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Abstract

In this thesis we study a novel approach to stable recovery of unknown compactly sup-

ported L2 functions from finitely many nonuniform samples of their Fourier transform,

so-called Nonuniform Generalized Sampling (NUGS). This framework is based on a re-

cently introduced idea of generalized sampling for stable sampling and reconstruction in

abstract Hilbert spaces, which allows one to tailor the reconstruction space to suit the func-

tion to be approximated and thereby obtain rapidly-convergent approximations. While

preserving this important hallmark, NUGS describes sampling by the use of weighted

Fourier frames, thus allowing for highly nonuniform sampling schemes with the points

taken arbitrarily close. The particular setting of NUGS directly corresponds to various

image recovery models ubiquitous in applications such as magnetic resonance imaging,

computed tomography and electron microscopy, where Fourier samples are often taken

not necessarily on a Cartesian grid, but rather along spiral trajectories or radial lines.

Specifically, NUGS provides stable recovery in a desired reconstruction space subject

to sufficient sampling density and sufficient sampling bandwidth, where the latter de-

pends solely on the particular reconstruction space. For univariate compactly supported

wavelets, we show that only a linear scaling between the number of wavelets and the

sampling bandwidth is both sufficient and necessary for stable recovery. Furthermore, in

the wavelet case, we provide an efficient implementation of NUGS for recovery of wavelet

coefficients from Fourier data. Additionally, the sufficient relation between the dimension

of the reconstruction space and the bandwidth of the nonuniform samples is analysed

for the reconstruction spaces of piecewise polynomials or splines with a nonequidistant

sequence of knots, and it is shown that this relation is also linear for splines and piecewise

polynomials of fixed degree, but quadratic for piecewise polynomials of varying degree.

In order to derive explicit guarantees for stable recovery from nonuniform samples in

terms of the sampling density, we also study conditions sufficient to ensure existence of a

particular frame. Firstly, we establish the sharp and dimensionless sampling density that

is sufficient to guarantee a weighted Fourier frame for the space of multivariate compactly

supported L2 functions. Furthermore, subject to non-sharp densities, we improve existing

estimates of the corresponding frame bounds. Secondly, we provide sampling densities

sufficient to ensure a frame, as well as, estimates of the corresponding frame bounds,

when a multivariate bandlimited function and its derivatives are sampled at nonuniformly

spaced points.
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Chapter 1

Introduction

The recovery of a function from pointwise measurements of its Fourier transform is a

fundamental task in signal processing. It arises in numerous applications, ranging from

Magnetic Resonance Imaging (MRI) [PWS+99, SNF03, LDSP08, GKHPU11] to Com-

puted Tomography (CT) [Eps08], electron microscopy [LPE12], helium atom scatter-

ing [JHA+09, JCAHT15], reflection seismology [BCS00] and radar imaging [BC05]. In

many of these applications, the case when the data is acquired nonuniformly, i.e., along

a non-Cartesian sampling pattern, is of a particular interest. For instance, MR scanners

commonly use spiral sampling geometries for fast data acquisition [AKC86, MHNM92,

KPH+97, SNF03, DHC+10, GKHPU11]. Such sampling geometries are often preferable

because of the higher resolution obtained in the Fourier domain and the lower magnetic

gradients required to scan along such trajectories. Another important example is radial

sampling of the Fourier transform, which is also used in MRI as well as in applications

where the Radon transform is involved in the sampling process, such as CT for instance

[Eps08]. For examples of different sampling schemes used in applications see Figure 1.1.

Spurred by its practical importance, the past decades have witnessed the development of

an extensive mathematical theory of nonuniform sampling, as evidenced by a vast body

of literature. An in-exhaustive list includes the books of Marvasti [Mar01], Benedetto and

Ferreira [BF01], Young [You01], Seip [Sei04] and others, as well as many excellent articles;

see [AG01, Ben92, BW00, FG94, FGS95, GS01, Str00b] and references therein.

The main purpose of this thesis is to answer the following question. Given fixed

measurements of an unknown compactly supported L2 function f in the form of a finite

collection of samples of its Fourier transform f̂ , not necessarily taken on a Cartesian grid,

under what conditions is it possible to recover an approximation to f in an arbitrarily

chosen finite-dimensional reconstruction space T, and how can this be achieved via a

stable numerical algorithm? To this end, the main contributions of this thesis are:

(i) a theoretical framework for understanding when such stable reconstruction is possi-

ble in terms of the sampling density and the sampling bandwidth;
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(ii) a stable numerical algorithm to achieve such reconstruction with an efficient im-

plementation in the univariate and bivariate cases when the reconstruction space T

consists of wavelets;

(iii) complete analysis for the univariate case when reconstruction space T consists of

wavelets, non-equispaced splines or piecewise polynomials; and

(iv) understanding of the reduction in the sampling density if the set of measurements

includes samples of derivatives of f̂ .

Figure 1.1: Different sampling schemes: (i) jittered sampling scheme, a standard model when a
sensing devise does not acquire samples exactly on a uniform grid due to some measurement error,
which is often used in MRI and geophysics [AG01, Mar01], (ii) radial sampling scheme used in
MRI or in applications where Radon samples are acquired, such as CT for example [Eps08], (iii)
spiral and (iv) interleaving spiral used for fast acquisition of data in MRI [DHC+10]. All of these
sampling schemes satisfy a (K, δD◦)-density condition (see Definition 3.3.1), for an appropriate Y ,
D = [−1, 1]2, δD◦ < 1/4 and K = 4.

1.1 The generalized sampling approach

The approach we take in this work is based on recent developments in sampling and

reconstruction in abstract Hilbert spaces, known as generalized sampling (GS). GS, in

the form we consider in this paper, was introduced by Adcock & Hansen in [AH12a] (see
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1.2. Outline and contributions of the thesis

also [AH12b, AH15b, AHP13, AHS14, AHP14, AHRT14]). Yet, its roots can be traced

to earlier work of Unser & Aldroubi [UA94], Eldar [Eld04], Eldar & Werther [EW05],

Gröchenig [Grö99, Grö01], Shizgal & Jung [JS04], Hrycak & Gröchenig [HG10], Aldroubi

[Ald02], Gröchenig et al. [GRS10] and others.

GS addresses the following problem in sampling theory. Suppose that a finite number

of samples of an element f of a Hilbert space are given as inner products with respect to

a particular basis or frame. Suppose also that f can be efficiently represented in another

basis or frame, for example, it has sparse or rapidly-decaying coefficients. GS obtains a

stable reconstruction of f in this new system using only the original data. In the linear

case, this is achieved by least-squares fitting [AH12b], but when sparsity is assumed, one

can combine it with compressed sensing techniques to achieve substantial subsampling

[AH15a]. By doing so, one obtains techniques for infinite-dimensional compressed sensing,

known as GS–CS [AH15a, AHPR14].

The primary advantage of GS over most other approaches is that it allows one to take

advantage of an efficient function representation by using a suitable reconstruction system.

Namely, the free choice of the reconstruction basis or frame can be tailored to a specific ap-

plication. In fact, it is well known that images are well represented using wavelets. Images

may be sparse in wavelets, or have coefficients with rapid decay. Moreover, representing

medical images in such systems has other benefits over classical Fourier series represen-

tations, such as improved compressibility, better feature detection and easier and more

effective denoising [Lai00, Now98, WXHD91]. GS allows one to compute quasi-optimal

reconstructions in wavelets from the given set of Fourier samples, and therefore exploit

such beneficial properties. In the case of uniform Fourier samples, the use of GS/GS–CS

with wavelets was studied in [AHP14, AHPR14].

1.2 Outline and contributions of the thesis

The main focus of this thesis is the case of GS with nonuniform Fourier measurements,

which we refer to as nonuniform generalized sampling (NUGS). Since NUGS models sam-

pling with weighted frames of exponentials, defined as in Chapter 2, it can be seen as a

particular instance of GS corresponding to weighted Fourier frames.

Specifically, we assume the following setting. Let d ≥ 1 denote dimension and Rd

the d-dimensional Euclidean vector space. Following a standard convention, we use R̂d

whenever Rd is considered as a frequency domain. Now, suppose that Ω = {ω1, . . . , ωN}
⊆ R̂d is a set of N frequencies, and that we are given the measurements{

f̂(ω) : ω ∈ Ω
}

(1.2.1)

of an unknown signal f ∈ L2(D), where D ⊆ Rd is compact. As typical in the aforemen-
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tioned applications, set of frequencies Ω is fixed and cannot readily be altered. Let

T ⊆ L2(D)

be a finite-dimensional space in which we wish to recover f . For example, T could consist

of the first M functions in some wavelet basis.

In Chapter 3, we show how stable reconstruction in T can be achieved via NUGS

using only given measurements (1.2.1), by presenting a general reconstruction framework

together with guarantees for stable and accurate recovery. The guarantees are derived

in terms of sampling density δ and sampling bandwidth K, where δ measures distance

between the sampling points (see Definition 2.1.1) while K measures width of the sam-

pling region. In particular, we show that if samples Ω have density δ < 1/4 then stable

reconstruction is possible provided the bandwidth K of samples Ω is sufficiently large. In

the univariate case, the sufficient sampling bandwidth K depends solely on the properties

of reconstruction space T. This later statement is also true in the multivariate case, but

under more strict density condition. Furthermore, we address the case of critical density

δ = 1/4 in the univariate setting within the context of classical Fourier frames.

In order to develop such guarantees in the multivariate case, in Chapter 2, we first

provide some novel results on weighted Fourier frames for spaces of multivariate compactly

supported L2 functions. By building upon the seminal work of Gröchenig [Grö92] and

Beurling [Beu66], we allow for arbitrary clustering of sampling points subject to improved

sampling densities. The results that address arbitrary clustering of sampling points Ω

are of both theoretical and practical importance. Firstly, it is interesting to address the

issue of arbitrary clustering, since it is natural to anticipate that adding more sampling

points should not impair the recovery of a function. Secondly, this scenario often arises in

applications. For example, consider Fourier measurements acquired on a radial sampling

scheme. By increasing the number of radial lines along which samples are acquired, the

sampling points cluster at low frequencies, which deteriorates the frame bounds of the

corresponding Fourier frame. On the other hand, if we weight those points according

to their relative densities, the resulting weighted Fourier frame has controllable frame

bounds. To illustrate this last point, such a clustering of sampling points in a radial

sampling scheme is depicted in Figure 1.2.

Specifically, in Chapter 2, our first result demonstrates how the separation condition

can be successfully removed from Beurling’s original result by using weights correspond-

ing to the volumes of the Voronoi cells of the sampling points. Thereby we obtain the

universal density condition δ < 1/4, measured in a specific metric, sufficient to guaran-

tee a weighted Fourier frame for the space of multivariate L2 functions supported on a

compact, convex and symmetric set, while simultaneously allowing arbitrary clustering of

the sampling points. Unfortunately, this result does not lead to estimates of the frame
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1.2. Outline and contributions of the thesis

δD◦<1/4 Increasing sampling bandwidth... δD◦>1/4 δD◦<1/4

Figure 1.2: The first sampling scheme consists of points taken along 19 radial lines with the
sampling bandwidth K = 2 such that the (K, δD◦)-density condition is satisfied with δD◦ < 1/4,
D = [−1, 1]2, Y = B1 (see Definition 3.3.1). The following three sampling schemes are obtained by
increasing the sampling bandwidth K, in order to see a larger fragment of the frequency domain,
while the number of radial lines is kept the same. Thereby, one arrives to the forth sampling
scheme which no longer satisfies the density condition. To have the desired density again, one
may increase the number of radial lines from 19 to 35 and obtain the fifth sampling scheme.
However, now the points at low frequencies become very close to each other, which deteriorates
the corresponding frame bounds. In order to compensate for such clustering of sampling points,
one may use appropriate weights.

bounds. Our second result, however, directly improves Gröchenig’s explicit estimates of

the frame bounds subject to a non-sharp density condition, which in certain cases also

becomes dimension independent.

Next, having developed a general NUGS framework by using the results on weighted

Fourier frames, in Chapter 4, we address the specific univariate case where the reconstruc-

tion space T corresponds to a wavelet basis. A result proved in [AHP14] for d = 1, and in

[AHKM15] for d = 2, shows that when the sampling set Ω consists of the first N uniform

frequencies one can recover the first O(N) coefficients in an arbitrary wavelet basis via

GS. Thus wavelet bases are, up to constants, optimal bases in which to recover images

from uniform Fourier samples. This is not true for example for algebraic polynomial bases,

in which case one can stably recover only the first O(
√
N) coefficients, see [HG10], as well

as [AH12b, AHS14]. In Chapter 4 we extend the d = 1 result to the nonuniform case.

Specifically, if the samples Ω have density δ < 1/4 and bandwidth K > 0 then we prove

that one can stably recover the first O(K) wavelet coefficients. Thus there is a linear

relationship between the sampling bandwidth and the wavelet scale. As a corollary of this

result, given samples of a smooth function f ∈ Hs, NUGS obtains the convergence rate

O(K−s) when recovering the coefficients of boundary-corrected wavelets. Furthermore,

we show that any attempt—not restricted to NUGS—to reconstruct a fixed number of

wavelet coefficients from a sampling bandwidth K below the critical threshold necessarily

results in exponential ill-conditioning. This generalizes a result first proved in [AHP14]

for uniform samples.
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Additionally, in Chapter 4, we address implementation issues when recovering wavelet

coefficients and demonstrate how the NUGS reconstruction can be computed efficiently by

using Nonuniform Fast Fourier Transforms (NUFFTs) [FS03, PST01]. Namely, we show

that NUGS requires only O(M logN) operations when recovering N wavelet coefficients

from M Fourier samples. At the end of this chapter, we provide a number of numerical

examples simulated in Matlab demonstrating aforementioned theoretical results. The

code used to generate these examples presents the joint work with Clarice Poon and it is

made publicly available at http://www.damtp.cam.ac.uk/user/mg617/GS wavelets.zip.

In Chapter 5, we consider scaling of K and dim (T) sufficient for stable NUGS re-

covery of (piecewise) smooth functions in different polynomial spaces T from nonuniform

samples of their Fourier transform. For this purpose, we derive guarantees for stable re-

covery in terms of two intrinsic quantities of the reconstruction space T, related to the

maximal uniform growth of functions in T and the maximal growth of derivatives in T.

For trigonometric polynomials, nonequidistant splines and piecewise algebraic polynomi-

als with fixed polynomial degree, we show that this scaling is linear, and for piecewise

algebraic polynomials with varying degree we show that it is quadratic.

In the final part, Chapter 6, we consider two different but related sampling scenarios

for bandlimited functions. First, we provide sufficient density conditions for a set of

nonuniform samples to give rise to a frame for the space of multivariate bandlimited

functions when the measurements consist of pointwise evaluations of a function and its

first k derivatives. This problem is motivated by applications in seismology, where certain

recently developed detectors are able to measure both f and its spatial gradient. However,

there are also various other applications and for different examples we direct the reader

to [EO00, LSP+03] and references therein. The second scenario considered in this chapter

assumes that, instead of evaluating derivatives of f at {xn}n∈I , f is measured at an

additional s sampling points around each xn. One can think of this scenario as function f

being evaluated at s+ 1 different nonuniform sampling sequences. When these sequences

are uniform, the problem is known as bunched sampling or recurrent nonuniform sampling,

and has been extensively studied in literature.

The purpose of Chapter 6 is to understand the gain one can expect by nonuniformly

sampling derivatives or by nonuniformly sampling at bunched points. Although we do

not discuss actual function recovery in this case, it also can be performed via NUGS.

However, we do derive explicit sufficient conditions for stable recovery in terms of densities

of sampling points as well as explicit estimates of the corresponding frame bounds. In

particular, we show that the maximal allowed gap between sampling points (or bunches

of sampling points) grows linearly in k + 1 (or s + 1) for large k (or s), which translates

into increasing savings in cost and effort in practical acquisition of data. For a detailed

description of the main results on this topic, we refer to Section 6.1.
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1.3. Relation to previous work

1.2.1 List of publications

The novel results on weighted Fourier frames, which are presented in Chapter 2, were

published in [AGH15b] as the joint work of the author with Ben Adcock and Anders

Hansen. The NUGS framework from Chapter 3, along with the guarantees in the one-

dimensional case, was published in [AGH14a], while the multidimensional case was con-

sidered in [AGH15b], both presenting the joint work of the author with Ben Adcock and

Anders Hansen. The detail analysis of the wavelet case from Chapter 4 was also published

in [AGH14a]. The efficient implementation of the wavelet reconstruction is the joint work

of the author with Clarice Poon and this is published in [GP15]. Analysis of reconstruc-

tion in various polynomial spaces presented in Chapter 5 was published in [AGH14b] as

the joint work of the author with Ben Adcock and Anders Hansen. The contributions of

Chapter 6, on the topic of derivative and bunch sampling, were collected in [AGH15a] and

submitted for publication as the joint work of the author with Ben Adcock and Anders

Hansen.

1.3 Relation to previous work

Beside its key relation to generalized sampling, this work also relates to different aspects

in nonuniform sampling theory and to a vast body of existing literature within this field.

1.3.1 Recovery from nonuniform samples

An algorithm commonly used for MRI reconstruction from nonuniform samples is so-

called gridding [JMNM91, SN00, VGCR10, GS14], which simply discretizes the Fourier

integral on a nonuniform mesh. Our work differs from this approach in that we assume

an analog model for the image f , as opposed to viewing f as a finite-length Fourier series.

Consequently, a key issue in NUGS is that of approximation. By using an appropriate

reconstruction space T, we avoid the unpleasant artifacts (e.g. Gibbs ringing) associated

with this algorithm.

Another popular method for MRI reconstruction is the iterative reconstruction algo-

rithm [SNF03, MFK04], see also [PWS+99, PWBB01]. This can be viewed as a special

instance of NUGS, where T is a space of piecewise constant functions on a M×M grid (the

term ‘iterative’ refers to the use of conjugate gradients to compute the reconstruction).

Equivalently, when M is a power of 2, then T can be expressed as the space spanned by

Haar wavelets up to some finite scale. Thus our work provides as a corollary theoretical

guarantees for the stability and error of this algorithm. Importantly, we shall also show

how NUGS allows one to obtain better reconstructions, by replacing the Haar wavelet

choice for the subspace T with higher-order wavelets.

In [Grö99] (see also [Grö01, GS01, FGS95, Grö93]), the problem of recovering a ban-
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dlimited function from its own nonuniform samples was considered, where the arbitrary

clustering is addressed by using weighted Fourier frames, exactly the same as we do in this

work. Specifically, Gröchenig et al. developed an efficient algorithm for the nonuniform

sampling problem, known as the ACT algorithm (Adaptive weights, Conjugate gradi-

ents, Toeplitz) where they consider reconstruction of bandlimited functions in a particular

finite-dimensional space consisting of trigonometric polynomials. This corresponds to a

specific instance of NUGS with a Dirac basis for T. Convergence and stability of the ACT

algorithm [Grö01, Thm. 7.1] are guaranteed by the sufficient sampling density and the

explicit weighted frame bounds given in [Grö01, Prop. 7.3]. Note that the focus of the

present work is slightly different. Gröchenig et al. primarily consider the recovery of a

bandlimited function from nonuniform pointwise samples, whereas we consider the recov-

ery of a compactly supported function from pointwise samples of its Fourier transform.

Although mathematically equivalent, the setup affects the choice of reconstruction space.

In our setting for example, a Dirac basis would not be ideal for approximating an image

f , whereas wavelet bases are typically well suited. Having said this, the results we prove

here extend the work by Gröchenig et al. in two ways. First, we have a less stringent

multi-dimensional density requirement based on the improved results for weighed frames

of exponentials, which also directly improves the guarantees for ACT algorithm. Sec-

ond, our framework allows arbitrary choices of T which can be tailored to the particular

function f to be recovered.

Some of the earlier work in nonuniform sampling theory considers reconstruction of an

unknown function based on an iterative inversion of the frame operator [Ben92, Ben93,

BW00, FG94, Grö92, AG01]. These approaches would be fine if one would be given

infinitely-many samples and infinite processing time, but since one has only finite data

in practice, they typically lead to large truncation errors (similar to Gibbs phenomena).

Additionally, such approaches are typically infeasible in more than one dimension due to

their computational complexity.

1.3.2 Sets of sampling

In contrast to Cartesian sampling which leans on the celebrated Nyquist–Shannon sam-

pling theorem as well as Parseval’s identity, nonuniform sampling is typically studied

within the concept of Fourier frames. Provided one has a Fourier frame, stable function re-

covery is possible and can be carried out via different algorithms. Therefore, it is crucial to

understand conditions under which sampling points give rise to a Fourier frame. This topic

has been extensively researched in the last several decades [AG01, Chr01, Ben93, BW00].

Sampling points that give rise to a Fourier frame for the space of L2 functions supported

on a compact domain, equivalently provide a frame for the space of functions bandlimited

to the same compact domain [You01]. In nonuniform sampling literature, such a collection

of sampling points is typically called a set of sampling [BW00]. In this thesis, we also

8
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study such sets.

The theory of Fourier frames was developed by Duffin and Shaeffer [DS52], more than

half a century ago, and its roots can be traced back to earlier works of Paley and Wiener

[PW87] and Levinson [Lev40]. In one dimension, there exists a near-complete character-

ization of Fourier frames in terms of the density of underlying samples, due primarily to

Beurling [Beu66], Landau [Lan67], Jaffard [Jaf91] and Seip [Sei95a]. However, in higher

dimensions, the situation becomes considerably more complicated [BW00, OU12]. Nev-

ertheless, Beurling’s seminal paper [Beu66] (see also [Beu89]) provides a sharp sufficient

condition for sampling points in multiple dimensions to give rise to a Fourier frame for

the space of square-integrable functions compactly supported on a sphere. This was

generalized to the spaces of square-integrable functions compactly supported on any com-

pact, convex and symmetric set by Benedetto and Wu [BW00] and also by Olevskii and

Ulanovskii [OU12]. Regarding general bounded supports in Rd, Landau [Lan67] provides

a necessary density condition that fails to be sufficient in general. A recent result due to

Matei and Meyer [MM10] proves this density condition to be sufficient in the special case

of sampling on quasicrystals. Also, some of these density-type results where extended to

shift-invariant spaces by Aldroubi and Gröchenig [AG00]. However, in our work, we focus

only on compactly supported and square-integrable functions with supports in Rd which

are compact, convex and symmetric. For a more detailed review on the theory of Fourier

frames and nonuniform sampling, see [AG01, BW00, Chr01].

A limitation of the results mentioned above is that they require a minimal separation

between the sampling points. In particular, clustering of sampling points deteriorates the

associated upper frame bound. The result we present here removes the minimal separation

restriction while it keeps the density condition sharp and dimensionless. Through the

use of a weighted Fourier frame approach, based on Gröchenig’s earlier work, we adapt

Beurling’s result to allow for arbitrary clustering of sampling points. The density condition

given here is sharp in the sense that there exists a sampling set with smaller density and

a function which could not be recovered from that set.

Weighted Fourier frames, which we also refer to as weighted frames of exponentials,

were studied by Gröchenig [Grö92], and later also by Gabardo [Gab93]. In [Grö92],

Gröchenig presents a density condition sufficient for a family of exponentials to constitute

a weighted Fourier frame, and provides explicit frame bounds. This density condition is

sharp in dimension d = 1, but fails to be sharp in higher dimensions, with the estimate on

the density deteriorating linearly, and the estimates on the frame bounds, exponentially in

d. The multi-dimensional result has been improved in [BG05], but under the assumption

that the sampling set consists of a sequence of uniformly distributed independent random

variables. In this setting, Bass and Gröchenig provide probabilistic estimates. Our work

focuses on deterministic statements and provides two improvements of Gröchenig’s result

from [Grö92]. First, as discussed above, we provide a density condition which is both

9
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sharp and dimensionless. However, as in the original Beurling’s result, this condition

does not give rise to explicit frame bounds. Therefore, in our second result we present

explicit frame bounds under a non-sharp, but at the same time, a less stringent density

condition than previously known.

We note at this stage that, whilst Gröchenig was arguably the first to rigorously

study weighted Fourier frames in sampling, the use of weights is commonplace in MRI

reconstructions, where they are often referred to as ‘density compensation factors’ (see

[DHC+10, SNF03] and references therein). However, such approaches are often heuristic.

Building on Gröchenig’s earlier work, our results provide further mathematical theory

supporting for their use.

It is also of practical and theoretical interest to study conditions under which a set of

nonuniform samples give rise to a set of sampling, once derivatives of a bandlimited func-

tions are additionally evaluated at these points. Uniform sampling of derivatives is a clas-

sical topic in sampling theory, see [Fog56, JF56, LA60, Pap77a, Pap77b, Raw89, ZSCZ96]

and references therein. It is known that one can exceed the Nyquist criterion by a factor of

k + 1 by sampling the function and its first k derivatives [Pap77b, Raw89]. On the other

hand, relatively few papers have considered nonuniform sampling with derivatives. In

the univariate setting, by extending Gröchenig’s results [Grö92] for univariate nonuniform

sampling to the case of derivatives, it was shown in [Raz95] that the maximum allowable

spacing between sampling points grows asymptotically as a linear function of k + 1, with

constant of proportionality equal to 1/e. Furthermore, multivariate nonuniform sampling

with derivatives was addressed in [GR96], where necessary density conditions were derived.

However, to the best of our knowledge, no work has addressed sufficient guarantees for

stable sampling with derivatives in the multivariate setting, and this is the task addressed

in the present work.

Lastly, we consider sets of sampling arising from nonuniform bunched sampling of

bandlimited functions. Uniform bunched sampling—also known as recurrent nonuniform

sampling since it assumes periodic groups of nonuniform samples—has been a topic of nu-

merous papers, in both the one-dimensional [BH89, EO00, Koh53, Pap77a, Pap77b, SJ08,

ST06, Yen56] and the multi-dimensional case [Far94, FG05]. Here, as in the derivative

sampling, one is allowed to sample above the Nyquist rate. Namely, if the uniform bunched

set of sampling points is interpreted as the union of s+ 1 uniform sequences, then each of

these sequences can be taken at s + 1 times the Nyquist rate. However, one might want

to know what happens if these groups of nonuniform samples are not repeating periodi-

cally, but instead are distributed nonuniformly. This setting corresponds to nonuniform

bunched sampling that we consider in our work. To the best of our knowledge, there is

no earlier work which considers nonuniform bunched sampling.
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Chapter 2

Weighted frames of exponentials

The subject of this chapter is conditions that ensure existence of a frame for the space of

L2 functions supported on a compact domain in Rd. In this regard, we provide two novel

results. Whilst keeping the density condition sharp and dimension independent, our first

result, Theorem 2.3.1, removes the separation condition from Beurling’s result [Beu66]

and shows that density alone suffices for obtaining a frame for the space of L2 functions

supported on a compact symmetric and convex domain in Rd. This is achieved by the

use of appropriate weights, leading to a weighted Fourier frame. However, this result

does not lead to estimates for the frame bounds. A result of Gröchenig [Grö92] provides

explicit estimates, but only subject to a density condition that deteriorates linearly with

dimension d. In our second result, Theorem 2.2.1, we improve these bounds by reducing

the dimension dependence. In particular, we provide explicit frame bounds which are

dimensionless for functions having compact support contained in a sphere.

The results of this chapter are collected from [AGH15b], which is the joint work of the

author with Ben Adcock and Anders Hansen.

2.1 Background material and preliminaries

For x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd we write x · y = x1y1 + . . . + xdyd

for the dot product of x and y, and for p ≥ 1, we write |x|p for the `p-norm, i.e. |x|p =(∑d
j=1 |xj |p

)1/p
. Let L2(Rd) be the space of square-integrable functions on Rd with inner

product

〈f, g〉 =

ˆ
Rd
f(x)g(x) dx,

and corresponding norm ‖f‖ =
√
〈f, f〉. We denote the Fourier transform by

f̂(ω) =

ˆ
Rd
f(x)e−i2πω·x dx, ω ∈ R̂d.

11
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Let

H =
{
f ∈ L2(Rd) : supp(f) ⊆ D

}
be the Hilbert space of square-integrable functions supported on a compact set D ⊆ Rd.
For a point in the frequency domain ω ∈ R̂d, we define

eω(x) = ei2πω·xχD(x), x ∈ Rd,

where χD is the indicator function of the set D. Note that, for a f ∈ H, we have

f̂(ω) = 〈f, eω〉.
Let |·|∗ denote an arbitrary norm on Rd. Note that for every such norm the set

{x ∈ Rd : |x|∗ ≤ 1} is convex, compact and symmetric. Since all norms on a finite-

dimensional space are equivalent to the Euclidean norm, which we denote simply by |·|,
there exist (sharp) constants c∗, c

∗ > 0 such that

∀x ∈ Rd, c∗|x|∗ ≤ |x| ≤ c∗|x|∗.

Additionally, ifD ⊆ Rd is a compact, convex and symmetric set, the function |·|D : Rd → R
defined by

∀x ∈ Rd, |x|D = inf{a > 0 : x ∈ aD},

is a norm on Rd [BW00]. Here, D is the unit ball with the respect to the norm |·|D, i.e.

D = {x ∈ Rd : |x|D ≤ 1}.

For such set D ⊆ Rd, its polar set is defined as

D◦ = {ŷ ∈ R̂d : ∀x ∈ D, x · ŷ ≤ 1}.

Note that D◦ is itself a convex, compact and symmetric set in R̂d, which is the unit ball

with respect to the norm |·|D◦ . Also observe that, if D is the unit ball in the Euclidean

norm, which we denote by B1, then B1 = B◦1 and |·|B1
= |·|B◦1 = |·|.

Throughout, we denote `p-norm by |·|p, i.e. for x ∈ Rd, |x|p =
(∑d

j=1 |xj |p
)1/p

. Hence

|·|2 = |·|B1
= |·|. Also, we recall the well-know inequality

∀x ∈ Rd, |x|q ≤ |x|r ≤ d1/r−1/q|x|q, q > r > 0, (2.1.1)

which we shall use later.
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2.1. Background material and preliminaries

2.1.1 Classical Fourier frames

A family {φn}n∈N ⊆ H is called a frame for the Hilbert space H if there exist constants

A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
n∈N
|〈f, φn〉|2 ≤ B‖f‖2.

The optimal constants A and B are called the upper and the lower frame bound, re-

spectively. For an excellent overview of frame theory see [Chr03] as well as [Chr01] and

[BW00].

In what follows we will be interested in Fourier frames. For a countable set of sampling

points Ω ⊆ R̂d, a family of functions {eω}ω∈Ω ⊆ H is called a Fourier frame for H if there

exist constants A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
ω∈Ω

|f̂(ω)|2 ≤ B‖f‖2. (2.1.2)

We also refer to such a system as a classical Fourier frame. If {eω}ω∈Ω is a frame, then

the frame operator S : H→ H is defined by

∀f ∈ H, S : f 7→ Sf =
∑
ω∈Ω

f̂(ω)eω. (2.1.3)

Since the frame inequality (2.1.2) holds, the frame operator S is is linear, bounded, self-

adjoint and invertible, with the inverse S−1 : H→ H satisfying

∀f ∈ H, f =
∑
ω∈Ω

〈S−1f, eω〉eω. (2.1.4)

Formula (2.1.4), with the appropriately truncated sum, is sometimes used for signal re-

construction [BW00]. However, for the types of sets Ω considered in practice, finding

the inverse frame operator S−1 is often a nontrivial task. Typically, this renders such an

approach infeasible in more than one dimension.

If the relation (2.1.2) holds with A = B, the family {eω}ω∈Ω is called a tight frame,

and if A = B = 1, this family forms an orthonormal basis for H. In these cases, the

relation (2.1.2) is known as (generalized) Parseval’s equality. Also, in these cases the

frame operator becomes S = AI, where I is the identity operator on H, and the formula

(2.1.4) represents the Fourier series of f , which, when appropriately truncated, converges

strongly to f on H. This leads to a considerably simpler framework in the case when the

samples are acquired uniformly, corresponding to an orthonormal basis or a tight frame

for H.
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Necessary and sufficient conditions

If {eω : ω ∈ Ω} is a classical Fourier frame, then Ω necessarily cannot have a clustering

point, i.e. Ω must be (relatively) separated, or otherwise the upper frame bound blows

up [Jaf91]. The set Ω is said to be separated with respect to the |·|∗-norm if there exists

a constant η > 0 such that

∀ω, λ ∈ Ω, ω 6= λ, |ω − λ|∗ ≥ η,

and it is relatively separated if it is a finite union of separated sets. It is clear that, if Ω

is separated in the |·|∗-norm then it is separated in any norm on R̂d and vice-versa.

Beside separation, another characterizing property of Fourier frames is density of the

underlying sampling points. The following definition of density originates in Beurling’s

work [Beu66] and it is used frequently in multi-dimensional nonuniform sampling litera-

ture.

Definition 2.1.1 (Sampling density). Let Ω be a sampling set contained in a closed,

simply connected set Z ⊆ R̂d. Let |·|∗ be an arbitrary norm on Rd and let δ∗ > 0. We say

that Ω is δ∗-dense in the domain Z if

δ∗ = sup
ŷ∈Z

inf
ω∈Ω
|ω − ŷ|∗.

If |·|∗ = |·|S for a compact, convex and symmetric set S ⊆ Rd, then we write δS. Also, to

emphasise the sampling set, where necessary we use the notation δ∗(Ω).

It is useful to note that δ∗-density condition from Definition 2.1.1 is equivalent to the

δ∗-covering condition: for all ρ ≥ δ∗ it holds that

Z ⊆
⋃
ω∈Ω

{
x ∈ Rd : |x− ω|∗ ≤ ρ

}
.

In other words, δ∗ is the minimal radius of |·|∗-balls described around the sampling points

in Ω necessary to cover Z. In particular, the half distance between any two sampling

points measured in the |·|∗-norm cannot exceed δ∗. Moreover, in one dimension, δ∗ is

exactly the half length of the maximum gap between the sampling points of Ω.

In [Beu66], Beurling provides a sufficient density condition for a nonuniform set of

sampling points to give a Fourier frame for H consisting of functions supported on the

unit sphere in the Euclidean norm. In what follows, we use a variation of Beurling’s result

given by Benedetto & Wu in [BW00], and also by Olevskii & Ulanovskii [OU12], which is

a generalization to arbitrary convex, compact and symmetric supports:

Theorem 2.1.2 (Beurling’s theorem). Let D ⊆ Rd be compact, convex and symmetric
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set. If Ω ⊆ R̂d is relatively separated and δD◦-dense in R̂d with

δD◦ <
1

4
,

then the family of functions {eω}ω∈Ω is a Fourier frame for H.

Beurling [Beu66] also shows that this result is sharp in the sense that there exists a

countable set with the density δD◦ = 1/4, where D is the unit ball in the Euclidean metric,

which does not satisfy the lower frame condition in (2.1.2) (see also [OU12, Prop. 4.1]).

In the one-dimensional case, however, the list of existing results for nonuniform sam-

pling is much more complete. Most notably, there exists a near-complete characterization

of Fourier frames in terms of relative separation and the Beurling density. For a sequence

Ω ⊆ R̂, the lower Beurling density is defined by

ρ− = lim
r→∞

n−(r)

r
, n−(r) = inf

t∈R
|{ω ∈ Ω : ω ∈ (t, t+ r)}| .

Note that by definition 1/ρ− = 2δD◦ , for D = [−1, 1]. The results of the following theorem

are due to Duffin and Schaeffer [DS52], Landau [Lan67], Jaffard [Jaf91] and Seip [Sei95a].

Theorem 2.1.3 (One-dimensional characterization of Fourier frames). Let Ω ⊆ R̂ be a

sampling set and let H =
{
f ∈ L2(R) : supp(f) ⊆ [−1, 1]

}
.

(i) If Ω is relatively separated and ρ− > 2 then {eω}ω∈Ω forms a frame for H.

(ii) Conversely, If {eω}ω∈Ω forms a frame for H then ρ− ≥ 2 and Ω is relatively sepa-

rated.

Note that there exist both a relatively separated sequence with δD◦ = 1/4 which forms

a frame and a relatively separated sequence with δD◦ = 1/4 which does not. We refer to

[Chr01] and [BW00] for details. Instead, we only note that δD◦ = 1/4 is obtained exactly

when sampling at the Nyquist rate in the uniform setting, and therefore δD◦ = 1/4

is allowed in this particular case. However, in general, nonuniform sampling requires

sampling just above the Nyquist rate.

2.1.2 Weighted Fourier frames

To compensate for arbitrary clustering of sampling points, which often needs to be fa-

cilitated in practice, it is common to use weights, also known as density compensation

factors.

Definition 2.1.4 (Weighted Fourier frames). A countable family of functions {√µωeω}ω∈Ω

is a weighted Fourier frame for H, with weights {µω}ω∈Ω, µω > 0, if there exist constants
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A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
ω∈Ω

µω|f̂(ω)|2 ≤ B‖f‖2. (2.1.5)

In order to define appropriate weights {µω}ω∈Ω corresponding to the varying density

of the sampling set Ω, we use the Lebesgue measure of Voronoi regions. This is a standard

practice in nonuniform sampling [AG01, RPS+99].

Definition 2.1.5 (Voronoi regions). Let Ω be a set of distinct points in a domain Z ⊆ R̂d

and let |·|∗ be an arbitrary norm on Rd. The Voronoi region at ω ∈ Ω, with respect to the

norm |·|∗ and in domain Z, is given by

V ∗ω = {ŷ ∈ Z : ∀λ ∈ Ω, λ 6= ω, |ω − ŷ|∗ ≤ |λ− ŷ|∗} ,

with the Lebesgue measure denoted as

meas (V ∗ω ) =

ˆ
Z
χV ∗ω (ŷ) dŷ.

For an example of Voronoi regions associated to a set of sampling points taken on a

spiral see Figure 2.1. Note that as points get close to each other the associated Voronoi

regions become smaller.

Figure 2.1: Edges of Voronoi regions (magenta) associated to a set of sampling points taken on
a spiral (blue), with respect to the Euclidean norm.

In [Grö92], Gröchenig provides explicit frame bounds for weighted Fourier frames,

provided the sample points Ω are sufficiently dense. In one dimension, the condition on

the density is sharp and reads as follows:

Theorem 2.1.6 (Gröchenig’s one-dimensional theorem). Let H = {f ∈ L2(R) : supp(f) ⊆
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D}, where D = [−1, 1]. If Ω ⊆ R̂ is δ-dense in R̂ such that

δD◦ <
1

4
,

then {√µωeω}ω∈Ω is a weighted Fourier frame for H, where the weights are defined as

measures of the Voronoi intervals of the points Ω, with the frame bounds A,B satisfying

√
A ≥ 1− 4δD◦ > 0,

√
B ≤ 1 + 4δD◦ < 2.

