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Rapid global warming is severely impacting Arctic ecosystems and is pre-
dicted to transform the abundance, distribution and genetic diversity of
Arctic species, though these linkages are poorly understood. We address
this gap in knowledge using palaeogenomics to examine how earlier periods
of global warming influenced the genetic diversity of Atlantic walrus
(Odobenus rosmarus rosmarus), a species closely associated with sea ice and
shallow-water habitats. We analysed 82 ancient and historical Atlantic
walrus mitochondrial genomes (mitogenomes), including now-extinct popu-
lations in Iceland and the Canadian Maritimes, to reconstruct the Atlantic
walrus’ response to Arctic deglaciation. Our results demonstrate that the
phylogeography and genetic diversity of Atlantic walrus populations was
initially shaped by the last glacial maximum (LGM), surviving in distinct
glacial refugia, and subsequently expanding rapidly in multiple migration
waves during the late Pleistocene and early Holocene. The timing of diver-
sification and establishment of distinct populations corresponds closely with
the chronology of the glacial retreat, pointing to a strong link between
walrus phylogeography and sea ice. Our results indicate that accelerated
ice loss in the modern Arctic may trigger further dispersal events, likely
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increasing the connectivity of northern stocks while isolat-
ing more southerly stocks putatively caught in small
pockets of suitable habitat.

1. Introduction

The Arctic is currently warming at rates well above the global
average [1]. It has been predicted that this will ultimately lead
to changes in the Arctic marine ecosystem composition and
trophic networks [2-5], including northward-range shifts of
marine species [6], altered foraging and haul-out behaviour
[7], the introduction of novel pathogens [8] and putative
species hybridizations [9]. However, it is generally unclear to
what extent and how fast warming might affect Arctic
marine organisms, and in particular, their population connec-
tivity, diversity and extinction risk. In an attempt to predict
the future effects of ongoing climate change, researchers are
endeavouring to better understand the effects of past environ-
mental changes—particularly, the last glacial maximum (LGM;
26.5-19.0 thousand years (ky) BP) and the subsequent
Holocene deglaciation (11.7-6.0 ky BP) [10].

Marine mammals are often viewed as indicators of environ-
mental change and overall ecosystem health in the Arctic [11].
Genetic analyses of Arctic marine mammals, such as bowhead
whales (Balaena mysticetus) [12], narwhals (Monodon monoceros)
[13-15], belugas (Delphinapterus leucas) [16] and polar bears
(Ursus maritimus) [17,18], have revealed relatively low levels
of genetic diversity, with most intraspecific differentiation
attributed to allopatric divergence during and after the LGM.
Thus, the most prevalent hypothesis is that Arctic marine
mammals follow a tabula rasa scenario, in which they survived
the LGM in southerly refugia, and recolonized the Arctic at the
onset of Holocene warming [19]. However, Arctic pinnipeds,
such as harp seals (Pagophilus groenlandicus) [20] and ringed
seals (Pusa hispida) [21] are characterized by high levels of gen-
etic diversity, comprising multiple distinct mitochondrial
clades that appear to predate the LGM and have no clear geo-
graphical pattern. This indicates that they survived glaciations
in high-latitude Arctic refugia, such as local polynyas or glacial
fronts; i.e. the marine equivalent of the terrestrial nunatak scen-
ario. Moreover, signatures of pre-LGM divergence and glacial
survival in high-latitude refugia have been reported across
multiple other Arctic marine organisms, including fish, invert-
ebrates and macroalgae [22-25]. Evidently, the manner and
pace that past environmental change has shaped the genetic
diversity, abundance and distribution of Arctic marine biota
is highly complex, possibly involving both tabula rasa and poly-
nya scenarios and multiple waves of recolonization upon
deglaciation. This complicates efforts to understand and miti-
gate the effects of ongoing global warming and associated
human activities in the Arctic.

