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Abstract

Engineering is about design of materials, structures, systems and interconnections to obtain a
desired behaviour. In control engineering the focus is often on systems equipped with sensors
whose output is used to provide feedback control and achieve the desired behaviour. A central
paradigm in control is the separation principle, that is the optimal control action is achieved
by applying the control law that is optimal under an assumption of full information to an
“optimal estimate” of the system state. While in the context of linear-quadratic problems
there is a well developed theory of optimal estimation and control, research on systems with
inputs that are not measured directly is still ongoing. Motivated by automotive applications
where it is not always feasible or practical to have sensors that measure all vehicle inputs,
we aim to advance the theory on simultaneous state and input estimation and apply it to
commercially important automotive examples.

In particular, we formulate a deterministic estimation problem to find the input and
state of a linear continuous time dynamical system which minimises a weighted integral
squared error between the resulting output and the measured output. A completion of squares
approach is used to find the unique optimum in terms of the solution of a Riccati differential
equation. The optimal estimate is obtained from a two-stage procedure that is reminiscent
of the Kalman filter. The first stage is an end-of-interval estimator for the finite horizon
which may be solved in real time as the horizon length increases. The second stage computes
the unique optimum over a fixed horizon by a backwards integration over the horizon. A
related tracking problem is solved in an analogous manner. Making use of the solution to
both the estimation and tracking problems a constrained estimation problem is solved which
shows that the Riccati equation solution has a least squares interpretation that is analogous
to the meaning of the covariance matrix in stochastic filtering. We show that the estimation
and tracking problems considered here include the Kalman filter and the linear quadratic
regulator as special cases. The infinite horizon case is also considered for both the estimation
and tracking problems. Stability and convergence conditions are provided and the optimal
solutions are shown to take the form of left inverses of the original system.

Motivated by the intrinsically discrete nature of operation of modern computers and
sensors, we then focus on systems in which the output is measured only at a discrete
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sequence of times. We derive two forms for the zero informational input limit for the discrete
time Kalman filter in the case that there is direct feedthrough (of full column rank) of the
input to the measurements. The first form is complementary to a zero informational limit
filter derived recently by Bitmead, Hovd, and Abooshahab for the case where the first Markov
parameter has full column rank and there is no direct feedthrough of the process noise. This
form of the limit filter is closely related to a filter proposed by Gillijns and De Moor who
used a constrained optimisation problem to estimate an unknown input in a standard Kalman
filter with feedthrough of the unknown disturbance; more precisely, the filters coincide if
the process noise covariance in Gillijns and De Moor is set to zero. A second form of
the limit filter is derived from the first which takes the form of a standard Kalman filter
without unknown inputs. This form is used to derive necessary and sufficient conditions
for convergence and stability of the filter. These consist of a controllability condition and a
minimum phase condition.

We consider a deterministic estimation problem to find the input and state of a linear
continuous time dynamical system with discrete time measurements which minimises a
weighted sum squared error between the resulting output and the measured output. Similarly
to the estimation problem with continuous time measurements we use a completion of
squares approach to find the unique optimum. The optimal estimate is obtained in terms of
the solution of a Riccati difference equation from a two-stage procedure that is reminiscent
of the discrete time Kalman filter. The first stage is an end-of-interval estimator for the
finite horizon which may be solved in real time as the horizon length increases. The second
stage computes the unique optimum over a fixed horizon by a backwards recursion over the
horizon. The infinite horizon case is also considered and stability conditions are provided.
We apply the algorithm to two automotive examples, the first is on (offline) road elevation
mapping and the second is on (online) slip estimation. In both examples we assume that the
vehicle is equipped with basic sensors (e.g. accelerometers and gyroscopes (IMU), global
positioning system (GPS)) and use very simple vehicle models.
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Chapter 1

Introduction

1.1 Motivation and scope

Over the past century powerful mathematical techniques have been developed for the analysis
and control of dynamical systems. They are frequently used to design information systems
(e.g. algorithms in computer code) due to the wide availability of data (e.g. through sensing
devices) and computational power. They have been applied to a plethora of problems across
diverse fields ranging from engineering to physics, biology, medicine and economics. We
are primarily motivated by automotive design problems, in particular we are interested in
understanding the dynamic behaviour of a vehicle, mapping its environment and designing
feedback control laws for high performance, safety and autonomous features. Central to
those goals is the formulation of estimation problems which fuse information from multiple
vehicle on-board sensors to estimate vehicle states and inputs. More specifically, we are most
interested in the estimation of longitudinal and lateral tyre slips, the road-tyre coefficient of
friction, aerodynamic loads and road profile mapping. We consider basic vehicle on-board
sensors including accelerometers and gyroscopes (IMU), a global positioning system (GPS),
wheel rotation sensors and drivetrain torque sensors. Important vehicle exogenous inputs
(e.g. tyre forces, slips and road profile inputs) are very difficult to measure directly but
they nevertheless appear in direct feedthrough terms in typical sensor measurements (e.g.
IMU). Therefore, we wish focus on problems of simultaneous input and state estimation
in dynamical systems where a direct measurement of the driving inputs is not feasible.
Furthermore, we wish to understand the limits of what is possible given the available vehicle
sensors and generate estimates that are reliable at all times on a high performance vehicle,
especially in highly dynamic situations at the limits of the available road grip. We will
develop algorithms that can be applied both online (e.g. for vehicle control) and offline (e.g.
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for data analysis) that exploit our knowledge of the dynamics of the system (e.g. Newton’s
second law and kinematics of the vehicle, empirical tyre model).