However, the sharpness of this result is lost in higher dimensions. Here we state

Gröchenig’s multi-dimensional result [Grö01, Prop. 7.3], which is a more recent reformu-

lation of [Grö92, Thm. 5]:

Theorem 2.1.7 (Gröchenig’s theorem). Let H = {f ∈ L2(Rd) : supp(f) ⊆ D}, where

D = [−1, 1]d. If Ω ⊆ R̂d is a δB1-dense set in R̂d such that

δB1 <
ln 2

2πd
, (2.1.6)

then {√µωeω}ω∈Ω is a weighted Fourier frame for H, where the weights are defined as

measures of the Voronoi regions of the points Ω with respect to Euclidean norm. The

frame bounds A,B satisfy

√
A ≥ 2− e2πδB1

d > 0,
√
B ≤ e2πδB1

d < 2.

Note that the bound (2.1.6) deteriorates linearly with the dimension d. Also, D can be

any rectangular domain of the form
∏d
i=1[−si, si], since supp(f) ⊆

∏d
i=1[−si, si] implies

that f̃(x) = f(x1/s1, . . . , xd/sd) has support in [−1, 1]d. Hence, the result is stated for

D = [−1, 1]d without loss of generality [Grö01]. Moreover, note that D may also be any

compact set that is a subset of [−1, 1]d such as any `p unit ball, p > 0, for example.

2.2 Weighted Fourier frames with improved frame bounds

Much like Beurling’s Theorem 2.1.2, it is expected that the density condition for weighted

Fourier frames given in Theorem 2.1.7 does not depend on dimension. Unfortunately,

Gröchenig’s estimates deteriorate linearly with the dimension d, and thus cease to be

sharp. Therefore, in the following theorem, we provide a modification of Gröchenig’s

theorem by presenting explicit bounds with slower, and sometimes, with no deterioration

with respect to dimension.

Theorem 2.2.1. Let H = {f ∈ L2(Rd) : supp(f) ⊆ D}, where D ⊆ Rd is compact.

Suppose that |·|∗ is an arbitrary norm on Rd and c∗ > 0 is the smallest constant for which
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|·| ≤ c∗ |·|∗, where |·| denotes the Euclidean norm. Let Ω ⊆ R̂d be δ∗-dense in R̂d with

δ∗ <
ln 2

2πmDc∗
, (2.2.1)

where mD = supx∈D |x|. Then {√µωeω}ω∈Ω is a weighted Fourier frame for H with the

weights defined as the measures of Voronoi regions with respect to norm |·|∗. The weighted

Fourier frame bounds A,B satisfy

√
A ≥ 2− exp(2πmDδ∗c

∗) > 0,
√
B ≤ exp(2πmDδ∗c

∗) < 2.

The estimates in Theorem 2.2.1 are presented in terms of the following quantity

mD = sup
x∈D
|x|, (2.2.2)

where D ⊆ Rd and |·| is Euclidean norm. Note that mB1 = 1 and therefore it is indepen-

dent of dimension for spheres. Moreover, if D is the `p unit ball, i.e. D = {x : Rd : |x|p ≤
1}, p > 0, then

mD = max{1, d1/2−1/p}, (2.2.3)

due to inequality (2.1.1).

Remark 2.2.2 We first note that if the sampling density and Voronoi regions are defined

in the Euclidean norm, i.e., if |·|∗ = |·| , which is typically the case in practice, then

c∗ = 1. If additionally D is taken to be the unit Euclidean ball, which corresponds to

Beurling’s original setting, then mD = 1. In this particular case, the dimension dependence

is completely removed and the density condition (2.2.1) reads

δ <
ln 2

2π
≈ 0.11.

This is slightly stronger than the sharp condition δ < 0.25 (see Theorem 2.3.1), but still, it

is a dimension independent condition under which the explicit frame bounds are provided.

To illustrate this density condition further, let D = {x ∈ Rd : |x|p ≤ 1}, p > 0, and let

|·|∗ be the `q norm, q ≥ 1. Then (2.2.1) becomes

δq <
ln 2

2πmax{1, d1/2−1/p}max{1, d1/2−1/q}
, (2.2.4)

due to (2.1.1) and (2.2.3). This bound attains its minimum for p = q =∞, in which case it

deteriorates linearly with the dimension d. However, in all other cases the deterioration of

the bound on density, and also, the deterioration of weighted frame bounds estimations, is

slower with the dimension. Moreover, they are independent of dimension whenever p ≤ 2

and q ≤ 2.
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2.2. Weighted Fourier frames with improved frame bounds

Finally, to directly compare this theorem with Gröchenig’s multi-dimensional result

given in Theorem 2.2.1, we set p = ∞ and q = 2 in (2.2.4). Thus, the density condition

(2.2.4) becomes

δ2 <
ln 2

2π
√
d

whereas the density condition (2.1.6) in Gröchenig’s theorem is

δ2 <
ln 2

2πd
.

Hence Theorem 2.2.1 leads to an improvement by a factor of
√
d and no deterioration in

the constant (ln 2)/(2π).

Before we proceed to the proof of Theorem 2.2.1, let us recall the multinomial formula.

For any k ∈ N0 and x ∈ Rd, we have

∑
|α|1=k

k!

α!
xα = (x1 + · · ·+ xd)

k, (2.2.5)

where α = (α1, . . . , αd) ∈ Nd0, |α|1 = |α1|+ . . .+ |αd|, α! =
∏d
j=1 αj ! and xα =

∏d
j=1 x

αj
j .

Regarding the multi-index notation, in what follows, we also use the derivative operator

defined as

Dα =
∂|α|1

∂α1
x1 · · · ∂

αd
xd

.

Now we are ready to prove our main result for weighted Fourier frames with explicit

bounds:

Proof of Theorem 2.2.1. The proof is set up in the same manner as the proof of Gröchenig’s

original result, Theorem 2.1.7. For a function f ∈ H, define

h(ŷ) =
∑
ω∈Ω

f̂(ω)χV ∗ω (ŷ), ŷ ∈ R̂d.

Since the sets V ∗ω , ω ∈ Ω, make a disjoint partition of R̂d, it holds that

‖h‖ =

√∑
ω∈Ω

µω|f̂(ω)|2,

where µω = meas(V ∗ω ). Note that

‖f‖ − ‖f̂ − h‖ ≤ ‖h‖ ≤ ‖f̂ − h‖+ ‖f‖. (2.2.6)

Hence, we aim to estimate ‖f̂ − h‖. Again, by using properties of Voronoi regions, it is
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Weighted frames of exponentials

possible to conclude that

‖f̂ − h‖ =

√∑
ω∈Ω

ˆ
V ∗ω

|f̂(ŷ)− f̂(ω)|2 dŷ.

In order to estimate |f̂(ŷ) − f̂(ω)|2, for all ω ∈ Ω and all ŷ ∈ V ∗ω , Taylor’s expansion of

the entire function f̂ is used. Therefore, by the Cauchy–Schwarz inequality we get

|f̂(ŷ)− f̂(ω)|2 ≤

∑
α 6=0

|(ŷ − ω)α|
α!

|Dαf̂(ŷ)|

2

≤
∑
α 6=0

c|α|1(ŷ − ω)2α

α!

∑
α 6=0

c−|α|1

α!
|Dαf̂(ŷ)|2, (2.2.7)

for some constant c > 0 to be determined later. The inequality (2.2.7) is where this

proof starts to differ from Gröchenig’s original proof. For the first term in (2.2.7), by the

multinomial formula (2.2.5) we get

∑
α 6=0

c|α|1(ŷ − ω)2α

α!
=
∞∑
k=0

ck

k!

∑
|α|1=k

k!

α!
(ŷ − ω)2α − 1

=

∞∑
k=0

ck

k!
|ŷ − ω|2k − 1

≤ exp(c(δ∗c
∗)2)− 1,

where in the final inequality δ∗-density of the set Ω is used:

∀ω ∈ Ω, ∀ŷ ∈ V ∗ω , |ŷ − ω| ≤ δ∗c∗.

Now consider the other term in (2.2.7). If we integrate over the Voronoi region V ∗ω and

sum over ω ∈ Ω then

∑
α 6=0

c−|α|1

α!

∑
ω∈Ω

ˆ
V ∗ω

|Dαf̂(ŷ)|2 dŷ =

∞∑
k=1

c−k

k!

∑
|α|1=k

k!

α!
‖Dαf̂‖2

=
∞∑
k=1

c−k

k!

ˆ
D

∑
|α|1=k

k!

α!
(2πx)2α|f(x)|2 dx,

since by Parseval’s identity

‖Dαf̂‖2 = ‖F̂‖2 = ‖F‖2 =

ˆ
D

(2πx)2α|f(x)|2 dx,
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2.3. Sharp sufficient density for weighted Fourier frames

where F (x) = (−i2πx)αf(x). Hence, again by the multinomial formula (2.2.5), we obtain

∑
α 6=0

c−|α|1

α!

∑
ω∈Ω

ˆ
V ∗ω

|Dαf̂(ŷ)|2 dŷ =
∞∑
k=1

c−k(2πmD)2k

k!
‖f‖2

=
(
exp((2πmD)2/c)− 1

)
‖f‖2.

Therefore, from (2.2.7), we get

‖f̂ − h‖2 ≤
(
exp(c(δ∗c

∗)2)− 1
) (

exp((2πmD)2/c)− 1
)
‖f‖2.

If we equate the two terms, then we set c = 2πmD/(δ∗c
∗) to get

‖f̂ − h‖ ≤ (exp(2πmDδ∗c
∗)− 1) ‖f‖.

Thus (2.2.6) now gives

√
B ≤ exp(2πmDδ∗c

∗),
√
A ≥ 2− exp(2πmDδ∗c

∗),

with the condition that

δ∗ <
ln 2

2πmDc∗
,

as required.

2.3 Sharp sufficient density for weighted Fourier frames

The relative separation of a sampling set Ω is necessary and sufficient for the existence of an

upper frame bound [You01, Thm. 2.17], see also [Jaf91, Lem. 1]. However, if we introduce

appropriate weights {µω}ω∈Ω to compensate for the clustering of the sampling points Ω,

and consider {√µωeω}ω∈Ω instead of {eω}ω∈Ω, then this condition ceases to be necessary,

as it is evident from Gröchenig’s Theorem 2.1.7 and the improved result given in Theorem

2.2.1. On the other hand, once nontrivial weights µω > 0 are introduced, existence of a

lower frame bound is no longer guaranteed by Beurling’s result. Nevertheless, by the

following result, we demonstrate how the separation condition from Beurling’s result can

be successfully removed by using weights corresponding to the volumes of the Voronoi

cells of the sampling points.

Theorem 2.3.1. Let H = {f ∈ L2(Rd) : supp(f) ⊆ D}, where D ⊆ Rd is compact,

convex and symmetric. If a countable set Ω ⊆ R̂d has density

δD◦ <
1

4
(2.3.1)

in R̂d, then {√µωeω}ω∈Ω is a weighted Fourier frame for H with the weights {µω}ω∈Ω
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Weighted frames of exponentials

defined as the measures of Voronoi regions with respect to the |·|D◦ norm. In other words,

there exist constants A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
ω∈Ω

µω|f̂(ω)|2 ≤ B‖f‖2.

As Theorem 2.2.1, without imposing separation, Theorem 2.3.1 gives density condition

sufficient to yield a weighted Fourier frame. Although this result does not lead to explicit

frame bounds, it provides the universal density condition (2.3.1) which is both dimension

independent and sharp. The latter follows from the sharpness of Beurling’s Theorem 2.1.2

and by [OU12, Prop. 4.1].

In order to prove Theorem 2.3.1, we need the following lemma.

Lemma 2.3.2. If Ω is a sequence with the density δD◦(Ω) < 1/4 in R̂d, then there exists

a subsequence Ω̃ ⊆ Ω which is η-separated with respect to the norm |·|D◦ for some η > 0,

and also has density δD◦(Ω̃) < 1/4 in R̂d.

Proof. To begin with, we introduce some notation. For the set D, we define D(0, 1) = D,

D(0, r) = rD and D(x, r) = x+ rD. Here, for δD◦ , we simply write δ.

Let us choose η > 0 such that δ + η/2 < 1/4 and set δ1 = δ + η. Now define Ω̃

inductively as follows. For an arbitrarily picked point ω0 ∈ Ω, set ω̃0 = ω0. Given

ω̃0, . . . , ω̃N , define ω̃N+1 by

ω̃N+1 ∈ Ω ∩D◦(x, δ),

where

x ∈ ∂G = ∂

 ⋃
ω̃n∈Ω̃N

D◦ (ω̃n, δ1)

 and Ω̃N = {ω̃n}Nn=0.

Here, we picked any x ∈ ∂G and then, for that x, any ω̃N+1 ∈ Ω ∩D◦(x, δ). Finally, we

let Ω̃ = {ω̃n}∞n=0.

Note that for any x ∈ R̂d there must exists a point ω ∈ Ω in the set D◦(x, δ) such that

x is covered by D◦(ω, δ), since Ω is δ-dense in the norm |·|D◦ and R̂d can be covered by the

sets D◦(ω, δ), ω ∈ Ω. Moreover, for every x ∈ ∂G, every ω ∈ Ω∩D◦(x, δ) must be different

than any other ω ∈ Ω̃N , since δ < δ1. Also, note that for every such ω ∈ Ω ∩D◦(x, δ) it

holds that

η = δ1 − δ ≤ inf
ω̃n∈Ω̃N

|ω − ω̃n|D◦ ≤ δ1 + δ = 2δ + η.

Therefore if we choose ω̃N+1 from Ω∩D◦(x, δ) arbitrarily, and continue the procedure until

G = R̂d, by the construction, Ω̃ is δ̃-dense in the norm |·|D◦ where δ̃ = (2δ + η)/2 < 1/4.

Also, it is η-separated in the norm |·|D◦ .
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2.3. Sharp sufficient density for weighted Fourier frames

Remark 2.3.3 In view of this lemma, it might be tempting to infer the following∑
ω∈Ω

µω|f̂(ω)|2 ≥
∑
ω̃∈Ω̃

µω̃|f̂(ω̃)|2 ≥ meas
(η

2
D◦
)∑
ω̃∈Ω̃

|f̂(ω̃)|2 ≥ meas
(η

2
D◦
)
A, (2.3.2)

and therefore seemingly obtain the lower frame bound for the weighted non-separated

sequence Ω. However, note that the second inequality in (2.3.2) need not hold, since the

weights at the very beginning are chosen as the Lebesgue measures of the Voronoi regions

corresponding to Ω, which can be arbitrarily small due to clustering. Therefore, although

the sequence Ω̃ is separated, there might indeed exists ω̃ ∈ Ω̃ such that its Voronoi region

V D◦
ω̃ does not contain a ball of radius η/2 with respect to the D◦-norm.

Proof of Theorem 2.3.1. First of all, for the upper bound we use Theorem 2.2.1. From the

proof of Theorem 2.2.1, we can infer that the density condition (2.2.1) is imposed only to

ensure A > 0, and that the estimate of the upper frame bound holds even if this density

condition is not satisfied. Indeed, for any compact set D ⊆ Rd, any norm |·|∗ and any

positive density δ∗ <∞, the upper frame bound satisfies

B ≤ exp (4πmDδ∗c
∗) <∞.

In particular, if δD◦ < 1/4, then

B ≤ exp (πmDc
◦) <∞,

where c◦ ∈ (0,∞) is the smallest constant such that |·| ≤ c◦ |·|D◦ .
For the lower bound, we note that if Ω is separated, then everything follows easily.

Namely, since Ω is η-separated with respect to the D◦-norm, we get∑
ω∈Ω

µω|f̂(ω)|2 ≥ meas
(η

2
D◦
)∑
ω∈Ω

|f̂(ω)|2 ≥ meas
(η

2
D◦
)
A′‖f‖2,

where A′ > 0 comes from application of Theorem 2.1.2. Thus we take A = meas
(η

2D
◦)A′.

However, if Ω is not separated, we proceed as follows. By Lemma 2.3.2, we know

that there exists a subsequence Ω̃ ⊆ Ω with density δD◦(Ω̃) < 1/4 and separation η =

ηD◦(Ω̃) > 0. Let ε < η/2. Then∑
ω∈Ω

µω|f̂(ω)|2 ≥
∑
ω̃∈Ω̃

∑
ω∈D◦ε (ω̃)∩Ω

µω|f̂(ω)|2,

where D◦ε (ω̃) denotes the ball with respect to the D◦-norm of radius ε centred at ω̃. Since

f̂ is continuous function, from the Extreme value theorem, for each ω̃, we know there is a
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Weighted frames of exponentials

point zω̃ ∈ D◦ε (ω̃) = D◦ε (ω̃), such that

∀ω ∈ D◦ε (ω̃), |f̂(ω)| ≥ |f̂(zω̃)|.

Since also µω = meas
(
V D◦
ω

)
and the sets V D◦

ω are disjoint, we get

∑
ω∈Ω

µω|f̂(ω)|2 ≥
∑
ω̃∈Ω̃

|f̂(zω̃)|2
∑

ω∈D◦ε (ω̃)∩Ω

µω

 =
∑
ω̃∈Ω̃

|f̂(zω̃)|2meas

 ⋃
ω∈D◦ε (ω̃)∩Ω

V D◦
ω

 .

Now we claim the following: ⋃
ω∈D◦ε (ω̃)∩Ω

V D◦
ω ⊇ D◦ρ(ω̃), ρ =

ε

2
.

To see this, let |ŷ−ω̃|D◦ ≤ ε
2 . Since ŷ ∈ V D◦

ω for some ω ∈ Ω, we have |ŷ−ω|D◦ ≤ |ŷ−ω̃|D◦ .
Therefore

|ŷ − ω|D◦ ≤ |ŷ − ω̃|D◦ ≤
ε

2
,

and hence

|ω − ω̃|D◦ ≤ |ŷ − ω|D◦ + |ŷ − ω̃|D◦ ≤ ε.

Thus ω ∈ D◦ε (ω̃) ∩ Ω as required. Therefore, we get∑
ω∈Ω

µω|f̂(ω)|2 ≥ meas
( ε

2
D◦
)∑
ω̄∈Ω̄

|f̂(ω̄)|2,

where Ω̄ = {zω̃ : ω̃ ∈ Ω̃}. To complete the proof, we only need to show that the set Ω̄

is separated and sufficiently dense, so that we can apply the Theorem 2.1.2. Consider ω̄1

and ω̄2. Then we clearly have

|ω̄1 − ω̄2|D◦ ≥ η − 2ε > 0,

since Ω̃ is separated with the separation η and the ω̄’s lie in the ε-cover of this set.

Moreover, it is straightforward to see that

δD◦(Ω̄) ≤ δD◦(Ω̃) + ε.

Thus, since δD◦(Ω̃) < 1/4, we have the same for Ω̄ for sufficiently small ε > 0. We set

A = meas
(
ε
2D
◦)A′, where A′ > 0 is as in Theorem 2.1.2, and finish the proof.

Remark 2.3.4 From the proof of Theorem 2.3.1 and the proof of Lemma 2.3.2, we can

conclude the following. If Ω has density δD◦(Ω) < 1/4, it yields a weighted Fourier frame
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with the lower weighted Fourier frame bound of the form

A = meas
( ε

2
D◦
)
A′,

where A′ is the lower Fourier frame bound for sequence Ω̄ ⊆ R̂d with separation ηD◦(Ω̄) =

η − 2ε and density δD◦(Ω̄) ≤ δD◦(Ω) + η/2 + ε, for some constants η, ε > 0 chosen small

enough so that existence of A′ is ensured. However, this does not in general lead to an

explicit estimate of A since we typically do not know an explicit estimate of A′. On the

other hand, the upper weighted Fourier frame bound B is explicitly estimated by

B ≤ exp (πmDc
◦),

where c◦ ∈ (0,∞) is the smallest constant such that |·| ≤ c◦ |·|D◦ .

Remark 2.3.5 Note that the density condition form Theorem 2.2.1 does not contradict

the sharpness of the density condition from Theorem 2.3.1, i.e. note that

ln 2

2πmDc◦
≤ 1

4
,

where c◦ is the smallest constant such that |·| ≤ c◦ |·|D◦ and D is a compact, convex and

symmetric set. To see this, we now argue that mDc
◦ ≥ 1. Note that from the definition

of a radial set, it follows that for all y ∈ Rd we have

|y|D◦ = max
x∈D
|x · y| ,

see for example [BW00]. Therefore |·|D◦ ≤ mD |·|, which implies 1/mE ≤ c◦, where c◦ is

the largest constant such that c◦ |·|D◦ ≤ |·|. Hence

mDc
◦ ≥ c◦

c◦
,

and since c◦ ≤ c◦, the claim follows.

To end this chapter, in order to illustrate differences between classical and weighted

Fourier frames, as well as different uses of previously given results, let us consider the

following two-dimensional example.

Example 2.3.6 Let D = B1 ⊆ R2 and let

Λ1 = 1
8Z

2, Λ2 =

{(
1

n
,

1

m

)
: (n,m) ∈ Z2,min {|n|, |m|} > 8

}
.

Note that, for such D, D◦ = B1 and therefore the D◦-norm is the Euclidean norm |·|.
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The set of points Λ1 is separated with the density

δB1(Λ1) =

√
2

16
≈ 0.0884 <

1

4
.

Therefore, by Theorem 2.1.2, we conclude the family of functions {eλ}λ∈Λ1 is a frame for

L2(B1). However, if we now consider the set

Ω = Λ1 ∪ Λ2,

for which δB1(Ω) = δB1(Λ1) =
√

2/16, Theorem 2.1.2 can not be used since Ω has infinitely

many accumulation points at

{0} ∪
{(

1

n
, 0

)
: n ∈ Z, |n| > 8

}
∪
{(

0,
1

m

)
: m ∈ Z, |m| > 8

}
,

and therefore it is not separated. Moreover, it can be verified that the family {eω}ω∈Ω

fails in satisfying the right inequality of (2.1.2). To see this, we first note that

ˆ
B1

e−2πiω·x dx =
J1(2π|ω|)
|ω|

,

where J1 is the Bessel function of the first kind and order 1. Therefore, there exists c > 0

such that

c ≤
∣∣∣∣ˆ
B1

e−2πi( 1
n
x1+ 1

m
x2) dx1 dx2

∣∣∣∣2 ≤ π2, (2.3.3)

for all (n,m) ∈ Z2 such that
√

1/n2 + 1/m2 < aj′1,1/(2π) ≈ 0.6098, where a is some fixed

constant from the interval (0, 1) and j′1,1 is the first positive zero of the function J1. Hence,

it is enough to take the function g(x) = χB1(x) for which ‖g‖2 = π, whereas
∑

ω∈Ω |ĝ(ω)|2

is unbounded. Thus, we conclude that the set Ω does not give a Fourier frame.

On the other hand, if, for the same set of points Ω = Λ1 ∪ Λ2, we consider the

weighted family {√µωeω}ω∈Ω with the weights defined as Voronoi regions in the `2-norm,

this particular function g satisfies the weighted Fourier frame inequalities (2.1.5) with

some 0 < A,B <∞. This can be easily proved by using the inequalities (2.3.3), and the

fact that
∞∑
n=9

∞∑
m=9

(
1

n− 1
− 1

n+ 1

)(
1

m− 1
− 1

m+ 1

)
=

(
17

72

)2

.

which implies that the sum of the Voronoi regions corresponding to the points Λ2 con-

verges. Moreover, since δB1(Ω) =
√

2/16, by Theorem 2.3.1 we conclude that Ω gives rise

to a weighted Fourier frame.

Note also, in order to verify that Ω forms a weighted Fourier frame, Gröchenig’s original
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result could not be used since

δB1(Ω) =

√
2

16
>

ln 2

4π
≈ 0.0552.

However, since in this case mD = 1 and c∗ = 1 and since

δB1(Ω) =

√
2

16
<

ln 2

2π
≈ 0.1103,

we are able to use Theorem 2.2.1 to conclude that Ω generates a weighted Fourier frame

with the weighted Fourier frame bounds
√
A ≥ 0.2574 and

√
B ≤ 1.7426.
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Chapter 3

Generalized sampling for

nonuniform Fourier samples

Having seen the conditions that ensure weighted Fourier frames, we are now interested

in constructing a good—accurate and stable—approximation to an unknown function

from nonuniform Fourier data. With this aim, in the present chapter, we introduce so-

called Nonuniform Generalized Sampling (NUGS) that stably approximates a function in

a desired reconstruction space from a finite collection of nonuniform samples. The results

of this chapter are mainly published in [AGH14a], which is the joint work of the author

with Ben Adcock and Anders Hansen.

Let Ω ⊆ R̂d be a countable set of distinct (nonuniform) frequencies, henceforth referred

to as a sampling scheme, and let T ⊆ H be a finite-dimensional subspace of H = {f ∈
L2(Rd) : supp(f) ⊆ D} for a compact domain D ⊆ R̂d, the so-called reconstruction space.

We address the following reconstruction problem:

The reconstruction problem

Given a sampling scheme Ω and a reconstruction space T ⊆ H, compute an approxi-

mation f̃ ∈ T to an unknown function f ∈ H via a mapping F = FΩ,T : f 7→ f̃ , which

depends only on the sampling data{
f̂(ω) : ω ∈ Ω

}
and satisfies the following critical properties:

(i) F is quasi-optimal : there exists a constant µ = µ(F )�∞ such that

∀f ∈ H, ‖f − F (f)‖ ≤ µ‖f − PTf‖, (?)

where PT denotes the orthogonal projection onto T.
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(ii) F is well-conditioned, i.e. stable: there exists a constant κ = κ(F ) � ∞ such

that

κ = sup
f∈H

lim
ε→0

sup
g∈H,

0<‖ĝ|Ω‖×≤ε

‖F (f + g)− F (f)‖
‖ĝ|Ω‖×

. (??)

where ‖ĝ|Ω‖× is a norm of the sampling data {ĝ(ω) : ω ∈ Ω}.

In what follows, we will be interested in a linear mapping F . Note that if F is linear,

then (??) becomes

κ = sup
f∈H,
f 6=0

‖F (f)‖
‖f̂ |Ω‖×

.

Also, in what follows, instead of (?), we shall provide a stronger inequality:

∀f, h ∈ H, ‖f − F (f + h)‖ ≤ µ (‖f − PTf‖+ ‖h‖) .

Quasi-optimality of mapping F required by (?) guarantees that the reconstruction f̃

inherits good approximation properties of the space T. Recall that the motivation for

considering a particular reconstruction space T is that f is known to be well-represented

in this space, i.e. it is known that the error ‖f − PTf‖ is small. On the other hand,

well-conditioning of mapping F imposed by (??) is vital to ensure that noisy data do not

adversely affect the reconstruction. In particular, a well-conditioned mapping F is robust

towards small perturbations in the input measurements
{
f̂(ω) : ω ∈ Ω

}
. We remark that

the condition number defined by (??) is typically referred to as the absolute condition

number.

With this to hand, the main focus of this chapter is to answer the following questions:

(i) under what conditions on Ω and T, stable and quasi-optimal reconstruction via FΩ,T

is possible, and

(ii) how large are the constants µ(FΩ,T) and κ(FΩ,T).

We do this by analysing NUGS, which we introduce in §3.1. This provides a sufficient

condition for (i) and an upper bound for (ii). We further refine the answers to these

questions in §3.2 and §3.3, for the univariate and multivariate case respectively.

3.1 The nonuniform generalized sampling framework

In order to consider a sampling scheme of a general type, first we guarantee stability and

accuracy of the GS reconstruction, as defined in [AH12a] (see (3.1.5)), for any so-called

admissible sampling operator. By choosing a particular form of the admissible sampling

operator, we then define the NUGS reconstruction.
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3.1.1 Generalized sampling with admissible sampling operator

We commence with the definition of an admissible sampling operator.

Definition 3.1.1. Let Ω be a sampling scheme, S : H→ H a bounded linear operator and

let T a finite-dimensional subspace of a Hilbert space H. Suppose that S satisfies

I for each f ∈ H, Sf depends only on the sampling data {f̂(ω) : ω ∈ Ω},

II S is self-adjoint with respect to 〈·, ·〉 and satisfies

∀f, g ∈ H, |〈Sf, g〉| ≤
√
〈Sf, f〉〈Sg, g〉, (3.1.1)

III there exists a positive constant C1 = C1(Ω,T) such that

∀f ∈ T \ {0}, 〈Sf, f〉 ≥ C1‖f‖2. (3.1.2)

Then S is said to be an admissible sampling operator for the pair (Ω,T).

Remark 3.1.2 As we show later in Theorem 3.2.5 in the univariate case, and in Theorems

3.3.2 and 3.3.3 in the multivariate case, this abstract definition is satisfied if S is defined

as in (3.1.9), under appropriate conditions on the sampling density and the sampling

bandwidth.

For convenience, throughout the remainder of the paper we shall assume that C1 is

the largest constant for which (3.1.2) holds. Given such an operator S, we now also define

the constants C2 = C2(Ω) and C3 = C3(Ω,T) by

∀f ∈ H \ {0}, 〈Sf, f〉 ≤ C2‖f‖2, (3.1.3)

∀f ∈ T \ {0}, 〈Sf, f〉 ≤ C3‖f‖2. (3.1.4)

Likewise, we assume these constants are the smallest possible. Note that C2 and C3 exist

since S is bounded, and we also trivially have that C3 ≤ C2.

Given a sampling scheme Ω, a finite-dimensional subspace T and an admissible sam-

pling operator S for the pair (Ω,T), we now define the GS reconstruction f̃ ∈ T such that

∀g ∈ T, 〈S f̃ , g〉 = 〈Sf, g〉, (3.1.5)

and write F = FΩ,T for the mapping f 7→ f̃ . As we shall see next, the constants C1

and C2 arising from (3.1.2) and (3.1.3) determine the stability and quasi-optimality of the

resulting reconstruction. We define the corresponding reconstruction constant C(Ω,T) as

the ratio

C(Ω,T) =

√
C2

C1
. (3.1.6)
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Generalized sampling for nonuniform Fourier samples

Now we present a result that is proved by exactly the same techniques as in [AHP13].

We include a simplified proof for completeness.

Theorem 3.1.3. Let Ω be a sampling scheme and T ⊆ H a finite-dimensional subspace,

and suppose that S is an admissible sampling operator for the pair (Ω,T). Then the

reconstruction F (f) = f̃ defined by (3.1.5) exists uniquely for any f ∈ H and we have the

sharp bound

∀f, h ∈ H, ‖f − F (f + h)‖ ≤ C̃ (‖f − PTf‖+ ‖h‖) , (3.1.7)

where the constant C̃ is given by

C̃ = C̃(Ω,T) = sup
g∈T
g 6=0

‖g‖
‖PS(T)g‖

and it satisfies C̃ ≤ C, where C = C(Ω,T) is the corresponding reconstruction constant

given by (3.1.6). Moreover, if

κ = sup
f∈H
f 6=0

‖F (f)‖√
〈Sf, f〉

, (3.1.8)

then κ = 1/
√
C1 where C1 = C1(Ω,T) is as in (3.1.2). In particular, κ ≤ max

{
1/
√
C1, C

}
.

Proof. Let us start from the end. To prove (3.1.8), first note that

κ(F ) ≥ sup
g∈T
g 6=0

‖g‖√
〈Sg, g〉

=
1√
C1
,

where the equality follows from (3.1.2). For the upper bound, first note that 〈S f̃ , f̃〉 =

〈Sf, f̃〉 ≤
√
〈Sf, f〉〈S f̃ , f̃〉, by (3.1.5) and (3.1.1). Hence, since

√
〈S f̃ , f̃〉 ≤

√
〈Sf, f〉

and since F : f 7→ f̃ is a surjection, we have

κ(F ) ≤ sup
f∈H
f 6=0

‖f̃‖√
〈S f̃ , f̃〉

= sup
g∈T
g 6=0

‖g‖√
〈Sg, g〉

=
1√
C1
.

Next we show that C̃ ≤ C, and in particular, that C̃ <∞. By definition

1

C̃
= inf

g∈T
g 6=0

‖PS(T)g‖
‖g‖

= inf
g∈T
g 6=0

sup
g′∈T
Sg′ 6=0

|〈g,Sg′〉|
‖g‖‖Sg′‖

.

Let g ∈ T \ {0}. If Sg = 0, then 〈Sg, g〉 = 0 which contradicts the admissibility of S.

Hence Sg 6= 0. Therefore, we may set g′ = g above to get

1

C̃
≥ inf

g∈T
g 6=0

〈Sg, g〉
‖g‖‖Sg‖

.
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Observe that

‖Sg‖ = sup
h∈H
‖h‖=1

〈Sg, h〉 ≤
√
C2

√
〈Sg, g〉,

where the inequality follows from (3.1.1) and (3.1.3). This now gives

1

C̃
≥ 1√

C2
inf
g∈T
g 6=0

√
〈Sg, g〉
‖g‖

,

which, upon application of (3.1.2), yields C̃ ≤
√
C2/C1 = C as required.

To prove the remainder of the theorem, we shall use the techniques of [AHP13] based

on the geometric notions of subspace angles and oblique projections. Let U = T and

V = (S(T))⊥. Note that 1/C̃ = cos(θUV⊥) is cosine of the subspace angle between U and

V⊥ defined by

cos(θUV⊥) = inf
u∈U
‖u‖=1

‖PV ⊥u‖.

Since C̃ <∞, the subspaces U and V satisfy the so-called subspace condition cos(θUV⊥) >

0. Thus [AHP13, Cor. 3.5] gives

‖WUVf‖ ≤ C̃‖f‖, ∀f ∈ H0,

and

‖f −WUVf‖ ≤ C̃‖f − PUf‖, ∀f ∈ H0,

where H0 = U⊕V and WUV : H0 → U is the projection with range U and kernel V.

Hence, to establish (3.1.7) it remains to show the following: (i) H0 = H and (ii)

f̃ =WUVf , ∀f ∈ H. For (i), we note that H0 = H provided dim(S(T)) = dim(T) [AHP13,

Lem. 3.10]. However, if not then there exists a nonzero g ∈ T such that S(g) = 0. As

previously observed, this implies that g = 0; a contradiction.

For (ii), we first note that

〈WUVf,Sg〉 = 〈f,Sg〉, ∀g ∈ T.

Since S is self-adjoint, it follows that WUVf satisfies the same conditions (3.1.5) as f̃ .

Thus, it remains only to show that f̃ is unique. However, if not then we find that there

is a nonzero g ∈ T ∩ S(T)⊥ = U ∩ V. But then cos(θUV⊥) = 0, and this contradicts the

fact that U and V obey the subspace condition.

This result confirms that admissibility of S is sufficient for quasi-optimality and sta-

bility of the reconstruction f̃ up to the magnitude of the reconstruction constant C.

Although, this result is true under the slightly weaker assumption C̃ < ∞ (which is of

course implied by C1 > 0 and C2 <∞), the constant C̃ is rather difficult to work with in
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practice [AHP13].

The NUGS reconstruction

So far it was not specified whether Ω has finite or infinite cardinality, but in practice we

are always faced with a finite sampling set

ΩN = {ωn : n = 1, . . . , N}, N ∈ N.

For such a nonuniform sampling scheme, there are many potential ways to construct the

operator S. Here, we focus on the following simple construction

Sf(x) =
N∑
n=1

µnf̂(ωn)e2πiωn·xχD(x), (3.1.9)

where µn > 0 are particular weights specified later. For such S, the GS reconstruction

defined by (3.1.5) becomes equivalent to the weighted least-squares data fit

f̃ = argmin
g∈T

N∑
n=1

µn

∣∣∣f̂(ωn)− ĝ(ωn)
∣∣∣2 . (3.1.10)

We shall refer to such f̃ as nonuniform generalized sampling (NUGS) reconstruction.

The operator S defined in this way automatically satisfies properties I and II in

Definition 3.1.1 of admissible sampling operator. In what follows, by conveniently using

results on weighted Fourier frames, we prove that S, under suitable conditions, also satis-

fies property III, and thus, by Theorem 3.1.3, ensures a stable and quasi-optimal NUGS

reconstruction, with a bounded reconstruction constant C(ΩN ,T) defined by (3.1.6).

Observe that for S defined as in (3.1.9), the condition number defined by (3.1.8) of

the mapping FΩN ,T(f) = F (f) = f̃ given by (3.1.10) becomes

κ(F ) = sup
f∈H
f 6=0

‖F (f)‖
‖f̂‖`2µ(ΩN )

, ‖f̂‖2`2µ(ΩN ) =

N∑
n=1

µn|f̂(ωn)|2. (3.1.11)

Hence, by Theorem 3.1.3, we have

κ(F ) = C1(ΩN ,T)−
1
2

where C1(ΩN ,T) is as in (3.1.2) for S given by (3.1.9).

As shown in [AHP13] this constant C1(ΩN ,T) is essentially an universal quantity.

Namely, if G = GΩN ,T : H → T is any so-called perfect reconstruction method [AHP13,

Def. 3.9], i.e. for each f ∈ H, G(f) depends only on the samples of f̂ at ΩN , and G(f) = f

34
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whenever f ∈ T, then [AHP13, Thm. 6.2] gives

κ(G) ≥ C1(ΩN ,T)−
1
2 ,

whenever C1(ΩN ,T)−1/2 6= 0, where the condition number κ(G) is defined by (??) with

‖ · ‖× = ‖ · ‖`2µ(ΩN ). Furthermore, this generalizes to κ(G) ≥ (1 − λ)C1(ΩN ,T)−1/2

for a larger class of methods, namely for any so-called contractive method which obeys

‖f − G(f)‖ ≤ λ‖f‖, f ∈ T, for some constant λ ∈ [0, 1). This universality of C1(ΩN ,T)

is the key property for the universality of the sampling rate shown for wavelets later in

Chapter 4.

Now, let us argue why ‖ · ‖× = ‖ · ‖`2µ(Ω) presents a reasonable choice in the definition

of the condition number (??) whenever ‖ · ‖× = ‖ · ‖`2(Ω) is a reasonable choice. Here, for

sampling points Ω ∈ R̂d and a f ∈ H we define

‖f̂‖2`2(Ω) =
∑
ω∈Ω

|f̂(ω)|2, ‖f̂‖2`2µ(Ω) =
∑
ω∈Ω

µω|f̂(ω)|2,

with {µω}ω∈Ω chosen as the Lebesgue measures of the Voronoi regions associated to Ω.