The walrus is a large-bodied pinniped with a pan-Arctic dis-
tribution, feeding mainly on bottom-dwelling molluscs and
occupying areas characterized by shallow waters and access
to suitable haul-out sites on sea-ice or land [26]. These character-
istics make the walrus a key species in the Arctic marine
environment, and consequently, it is often used as an indicator
by non- and inter-governmental organizations (e.g. World
Wildlife Fund (WWF), Conservation of Arctic Flora and
Fauna (CAFF), North Atlantic Marine Mammal Commission
(NAMMCO)) of the effects of environmental change and

human activities. The walrus is currently divided into two [ 2 |

subspecies, of which the Pacific (O. r. divergens) appears to be
largely panmictic [27-29], whereas the Atlantic subspecies
(O. r. rosmarus) consists of multiple genetically distinct
populations [30,31]. The relatively high degree of population
structure in the Atlantic walrus is unique among Arctic pinni-
peds and cetaceans, raising key questions as to the timing and
mechanisms driving these patterns. Divergence in North Atlan-
tic walruses has been estimated at 145 thousand years ago (kya)
for Canadian populations [32] and 268 kya for Northeast Atlan-
tic-Pechora Sea populations [31], whereas the first estimate
across most of the North Atlantic range was provided by Star
et al. [33] at 251-23 kya, and later by Keighley et al. [34] at
approximately 21kya. In terms of glacial refugia, Born et al.
[35] hypothesized the existence of a common ancestral walrus
population in the North Atlantic about 12 kya, while Star
et al. [33] found support for the existence of two major Atlantic
mitochondrial clades—a western and an eastern (mixed)
clade—and proposed that these reflect the existence of two
separate LGM refugia at either side of the Atlantic Ocean.

Ultimately, despite much attention, it remains unclear
whether the Atlantic walrus survived glacial periods in one,
two or more refugia, where these refugia may have been located,
at what speed the species expanded to recolonize its current
Arctic range and how this shaped its genetic diversity. We har-
nessed the potential of ancient DNA (aDNA) and climate-proxy
data to shed new light on the response of the Atlantic walrus to
past environmental change. Specifically, we explored the spatio-
temporal pattern of Atlantic walrus diversification through the
phylogeographic analysis of 82 novel and previously published
ancient and historical walrus mitogenomes [33,34], spanning a
period of nearly 8000 years, and covering most of the Atlantic
walrus’ current range, as well as that of now-extinct populations
(electronic supplementary material, table S1). We also used
published climate-proxy data to map ice sheet coverage
during selected periods of the LGM and subsequent Holocene
warming, linking it to the chronology of Atlantic walrus
diversification inferred from mitogenome data.

2. Material and methods

(a) Zooarchaeological samples and existing data

To unravel the demographic and evolutionary history of Atlantic
walrus populations, we screened 187 ancient and historical
walrus specimens, selecting 82 with good coverage of the mito-
chondrial genome for genetic analyses (electronic supplementary
material, table S1). Of these, 28 mitogenomes were from Keighley
et al. [34], 10 were from Star et al. [33], whereas 44 mitogenomes
were generated specifically for the present study. For the novel
mitogenomes, specimens with seemingly good macroscopic pres-
ervation (i.e. not too degraded or porous) and from well-dated
contexts (e.g. with radiocarbon dates or clear cultural affinity)
were preferentially sampled. Additionally, when possible, samples
from the same skeletal elements were chosen (e.g. left mandible) to
avoid sampling the same individual more than once. The dates
follow standard radiocarbon date reporting and are presented as
BP indicating calibrated years before present (1950).

(b) Preparation of ancient and historical Atlantic walrus

remains
DNA laboratory work was undertaken at the Globe Institute,
University of Copenhagen, Denmark. All samples were prepared
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in accordance with strict aDNA laboratory guidelines [36,37].
Specifically, all pre-amplification work was conducted in a
specialized aDNA building, with rigorous cleaning and contami-
nation control standards, including negative controls through
extraction, library preparation and amplification. Bones were
drilled to obtain 100-220 mg of fine bone powder, or cut up
into 300 mg of small chunks. We used a Dremel hand drill
(Micro 8050 and 4000) or an Osada dental drill (OS-40) and
drill pieces included a dental Rosenbor for powder (sizes 012-
031) or diamond cutter for chunks. The bone surface was first
cleaned mechanically by drilling and discarding a thin layer of
bone or tooth for all of the samples. Drilling was completed at
the lowest possible speed (2000-5000 r.p.m.), and pauses were
taken every few minutes to ensure that bones did not overheat
and cause additional DNA degradation.