There is already an extensive literature devoted to model based estimation of states
and inputs. Within this literature there is a wide variety of problem formulations and
assumptions: deterministic or stochastic, discrete or continuous time, whether there is
feedthrough of inputs to outputs, and whether real time estimates of the inputs are sought.
In deterministic formulations an optimisation problem is posed based on the available data
and its solution corresponds to the estimated states and inputs. Stochastic formulations treat
the states and inputs as random variables with known prior statistics and the estimates are
given by their posterior expectations. A close connection between the solutions of the two
formulations for a quadratic cost function and Gaussian statistics was observed from early
on. Estimation solutions are also closely connected to control solutions even though the
respective problems appear upon first thought conceptually distant. More specifically, in least
squares optimisation results in estimation can be transformed and applied to control and vice
versa. The mathematical duality between estimation and control and the close connection
between deterministic and stochastic estimation formulations are central in existing literature
and will influence the development of the ideas within this thesis.

1.2 Thesis outline

We will now briefly summarise the contents of the thesis. Starting in Section 2.1 we introduce
some basics on the standard theory of linear quadratic estimation, present a few applications
of historical significance and review the latest literature on systems with unknown inputs.
In Section 2.2 we introduce the stochastic problem formulations of discrete time Kalman
filtering and smoothing, derive their solutions and present some standard theory on the
Riccati equation. In Section 2.3 we present the extended Kalman filter (EKF) and unscented
Kalman filter (UKF) which are extensions of the Kalman filter to nonlinear problems and
discuss Monte Carlo methods in the context of filtering and smoothing.

In Chapter 3 we initially formulate a deterministic optimisation problem for the simul-
taneous estimation of states and inputs in a continuous time system (Section 3.2) and then
formulate and solve the dual control problem (Section 3.3). In Section 3.4 we pose a new
constrained optimisation problem which requires the state to pass through a prescribed point
at a given time. This allows us to interpret solutions of Riccati equations deterministically as
weights which determine how well state positions fit the data. In Section 3.5 we show that
the standard Kalman filter and linear-quadratic regulator (LQR) solutions are special cases of
the estimation and tracking problems of Sections 3.2 and 3.3. In Sections 3.6 and 3.7 we



1.2 Thesis outline 3

consider infinite horizon limits for both estimation (i.e.steady state filtering) and control (i.e.
infinite horizon control) problems.

In Chapter 4 we focus on systems in which the output is measured only at a discrete
sequence of times. In Section 4.1 we consider the zero informational input limit of the
discrete time Kalman filter for systems with full column rank feedthrough to the output. The
filter takes a recursive form which closely relates to the filter of Gillijns and De Moor [20] but
is derived directly by computing a limit. In Section 4.2 we consider a deterministic problem
formulation for continuous time systems in which we impose a zero hold assumption on
the input and then derive the optimal solution. We propose a heuristic algorithm to extend
the results to nonlinear systems. We derive necessary and sufficient conditions for the
convergence and stability of both filters in Chapter 4.

In Chapter 5 we implement the algorithm of Section 4.2 to two vehicle examples. The
first is on (offline) road profile mapping in Section 5.1 and the second is on (online) slip
estimation in Section 5.2. In both examples we assume that the vehicle is equipped with basic
on-board sensors (e.g. accelerometers and gyroscopes (IMU), global positioning system
(GPS)) and use very simple vehicle models (i.e. quarter car model, vehicle bicycle model). In
Chapter 6 we discuss the contributions of the thesis and interesting future research directions.





Chapter 2

Preliminaries

2.1 Introduction

2.1.1 Linear quadratic estimation

The close connection between the deterministic concept of estimation by least squares and
the minimisation of a mean square error in a statistical sense has long been appreciated (see
[49], [54], [57], [33]). Kalman followed earlier work of Wiener and Kolmogorov in taking a
statistical view of signal estimation, though his approach specified a linear state-space model
(see Fig. 2.1) for the system and estimation of the state rather than estimation of a signal
from a noisy measurement with assumptions on the spectral characteristics. The resulting
filter was initially introduced for discrete time systems [37] and then for continuous time
systems first by analogy with optimal control [36] and later as a limit of the discrete time
equations [39]. The discrete (continuous) time filter has the form of a recursive algorithm
(differential equation) which allows for easy implementation in real time applications and a
lot of its success can be attributed to this property. Very important is Kalman’s work [38]
in deriving conditions for the stability of time invariant systems. A (deterministic) least
squares formulation and derivation of the continuous time Kalman filter was given recently
by Willems [60]. As noted in [60] the possibility of such a derivation had been “system
theory folklore" ever since the first appearance of Kalman’s work and he provides a number
of earlier references in this direction. The work by Willems inspired the analogous study in
discrete time systems in [7] which focuses exclusively on minimal systems.