Since

inf
ω∈Ω

µω‖f̂‖2`2(Ω) ≤ ‖f̂‖
2
`2µ(Ω) ≤ sup

ω∈Ω
µω‖f̂‖2`2(Ω),

the corresponding condition numbers are equivalent for any separated set Ω. However,

if Ω is not separated then ‖f̂‖2`2(Ω) blows up and the corresponding condition number is

equal to zero. To prevent such scenario, one can use the Voronoi weights as in Chapter 2,

and ensure κ > 0 by setting ‖ · ‖× = ‖ · ‖`2µ(Ω).

Remark 3.1.4 If {µneωn}n∈N is a weighted Fourier frame, one might immediately no-

tice that S chosen as (3.1.9) is just a truncated frame operator corresponding to frame

{µneωn}n∈N. Therefore, in this case, Theorem 3.1.3 is just a particular instance of results

shown in [AHP13], i.e. NUGS is equivalent to the case of GS where the sampling system

is a weighed Fourier frame.

Remark 3.1.5 Although we assume throughout the remainder of the paper that S takes

the form (3.1.9), the results of this section do not require this. They only assume that

S is admissible in the sense of Definition 3.1.1. This allows one to consider more general

forms for S than the diagonal choice (3.1.9), as has recently been considered in several

works. In [GS14], Gelb & Song use banded operators S for nonuniform Fourier sampling,

and in [BG13] Berger & Gröchenig consider improved choices for S within the setting of

GS in general Hilbert spaces.
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3.1.2 Computation of the reconstruction

The computation of the NUGS reconstruction is the same as the computation of the GS

reconstruction from [AH12b, AHP13] with the additional computation of the correspond-

ing weights. Namely, if {φm}Mm=1 spans T, and if the reconstruction f̃ ∈ T is defined via

(3.1.10) and written as

f̃ =
M∑
m=1

amφm,

then the vector of coefficients a = (a1, . . . , aM )> is the least-squares solution of the N×M
linear system

Aa ≈ b, (3.1.12)

where b = (b1, . . . , bN )> and A ∈ CN×M have entries

bn =
√
µnf̂(ωn), An,m =

√
µnφ̂m(ωn), n = 1, . . . , N, m = 1, . . . ,M. (3.1.13)

Thus, once a basis for T is specified, f̃ can be computed by solving the least-squares

problem for (3.1.12). A least-squares problem is typically solved by an iterative scheme,

such as the conjugate gradient method. The efficiency of such an iterative scheme is

always dependent on the costs of performing matrix-vector operations with A and its

adjoint A∗, which are in general O(NM). The computational cost is also proportional to

the condition number of the matrix A, which determines the number of iterations required

in an iterative solver. For the later, from [AH12b, Lem. 2.11], we have

cond(A) ≤ Cw(ΩN ,T)cond(B),

where

Cw(ΩN ,T) =

√
C3(ΩN ,T)

C1(ΩN ,T)
(3.1.14)

and B ∈ CM×M is the Gram matrix for {φm}Mm=1. In particular, if {φm}Mm=1 is a Riesz

basis for H with constants d1 and d2, then

cond(A) ≤ Cw(ΩN ,T)
d2

d1
.

Hence, provided a Riesz or orthonormal basis is chosen for T, the condition number of A

is small precisely when Cw(ΩN ,T) is also small. In this case, the reconstruction f̃ can be

computed using a correspondingly small number of iterations.

Next, we give a result that asserts that C1(ΩN ,T) and C3(ΩN ,T) can be computed.

For the proof see [AH12b, Lem. 2.13] (see also [AHP13, Lem. 5.2]).

Lemma 3.1.6. Let {gm}Mm=1 be a basis for T and suppose that A is defined by (3.1.13).
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Then the constants C3(ΩN ,T) and C1(ΩN ,T) are the maximal and minimal eigenvalues

of the matrix pencil {A∗A,B}, where B ∈ CM×M is the Gram matrix for {φm}Mm=1.

Moreover, if {gm}Mm=1 is an orthonormal basis then

C3(ΩN ,T) = σ2
max(A), C1(ΩN ,T) = σ2

min(A),

and cond(A) = Cw(ΩN ,T), where Cw(ΩN ,T) is given by (3.1.14).

Unfortunately, Cw(ΩN ,T) provides only a lower bound for the reconstruction constant

C(ΩN ,T), and thus computing Cw(ΩN ,T) does not give rise to an estimate for the con-

stant in the error bound (3.1.7). Nevertheless, the fact that Cw(ΩN ,T) is computable

means that C(ΩN ,T) can in fact be numerically approximated via the following limiting

process:

Lemma 3.1.7. Suppose that ΩN is finite and let S : H → H be a linear operator sat-

isfying conditions (i) and (ii) of Definition 3.1.1. Let TM , M ∈ N, be a sequence of

finite-dimensional reconstruction spaces such that the corresponding orthogonal projec-

tions PM = PTM converge strongly to the identity on H. Then

C2(ΩN ) = lim
M→∞

C3(ΩN ,TM ).

In particular, C2(ΩN ) can be approximated to arbitrary accuracy by taking M sufficiently

large.

Proof. Note first that C3(ΩN ,TM ) ≤ C2(ΩN ). Let f ∈ H, ‖f‖ = 1. Then

〈Sf, f〉 = 〈SPMf,PMf〉+ 〈S(f − PMf),PMf〉+ 〈Sf, f − PMf〉

≤ C3(ΩN ,TM ) + 2
√
C2(ΩN )

√
〈S(f − PMf), f − PMf〉.

Thus,

C3(ΩN ,TM ) ≤ C2(ΩN ) ≤ C3(ΩN ,TM ) + 2
√
C2(ΩN ) sup

f∈H
‖f‖=1

√
〈S(f − PMf), f − PMf〉.

It suffices to prove that the final term tends to zero as M →∞.

The operator S is linear and, for any g, Sg depends only on the finite set of values

ĝ(ω), ω ∈ ΩN . Therefore, S is bounded and has finite rank. The result now follows

immediately from this and the strong convergence PM → I.

Since C2(ΩN ) can always be approximated for finite ΩN , one can always numeri-

cally estimate the reconstruction constant C(ΩN ,T) and therefore guarantee stability and

quasi-optimality of the reconstruction a priori. We note that this limiting process may be
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avoided altogether in the case when appropriate conditions on the sampling density and

the weights are satisfied. This will become apparent in the following sections.

Remark 3.1.8 In our work, we chose weights as measures of Voronoi regions correspond-

ing to the sampling points, see Definition 2.1.5. In order to compute Voronoi weights one

might use Matlab’s function voronoiDiagram which is computed using the Delaunay

triangulation; see for example [Kle89]. One can also use function mri density comp from

the NUFFT package by Fessler et al. [FS03]

Remark 3.1.9 As mentioned, efficient computation of f̃ relies on a fast algorithm for

performing matrix-vector computations with A and A∗. The existence of such algorithms

depends critically on the choice of the reconstruction space T. Fortunately, in the im-

portant case of wavelets, fast algorithms, based on Nonuniform Fast Fourier Transforms

(NUFFTs) and fast wavelet transforms, can be incorporated leading to computational

cost O(M logN). This is further discussed in Section 4.4.

Remark 3.1.10 Recall that the ACT algorithm [FGS95, Grö99, Grö01] can be viewed

as an instance of NUGS where T̂ = {ĝ : g ∈ T} is a space of trigonometric polynomials on

a compact interval. Therein, efficient implementation in O(N logN) time is carried out

using fast Toeplitz solvers, although one could also use NUFFTs with the same overall

complexity (see [KKP07]), as we shall do in the case of wavelet choices for T.

3.2 The univariate guarantees

In this section, we provide a generalized sampling theorem in the univariate setting,

which asserts that stable and quasi-optimal reconstruction is possible for any fixed finite-

dimensional T ⊆ H = {f ∈ L2(R) : supp(f) ⊆ D}, where D is an interval on the real

line, under appropriate conditions on nonuniform sampling scheme ΩN ⊆ R̂. We shall

consider two scenarios in the next two subsections. First, sampling schemes ΩN subject

to appropriate density and bandwidth conditions. Second, sampling schemes arising from

Fourier frames.

3.2.1 (K, δ)-dense sampling schemes

We commence with the following definition:

Definition 3.2.1. Let K > 0 and ω1 < ω2 < . . . < ωN . The sampling scheme ΩN =

{ω1, . . . , ωN} has bandwidth K and density δ if

(i) ΩN ⊆ [−K,K], and

(ii) ΩN is δ-dense in the interval [−K,K] in the sense of Definition 2.1.1.
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In this case, we say that ΩN is (K, δ)-dense.

Our main result in this section is to show that, for an arbitrary fixed reconstruction

space T, (K, δ)-density for suitably largeK and small δ ensures stable reconstruction. This

holds provided the weights µn in (3.1.9) are chosen as the lengths of the corresponding

Voronoi intervals within [−K,K]. Namely, the weights are defined as

µn=
ωn+1−ωn−1

2
, n=2, . . . , N − 1, µ1 =

ω1+ω2

2
+K, µN =K − ωN−1+ωN

2
(3.2.1)

Note that, since we are in dimension d = 1, (ii) in Definition 3.2.1 is equivalent to

max
n=0,...,N

{ωn+1 − ωn} = 2δ,

where ω0 = −K − δ and ωN+1 = K + δ.

We now require the following lemma.

Lemma 3.2.2. Let ΩN = {ω1, . . . , ωN} be (K, δ)-dense and suppose that µ1, . . . , µN are

given by (3.2.1). Then for any nonzero function f ∈ H we have

(√
1− ‖f̂‖2R\I/‖f‖2 − 4mDδ

)2

‖f‖2 ≤
N∑
n=1

µn|f̂(ωn)|2 ≤ (1 + 4mDδ)
2‖f‖2,

where mD = supx∈D |x|, I = (−K,K), and ‖f̂‖2R\I =
´
R\I |f̂(ω)|2 dω.

This lemma is an extension, with a similar proof, of the one-dimensional Gröchenig’s

result, Theorem 2.1.6, to the case where the number of samples N is finite. Gröchenig’s

result is obtained in the limit N,K →∞. Indeed, from Gröchenig’s result, and as evident

from the proof below, we have that the upper bound is less or equal to (1 + 4mDδ)
2 for

any N and K. We also note that the lower bound is strictly less than (1 − 4mDδ)
2 for

any nonzero f , since f is compactly supported and hence f̂ cannot have compact support.

However, the lower bound converges to (1 − 4mDδ)
2 as the bandwidth K is increased.

In other words, N Fourier samples with density δ < 1/(4mD) and appropriately large

bandwidth K are sufficient to control ‖f‖. This observation will lead to the main result

in this section.

We briefly note that, in this lemma, D is an interval in R, and that without loss

of generality, it can be assumed that D is symmetric interval around zero so that mD

represents the half-length of the interval D. Namely, if D is not symmetric, then there

exist a constant s such that Ds = D − s is, and for all functions F ∈ L2(Ds) defined by

F (·) = f(· + s), f ∈ L2(D), we have |F̂ (ω)| = |f̂(ω)|, and also ‖F‖ = ‖f‖. Therefore, in

this case, we can always consider L2(Ds) instead of L2(D).
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Proof. Let zn = 1
2(ωn−1 + ωn), n = 2, . . . , N − 1 and z1 = −K, zN = K. Write

h(ω) =
N∑
n=1

f̂(ωn)χ[zn,zn+1)(ω)

so that

S2 =

N∑
n=1

µn|f̂(ωn)|2 =

ˆ K

−K
|h(x)|2 dx = ‖h‖2I ,

where I = (−K,K) and ‖·‖I denotes the L2-norm over I. Hence

‖f̂‖I − ‖f̂ − h‖I ≤ S ≤ ‖f̂‖R + ‖f̂ − h‖I . (3.2.2)

Using Wirtinger’s inequality [Grö92, Lem. 1], we find that

‖f̂ − h‖2I =
N∑
n=1

ˆ zn+1

zn

∣∣∣f̂(ω)− f̂(ωn)
∣∣∣2 dω

=
N∑
n=1

(ˆ ωn

zn

+

ˆ zn+1

ωn

) ∣∣∣f̂(ω)− f̂(ωn)
∣∣∣2 dω

≤
N∑
n=1

(
4(ωn − zn)2

π2

ˆ ωn

zn

+
4(zn+1 − ωn)2

π2

ˆ zn+1

ωn

) ∣∣∣∣ d

dω
f̂(ω)

∣∣∣∣2 dω

≤ 4δ2

π2

ˆ
I

∣∣∣∣ d

dω
f̂(ω)

∣∣∣∣2 dω,

where the final inequality follows from the (K, δ)-density of the samples. Since differen-

tiation in Fourier space corresponds to multiplication by (−2πix) in physical space, we

conclude that

‖f̂ − h‖I ≤ 4δ‖f̂1‖I ≤ 4δ‖f̂1‖ = 4δ‖f1‖,

where f1(x) = xf(x). Since f is supported in D, we deduce that

‖f̂ − h‖I ≤ 4mDδ‖f‖. (3.2.3)

Substituting this into the right-hand side of (3.2.2) gives S ≤ (1 + 4mDδ)‖f‖, and hence

the upper bound. For the lower bound, by (3.2.2) and (3.2.3),

S ≥ ‖f̂‖I − 4mDδ‖f‖ ≥
√
‖f̂‖2 − ‖f̂‖2R\I − 4mDδ‖f‖,

and the lower bound follows.
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Definition 3.2.3. Let T ⊆ H. For any z ∈ [0,∞), the z-residual of T is defined as

E(T, z) = sup
f∈T
‖f‖=1

‖f̂‖R\(−z,z). (3.2.4)

Note that E(T, z) ≤ 1, ∀z and any T, since ‖f̂‖ = ‖f‖.

Lemma 3.2.4. Let T ⊆ H be a finite-dimensional subspace. Then E(T, z) → 0 mono-

tonically as z →∞.

Proof. Clearly E(T, z) is monotonically decreasing in z. Moreover, for any fixed f ∈ T,

we have ‖f̂‖R\(−z,z) → 0 as z → ∞. The result now follows immediately from the fact

that T is finite-dimensional.

Combining the previous two lemmas, we immediately obtain our main result of this

section:

Theorem 3.2.5. Let T ⊆ H be finite-dimensional and let ΩN be (K, δ)-dense with

δ <
1

4mD
.

Let 0 < ε <
√

1− (4mDδ)2. For K > 0 large enough such that

E(T,K) ≤ ε,

the operator S, given by (3.1.9) with weights (3.2.1), is admissible sampling operator with

the reconstruction constant C(ΩN ,T) satisfying

C(ΩN ,T) ≤ 1 + 4mDδ√
1− ε2 − 4mDδ

. (3.2.5)

Proof. The upper bound in Lemma 3.2.2 immediately gives C2(ΩN ) ≤ (1 + 4mDδ)
2. For

C1(ΩN ,T) we set f ∈ T in Lemma 3.2.2, and then apply the definition of E(T, z) to get

C1(ΩN ,T) ≥
(√

1− E(T,K)2 − 4mDδ
)2
.

The result now follows from Lemma 3.2.4 and the definition of C(ΩN ,T).

This theorem states the following. For a fixed reconstruction space T, the recon-

struction constant C(ΩN ,T) can be made arbitrarily close to (1 + 4mDδ)/(1− 4mDδ) by

taking K sufficiently large. Thus, even with highly nonuniform samples, we are guaran-

teed a stable reconstruction for large enough bandwidth K provided the density condition

δ < 1/(4mD) holds, with the precise level of stability controlled primarily by how close

δ is to 1/(4mD). As noted previously, in [Grö92] it was shown that infinite sequences
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Generalized sampling for nonuniform Fourier samples

{ωn}n∈N with bandwidth K =∞ and density δ < 1/(4mD) give rise to weighted Fourier

frames {√µneωn}n∈N for H. Therefore, based on arguments given in [Grö92], Theorem

3.2.5 shows that this condition also allows one to stably reconstruct from finitely-many

samples in any finite-dimensional subspace T, provided the sampling bandwidth K is

sufficiently large.

A key aspect of the Theorem 3.2.5 is the nature of the bound (3.2.5). The right-hand

side separates geometric properties of the sampling scheme ΩN , i.e. the density δ, from

intrinsic properties of the reconstruction space T, i.e. the z-residual E(T, z). Hence, by

analysing the z-residual for each particular choice of T, we can guarantee stable, quasi-

optimal reconstruction for all sampling schemes ΩN with δ < 1/(4mD) and appropriate

bandwidth K. This is how we shall proceed in Chapter 4 when we provide recovery

guarantees for wavelet reconstruction spaces. We note in passing that a universal lower

bound for E(T, z) for any subspace T of dimension M is provided by the M th eigenvalue

of the prolate spheroidal wavefunctions [LP62]. In particular, ensuring E(T, z) < c for

some c < 1 necessitates at least a linear scaling of z with M , regardless of the choice of

T. For wavelets, we show that a linear scaling is also sufficient.

Remark 3.2.6 In [Grö99], Gröchenig proves stability and convergence of the aforemen-

tioned ACT algorithm. As mentioned, this algorithm can be seen as a particular case

corresponding to a trigonometric basis in frequency. The contribution of Theorem 3.2.5

is that it allows for arbitrary spaces T. Note that in Gröchenig’s case (up to some minor

differences in how the boundary is dealt with), E(T,K) = 0 by construction of the space

T. However, this is not true in general, and therefore it becomes important to estimate

E(T,K) for particular choices of reconstruction space T.

3.2.2 Sampling at the critical density: the frame case

Unfortunately, the bound for C(Ω,T) declines as δ → 1/(4mD), and is infinitely large at

the critical value δ = 1/(4mD). This result is sharp in the sense that there are countable

nonuniform sampling schemes Ω = {ωn}n∈Z (we now index over Z for convenience) with

density δ = 1/(4mD) which are not complete (see [Chr01] or [You01] for example), and

for which one therefore cannot expect stable reconstructions. However, it is clear from

considering uniform samples Ω = {n/(2mD)}n∈Z that density δ = 1/(4mD) is permissible

in some cases since this is exactly the Nyquist rate. The standard approach to handle

this “critical” density is to assume that the samples Ω = {ωn}n∈Z give rise to a (classical)

Fourier frame {eωn}n∈Z for H. As we show next, stable reconstruction with NUGS is also

possible in this setting.

Let an ordered sequence {ωn : n ∈ Z} give rise to a Fourier frame and let ΩN =

{ωn : |n| ≤ N}. According to Theorem 3.1.3 stable reconstruction is possible provided an

admissible sampling operator exists. Fortunately, this is always the case:
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Theorem 3.2.7. Let T be a finite-dimensional subspace of H, and suppose that ΩN =

{ωn : |n| ≤ N}, where {ωn : n ∈ Z} gives rise to a Fourier frame with A and B as the

frame constants. Then the partial frame operator

SN : f 7→
N∑

n=−N
f̂(ωn)e2πiωn·, (3.2.6)

is admissible for all sufficiently large N . Specifically, if

Ẽ(T, N)2 = sup
f∈T
‖f‖=1

∑
|n|>N

|f̂(ωn)|2 (3.2.7)

and for any ε ∈ (0, A), N is large enough so that

Ẽ(T, N)2 ≤ ε

then

C(Ω,T) ≤
√
B√

A− ε
. (3.2.8)

Proof. The operator SN trivially satisfies conditions (i) and (ii) of Definition 3.1.1. For

the upper bound (3.1.3) we merely note that 〈SNf, f〉 ≤ 〈Sf, f〉 ≤ B‖f‖2, where S is

the frame operator (2.1.3). Moreover, since SN → S strongly and T is finite-dimensional,

(3.1.2) holds (with appropriate C1) for all large N . Specifically, for f ∈ T we have

〈SNf, f〉 = 〈Sf, f〉 − 〈(S − SN )f, f〉 ≥ A‖f‖2 −
∑
|n|>N

|f̂(ωn)|2 ≥
(
A− Ẽ(T, N)2

)
‖f‖2,

which gives C1(Ω,T) ≥ A− Ẽ(T, N)2. We now apply the definition of C(Ω,T).

The result given here is a trivial adaptation of results for GS proved in [AHP13]. We

include it and its proof for completeness. The novel results concerning classical Fourier

frames come in Chapter 4 when we obtain estimates for the reconstruction constant

C(Ω,T) for wavelets.

3.3 The multivariate guarantees

Next, by using the results of Chapter 2, we extend the work from the previous section to

the multivariate case. For this, we use an analogous concept of (K, δ∗)-density.

Definition 3.3.1. Let ΩN ⊆ R̂d be a set of sampling points, K > 0 and let |·|∗ be an

arbitrary norm on Rd. If there exist a closed, simply connected set Z ⊆ R̂d with 0 in its

interior such that
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Generalized sampling for nonuniform Fourier samples

(i) maxŷ∈Z |ŷ|∞ = 1,

(ii) ΩN ⊆ ZK , where ZK = KZ, and

(iii) ΩN is δ∗-dense in the domain ZK in the sense of Definition 2.1.1,

then we say that the set ΩN is (K, δ∗)-dense with respect to Z.

For a set of sampling points ΩN ⊆ ZK , the weights µn > 0 are chosen as measures of

the Voronoi regions V ∗n within the area ZK , i.e.

µn = meas(V ∗n ), V ∗n = {ŷ ∈ ZK : ∀m 6= n, |ŷ − ωn|∗ ≤ |ŷ − ωm|∗} . (3.3.1)

Also, analogously to (3.2.4), for a finite-dimensional subspace T we use the K-residuals

E(T,K) = sup
f∈T
‖f‖=1

‖f̂ − f̂χZK‖ (3.3.2)

We are ready to give the multivariate nonuniform generalized sampling theorem.

Theorem 3.3.2. Let T ⊆ H = {f ∈ L2(Rd) : supp(f) ⊆ D} be finite-dimensional,

D ⊆ Rd compact, and let ΩN = {ωn}Nn=1 be a sampling scheme. Let ΩN be (K, δ∗)-dense

with respect to Z, with

δ∗ <
ln 2

2πmDc∗
,

where mD = supx∈D |x|, |·|∗ is an arbitrary norm on Rd and c∗ > 0 is the smallest constant

such that |·| ≤ c∗ |·|∗. Let also 0 < ε <
√

exp (2πmDδ∗c∗) (2− exp (2πmDδ∗c∗)). If K > 0

is large enough so that

E(T,K) ≤ ε,

then the operator S given by (3.1.9) with the weights (3.3.1) is admissible and

C(ΩN ,T) ≤ exp (2πmDδ∗c
∗)√

1− ε2 + 1− exp (2πmDδ∗c∗)
. (3.3.3)

Proof. The proof is similar as in the univariate case, but now we use the result of Section

2.2. Let

h(ŷ) =
∑
ω∈ΩN

f̂(ω)χV Kω,∗(ŷ), ŷ ∈ ZK .

Hence

‖h‖2ZK =
∑
ω∈ΩN

µω|f̂(ω)|2.

Note that we have

‖f‖ZK − ‖f̂ − h‖ZK ≤ ‖h‖ZK ≤ ‖f̂ − h‖ZK + ‖f‖,
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3.3. The multivariate guarantees

and also, by the same reasoning as in the proof of Theorem 2.2.1, we get

‖f̂ − h‖ZK ≤ (exp(2πmDδ∗c
∗)− 1) ‖f‖.

Therefore for all f ∈ H\{0}(√
1− ‖f̂‖2

R̂d\ZK
/‖f‖2 + 1− exp (2πmDδ∗c

∗)

)2

‖f‖2 ≤
∑
ω∈ΩN

µω|f̂(ω)|2

≤ exp(4πmDδ∗c
∗)‖f‖2. (3.3.4)

Hence, we have
√
C2(Ω) ≤ exp(2πmDδ∗c

∗) and√
C1(Ω,T) ≥

√
1− ε2 + 1− exp (2πmDδ∗c

∗) > 0,

due to (3.3.2) and the assumption that

E(T,K) ≤ ε <
√

exp (2πmDδ∗c∗) (2− exp (2πmDδ∗c∗)).

Now the statement follows by using the definition of the reconstruction constant C(Ω,T) =√
C2(Ω)/C1(Ω,T).

Much like as we had in the univariate case, since T is finite-dimensional, the residual

E(T,K) defined by (3.3.2) converges to zero when K →∞ and hence there always exists

K such that E(T,K) is small enough. Therefore, this theorem guarantees stable and

optimal recovery in an arbitrary finite-dimensional T, with the explicit bound on the

reconstruction constant C(Ω,T), provided that the sampling scheme is sufficiently dense

and wide in the frequency domain. However, the bound on density given by this result is

not sharp.

Boundedness of the reconstruction constant C(Ω,T) under the sharp density condition

can be provided by use of Theorem 2.3.1. However, the use of this theorem trades the

explicitness of the bound, since it deploys non-explicit frame bounds A and B. Let

ΩN ⊆ ZK . We make use of the following K-residual

Ẽ(T,K,ΩN ) = sup
f∈T
‖f‖=1

√ ∑
ω∈Ω∩SK

µω|f̂(ω)|2, (3.3.5)

where Ω is a sequence such that ΩN ⊆ Ω and such that it yields a weighted Fourier frame,

SK = R̂d \D◦r(K)−1/2 and D◦r(K) is the largest ball with respect to the D◦-norm inscribed

into the set ZK . Note that the existence of a sequence Ω is ensured if ΩN has sufficient

density. Also, note that the residual Ẽ(T,K,ΩN ) again converges to zero as K →∞, but

it now depends on both T and ΩN .
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Generalized sampling for nonuniform Fourier samples

Theorem 3.3.3. Let T ⊆ H = {f ∈ L2(Rd) : supp(f) ⊆ D} be finite-dimensional,

D ⊆ Rd compact, convex and symmetric. Let ΩN = {ωn}Nn=1 be (K, δD◦)-dense with

respect to Z, with

δD◦ <
1

4
.

Denote by A and B the frame bounds corresponding to the weighed Fourier frame arising

from Ω = {ωn}n∈N, ΩN ⊆ Ω, and let ε ∈ (0,
√
A). If K > 0 is large enough so that

Ẽ(T,K,ΩN ) ≤ ε,

then the operator S given by (3.1.9) with the weights (3.3.1) is admissible sampling operator

and

C(ΩN ,T) ≤
√

B

A− ε2
. (3.3.6)

Proof. Due to (3.3.4), in this case we have C2 ≤ exp (πmDc
◦). However, for the lower

bound C1 we proceed as follows by using Theorem 2.3.1. Since Voronoi regions are taken

with respect to YK instead of R̂d, we need a subsequence Ω′N ⊆ ΩN which has points

sufficiently far from the boundary ∂YK so there is no any change in Voronoi regions.

Since δD◦ < 1/4, we can take Ω′N ⊆ D◦r(K)−1/2, where D◦r(K) is the largest inscribed ball

with respect to D◦-norm inside YK . Note that

Ω \ Ω′N ⊆ Ω ∩
(
R̂d \D◦r(K)−1/2

)
= Ω ∩ SK .

Therefore ∑
ω∈ΩN

µω

∣∣∣f̂(ω)
∣∣∣2 ≥∑

ω∈Ω

µω

∣∣∣f̂(ω)
∣∣∣2 − ∑

ω∈Ω\Ω′N

µω

∣∣∣f̂(ω)
∣∣∣2

≥ A‖f‖2 −
∑

ω∈Ω∩SK

µω

∣∣∣f̂(ω)
∣∣∣2 .

where the existence of A > 0 is provided by Theorem 2.3.1. Hence, by (3.3.5), for C1 we

have

C1 ≥ A− Ẽ(T,K,ΩN )2 ≥ A− ε2 > 0.

Now since C(Ω,T) =
√
C2/C1, the result now follows immediately.

Although the density conditions in theorems of this chapter are explicit, it is not yet

stated how large the sampling bandwidth K needs to be. Nevertheless, this is possible to

determine by analysing the residuals E or Ẽ. In particular, since the residual E depends

only on a particular choice of the space T, once T is fixed, it is possible to determine

scaling of K and dim(T) which gives sufficiently small E and therefore the stable and

optimal recovery from any sufficiently dense sampling set ΩK . This in return provides
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the so-called stable sampling rate, which we analyse in the one-dimensional case in the

following chapter.

3.4 Examples of (K, δ)-dense sampling schemes

In this section, we construct some sampling schemes that are (K, δ)-dense in the sense

of Definition 3.2.1 and 3.3.1 for the univariate and multivariate case respectively. In the

following chapters, we shall illustrate NUGS for several different reconstruction spaces

using (K, δ)-dense sampling schemes constructed here. Therein, we consider functions

supported on D = [−1, 1]d, d = 1, 2. According to Theorem 3.3.3, a sampling scheme Ω

must satisfy the condition

δD◦(Ω) <
1

4
, (3.4.1)

where D◦ is the unit ball in `1-norm, or, according to Theorem 3.3.2, if we choose the

Euclidean norm to measure density, Ω must satisfy a more strict density condition

δB1(Ω) <
ln 2

2πmD
. (3.4.2)

Recall that mD =
√

2 if D = [−1, 1]2. In this section, we construct some sampling schemes

which satisfy these conditions. Note that for D = [−1, 1]2 we have

δD◦(Ω) ≤
√

2δB1(Ω).

Hence, to have (3.4.1) it is enough to enforce

δB1(Ω) <
1

4
√

2
.

The condition

δB1(Ω) < c, (3.4.3)

where c > 0 is a given constant, can be easily checked on a computer for an arbitrary

nonuniform sampling scheme Ω. Moreover, as we shall show below, for special sampling

schemes, e.g. radial and spiral, it is always possible to construct them so that they satisfy

the condition (3.4.3). The advantage of considering the density condition in the Euclidean

norm lies in its symmetry.

We mention that in [BW00], one can find a construction of a spiral sampling scheme

satisfying condition (3.4.3). Here, we use a slightly different spiral scheme, one which

has an accumulation point at the origin and cannot be treated without weights. More

precisely, we use the constant angular velocity spiral, whereas Benedetto & Wu [BW00]

use the constant linear velocity spiral (see [DHC+10, Fig 2]). Also, beside providing a

sufficient condition for a spiral sampling scheme in order to satisfy (3.4.3), we provide

47



Generalized sampling for nonuniform Fourier samples

both sufficient and necessary condition such that radial and jittered sampling schemes are

appropriately dense.

3.4.1 Jittered sampling scheme

This sampling scheme is a standard model for jitter error, which appears when the mea-

surement device is not scanning exactly on a uniform grid; see Figure 1.1. Due to its

simplicity, we do not necessarily need to use the Euclidean norm in this case, therefore

we consider directly the condition (3.4.1), and then, for completeness, we also consider

(3.4.2). For a given K > 0 and parameters ε > 0 and η ≥ 0, we define the jittered

sampling scheme as

Ω = {(n,m)ε+ ηn,m : n,m = −bK/εc, . . . , bK/εc} , (3.4.4)

where ηn,m = (ηxn,m, η
y
n,m) with ηxn,m and ηyn,m such that |ηxn,m|, |η

y
n,m| ≤ η. Note that

Ω ⊆ ZK′ = K ′[−1, 1]2, K ′ = εbK/εc+ η.

Now, the following can easily be seen:

Proposition 3.4.1. Let D = [−1, 1]2. Let also K > 0, ε > 0 and η ≥ 0 be given and

define K ′ = εbK/εc+ η. The sampling scheme Ω defined by (3.4.4) is

(i) (δE◦ ,K
′)-dense with respect to Z = [−1, 1]2 and with δE◦(ΩK) < 1/4 if and only if

ε+ 2η <
1

4
.

(ii) (δB1 ,K
′)-dense with respect to Z = [−1, 1]2 and with δB1(ΩK) < (ln 2)/(2π

√
2) if

and only if

ε+ 2η <
ln 2

2π
.

Remark 3.4.2 For a given K > 0 and some η, ε > 0, the one-dimensional jittered sam-

pling scheme is defined by

Ω = {nε+ ηn : n = −bK/εc, . . . , bK/εc} , (3.4.5)

where ηn ∈ (−η, η) are chosen uniformly at random. Hence Ω ⊆ [−ε bK/εc−η, ε bK/εc+η]

and the sampling density in this region is δ = ε/2 + η.

3.4.2 Radial sampling scheme

Here, we discuss an important type of sampling scheme used in MRI and also whenever

the Radon transform is involved in sampling process, see Figure 1.1. For a given sampling
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bandwidth K > 0 and separation between consecutive concentric circles r > 0 we define

a radial sampling scheme as

Ω =
{
mrein∆θ : m = −bK/rc, . . . , bK/rc, n = 0, . . . , N − 1

}
, (3.4.6)

where ∆θ = π/N ∈ (0, π) is the angle between neighbouring radial lines and N ∈ N is the

number of radial lines in the upper half-plane. Note that

Ω ⊆ BrbK/rc ⊆ R̂2.

In what follows we shall assume that K/r ∈ N for simplicity.

Proposition 3.4.3. Let c > 0, K > c, and r ∈ (0, 2c) be given such that K/r ∈ N. The

sampling scheme Ω given by (3.4.6) is (K, δB1)-dense with respect to Z = B1 and with

δB1(Ω) < c

if and only if

∆θ < 2 min

arctan

√
c2 − (r/2)2

K − r/2
, arccos

(
1− c2

2K2

) . (3.4.7)

Proof. To prove this claim, we need to calculate

sup
ŷ∈BK

inf
ω∈Ω
|ŷ − ω|B1 .

First note that, due to the definition of Voronoi regions 2.1.5, we have

δB1(ΩK) = sup
ω∈ΩK

sup
ŷ∈Vω

|ŷ − ω|B1 , (3.4.8)

where Vω is the Voronoi region at ω with respect to the Euclidean norm and inside the

domain BK . Therefore, we have to find the maximum radius of all Voronoi regions. Here,

the radius of a Voronoi region Vω is the radius of the Euclidean ball described around

Vω and centred at ω. Since the Voronoi regions are taken with respect to the Euclidean

norm, they are convex polygons [Kle89], and hence, the Voronoi radius is always achieved

at a vertex which is furthest away from the centre.

Since ΩK is a radial sampling scheme with the uniform separation between consecutive

concentric circles, the largest Voronoi radius is achieved at some of the vertices positioned

between the two most outer circles of ΩK , including the most outer circle. Note that, by

the definition of Voronoi regions, a joint vertex of two adjacent Voronoi regions Vω and

Vω′ is equally distant from both points ω and ω′. Therefore, without loss of generality, in
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(3.4.8), we may assume that the points form ΩK are at the most outer circle.

Next, since B1 is symmetric with respect to any direction, and due to the symmetry

of a radial sampling scheme, in (3.4.8), without loss of generality we may assume, that

ω = Kei0, and ŷ ∈
{
seiθ : s ∈ (K − r,K], θ ∈ [0,∆θ/2]

}
. Denote ω′ = (K − r)ei0. We

now conclude that (3.4.8) is achieved at some of the following two vertices of Vω, which

are also the only vertices contained in the region
{
seiθ : s ∈ (K − r,K], θ ∈ [0,∆θ/2]

}
:

(i) v1 = K−r/2
cos θ0

ei∆θ/2, which is the joint vertex for adjacent Vω and Vω′ lying on the radial

line corresponding to angle ∆θ/2, at the equal distance d(∆θ) from both points ω

and ω′. This point v1 is easily calculated by equating the distances |sei∆θ/2−ω| and

|sei∆θ/2 − ω′|. Also, one derives

d1(∆θ) =

√
(r/2)2 + ((K − r/2) tan(∆θ/2))2.

(ii) v2 = Kei∆θ/2, which is a vertex of Vω lying on the radial line corresponding to ∆θ/2

and at the most outer circle, at the distance

d2(∆θ) = K
√

2− 2 cos(∆θ/2).

Hence, having δB1(ΩK) < c in the domain BK is equivalent to

max{d1(∆θ), d2(∆θ)} < c.

This is equivalent to

∆θ < 2 min

arctan

√
c2 − (r/2)2

K − r/2
, arccos

(
1− c2

2K2

) ,

which proves our claim.

This proposition asserts that δ-density of radial sampling scheme is satisfied if and

only if the angle ∆θ is sufficiently small and taken according to the formula (3.4.7). From

(3.4.7), it is evident that the angle ∆θ goes to zero linearly in 1/K when K → ∞.

Therefore, the condition δB1(Ω) < c implies that the points Ω accumulate at the inner

concentric circles as we increase K. Thus, the unweighted frame bounds for the frame

sequence corresponding to Ω clearly blow up as K →∞, which can be prevented by using

the weights.

3.4.3 Spiral sampling scheme

For a given r > 0,

Sr(θ) = r θ
2π eiθ, θ ≥ 0, (3.4.9)
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is a spiral trajectory in R̂2 with the constant separation r between the spiral turns. If

θ ∈ [0, 2πk] for k ∈ N, then the number of turns in the spiral is exactly k. For given r > 0

and k ∈ N, let Zrk ⊆ R̂2 be defined as

Zrk = {Sρ(θ) : ρ ∈ [0, r], θ ∈ [0, 2πk]} . (3.4.10)

Then Sr(θ) ⊆ Zrk ⊆ Brk, for θ ∈ [0, 2πk].

Now, let K > 0 and r > 0 be given, and for simplicity assume that they are such that

k = K/r ∈ N.

We define a spiral sampling scheme as

Ω =
{
rn∆θ

2π ein∆θ : n = 0, . . . , Nk
}
. (3.4.11)

where ∆θ = 2π/N ∈ (0, π), N ∈ N, is a discretization angle. Note that this Ω represents

a discretization of the spiral trajectory (3.4.9), which consists of k turns with the constant

separation r between them and with a constant angular distance ∆θ. Also, note that

Ω ⊆ ZK = KZ ⊆ BK ⊆ R̂2, where Z is

Z =
{
ρ θ

2π eiθ : ρ ∈ [0, 1], θ ∈ [0, 2π]
}

(3.4.12)

i.e. Z is given by (3.4.10) for r = k = 1.

Proposition 3.4.4. Let c > 0, K > (4/5)c and let r ∈ (0, 2c) be given such that K/r =

k ∈ N. The sampling scheme Ω defined as (3.4.11) is (δB1 ,K)-dense with respect to Z

given by (3.4.12) and with

δB1(Ω) < c

if ∆θ < θ̃, where θ̃ is such that dr,k(θ̃) = c− r/2, for dr,k(·) = |Sr(2πk)− Sr(2πk − ·/2)|
and Sr given by (3.4.9).