(c) Ancient DNA extraction, targeted DNA enrichment

and sequencing
aDNA was extracted following the protocol by Dabney et al. [38].
To increase the yield of endogenous DNA, bone chunks (but
not powder) were subject to an initial bleach wash as per
Boessenkool et al. [39]. Extracts were quantified using a High Sen-
sitivity TapeStation (Agilent Technologies) before library build,
following the Blunt-End-Single-Tube (BEST) protocol by Carge
etal. [40]. As per Barnett et al. [41], qPCRs were completed to deter-
mine the optimum number of cycles for amplification. Index
reactions were 1ul of 10 x Pfu Turbo Reaction Buffer (Agilent
Technologies), 1.25 U of PfuTurbo Cx Hotstart DNA Polymerase
(Agilent Technologies), 0.02mg bovine serum albumin (BSA),
8.75 pmol each of a unique combination of forward and reverse
indices (IDT) and 3.125pmol of each deoxynucleotide tripho-
sphate (ANTP). Thermal cycling conditions were an initial
denaturing phase of 2min at 95°C, followed by the annealing
phase (cycles of 30s at 94°C, 1 min at 57°C and 1 min at 68°C)
and a final extension phase for 10 min at 70°C. In the qPCR reaction
(Stratagene Mx 3 000), 1 ul of SYBRgreen fluorescent dye replaced
1 ul of water. For indexing, compatible 6 base pair hexamer motif
indices were used. In addition, to maximize the capture of
mitochondrial DNA from samples with low endogenous con-
centration, we used target-capture baits designed for marine
mammal mitogenomes by Arbor Biosciences (https://arbor-
biosci.com/). Capture enrichment was performed following
the manufacturer’s instructions and library preparation and
sequencing as described above.

Amplified libraries were purified and size selected with solid-
phase reversible immobilization (SPRI) beads, targeting 60-600
base pairs (0.5x and 1.6x ratios). Samples with successful amplifica-
tion following quantification on a High Sensitivity TapeStation
were pooled together for sequencing in groups of at least 12
samples. Shotgun sequencing was performed on a range of Illu-
mina technologies (MiSeq, HiSeq 2500 and HiSeq 4000) at the
Danish National High-throughput Sequencing Centre, with read
lengths of 80-150 bp and using either single or paired end proto-
cols. Throughout all laboratory work, samples were randomly
given a unique sample number, with different groupings for extrac-
tion, library build, amplification and sequencing to ensure no
clustering of samples from a particular locality or time period.
Samples run on the Illumina HiSeq 4000 were dual-indexed due
to the risk of index-hopping [42].

(d) Read alignment and filtering

The resulting raw sequenced data were analysed together
with previously published raw sequence reads of Atlantic walrus
[33,34] available from the European Nucleotide Archive (ENA)
for all mitogenome analyses (electronic supplementary material,
table S1). Reads were trimmed, filtered and aligned using the

PALEOMIX (v.1.2.13.4) BAM pipeline [43]. An existing Atlantic n

walrus mitochondrial genome (National Center for Biotechnology
Information (NCBI) accession: NC_004029.2) [44] was used as a
mapping reference. The PALEOMIX pipeline [43] began by index-
ing raw reads and reference sequences, merging overlapping reads
and identifying mate-pairs (for paired-end data) using SAMtools
(v.1.9) [45] and bwa (v.0.7.17) [46]. MapDamage (v.2.0.9) [47] was
used to assess the postmortem damage, confirming the authenticity
of our aDNA. Adapter sequences, ambiguous, short sequences
(less than 25 base pairs) and low-quality bases (Q <30) were
removed with Adapter Removal (v.2.3.1) [48]. Output files
were indexed and duplicates removed with SAMtools (v.1.3.1)
[45] and MarkDuplicates (Broad Institute). Mitogenome haplo-
types were called independently with ANGSD (v.0.921) [49]
using SAMtools and BAQ computation [50] against the reference
Atlantic walrus mitochondrial genome. Bases were not called for
sites where depth of coverage was less than 3, reads were removed
if there were multiple best hits during mapping, and the d-loop
region was removed due to poor mapping against the reference
mitogenome. Finally, we discarded sequences with less than
95% breadth of coverage, resulting in a dataset of 82 ancient and
historical mitogenomes.

(e) Genetic diversity and differentiation

DnaSP (v.6) [51] was used to estimate nucleotide and haplotype
diversity, as well as the net number of nucleotide differences da
for geographically determined groups of samples. Levels of genetic
differentiation were quantified by Fsr estimates computed in Arle-
quin (v.3.5.2.2) [52] with 1023 permutations and correction for
multiple testing following the Bonferroni method. A median-joining
haplotype network was created in PopArt (v.1.7) [53].