Over the last decades the Kalman filter has proven to be a powerful and useful tool
in a range of problems. An early and historically significant application is in spacecraft
tracking and guidance for the Apollo Project by NASA in the 1960s. It is through this
project that the Extended Kalman Filter (EKF) for nonlinear systems was developed and
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exogenous
input

output

w zẋ = Ax+Bw
z =Cx

Fig. 2.1 A linear dynamical system with state x, exogenous input w and output z.

subsequently became standard practice in the aerospace industry and sensor system design
[1]. Nowadays commercial aircraft are equipped with attitude and heading reference systems
(AHRS) which integrate sensor data to estimate and display aircraft attitude, roll, pitch
and yaw on the electronic flight instrument system [2]. The Global Positioning System
(GPS) deployed by the U.S. Department of Defence also uses a Kalman filter with a large
state vector that includes the states of satellites, clocks and parameters relating to signal
propagation delays [1]. Interestingly, the signals from the GPS are used along with an
inertial navigation system (INS) (i.e. accelerometers and gyroscopes) daily for navigation
applications in vehicles, ships and smartphones. The combination of GPS and INS highlights
the ability of the Kalman filter to optimally fuse information from different sources. More
specifically, the INS produces accurate estimates that slowly drift over time while the GPS
has the complimentary properties [3]. In the automotive industry the Kalman filter has been
applied for slip control in anti-lock braking systems (ABS). For example, the PhD thesis
[4] developed a UKF to estimate sideslips for the braking systems of heavy goods vehicles
(HGVs) motivated by the significantly longer stopping distances of HGVs compared to
passenger cars. The use of the filter improved both the stopping distance and directional
stability in combined braking and cornering situations. Other examples of implementations
can be found in the areas of weather forecasting, pollution estimation, seismology, time series
analysis and prediction in economics and trading, noise filtering and enhancement of images
and speech, model identification, simultaneous localisation and mapping, state estimation of
power systems, orbit determination of planets and satellites, battery state of charge (SoC)
estimation, autopilot systems, object tracking in computer vision, medical diagnosis and
human neural decoding.

2.1.2 Systems with unknown inputs

An active branch of study that emerged following Kalman’s initial contribution focused on
estimation in systems with unknown inputs. Noise-free systems were considered first and
observers were designed for systems with a full column rank first Markov parameter and
zero feedthrough matrix [14], [21], [45], [59]. This work was extended to systems with a
non-zero feedthrough matrix in [22] while the first Markov parameter rank condition was



2.1 Introduction 7

relaxed in [24]. Noisy discrete time systems were considered next under the same system
matrix conditions. Various filter derivations and properties were given in [43], [12], [13],
[41], [19]. This was extended in [23] to systems with a non-zero feedthrough matrix using
the technique in developed in [22] for noise-free systems. In [20] an additional least-squares
procedure is used for input estimation to derive a filter for systems with a full column rank
feedthrough matrix. More recently [11], [61], [62] inspired by [20] and [12] describe a
procedure to derive filters which relax the above matrix conditions. In [5], [18] filters have
been derived for linear discrete time systems in the zero informational limit for the process
noise as a method to treat the estimation problem for unknown inputs. In [5] there is no
direct feedthrough of the process noise to the measurements and there is an assumption that
the first Markov parameter has full column rank.

Early work on observability of systems with unknown inputs focused on continuous and
deterministic systems without feedthrough of the inputs to the measurements [3]. Procedures
for the construction of full [14], reduced [21], [45] and minimal [59] order observers are
developed assuming that the first Markov parameter (CB in the notation of (2.21), (2.22) for
continuous time systems) is full column rank, the latter being closely related to the use of
the first derivative of the output for the estimation of the unknown inputs. The approach is
extended to the case where there is a non-zero feedthrough matrix in [22] again assuming
use of the first derivative of the measurement output. The rank condition assumed in [14],
[21], [45] and [59] is relaxed in [24] at the expense of using higher order derivatives of the
measured output for input reconstruction.

Starting with [43] discrete time filters are derived for stochastic systems with unknown
inputs that do not feedthrough to the measurements, again assuming that the first Markov
parameter has full column rank. The problem is posed as a constrained optimisation with a
free gain matrix parameter. The work continued with [13] that reformulated the problem as a
state estimation of a singular stochastic system which is solved by employing a generalised
least squares approach. Later, [12] shows the optimality of the filter in [43] among the set
of recursive filters and produces stability results, while [41] verifies optimality among the
set of all linear filters. In [19] the scope of the filter in [43] is expanded by simultaneously
estimating both the state and unknown input.

In [23] the case of a rank deficient feedthrough matrix is considered. The unknown
input decoupling technique developed in [22] to transform the original system is used to
construct an optimal filter. In [26] and [25] the input is treated as a stochastic process with
a wide-sense representation. Paper [47] considers the system in [43] with some additional
partial measurements of the inputs with no noise. In [56] the work of [47] is continued to
derive results on existence, optimality and asymptotic stability. In [40] a system is considered
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that includes constant biases in addition to unknown inputs. A solution is proposed based on
a system augmentation and transformation.

In [20] a discrete time stochastic system with a full column rank input feedthrough matrix
is considered. The input is estimated based on a generalised least squares approach and state
estimation is posed as a constrained minimisation problem using Lagrange multipliers. The
approach is reminiscent of [43] and others but applied to a different problem. The paper
does not present any asymptotic stability results. Further, the detectability of the equivalent
system with known inputs is assumed without proof (a condition that will be shown to be
necessary but insufficient for asymptotic stability in this thesis). The work of [11], [61] and
[62] attempts to produce more general filters which do not require the input feedthrough
matrix to be full column rank. A linear recursive filter is proposed that is inspired by both
[20] and [12]. More general multi-step delay filters can be derived at the cost of increased
complexity.