Proof. To prove this claim, we want to estimate δB1(Ω). First note that the distance from

any point inside region Yrk to the spiral trajectory Sr(θ), θ ∈ [0, 2πk], is at most r/2, see

[BW00, Eq. (18)]. Also, note that the distance from any point on the spiral trajectory

Sr(θ), θ ∈ [0, 2πk], to a point from ΩK is at most |Sr(2πk)− Sr(2πk−∆θ/2)|. Hence, as

in [BW00], by the triangle inequality we obtain

δB1(Ω) ≤ r

2
+ |Sr(2πk)− Sr(2πk −∆θ/2)|

where Sr(·) is given by (3.4.9). Therefore, the density condition is satisfied if ∆θ is such

that

dr,k(∆θ) < c− r

2
.
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Hence, it is enough to choose ∆θ as

∆θ < θ̃,

where θ̃ is such that dr,k(θ̃) = c − r/2. Since function dr,k(·) is continuous and strictly

increasing on (0, π) and also since

lim
∆θ→0

dr,k(∆θ) = 0 < c− r

2
, lim

∆θ→π
dr,k(∆θ) = r

√
k2 +

(
k − 1

4

)2

≥ 5

4
K > c− r

2
,

such θ̃ exists and it is unique on interval (0, π).

Let us mention here that in a similar manner an interleaving spiral sampling scheme

can be analysed. An interleaving spiral consists of multiple single spirals. Both of these

spirals are shown in Figure 1.1.

Remark 3.4.5 The one-dimensional analogue of a spiral sampling scheme is a log sam-

pling scheme. For a sampling bandwidth K > 0 and some parameters ν, δ > 0 such that

2× 10−ν < δ, if J =
⌈
− log10K+ν

log10(1−δ/K)

⌉
, the log sampling scheme is defined by

Ω = {±ωj : ωj = 10−ν+ j
J

(log10K+ν), j = 0, . . . , J}. (3.4.13)

Note that this gives a (K, δ)-dense sampling sequence and |Ω| = 2(J + 1).
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Chapter 4

Reconstruction in wavelet spaces

In the previous chapter we established that stable and quasi-optimal reconstruction in

arbitrary subspaces T is possible, provided one has the (K, δ)-dense sampling scheme

with appropriate δ and large enough bandwidth K, or one has a frame sequence and the

truncation parameter N sufficiently large. We now turn our attention to the question

of precisely how large K (or N) needs to be for the important case where T consists of

the first M terms of a wavelet basis in L2(0, 1). Our main result is to show that K (or

N) needs to scale linearly in M to ensure stable and quasi-optimal reconstruction in this

setting and this is presented in Section 4.2. Moreover, in Section 4.3, we show that the

linear scaling is also necessary. These results are collected from [AGH14a], which is the

joint work of the author with Ben Adcock and Anders Hansen.

In the last part of this chapter, Section 4.4, we describe how NUGS can be implemented

in only O(N logM) operations when recovering M wavelet coefficients from N Fourier

samples. Due to the aforementioned linear correspondences, this leads to O(M logM)

operations in order to reconstruct M wavelet coefficients, provided that Fourier samples

satisfy N = O(K). The material of this section is a joint work of the author with Clarice

Poon [GP15]. The algorithm derived therein has been implemented in Matlab and the

code is available at http://www.damtp.cam.ac.uk/user/mg617/GS wavelets.zip.

4.1 Preliminaries

Our interest lies in wavelet bases on the interval [0, 1]. Following [Mal09], we consider

three standard constructions: periodic, folded and boundary-corrected wavelets. First,

however, we recall the definition of a multiresolution analysis (MRA).

Definition 4.1.1. A multiresolution analysis of L2(R) generated by a scaling function

φ ∈ L2(R) is a nested sequence of closed subspaces {0} ⊆ · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆
L2(R) such that

(i)
⋃
j∈Z Vj = L2(R) and

⋂
j∈Z Vj = {0},
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Reconstruction in wavelet spaces

(ii) for all j ∈ Z, f(·) ∈ Vj if and only if f(2·) ∈ Vj+1,

(iii) the collection {φ(· − k)}k∈Z forms a Riesz basis for V0.

Recall that a system {φ(·−k)}k∈Z forms a Riesz basis for V0 if and only if there exists

constants d1, d2 > 0 such that

d1

∑
k∈Z
|αk|2 ≤

∥∥∥∥∥∑
k∈Z

αkφ(· − k)

∥∥∥∥∥
2

≤ d2

∑
k∈Z
|αk|2, ∀{αk}k∈Z ∈ l2(Z),

and {φ(· − k)}k∈Z forms an orthonormal basis for V0 if and only if d1 = d2 = 1. We recall

also that this is equivalent to the condition

d1 ≤
∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 ≤ d2, a.e. ω ∈ [0, 1]. (4.1.1)

In particular, the optimal Riesz basis constants are given by

d1 = essinf
ω∈[0,1]

∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 , d2 = esssup

ω∈[0,1]

∑
k∈Z

∣∣∣φ̂(k + ω)
∣∣∣2 .

Periodic wavelets

Suppose that {ψj,k}j,k∈Z is a wavelet basis of L2(R) associated to an MRA with scaling

function φ. Define the periodizing operation

f(x) 7→ fper(x) =
∑
k∈Z

f(x+ k), (4.1.2)

and let ψper
j,k and φper

j,k be the corresponding periodic wavelets and scaling functions. Define

the periodized MRA spaces

V per
j = span

{
φper
j,k : k = 0, . . . , 2j − 1

}
, W per

j = span
{
ψper
j,k : k = 0, . . . , 2j − 1

}
.

Note that the maximal index k is finite, since φper
j,k+2j

= φper
j,k and likewise for ψper

j,k .

Now let J ∈ N0 be given. Then

L2(0, 1) = V per
J ⊕W per

J ⊕W per
J+1 ⊕ · · ·,

and we may therefore introduce the finite-dimensional reconstruction space T by truncat-

ing the right-hand side:

T = V per
J ⊕W per

J ⊕W per
J+1 ⊕ · · · ⊕W

per
R−1. (4.1.3)

54



4.1. Preliminaries

Note that dim(T) = 2R. Since the original wavelets have an MRA, we also have that

T = V per
R = span

{
φper
R,k : k = 0, . . . , 2R − 1

}
.

Our primary interest in this paper lies with wavelet bases having compact support. With-

out loss of generality, we now suppose that supp(φ) ⊆ [−p + 1, p] for p ∈ N. Note the

following: if supp(f) ⊆ [0, 1] then f(x) = fper(x) for x ∈ [0, 1]. In particular, since

supp(φR,k) = [(k − p+ 1)/2R, (k + p)/2R],

we have that φper
R,k(x) = φR,k(x), x ∈ [0, 1], whenever k = p, . . . , 2R− p− 1. Hence we may

decompose the space T into

T = Tleft ⊕ Ti ⊕ Tright, (4.1.4)

where

Ti = span
{
φR,k : k = p, . . . , 2R − p− 1

}
,

contains interior scaling functions with support in (0, 1) and

Tleft = span
{
φper
R,kχ[0,1] : k = 0, . . . , p− 1

}
,

Tright = span
{
φper
R,kχ[0,1] : k = 2R − p, . . . , 2R − 1

}
,

contains the periodized scaling functions. Here χ[0,1] is the indicator function of the

interval [0, 1]. Whilst not strictly necessary at this point, we add this function to the

definitions of Tleft and Tright so as to clarify that they are to be considered as subspaces

of H = {g ∈ L2(R) : supp(g) ⊆ [0, 1]} in our setting, and not L2(R).

Remark 4.1.2 The stipulation that supp(φ) ⊆ [−p + 1, p] with p ∈ N makes little dif-

ference (besides affecting the constant) to the main result we establish in this section

regarding C(Ω,T) with T as above. The key point is that φ should have compact sup-

port. In which case we can always find p ∈ N such that supp(φ) ⊆ [−p+ 1, p].

Folded wavelets

Folded wavelets are defined via the folding operation

f(x) 7→ f fold(x) =
∑
k∈Z

f(x− 2k) +
∑
k∈Z

f(2k − x). (4.1.5)

In this case, one obtains biorthogonal bases of wavelets for H. Note that we have

V fold
j = span

{
φfold
j,k : k = 0, . . . , 2j − ι

}
, W fold

j = span
{
ψfold
j,k : k = 0, . . . , 2j − 1

}
,

55
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where ι takes value 0 if the wavelets are symmetric about x = 1/2 and 1 if they are

antisymmetric. Much as before, we define the finite-dimensional reconstruction space

T = V fold
J ⊕W fold

J ⊕W fold
J+1 ⊕ · · · ⊕W fold

R−1, (4.1.6)

and note that

T = V fold
R = span

{
φfold
R,k : k = 0, . . . , 2R − ι

}
,

As in the case of periodic wavelets, we can decompose T into three subspaces containing

interior and boundary wavelets respectively. As before, suppose that supp(φ) ⊆ [−p+1, p],

p ∈ N. Since f(x) = f fold(x) for x ∈ [0, 1] whenever supp(f) ⊆ [0, 1], we have

T = Tleft ⊕ Ti ⊕ Tright,

where

Ti =
{
φR,k : k = p, . . . , 2R − p− 1

}
,

and

Tleft =
{
φfold
R,kχ[0,1] : k = 0, . . . , p− 1

}
, Tright =

{
φfold
R,kχ[0,1] : k = 2R − p, . . . , 2R − ι

}
.

Boundary-corrected wavelets

We follow the boundary wavelet construction of Cohen, Daubechies & Vial [CDV93]. Let

p ∈ N be given and denote the corresponding scaling and wavelet functions by φ and ψ.

Note that the support of these functions is contained in [−p+ 1, p]. We define a new basis

on [0, 1] as follows. We set

φint
j,k(x) =


2j/2φ(2jx− k) p ≤ k < 2j − p

2j/2φleft
k (2jx) 0 ≤ k < p

2j/2φright
2j−k−1

(2j(x− 1)) 2j − p ≤ k < 2j ,

(4.1.7)

and similarly for the wavelet functions ψint
j,k. Here the functions φleft

k and φright
k are partic-

ular boundary scaling functions. See [CDV93] for details. We may now define an MRA

V int
j = span

{
φint
j,k : k = 0, . . . , 2j − 1

}
, W int

j = span
{
ψint
j,k : k = 0, . . . , 2j − 1

}
,

which, for J ≥ log2(2p) gives the reconstruction space

T = V int
J ⊕W int

J ⊕ · · · ⊕W int
R−1 = V int

R . (4.1.8)
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Note that, as before, we may decompose

T = Tleft ⊕ Ti ⊕ Tright,

where

Ti = span
{
φint
R,k : k = p, . . . , 2R − p− 1

}
,

contains the unmodified scaling functions with support in [0, 1] and

Tleft = span
{
φint
R,kχ[0,1] : k = 0, . . . , p− 1

}
,

Tright = span
{
φint
R,kχ[0,1] : k = 2R − p, . . . , 2R − 1

}
.

Remark 4.1.3 Periodic wavelet bases on [0, 1] are widely used in standard implemen-

tations of wavelets, since their construction is extremely simple. However, the vanishing

moments of the wavelet are lost due to the enforcement of periodic boundary condi-

tions. This effectively introduces a discontinuity of the signal at the boundaries, and

translates into lower approximation orders [Mal09]. Folded wavelets remove the artifi-

cial signal discontinuity introduced by periodization and allow for one vanishing moment

to be retained. This approach is most commonly used for the CDF wavelets [CDF92].

However, since folded wavelets only retain one vanishing moment, they do not lead to

high approximation orders for smooth functions. To obtain such orders, one may follow

the boundary wavelet construction, due to Cohen, Daubechies & Vial [CDV93]. These

boundary-corrected wavelets are particularly well suited for smooth functions. Indeed, if

f ∈ Hs(0, 1), where Hs(0, 1) denotes the usual Sobolev space and 0 ≤ s < p, then the

error

‖f − PTf‖ = O(2−sR), R→∞, (4.1.9)

where T is given by (4.1.8). Since NUGS is quasi-optimal, we obtain exactly the same

approximation rates when reconstructing f from nonuniform Fourier samples, provided

the bandwidth K (or N in the frame case) is chosen suitably large. Corollary 4.2.4 below

establishes that K (or N) need only scale linearly in M = 2R to guarantee this.

Remark 4.1.4 Note that the wavelets introduced in this section—namely, periodic, folded

or boundary-corrected—are considered as functions with support contained in [0, 1], even

though they are actually defined over R. In particular, their Fourier transforms are taken

as integrals over [0, 1], as opposed to R. Conversely, the scaling function φ is defined over

the whole of R, and thus its Fourier transform is also taken over R.
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4.2 Sufficiency of the linear scaling of K and dim(T)

Here, we prove that a linear scaling of the sampling bandwidth K (or the frame truncation

N) with dim(T) is sufficient for stable and quasi-optimal recovery when T consists of

wavelets. First we state the main results, while the proofs are delayed until §4.2.3.

4.2.1 General wavelets

We commence with the (K, δ)-dense case:

Theorem 4.2.1. Let ΩN be a (K, δ)-dense sampling scheme with δ < 1/2 and suppose

that T is the reconstruction space (4.1.3) generated by the first 2R elements of a periodic

wavelet basis. Suppose that either of the following conditions holds:

(i) the scaling function φ ∈ L2(R) and {φ(· − k)}k∈Z forms an orthonormal basis of V0,

(ii) the scaling function φ satisfies

|φ̂(ω)| ≤ c

(1 + |ω|)α
, ω ∈ R, (4.2.1)

for some α > 1/2, and the system {φ(· − k)}k∈Z forms a Riesz basis of V0.

Then for any 0 < ε <
√

1− 2δ, there exists a constant c0 = c0(ε) such that if

K ≥ c0(ε)2R

then the reconstruction constant satisfies

C(ΩN ,T) ≤ 1 + 2δ√
1− ε2 − 2δ

.

Theorem 4.2.2. Let ΩN be a (K, δ)-dense sampling scheme with δ < 1/2 and suppose

that either:

(i) T is generated by the first 2R elements of the folded wavelets basis, given by (4.1.6),

or

(ii) T is generated by the first 2R elements of the boundary-corrected wavelets basis,

given by (4.1.8).

Suppose that {φ(· − k)}k∈Z is a Riesz basis for V0 and that φ satisfies (4.2.1) for some

α > 1/2. Then given 0 < ε <
√

1− 2δ there exists a c0 = c0(ε) such that if

K ≥ c0(ε)2R
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then the reconstruction constant satisfies

C(ΩN ,T) ≤ 1 + 2δ√
1− ε2 − 2δ

.

These theorems assert that it is sufficient that the bandwidth K scales linearly with

the dimension of the reconstruction space T in the case of wavelets in order to ensure

boundedness of the reconstruction constant. Note that the smoothness assumption (4.2.1)

is extremely mild. For example, it holds if φ ∈ Hα(R) for α > 1/2, and consequently

includes all practical cases of interest. We remark also that the stipulation of a Riesz

basis in these theorems is not necessary since this is implied by the MRA property. It is

included merely for clarity.

We now give a similar result for the frame case:

Theorem 4.2.3. Let ΩN = {ωn : |n| ≤ N}, where {ωn : n ∈ Z} is a nondecreasing

sequence that gives rise to a Fourier frame with frame bounds A and B. Let T be the

reconstruction space of dimension 2R consisting of either periodic (4.1.3), folded (4.1.6) or

boundary-corrected wavelets (4.1.8), and suppose that φ satisfies (4.2.1) for some α > 1/2.

Then given 0 < ε < A there exists a c0 = c0(ε) such that if

N ≥ c0(ε)2R

then the reconstruction constant satisfies

C(ΩN ,T) ≤
√

B

A− ε
.

As explained in Remark 4.1.3, boundary-corrected wavelets are an important case of

these theorems. Due to (4.1.9), these results imply the following property of NUGS: up to

constant factors, it obtains optimal convergence rates in terms of the sampling bandwidth

when reconstructing smooth functions with boundary-corrected wavelets. Specifically,

Corollary 4.2.4. Let T be the reconstruction space (4.1.8) consisting of the boundary-

corrected wavelets with p vanishing moments. If f ∈ Hs(0, 1), where 0 ≤ s < p, let f̃

denote the NUGS reconstruction based on a sampling scheme ΩN . Then

‖f − f̃‖ = O(K−s)

if ΩN is as in Theorem 4.2.2, and

‖f − f̃‖ = O(N−s)

when ΩN is as in Theorem 4.2.3.
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4.2.2 Explicit estimates for Haar wavelets

Theorems 4.2.1–4.2.3 do not give explicit bounds for the constant C(Ω,T). In general,

getting explicit estimates is difficult, due primarily to the contributions of the boundary

subspaces Tleft and Tright. However, for the case of Haar wavelets, there are no such terms,

and this means that explicit bounds are possible.

One motivation for studying the Haar wavelet case is that it corresponds to the situ-

ation of a digital model for the signal f . Specifically, the reconstruction space for Haar

wavelets

T = span
{
φ ∪ {ψj,k : k = 0, . . . , 2j − 1, j = 0, . . . , R− 1}

}
,

is a special case corresponding to M = 2R of reconstruction space

U = UM =
{
g ∈ L2(0, 1) : g|[m/M,(m+1)/M) = constant, m = 0, . . . ,M − 1

}
, (4.2.2)

consisting of piecewise constant functions (i.e. digital signals where 1/M is the pixel size).

Note that

UM = span
{√

Mφ(M · −m) : m = 0, . . . ,M − 1
}
, (4.2.3)

is a subspace generated by shifts of the pixel indicator function φ(x) = χ[0,1](x). This

digital signal model is popular in imaging. In particular, it is the basis of the widely-used

fast, iterative reconstruction technique for MRI [SNF03] (see Remark also 4.2.6).

Our next result gives an explicit upper bound for the reconstruction constant C(Ω,T)

in this case, and demonstrates that C(Ω,T) is mild whenever M is at most 2K.

Theorem 4.2.5. Let Ω be a (K, δ)-dense sampling scheme with δ < 1/2, and let T ⊆ UM ,

where UM is given by (4.2.3) for φ(x) = χ[0,1](x) and M ≤ 2K, such that 2K/M ∈ N.

Then

C(Ω,T) ≤ π

2

(
1 + 2δ

1− 2δ

)
.

Remark 4.2.6 As noted previously, the well-known iterative reconstruction technique

[SNF03] is a specific instance of NUGS corresponding to the choice (4.2.2) for T, where the

term ‘iterative’ refers to the use of conjugate gradient iterations combined with NUFFTs

to solve the least-squares problem. Thus, Theorem 4.2.5 provides an explicit guarantee

for stable, quasi-optimal reconstruction with this method.

Remark 4.2.7 Theorem 4.2.5 can be easily generalized to the case where φ ∈ L2(R) is an

arbitrary kernel such that (i) {φ(·−k)}k∈Z forms a Riesz basis and (ii) UM ⊆ H. Note that

(ii) means that none of the shifted versions
√
Mφ(M · −m) can overlap with the interval

endpoints x = 0 and x = 1. Thus such spaces have poor approximation properties for

functions that do not themselves vanish at the endpoints. In such cases, it is preferable to

consider the interval wavelet constructions based on periodic, folded or boundary-corrected
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wavelets, as described in the previous section, and whose reconstruction constants are

addressed by Theorems 4.2.1 and 4.2.2 (albeit without explicit bounds).

4.2.3 Proofs of results from Sections 4.2.1 and 4.2.2

We first require the following lemma:

Lemma 4.2.8. Let I ⊆ N be a finite index set and suppose that {ϕn : n ∈ I} ⊆ H is

a Reisz basis for its span T = span{ϕn : n ∈ I} with constants d1 and d2. Let I be

partitioned into disjoint subsets I1, . . . , Ir, and write Ti = span{ϕn : n ∈ Ii}. Let E(T, z)

and Ẽ(T, N) be given by (3.2.4) and (3.2.7) respectively. Then

E(T, z) ≤

√√√√d2

d1

r∑
i=1

E(Ti, z)2, Ẽ(T, N) ≤

√√√√d2

d1

r∑
i=1

Ẽ(Ti, N)2

Proof. Let f =
∑

n∈I αnϕn ∈ T\{0} and write

f =

r∑
i=1

fi, fi =
∑
n∈Ii

αnϕn.

Note that

‖f̂‖2R\(−z,z) ≤

(
r∑
i=1

‖f̂i‖R\(−z,z)

)2

≤

(
r∑
i=1

E(Ti, z)‖fi‖

)2

≤
r∑
i=1

E(Ti, z)
2

r∑
i=1

‖fi‖2.

Also, since {ϕn}n∈I forms a Riesz basis, we have
∑r

i=1 ‖fi‖2 ≤ d2/d1‖f‖2. Therefore

‖f̂‖2R\(−z,z)
‖f‖2

≤ d2

d1

r∑
i=1

E(Ti, z)
2.

Taking the supremum over f now gives the result for E(T, z). For Ẽ(T, N), we first note

that
∑
|n|>N |f̂i(ωn)|2 <∞, i = 1, . . . , r, since {ωn}n∈Z gives rise to the Fourier frame and

fi ∈ L2(0, 1), i = 1, . . . , r. Therefore, we can apply Minkowski’s inequality to get

√ ∑
|n|>N

|f̂(ωn)|2 ≤
r∑
i=1

√ ∑
|n|>N

|f̂i(ωn)|2.

Thus, ∑
|n|>N

|f̂(ωn)|2 ≤

(
r∑
i=1

Ẽ(Ti, N)‖fi‖

)2

≤ d2

d1
‖f‖2

r∑
i=1

Ẽ(Ti, N)2,

as required.
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Recall that all the wavelet reconstruction systems introduced in the previous section

can be decomposed into interior wavelets having support in [0, 1] and boundary wavelets

that intersect the endpoints x = 0, 1. This lemma allows us to estimate the residuals

E(T, z) and Ẽ(T, N) by considering each subspace separately. The next two propositions

address the interior wavelets:

Proposition 4.2.9. Let φ ∈ L2(R) have compact support and suppose that {φ(· − k)}k∈Z
forms a Riesz basis for its span with constants d1 and d2. Let M ∈ N, M1,M2 ∈ Z and

T = span
{√

Mφ(M · −m) : m = M1, . . . ,M2

}
,

and suppose that M,M1,M2 are such that T ⊆ H. Then the following hold:

(i) Given ε > 0 there exists a c0 = c0(ε) such that for any z ≥ c0M :

E(T, z)2 < 1− d1

d2
+ ε.

(ii) Suppose that φ satisfies (4.2.1) for some α > 1/2. Then there exists a c0 = c0(ε)

such that for any for z ≥ c0M :

E(T, z)2 < ε.

Proof. Let f ∈ T and write

f(x) =
√
M

M2∑
k=M1

akφ(Mx− k).

Since {φ(· − k)}k∈Z is a Riesz basis, we find that

d1

M2∑
k=M1

|ak|2 ≤ ‖f‖2 ≤ d2

M2∑
k=M1

|ak|2. (4.2.4)

Moreover, a simple calculation gives that

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ
( ω
M

)
, ω ∈ R, (4.2.5)

where Ψ(x) =
∑M2

k=M1
ake
−2πikx is a trigonometric polynomial with ‖Ψ‖2 =

∑M2
k=M1

|ak|2.
Thus

d1‖Ψ‖2 ≤ ‖f‖2 ≤ d2‖Ψ‖2, (4.2.6)
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by (4.2.4). We now estimate ‖f̂‖2(−z,z). By (4.2.5), we have

‖f̂‖2(−z,z) =
1

M

ˆ
|ω|<z

|φ̂(ω/M)|2 |Ψ(ω/M)|2 dω =

ˆ
|t|<z/M

|φ̂(t)|2 |Ψ(t)|2 dt.

Suppose that z ≥M and write bz/Mc = n0 + 1, where n0 ∈ N0. Then

‖f̂‖2(−z,z) ≥
ˆ n0+1

t=−n0

|φ̂(t)|2 |Ψ(t)|2 dt =
∑
|n|≤n0

ˆ 1

0
|φ̂(t+ n)|2 |Ψ(t+ n)|2 dt.

Since Ψ is 1-periodic, and since (4.2.6) holds, we get

‖f̂‖2(−z,z) ≥

 min
t∈[0,1]

∑
|n|≤n0

|φ̂(n+ t)|2
ˆ 1

0
|Ψ(t)|2 dt ≥ 1

d2

 min
t∈[0,1]

∑
|n|≤n0

|φ̂(n+ t)|2
 ‖f‖2.

By [AHP14, Lem. 5.4], there exists an n0 ∈ N sufficiently large such that the term in

brackets is greater than d1 − εd2. Thus we get

‖f̂‖2(−z,z) ≥
(
d1

d2
− ε
)
‖f‖2.

We now use the definition of E(T, z)2 to complete part 1. of the proof.

Our approach for part 2. is similar, where we estimate the tail ‖f̂‖2R\(−z,z). Repeating

the steps of the above proof, we find that

‖f̂‖2R\(−z,z) ≤ 1/d1

 sup
t∈[0,1]

∑
|n|≥n0

|φ̂(n+ t)|2
 ‖f‖2.

Using the smoothness assumption (4.2.1), we find that

sup
t∈[0,1]

∑
|n|≥n0

|φ̂(n+ t)|2 . (n0)1−2α.

Hence, if z ≥ c0(ε)M for some c0, then

‖f̂‖2R\(−z,z) ≤ ε‖f‖
2,

from which the result follows.

We are now ready to prove Theorem 4.2.1 and Theorem 4.2.2.

Proof of Theorems 4.2.1 and 4.2.2. By Theorem 3.2.5, it suffices to consider E(T, z). Re-

call that in all three cases—periodic, folded or boundary-corrected wavelets—the recon-
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struction space T can be decomposed as T = Tleft ⊕ Ti ⊕ Tright. Lemma 4.2.8 now gives

E(T, z)2 ≤ d2

d1

(
E(Tleft, z)2 + E(Ti, z)2 + E(Tright, z)2

)
.

The subspace Ti contains wavelets supported in [0, 1], an application of Proposition 4.2.9

gives E(Ti, z)2 < ε in both case (i) and case (ii) of Theorem 4.2.1 (recall in case (i) that

{φ(· − k)}k∈Z is an orthonormal basis, and therefore d1 = d2 = 1), as well as in Theorem

4.2.2. Thus it remains to show in all cases that E(Tleft, z) and E(Tright, z) can be made

arbitrarily small with z & 2R

Consider the subspace Tleft (the case of Tright is identical). For all three wavelet

constructions, we may write

Tleft = span
{

ΦR,kχ[0,1] : k = 0, . . . , p− 1
}
,

where ΦR,k is either φper
R,k (periodic), φfold

R,k (folded) or φint
R,k (boundary-corrected). The

functions ΦR,kχ[0,1] form a Riesz basis for Tleft with bounds d1 and d2. Hence, if f ∈ Tleft

and

f =

p−1∑
k=0

αkΦR,kχ[0,1],

then

d1

p−1∑
k=0

|αk|2 ≤ ‖f‖2 ≤ d2

p−1∑
k=0

|αk|2.

Now consider ‖f̂‖R\(−z,z). By the Cauchy–Schwarz inequality and the above inequality,

‖f̂‖R\(−z,z) ≤
p−1∑
k=0

|αk|‖(ΦR,kχ[0,1])
∧‖R\(−z,z)

≤
√
p/d1‖f‖ max

0≤k≤p−1

{
‖(ΦR,kχ[0,1])

∧‖R\(−z,z)
}
.

Thus, to complete the proof, we only need to show that there exists a c0 = c0(ε) such that

‖(ΦR,kχ[0,1])
∧‖R\(−z,z) < ε, ∀k = 0, . . . , p− 1, (4.2.7)

whenever z ≥ c0(ε)2R.

Assume now that 2R−1 > p. Then one can determine the following:

(a) For periodic wavelets, ΦR,k(x) = φR,k(x) + φR,k(x− 1).

(b) For folded wavelets, ΦR,k(x) = φR,k(x) + φR,k(−x).

(c) For boundary-corrected wavelets, ΦR,k(x) can be written as a finite linear combina-

tion of the functions φR,k(x), where k = −p+ 1, . . . , p− 1.
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Note that (a) and (b) follow by first writing φper
R,k and φfold

R,k in terms of infinite sums using

the periodization and folding operations given by (4.1.2) and (4.1.5), and then by using

the fact that supp(φ) ⊆ [−p + 1, p]. Case (c) was shown in [CDV93]. Since in all cases

ΦR,k can be written as a finite sum with a number of terms independent of R, it therefore

suffices to show that

‖(φR,kχ[0,1])
∧‖R\(−z,z), ‖(φR,k(· − 1)χ[0,1])

∧‖R\(−z,z), ‖(φR,k(−·)χ[0,1])
∧‖R\(−z,z) < ε,

(4.2.8)

where k = −p + 1, . . . , p + 1 for the first term and k = 0, . . . , p − 1 for the second two

terms, whenever z ≥ c0(ε)2R. Note that

∣∣∣(φR,k(·+ l)χ[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣∣∣
ˆ 2R(l+1)−k

2Rl−k
φ(y)e−2πiωy/2R dy

∣∣∣∣∣ .
Suppose that l = 0. Then the integration interval is [−k, 2R − k]. Since supp(φ) =

[−p+ 1, p], we can replace this by [−k, p] to give∣∣∣(φR,k(·)χ[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣φ̂[−k,p]
( ω

2R

)∣∣∣ , k = −p+ 1, . . . , p− 1,

where φ[a,b](x) = φ(x)χ[a,b](x) for a < b. Similarly, for l = −1 we have∣∣∣(φR,k(· − 1)χ[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣ ̂φ[−p+1,k]
( ω

2R

)∣∣∣ , k = 0, . . . , p− 1.

Likewise ∣∣∣(φR,k(−·)χ[0,1]

)∧
(ω)
∣∣∣ = 2−R/2

∣∣∣ ̂φ[−p+1,k]
(
− ω

2R

)∣∣∣ , k = 0, . . . , p− 1.

Thus, to establish (4.2.8), and therefore (4.2.7), it suffices to estimate the Fourier trans-

forms of the functions φ[a,b] for (a, b) = (−k, p), k = −p + 1, . . . , p − 1, and (a, b) =

(−p+ 1, k), k = 0, . . . , p− 1. We now note the following:

‖2−R/2f(·/2R)‖R\(−z,z) = ‖f‖R\(−z/2R,z/2R), f ∈ L2(R).

In particular, for any fixed f ,

‖2−R/2f(·/2R)‖R\(−z,z) < ε, (4.2.9)

provided z ≥ c2R for appropriately large c > 0. Since the total number of functions φ[a,b]

is less than 2p, and hence bounded independently of R, we obtain (4.2.8) and thus (4.2.7).

Having addressed the case of (K, δ)-dense samples, we now consider frame samples.
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Recalling the setup of §3.2.2, let {ωn : n ∈ Z} be a nondecreasing sequence giving rise to

a Fourier frame. Set ΩN = {ωn : |n| ≤ N}, and suppose that SN is given by (3.2.6).

To prove our next result, we require the following two lemmas:

Lemma 4.2.10. Let {ωn}n∈Z be an increasing sequence of separated points with minimal

separation η = infn∈Z{ωn+1 − ωn} > 0. Then there exists a set of points {ω̃n}n∈Z with

minimal separation at least η/2 such that {ωn}n∈Z ⊆ {ω̃n}n∈Z and

sup
n∈Z
{ω̃n+1 − ω̃n} ≤ η.

Proof. Let n ∈ Z. If ωn+1 − ωn = η then we do nothing. Otherwise, let k ∈ N be the

smallest integer such that ωn+1 − ωn ≤ (k + 1)η. Introduce the new points

ωn + rη, r = 1, . . . , k − 1,

as well as
1

2
(ωn + (k − 1)η + ωn+1) .

These new points are at least η/2 separated, and have maximal separation at most η.

A variation of the following result was also proved in [Grö99, Lem. 1]. We include the

proof for completeness.

Lemma 4.2.11. Let x0 ≤ x1 < x2 < . . . < xN ≤ xN+1 where N ∈ N ∪ {∞}, and

suppose that ρ = maxn=0,...,N{xn+1 − xn} < ∞. Let f ∈ H1(a, b), where a = 1
2(x1 + x0),

b = 1
2(xN+1 + xN ) and H1(a, b) denotes the standard Sobolev space of first order on the

interval (a, b). If µn = 1
2(xn+1−xn−1), n = 1, . . . , N , then the following inequalities hold:

(
‖f‖[a,b] −

ρ

π
‖f ′‖[a,b]

)2
≤

N∑
n=1

µn|f(xn)|2 ≤
(
‖f‖[a,b] +

ρ

π
‖f ′‖[a,b]

)2
.

Proof. The proof of this lemma is similar to that of Lemma 3.2.2. Let zn = 1
2(xn + xn−1)

and define g(x) =
∑N

n=1 f(xn)g[zn,zn+1)(x). Note that z1 = a, zN+1 = b and that

N∑
n=1

µn|f(xn)|2 = ‖g‖2[a,b].

We now have

‖f − g‖2[a,b] =
N∑
n=1

ˆ zn+1

zn

|f(x)− f(xn)|2 dx,

and after an application of Wirtinger’s inequality, we obtain

‖f − g‖2[a,b] ≤
ρ2

π2
‖f ′‖2[a,b].
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4.2. Sufficiency of the linear scaling of K and dim(T)

This gives the result.

Proposition 4.2.12. Let {ωn}n∈Z ⊆ R be a nondecreasing sequence of frequencies that

rise to a Fourier frame for H, and suppose that φ and T are as in Proposition 4.2.9. If φ

satisfies (4.2.1) for some α > 1/2, then given ε > 0 there exists a c0 = c0(ε) such that for

all N ≥ c0M :

Ẽ(T, N) < ε.

Proof. Recall from Theorem 2.1.3 that any sequence {ωn}n∈Z that gives a frame is nec-

essarily relatively separated, i.e. it is a finite union of separated sequences. Since we wish

to obtain an upper bound for ∑
|n|>N

|f̂(ωn)|2,

for any f ∈ T, we may therefore assume without loss of generality that {ωn}n∈Z is a

separated sequence with separation η. Moreover, after an application of Lemma 4.2.10,

we may assume without loss of generality that {ωn}n∈Z is η/2 separated with maximal

spacing at most η.

As in the proof of Proposition 4.2.9 let f =
∑M2

k=M1
ak
√
Mφ(M · −k) ∈ T and write

Ψ̃(x) =
∑M2

k=M1
ake
−2πikx so that

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ̃
( ω
M

)
. (4.2.10)

Let

Ψ(x) = e2πiM3xΨ̃(x) =

M2−M3∑
k=M1−M3

ak+M3e−2πikx, M3 =

⌈
M1 +M2

2

⌉
, (4.2.11)

so that |Ψ(x)| = |Ψ̃(x)|. By (4.2.10) we also have |f̂(ω)| = 1√
M
|φ̂(ω/M)||Ψ(ω/M)|, and

therefore ∑
n>N

|f̂(ωn)|2 ≤ 1

M

∑
n>N

∣∣∣φ̂(ωn
M

)∣∣∣2 ∣∣∣Ψ(ωn
M

)∣∣∣2
≤ 1

M

∞∑
l=0

sup
ω∈Il

∣∣∣φ̂( ω
M

)∣∣∣2 ∑
n:ωn∈Il

∣∣∣Ψ(ωn
M

)∣∣∣2 ,
where Il = [ωN + lM, ωN + (l + 1)M). Since {ωn}n∈Z is separated and increasing, we

must have that ωN & N as N → ∞. In particular ωN > 0 for sufficiently large N . By

the assumption on φ, we therefore obtain

∑
n>N

|f̂(ωn)|2 .M2α−1
∞∑
l=0

(ωN + 2lM)−2α
∑

n:ωn∈Il

∣∣∣Ψ(ωn
M

)∣∣∣2 .
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We now claim that the result follows, provided

∑
n:ωn∈Il

∣∣∣Ψ(ωn
M

)∣∣∣2 ≤ cM‖Ψ‖2, ∀l = 0, 1, 2, . . . . (4.2.12)

We shall prove that (4.2.12) holds in a moment. First, however, let us show how (4.2.12)

implies the result. Substituting this bound into the previous expression gives

∑
n>N

|f̂(ωn)|2 .M2α
∞∑
l=0

(ωN + 2lM)−2α‖Ψ‖2 .
(ωN
M

)1−2α
‖Ψ‖2.

Similarly, we also get ∑
n<−N

|f̂(ωn)|2 .

(
|ω−N |
M

)1−2α

‖Ψ‖2.

An application of (4.2.6) now gives

Ẽ(T, N)2 .
1

d1

(
min{ωN , |ω−N |}

M

)1−2α

.

Since ωN , |ω−N | & N as N →∞, the result now follows.

It remains to establish (4.2.12). Write {ωn/M : ωn ∈ Il} = {x1, . . . , xL} where

ωN/M + l ≤ x1 < x2 < . . . < xL ≤ ωN/M + l + 1,

and set x0 = x1 and xL+1 = xL. Note that η/(2M) ≤ xn+1 − xn ≤ η/M . Therefore

∑
n:ωn∈Il

|Ψ(ωn/M)|2 =

L∑
n=1

|Ψ(xn)|2 ≤ 2M

η

L∑
n=1

µn|Ψ(xn)|2,

where µn = 1
2(xn+1 − xn−1). Hence, by Lemma 4.2.11 we have

∑
n:ωn∈Il

|Ψ(ωn/M)|2 ≤ 2M

η

[
‖Ψ‖[a,b] +

η

Mπ
‖Ψ′‖[a,b]

]2
,

where a = 1
2(x1 + x0) = x1 and b = 1

2(xL+1 + xL) = xL. Note that |b − a| ≤ 1. Hence

since Ψ is periodic, we get

∑
n:ωn∈Il

|Ψ(ωn/M)|2 ≤ 2M

η

[
‖Ψ‖+

η

Mπ
‖Ψ′‖

]2
.

To prove the result, we only need to show that ‖Ψ′‖ ≤Mπ‖Ψ‖. Since Ψ is a trigonometric
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polynomial given by (4.2.11), we have

‖Ψ′‖ ≤ 2 max {M2 −M3,M3 −M1}π‖Ψ‖.

Thus it remains to show that M2 −M3,M3 −M1 ≤ M/2. Since T ⊆ H by assumption,

the function φ must have compact support. Let supp(φ) ⊆ [a, b]. Then we must also have

that −a ≤M1 ≤M2 ≤M − b. In particular, M2 −M1 ≤M − (b− a) < M . Therefore

M2 −M3 ≤M2 −
M1 +M2

2
<
M

2
, M3 −M1 ≤

M1 +M2

2
+ 1−M1 ≤

M

2
+ 1− b− a

2
.

Since M3 −M1 ∈ N and b− a > 0 we obtain the result.

We are now ready to prove our main result for frame samples.

