (r − r0)n, δAy =

∑
n=0

δA(n)
y (r − r0)n, (E.19)

and solving the equations (E.18) order-by-order around the horizon, one finds that gener-

ically the solution is characterised by two free parameters (ψ
(1)
2 , δA

(1)
y ). This results in a

uniquely defined retarded Green’s function GRT tyT ty(ω, k). However, when ω = −i2πT and

k = k1 with

k4
1 − r04πT

(
k2

1 + µ2
)

= 0, (E.20)

the Taylor series solutions near the horizon are characterised by three free parameters (ψ
(0)
2

in addition to the two above). As a consequence, there is pole skipping in GRT tyT ty(ω, k)

at ω = −i2πT, k = k1. The dispersion relation of the hydrodynamic pole of this Green’s

function was computed numerically in [63] and the value of k at which it passes through ω =

−i2πT is consistent with our equation for k1 (after accounting for the different conventions

for µ used in [63]).

We will now use this result to comment on the relation between pole-skipping and

chaos in general. There is an upper half-plane pole-skipping point (5.14) in the retarded

Green’s function of energy density that is fixed simply by the butterfly velocity vB. This

is also true for a wide variety of matter content of the gravitational theory and is evidence

for an effective hydrodynamic description of chaos [14]. In our analysis of the pole-skipping

points of GRT tyT ty(ω, k) for solutions to Einstein-scalar gravity in section 5.2, we found an

instance of pole-skipping in the lower half-plane whose location (5.10) can be written as

ω = −i2πT, k2 = (2πT/vB)2, (E.21)

using v2
B = 4πT/dh′(r0) [16, 17]. This raises the question of whether the pole-skipping

in GRT tyT ty(ω, k) is also intimately related to chaos. It is simple to check using (E.20)

that (E.21) is only a pole-skipping point when µ = 0 i.e. when the solution is uncharged.

In other words, unlike for the the energy density correlator, the close relation between the

pole-skipping location of GRT tyT ty(ω, k) and the butterfly velocity vB is not robust to the

generalisation to charged black holes and thus we view it as unlikely that the pole-skipping

in GRT tyT ty(ω, k) is in general related in a fundamental way to quantum chaos.
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