The recent work of [5] takes a new approach to the problem of estimating highly uncertain
inputs. The unknown input is treated as white noise whose covariance becomes unbounded.
More precisely the limit is taken in the filter equations as the inverse of the input covariance
tends to zero, which is the zero informational limit. It is shown that the resulting filter
equations take the same form as those of Gillijns and De Moor [19]. Both [5] and [19]
consider the case where there is no direct feedthrough of unknown input to the measurement
vector and with the assumption that the first Markov parameter is full rank.

2.2 Kalman filter and smoother

2.2.1 Stochastic formulation

In engineering literature real time estimation is often referred to as filtering, the name
originates from notions of sorting out entities or entities passing through a barrier (e.g.
filtering impurities in water) and modern usage often has the more abstract notion of extracting
useful information from a large amount of data. Smoothing (prediction) on the other hand
refers to the estimation at a past (future) time using information up to the present time and
smoothed estimates usually appear smoother across time since data from the distant future
are often not very informative of the present. In this section we will introduce a stochastic
problem formulation for filtering and smoothing in discrete time linear systems which was
introduced by Kalman [37] (see [1], [51], [27] and references within for a more in depth
analysis). Consider the linear, finite-dimensional, stochastic, discrete time system with the
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state space description:

xk+1 = Axk +Bwk, (2.1)

zk =Cxk + vk (2.2)

where the subscript k ∈N+ (non-negative natural numbers) is a discrete time index, xk ∈Rn is
the system state, zk ∈Rp is the vector of measurements, wk ∈Rm is the process noise or input
and vk ∈Rp is the measurement noise, the system matrices A∈Rn×n,B∈Rn×m,C ∈Rp×n are
assumed to be known. We assume that wk and vk are independent, zero mean, Gaussian white
noise processes with covariances Q > 0 and R > 0, i.e. E(wkwT

l ) = Qδkl , E(vkvT
l ) = Rδkl

and E(wkvT
l ) = 0 for all k, l ∈ N+ where δkl is the Kronecker delta and the initial state x0 is

Gaussian random variable with mean x̂0|−1 and covariance P0|−1 > 0. We denote the set of
measurements {z0, . . . ,z j} by Z j and introduce the notation for the conditional state mean
x̂k| j = E(xk|Z j) and covariance Pk| j = E((xk − x̂k| j)(xk − x̂k| j)

T |Z j).
The Gaussian form of the distributions allows for tractable and exact estimation through

computationally efficient algorithms. The standard Kalman filtering and smoothing algo-
rithms are derived in the next two sections. The Gaussian assumption used under this
formulation can be applicable to many problems as a result of the central limit theorem,
namely by arising from a large sum of non-Gaussian disturbances.

2.2.2 Filtering algorithm

In this section we will derive a filtering algorithm for this problem. Using the assumptions
and notation of Section 2.2.1 we have:

x̂k+1|k = E(Axk +Bwk|Zk) = AE(xk|Zk)+BE(wk|Zk) = Ax̂k|k, (2.3)

Pk+1|k = V(Axk +Bwk|Zk) = AV(xk|Zk)AT +BV(wk|Zk)BT = APk|kAT +BQBT . (2.4)

We call these equations the propagation (or prediction) step of the Kalman filter. We now
compute the conditional expectations of the state given a measurement and a prior. We first

note that for a bivariate Gaussian random variable
[
X1 X2

]T
with mean and covariance:

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
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the conditional probability density function of X1 given knowledge of X2 = x2 is a Gaussian
random variable with mean and covariance:

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 −µ2), (2.5)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ

T
12. (2.6)

Applying this conditional probability lemma to the augmented “prior” vector of random

variables
[
xk|k−1 zk|k−1

]T
gives the conditional expectations:

x̂k|k = x̂k|k−1 +Kk(zk −Cx̂k|k−1), (2.7)

Pk|k = (I−KkC)Pk|k−1, (2.8)

Kk = Pk|k−1CT (CPk|k−1CT +R)−1 (2.9)

where we have introduced the “Kalman gain” Kk for convenience. We call these equations
the update (or measurement) step of the Kalman filter. We note that the update equation
shrinks the uncertainty envelope of the estimate, i.e Pk|k < Pk|k−1 (see Section 2.2.4). The
recursive application of the prediction and update steps gives the filtered estimates of the
state at all times.

2.2.3 Smoothing algorithm

In this section we will derive a smoothing algorithm which computes expectations over a fixed
length interval of horizon length N given measurements in the same interval. First assume
that the filtered estimates xk|k and Pk|k have already been computed as described in Section
2.2.2. Now let xk+1 = x∗k+1 be known, applying the conditional probability lemma to the

augmented vector
[
xk|k xk+1|k

]T
gives the following mean and covariance (i.e. expectations

given measurements up to time k and state xk+1):

x̂∗k|k = x̂k|k +Φk(x∗k+1 −Ax̂k|k) = Φkx∗k+1 +(I−ΦkA)x̂k|k, (2.10)

P∗
k|k = (I−ΦkA)Pk|k, (2.11)