Proof of Theorem 4.2.3. By Theorem 3.2.7, we may consider Ẽ(T, N). Proceeding in a

similar manner to the proof of Theorems 4.2.1 and 4.2.2, we see from Lemma 4.2.8 that

it suffices to estimate Ẽ(Ti, N), Ẽ(Tleft, N) and Ẽ(Tright, N) separately. Since Ẽ(Ti, N)

can be bounded using Proposition 4.2.12, it remains to derive bounds for Ẽ(Tleft, N) and

Ẽ(Tright, N) only. If we now argue in an identical way to the previous proof, i.e. by writing

the spaces Tleft and Tright as linear combinations of the functions φ[a,b] whose total number

is independent of R, then we see that it suffices to show the following: for an arbitrary

function f ∈ L2(0, 1),

2−R
∑
|n|>N

∣∣∣f̂ (ωn
2R

)∣∣∣2 < ε, (4.2.13)

provided N ≥ c2R for some c > 0 depending only on f (this replaces the condition (4.2.9)

in the proof of Theorems 4.2.1 and 4.2.2). Recall from the proof of Proposition 4.2.12 that

we may assume without loss of generality that the frame sequence {ωn}n∈Z is separated

with separation at least η/2 and maximal spacing at most η. Thus the points {ω̃n}n∈Z,

where ω̃n = ωn/2
R, have maximal spacing at most η/2R and we find that

2−R
∑
|n|>N

∣∣∣f̂ (ωn
2R

)∣∣∣ ≤ 2

η

∑
|n|>N

µn|f̂(ω̃n)|2,

where µn = ω̃n+1−ω̃n−1

2 . Since f ∈ H we may apply Lemma 4.2.11 to get

2−R
∑
|n|>N

∣∣∣f̂ (ωn
2R

)∣∣∣ ≤ 2

η

[(
‖f̂‖J+ +

η

2Rπ
‖f̂ ′‖J+

)2
+
(
‖f̂‖J− +

η

2Rπ
‖f̂ ′‖J−

)2
]
,

where J+ = (ω̃N ,∞) and J− = (−∞, ω̃−N ). To obtain (4.2.13) we merely note that

f̂ ′ = f̂1 ∈ L2(R), where f1(x) = xf(x), and max{ω̃N ,−ω̃−N} & N/2R for large N .

Finally, we prove Theorem 4.2.5, which gives an explicit upper bound for the recon-
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struction constant in the case of reconstructing in Haar wavelets:

Proof of Theorem 4.2.5. Since we have already shown have C2(Ω) ≤ (1 + 2δ)2, and since

T ⊆ UM , it is enough to estimate C1(Ω,UM ). For any f ∈ UM , we can write

f(x) =
√
M

M−1∑
m=0

amφ(Mx−m).

Therefore, as before, we get

f̂(ω) =
1√
M
φ̂
( ω
M

)
Ψ̃
( ω
M

)
, (4.2.14)

where, for M0 = bM/2c,

Ψ̃(x) =

M−1∑
m=0

ame−2πimx = e−2πiM0x
M−M0−1∑
m=−M0

am+M0e−2πimx = e−2πiM0xΨ(x),

and Ψ(x) =
∑M−M0−1

m=−M0
am+M0e−2πimx. Note that Ψ is a trigonometric polynomial of

degree at most M0 and moreover, since {φ(· − k)}k∈Z is an orthonormal basis, we have

‖Ψ‖2 = ‖f‖2. Set xn = ωn/M and νn = µn/M , for n = 1, . . . , N . Then, by (4.2.14), we

have

〈Sf, f〉 =
N∑
n=1

νn|Ψ(xn)|2|φ̂(xn)|2. (4.2.15)

Now, since 2K/M ∈ N, note that UM ⊆ U2K in this case, and therefore it suffices to

prove the result for M = 2K. Since {ωn}Nn=1 are (K, δ)-dense, we have that {xn}Nn=1 are

(K/M, δ/M)-dense. In order to apply Lemma 4.2.11 to {xn}Nn=1, we set x0 = −x1−2K/M

and xN+1 = 2K/M − xN , so that a = −K/M = −1/2 and b = K/M = 1/2, and so that

maxn=0,...,N{xn+1 − xn} = δ/K. Therefore, after an application of Lemma 4.2.11, we

obtain

〈Sf, f〉 ≥ min
n=1,...,N

|φ̂(xn)|2
(
‖Ψ‖[a,b] −

δ

Kπ
‖Ψ′‖[a,b]

)2

≥ d0

(
‖Ψ‖[a,b] −

δ

Kπ
‖Ψ′‖[a,b]

)2

,

where d0 = minω∈[−1/2,1/2] |φ̂(ω)|2. Since b− a = 1 and Ψ is periodic, we therefore have

〈Sf, f〉 ≥ d0

(
‖Ψ‖ − δ

Kπ
‖Ψ′‖

)2

≥ d0

(
1− 2δM0

K

)2

‖Ψ‖2 ≥ d0 (1− 2δ)2 ‖Ψ‖2,

where we used ‖Ψ′‖ ≤ 2M0π‖Ψ‖ and M0 ≤ K. Finally, we note that |φ̂(ω)| = |sinc(ωπ)|
and that

|sinc(ωπ)| ≥ |sinc(π/2)| = 2/π, ω ∈ [−1/2, 1/2],
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which completes the proof.

4.3 Necessity of the linear scaling of K and dim(T)

Having shown that stable reconstruction is possible provided the bandwidth K scales

linearly with the dimension dim(T) = 2R of the wavelet reconstruction space, we now

consider the threshold of this scaling:

Theorem 4.3.1. Let ΩN = {ωn : n = 1, . . . , N} ⊆ [−K,K] for some K > 0 and

suppose that S is given by (3.1.9) with weights (3.2.1). Let T be the reconstruction space

of dimension 2R corresponding to either periodic, folded or boundary-corrected wavelets,

where 2R−1 > K. Then

C1(ΩN ,T)−
1
2 ≥

c1 exp
(
c2(1− z)2R

)
√
K

,

where z = max{1/2,K/2R−1} < 1 and c1, c2 > 0 depend only on φ.

The constant C1(ΩN ,T)−1/2 indicates stability of the NUGS reconstruction. Namely,

recall that for the condition number of the NUGS mapping F we have

κ(F ) = C1(ΩN ,T)−
1
2 ,

when κ(F ) is defined as in (3.1.11). Moreover, a result in [AHP13] shows that con-

stant C1(ΩN ,T)−1/2 is essentially universal. Specifically, any reconstruction algorithm

that is so-called perfect [AHP13, Def. 3.9] must have a condition number that is at least

C1(ΩN ,T)−1/2. In particular, noting Theorem 4.3.1, we see that to recover wavelet coef-

ficients up to scale R stably, it is necessary to take samples from a bandwidth K that is

at least 2R−1, regardless of the method used.

Specifically, Theorem 4.3.1, which generalizes a result proved in [AHP14] to the case

of nonuniform samples, establishes the following. Suppose that the size M = 2R of the

reconstruction space is roughly 2αK. If α > 1 then the condition number C1(ΩN ,T)−1/2

blows up exponentially fast as M →∞. In other words, if the bandwidth K of the sam-

pling is not sufficiently large in comparison to the wavelet scale R, then ill-conditioning is

necessarily witnessed in the reconstruction. Therefore, stable recovery requires bandwidth

K which is at least M/2. Note that this theorem does not assume density of the samples,

just that their maximal bandwidth is K. In particular, even if f̂(ω) were known for ar-

bitrary |ω| ≤ K one would still have the same result, i.e. insufficient sampling bandwidth

implies ill-conditioning.

It is instructive to compare this result with Theorem 4.2.5, which estimates the re-

construction constant for Haar wavelets. If M ≈ 2αK then Theorem 4.2.5 demonstrates
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that C(ΩN ,T) is bounded whenever α is less than or equal to the critical value α0 = 1.

Conversely, if α > α0 then exponential ill-conditioning necessarily results as a consequence

of Theorem 4.3.1. For other wavelets, Theorems 4.2.1 and 4.2.2 show that stable recon-

struction is possible for sufficiently small scaling α, but unlike the Haar wavelet case, they

do not establish the exact value for α0 that delineates the stability and instability regions.

Theorem 4.3.1 follows immediately from the following lemma:

Lemma 4.3.2. Let ΩN and S be as in Theorem 4.3.1. Let T ⊆ H and suppose that

T ⊇ U, where

U = span
{√

Mφ(M · −m) : m = M1, . . . ,M2

}
.

for some M ∈ N, M1,M2 ∈ Z and M > 2K. If {φ(· − k)}k∈Z is a Riesz basis for its span

with bounds d1 and d2 then

C1(ΩN ,T)−1/2 ≥
√
d1

d2

exp [c(M2 −M1 − 2)(1− z)]√
2K + 1

,

where z = max{1/2, 2K/M}, and c > 0 depends only on φ.

Proof of Theorem 4.3.1. In each case, we merely set U = Ti to be the space spanned by

the interior wavelets. The result follows immediately from Lemma 4.3.2.

To prove Lemma 4.3.2, we require the following result (see [AHP14, Prop. 6.2] for a

proof):

Lemma 4.3.3. Let P ∈ N and z ∈ (0, 1/2). Then there exists a constant c > 0 indepen-

dent of P and z such that, if z′ = max{1/4, z}, then

sup

sup|t|≤1/2 |Ψ(t)|
sup|t|≤z |Ψ(t)|

: Ψ(t) =
∑
|n|≤P

ake
i2πkt, ak ∈ C

 ≥ exp
(
cP (1/2− z′)

)
.

Proof of Lemma 4.3.2. Note that C1(ΩN ,T) ≤ C1(ΩN ,U). Let f ∈ U. Then

〈Sf, f〉 =
1

M

N∑
n=1

µn|φ̂(ωn/M)|2|Ψ(ωn/M)|2,

where Ψ(x) =
∑M2

k=M1
ake
−2πikx satisfies d1‖Ψ‖2 ≤ ‖f‖2 ≤ d2‖Ψ‖2. Thus

〈Sf, f〉 ≤ sup
|ω|≤K/M

|φ̂(ω)|2 sup
|t|≤K/M

|Ψ(t)|2
(

1

M

N∑
n=1

ωn+1 − ωn−1

2

)

=
2K

M
sup

|ω|≤K/M
|φ̂(ω)|2 sup

|t|≤K/M
|Ψ(t)|2

≤ 2Kd2

M
sup

|t|≤K/M
|Ψ(t)|2,
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where the final inequality follows from (4.1.1). The definition (3.1.2) of C1(ΩN ,U), now

gives

C1(ΩN ,U) ≤ 2Kd2

Md1
inf

Ψ∈V

{
sup|t|≤K/M |Ψ(t)|2

‖Ψ‖2

}
,

where

V =


M2−M3∑

k=M1−M3

ake
2πikx : ak ∈ C

 , M3 =

⌈
M1 +M2

2

⌉
.

Since M2 −M1 ≤M we have |Ψ(t)|2 ≤ (M + 1)‖Ψ‖2, and therefore

C1(ΩN ,T) ≤ d2

d1
(2K + 1) inf

Ψ∈V

{
sup|t|≤K/M |Ψ(t)|2

sup|t|≤1/2 |Ψ(t)|2

}
. (4.3.1)

To complete the proof, we first note that

min{M2 −M3,M3 −M1} ≥ (M2 −M1 − 1)/2.

Thus, V contains all trigonometric polynomials of degree
⌊
M2−M1−1

2

⌋
≥ M2−M1

2 − 1. An

application of Lemma 4.3.3 now gives the result.

4.4 Efficient computation of wavelet coefficients

Recall from Section 3.1.2 that the NUGS reconstruction f̃ from the samples {f̂(ωn) :

n = 1, . . . , N}, in the space T spanned by {ϕm : m = 1, . . . ,M}, can be written as f̃ =∑M
m=1 amϕm where the coefficients a = (am)Mm=1 is the least-squares solution to the linear

system

Aa = b, (4.4.1)

which can be written as
√
µ1

. . .

√
µN




ϕ̂1(ω1) . . . ϕ̂M (ω1)

...
. . .

...

ϕ̂1(ωN ) . . . ϕ̂M (ωN )




a1

...

aN

=


√
µ1

. . .

√
µN




f̂(ω1)

...

f̂(ωN )

.

As mentioned before, in the general case, solving this system has a computational complex-

ity of O(NM). In this section we show that in the case of recovering wavelet coefficients,

the computational complexity is only O(N logM), since in this case the cost of apply-

ing matrix A and its adjoint A∗ is only O(N logM). In fact, for nonuniform sampling

where N = O(K), the computational complexity is simply O(M logM), due to the linear

correspondences between K and M derived in previous sections.
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We describe the computational issues relating to the recovery in the space of boundary-

corrected wavelets (4.1.8). NUGS may also be efficiently implemented with wavelets sat-

isfying other boundary conditions such as periodic or symmetric boundary conditions—

periodic and folded wavelets—however, here we consider the boundary-corrected wavelets,

since such wavelets preserve vanishing moments at the domain boundaries and form un-

conditional bases on function spaces of certain regularity on bounded domains. Moreover,

although we shall only address the reconstruction of coefficients for dimensions d = 1 and

d = 2, the techniques described here can readily be applied to higher dimensional cases.

Let us add that, while we mainly focus on the linear recovery model (4.4.1), the same com-

putational aspects analysed here arise in various other nonlinear recovery schemes such

as the `1-minimization schemes introduced in [AH15a, AHPR14, Poo14]. Namely, when-

ever one wants to recover wavelet coefficients from nonuniform Fourier measurements,

one needs fast computations involving the same matrix as the one appearing in (4.4.1), as

well as the fast computations involving its adjoint. Hence, the algorithms described here

can readily be applied to yield efficient implementations of these other nonlinear recovery

schemes.

4.4.1 The one-dimensional case

Let the reconstruction space T be generated by the first 2R elements of the boundary-

corrected wavelets basis defined on the interval [0, 1] as in (4.1.8). We denote the dimension

of T by M = 2R. Note that the support of the corresponding scaling and wavelet functions

is contained in [−p + 1, p], for some p ∈ N, and the finest wavelet scale R is chosen such

that R > log2(2p).

First of all, let us recall the following. For a function f ∈ T, for T defined as in (4.1.8),

we can write

f(x) =
2J−1∑
k=0

cJ,kφ
int
J,k(x) +

R−1∑
j=J

2j−1∑
k=0

dj,kψ
int
j,k(x)

and also

f(x) =
2R−1∑
k=0

cR,kφ
int
R,k(x)

for some scaling coefficients cj,k and some detail coefficients dj,k. Given the scaling

coefficients {cR,k : k = 0, . . . , 2R − 1}, it is possible compute the scaling coefficients

{cJ,k : k = 0, . . . , 2J −1} and detail coefficients {dj,k : k = 0, . . . , 2j−1, j = J, . . . , R−1},
and vice versa. This can be done by the discrete boundary-corrected Forward Wavelet

Transform (FWT), which we denote by W and by W in two dimensions. The reverse

operation is performed by the discrete boundary-corrected Inverse Wavelet Transform

(IWT), denoted by W−1, in one, and by W−1 in two dimensions.

As explained previously, efficient implementation of NUGS leans on the efficient im-
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4.4. Efficient computation of wavelet coefficients

plementation of the forward and adjoint operations, A and A∗, which we now describe in

detail. For this choice of the reconstruction space, given α ∈ CM and ζ ∈ CN , the forward

operation can be written as

β = A(α) =

(
√
µn〈

M−1∑
k=0

αmϕk, eωn〉

)N
n=1

, (4.4.2)

and the adjoint operation as

γ = A∗(ζ) =

(
〈
N∑
n=1

√
µneωnζn, ϕk〉

)M−1

k=0

. (4.4.3)

We describe how these operations can be computed efficiently by using the following

operators:

i) For the set of frequencies ΩN and the corresponding set of weights {µn}Nn=1, the

diagonal weighting operator V = VΩN : CN → CN is given by

V (γ) = (
√
µnγn)Nn=1 , γ ∈ CN . (4.4.4)

ii) For the set of frequencies ΩN , the operator F = FΩN : CM → CN is given by

F (γ) =

 1√
M

M−p−1∑
k=p

γkeωn

(
− k

M

)N

n=1

, γ ∈ CM . (4.4.5)

iii) For the set of frequencies ΩN and the scaling function φ, the operator D = DΩN ,φ :

CN → CN is given by

D(ζ) =
(
φ̂
(ωn
M

)
ζn

)N
n=1

, ζ ∈ CN . (4.4.6)

For the weighting operator we have V ∗ = V . The adjoint operator of F is F ∗ : CN → CM

given by

(F ∗(ζ))k =

 1√
M

∑N
n=1 ζneωn

(
k
M

)
k = p, . . . ,M − p− 1

0 otherwise
, ζ ∈ CN (4.4.7)

and the adjoint operator of D is D∗ : CN → CN given by

D∗(ζ) =

(
φ̂
(ωn
M

)
ζn

)N
n=1

, ζ ∈ CN . (4.4.8)

Now we can analyse the operations (4.4.2) and (4.4.3). We first consider the forward
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operation. Given α ∈ CM , the equation β = A(α) is equivalent to

βn =
√
µn

M−1∑
k=0

α̃k〈φint
R,k, eωn〉, n = 1, . . . , N,

where α̃ = W−1(α) ∈ CM and W−1 is discrete IWT. Since the Fourier transform of the

internal scaling function 〈φint
R,k, eω〉 can be written as

φ̂int
R,k(ω) =

1√
M
φ̂
( ω
M

)
eω

(
− k

M

)
, k = p, . . . ,M − p− 1,

by using the definitions of operators F and D, we get

β̃n=
1
√
µn
βn

=
1√
M

p−1∑
k=0

α̃kφ̂
left
k

(ωn
M

)
+ (D (F (α̃)))n+

1√
M

M−1∑
k=M−p

α̃kφ̂
right
M−k−1

(ωn
M

)
, n = 1, . . . , N.

Once β̃ has been computed, it is left to apply the weighting operator and get β = V (β̃).

For the adjoint operation, to compute γ = A∗(ζ) for given ζ ∈ CN , we first apply the

weighting operator and set ζ̃ = V (ζ). Then, similarly to the forward operation case, one

can check that γ̃ = W−1γ and ζ are related by the following equations

γ̃k =
1√
M

N∑
n=1

ζ̃nφ̂left
k

(ωn
M

)
, k = 0, . . . , p− 1,

γ̃k =
1√
M

N∑
n=1

ζ̃mφ̂
right
M−k−1

(ωn
M

)
, k = M − p, . . . ,M − 1,

and

γ̃k =
1√
M

N∑
n=1

φ̂
(ωn
M

)
ζ̃neωn

(
k

M

)
, k = p, . . . ,M − p− 1.

Note that, by using adjoint operators D∗ and F ∗, this last part can be written as

γ̃k =
(
F ∗
(
D∗(ζ̃)

))
k
, k = p, . . . ,M − p− 1.

These computational steps, that we summarize below, lead to the efficient algorithm

for forward and adjoint operations, and therefore to to the efficient algorithm for solving

the weighted least-squares system (4.4.1).
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The one-dimensional algorithm

Precompute the weights {µn}Nn=1 and pointwise measurements of the Fourier transforms

of the three scaling functions:(
φ̂
(ωn
M

))N
n=1

,
(
φ̂left
k

(ωn
M

))N
n=1

,
(
φ̂right
k

(ωn
M

))N
n=1

, k = 0, . . . , p− 1.

The forward operation: Given α ∈ CM , β = A(α) can be obtained by applying the

following steps.

(i) Compute the scaling coefficients α̃ = W−1(α), where W−1 is the one-dimensional

discrete boundary-corrected IWT.

(ii) Compute contributions from the boundary scaling functions:

β̃L =

(
1√
M

p−1∑
k=0

α̃kφ̂
left
k

(ωn
M

))N
n=1

, β̃R =

 1√
M

M−1∑
k=M−p

α̃kφ̂
right
M−k−1

(ωn
M

)N

n=1

.

(iii) Compute contribution from the internal scaling functions:

(1) Apply F to α̃ to get α̂ = F (α̃), where F is defined by (4.4.5).

(2) Apply D to α̂ to get β̃I = D(α̂), where D is defined by (4.4.6).

(iv) Compute β̃ = β̃L + β̃R + β̃I.

(v) Apply V to compute β = V (β̃), where V is defined by (4.4.4).

The adjoint operation: Given ζ ∈ CN , γ = A∗(ζ) can be computed as follows.

(i) Apply the weighting operator V and set ζ̃ = V (ζ).

(ii) Compute the coefficients of the boundary scaling functions:

γ̃k =
1√
M

N∑
n=1

ζ̃nφ̂left
k

(ωn
M

)
, γ̃M−k−1 =

1√
M

N∑
n=1

ζ̃nφ̂
right
k

(ωn
M

)
,

for k = 0, . . . , p− 1.

(iii) Compute the coefficients of the internal scaling functions:

(1) Compute ζ̃φ = D∗(ζ̃), where D∗ is defined by (4.4.8).

(2) Compute γ̃k =
(
F ∗(ζ̃φ)

)
k
, k = p − 1, . . . ,M − p − 1, where F ∗ is defined by

(4.4.7).
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(iv) Compute γ = W (γ̃), where W is discrete one-dimensional boundary-corrected FWT.

Remark 4.4.1 Regarding the computation of weights {µn}Nn=1, see Remark 3.1.8.

Remark 4.4.2 The above algorithm requires the precomputation of pointwise evalua-

tions of the Fourier transform of the internal and boundary scaling functions. Note that

for Daubechies wavelets, for the internal scaling function φ, we may use the approximation

J∏
j=1

m0(2−jξ)→ φ̂(ξ), J →∞

where m0 is a trigonometric polynomial [Dau92]. A similar approximation may be used

in the case of the boundary scaling functions. For more details see appendix in [GP15].

Remark 4.4.3 Recall that in solving (4.4.1) we obtain a = (am)Mm=1 which is an ap-

proximation of the first M wavelet coefficients of f and the reconstructed signal is f̃ =∑M
m=1 amφm. To evaluate the signal f̃ on the grid points (j2−L)2L

j=1 for L ∈ N, it suffices

to evaluate each φ on these grid points and we may do so by either implementing the

cascade algorithm [Dau92] or the dyadic dilation algorithm [LMR97].

Computational cost of the one-dimensional algorithm. Let us analyse the com-

putational cost of the forward operation. The adjoint operation can be analysed similarly

leading to the same computational cost. The computational cost of step 1 and the dis-

crete boundary-corrected IWT is O(M). The cost of step 2, involving boundary scaling

functions, is O(pN). For step 3a, the key point is to observe that F is simply a restricted

and shifted version of the discrete nonuniform Fourier transform, and thus its fast imple-

mentation NUFFT can be used when computing F (α̃). Hence, the the cost of step 3a is

O(L log(M) + JN), where L is the length of underlying interpolating FFT for NUFFT,

and J is the number of interpolating coefficients (typically J = 7) [FS03]. Finally, the

cost of the diagonal operations in both steps 3b and 5 is O(N). Therefore, given that

J ∼ p and L ∼ N , the total cost is essentially O(pN +N log(M)).

4.4.2 The two-dimensional case

For the two-dimensional implementation of the NUGS reconstruction, we use wavelets ob-

tained by applying the tensor product to the one-dimensional boundary-corrected wavelets,

thereby defining a basis on [0, 1]2. Namely, we introduce the following two-dimensional

functions

Φj,(k1,k2)(x1, x2) = φint
j,k1

(x1)φint
j,k2

(x2), Ψ1
j,(k1,k2)(x1, x2) = φint

j,k1
(x1)ψint

j,k2
(x2),

Ψ2
j,(k1,k2)(x1, x2) = ψint

j,k1
(x1)φint

j,k2
(x2), Ψ3

j,(k1,k2)(x1, x2) = ψint
j,k1

(x1)ψint
j,k2

(x2).
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For J ≥ log2(2p),

W0
J =

{
ΦJ,(k1,k2) : 0 ≤ k1, k2 ≤ 2J − 1

}
and

W i
j =

{
Ψi
j,(k1,k2) : 0 ≤ k1, k2 ≤ 2j − 1

}
, j ∈ N, j ≥ J, i = 1, 2, 3,

the set

W0
J ∪

⋃
j≥J

{
W i
j : i = 1, 2, 3

} (4.4.9)

forms a basis for L2([0, 1]2). We now order the basis elements of (4.4.9) in increasing order

of wavelet scales so that we can write

(ϕm1,m2)m1,m2∈N =



W0
J W1

J W1
J+1 . . .

W2
J W3

J

W2
J+1 W3

J+1

...
. . .


.

Let T be the space spanned by the first M ×M wavelets via this ordering, so that

T = span {ϕm1,m2 : 1 ≤ m1,m2 ≤M} .

For M = 2R and R > J ≥ log2(2a), we have

T = span W0
J ⊕

(
⊕3
i=1 ⊕R−1

j=J span W i
j

)
= span W0

R, (4.4.10)

which is the reconstruction space of dimension M2 that we consider here. Additionally,

for N ≥M2, let ΩN =
{
ωn : ωn = (ω1

n, ω
2
n), n = 1, . . . , N

}
be the set of sampling points

in R2, which we write ΩN = (Ω1
N ,Ω

2
N ) correspondingly. In this case, the least-squares

system (4.4.1) becomesµn〈 M∑
m1,m2=1

am1,m2ϕm1,m2 , eωn〉

N

n=1

= (µn〈f, eωn〉)
N
n=1 .
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If we apply the two-dimensional boundary-corrected IWT, denoted by W−1, to the matrix

of wavelet coefficients a ∈ CM×M , so that ã = W−1(a) ∈ CM×M , we getµn〈 M∑
k1,k2=1

ãk1,k2ΦR,(k1,k2), eωn〉

N

n=1

= (µm〈f, eωn〉)
N
n=1 .

Since ΦR,(k1,k2)(x1, x2) = φint
R,k1

(x1)φint
R,k2

(x2), we can write the following algorithm.

The two-dimensional algorithm

Precompute the vectors {µn}Nn=1 and

(
φ̂

(
ωin
M

))N
n=1

,

(
φ̂left
k

(
ωin
M

))N
n=1

,

(
φ̂right
k

(
ωin
M

))N
n=1

, k = 0, . . . , p− 1, i = 1, 2.

The forward operation: Given α ∈ CM×M , β = A(α) ∈ CN can be obtained by

applying the following steps.

(i) Compute the scaling coefficients α̃ = W−1(α), where W−1 is the discrete two-

dimensional boundary-corrected IWT.

(ii) Compute contributions from the corners (the boundary scaling functions in the both

axis):

βLL =

 1

M

p−1∑
k1=0

p−1∑
k2=0

α̃k1,k2 φ̂
left
k1

(
ω1
n

M

)
φ̂left
k2

(
ω2
n

M

)N

n=1

βLR =

 1

M

p−1∑
k1=0

M−1∑
k2=M−p

α̃k1,k2 φ̂
left
k1

(
ω1
n

M

)
φ̂right
M−k2−1

(
ω2
n

M

)N

n=1

βRL =

 1

M

M−1∑
k1=M−p

p−1∑
k2=0

α̃k1,k2 φ̂
right
M−k1−1

(
ω1
n

M

)
φ̂left
k2

(
ω2
n

M

)N

n=1

βRR =

 1

M

M−1∑
k1=M−p

M−1∑
k2=M−p

α̃k1,k2 φ̂
right
M−k1−1

(
ω1
n

M

)
φ̂right
M−k2−1

(
ω2
n

M

)N

n=1

(iii) Compute contributions from the edges (the boundary scaling functions in only one
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of the axis):

β̃LI =
1√
M

p−1∑
k1=0

DΩ1
Nφ

left
k1

DΩ2
Nφ
FΩ2

N
(α̃k1,·)

β̃RI =
1√
M

M−1∑
k1=M−p

D
Ω1
Nφ

right
M−k1−1

DΩ2
Nφ
FΩ2

N
(α̃k1,·)

β̃IL =
1√
M

p−1∑
k2=0

DΩ1
Nφ
DΩ2

Nφ
left
k2

FΩ1
N

(α̃·,k2)

β̃IR =
1√
M

p−1∑
k2=0

DΩ1
Nφ
D

Ω2
Nφ

right
M−k2−1

FΩ1
N

(α̃·,k2)

where F and D are defined by (4.4.5) and (4.4.6), respectively.

(iv) Compute contribution from the internal scaling functions:

(1) α̂ = FΩN (α̃), where FΩN : CM×M → CN is such that for each γ ∈ CM×M

FΩN (γ) =

 1

M

M−p−1∑
k1,k2=p

γk1,k2eωn

(
−(k1, k2)

M

)N

n=1

.

(2) β̃II = DΩ1
N ,φ

DΩ2
N ,φ

(α̂).

(v) Compute β̃ = β̃LL + β̃LR + β̃RL + β̃RR + β̃LI + β̃RI + β̃IL + β̃IR + β̃II.

(vi) Apply V to get β = V (β̃), where V is defined by (4.4.4).

The adjoint operation: Given ζ ∈ CN , γ = A∗(ζ) ∈ CM,M can be computed as

follows.

(i) Apply the weighting operator V and set ζ̃ = V (ζ).

(ii) Compute the scaling coefficients at the corners

γ̃k1,k2 =
1

M

N∑
n=1

ζnφ̂left
k1

(
ω1
n

M

)
φ̂left
k2

(
ω2
n

M

)
,

γ̃k1,M−p+k2 =
1

M

N∑
n=1

ζnφ̂left
k1

(
ω1
n

M

)
φ̂right
p−k2−1

(
ω2
n

M

)

γ̃M−p+k1,k2 =
1

M

N∑
n=1

ζnφ̂
right
p−k1−1

(
ω1
n

M

)
φ̂left
k2

(
ω2
n

M

)
,

γ̃M−p+k1,M−p+k2 =
1

M

N∑
n=1

ζnφ̂
right
p−k1−1

(
ω1
n

M

)
φ̂right
p−k2−1

(
ω2
n

M

)
.
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for k1, k2 = 0, . . . , p− 1.

(iii) Compute the scaling coefficients at the edges

γ̃k1,k2 =
1√
M

((
FΩ1

N

)∗ (
DΩ1

Nφ

)∗ (
DΩ2

Nφ
left
k2

)∗
(ζ̃)
)
k1

,

γ̃k1,k2 =
1√
M

((
FΩ1

N

)∗ (
DΩ1

Nφ

)∗(
D

Ω2
Nφ

right
p−k2−1

)∗
(ζ̃)

)
k1

,

for k1 = p, . . . ,M − p− 1, k2 = 0, . . . , p− 1 and

γ̃k1,k2 =
1√
M

((
FΩ2

N

)∗ (
DΩ1

Nφ
left
k1

)∗ (
DΩ2

Nφ

)∗
(ζ̃)
)
k2

,

γ̃k1,k2 =
1√
M

((
FΩ2

N

)∗(
D

Ω1
Nφ

right
p−k1−1

)∗ (
DΩ2

Nφ

)∗
(ζ̃)

)
k2

,

for k1 = 0, . . . , p− 1, k2 = p, . . . ,M − p− 1, where F ∗ and D∗ are defined by (4.4.7)

and (4.4.8), respectively.

(iv) Compute the scaling coefficients of the internal wavelets

(1) ζ̃φ,φ =
(
DΩ1

N ,φ

)∗ (
DΩ2

N ,φ

)∗
(ζ̃).

(2) γ̃k1,k2 =
(
F∗
(
ζ̃φ,φ

))
k1,k2

, k1, k2 = p− 1, . . . ,M − p− 1.

(v) Compute γ = W(γ̃), where W is the discrete two-dimensional boundary-corrected

FWT.

Computational cost of the two-dimensional algorithm. Again, let us analyse the

computational cost of the forward operation. The cost of step 1 is O(M2) and of step 2

is O(p2N). Step 3 has O(p(N + L log(M) + JN)) computations. The cost of step 4a is

basically the cost of the two-dimensional NUFFT, i.e. O(L2 logM2 + J2N). The cost of

step 4b as well as step 6 is O(N). Hence, if we assume J ∼ p and L2 ∼ N , the total cost

is O(p2N +N logM2). The same cost holds for the adjoint operation.

4.5 Numerical examples

In this section, we illustrate theory developed so far. In particular, we demonstrate

performance of NUGS reconstruction using different wavelets. The code used to generate

most of these examples was developed in a collaboration with Clarice Poon and it is

available at http://www.damtp.cam.ac.uk/user/mg617/GS wavelets.zip.

Example 4.5.1 (Sufficiency of the sampling rate) The main result proved in the

Section 4.2 is that one requires a linear scaling of the bandwidth K (or the truncation
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index N) with the dimension of the reconstruction subspace M = 2R for stable and quasi-

optimal reconstruction in wavelet subspaces. We now illustrate this in Table 4.1 for the

Haar and Daubechies wavelets of order 4 (DB4) on [0, 1]. We use two different sampling

schemes: (i) a log sampling scheme defined by (3.4.13) with δ such that δ < 1/2; and (ii)

Seip’s frame sequence defined as follows: for a given N ∈ N, define

ΩN = {ωn}−Nn=−1 ∪ {ωn}
N
n=1, ωn = n(1− |n|−1/2); (4.5.1)

in [Sei95b], it is shown that the corresponding infinite set of frequencies Ω = Ω∞ gives

rise to a Fourier frame with density δ = 1/2.

Namely, in Table 4.1, for a given reconstruction space, the smallest value of K (or N)

is shown such that the reconstruction constant C(Ω,T) is upper-bounded by a constant,

where C(Ω,T) is estimated by using the results given in §3.1.2. In order to have a

well-conditioned and quasi-optimal reconstruction, note that the constant of the required

scaling is roughly 1/2, i.e. K (or N) behaves like c02R with c0 ≈ 1/2. In the case of Haar

wavelets, this is due to the explicit estimates of Theorem 4.2.5.

T Ω 2R 32 64 128 256 512 1024 T Ω 2R 32 64 128 256 512 1024

Haar
Log K 16 32 64 128 256 512

DB4
Log K 16 32 64 128 256 512

Frame N 20 38 72 139 272 535 Frame N 20 38 72 139 272 535

Table 4.1: For a given number of reconstruction vectors 2R, the smallest value of K (or N) is
shown such that the reconstruction constant C(Ω,T) is at most 100. This is done for different
reconstruction spaces T—Haar and DB4—and for different sampling schemes Ω: Seip’s frame
sequence and log sampling scheme, the later one with δ = 0.475 and ν = 0.33.

Example 4.5.2 (Necessity of the sampling rate) Theorem 4.3.1 provides a lower es-

timate for robust scaling of the sampling bandwidth K (or the truncation index N) with

the dimension of the reconstruction subspace M = 2R . In particular, if the scaling c0

is less than 1/2 then exponential instability necessarily results in the reconstruction, re-

gardless of the wavelet basis used. This is shown in Table 4.2 for both Haar and DB4

wavelets. Note also that in the unstable regime, i.e. c0 < 1/2, the reconstruction f̃ is also

far from quasi-optimal. This is demonstrated by plotting ‖f − f̃‖/‖f −PTf‖ for function

f(x) = 1/2 cos(4πx).

Example 4.5.3 (Convergence rates for boundary-corrected wavelets) High con-

vergence rates given by Corollary 4.2.4 are depicted in Figure 4.1. Namely, using an

example of a continuous, nonperiodic function f(x) = x cos(3πx)χ[0,1](x), we compare

the convergence rates of NUGS with boundary-corrected Daubechies wavelets to the sub-

optimal convergence rates of the simple direct approaches based on the discretization of

the Fourier integral called gridding [JMNM91, SN00, VGCR10, GS14].
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T
c0 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250

K 20 24 28 32 36 40

Haar
cond(A) 5.8569e15 2.9255e12 1.8347e05 1.7835 1.6474 1.5768

‖f−f̃‖
‖f−PTf‖ 8.6294e04 7.3412e04 14.4886 1.0016 1.0016 1.0016

DB4
cond(A) 5.0079e15 2.6583e12 1.2918e05 1.6126 1.4744 1.4355

‖f−f̃‖
‖f−PTf‖ 4.0459e06 3.2764e06 303.3421 1.0013 1.0009 1.0008

Table 4.2: The condition number cond(A) and the error ‖f − f̃‖/‖f − PTf‖ are shown for dif-
ferent bandwidths K = c02R and different reconstruction spaces: Haar and DB4 wavelets, where
2R = 64 is taken. The jittered sampling scheme is used for ε = 0.6 and η = 0.15.

Jittered sampling Log sampling

−
lo

g
‖f
−
f̃
‖

✺ ✻ ✼ ✽

✺

✶�
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✺

✶�
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❉❇✁
❉❇✸

logK

Figure 4.1: A nonperiodic continuous function f(x) = x cos(3πx)χ[0,1](x) is reconstructed from
pointwise samples of its Fourier transform taken on a jittered scheme with jitter 0.1 (left) and on
a log scheme (right), where δ < 0.97. Reconstruction is performed via NUGS using different types
of boundary-corrected Daubechies wavelets: Haar, DB2 and DB3, and also via gridding.

Example 4.5.4 (Explicit estimates for Haar wavelets) Table 4.3 considers the case

of Haar wavelet reconstructions more closely for the three different sampling schemes:

jittered (3.4.5), log (3.4.13) and Seip’s frame (4.5.1), and in particular, the magnitude of

the reconstruction constant C(Ω,T) is considered. Recall that both the quasi-optimality

constant µ and the condition number κ of NUGS are upper-bounded by C(Ω,T). The

table suggests that this estimate is reasonably sharp. Recall the technique from §3.1.2

that C(Ω,T) can be approximated by a limiting process. The result of this is also shown

in the table. Moreover, in the (K, δ)-dense case, we see that the estimate C(Ω,T) ≤
(1 + δ)/

√
C1(Ω,T) is also adequate. Finally, the table also shows that the explicit bound

derived in Theorem 4.2.5 is also reasonably good.