(f) Phylogenetic reconstruction

We first constructed an IQtree phylogeny [54] and analysed it in
TempEst (v.1.5.3) [55] finding a positive correlation between gen-
etic divergence and sampling time (R?=13.4), which indicates
that the temporal signal in our data is sufficient to perform phy-
logenetic molecular clock analyses. Next, Bayesian mitogenome
phylogenies were constructed using BEAST 2 (v.2.5.1) using
the Pacific walrus mitogenome (NCBI GenBank accession
GCA_000321225.1) as an outgroup. The program PartitionFinder
v.2.1.1 [56] was used to determine the appropriate evolutionary
model, gamma rate heterogeneity and invariable sites for the
mitogenome sets. We tested both a strict clock model following
previous studies on Atlantic walruses [33,57], as well as a relaxed
clock exponential model (electronic supplementary material,
tables S2-54). Tree and clock models were linked for all the
regions. The relaxed clock exponential model showed highest
likelihood values and was hence selected for subsequent
analyses [58,59]. We used sample tip-dates (i.e. the age of each
specimen; also called ‘tip-dating’ or ‘sampled ancestors’) to cali-
brate the BEAST2 phylogeny and infer divergence times [60].
Priors for effective population size (ePopSize), growth rate
(growthRate) and uncorrelated exponential relaxed clock mean
(ucedMean) was set at infinity as per BEAST2 default settings.
The posteriors for these variables were estimated by BEAST2
based on the tip-dates and level of genetic variation in the
data. The Markov chain Monte Carlo (MCMC) consisted of 80
million generations, with a pre-burn-in of 10%, and sampling
for every 1000 for trees, screen logs and log files. Output files
were checked for convergence in Tracer (v.1.7.1), ensuring a
minimum effective sample size (ESS) values of greater than or
equal to 200 [61]. Output tree files were analysed in TreeAnnota-
tor (v.2.6.0) with a burn-in of 10% and a maximum clade
credibility tree as target tree type and the phylogeny was visual-
ized in FigTree (v.1.4.3) [62]. The BEAST2 input .xml file,
and output files are provided as supplementary files. To
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supplement the Bayesian analyses, we also constructed a maxi-
mum-likelihood phylogenetic tree using IQtree [54] and the
partitions, settings and evolutionary model suggested by
Partition finder v.2.1.1.

(g) Demographic modelling

In order to model the demographic history of Atlantic walruses,
two Bayesian skyline plots (BSP) were generated using BEAST2.
The first BSP consisted of the eastern (mixed) clade (N=239),
and the second BSP consisted of sequences belonging to the
western clade (N'=36). We did not perform BSP analyses for the
previously undescribed northwestern clade (see results), given
its small sample size (N = 7). The BSPs made use of the input align-
ments and partitions from the phylogenetic analyses with an
MCMC consisting of 50 million generations. Following the same
methodology for the phylogenies, the output log and tree files
were inspected and processed in Tracer (v.1.7.1).

(h) Reconstruction of Holocene ice cover

In order to reconstruct LGM and Holocene ice cover and com-
pare it with our demographic and evolutionary analyses, we
created a series of maps with glacial ice cover for representative
time periods in ArcGIS software by Esri [63] (v.10.8). We
obtained information on ice extent from [64-66] and projected
this into the contemporary distribution of Atlantic walrus
stocks as defined by distributions taken from [57,67,68]. Figures
were prepared in Inkscape (v.0.92) [69].

3. Results and discussion

(a) Multiple Atlantic refugia during the last glacial

maximum
Our Bayesian time-calibrated phylogenetic analysis of 82
ancient and historic walrus mitogenomes shed new light on
the Atlantic subspecies’ phylogeography and past response
to environmental change (figure 1; electronic supplementary
material, figure S1 and table S2). The authenticity of our
aDNA data, partition scheme, temporal signal and choice
of clock and mutation models was supported by model test-
ing as recommended by Rieux and Balloux [70] (Methods;
electronic supplementary material, tables S3-54), and the
topology supported by maximum-likelihood phylogenetic
analyses in IQtree (electronic supplementary material,
figure S2). The phylogenetic analyses confirmed the existence
of the two major evolutionary clades—a western and an
eastern (mixed) clade—identified in previous studies of
Atlantic walrus [33,34], and estimated their divergence to
about 25.0 kya BP (95% highest probability density (HPD):
38.5 kya BP to 16.4 kya BP). Intriguingly, the analyses further
revealed a deep split within the eastern (mixed) clade dating
to about 23.0 kya BP (95% HPD: 33.3 kya BP to 15.7 kya BP),
pointing to the possible existence of a not previously ident-
ified third evolutionary clade, comprising both some of
our oldest samples, as well as a Thule period sample from
Northwest Greenland and the Canadian Arctic Archipelago.
We henceforth refer to this third clade as the northwestern
clade or NW1. Our estimates of initial divergence within
Atlantic walrus are in the younger range of that reported
in previous studies and has a narrower confidence inter-
val [31-34]. We suggest that our estimates are a better
approximation of the true divergence times, due to our
larger sample size representing most of the Atlantic walrus’