Φk = Pk|kAT P−1
k+1|k (2.12)
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where we have introduced Φk for convenience. Assuming x̂k+1|N and Pk+1|N are known, then
by averaging over xk+1 the mean and covariance of xk|N are given by:

x̂k|N = E(Φkxk+1 +(I−ΦkA)x̂k|k|ZN) = ΦkE(xk+1|ZN)+(I−ΦkA)x̂k|k

= Φkx̂k+1|N +(I−ΦkA)x̂k|k = x̂k|k +Φk(x̂k+1|N −Ax̂k|k), (2.13)

Pk|N = V(Φkxk+1 +(I−ΦkA)x̂k|k|ZN)+P∗
k|k = ΦkV(xk+1|ZN)Φ

T
k +(I−ΦkA)Pk|k

= ΦkPk+1|NΦ
T
k +(I−ΦkA)Pk|k = Pk|k +Φk(Pk+1|N −Pk+1|k)Φ

T
k . (2.14)

We may interpret this step as a backwards in time Kalman filter where the model is given
by (2.10)-(2.12) (note that this model is time varying even though the original system is
not). The end-of-interval estimates x̂N|N and PN|N are available from the filtering stage, it
follows from the backwards in time recursive application of the smoothing equations that the
smoothed estimates x̂k|N and Pk|N can be computed for all k = {0, . . . ,N −1}.

2.2.4 Riccati equation

Consider the non-linear matrix difference equation:

Pk+1 = APkAT +BQBT −APkCT (CPkCT +R)−1CPkAT (2.15)

in the unknown matrix function P : N → Rn×n where A,B,C,R > 0,Q > 0 are fixed real
known matrices. The recursion is known as a Riccati difference equation (RDE) and is central
to discrete time estimation problems, including the Kalman filter. To see this substitute from
(2.8) into (2.4) which gives the required recursion. Assuming P0 > 0, then the RDE has a
unique positive definite solution Pk > 0 for all k ≥ 0 (see [6, p. 165]). In steady-state the
RDE (2.15) is given by the algebraic Riccati equation (ARE):

P = APAT +BQBT −APCT (CPCT +R)−1CPAT (2.16)

in the unknown matrix P ∈Rn×n. A real symmetric nonnegative definite solution of the ARE
is said to be a strong solution if all the eigenvalues of A−AKC are on or inside the unit circle,
where K = PCT (CPCT +R)−1. If all the eigenvalues are strictly inside the unit circle, the
solution is said to be a stabilizing solution [4], [10].

Lemma 1 The strong solution of algebraic Riccati equation exists and is unique if and
only if (C,A) is detectable. The strong solution is the only nonnegative definite solution of
algebraic Riccati equation if and only if (C,A) is detectable and (A,B) has no uncontrollable
mode outside the unit circle. Furthermore, the strong solution coincides with the stabilising
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solution if and only if (C,A) is detectable and (A,B) has no uncontrollable mode on the unit
circle. The stabilising solution is positive definite if and only if (C,A) is detectable and (A,B)
has no uncontrollable mode inside, or on the unit circle.

Proof: See [15, Theorem 3.2] and [10, Theorem 3.1]. □

Lemma 2 Let (C,A) be detectable, Pk be the solution of the Riccati difference equation
(2.15) with initial condition P0, and P be the unique strong solution of the algebraic Riccati
equation. Then if (A,B) has no uncontrollable mode on the unit circle or P0 ≥ P, then Pk

asymptotically converges to P as k → ∞.

Proof: See [15, Theorem 4.1, Theorem 4.2]. □
The equivalent continuous time equation is the non-linear matrix differential equation:

Ṗ = AP+PAT −PCT R−1CP+BQBT (2.17)

in the unknown matrix function P : R→ Rn×n. It is known as a Riccati differential equation
(RDE) and is fundamental to continuous time estimation problems. Assuming P(0)> 0, then
the RDE has a unique positive definite solution P(t) > 0 for all t ≥ 0 (see [6, p. 165]). In
steady-state the RDE (2.17) is given by the algebraic Riccati equation (ARE):

AP+PAT −PCT R−1CP+BQBT = 0 (2.18)

in the unknown matrix P ∈ Rn×n. Similarly the differential equation:

Ṡ = FS+SFT +SHT R−1HS−GQGT (2.19)

in the unknown matrix function S : R→ Rn×n is an RDE central to control problems, e.g.
linear-quadratic-regulator (LQR). Assuming S(0) > 0, then the RDE (2.19) has a unique
positive definite solution S(t) > 0 for all t ≤ 0. This follows from the positive time case
by considering the transformation t →−t. In steady-state the RDE (2.19) is given by the
algebraic Riccati equation (ARE):

FS+SFT +SHT R−1HS−GQGT = 0 (2.20)

in the unknown matrix S ∈ Rn×n.

Lemma 3 The ARE (2.18) has a unique solution P∞ that is stabilizing, i.e. A−P∞CT R−1C
is Hurwitz, if and only if (C,A) is detectable and (A,B) has no uncontrollable modes on the
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imaginary axis. If these conditions hold P∞ ≥ 0. Furthermore, P∞ is nonsingular if and only
if (A,B) has no stable uncontrollable modes.

Proof: See [63, Theorem 13.7], [9, p. 985], [48] or [44]. □

Lemma 4 Let the conditions of Lemma 3 hold such that P∞ is the unique positive semi-
definite and stabilising solution of the ARE (2.18). Then the unique positive definite solution
P(t) > 0 for all t ≥ 0 of the RDE (2.17) with the initial condition P(0) > 0 has a limit as
t → ∞ which is given by P∞.