Example 4.5.5 (Boundary vs periodic wavelets) We now wish to exhibit the ad-

vantage of NUGS: namely, it allows one to reconstruct in a subspace T that is well suited

to the function to be recovered. In Figures 4.2 and 4.3 we consider the reconstruction of

two functions using different wavelets from exactly the same set of measurements. The
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Ω K |Ω| 2R ‖f − f̃‖ ‖f − PTf‖ ‖f−f̃‖
‖f−PTf‖

cond(A) σmax(A4096)
σmin(A)

1+δ
σmin(A)

π
2

1+δ
1−δ

J
it

te
re

d

32 108 64 6.1080e-2 6.0863e-2 1.003575 1.5507 3.7227 4.7892

14.1372
64 215 128 3.0491e-2 3.0463e-2 1.000914 1.5687 3.8400 4.9401

128 428 256 1.5239e-2 1.5235e-2 1.000238 1.5960 3.9150 5.0365

256 855 512 7.6189e-3 7.6184e-3 1.000065 1.5916 4.1577 5.3488

L
o
g

32 350 64 6.1080e-2 6.0863e-2 1.003567 1.6591 3.4151 4.3935

14.1372
64 814 128 3.0491e-2 3.0463e-2 1.000912 1.6825 3.4681 4.4616

128 1850 256 1.5239e-2 1.5236e-2 1.000237 1.6946 3.4899 4.4897

256 4146 512 7.6189e-3 7.6184e-3 1.000064 1.7007 3.5041 4.5079

F
ra

m
e

32 76 64 6.1080e-2 6.0863e-2 1.003568 2.5674 3.4455

× ×
64 144 128 3.0492e-2 3.0463e-2 1.000932 2.5203 3.3188

128 278 256 1.5241e-2 1.5236e-2 1.000313 2.6211 3.5886

256 544 512 7.6189e-3 7.6184e-3 1.000067 2.5531 3.4046

Table 4.3: The function f(x) = cos(6πx) + 1/2 sin(2πx) is reconstructed by NUGS with Haar
wavelets for different sampling schemes Ω and different bandwidths K. Jittered sampling scheme
is used for ε = 0.6 and η = 0.1; and log sampling scheme is used for δ = 0.4 and ν = 0.4. In the
last three columns, different estimates for the reconstruction constant are computed, by using the
results from §3.1.2 and §4.2.2.

function from Figure 4.2 is periodic, hence we use periodic wavelets, and the function

from Figure 4.3 is nonperiodic, and therefore we use boundary-corrected wavelets. Note

that an inferior reconstruction is obtained if periodic wavelets are used for a nonperiodic

function. Also, as is again evident, increasing the wavelet smoothness leads to a smaller

error. This is due to the property of this approach described in Corollary 4.2.4: namely,

since NUGS is quasi-optimal and since it requires only a linear scaling for wavelet bases,

it obtains optimal approximation rates in terms of the sampling bandwidth.

Example 4.5.6 (Robustness of NUGS) Next we consider the effect of noise. In Ta-

ble 4.4, the actual error ‖f − F (f + ηh)‖ when reconstructing a function f from noisy

measurements, where the noise is described by the term ηh, is compared to the estimate

C̃(Ω,T) (‖f − PTf‖+ η‖h‖), where C̃(Ω,T) is an approximation of the reconstruction

constant computed by the techniques from §3.1.2. Note that the bound is reasonably

close to the true value. We also note the robustness of the reconstruction with respect to

noise level embedded in parameter η. This is further illustrated in Figure 4.4, where we

plot the reconstruction of a function f from noisy measurements. Even in the presence of

large noise with η = 0.1, we obtain a good approximation.

Example 4.5.7 (Numerical comparison) As mentioned, two common algorithms for

MRI reconstruction are gridding [JMNM91, SN00, VGCR10] and iterative reconstructions
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Figure 4.2: A smooth, periodic function reconstructed by 2R = 256 Haar, periodic DB2 and
periodic DB4 wavelets, from left to right. Above is the reconstruction f̃ (magenta) and the original
function f (blue), and below is the error |f − f̃ |. In all experiments, the same jittered sampling
scheme is used, with K = 128.

[SNF03]. We now compare these approaches with NUGS. Recall, however, that iterative

reconstruction algorithm can be interpreted as a particular instance of NUGS correspond-

ing to a Haar wavelet basis for T (see Remark 4.2.6). We therefore continue to refer to it

as such in our numerics.

Gridding is a simple technique for MRI reconstruction. It is direct, as opposed to

iterative, and can be computed with a single NUFFT. Unfortunately, this reconstruction

is plagued by artefacts, even when the original function is periodic. This is shown in the

left panels of Figures 4.5 and 4.6. Alternatively, one can use the NUGS reconstruction

with wavelets. As shown in these figures, this gives a far superior reconstruction of f ,

even in the case of discontinuous functions with sharp peaks (see Figure 4.6). Recall

also that the NUGS reconstruction can also be computed efficiently using NUFFTs (see

Remark 3.1.9). Hence, using the same measurement data, and with roughly the same

computational cost, we obtain a vastly improved reconstruction.

Figures 4.2–4.6 also show the clear advantage of changing the NUGS reconstruction

space T from Haar wavelets (i.e. the iterative reconstructions) to higher-order wavelets.

This improvement is justified by Corollary 4.2.4, following the discussion in Remark 4.1.3.

Remark 4.5.8 The reason why NUGS obtains an improvement by changing T is that

it computes quasi-optimal approximations to the actual wavelet coefficients of f . In

particular, it avoids the wavelet crime [SN96]. Let a∗ be the vector of first M coefficients in
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Figure 4.3: A smooth, nonperiodic function reconstructed by 2R = 256 Haar, periodic DB2
and boundary DB2, from left to right. Above is the reconstruction f̃ (magenta) and the original
function f (blue), and below is the error |f − f̃ |. In all experiments, the same jittered sampling
scheme is used with K = 128.

some wavelet basis. NUGS solves the least-squares problem Aa ≈ b, where A is the matrix

of Fourier samples of wavelet basis functions and b is the vector of nonuniform Fourier

samples of f (see (3.1.13)). The error estimates proved show that ‖a− a∗‖ ≡ ‖f̃ − f‖ is

proportional to the best approximation error ‖f − PTf‖ of f in the wavelet subspace T.

As an alternative, to compute wavelet coefficients one may be tempted to construct

the matrix Ã = FW , where F ∈ CN×M is the nonuniform discrete Fourier transform and

W ∈ CM×M is the discrete wavelet transform, and solve the least-squares problem Ãa ≈ b.
Since W is orthogonal, this is equivalent to solving Fc ≈ b and then setting a = W T c.

However, c is a vector of pixel values of f , and is therefore equivalent to the solution

of the iterative reconstruction algorithm (recall §4.2.2). Since W is orthogonal, we have

‖a − a∗‖ = ‖c − c∗‖, where c is the vector of exact coefficients of f in the pixel basis.

Thus, the accuracy of the computed wavelet coefficients a = W T c is not determined by

how well f is approximated in the given wavelet basis, but how well f is approximated by

a piecewise constant function. This accuracy is typically low, which means that one will

not see the benefits of higher-order wavelets with this approach. In particular, the higher

approximation orders—that is, faster decay of ‖f −PTf‖—offered by boundary-corrected

wavelets (see Remark 4.1.3).

Example 4.5.9 (A two-dimensional example) In this example we reconstruct a two-

dimensional function shown in Figure 4.7, which is continuous but nonperiodic. We use
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T η error estimate T η error estimate T η error estimate

H
aa

r

0 4.48e-2 9.48e-2

D
B

2p

0 3.09e-3 6.55e-3

D
B

2b

0 4.70e-3 9.69-3

0.05 6.66e-2 2.01e-1 0.05 4.92e-2 1.13e-1 0.05 6.97e-2 1.15e-1

0.1 1.08e-1 3.06e-1 0.1 9.81e-2 2.19e-1 0.1 1.39e-1 2.21e-1

0.2 2.02e-1 5.18e-1 0.2 1.96e-1 4.31e-1 0.2 2.78e-1 4.31e-1

0.4 3.97e-1 9.42e-1 0.4 3.92e-1 8.52e-1 0.4 5.56e-1 8.54e-1

Table 4.4: The actual error ‖f−F (f+ηh)‖ and the error estimate C̃(Ω,T) (‖f − PTf‖+ η‖h‖) are
computed for f(x) = (cos(8πx)− 2 sin(2πx))χ[0,1](x) and h(x) = sin(10πx)χ[0,1](x)/‖ sin(10πx)‖,
where C̃(Ω,T) = C3(Ω,T4096)/C1(Ω,T) (see the Section §3.1.2), and Ω is the log sampling scheme
with K = 128, δ = 0.475, ν = 0.33 and N = 1512. The computation is done for different
reconstruction spaces T with 2R = 128 Haar, periodic DB2 and boundary-corrected DB2 functions.
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Figure 4.4: The function f(x) = (− exp((cos(6πx)) + sin(4πx)) cos(10πx) + cos(4πx))χ[0,1](x)
(blue) and the reconstruction F (f + ηh) (magenta), where h(x) = sinc(14π(x −
0.5))χ[0,1]/‖sinc(14π(x − 0.5))‖ and η = 0.1. The log sampling scheme is used for δ = 0.475,
ν = 0.33, K = 256 and N = 3398. From left to right different reconstruction basis are used:
2R = 256 Haar, periodic DB3 and boundary DB3.

radial sampling scheme, which gains an accumulation point as the sampling bandwidth

increases and which is taken in the Euclidean ball of radius K = 64 with density δ`1 < 1/4.

This sampling scheme is constructed as in §3.4.2.

First, we demonstrate the use of weights when reconstructing from nonuniform Fourier

measurements. Some of the advantages of using weights have been already reported earlier

in the literature, see for example [FG94, FGS95, GS01] and also [JMNM91, SNF03]. In

a different setting, in Figure 4.8, we provide further insight on the necessity of using

weights. To this end, we perform function recovery using NUGS with boundary-corrected

Daubechies wavelets of order 1, 2 and 3, as well as the direct recovery approach called

gridding [JMNM91]. We perform function recovery with and without using weights, using

the same number of NUGS iterations. As shown in Figure 4.8, the reconstruction error

without using weights does not exceed order 10−2. Hence, the advantages of higher order

wavelets cannot be easily exploited in this case, as opposed to the case when reconstructing
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Figure 4.5: A periodic function f(x) = (1/2 cos(8πx) − sin(2πx))χ[0,1](x) is reconstructed by
gridding (left) and NUGS with Haar (middle) and DB2 (right) wavelets for 2R = 512. The lower
pictures show the error |f − f̃ |. The jittered sampling scheme is used for ε = 0.7, η = 0.14 and
K = 256.

with weights. Moreover, the gridding reconstruction obtained without using weights is

distinctly inferior. Recall that gridding reconstruction is computed with only one iteration,

i.e. with a single use of NUFFT.

Additionally, using the same example, in Figure 4.9, we demonstrate robustness of

NUGS when white Gaussian noise is added to the Fourier samples.

Example 4.5.10 (Violation of the density condition) In our final example, in Fig-

ure 4.10, we examine how violation of the density condition δD◦ < 1/4 given in The-

orems 2.3.1 and 3.3.3 influences reconstruction of a a high resolution test image with

D = [−1, 1]2. We use radial sampling schemes with different number of radial lines n.

Recall that the density condition from Theorem 2.3.1 is only sufficient, but not necessary

to have a weighted Fourier frame, and that it is sharp in the sense that there exist a set of

sampling points with δD◦ = 1/4 and a function which violate the frame condition. Yet for

a fixed function and set of sampling points, a slight violation of the density condition may

not worsen the recovery guaranteed by the II part of Theorem 3.3.2. As evident in the

presented example from Figure 4.10, a slight violation of δD◦ < 1/4 does not impair the

recovery noticeably therein. However, it is evident that further decreasing of number of

radial lines n, i.e decreasing of sampling density, worsens the quality of the reconstructed

image. Also, as illustrated in Table 4.5, this decreasing of sampling density, i.e. increasing

of δ, causes blowing up of the condition number associated to (3.1.10).
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Figure 4.6: A discontinuous function reconstructed by gridding, and NUGS with Haar and DB4
wavelets (from left to right). The reconstruction is in magenta and original in blue. Below, a
close-up is shown. The jittered sampling is used for ε = 0.75, η = 0.1 and K = 2R = 1024.

n 345 173 87 44 22 11

δ2 0.1763 0.3064 0.5847 1.1437 2.2843 4.5547

cond(A) 1.6220 2.3821 1.4859× 103 9.2459× 1014 5.3376× 1016 5.4891× 1018

Table 4.5: The condition number cond(A) of a reconstruction matrix arising from the least-
squares system (3.1.10) is calculated when 88 × 88 indicator functions are used and samples are
acquired on a radial sampling scheme contained in [−K,K]2, K = 32, so that dim(T) = (2.75K)2.
The number of radial lines n of the radial scheme is varying, as well as the corresponding sampling
density δ2, which is measured with respect to the Euclidean norm.
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1

Figure 4.7: Function f(x, y) = sin(5/2π(x+1)) cos(3/2π(y+1))χ[−1,1]2(x,y), ploted with the scale
[−1.08, 1.08] shown on the right.
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weights no weights

H
a
ar

‖f − f̃‖ ≈ 4.13× 10−2 ‖f − f̃‖ ≈ 4.32× 10−2

D
B

2

‖f − f̃‖ ≈ 3.74× 10−3 ‖f − f̃‖ ≈ 1.41× 10−2

D
B

3

‖f − f̃‖ ≈ 7.96× 10−4 ‖f − f̃‖ ≈ 1.42× 10−2

gr
id

d
in

g

‖f − f̃‖ ≈ 1.98× 10−2 ‖f − f̃‖ ≈ 1.13× 10

Figure 4.8: Reconstructions of the function from Figure 4.7, using the same scale [−1.08, 1.08],
from Fourier samples taken on the radial sampling scheme in the Euclidean ball of radius K = 64
with the density measured in `1-norm strictly less than 1/4. The lower pictures are reconstructed
without using weights and, as demonstrated, the error does not exceed order 10−2. The NUGS
reconstruction with with 64× 64 Haar, DB2 and DB3 are also compared to gridding.
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SNR=0 SNR=30
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Figure 4.9: Top-left corner close-ups of the reconstructed function of f in Figure 4.7 using the
same setting as in Figure 4.8. In the bottom row, the white Gaussian noise with SNR of 30dB
is added to the samples. The L2-error of bottom, noisy reconstructions is (from right to left):
4.28× 10−2, 1.07× 10−2, 1.08× 10−2 and 2.93× 10−2.
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4.5. Numerical examples

Original image Reconstruction

n = 1380, δ1 < 0.25

Reconstructions with insufficient densities δ1 ≥ 0.25

n = 690, δ2 = 0.31 n = 345, δ2 = 0.59 n = 173, δ2 = 1.17

n = 87, δ2 = 2.31 n = 44, δ2 = 4.57 n = 22, δ2 = 9.13

Figure 4.10: A high resolution image of 4500×4500 pixels is reconstructed by NUGS in the space
T consisting of 352× 352 indicator functions when samples are taken on a radial sampling scheme
contained in [−K,K]2, K = 128. The relation dim(T) = (2.75K)2 is used. The reconstructions
are shown for sampling schemes with different densities, i.e. different number of radial lines n.
Here, the density in the Euclidean norm δ2 was directly computed on a computer. Since δ1 ≥ δ2,
note that δ2 ≥ 0.25 ensures that the density condition δ1 < 0.25 is violated.
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Chapter 5

Reconstruction in piecewise

polynomial spaces

In this chapter, we consider the problem of recovering (piecewise) smooth univariate func-

tions to high accuracy from nonuniform samples of their Fourier transform using previ-

ously developed NUGS framework. In order to ensure high accuracy when recovering

(piecewise) smooth functions, we employ reconstruction spaces consisting of splines or

(piecewise) polynomials.

As we have seen so far, in NUGS the dimension of the reconstruction space T is allowed

to vary in relation to the sampling bandwidth K. In order to obtain a reconstruction which

is stable and quasi-optimal, the key issue prior to implementation of NUGS is to determine

such scaling. In principle, this depends on both the nature of the nonuniform samples

and the choice of reconstruction space. In this chapter we provide a general analysis

which allows one to simultaneously determine such scaling for all possible nonuniform

sampling schemes by scrutinizing two intrinsic quantities ζ and γ of the reconstruction

space T, related to the maximal uniform growth of functions in T and the maximal growth

of derivatives in T respectively. Provided these are known (as is the case for many

choices of T), one can immediately estimate this scaling. As a particular consequence,

for trigonometric polynomials, splines and piecewise algebraic polynomials (with fixed

polynomial degree), we can show that this scaling is linear, and for piecewise algebraic

polynomials with varying degree we show that it is quadratic.

Recently, a number of other works have investigated the problem of high-order re-

constructions from nonuniform Fourier data. In [GH12, VGCR10] spectral reprojection

techniques were used for this task, and a frame-theoretic approach was introduced in

[GS14]. Recovering the Fourier transform to high accuracy was studied in [PGG12], and

in [GH11, MGG14] the problem of high-order edge detection was addressed. We note

again that the method based on NUGS can be shown to achieve optimal convergence

rates amongst all stable, convergent algorithms [AHP13, AHS14].
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The material of this chapter was published in [AGH14b], which is the joint work of

the author with Ben Adcock and Anders Hansen.

5.1 Guarantees for piecewise smooth reconstruction spaces

Recall from Theorem 3.2.5 that for a finite-dimensional reconstruction space T ⊆ H =

L2(0, 1), a sampling set ΩN which is (K, δ)-dense with δ < 1/2, and for a given ε ∈
(0,
√

1− 4δ2), if K > 0 is large enough such that

E(T,K) ≤ ε, (5.1.1)

then the NUGS reconstruction defined as in (3.1.10) with the weights (3.2.1) has the

reconstruction constant C(ΩN ,T) satisfying

C(ΩN ,T) ≤ 1 + 2δ√
1− ε2 − 2δ

. (5.1.2)

Instead of giving explicit scaling of dim(T) and K sufficient for stable and quasi-optimal

recovery, Theorem 3.2.5 rather reinterprets the scaling of dim(T) and K in terms of the

z-residual E(T,K), where as before, the z-residual of T is defined as

E(T, z) = sup
f∈T
‖f‖=1

‖f̂‖R\(−z,z), z ∈ [0,∞).

Note that, for a given reconstruction space T, this residual is independent of the geometry

of the sampling points ΩN , and depends solely on bandwidths K = K(N). Hence, pro-

vided (5.1.1) holds, one ensures stable, quasi-optimal recovery for any sequence of sample

points ΩN with the same sampling bandwidth K.

Unsurprisingly, the behaviour of the z-residual depends completely on the choice of

subspace T. Whilst one can often derive estimates for this quantity using ad-hoc ap-

proaches for each particular choice of T, as in Chapter 4 for the case of wavelet spaces, it

is useful to have a more unified approach rising to an explicit scaling of dim(T) and K.

We now present such an approach.

First, we recall the definition of the gap between two spaces.

Definition 5.1.1 ([Szy06]). Let U and V be closed subspaces of H with corresponding

orthogonal projections PU and PV respectively. The gap between U and V is the quantity

G(U,V) = ‖(I − PU)PV‖,

where I : H→ H is the identity.
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5.1. Guarantees for piecewise smooth reconstruction spaces

Proposition 5.1.2. Let T and S be finite-dimensional subspaces of H with z-residuals

E(T, z) and E(S, z) respectively. Then

E(T, z) ≤ E(S, z) +G(S,T)

for any z ∈ [0,∞).

Proof. Let f ∈ T, ‖f‖ = 1. Then by Parseval’s identity,

‖f̂‖R\(−z,z) ≤ ‖P̂Sf‖R\(−z,z) + ‖ ̂f − PSf‖R\(−z,z)
≤ ‖P̂Sf‖R\(−z,z) + ‖f − PSf‖.

Since f ∈ T, by definitions of z-residual and the gap, we get

‖f̂‖R\(−z,z) ≤ E(S, z)‖PSf‖+G(S,T)‖f‖ ≤ E(S, z) +G(S,T),

as required.

This result implies the following: if the behaviour of z-residual E(S, z) and the gap

G(S,T) are known, then one can immediately determine the required scaling of dim(T)

with z to ensure that E(T, z) satisfies (5.1.1). We now make the following choice for S to

allow us to exploit this result. For a given L ∈ N, define

SL =
{
g ∈ H : g|[l/L,(l+1)/L) ∈ P0, l = 0, . . . , L− 1

}
, (5.1.3)

where P0 is space of polynomials of degree zero. Note that dim(SL) = L. For such SL,

results from Section 4.2.2 show that for any ε > 0 there exists a constant c0(ε) > 0 such

that

E(SL, z) ≤ ε, z ≥ c0(ε)L.

Therefore, according to Proposition 5.1.2, in order to estimate E(T, z) for any finite-

dimensional T ⊆ H, we now only need to determine G(SL,T) for SL as in (5.1.3).

From now on, we let 0 < w1 < . . . < wk < 1 be a fixed sequence of nodes, and define

the space

H1
w(0, 1) =

{
f : f |(wj ,wj+1) ∈ H1(wj , wj+1), j = 0, . . . , k

}
where w0 = 0, wk+1 = 1 and H1(I) is the usual Sobolev space of functions on an interval

I. By convention, if k = 0 then H1
w(0, 1) = H1(0, 1). Next, for

T ⊆ H1
w(0, 1)
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and SL as in (5.1.3), we derive a bound on G(SL,T) in terms of the following quantities

γT = max
j=0,...,k

sup
{
‖f ′‖(wj ,wj+1) : f ∈ T, ‖f‖(wj ,wj+1) = 1

}
, (5.1.4)

and

ζT = max
j=0,...,k

sup
{
‖f‖∞,(wj ,wj+1) : f ∈ T, ‖f‖(wj ,wj+1) = 1

}
, (5.1.5)

related to the maximal growth of function derivatives in T and the maximal uniform

growth of functions in T respectively.

Proposition 5.1.3. Suppose that T ⊆ H1
w(0, 1) and let SL be given by (5.1.3). If L−1 ≤

η = minj=0,...,k{wj+1 − wj} then

G(SL,T) ≤
√( γT

πL

)2
+

4ζ2
T

L
,

where γT and ζT are given by (5.1.4) and (5.1.5) respectively, and, if I is an interval,

‖f‖2I =
´
I |f(x)|2 dx and ‖f‖∞,I = ess supx∈I |f(x)|. Moreover, if k = 0, i.e. T ⊆ H1(0, 1),

then G(SL,T) ≤ γT/(πL).

Proof. Since L ≥ 1/η there exist lj ∈ N with l1 < l2 < . . . < lk such that

0 ≤ Lwj − lj < 1, j = 1, . . . , k.

In particular,
lj
L ≤ wj <

lj+1
L ≤ lj+1

L for j = 1, . . . , k. For an interval I ⊆ R, let us now

write fI = 1
|I|
´
I f . Then

‖f − PSLf‖
2 =

L−1∑
l=0

ˆ
Il

|f − fIl |
2 =

L−1∑
l=0

l 6=l1,...,lk

ˆ
Il

|f − fIl |
2 +

k∑
j=1

ˆ
Ilj

∣∣∣f − fIlj ∣∣∣2 ,
where Il = [l/L, (l+1)/L). Since f ∈ H1(Il) for l 6= l1, . . . , lk, an application of Poincaré’s

inequality gives that

‖f − PSLf‖
2 ≤ 1

(Lπ)2

L−1∑
l=0

l 6=l1,...,lk

‖f ′‖2Il +
k∑
j=1

ˆ
Ilj

∣∣∣f − fIlj ∣∣∣2 . (5.1.6)

We now consider the second term. Write

Ilj = (lj/L,wj) ∪ (wj , (lj + 1)/L) = Aj ∪Bj
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5.1. Guarantees for piecewise smooth reconstruction spaces

and note that for an arbitrary interval I we have
´
I |f − fI |

2 = ‖f‖2I − |I||fI |2. Hence

ˆ
Ilj

∣∣∣f − fIlj ∣∣∣2 = ‖f‖2Aj + ‖f‖2Bj −
1

|Aj |+ |Bj |
∣∣|Aj |fAj + |Bj |fBj

∣∣2
=

ˆ
Aj

∣∣f − fAj ∣∣2 +

ˆ
Bj

∣∣f − fBj ∣∣2 +
|Aj ||Bj |
|Aj |+ |Bj |

∣∣fAj − fBj ∣∣2
≤ 1

(πL)2

(
‖f ′‖2Aj + ‖f ′‖2Bj

)
+

2|Aj ||Bj |
|Aj |+ |Bj |

(
‖f‖2∞,Aj + ‖f‖2∞,Bj

)
,

where in the final step we use Poincaré’s inequality once more and the fact that f is H1

within Aj and Bj . Since |Aj |, |Bj | ≤ L−1 and |Aj |+ |Bj | = |Ilj | = L−1 we now get

k∑
j=1

ˆ
Ilj

∣∣∣f − fIlj ∣∣∣2 ≤ 1

(πL)2

k∑
j=1

(
‖f ′‖2Aj + ‖f ′‖2Bj

)
+

4

L

k∑
j=0

‖f‖2∞,(wj ,wj+1).

Combining this with (5.1.6) gives

‖f − PSLf‖
2 ≤

( γT

Lπ

)2
k∑
j=0

‖f‖2(wj ,wj+1) +
4ζ2

T

L

k∑
j=0

‖f‖2(wj ,wj+1).

Since ‖f‖2 =
∑k

j=0 ‖f‖2(wj ,wj+1) the result now follows.

Using results of Propositions 5.1.3 and 5.1.2 in a combination with Theorem 3.2.5, we

now obtain the following:

Corollary 5.1.4. Let ΩN be (K, δ)-dense with δ < 1/2, T ⊆ H1
w(0, 1) be a finite-

dimensional subspaces of dimension M ∈ N such that

γT = O(Mα), ζT = O(Mβ), M →∞,

for some α, β > 0. Then, for each 0 < ε <
√

1− 4δ2 there exists a c0(ε) > 0 such that if

M ≤ c0(ε)K
1
τ , τ = max{α, 2β}

then then the NUGS reconstruction defined as in (3.1.10) with the weights (3.2.1) has the

reconstruction constant C(ΩN ,T) satisfying (5.1.2). Moreover, if T ⊆ H1(0, 1), the claim

holds with τ = α.

This provides a unified approach to analysing the reconstruction. Given the bandwidth

K stable reconstruction, for any sampling scheme ΩN , can be ensured solely by estimating

the quantities γT and ζT, which are intrinsic properties of the reconstruction space T

completely unrelated to the sampling points.
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5.2 Sufficient scaling of K and dim(T)

To illustrate implications of Corollary 5.1.4, we now consider several different reconstruc-

tion spaces.

5.2.1 Trigonometric polynomials

Functions f that are smooth and periodic can be approximated in finite-dimensional

spaces of trigonometric polynomials

TM =

{
M∑

m=−M
ame2πimx : am ∈ C

}
.

If f ∈ C∞(T), where T = [0, 1) is the unit torus, then the projection error ‖f − PTM f‖
decay super-algebraically fast in M ; that is, faster than any power of M−1. If f is also

real analytic then the error decays exponentially fast.

For this space, we have TM ⊆ H1(0, 1) and

γTM ≤ 2πM

by Bernstein’s inequality. Hence Corollary 5.1.4 gives that the NUGS reconstruction in

TM is stable and quasi-optimal provided M scales linearly with the sampling bandwidth

K, namely provided that

M = O(K), K →∞.

This result extends a previous result of [AHP13] to the case of arbitrary nonuniform

samples.

5.2.2 Algebraic polynomials

Functions that are smooth but nonperiodic can be approximated by algebraic polynomials.

If

TM = PM

is the space of algebraic polynomials of degree at most M , then the projection error

‖f−PTM f‖ decays super-algebraically fast in M whenever f ∈ C∞[0, 1], and exponentially

fast when f is analytic.

For this space we have TM ⊆ H1(0, 1) and the classical Markov inequality [BD10] gives

γTM ≤
√

2M2, ∀M ∈ N.

Hence, from Corollary 5.1.4, we deduce stability and quasi-optimality of the NUGS re-
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5.2. Sufficient scaling of K and dim(T)

construction in TM , but only subject to the square-root scaling

M = O(
√
K), K →∞.

This result extends previous results [HG10, AH12b, AH15b] to the case of nonuniform

Fourier samples. On the face of it, this scaling is unfortunate since it means the ap-

proximation accuracy is limited to root-exponential in K, which is much slower than the

exponential decay rate of the projection error. However, in the uniform case, such scal-

ing is the best possible: as shown in [AHS14], any reconstruction algorithm (linear or

nonlinear) that achieves faster than root-exponential accuracy for analytic functions must

necessarily be unstable.

5.2.3 Splines with nonequidistant knots

Since the previous scaling is so severe, one may seek to choose a space with worse ap-

proximation properties but a better scaling. Spline spaces provide such a choice. Let

0 = y0 < y1 < . . . yM < yM+1 = 1 be a sequence of knots in [0, 1], and suppose that s is

a fixed integer greater than 1. We exclude the case s = 1 for now, since that requires a

slightly different approach which will be presented in the next section. Consider the space

Ty,s =
{
f ∈ Cs−1[0, 1] : f |[yj ,yj+1) ∈ Ps, j = 0, . . . ,M

}
,

where y = {y1, . . . , yM}. This space is well-suited for approximating smooth functions.

Indeed, for smooth f the projection error ‖f − PTy,sf‖ decays like h−s−1, where h =

maxj=0,...,M |yj+1 − yj |.
Note that for s > 1, Ty,s ⊆ H1(0, 1). For f ∈ Ty,s, we have the following

‖f ′‖2 =
M∑
j=0

‖f ′‖2[yj ,yj+1) ≤
M∑
j=0

( √
2s2

yj+1 − yj

)2

‖f‖2[yj ,yj+1) ≤

(√
2s2

η

)2

‖f‖2,

where η = minj=0,...,M |yj+1 − yj |. Note that for the middle inequality we use the fact

that Markov’s inequality for an arbitrary interval I ⊆ R is given by

‖p′‖I ≤
√

2s2

|I|
‖p‖I , ∀p ∈ Ps, s ∈ N, (5.2.1)

where |I| denotes the length of I, ‖ · ‖I is the L2-norm over I. Therefore

γTy,s ≤
√

2s2

η

and from Corollary 5.1.4 we deduce the sufficient condition for stable and quasi-optimal
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Reconstruction in piecewise polynomial spaces

reconstruction
s2

η
= O(K), K →∞.

In particular, if ym = m/(M+1) are equispaced knots, then η = 1/(M+1) and we obtain

the scaling M + 1 = O(K/s2) as K → ∞. Hence, up to a constant which depends on

1/s2, equispaced spline spaces possess a linear scaling of M + 1 (number of knots) with

sampling bandwidth K. This is substantially better than the case of polynomial spaces.

Note that the polynomial result is actually a special case of this result corresponding to

the case M = 0 and s being the polynomial degree.

5.2.4 Piecewise algebraic polynomials

The reconstruction spaces considered so far are not suitable for approximating piecewise

smooth functions. For this reason, it may be useful to consider spaces of piecewise poly-

nomials with possibly different degrees in each subinterval. These approximation spaces

are appropriate if f is only piecewise smooth with known edges. Even if f is smooth over

the whole interval [0, 1], in order to mitigate the severe scaling (5.2.2), one may wish to

approximate it in a piecewise manner as in a spline space (i.e. by refining a sequence of

knots rather than the polynomial degree), but without the additional effort of enforcing

continuity as required in spline spaces.

We consider the space

Tw,M = {f ∈ H : f |[wj ,wj+1) ∈ PMj , j = 0, . . . , k},

where w = {w1, . . . , wk} for 0 = w0 < w1 < . . . wk < wk+1 = 1 and M = {M0, . . . ,Mk} ∈
Nk+1. If f is piecewise smooth with jump discontinuities at known locations 0 = w0 <

w1 < . . . wk < wk+1 = 1 then the projection error decays super-algebraically fast in powers

of (Mmin)−1 as Mmin increases, where Mmin = min{M0, . . . ,Mk}, and exponentially fast if

f is piecewise analytic. Alternatively, if f is smooth and the points w are varied whilst the

degrees M are fixed, then the error decays like h−Mmin−1, where h = maxj=0,...,k |wj+1 −
wj |.

Since TM,w is not in H1(0, 1), but rather in H1
w(0, 1), to apply Corollary 5.1.4, we need

to determine γTM,w and ζTM,w . For the first we use the scaled Markov inequality

‖p′‖I ≤
√

2M2

|I|
‖p‖I , ∀p ∈ PM ,M ∈ N.

Hence, if η = minj=0,...,k{wj+1 − wj} and Mmax = max{M0, . . . ,Mk} then

γTM,w ≤
√

2M2
max

η
,
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For ζTM,w , we recall the following inequality for polynomials

‖p‖∞,I ≤
cM√
|I|
‖p‖I , ∀p ∈ PM ,M ∈ N,

where c > 0 is a constant. Hence

ζTM,w ≤
cMmax√

η
.

Due to Corollary 5.1.4, we now deduce the following sufficient condition for stable and

quasi-optimal reconstruction

M2
max

η
= O(K), K →∞.

In the first scenario, where η is fixed and Mmax is varied, we attain the same square-root-

type scaling for piecewise smooth functions when approximated by piecewise polynomials

as with the polynomial space (5.2.2). In the second scenario, where Mmax is fixed and η is

varied, we see that this leads to a linear relation between K and 1/η. Thus, by forfeiting

the super-algebraic/exponential convergence of the polynomial space for only algebraic

convergence, we obtain a better scaling with K.

5.3 Numerical example

We now demonstrate the results of this chapter on a numerical example.

In the upper two panels of Figure 5.1, using two common nonuniform sampling schemes

ΩN , jittered (3.4.5) and log (3.4.13), and using different reconstruction spaces T, we

illustrate the scaling between the sampling bandwidth K and the space dimension dim(T).

For a bandwidth K, we find dim(T) such that the reconstruction constant C(ΩN ,T) is

bounded. The fact that the plotted scalings are bounded by a constant for large K aligns

with our theoretical results.

Next, in the lower pair of panels of Figure 5.1, for such K and dim(T), we compute

the L2-error of the NUGS approximation f̃ for a continuous function

f(x) = x2 + x sin(4πx)− e
x
2 cos(3πx)2.

It is evident that the superb approximation orders are achieved when reconstructing with

algebraic polynomials of high degree, however to have these one needs to pay by the severe

scaling of dim(T) with the sampling bandwidth K. Hence, one may prefer to use spline

spaces for smaller K and still attain relatively high approximation orders.
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Figure 5.1: In the upper pair of panels, depending on the type of the reconstruction space, appro-
priate ratios are shown: M/K (for trigonometric polynomials), M/

√
K (for algebraic polynomials)

and M/(K/d2) (for splines of order d), where for a sampling bandwidth given K ∈ [5, 200], we
used M = max{M ∈ N : C(N,M) ≤ 3}. In the lower pair of panels, for such K and M , the error
‖f − f̃‖ is plotted where f(x) = x2 + x sin(4πx)− exp(x/2) cos(3πx)2. The sampling schemes ΩN

is jittered for the left panels, and log for the right panel.
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Chapter 6

Nonuniform sampling with

derivatives or bunched points

As mentioned in Chapter 1, a set of sampling for the space of L2 functions supported on a

compact domain also constitutes a set of sampling for the space of functions bandlimited

to the same compact domain. For a compact domain Ω ⊆ R̂d, the space of Ω-bandlimited

functions is defined by

B(Ω) =
{
f ∈ L2(Rd) : supp(f̂) ⊆ Ω

}
.

In Chapter 2 we studied sets of sampling in order to provide guarantees for stable recovery

of a compactly supported L2 function from pointwise measurements of its Fourier trans-

form, which were studied in detail throughout Chapters 3–5. Similarly, one could analyse

the recovery problem of a bandlimited function from its own samples. In this chapter

we study sampling of bandlimited functions when measurements include some additional

information. Specifically, in this chapter we address two different sampling scenarios of

bandlimited functions that allow for a reduced sampling density: 1) nonuniform sampling

of a function and its first k derivatives, and 2) nonuniform sampling of a function at

bunched points. As before, in order to ensure a stable reconstruction, one is essentially

concerned with conditions that ensure existence of frame for the corresponding function

space. Deriving such condition in context of these two sampling scenarios is the topic of

the present chapter.

As mentioned in introduction, the sampling scenarios considered here are motivated

by applications in seismology. As it turns out, both of these scenarios allow sampling

below the Nyquist rate, and hence bigger distances between sampling sensors, thereby

reducing cost and effort in practical acquisition of data.

The results of this chapter are collected from [AGH15a], which is the joint work of the

author with Ben Adcock and Anders Hansen.
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Nonuniform sampling with derivatives or bunched points

6.1 Summary of main results

The first result of this chapter, Theorem 6.2.1, provides an upper bound on the maximum

allowable sampling density δ, such that samples of derivatives give rise to a particular

frame. The density bound as well as the explicit estimates of the corresponding frame

bounds depend on the number of derivatives k, the norm used in specifying δ and a certain

geometric property of the domain Ω. For large k, the maximum allowed δ grows linearly in

k + 1 with constant of proportionality 1/e. This extends the univariate result of [Raz95]

to the multivariate setting, as well as the multivariate k = 0 (no derivative) results of

[Grö92, Grö01] to the case of derivatives.

In our second result, Theorem 6.2.9, we present an univariate density condition that

leads to a small improvement over [Raz95] for k ≥ 2 derivatives. This follows the technique

of [Grö92] for the univariate case based on Wirtinger inequalities. We provide an explicit

calculation of the optimal constants in certain higher-order Wirtinger inequalities, which,

replicating the techniques of [Grö92] for the case of derivatives, lead to modestly improved

estimates for δ for finite k. Such improved bounds can be used to get better estimates

for two-dimensional spatial-temporal sampling scenarios, as we consider in Proposition

6.2.11.

Next, we provide Theorem 6.2.12, which gives a perturbation estimate for nonuniform

sampling with derivatives. We show that if {xn}n∈I is a stable set of sampling for deriva-

tives, then so is {x̃n}n∈I whenever supn∈I |xn − x̃n| is sufficiently small. In particular,

small perturbations of the uniform sampling points taken at k times Nyquist give rise

to stable sets of sampling. This extends existing results given in [Bai10, SZ99] to the

case of sampling with derivatives. Moreover, it improves those results since we provide a

dimension independent bound for appropriate domains Ω.

In Section 6.3, we address univariate nonuniform bunched sampling and, in Theorem

6.3.1, we give density guarantees in order to obtain a particular fusion frame [CK04,

CKL08]. Similarly as in derivatives sampling, we show that the density bound increases

linearly with s+1 (the number of samples in each bunch) with constant of proportionality

depending on the width of the bunches. The points within the same bunch are permitted

to get arbitrarily close to each other, since we use appropriate weights.

Next, by Theorem 6.3.3, we obtain the same density condition as in Theorem 6.3.1,

but now leading to a particular frame based on divided differences. Furthermore, in

Corollary 6.3.4 we show that the corresponding density bound in the limit—for small

width of bunches and for large s—gives the same density bound as the one we provide for

the univariate sampling with s derivatives, i.e. the density bound grows linearly in s + 1

with the constant of proportionality 1/e.

Lastly, by Theorem 6.3.5, we conclude that if a derivative sampling gives rises to a

frame, then a bunched sampling that is a perturbation of the derivative sampling gives
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6.2. Nonuniform derivative sampling

rise to a frame as well.