range, the use of near-complete mitogenomes and the
inclusion of ancient samples allowing for tip-dating in
the phylogenetic analyses.

It has been hypothesized that Atlantic walrus survived
the LGM in either one [35] or two refugia [33]. Our finding
of three major clades separated by phylogenetic splits
dating to the LGM could indicate that Atlantic walrus
became isolated in not one or two, but three distinct glacial
refugia from which they recolonized the Arctic as it degla-
ciated during the late Pleistocene and early Holocene. The
location of such refugia will remain speculative. However,
walrus palaeontological and/or zooarchaeological material
dating to the period 5020 kya BP has been recovered from
several sites in the North Sea region [71-73], which suggest
the presence of a population of walrus in the coastal areas
of north-temperate Europe during the LGM. The existence
of an Arctic marine ecosystem in the North Sea region
during the late Pleistocene is supported by subfossil finds
of multiple Arctic marine mammals, including ringed seals,
polar bears and bowhead whales [12,73]. The oldest walrus
finds in the Northwest Atlantic date to 12.0-9.7 kya BF,
with a few zooarchaeological specimens from North Carolina
and New Jersey in the USA, and the vast majority from the
Canadian Maritimes region and the prehistoric Champlain
Sea and the Canadian High Arctic [74-77]. By contrast, the
oldest walrus finds from Greenland are younger at about
7.5kya BP [19]. While not dating to the LGM, the large
number of early Holocene finds and their geographical
spread across the USA and Canadian coastlines does not con-
tradict the hypothesized presence of glacial refugia in the
northwest Atlantic; such finds could have been localized at
the southern perimeter of the ice sheet or in sea-ice polynyas,
pairing contemporary observations of wintering areas
for contemporary walruses (e.g. the North Water polynya,
[78]). In summary, we find support for the hypothesis that
the Atlantic walrus survived the LGM in at least two distinct
glacial refugia, which we, for now, propose were localized in
the North Sea region and the Canadian Maritimes region.
The origin of the third and previously undescribed North-
western clade (NW1) is more complex. It could reflect an
LGM refugia in Northwest Greenland-Arctic Archipelago,
such as the North Water polynya, or it may correspond to
an early migration at the time of the LGM by walrus into
the region from the Northeast Atlantic, substantially preced-
ing a second migratory wave from the northeast to the
northwest about 54 kya (see below).

(b) Holocene deglaciation drove further diversification
of Atlantic walrus populations

Our relatively large sample size of 82 ancient and historical
walrus mitogenomes covering a period of nearly 8000 years
allowed us to infer the biogeography of Atlantic walrus at
finer spatio-temporal scales than previously possible (e.g.
[33]). Indeed, our results provide a detailed chronology of the
emergence and diversification of local Atlantic walrus popu-
lations that very precisely mirrors the likely contracting and
isolating effects of LGM, as well as subsequent expansions
during late Pleistocene and early Holocene deglaciation in the
North Atlantic (figure 2; electronic supplementary material,
figure S3). Specifically, the phylogenetic analyses suggest
that the initial split into three clades—western, northwestern
and eastern (mixed)—during the LGM was followed by
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using Inkscape (https://inkscape.org/). Additional time periods provided in electronic supplementary material, figure S3.

diversification and expansion of the eastern (mixed) clade
at roughly 15-12 kya BP during the warm Bglling-Allerod
period and the onset of the Holocene that saw the gradual
retreat of the Laurentide and Greenland Ice Sheets and
associated sea-ice [10,81-83].