Proof: See [9], [35], [8] and [46, Theorem 3.7] noting that the null space of P(0) is empty by
assumption. □

Remark 1 These results carry over easily to the reversed time case. Namely the ARE (2.20)
has a unique solution S∞ that is “anti-stabilizing", i.e. −F −S∞HT R−1H is Hurwitz, if and
only if (H,−F) is detectable and (F,G) has no uncontrollable modes on the imaginary axis.
If these conditions hold S∞ ≥ 0. Furthermore, S∞ is nonsingular if and only if (F,G) has no
unstable uncontrollable modes. The unique positive definite solution S(t)> 0 for t ≤ 0 of the
RDE (2.19) with the terminal condition S(0)> 0 has a limit as t →−∞ which is given by S∞.

2.2.5 Filtering in systems with feedthrough

We now consider the same problem formulation for a system which has an additional
feedthrough of inputs to outputs:

xk+1 = Axk +Bwk, (2.21)

zk =Cxk +Dwk + vk (2.22)

where D ∈ Rp×m is assumed to be known and introduce the notation ŵk| j = E(wk|Z j),
Pww

k| j = E((wk − ŵk| j)(wk − ŵk| j)
T |Z j) and Pxw

k| j = (Pwx
k| j )

T = E((xk − x̂k| j)(wk − ŵk| j)
T |Z j).

The filtering recursions for this system can be similarly derived [16] and are given by:

x̂k|k = x̂k|k−1 +Kx,k(zk −Cx̂k|k−1), (2.23)

ŵk|k = Kw,k(zk −Cx̂k|k−1), (2.24)

Pk|k = Pk|k−1 −Kx,kΘkKT
x,k, (2.25)

Pww
k|k = Q−Kw,kΘkKT

w,k, (2.26)

Pxw
k|k = (Pwx

k|k)
T =−Kx,kΘkKT

w,k, (2.27)
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Kx,k = Pk|k−1CT
Θ
−1
k , (2.28)

Kw,k = QDT
Θ
−1
k , (2.29)

Θk =CPk|k−1CT +DQDT +R, (2.30)

x̂k+1|k =
[
A B

][ x̂k|k
ŵk|k

]
, (2.31)

Pk+1|k =
[
A B

][Pk|k Pxw
k|k

Pwx
k|k Pww

k|k

][
A B

]T
(2.32)

where (2.23)–(2.30) is the update step and (2.31)–(2.32) is the propagation step.

2.3 Nonlinear filters

The Kalman filter and smoother exactly compute state expectations in linear systems given
Gaussian assumptions on the noise and initial state. In most problems of interest the systems
have dynamics that are not linear and are not known precisely and the Gaussian assumptions
do not apply. In all but a few special cases, these problems do not have exact closed form
solutions and the statistics are computationally intractable. In this section we will review
widely used algorithms which aim to approximate the true solutions and have been shown
to be successful in real world problems. We will start with the extended and unscented
Kalman filters which attempt to approximate only the mean and covariance of the probability
distributions. Then we will discuss Monte Carlo algorithms which attempt to approximate
the probability distributions directly through a large set of samples.

2.3.1 Extended Kalman filter

The “extended Kalman filter" (EKF) proposes that the nonlinear system is linearised at the
filtered state estimate and the standard Kalman filter update and propagation steps are applied.
This approach uses the first order of the (multi-dimensional) Taylor series expansion of the
nonlinear dynamics but ignores all higher order terms. This simple extension of the Kalman
filter comes at the cost of accuracy, especially when the system nonlinearities are significant
relative to the level of state uncertainty. The accuracy of the estimation can be improved by
including higher order terms of the expansion, for example the second term of the expansion
can be included at the computational cost of finding the Hessian matrices. For systems
derived from the discretisation of continuous time systems, reducing the time-step size can
also improve accuracy at a computational cost. The computational cost also increases sharply
with the dimensions of the state and outputs.
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A common manifestation of the errors introduced in the approximation is filter inconsis-
tency, namely the filter becomes unjustifiably confident about the state position (i.e. the state
covariance is underestimated). Monte-Carlo simulations can be used here to evaluate how
confident the filter can justifiably be (we will discuss the limitations of using Monte Carlo
simulations for estimation in a later section). A common consequence of filter inconsistency
is filter divergence, this occurs when a biased state estimate leads to an inaccurate linearisa-
tion and because the filter is too confident on the position of the state, the measurements are
not trusted, they are effectively discarded and the state estimate diverges further from the
true value. A heuristic approach often used in practice to resolve the inconsistency and diver-
gence problem is to add process noise, which artificially increases the state covariance. The
extended Kalman filter does not come with any performance guarantees and its assumptions
pose fundamental constrains on the accuracy of the estimation.

2.3.2 Unscented Kalman filter

The “unscented Kalman filter” (UKF) developed in [30] proposes an alternative approach to
extend the Kalman filter to nonlinear systems. It is based on a selection of a small number
of non-random samples of the state and input, called sigma points, to parametrise the mean
and covariance of the transformed system state and output . At a similar computational cost
to the EKF and without requiring the direct computation of Jacobians, the UKF is able to
capture the transformed state and output mean and covariance up to second order.