6.2 Nonuniform derivative sampling

Let {xn}n∈I ⊆ Rd be a set of sampling points, where I is a countable index set. Let

f ∈ B(Ω), and suppose that we are given the measurements

Dαf(xn), n ∈ I, |α|1 ≤ k.

Stable recovery from these measurements is possible if there exist constants A,B > 0 such

that

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 ≤ B‖f‖2, (6.2.1)

holds for some weights µn,α > 0. Following [Raz95], let us now define the function

ΦΩ(x) =

ˆ
Ω

ei2πω·x dω, x ∈ Rd. (6.2.2)

For a given f ∈ B(Ω), we have f̂(ω) = f̂(ω)χΩ(ω). If g ∈ B(Ω) is such that ĝ(ω) = χΩ(ω),

then by the convolution theorem we can write

f(x) =

ˆ
Rd
f(s)g(x− s) ds =

ˆ
Rd

ˆ
Ω
f(s)ei2πω·(x−s) dω ds = 〈f,ΦΩ(· − x)〉.

Therefore

Dαf(xn) = 〈Dαf,ΦΩ(· − xn)〉 = (−1)|α|1〈f,DαΦΩ(· − xn)〉.

Hence (6.2.1) is equivalent to the condition that the set of functions

{√
µn,αD

αΦΩ(· − xn) : n ∈ I, |α|1 ≤ k
}
,

forms a frame for B(Ω) with frame bounds A,B > 0.

Similarly, after differentiation and using Parseval’s identity, (6.2.1) becomes

∀f ∈ B(Ω), A ‖f̂‖2 ≤
∑
n∈I

∑
|α|1≤k

µn,α|〈f̂ , (−i2πω)αe−i2πω·xn〉|2 ≤ B ‖f̂‖2,

and therefore, (6.2.1) is equivalent to
{√

µn,α(−i2πω)αe−i2πω·xnχΩ(ω) : n ∈ I, |α|1 ≤ k
}

being a Fourier frame for L2(Ω) = {f ∈ L2(Rd) : supp(f) ⊆ Ω} with the frame bounds

A,B > 0; see for example [You01].

In what follows, we provide sufficient conditions for (6.2.1) for an appropriate choice of

weights. Again, our weights shall be related to the Voronoi cells {Vn}n∈I of the sampling
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Nonuniform sampling with derivatives or bunched points

points {xn}n∈I with respect to a norm |·|∗. Namely, we define

µn,α =
1

α!

ˆ
Vn

(x− xn)2α dx, α ∈ Nd0, n ∈ I. (6.2.3)

Also, our sufficient conditions for (6.2.1) with these weights will be in terms of the density

of the sampling points, measured in the following sense:

δ∗ = sup
x∈Rd

inf
n∈I
|x− xn|∗. (6.2.4)

Our aim is to find the maximal allowable density δ∗ for which (6.2.1) holds. As in Chapter

2, our estimates will be derived in terms of the quantity

mΩ = sup
x∈Ω
|x|, (6.2.5)

and the sharp constant c∗ > 0 such that

∀x ∈ Rd, |x| ≤ c∗|x|∗. (6.2.6)

6.2.1 The multivariate case

First, we need to define some functions. Let k ∈ N0, d ∈ N, and define

hk(z) = exp(z)Rk(z), (6.2.7)

gk,d(z) = (1 + 2σ∗d(z))
d
2 exp

(
z

σ∗d(z)

)
Rk(z), (6.2.8)

for z ∈ (0,∞), where

Rk(z) = exp(z)−
k∑
r=0

1

r!
zr, (6.2.9)

σ∗d(z) =
z +

√
z(d+ z)

d
, (6.2.10)

for z ∈ (0,∞). Note that both hk and gk,d have limiting value 0 as z → 0+, and both in-

crease monotonically to infinity as z →∞. Hence they have well-defined inverse functions

Hk(w) and Gk,d(w) for w ∈ (0,∞).

Our main result is now as follows:

Theorem 6.2.1. Suppose that the weights µn,α are given by (6.2.3) and let δ∗ be as in

(6.2.4). If

δ∗ <
C(k, d)

2πmΩc∗
, C(k, d) = max {Hk(1), Gk,d(1)} , (6.2.11)
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6.2. Nonuniform derivative sampling

then

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 ≤ B‖f‖2,

where A,B > 0 satisfy

A ≥ e−d (1−min {hk(2πmΩc
∗δ∗), gk,d(2πmΩc

∗δ∗)})2 , (6.2.12)

B ≤ exp
(
4πmΩc

∗δ∗ + (2πmΩc
∗δ∗)

2
)
. (6.2.13)

Equivalently, the set {√µn,αDαΦΩ(· − xn) : n ∈ I, |α|1 ≤ k} forms a frame for B(Ω) with

frame bounds A and B.

The key part of this theorem—whose proof we defer to §6.2.1—is the condition (6.2.11).

Note that an interesting facet of (6.2.11) is that it splits geometric terms depending on

the domain Ω (the constant mΩ) and the norm used (encapsulated by the term c∗), from

the nongeometric constant C(k, d).

Whilst values of C(k, d) for fixed k and d are easily calculated and are presented

in Table 6.1, to understand its behaviour it is interesting to consider the following two

asymptotic regimes:

(i) k fixed, d→∞, (ii) d fixed, k →∞.

In (i) it is desirable for (6.2.11) to not decrease with d, i.e. the density bound does not

worsen with increasing dimension; recall Chapter 2. For (ii), we desire linear increase in

the bound with k, i.e. adding derivatives samples means that sampling points can be taken

further apart, at as fast a rate as possible. As we show next, this is also the behaviour of

C(k, d).

Case (i)

As seen in Table 6.1, the constant C(k, d) is independent of d for large d and fixed k.

This follows from (6.2.11), where it is clear that for large d the maximum is achieved by

Hk(1), which is dimension independent, as opposed to Gk,d(1) (it can be easily proved

that Gk,d(1) decreases with d). Hence for large d, the only possible dimension-dependence

in (6.2.11) arises from the factors mΩ and c∗, which are determined by the domain Ω and

the norm |·|∗ respectively. As in Chapter 2, for simplicity, suppose that Ω is the unit

`p-ball, p > 0, and let |·|∗ = |·|q, q ≥ 1, be the `q-norm. Then (6.2.11) reads

δ <
C(k, d)

2πmax{1, d1/2−1/p}max{1, d1/2−1/q}
.

In particular, if p = q = 2 for example (i.e. Ω is contained in the unit Euclidean ball and the

δ-density is measured in the Euclidean metric), then (6.2.11) reduces to δ < C(k, d)/(2π).
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Nonuniform sampling with derivatives or bunched points

k 0 1 2 3 4 . . . 8 9 . . . 13 14 . . .

C(k, 1) 0.4812 0.8141 1.1268 1.4304 1.7890 . . . 3.2501 3.6163 . . . 5.0828 5.4498 . . .

C(k, 2) 0.4812 0.8141 1.1268 1.4304 1.7290 . . . 2.8976 3.2424 . . . 4.6462 5.0000 . . .

C(k, 3) 0.4812 0.8141 1.1268 1.4304 1.7290 . . . 2.8976 3.1862 . . . 4.3327 4.6679 . . .

C(k, 4) 0.4812 0.8141 1.1268 1.4304 1.7290 . . . 2.8976 3.1862 . . . 4.3327 4.6180 . . .

C(k, 5) 0.4812 0.8141 1.1268 1.4304 1.7290 . . . 2.8976 3.1862 . . . 4.3327 4.6180 . . .

k . . . 17 18 19 20 21 22 23 24 25 26

C(k, 1) . . . 6.5512 6.9184 7.2857 7.6531 8.0205 8.3879 8.7553 9.1228 9.4903 9.8578

C(k, 2) . . . 6.0660 6.4227 6.7799 7.1376 7.4958 7.8544 8.2134 8.5728 8.9325 9.2925

C(k, 3) . . . 5.7002 6.0466 6.3940 6.7424 7.0916 7.4415 7.7922 8.1435 8.4955 8.8480

C(k, 4) . . . 5.4715 5.7553 6.0813 6.4207 6.7614 7.1031 7.4457 7.7893 8.1338 8.4791

C(k, 5) . . . 5.4715 5.7553 6.0389 6.3223 6.0654 6.8883 7.1711 7.4879 7.8252 8.1636

Table 6.1: The constant C(k, d) in the multi-dimensional density bound (6.2.11). Italics
indicate when C(k, d) = Gk,d(1), and otherwise C(k, d) = Hk(1).

For sufficiently large d, one therefore obtains the dimensionless bound δ < Hk(1)/(2π).

On the other hand, if Ω = [−1, 1]d is the unit cube and |·|∗ = |·|2 is the `2-norm, then

we get square-root decay of the corresponding bound, which reads δ < Hk(1)/(2π
√
d) for

large d.

Remark 6.2.2 The splitting of the bound (6.2.11) into the factors C(k, d) and mΩc
∗ is

an extension of Theorem 2.2.1 from Section 2.2 to the case k ≥ 1. Therein the case k = 0

was considered and the bound δ < (ln 2)/(2πmΩc
∗) was established. Conversely, (6.2.11)

for k = 0 reduces to the somewhat stricter condition δ < log
(

1
2(1 +

√
5)
)
/(2πmΩc

∗); note

that ln
(

1
2(1 +

√
5)
)
≈ 0.4812 < 0.6931 ≈ ln 2. This is due to the additional complications

arising from a bound that holds for arbitrary many derivatives.

Case (ii)

We now discuss the case of fixed d and increasing k. Empirically, Table 6.1 and the left

panel of Figure 6.1 show that, whilst Hk(1) gives the better bound for small values of k,

asymptotically for k →∞ the better bound is provided by Gk,d(1). We confirm this with

the following lemma:

Lemma 6.2.3. Let W be the Lambert-W function [CGH+96]. We have

(a) Rk(z)
1/(k+1) ∼ ez/(k+ 1) as k →∞, provided z ≤ c(k+ 1) for all large k and some

c ∈ (0, 1);

(b) Hk(1) ∼W (1/e) (k + 1) as k →∞;

(c) Gk,d(1) ∼ 1/e (k + 1) as k →∞;
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6.2. Nonuniform derivative sampling
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Figure 6.1: The constants in the multi-dimensional density bound (6.2.11) (left) and their
asymptotic behaviour (right).

(d) C(k, d) ∼ 1/e (k + 1) as k →∞.

(Note that W (1/e) ≈ 0.2785, while 1/e ≈ 0.3679.)

Proof. To prove (a), observe that

1− exp(−z)
k∑
r=0

1

r!
zr =

γ(k + 1, z)

Γ(k + 1)
= P (k + 1, z),

where γ(·, ·) is the lower incomplete Gamma function, and Γ(·) is the Gamma function

[AS74]. We require an asymptotic expansion of P (k + 1, z) as k → ∞ that is uniform in

z ≤ c(k + 1). Such an expansion was obtained by Temme [Tem75, Tem79]. Using the

notation of [Tem79], it was shown that

P (a, x) =
1

2
erfc

[
−η(a/2)1/2

]
− Sa(η),

with

Sa(η) ∼ (2πa)−1/2e−aη
2/2

∞∑
k=0

ck(η)a−k,

as a→∞, uniformly with respect to η ∈ R, where

η =
√

2(λ− 1− log(λ)), λ = x/a, µ = λ− 1,

with the square root having the same sign as µ. Since x/a < 1, we have that η < 0. Here

erfc(x) = 2π−1/2
´∞
x e−t

2
dt is the complementary error function and ck(η) are functions

of η only, with c0 = 1/µ−1/η. We require only the first term in the asymptotic expansion
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Nonuniform sampling with derivatives or bunched points

of P (a, x). Since erfc(x) ∼ e−x
2

√
πx

as x→∞,

P (a, x) ∼ −exp(−aη2/2)√
2πaµ

=
exp(−λa+ a)λa√

2πa(1− λ)
, a→∞,

provided that λ ≤ c for some c < 1. Set k+1 = a and z = x = aλ. Then, since z ≤ c(k+1)

for some c < 1, we get

Rk(z)
1
k+1 ∼ eλ = e

z

k + 1
,

as k →∞ and (a) follows.

To prove (b), we shall use (a). Let z = Hk(1), i.e. hk(z) = 1. We first show that there

exists a 0 < c < 1 such that z ≤ c(k+ 1) for all large k. Note that Rk(z) ≥ zk+1/(k+ 1)!.

Thus z satisfies

exp(z)
zk+1

(k + 1)!
≤ 1.

Therefore

exp

(
z

k + 1

)
z

k + 1
≤ ((k + 1)!)

1
k+1

k + 1
.

By Stirling’s formula, the right-hand side is asymptotic to 1/e as k → ∞. Hence for

large k, z/(k + 1) ≤ W (1/e) < 1, as required. We may now use (a). Since hk(z) = 1 is

equivalent to exp
(

z
k+1

)
Rk(z)

1
k+1 = 1, this now gives

exp

(
z

k + 1

)
z

k + 1
∼ 1

e
, k →∞.

Since the last identity is equivalent to

z

k + 1
∼W

(
1

e

)
, k →∞,

we get the result.

We use a similar approach to prove (c). Let z = Gk,d(1), i.e. gk,d(z) = 1. Then

Rk(z) ≤ (1 + 2σ∗d(z))
d/2 ez/σ

∗
d(z)Rk(z) = gk,d(z) = 1,

and we deduce that z ≤ 1
e (k + 1) as k → ∞. Hence we may apply (a). Note also that

z → ∞ as k → ∞. This follows from the fact that limk→∞ gk,d(z) = 0 for fixed z and d.

Therefore, the equation gk,d(z) = 1 can be written as

(
1 +

4z

d

) d
2(k+1)

exp

(
d

2(k + 1)

)
ez

k + 1
∼ 1, k →∞,

which implies the result. Finally, we note that claim (d) follows directly from (b) and (c).
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6.2. Nonuniform derivative sampling

This lemma confirms that Gk,d(1) gives a better bound asymptotically as k →∞ than

Hk(1). Illustration of this asymptotic behaviour is given in the right panel of Figure 6.1.

More importantly, this lemma shows the overall advantage of sampling derivatives, i.e. we

have the following:

Corollary 6.2.4. For large k, the set {√µn,αDαΦΩ(· − xn) : n ∈ I, |α|1 ≤ k} forms a

frame for B(Ω) with frame bounds satisfying (6.2.12) and (6.2.13), provided

δ∗ <
1

e

k + 1

2πmΩc∗
.

Hence, for all dimensions d, the maximum allowed density δ increases linearly with

the number of derivatives k. Unfortunately the constant of proportionality 1/e ≈ 0.3679

is rather small. Indeed, it is much smaller than in the case of equispaced samples, where

the corresponding constant is π/2 ≈ 1.5708. To ameliorate this gap, we will first prove

an improved estimate in §6.2.2 for the case d = 1. Second, in §6.2.4 we will prove a

perturbation result for nonuniform derivative sampling.

Remark 6.2.5 For the case k = 0, Beurling established the sharp, sufficient condition

δ < 1/4 when Ω is the unit Euclidean ball and |·|∗ = |·|, provided the sampling points

{xn}n∈I are separated. In [BW00] and [OU12] this was extended to any compact, convex

and symmetric domain Ω, where |·|∗ is the norm induced by the radial set of Ω. The

separation condition was removed in Theorem 2.3.1 by incorporating weights. To the best

of our knowledge, it is an open problem to see if similar sharp results can be proved for

the case of sampling with derivatives.

Proof of Theorem 6.2.1

The proof of this theorem uses the techniques of [Grö92, Grö99, Grö01], and more recently

[AGH15b], which were applied to the d ≥ 1 and k = 0 case, as well as the approach in

[Raz95] for the d = 1 and k ≥ 0 case. We first require the following three lemmas. In what

follows, we denote Euclidean ball of radius r centred at v by B(v, r), and when centre does

not matter, we write Br.

Lemma 6.2.6. Let µn = µn,0, where µn,0 = meas(Vn) is the Lebesgue measure of Voronoi

region Vn. Then

∀f ∈ B(Ω),
∑
n∈I

µn|f(xn)|2 ≤ exp(4πc∗δ∗r)‖f‖2,

where c∗ is as in (6.2.6) and r > 0 is radius of the smallest ball (with arbitrary centre)

such that Ω ⊆ Br.

113



Nonuniform sampling with derivatives or bunched points

Proof. Let B(ωt, r) be the minimal ball such that Ω ⊆ B(ωt, r) and note that we can use

the following shifting argument. For every f ∈ B(Ω), if F ∈ B(Ω− ωt) is defined so that

F̂ (ω) = f̂(ω+ωt), then we have |F | = |f | and also ‖F‖ = ‖f‖. Therefore, without loss of

generality, we may assume that Ω ⊆ B(0, r). Since a bandlimited function is analytic, by

Taylor’s theorem we have

f(xn) =
∑
α∈Nd0

(xn − x)α

α!
Dαf(x),

for any n ∈ I and x ∈ Rd. Let c > 0 be a constant. By the Cauchy–Schwarz inequality

|f(xn)|2 ≤
∑
α∈Nd0

|(x− xn)2α|c|α|1
α!

∑
α∈Nd0

c−|α|1

α!
|Dαf(x)|2.

By the multinomial formula (2.2.5),

∑
α∈Nd0

|(x− xn)2α|c|α|1
α!

=
∞∑
k=0

ck

k!

∑
|α|1=k

k!

α!
|(x− xn)2α|

=
∞∑
k=0

ck

k!
|x− xn|2k2

= exp(c|x− xn|22).

By (6.2.6) and the definition of δ, we have |x− xn|2 ≤ c∗|x− xn|∗ ≤ c∗δ∗. Hence we find

that

|f(xn)|2 ≤ exp(c(c∗δ∗)
2)
∑
α∈Nd0

c−|α|1

α!
|Dαf(x)|2.

Using definition of µn and the fact that Voronoi cells form a partition of Rd, this now

gives

∑
n∈I

µn|f(xn)|2 ≤ exp(c(c∗δ∗)
2)
∑
α∈Nd0

c−|α|1

α!

∑
n∈I

ˆ
Vn

|Dαf(x)|2 dx

= exp(c(c∗δ∗)
2)
∑
α∈Nd0

c−|α|1

α!
‖Dαf‖2.

Consider now the sum. First note that

Dαf(x) =

ˆ
Ω

(i2πω)αf̂(ω)ei2πωx dω,
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6.2. Nonuniform derivative sampling

and hence

‖Dαf‖2 = ‖D̂αf‖2 =

ˆ
Ω

(i2πω)2α|f̂(ω)|2 dω.

Therefore, by multinomial formula, we get

∑
α∈Nd0

c−|α|1

α!
‖Dαf‖2 =

∑
α∈Nd0

c−|α|1

α!

ˆ
Ω

(2πω)2α|f̂(ω)|2 dω

=
∞∑
k=0

c−k

k!

ˆ
Ω

∑
|α|1=k

k!

α!
(2πω)2α|f̂(ω)|2 dω

=
∞∑
k=0

c−k

k!

ˆ
Ω

(2π)2k(ω2
1 + . . .+ ω2

d)
k|f̂(ω)|2 dω

=

ˆ
Ω

exp((2π|ω|)2/c)|f̂(ω)|2 dω

≤ exp((2πr)2/c)‖f‖2.

Hence, we deduce that∑
n∈I

µn|f(xn)|2 ≤ exp(c(c∗δ∗)
2 + (2πr)2/c)‖f‖2,

and setting c = 2πr/(c∗δ∗) gives the result.

Later we will see that application of this lemma leads (after some additional work)

to the bound δ∗ < Hk(1)/(2πmΩc
∗). As discussed, this does not give the best scaling as

k →∞, which can be traced to the exponential growth in δ of the bound obtained in this

lemma. In order to mitigate this growth, and therefore eventually get a better density

bound, we need the following result.

Lemma 6.2.7. Let µn = µn,0, where µn,0 = meas(Vn) is the Lebesgue measure of Voronoi

region Vn. Then for all f ∈ B(Ω)∑
n∈I

µn|f(xn)|2 ≤ (1 + 2σ∗d(2πc
∗δ∗mΩ))d exp(4πc∗δ∗mΩ/σ

∗
d(2πc

∗δ∗mΩ))‖f‖2,

where σ∗d, c∗ and mΩ are as in (6.2.10), (6.2.6) and (6.2.5) respectively.

Proof. Let σ > 0 be fixed and let us cover Ω by R = R(Ω,BmΩ/σ) Euclidean balls of

radius mΩ/σ. By using a classical result on covering numbers, see for example [FR13], we

have

R ≤ R(BmΩ ,BmΩ/σ) = R(B1,B1/σ) ≤ (1 + 2σ)d. (6.2.14)

Let {
B1
mΩ/σ

, . . . ,BRmΩ/σ

}
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Nonuniform sampling with derivatives or bunched points

be the prescribed cover of R balls for Ω. Using this cover, we form a partition of Ω as

follows. Set Ω1 = B1
mΩ/σ

∩ Ω, and given Ω1, . . . ,Ωr, define

Ωr+1 =
(
Br+1
mΩ/σ

∩ Ω
)
\

r⋃
j=1

Ωj .

This gives at most R nonempty sets Ω1, . . . ,ΩR which make a disjoint cover of Ω. By

construction, for each j, Ωj ⊆ BjmΩ/σ
. Due to Lemma 6.2.6, we know that

∑
n∈I

µn|g(xn)|2 ≤ exp(4πc∗δ∗mΩ/σ)‖g‖2, ∀g ∈ B(Ωj), j = 1, . . . , R.

Since Ω1, . . . ,ΩR are disjoint and
⋃R
j=1 Ωj = Ω, for each f ∈ B(Ω) we have that f̂ =∑R

j=1 f̂j , f =
∑R

j=1 fj and ‖f‖2 =
∑R

j=1 ‖fj‖2, where fj ∈ B(Ωj). Therefore we get

∑
n∈I

µn|f(xn)|2 ≤ R
R∑
j=1

∑
n∈I

µn|fj(xn)|2 ≤ (1 + 2σ)d exp(4πc∗δ∗mΩ/σ)‖f‖2.

Now, if we minimize the right-hand side over σ > 0, denoting z = 2πc∗δ∗mΩ, we obtain

∑
n∈I

µn|f(xn)|2 ≤

(
1 + 2

z +
√
z(d+ z)

d

)d
exp

(
2zd

z +
√
z(d+ z)

)
‖f‖2

and the result follows.

Lemma 6.2.8. For for any f ∈ B(Ω), we have∥∥∥∥∥∥f −
∑
n∈I

∑
|α|1≤k

1

α!
Dαf(xn)(· − xn)αχVn

∥∥∥∥∥∥ ≤ min {hk(2πc∗δ∗mΩ), gk,d(2πc
∗δ∗mΩ)} ‖f‖

where hk and gk,d are as in (6.2.7) and (6.2.8), and c∗ and mΩ are as in (6.2.6) and

(6.2.5) respectively.

Proof. For f ∈ B(Ω) let

g(x) =
∑
n∈I

∑
|α|1≤k

1

α!
Dαf(xn)(x− xn)αχVn(x), x ∈ Rd.

Since Voronoi cells form a partition of Rd, we have

‖f − g‖2 =
∑
n∈I

ˆ
Vn

∣∣∣∣∣∣f(x)−
∑
|α|1≤k

1

α!
Dαf(xn)(x− xn)α

∣∣∣∣∣∣
2

dx.
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6.2. Nonuniform derivative sampling

Let x ∈ Vn. By Taylor’s theorem and the Cauchy–Schwarz inequality∣∣∣∣∣∣f(x)−
∑
|α|1≤k

1

α!
Dαf(xn)(x− xn)α

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
|α|1>k

1

α!
Dαf(xn)(x− xn)α

∣∣∣∣∣∣
2

≤
∑
|α|1>k

c|α|1 |(x− xn)2α|
α!

∑
|α|1>k

c−|α|1

α!
|Dαf(xn)|2.

Note that

∑
|α|1>k

c|α|1 |(x− xn)2α|
α!

=
∑
r>k

cr

r!
|x− xn|2r2 ≤ Rk(c(c∗δ∗)2),

where Rk is as in (6.2.9). Hence, by Lemma 6.2.6 applied to Dαf ∈ B(Ω),

‖f − g‖2 ≤ Rk(c(c∗δ∗)2)
∑
|α|1>k

c−|α|1

α!

∑
n∈I

µn|Dαf(xn)|2

≤ Rk(c(c∗δ∗)2) exp(4πc∗δ∗mΩ)
∑
|α|1>k

c−|α|1

α!
‖Dαf‖2.

Noting that

∑
|α|1>k

c−|α|1

α!
‖Dαf‖2 =

ˆ
Ω

∑
|α|1>k

c−|α|1

α!
(2πω)2α||f̂(ω)|2 dω ≤ Rk((2πmΩ)2/c)‖f‖2

and setting c = 2πmΩ/(c
∗δ∗) gives

‖f − g‖ ≤ Rk(2πc∗δ∗mΩ) exp(2πc∗δ∗mΩ)‖f‖ = hk(2πc
∗δ∗mΩ)‖f‖.

Similarly, if we apply Lemma 6.2.7 instead of Lemma 6.2.6, we get

‖f − g‖ ≤ (1 + 2σ∗d(2πc
∗δ∗mΩ))

d
2Rk(2πc

∗δ∗mΩ) exp

(
2πc∗δ∗mΩ

σ∗d(2πc
∗δ∗mΩ)

)
‖f‖

= gk,d(2πc
∗δ∗mΩ)‖f‖,

and the result follows.

Now we are ready to prove Theorem 6.2.1.
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Nonuniform sampling with derivatives or bunched points

Proof of Theorem 6.2.1. Fix f ∈ B(Ω) and let

g(x) =
∑
n∈I

∑
|α|1≤k

1

α!
Dαf(xn)(x− xn)αχVn(x), x ∈ Rd.

Then for the upper bound on ‖g‖2 we have

∑
n∈I

ˆ
Vn

∣∣∣∣∣∣
∑
|α|1≤k

1

α!
Dαf(xn)(x− xn)α

∣∣∣∣∣∣
2

dx ≤

 ∑
|α|1≤k

1

α!

∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2.

By the multinomial formula

∑
|α|1≤k

1

α!
=

k∑
l=0

1

l!

∑
|α|1=l

l!

α!
=

k∑
l=0

dl

l!
≤ ed.

Using this we get∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 ≥ e−d‖g‖2 ≥ e−d (‖f‖ − ‖f − g‖)2 . (6.2.15)

Lemma 6.2.8 now gives the lower bound. Next, we address the upper bound. Note that

µn,α ≤
1

α!
sup
x∈Vn

|(x− xn)2α|µn,0.

Moreover |(x − xn)2α| ≤ |x − xn|2|α|1∞ ≤ |x − xn|2|α|12 ≤ (c∗δ∗)
2|α|1 . Hence, Lemma 6.2.6

gives

∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 ≤ exp(4πmΩc
∗δ∗)

∑
|α|1≤k

(c∗δ∗)
2|α|1

α!
‖Dαf‖2.

Arguing in the same way now yields∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 ≤ exp(4πmΩc
∗δ∗ + (2πmΩc

∗δ∗)
2)‖f‖2,

as required.

6.2.2 The univariate case

In the one-dimensional setting it is possible to improve the bound derived in Theorem

6.2.1 somewhat using so-called Wirtinger inequalities. See [Grö92] for the case k = 0 and

[Raz95] for k = 1.

Throughout this section Ω ⊆ R is compact and {xn}n∈Z is a set of sampling points
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6.2. Nonuniform derivative sampling

in R, indexed over Z. We assume the points are ordered so that xn < xn+1, ∀n ∈ Z. As

before, we let

δ = sup
x∈R

inf
n∈Z
|x− xn|, (6.2.16)

where |·| denotes the absolute value. Note that the Voronoi cells Vn are the intervals

Vn = [zn, zn+1], zn =
xn + xn−1

2
, n ∈ Z.

As stated above, we shall use Wirtinger inequalities to derive bounds for δ. Specifically,

for k ∈ N, let ck > 0 be the minimal constant such that

ˆ b

a
|f(x)|2 dx ≤ (ck)

2k(b− a)2k

ˆ b

a
|f (k)(x)|2 dx, (6.2.17)

for all f ∈ Hk(a, b), the kth Sobolev space, satisfying

f(a) = f ′(a) = . . . = f (k−1)(a) = 0 or f(b) = f ′(b) = . . . = f (k−1)(b) = 0.

Theorem 6.2.9. Suppose that the weights are

µn,l =
1

l!

ˆ
Vn

(x− xn)2l dx =
(zn+1 − xn)2l+1 − (zn − xn)2l+1

l!(2l + 1)
, l = 0, . . . , k, n ∈ Z,

and let δ be as in (6.2.16). If

δ <
C(k)

2πmΩ
, C(k) =

1

ck+1
, (6.2.18)

where ck is as in (6.2.17), then

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈Z

k∑
l=0

µn,l|f (l)(xn)|2 ≤ B‖f‖2,

where

A ≥ e−1
(

1− (2πmΩck+1δ)
k+1
)2
, B ≤ (1 + 4mΩδ)

2 exp((2πmΩδ)
2).

Equivalently, the set {√µn,l dl

dxl
ΦΩ(· − xn) : n ∈ Z, l = 0, . . . , k} forms a frame for B(Ω)

with the frame bounds A and B.

In the following section we examine the constants ck and conclude by discussing the

improvement offered by this theorem over the multivariate result Theorem 6.2.1.
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Nonuniform sampling with derivatives or bunched points

Proof. We follow the arguments of [Grö99, Raz95]. Let

g(x) =
∑
n∈Z

k∑
l=0

1

l!
f (l)(xn)(x− xn)lχVn(x), x ∈ R.

Then

‖f − g‖2 =
∑
n∈Z

ˆ zn+1

zn

∣∣∣∣∣f(x)−
k∑
l=0

1

l!
f (l)(xn)(x− xn)l

∣∣∣∣∣
2

dx.

=
∑
n∈Z

(ˆ zn+1

xn

+

ˆ xn

zn

) ∣∣∣∣∣f(x)−
k∑
l=0

1

l!
f (l)(xn)(x− xn)l

∣∣∣∣∣
2

dx.

The function f(x) −
∑k

l=0
1
l!f

(l)(xn)(x − xn)l vanishes, along with its first k derivatives,

at x = xn. Applying (6.2.17) to each integral and noting that |zn+1 − xn| ≤ δ and

|xn − zn| ≤ δ gives

‖f − g‖2 ≤ (ck+1δ)
2k+2‖f (k+1)‖2.

Observe that for all f ∈ B(Ω) the Bernstein inequality reads

‖Dαf‖ ≤ (2πω̄)α‖f‖,

where ω̄ = (ω̄1, . . . , ω̄d)
> and ω̄j = supω∈Ω |ωj |. Additionally, in one dimension, ω̄ = mΩ.

Therefore, by applying Bernstein’s inequality we deduce that

‖f − g‖ ≤ (2πmΩck+1δ)
k+1‖f‖,

and hence (
1− (2πmΩck+1δ)

k+1
)
‖f‖ ≤ ‖g‖ ≤

(
1 + (2πmΩck+1δ)

k+1
)
‖f‖.

We now use this and (6.2.15) to get the estimate for A. For the bound on B, we argue

similarly to the proof of Theorem 6.2.1. We have

µn,l ≤
1

l!
sup
x∈Vn

|x− xn|2lµn,0 ≤
1

l!
δ2lµn,0.

Hence ∑
n∈Z

k∑
l=0

µn,l|f (l)(xn)|2 ≤
k∑
l=0

δ2l

l!

∑
n∈Z

µn,0|f (l)(xn)|2.
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6.2. Nonuniform derivative sampling

Gröchenig’s result [Grö92] for k = 0 and d = 1, i.e. Theorem 2.1.6, gives that

∀g ∈ B(Ω),
∑
n∈Z

µn,0|g(xn)|2 ≤ (1 + 4δmΩ)2‖g‖2.

By this and Bernstein’s inequality, we deduce that

∑
n∈Z

k∑
l=0

µn,l|f (l)(xn)|2 ≤ (1 + 4δmΩ)2
k∑
l=0

(2πmΩδ)
2l

l!
‖f‖2.

Since
k∑
l=0

(2πmΩδ)
2l

l!
= exp((2πmΩδ)

2),

the upper bound follows.

Observe that for k = 0, i.e. the classical nonuniform sampling problem without deriva-

tives, (6.2.18) reduces to δ < 1/(4mΩ) since c1 = 2/π [Grö92]. This is in agreement with

the result of Gröchenig [Grö92], which is stated here in Theorem 2.1.6. This result is

sharp, and says that one must sample at a rate just above the Nyquist rate 1/(4mΩ).

The magnitude of ck

We now consider the constant ck of Wirtinger’s inequality (6.2.17) when k ≥ 1. We first

note the following:

Lemma 6.2.10. Consider the polyharmonic eigenvalue problem

(−1)kg(2k) = λg, g(0) = . . . = g(k−1)(0) = g(k)(1) = . . . g2k−1(1) = 0. (6.2.19)

This problem has a countable basis of positive eigenvalues 0 < λ
(k)
1 < λ

(k)
2 < . . .. Moreover,

the best constant ck in the inequality (6.2.17) is precisely (λ
(k)
1 )−

1
2k .

Proof. It is well known that (6.2.19) has a countable spectrum with eigenfunctions {φn}∞n=1

forming an orthonormal basis of L2(0, 1) [Nai68]. It is straightforward to see that (6.2.19)

has only strictly positive eigenvalues. Now let f ∈ Hk(0, 1) satisfy f(0) = . . . = f (k−1)(0) =

0. Then

〈f, φn〉 =
(−1)k

λ
(k)
n

〈f, φ(2k)
n 〉 =

1

λ
(k)
n

〈f (k), φ(k)
n 〉.

In particular, if f = φn, then ‖φn‖2 = 1

λ
(k)
n

‖φ(k)
n ‖2. Let ψn = 1√

λ
(k)
n

φ
(k)
n , so that ‖ψn‖ = 1.

The set {ψn}∞n=1 is precisely the set of eigenfunctions of the problem

(−1)kg(2k) = λg, g(k)(0) = . . . = g(2k−1)(0) = g(1) = . . . gk−1(1) = 0.

121



Nonuniform sampling with derivatives or bunched points

k 1 2 3 4 5 6 7 8 9 10

ck 0.6366 0.5333 0.4495 0.3861 0.3376 0.2997 0.2694 0.2446 0.2240 0.2066

1/ck 1.5708 1.8751 2.2248 2.5903 2.9621 3.3367 3.7125 4.0888 4.4652 4.8415

Table 6.2: The values ck and 1/ck for k = 1, 2, . . . , 10. These values were calculated in
high precision using Mathematica.

In particular, they form an orthonormal basis of L2(0, 1). Therefore, since 〈f, φn〉 =
1√
λ

(k)
n

〈f (k), ψn〉, it follows from Parseval’s identity that

‖f‖2 =
∑
n

|〈f, φn〉|2 =
∑
n

1

λ
(k)
n

|〈f (k), ψn〉|2 ≤
1

λ
(k)
1

∑
n

|〈f (k), ψn〉|2 =
1

λ
(k)
1

‖f (k)‖2,

by completeness. Thus ‖f‖2 ≤ 1/λ
(k)
1 ‖f (k)‖2, and this bound is sharp since we may set

f = φ1. By a change of variables, we get that (ck)
2k = 1/λ

(k)
1 , as required.

This means we can determine the constant ck by finding the eigenvalues of (6.2.19).

When k = 1, the eigenvalues of (6.2.19) are (π/2 + nπ)2, n ∈ N0. Hence λ
(1)
1 = π2/4

and c1 = 2/π, as stated. Unfortunately, for k ≥ 2 no explicit expression exists for the

eigenvalues, so we resort to numerical computation. For k ≥ 2, write λ = τ2k for τ > 0.

The general solution of (6.2.19) can be written as

g(x) =
2k−1∑
s=0

bse
izsτx,

where z = eiπ/k and bs ∈ C are coefficients. Enforcing the boundary conditions results in

a linear system of equations

2k−1∑
s=0

(izsτ)rbs = 0,
2k−1∑
s=0

(izsτ)k+reizsτ bs = 0, r = 0, . . . , k − 1.

In matrix form, we have A(τ)b = 0, where A(τ) ∈ C2k×2k, b = (b0, . . . , b2k−1)>. Hence

the minimal eigenvalue λ
(k)
1 = (τ

(k)
1 )2k, and therefore ck = 1/τ

(k)
1 , where τ

(k)
1 is the first

positive root of the function D(τ) = det(A(τ)). In the case k = 2, we have D(τ) =

8iτ6 (1 + cos(τ) cosh(τ)), and numerical computation finds that τ
(2)
1 = 1.8751 (see also

[Raz95]).

In Table 6.2 we compute τ
(k)
1 = 1/ck and ck for k = 1, . . . , 10. As is evident the values

1/ck, grow approximately linearly in k for large k. Linear regression on the computed

values gives that 1/ck ≈ 1.1458 + 0.3674k for large k. Note that 1/e = 0.3679. We
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k 0 1 2 3 4 5 6 7 8 9

(a) 0.4812 0.8141 1.1268 1.4304 1.7890 2.1535 2.5186 2.8842 3.2501 3.6163

(b) 1.5708 1.8751 2.2248 2.5903 2.9621 3.3367 3.7125 4.0888 4.4652 4.8415

(c) 1.4142 1.8612 2.2209 2.5886 2.9612 3.3361 3.7121 4.0885 4.4650 4.8413

Table 6.3: The constant C(k) obtained from (a) Theorem 6.2.1 for the case d = 1, (b)
Theorem 6.2.9 and (c) [Raz95, Thm. 1].

therefore conjecture that
1

ck
∼ 1

e
(k + 1), k →∞. (6.2.20)

We remark in passing that the large k asymptotics for the optimal constant in a variant

of Wirtinger’s inequality where f and its derivatives vanish at both endpoints has been

derived by Böttcher & Widom [BW07]. We expect a similar approach can be applied to

(6.2.17) to obtain (6.2.20).

We can now compare Theorem 6.2.9 with the multivariate result Theorem 6.2.1. In

Table 6.3 we give the numerical values for the constant C(k) arising from both theorems,

where δ < C(k)/(2πmΩ) is the required condition on δ. The univariate bound is evidently

superior for all values of k considered. However, the bounds behave the same asymptoti-

cally, since both Theorem 6.2.1 and Theorem 6.2.9 give C(k) ∼ 1/e (k+1) ≈ 0.3679 (k+1)

for large k (recall Corollary 6.2.4). In Table 6.3 we also compare Theorem 6.2.9 to the

bound derived in [Raz95, Thm. 1] (note that the value 1.8751 for k = 1 was also provided

in [Raz95] using Wirtinger’s inequality arguments as we do above). Unfortunately, the

improvement obtained from Theorem 6.2.9 is only marginal. In particular, both bounds

are asymptotic to 1/e (k+ 1) for large k, and therefore (we expect) a long way from being

sharp (recall that the condition for equispaced samples is δ ≤ (π/2 (k+ 1))/(2πmΩ)). We

conclude that although Wirtinger’s inequality obtains a sharp bound for k = 0, it is of

little use in getting superior bounds for k ≥ 1.