The now-extinct Icelandic walrus population in subclade
E6 arose nearly 9 kya BF, coinciding with the deglaciation
of Iceland [84], and fitting well with the earliest walrus
finds in Iceland about 8.8 kya BP [34]. Curiously, two of the
oldest Icelandic samples (XOR097 and XOR113) appear to
have diverged much earlier at roughly 11 kya BP. This may
indicate an early wave of colonizers and/or stray animals
in Iceland, although so far not supported by zooarchaeologi-
cal finds. The subclades E1, E2 and E5, comprising primarily
East Greenland and Svalbard individuals, appeared between
8 and 5 kya BP as the warm Gulf Current had made these
regions ice free [85,86].

In the western clade, our phylogenetic analyses revealed
novel and remarkably fine-scale phylogeographic structure
and chronology, pointing to: (i) the early diversification of
walrus in the Canadian Maritimes (subclade W4) from other
walruses in the western clade about 11 kya BP, (ii) the establish-
ment of walrus populations in Foxe Basin and West Greenland
(subclades W2-W3, as well as E3 and E7 in the eastern (mixed)
clade) at roughly 6 kya BF, and (iii) the emergence of the North-
west Greenland subclade W1 at roughly 4 kya BP. Each of these
splits into distinct populations are remarkably well-supported
(100%) in the phylogeny, providing stronger support for
their genetic uniqueness than presented in previous studies
[33,80,87]. Together, this indicates that walrus likely moved
north from a southern refugium e.g. in the Canadian Maritimes
to colonize and diversify in the greater Davis Strait region as
this deglaciated around 12 kya BP [88,89]. Subsequently, wal-
ruses tracked available habitat north and west into the Foxe
Channel, Foxe Basin and Northwest Greenland-Canadian
Arctic Archipelago when these regions deglaciated between
8.5 and 6 kya BP [90-94].

The division into multiple distinct ancient Atlantic walrus
populations is supported by high and statistically significantly

Fsr and d values for almost all pairwise population compari-
sons (electronic supplementary material, table S5). A high level
of genetic structure among ancient walrus populations was
also observed in the haplotype network (figure 3a), and corre-
sponds well with genetic analyses of contemporary walruses
[30,31,35,57], although our mitogenomes revealed a more
detailed level of phylogeographic structure.

The existence of such multiple genetically distinct and geo-
graphically localized maternal (i.e. mitogenome) lineages is
unique among the Arctic marine mammals studied to date,
which typically comprise two to three genetic populations or
evolutionary clades per species, with no clear geographical
pattern in the North Atlantic (e.g. [15,16,20]). The long-term
persistence of multiple walrus populations after their initial
establishment during the early Holocene may be the result of
a high level of maternal site-fidelity to feeding grounds on shal-
low-water mollusc banks, as well as breeding grounds in
localized polynyas [26], minimizing the genetic admixture of
different populations. Still, we note the presence of western
animals within the eastern (mixed) genetic clade (e.g. sub-
clades E3 and E7), which could result from western
populations occasionally receiving eastern migrants following
prevailing East Greenland and West Greenland currents and
associated ice-flow [83], as also suggested in [33]. That is, the
occurrence of western animals in both the western and eastern
(mixed) clade could reflect multiple colonization events into
the western regions (i.e. West Greenland, Foxe Basin and
Northwest Greenland); first one or two colonization events
from the Northeast Atlantic giving rise to subclades E3 and
E7 and perhaps NW1, and later a massive colonization wave
from the hypothesized refugia in the Canadian Maritimes
giving rise to subclades W1-W3 in the western clade.

(c) Later impacts of environmental change and human

exploitation
In addition to the inferred Late Pleistocene and Early Holocene
diversification, the effective population size of Atlantic walrus
may have been affected by more recent climate change (e.g.
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Figure 3. Demographic history and genetic diversity in the Atlantic walrus. (a) Haplotype network of 82 ancient and historical walrus mitogenomes. Circles are sized
according to the number of individuals sharing the same haplotype, and the number of mutations between each haplotype is defined by the hatched lines. (b,¢)
Bayesian skyline plots (BSP) for the western clade (n = 36) and for the eastern clade (n = 39), respectively. (d,e) Mitochondrial nucleotide and haplotype diversity
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Roman Warm Period (RWP) and Little Ice Age (LIA)) and over-
exploitation [33,34,80,95]. To explore the demographic history
of Atlantic walrus, we constructed BSP (figure 3b,c) for the
western and eastern Atlantic walrus clades, respectively,
and estimated levels of haplotype and nucleotide diversity
for each of the inferred populations within each clade