We will now briefly present the key ideas of the algorithm in [30]. Consider a random
variable X ∈ RL with mean x and covariance Px and a second random variable Y related to X
through the transformation Y = f (X). A general closed form solution for the density of Y
does not exist. Let the Taylor series expansion of f (X) about x be given (up to first order) by:

Y = f (x)+∇ f (X − x)+ . . . (2.33)

then taking expectations gives the mean and covariance:

y = f (x), (2.34)

Py = (∇ f )Px(∇ f )T (2.35)

where we have truncated the series after the first term. This is equivalent to linearising as it is
done in the EKF and it is accurate if the second and higher order terms are negligible. Now
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consider the small number of weighted samples (sigma points) given by:

xi = x W0 =
λ

L+λ
for i = 0 (2.36)

xi = x+Pi Wi =
1

2(L+λ )
for i = 1, . . . ,L (2.37)

xi = x−Pi Wi =
1

2(L+λ )
for i = L+1, . . . ,2L (2.38)

where Pi denotes the ith column of
√

(L+λ )Px and λ is a constant. The weighted sample
mean and covariance of xi are x and Px, i.e. the same as the mean and covariance of X .
Transform the sigma points through the function, i.e. evaluate yi = f (xi), and then compute
their weighted sample mean and covariance:

y =
2L

∑
i=0

Wiyi, (2.39)

Py =
2L

∑
i=0

Wi(yi − y)(yi − y)T . (2.40)

The mean and covariance of Y are given correctly up to second order by y and Py respectively
[29], [32], [28]. This is an improvement over the linearisation approach used in the EKF,
which calculates the mean correctly only up to first order. In particular, in the limit as
L+λ → 0 (note that λ can be freely chosen) all the samples xi tend to x (i.e. xi → x) and the
computed mean and covariance tend to:

y = f (x)+
1
2

∇
2 f Px, (2.41)

Py = (∇ f )Px(∇ f )T (2.42)

which are the expectations truncating the Taylor series expansion after the second order
term. This approximation is used in the second order Gauss filter and requires the additional
computational effort relative to the EKF of computing the Hessian matrix. It should be noted
that because any square root is an orthogonal transformation of another [55], all choices of
matrix square roots capture the mean and covariance. The Cholesky decomposition is often
used as a numerally efficient and stable method [29].

This method of approximating the mean and covariance of a transformed random variable
is known as the unscented transform (UT) and is the central idea behind the UKF. More
precisely, in the propagation step of the filter the UT method is applied directly to find
the statistics at the next time step, in the update step it is applied to the augmented state
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and output vector and the conditional probability lemma then applies directly. The UKF
algorithm can be found in detail at [30], [58] and [31]. It is worth noting that white noise
added to a transformed random variable, e.g.process and measurement noise, only increases
the variance of the output by the variance of the white noise. When this was realised the
UKF algorithm was adapted since it is computationally advantageous over unnecessarily
generating and transforming more sigma points and then computing expectations.

Interesting estimation applications of the UKF and EKF algorithms are presented in [58],
including nonlinear system identification, duel estimation and training of neural networks
where the UKF consistently outperformed the EKF at a comparable complexity. More
recently [2] the EKF and UKF were applied in a vehicle estimation application and tested in
simulations and experiments with a BMW 5 Series. It was observed that 1) the UKF was
more robust and accurate, especially in cases of large sampling time-steps, and 2) the EKF
diverged in some tests where the filter was initialised correctly. Lastly, we should note a
practical advantage of the UKF over the EKF algorithm. Namely, it does not require finding
analytic expressions for the Jacobian (and potentially Hessian) of nonlinear models. It is thus
easier to implement quickly in multiple complex models.

2.3.3 Monte Carlo methods

The EKF and UKF algorithms capture only the mean and covariance of the transformed
probability distributions (up to first or second order). This approach fundamentally limits
the achievable estimation accuracy, especially when the probability distributions are not
adequately described only through the first two moments. Further, the accuracy achieved by
these algorithms cannot be increased with increased computational power and convergence
guarantees do not exist. In this section we will discuss particle methods, which are Monte
Carlo algorithms that give approximate solutions to inference problems [17]. They are
normally nonlinear and seek out the true probability distributions (unlike the EKF and UKF
algorithms). They attempt to address limitations of the EKF and UKF algorithms but they are
more computationally expensive and hence potentially less suitable for real time applications.
Lastly, we will discuss some of the current challenges with particle methods in both filtering
and smoothing, especially in relation to problems with a large horizon.

Consider a hidden Markov model (HMM) and a known prior state distribution. Simi-
larly to the Kalman filter and smoother, inference given output measurements is based on
computing conditional posterior distributions. Applying Bayes theorem and the Markov
assumption we can derive recursive expressions for filtering (which have a prediction and
update step) and smoothing. However, we do not make any further assumptions, e.g. a linear
Gaussian model as in the Kalman filter, and thus in most cases closed form expressions for
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the posterior distributions do not exist. Particle methods are numerical methods where a large
number of random samples called particles is used to approximate the posterior distributions
for both filtering and smoothing.