6.2.3 Line-by-line sampling

In some applications, not least seismology, the unknown function f depends on a spatial

variable z ∈ Rd−1 and a temporal variable t ∈ R. Sensors are placed at fixed locations

{zn}n∈I ⊆ Rd−1, where d = 2, 3, in physical space, and measurements are taken at times

{tm,n}m∈J . In particular, different sensors may take measurements at different times.

This gives the set of samples

Dα
z f(zn, tm,n), n ∈ I,m ∈ J, |α|1 ≤ k.
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Nonuniform sampling with derivatives or bunched points

Note that Dα
z = ∂α1

z1 · · · ∂
αd−1
zd−1 is the partial derivative with respect to z only. We do not

measure any temporal derivatives.

Let x = (z, t) ∈ Rd and write f(z, t) = f(x). We shall assume that f ∈ B(Ω) and

moreover that Ω = Ωz × Ωt for Ωz ⊆ R̂d−1 and Ωt ⊆ R̂. Let

δz,∗ = sup
z∈Rd−1

inf
n∈I
|z − zn|∗, δt = sup

n∈I
sup
t∈R

inf
m∈J
|t− tm,n|,

and write Vn ⊆ Rd−1 for the Voronoi cells of the sampling points {zn}n∈I with respect

to the |·|∗ norm. We now have the following result. Note that this is a straightforward

extension of a result of Strohmer [Str00a] (see also [Grö01]) to the case of derivatives and

d ≥ 3.

Proposition 6.2.11. Suppose that the weights

µm,n,α =
tm+1,n − tm,n

2α!

ˆ
Vn

(z − zn)2α dz.

If

δt <
1

4mΩt

, δz,∗ <
C(k, d)

2πmΩzc
∗ , C(k, d) =


1/ck+1 d = 2

max {Hk(1), Gk,d(1)} d ≥ 3

,

then for all f ∈ B(Ω)

(1− 4δtmΩt)
2Az‖f‖2 ≤

∑
m∈J

∑
n∈I

∑
|α|1≤k

µm,n,α|Dα
z f(zn, tm,n)|2

≤ (1 + 4δtmΩt)
2Bz‖f‖2,

where Az and Bz satisfy

Az ≥ e−1
(

1− (2πmΩzck+1δz,∗)
k+1
)2
, Bz ≤ (1 + 4mΩzδz,∗)

2 e(2πmΩz δz,∗)
2
, d = 2,

with ck as in (6.2.17), or

Az ≥ e−d (1−min {hk(2πmΩzc
∗δz,∗), gk,d(2πmΩzc

∗δz,∗)})2 ,

Bz ≤ exp(4πmΩzc
∗δz,∗ + (2πmΩzc

∗δz,∗)
2),

for d ≥ 3, with hk and gk,d as in (6.2.7) and (6.2.8) with inverse functions Hk and Gk,d

respectively. Equivalently, the set {√µm,n,αDα
z ΦΩ(· − xn,m) : n ∈ I,m ∈ J, |α|1 ≤ k},

where xn,m = (zn, tm), forms a frame for B(Ω) with bounds

A ≥ (1− 4δtmΩt)
2Az, B ≤ (1 + 4δtmΩt)

2Bz.
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6.2. Nonuniform derivative sampling

Proof. Gröchenig’s original, one-dimensional, derivative-free result from [Grö92] (see The-

orem 2.1.6) gives that

(1− 4δtmΩt)
2
ˆ
R
|f(z, t)|2 dt ≤

∑
m∈J

tm+1,n − tm,n
2

|f(z, tm,n)|2

≤ (1 + 4δtmΩt)
2
ˆ
R
|f(z, t)|2 dt.

Hence, if g(z) =
√´

R |f(z, t)|2 dt and µ̃n,α = 1
α!

´
Vn

(z − zn)2α dz then

(1− 4δtmΩt)
2
∑
n∈I

∑
|α|1≤k

µ̃n,α|Dα
z g(zn)|2 ≤

∑
m∈J

∑
n∈I

∑
|α|1≤k

µm,n,α|Dα
z f(zn, tm,n)|2

≤ (1 + 4δtmΩt)
2
∑
n∈I

∑
|α|1≤k

µ̃n,α|Dα
z g(zn)|2

and, to get the result, we now apply Theorem 6.2.1 (d ≥ 3) or Theorem 6.2.9 (d = 2) to

the sum and note that
´
Rd−1 |g(z)|2 dz = ‖f‖2.

This proposition implies the following. With the above type of scheme, for stable sam-

pling one requires (i) the usual derivative-free density for univariate nonuniform sampling

in the time variable, i.e. δt < 1/(4mΩt), and (ii) a density in the space variable depending

on the number of derivatives.

6.2.4 A multivariate perturbation result with derivatives

The results proved thus far give explicit guarantees for nonuniform derivatives sampling.

However, the conditions on the density δ are more stringent than those required for

uniform samples. We now show that nonuniform sampling is possible with larger gaps

under appropriate conditions.

Theorem 6.2.12. Suppose that {xn}n∈I ⊆ Rd and µn,α > 0, n ∈ I, |α|1 ≤ k, are such

that (6.2.1) holds with constants A,B > 0. Let {x̃n}n∈I ⊆ Rd be such that

ε∗ = sup
n∈I
|x̃n − xn|∗ <

ln(1 +
√
A/B)

2πmΩc∗
, (6.2.21)

then

∀f ∈ B(Ω), Ã‖f‖2 ≤
∑
n∈I

∑
|α|1≤k

µn,α|Dαf(x̃n)|2 ≤ B̃‖f‖2,

where

Ã ≥
(√

A−
√
B (exp(2πmΩc

∗ε∗)− 1)
)2
, B̃ ≤ B exp(4πmΩc

∗ε∗).
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Nonuniform sampling with derivatives or bunched points

That is, if the set {√µn,αDαΦΩ(· − xn) : n ∈ I, |α|1 ≤ k} forms a frame for B(Ω) with

bounds A and B, then the set {√µn,αDαΦΩ(· − x̃n) : n ∈ I, |α|1 ≤ k} forms a frame for

B(Ω) with bounds Ã and B̃.

Proof. The proof is similar to those of the earlier results. Note first that by Minkowski

inequality√∑
n∈I

∑
|α|1≤k

µn,α|Dαf(x̃n)|2

≥
√∑

n∈I

∑
|α|1≤k

µn,α|Dαf(xn)|2 −
√∑

n∈I

∑
|α|1≤k

µn,α|Dαf(xn)−Dαf(x̃n)|2.

By identical arguments to those used in §6.2.1, we have

|g(xn)− g(x̃n)|2 ≤
(
exp(c(c∗ε∗)

2)− 1
) ∑
|β|1>0

c−|β|1

β!
|Dβg(xn)|2,

for any function g ∈ B(Ω). Using this, we deduce that∑
n∈I

∑
|α|1≤k

µn,α|Dαf(xn)−Dαf(x̃n)|2

≤
(
exp(c(c∗ε∗)

2)− 1
) ∑
|β|1>0

c−|β|1

β!

∑
n∈I

∑
|α|1≤k

µn,α|DαDβf(xn)|2

≤ B
(
exp(c(c∗ε∗)

2)− 1
) ∑
|β|1>0

c−|β|1

β!
‖Dβf‖2

≤ B
(
exp(c(c∗ε∗)

2)− 1
) (

exp((2πmΩ)2/c)− 1
)
‖f‖2.

Setting c = 2πmΩ/(c
∗ε∗) gives

Ã ≥
(√

A−
√
B (exp(2πmΩc

∗ε∗)− 1)
)2
.

Hence, Ã > 0 provided that
√
A−
√
B (exp(2πmΩc

∗ε∗)− 1) > 0. Now, rearranging gives

(6.2.21). The upper bound for B̃ follows similarly.

As with the previous results, the right-hand side (6.2.21) is dimensionless whenever

Ω is contained in the unit ball and |·|∗ = |·|q, 1 ≤ q ≤ 2. Now suppose for simplicity

that Ω ⊆ [−1, 1]d. Then the points xn = (k + 1)n/2, n ∈ Zd, give rise to a stable set

of sampling (this is due to the fact that they give rise to a Riesz basis for Ω = [−1, 1]d,

and therefore a frame when Ω ⊆ [−1, 1]d). This theorem therefore allows for nonuniform

samples with gaps roughly on the size of k, provided the sampling points x̃n are within ε∗

of the xn. An issue with this result is that the ratio A/B is liable to decrease with both

126



6.3. Univariate nonuniform bunched sampling

k and d. Hence, the maximal allowed ε∗ may be rather small in practice. See [Raw89] for

the one-dimensional case.

In [Bai10, Cor. 6.1], a multivariate perturbation result for the case k = 0 with xn =

n/2 was derived based on similar arguments. In our notation, the result proved therein

corresponds to the case p = q = ∞. The precise condition given is ε∗ < ln 2/(2πd),

which is equivalent to (6.2.21) with k = 0. Note that Sun & Zhou [SZ99] also prove a

perturbation result in the same setting p = q = ∞, but based on expanding in Laplace–

Neumann eigenfunctions, rather than Taylor series (this is similar to the proof of the

original Kadec-1/4 theorem). Their constant is somewhat smaller than ln 2/(2πd) for

finite d, but, as discussed in [Bai10], it is asymptotic to ln 2/(2πd) as d → ∞. The

generalizations of these results offered by Theorem 6.2.12 are:

(i) flexibility over the choice of domain Ω—in particular, a dimension-independent

bound for appropriate Ω and |·|∗, and

(ii) the case when derivatives are sampled, i.e. k 6= 0.

In [ARAK09], perturbation results are proved for a more general sampling model that

includes derivatives sampling of bandlimited functions as a special case. However, for

this particular case [ARAK09, Thm 3.8], the perturbation bound is not explicit, and

additionally, it assumes separation of the sampling points.

6.3 Univariate nonuniform bunched sampling

We now consider nonuniform sampling with sampling points clustered in bunches. Given

the difficulty of polynomial interpolation for d ≥ 2 dimensions, we consider the univariate

case only.

6.3.1 Problem statement

Assume that we are given samples at some nonuniform points {xn,0}n∈I ⊆ R which are

δ-dense

δ = sup
x∈R

inf
n∈I
|x− xn,0|, (6.3.1)

and let Vn denotes the Voronoi region associated to xn,0. Moreover, for each n ∈ I, we are

given s additional samples inside each of the Voronoi region, namely s additional samples

at distinct points

xn,m ∈ [xn,0 − hn, xn,0 + hn] ⊆ Vn, m = 1, . . . , s, (6.3.2)

127



Nonuniform sampling with derivatives or bunched points

which can be also nonuniform. If we denote

h = sup
n∈I

hn, (6.3.3)

then, by definition, there exists a positive constant τ ≤ 1 such that

h = τδ.

Therefore, in each h-vicinity of xn,0, there are s additional sampling points. We shall call

such a sampling sequence

{xn,m}n∈I,0≤m≤s

a bunched set with the density δ defined by (6.3.1) and the bunch width h defined by

(6.3.3). We are interested in a behaviour of the permitted density δ in terms of the bunch

cardinality s and the bunch width h (or τ), while ensuring a (fusion) frame.

Much as in the case of derivatives sampling, in bunched sampling, we expect that a

larger δ is possible if there are multiple sample points around each xn,0. As discussed

earlier, it is useful to have this type of sampling scheme in the situations where we must

allow for bigger distances between sampling sensors due to some natural constraints.

6.3.2 Bunched sampling and fusion frames

In nonuniform derivative sampling, we showed the existence of a particular frame to

establish stable sampling. In the case of bunched sampling, we will first show the existence

of a particular fusion frame [CK04, CKL08]. We recall that a non-orthogonal fusion frame

[CCL12] for a Hilbert space H is a set of positive scalars {vn}n∈I and non-orthogonal

projections {Pn}n∈I , each with closed range, satisfying

∀f ∈ H, A‖f‖2 ≤
∑
n∈I

vn‖Pnf‖2 ≤ B‖f‖2.

Much like a frame operator, the associated fusion frame operator S : H→ H given by

Sf =
∑
n∈I
P∗nPnf

is linear, bounded, self-adjoint and invertible. Thus, any f ∈ H can be recovered stably

from the data {Pnf}n∈I . In practice, if the projections have finite-dimensional ranges,

using the results of Chapter 3, it can be easily seen that the reconstruction can be carried

out via generalized sampling, for example.

Given the bunched set {xn,m}n∈I,0≤m≤s and associated Voronoi regions {Vn}n∈I , for
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6.3. Univariate nonuniform bunched sampling

each n ∈ I we define the subspace

Wn =
{
g ∈ L2(R) : supp(g) ⊆ Vn

}
and also for any f ∈ B(Ω) we define the operator

Pn(f) = pn(f)χVn (6.3.4)

where pn(f) ∈ Ps is the unique interpolating polynomial of degree s such that

pn(f)(xn,m) = f(xn,m), m = 0, . . . , s.

The bounded linear operator Pn : B(Ω)→Wn is a non-orthogonal projection, i.e. P2
n = Pn

by uniqueness of the interpolating polynomial. Hence, if there exist A,B > 0 such that

for all f ∈ B(Ω)

A‖f‖2 ≤
∑
n∈I
‖Pn(f)‖2 ≤ B‖f‖2,

then {Pn}n∈I is a non-orthogonal fusion frame for B(Ω) with weights vn = 1. Our main

result gives conditions for this to be the case:

Theorem 6.3.1. Suppose that {xn,m}n∈I,0≤m≤s ⊆ R is a bunched set with density δ and

bunch width h = τδ, where τ ∈ (0, 1]. If

δ <
H̃s,τ (1)

2πmΩ
, (6.3.5)

where H̃s,τ is the inverse function of

h̃s,τ (z) =
(1 + τ)szs+1

(s+ 1)!

(
1 +

4z

π

)
, z ∈ (0,∞),

then

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈I
‖Pn(f)‖2 ≤ B‖f‖2,

where Pn(f) are given by (6.3.4) and

A ≥
(

1− (1 + τ)s(2πδmΩ)s+1

(s+ 1)!
(1 + 8δmΩ)

)2

,

B ≤
(

1 +
(1 + τ)s(2πδmΩ)s+1

(s+ 1)!
(1 + 8δmΩ)

)2

.

(6.3.6)

Equivalently, the family {Pn}n∈I is a non-orthogonal fusion frame for B(Ω) with weights

vn = 1.
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Nonuniform sampling with derivatives or bunched points

Proof. Let g(x) =
∑

n∈I Pn(f)(x). Then

‖g‖2 =

ˆ
R

∣∣∣∣∣∑
n∈I

pn(f)(x)χVn(x)

∣∣∣∣∣
2

dx =
∑
n∈I

ˆ
Vn

|pn(f)(x)|2 dx =
∑
n∈I
‖Pn(f)‖2.

Since f is a bandlimited function, it is infinitely continuously differentiable. Also, since

for each n ∈ I, pn(f)(x) is a polynomial of degree at most s that interpolates f at s + 1

distinct points {xn,m : m = 0, . . . , s} in the closed interval Vn, a classical result gives that

for each n ∈ I and x ∈ Vn there exists ξn(x) ∈ Vn such that

f(x)− pn(f)(x) =
f (s+1)(ξn(x))

(s+ 1)!

s∏
m=0

(x− xn,m). (6.3.7)

Let x̃n ∈ Vn be such that

|f (s+1)(x̃n)| = max
x∈Vn

|f (s+1)(x)|,

which again exists because f is bandlimited. Note that, for all x ∈ Vn, |x− xn,m| ≤ δ+ h

for m 6= 0 and |x− xn,m| ≤ δ for m = 0. Thus, from (6.3.7), for all x ∈ Vn we have

|f(x)− pn(f)(x)| ≤
∣∣f (s+1)(x̃n)

∣∣
(s+ 1)!

(1 + τ)sδs+1.

Therefore

‖f − g‖2 =
∑
n∈I

ˆ
Vn

|f(x)− pn(f)(x)|2 dx≤ (1 + τ)2sδ2(s+1)

((s+ 1)!)2

∑
n∈I

meas(Vn)|f (s+1)(x̃n)|2.

By the construction, the points {x̃n}n∈I are 2δ-dense and x̃n ∈ Vn, n ∈ I. Hence, by

adapting the proof of Gröchenig’s one-dimensional result [Grö92] for s = 0 (to account

for the fact that x̃n 6= xn,0), we get

‖f − g‖ ≤ (1 + τ)sδs+1

(s+ 1)!
(1 + 8δmΩ) (2πmΩ)s+1‖f‖.

The result now follows immediately.

The constant H̃s,τ (1) in the density bound obtained by this theorem is explicitly

calculated for different values of s and τ in Table 6.4. The asymptotic result is given in

the following corollary:

Corollary 6.3.2. For large s, if

δ <
1

(1 + τ)e

s+ 1

2πmΩ
,
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6.3. Univariate nonuniform bunched sampling

s 0 1 2 3 4 5 6 7 8 9

H̃s,1(1) 0.5766 0.7218 0.8894 1.0626 1.2382 1.4151 1.5928 1.7710 1.9497 2.1287

H̃s,1/2(1) 0.5766 0.8101 1.0458 1.2820 1.5187 1.7558 1.9934 2.2314 2.4696 2.7082

H̃s,1/4(1) 0.5766 0.8710 1.1578 1.4426 1.7270 2.0115 2.2963 2.5815 2.8671 3.1531

H̃s,1/8(1) 0.5766 0.9080 1.2275 1.5440 1.8597 2.1754 2.4914 2.8079 3.1248 3.4422

H̃s,1/16(1) 0.5766 0.9287 1.2669 1.6017 1.9357 2.2696 2.6039 2.9387 3.2740 3.6099

Table 6.4: The constant in the bunched sampling density bound (6.3.5).

the set {Pn}n∈I is a non-orthogonal fusion frame for B(Ω) with weights vn = 1 and frame

bounds as in (6.3.6).

Proof. Let z = H̃s,τ (1), i.e. h̃s,τ (z) = 1. This gives

z

s+ 1
(1 + τ)1− 1

s+1 (1 + 4z/π)
1
s+1 =

((s+ 1)!)
1
s+1

s+ 1
.

Therefore

H̃s,τ (1) ∼ s+ 1

(1 + τ)e

as s→∞.

By choosing a different form of the interpolation polynomial in (6.3.4), we get differ-

ent families of fusion frames. In particular, for the Lagrange form of the interpolation

polynomial the operator (6.3.4) becomes

Pn(f)(x) =
s∑

m=0

f(xn,m)Ln,m(x)χVn(x),

where Ln,m are Lagrange polynomials given by

Ln,m(x) =
Rn,m(x)

Rn,m(xn,m)
, Rn,m(x) =

∏
0≤j≤s
j 6=m

(x− xn,j), (6.3.8)

and therefore, for the fusion frame operator we have

S(f)(t) =
∑
n∈I

s∑
m=0

s∑
l=0

(ˆ
Vn

Ln,m(x)Ln,l(x) dx

)
f(xn,l)ΦΩ(t− xn,m).

On the other hand, if we use the Newton form of the interpolation polynomial, we have

Pn(f)(x) =

s∑
m=0

Dxn,0,...,xn,mfNn,m(x)χVn(x), (6.3.9)
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where Dxn,0,...,xn,mf denotes divided difference of the function f at xn,0, . . . , xn,m and Nn,m

is Newton polynomial given by

Nn,m(x) =

m−1∏
l=0

(x− xn,l). (6.3.10)

The fusion frame operator in this case is

S(f)(t) =
∑
n∈I

s∑
m=0

s∑
l=0

(ˆ
Vn

Nn,m(x)Nn,l(x) dx

)
Dxn,0,...,xn,lfDxn,0,...,xn,mΦΩ(t− ·).

Moreover, this approach allows us to consider the following more general sampling sce-

nario. Suppose that we are additionally given k derivatives at the points of the bunched

set {xn,m}n∈I,0≤m≤s, i.e. the given data is

f (j)(xn,m), n ∈ I, m = 0, . . . , s, j = 0, . . . , k.

Now, for each n ∈ I, we can define the unique interpolation polynomial pn(f) such that

p(j)
n (f)(xn,m) = f (j)(xn,m), m = 0, . . . , s, j = 0, . . . , k.

In this case, we can use the Hermite form of the interpolation polynomial and set

Pn(f)(x) =
k∑
j=0

s∑
m=0

f (j)(xn,m)cn,m,j(x)χVn(x),

where

cn,m,j(x) = Lk+1
n,m(x)

(x− xn,m)j

j!

k−j∑
i=0

(x− xn,m)i

i!
Rk+1
n,m(xn,m)

di

dxi
R−(k+1)
n,m (xn,m),

and Ln,m, Rn,m are as in (6.3.8), see [Tra64]. Since the error term (6.3.7) now reads as

f(x)− Pn(f)(x) =
f ((s+1)(k+1))(ξn(x))

((s+ 1)(k + 1))!

s∏
m=0

(x− xn,m)k+1,

we obtain an additional k + 1 factor in the density bound, i.e. the density condition now

reads
(1 + τ)s(k+1)(2πδmΩ)(s+1)(k+1)

(s+ 1)!(k + 1)!
(1 + 8δmΩ) < 1,

which for large s and large k leads to

δ <
1

(1 + τ)e

(s+ 1)(k + 1)

2πmΩ
.
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6.3. Univariate nonuniform bunched sampling

Thus, a combination of bunched and derivative sampling increases the maximal allowed

density by a multiplicative factor of s+ 1 (number of bunched points) and k+ 1 (number

of derivatives).

6.3.3 Bunched sampling and frames

It transpires that the use of the Newton form of the interpolating polynomial also allows

one to relate bunched sampling to a frame, as opposed to a fusion frame. Let us define

Pn as in (6.3.9). Since the divided difference Dxn,0,...,xn,mf is just a linear combination of

the function f evaluated at the points xn,0, . . . , xn,m and since f(x) = 〈f(t),ΦΩ(t − x)〉
with ΦΩ defined by (6.2.2), we can write

Dxn,0,...,xn,mf = 〈f, φn,m〉, φn,m(t) = Dxn,0,...,xn,mΦΩ(t− ·). (6.3.11)

We now have the following:

Theorem 6.3.3. Suppose that {xn,m}n∈I,0≤m≤s ⊆ R is the bunched set with density δ and

bunch width h = τδ, where τ ∈ (0, 1]. Let {Vn}n∈I be the Voronoi regions corresponding

to the points {xn,0}n∈I . If

δ <
H̃s,τ (1)

2πmΩ
,

where H̃s,τ is as in Theorem 6.3.1, then

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈I

s∑
m=0

µn,m
∣∣Dxn,0,...,xn,mf

∣∣2 ≤ B‖f‖2, (6.3.12)

where µn,m = m!
´
Vn
|Nn,m(x)|2 dx, Nn,m are given by (6.3.10) and

A ≥ 1

e

(
1− (1 + τ)s(2πδmΩ)s+1

(s+ 1)!
(1 + 8δmΩ)

)2

, (6.3.13)

B ≤ (1 + 8(1 + τ)δmΩ)2 e((1+τ)2πmΩδ)
2

(1 + τ)2
. (6.3.14)

Equivalently, if φn,m is as in (6.3.11), the set
{√

µn,mφn,m : n ∈ I,m = 0, . . . , s
}

is a

frame for B(Ω).

Proof. As before, let

g(x) =
∑
n∈I

s∑
m=0

Dxn,0,...,xn,mfNn,m(x)χVn(x).
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Now we have

‖g‖2 =
∑
n∈I

ˆ
Vn

∣∣∣∣∣
s∑

m=0

Dxn,0,...,xn,mfNn,m(x)

∣∣∣∣∣
2

dx

≤
s∑

m=0

1

m!

∑
n∈I

s∑
m=0

m!

(ˆ
Vn

|Nn,m(x)|2 dx

) ∣∣Dxn,0,...,xn,mf
∣∣2

and hence ∑
n∈I

s∑
m=0

µn,m
∣∣Dxn,0,...,xn,mf

∣∣2 ≥ e−1 (‖f‖ − ‖f − g‖)2 .

In the proof of Theorem 6.3.1 we obtained

‖f − g‖ ≤ (1 + τ)s(2πδmΩ)s+1

(s+ 1)!
(1 + 8δmΩ) ‖f‖,

and therefore for the lower frame bound we get

A ≥ e−1

(
1− (1 + τ)s(2πδmΩ)s+1

(s+ 1)!
(1 + 8δmΩ)

)2

.

For the upper frame bound first note that

µn,m = m!

ˆ
Vn

∣∣∣∣∣
m−1∏
l=0

(x− xn,l)

∣∣∣∣∣
2

dx ≤ m!(1 + τ)2(m−1)δ2mmeas(Vn).

Since f ∈ B(Ω) is infinitely differentiable, from the mean value theorem for divided dif-

ferences, for any n ∈ I and any m ≤ s, there exists x̃n,m ∈ 〈xn,0, . . . , xn,m〉 such that

Dxn,0,...,xn,mf =
1

m!
f (m)(x̃n,m)

where

〈xn,0, . . . , xn,m〉 = (min{xn,0, . . . , xn,m},max{xn,0, . . . , xn,m}) ⊆ [xn,0 − h, xn,0 + h]

Now, since for each m the points {x̃n,m}n∈I are (1 + τ)δ-dense, as before, by adapting

Gröchenig’s one-dimensional result, we obtain

∑
n∈I

s∑
m=0

µn,m
∣∣Dxn,0,...,xn,mf

∣∣2 ≤ 1

(1 + τ)2

s∑
m=0

((1 + τ)δ)2m

m!

∑
n∈I

meas(Vn)
∣∣∣f (m)(x̃n,m)

∣∣∣2
≤ (1 + 8mΩδ(1 + τ))2

(1 + τ)2

s∑
m=0

((1 + τ)δ)2m

m!
‖f (m)‖2
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≤ (1 + 8mΩδ(1 + τ))2 e((1+τ)δ2πmΩ)2

(1 + τ)2
‖f‖2,

and the estimate for the upper frame bound follows.

In the limit, when the bunch width h becomes very small and the number of bunched

points s very large, from this proposition we obtain precisely the one-dimensional deriva-

tive result given in Theorem 6.2.9 for large number of derivatives k:

Corollary 6.3.4. For large s and small τ , if

δ <
1

e

s+ 1

2πmΩ
,

then
{√

µn,m
dm

dxmΦΩ(· − xn,0) : µn,m = 1
m!

´
Vn

(x− xn,0)2m dx, n ∈ I,m = 0, . . . , s
}

is a

frame for B(Ω) with the frame bounds satisfying (6.3.13) and (6.3.14).

Proof. Consider the sum (6.3.12) as τ → 0. For xn,0, . . . , xn,m∈ [xn,0 − τδ, xn,0 + τδ]

lim
τ→0

∑
n∈I

s∑
m=0

(
m!

ˆ
Vn

|Nn,m(x)|2 dx

) ∣∣Dxn,0,...,xn,mf
∣∣2

=
∑
n∈I

s∑
m=0

(
1

m!

ˆ
Vn

(x− xn,0)2m dx

)
|f (m)(xn,0)|2.

This holds due to dominated convergence theorem, since for any τ , n and m

m!

ˆ
Vn

|Nn,m(x)|2 dx
∣∣Dxn,0,...,xn,mf

∣∣2 ≤ meas(Vn)(2δ)2m|f (m)(x̃n)|2,

where x̃n ∈ Vn is such that |f (m)(x̃n)| = maxx∈Vn |f (m)(x)|.
For the density condition, let z = H̃s,τ (1). Since 1 + τ ∼ 1 as τ → 0, this gives

z

s+ 1
(1 + 4z/π)

1
s+1 ∼ ((s+ 1)!)

1
s+1

s+ 1
, τ → 0,

and hence H̃s,τ (1) ∼ (s+ 1)/e as τ → 0 and s→∞.

Therefore, for the large number of bunched sampling points s such that the width of

all bunches is small, we obtain the same result as when sampling s derivatives.

6.3.4 Bunched sampling as a perturbation of derivative sampling

We have the following result:
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Theorem 6.3.5. Suppose that {xn,0}n∈I ⊆ R and µn,m = 1
m!

´
Vn

(x − xn,0)2m dx, n ∈ I,

m ≤ s, are such that

∀f ∈ B(Ω), A‖f‖2 ≤
∑
n∈I

s∑
m=0

µn,m

∣∣∣f (m)(xn,0)
∣∣∣2 ≤ B‖f‖2 (6.3.15)

for some constants A,B > 0. Let {xn,m}n∈I,0≤m≤s ⊆ R be the bunched set with bunch

width h such that

h <
ln(1 +

√
A/B)

2πmΩ
, (6.3.16)

then

∀f ∈ B(Ω), Ã‖f‖2 ≤
∑
n∈I

s∑
m=0

µ̃n,m|Dxn,0,...,xn,mf |2 ≤ B̃‖f‖2,

where µ̃n,m = (m!)2 µn,m and

Ã ≥
(√

A−
√
B (exp(2πmΩh)− 1)

)2
, B̃ ≤ B exp(4πmΩh).

That is, if the family {√µn,m dm

dxmΦΩ(·−xn,0) : n ∈ I,m ≤ s} forms a frame for B(Ω) with

bounds A and B, then the family
{√

µ̃n,mφn,m : n ∈ I,m ≤ s
}

is a frame for B(Ω) with

bounds Ã and B̃, where φn,m is defined by (6.3.11).

Proof. Since f ∈ B(Ω) is infinitely differentiable, from the mean value theorem for divided

differences, for any n ∈ I and any m ≤ s, there exists x̃n,m ∈ [xn,0− h, xn,0 + h] such that

Dxn,0,...,xn,mf =
1

m!
f (m)(x̃n,m). (6.3.17)

Since also µ̃n,m = (m!)2 µn,m, we have

∑
n∈I

s∑
m=0

µ̃n,m
∣∣Dxn,0,...,xn,mf

∣∣2 =
∑
n∈I

s∑
m=0

µn,m

∣∣∣f (m)(x̃n,m)
∣∣∣2 .

Note that the sum on the right hand side is not in the scope of Theorem 6.2.12, since the

point x̃n,m changes for every m. However, we can proceed as follows. Since

f (m)(x̃n,m) = f (m)(xn,0) +
∑
l≥1

1

l!
f (m+l)(xn,0)(x̃n,m − xn,0)l,

by Minkowski’s inequality we get√√√√∑
n∈I

s∑
m=0

µ̃n,m
∣∣Dxn,0,...,xn,mf

∣∣2
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≥

√√√√∑
n∈I

s∑
m=0

µn,m
∣∣f (m)(xn,0)

∣∣2 −
√√√√√∑

n∈I

s∑
m=0

µn,m

∣∣∣∣∣∣
∑
l≥1

1

l!
f (m+l)(xn,0)(x̃n,m − xn,0)l

∣∣∣∣∣∣
2

.

Applying Minkowski’s inequality now to the second term and using supn∈I supm=0,...,s |xn,0−
x̃n,m| ≤ h and (6.3.15), we get√√√√√∑

n∈I

s∑
m=0

µn,m

∣∣∣∣∣∣
∑
l≥1

1

l!
f (m+l)(xn,0)(x̃n,m − xn,0)l

∣∣∣∣∣∣
2

≤
∑
l≥1

√√√√∑
n∈I

s∑
m=0

µn,m

∣∣∣∣ 1l!f (m+l)(xn,0)(x̃n,m − xn,0)l
∣∣∣∣2

≤
∑
l≥1

hl

l!

√√√√∑
n∈I

s∑
m=0

µn,m
∣∣f (m+l)(xn,0)

∣∣2
≤
√
B
∑
l≥1

hl

l!
‖f (l)‖

Now, by Cauchy-Schwarz and Bernstein’s inequality we derive

∑
n∈I

s∑
m=0

µn,m

∣∣∣∣∣∣
∑
l≥1

1

l!
f (m+l)(xn,0)(x̃n,m − xn,0)l

∣∣∣∣∣∣
2

≤ B
∑
l≥1

clh2l

l!

∑
l≥1

c−l

l!
‖f (l)‖2

≤ B (exp (2πmΩh)− 1)2 ‖f‖2.

Therefore

∑
n∈I

s∑
m=0

µ̃n,m
∣∣Dxn,0,...,xn,mf

∣∣2 ≥ (√A−√B (exp (2πmΩh)− 1)
)2
‖f‖2,

and similarly for the upper bound we obtain

∑
n∈I

s∑
m=0

µ̃n,m
∣∣Dxn,0,...,xn,mf

∣∣2 ≤ B exp (4πmΩh)‖f‖2.

Hence, the sequence {xn,m}n∈I,m=0,...,s gives rise to a frame if the width h satisfies (6.3.16).

Note that, due to (6.3.17), this theorem implies the perturbation result given by The-

orem 6.2.12, but only in the univariate setting. Moreover, this theorem allows a bunched

set to be taken at the same density which is allowed for derivative sampling, as long as

the width of bunches h satisfies condition (6.3.16).
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Chapter 7

Conclusions

The main contribution of this thesis is a general framework for stable reconstruction

in arbitrary reconstruction subspaces of multivariate compactly supported L2 functions

from nonuniform Fourier samples. We have shown that a stable reconstruction in any

desired reconstruction space is always possible provided the samples are taken sufficiently

dense and wide enough in the frequency domain. In general, the sampling scheme Ω

needs to satisfy the universal density condition δ < 1/4, whereas the sufficient sampling

bandwidth K depends on the reconstruction space T as well as the sampling scheme Ω.

For smaller δ’s, we have shown that in fact the sampling bandwidth K depends solely on

the reconstruction space T. This enabled us to analyse the sufficient scaling of K with

dim(T) for specific choices of T. In particular, for the univariate case where T consists

of wavelets or different types of polynomials, we have provided the explicit scaling of K

with dim(T) sufficient for stable and quasi-optimal reconstruction via NUGS.

Closely related to these results, there are several topics left for future work. First,

we expect that subject to the universal density condition δ < 1/4, the magnitude of the

sampling bandwidth K always depends solely on the reconstruction space T. Indeed, we

have shown this to be true in the univariate case. However in the multivariate case, cur-

rently, we require a more stringent density condition δ < (ln 2)/(2πmDc∗). Improvement

of this multi-dimensional δ-condition is left for future work. Associated to this issue is

improvement of our results for weighted Fourier frames. Although the weighted Fourier

frame bounds are explicitly estimated in the case of smaller densities than previously

known, it remains an open problem to explicitly estimate the frame bounds for even

smaller densities, closer to condition δ < 1/4.

Second, there is a question of the sufficient sampling bandwidth K for specific recon-

struction spaces T within the multivariate setting. We expect that our univariate results

for wavelets and different polynomials extend to higher dimensions. In higher dimensions,

it would be also important to analyse other reconstruction spaces, such as curvelets and

shearlets. Moreover, it would be interesting to analyse the stability barrier for all these
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different reconstruction spaces in terms of the smallest necessary scaling of K with dim(T)

required for stability. Note that, in the univariate setting, we have shown the stability

barrier for wavelets: the linear scaling of K with dim(T) is necessary for stability via any

reconstruction method from nonuniform samples. This is an extension of the result shown

in [AHP14] for the special case of uniform samples. In the uniform case and within the

univariate setting, in [AHS14], it was also shown that the quadratic scaling for polyno-

mials is in fact necessary, providing the stability barrier for reconstruction in polynomials

from uniform samples. We expect this to extend to the nonuniform case as well.

Recall that in this work the sampling scheme Ω is considered fixed. This situation

arises in applications such as MRI, where Ω is often specified by physical constraints, e.g.

magnetic gradients, noise etc. However, in many applications, one may have substantial

flexibility to design Ω so as to optimize the reconstruction quality. That is, for a given

subspace T, one seeks to design Ω as small as possible whilst keeping the reconstruction

constant C(Ω,T) below a desired maximum value. This question is closely related to the

existence of Marcinkiewicz–Zygmund inequalities (see [CZ99, Mar07, OCS07] and refer-

ences therein), which have been well-researched for certain choices of T̂ (e.g. trigonometric

polynomials, spherical harmonics,...). On the other hand, designing good (or perhaps even

optimal) sampling schemes for families of wavelet subspaces, for example, remains an open

problem, but one of practical interest.

This work does not address the issue of sparsity. Sparsity-exploiting algorithms are

currently revolutionizing signal and image reconstruction. Since our main focus were

wavelets, in which images are known to be sparse, it may at first sight appear strange not

to seek to exploit such properties. For uniform samples this has indeed been done by using

the aforementioned GS–CS framework, and the results are reported in [AH15a, AHPR14].

However, as was explained in [AH15a] (see also [AHRT14]), before one can exploit sparsity

it is first necessary to understand the underlying linear mapping between the samples and

coefficients in the reconstruction system, which is precisely what we do in this work.

Exploiting sparsity by extending the work of [AHPR14] to the case of fully nonuniform

Fourier samples is a topic of future investigations.

In this thesis, we have additionally presented several density bounds as sufficient guar-

antees for stable recovery of bandlimited functions when the measurement set includes

samples of the first k derivatives. In particular, we have proved the linear growth of δ-

density with k+ 1. However, the constant of proportionality 1/e is rather small compared

to the case of equispaced samples where the corresponding constant is π/2. Therefore, it

would be of interest to see how these bounds can be improved in both the univariate and

multivariate case.

As we have seen, a related problem to derivatives sampling is so-called bunched sam-

pling. This sampling strategy also leads to increased δ-bound and, asymptotically, it

approximates the derivatives sampling. Much as in the derivative case, it remains open
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to improve this density bound. Also, it would be important to generalize these results

to the multivariate case and therefore broaden the range of their applications. Let us

note that in higher dimensions, well-posedness of the bunched points and the possibility

of constructing an unique multivariate interpolation polynomial complicates dramatically.

Therefore, it is not trivial to extend the techniques used here to the multivariate case and

we leave this problem for future investigations.

One might notice that in the last part of the thesis, Chapter 6, we have analysed two

examples—derivatives and bunched sampling—both appearing at the end of Papoulis’

paper [Pap77a]. Although these examples are of interest in applications by themselves,

the remaining problem is to analyse a general setting given in Papoulis’ paper in the

context of nonuniform sampling. Namely, it remains open to see what happens with the

sampling density when instead of Hα(ω) = (−i2πω)α one has more general functions Hα

and a nonuniform set of sampling points.
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