(figure 3d,¢; electronic supplementary material, table S6). The
BSPs revealed very little change in post-LGM effective popu-
lation size in the western clade until a slight population size
decrease at 2-1kya BP (figure 3b,c). Conversely, the BSP
showed a signature of population expansion in the eastern
clade, starting 10kya and levelling off about 3 kya; an
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expansion also detected by Andersen et al. [31] using genetic
data from contemporary walrus populations. This signature
of expansion may reflect the recolonization of the northeast
Atlantic from the hypothesized North Sea LGM-refugia.
Overall, levels of haplotype diversity were similar across popu-
lations (with the exception of Sable Island), whereas levels of
nucleotide diversity were higher for the populations in West
Greenland and Arctic Canada (figure 3d,e; electronic sup-
plementary material, table S3); these higher levels of
diversity could be driven by an influx of eastern clade haplo-
types into western populations, as discussed above. In
contemporary populations in East Greenland and Svalbard,
the levels of genetic diversity reported for mtDNA d-loop
data [27,31] are comparable to those we estimated, supporting
the BSP analysis in suggesting no major declines in genetic
diversity in the eastern clade.

The lack of detectable declines in effective population size
and genetic diversity in the eastern clade is surprising given
the substantial Norse exploitation of walruses and complete
eradication of populations in Iceland [33,34,96]. The estimated
decline at 2-1 kya in the western clade overlaps partly with
the early period of Norse walrus exploitation [33,95], but pre-
dates exploitation and eradication of walrus in the Canadian
Maritimes by the Basque and other European whalers [80].
The western decline also coincides with the RWP [97,98],
which had profound impacts on the North Atlantic marine
ecosystems, including the distribution and abundance of
bivalve molluscs Hiatella sp. and Macoma sp. [99,100]. These
are among the walrus’ preferred prey species [101-103],
and any impacts on them during RWP might in turn have
indirectly affected the abundance and distribution of walrus.
Alternatively, simulation studies suggest that the existence of
population structure may lead to false signals of population
decline [104], which could account for the population decline
detected in the western clade. However, if so, we would have
expected an even larger bias in the eastern clade, which argu-
ably is more admixed. Determining the full effect of historic
and recent exploitation and climatic warm periods on walrus
genetic diversity may require larger sample sizes and the
addition of nuclear genome data from both ancient, historic
and contemporary populations.

(d) Conclusion and perspectives

Our results show that large-scale climate fluctuations related to
the LGM and subsequent deglaciation of the Arctic were strong
and rapid drivers of Atlantic walrus mitogenome diversifica-
tion. The data provide evidence for a highly geographical
pattern of Atlantic walrus diversification and likely multiple
waves of expansion into the Arctic followed by isolation, con-
tradicting the patterns so far reported for Arctic pinnipeds
and many other Arctic marine species. We find support for a
tabula rasa scenario with two low-latitude glacial refugia on
each side of the North Atlantic establishing Arctic walrus
populations. Further, our results hint at the existence of a pre-
viously undescribed evolutionary clade, possibly reflecting a
high-latitude refugia in northwestern Greenland or Canadian
Arctic Archipelago, corresponding to a marine equivalent of
the terrestrial nunatak scenario. Overall, together with other
studies of Arctic marine mammals our study highlights that
responses to climate change are highly species specific and geo-
graphically dependent, even within a relatively narrow
ecological and evolutionary assemblage of species. Moreover,
as we show, the micro-evolutionary response to environmental

change can occur very rapidly and may leave profound marks
on genetic diversity and differentiation; an observation with
potential direct parallels to the effects of ongoing and future
Arctic warming on the diversity and connectivity of Arctic
marine species and populations.

Further studies of Atlantic walrus, and other Arctic
marine species, should expand the spatio-temporal coverage
to include samples from all parts of the Arctic, as well as
from ancient specimens retrieved from past high- and low-
latitude glacial refugia. The addition of nuclear genome
data will likely increase the resolution of demographic simu-
lations, and reveal patterns not detected by the maternally
inherited mitogenome, such as male-mediated gene-flow
and local adaptation. Furthermore, detailed insights on the
role of past ecosystem dynamics, including putative shifts
in trophic networks, may be obtained by generating stable
isotope data, allowing for a more holistic understanding of
the likely multifaceted effects of environmental change on
Arctic marine ecosystems. Such data will be of relevance for
management and conservation efforts attempting to antici-
pate and mitigate the impacts of a future ice-free Arctic on
marine species, ecosystems and associated livelihoods,
including Arctic Indigenous communities.
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