Sampling directly from complex and high dimensional target distributions for the state
trajectory is not practical. Instead, we can sample from a proposal distribution which is
easy to sample, e.g. a multivariate Gaussian, and associate a weight to each sample based
on the target distribution, this method is known as importance sampling (IS). Furthermore,
by selecting a proposal distribution which allows us to sample (and update the weights)
sequentially at each time step the computational cost increases only linearly with the number
of time steps, this is known as sequential importance sampling (SIS). It is worth noting that
if the hidden Markov model is a nonlinear state space model with Gaussian disturbances and
noises, then the proposal distribution can be chosen to be a Gaussian such that all the weights
are equal, which has some advantages we will now discuss.

The samples of an approximation using importance sampling are weighted and they are
not approximately distributed according to the target distribution. When there is a large
disparity in the sample weights, some of the samples have a negligible weight and hence
contribution to the approximation, i.e the effective sample size (ESS) is lower, but still have
an equal impact on the computational effort. To address this, techniques which sample
from the important sampling approximation are used (e.g. systematic resampling, residual
resampling, multinomial resampling [42]) and are sometimes applied only when an ESS
threshold criterion is satisfied. Resampling in essence rejects particles of low weight with
high probability and hence computational effort is not expended on areas of low probability
density. The downside is that every resampling step reduces the number of unique sample
trajectories especially in the distant past (degeneracy), but it is fundamentally a consequence
of attempting to represent a distribution on a space of increasing dimension (i.e. expanding
time horizon) using a finite number of samples. Hence, resampling aims to reduce the
weight variance to improve the sample representation in the future at the expense of sample
representation in the present and past, this poses a major challenge in smoothing applications
with long horizons.



Chapter 3

Estimation and control for continuous
time systems: A deterministic view

3.1 Introduction

Our goal in this chapter is to pose and solve a filtering/estimation problem for the simultane-
ous estimation of inputs and states in a continuous time linear finite dimensional dynamical
system. We assume that a model of the system is available. The output of the dynamical
system is the vector of all variables that are measured (e.g. by means of sensors). The
filter should make use only of these measured outputs for estimation and produce the best
estimate of the system variables treating the exogenous inputs and states on an equal footing.
The meaning of “best” is to minimise a weighted integral squared error between output and
measured output. The problem set-up is illustrated in Fig. 3.1. The filtered signals w1(t),x1(t)
provide best estimates of w and x at a given time instant t based on measurements up to that
time, while the estimates ŵ(t), x̂(t) provide the best estimates over a time interval [0,T ].

w

exogenous
input

system
x (state)

z

output

sensors
z̃

measured
output

filter/
estimator

w1,x1

ŵ, x̂

Fig. 3.1 Block diagram of a dynamical system with state x, exogenous input w and output z
which is measured with sensors interconnected with an estimator.

The problem formulation differs from the Kalman filter [39] in two respects: (1) there is
no notion of “process noise”; (2) the problem is purely deterministic. In regard to (1), if there
is a noisy measurement of an exogenous input, our formulation advocates that this should be
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included in the measurement vector along with the other measured variables. In regard to (2),
our approach is inspired by Willems who showed in [60] that the continuous time Kalman
filter admits a deterministic least squares formulation.

The estimation problem of Fig. 3.1 has a strong motivation in engineering applications.
For example, the motion of an automobile is determined by the external forces acting on it
(principally tyre and aerodynamic forces). These are very difficult to measure directly but
may be estimated together with the system state from an appropriate set of sensors. Similar
considerations apply to other types of vehicles, e.g. aerial or nautical vehicles or vessels. In
the field of structural dynamics an example would be the estimation of forces applied to a
structure together with the resulting vibrational displacements in the structure.

The use of the standard Kalman filter in such examples imposes a Gaussian assumption
on the exogenous input which may not be justified. A similar issue arises in the deterministic
formulation of the Kalman filter [60] since the optimisation problem requires a best fit of the
observed signal using an input disturbance that has minimum integral squared norm. Such an
assumption may not be physically motivated. The formulation in Fig. 3.1 dispenses with this
requirement.

Our solution to the problem of Fig. 3.1 is otherwise directly inspired by the approach of
Willems. In particular, we rewrite the cost functional in a convenient form to determine the
unique optimal solution by means of completion of squares. This involves the construction
of a dynamical system which turns out to be an “end-of-interval estimator” to generate the
signals w1(t),x1(t). The form of the solution involves a feedback from a projected error
signal with a gain based on the solution of a Riccati differential equation that is reminiscent
of the Kalman filter and can be solved in real time. A further construction is required to
determine the optimal solution ŵ(t), x̂(t) on a fixed interval [0,T ]. The latter corresponds to
the “smoothed” estimate in regular Kalman filtering and is not computable in real time since
it involves the further solution of a system backwards in time.

In the stochastic approach to the Kalman filter the Riccati equation solution is a state
covariance. In this work we wish to go beyond [60] to obtain a least squares interpretation of
the Riccati differential equation solution P1(t) arising in our filter. To do this we pose and
solve a constrained optimisation problem which requires the state to pass through a prescribed
point at a given time. The optimal cost for the new problem is increased by a term which is
the norm squared error between the state and the optimal state at the given time weighted by
the inverse of a matrix Lyapunov differential equation solution P2(t). The latter coincides
with P1(t) if the prescribed time for the state constraint is at the end of the interval, i.e. t = T .
This allows the interpretation that if P1(t) is small, the measurements suggest strongly that
x1(t) is an accurate estimate of the state at time t given measurements up to that time, while
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conversely if its inverse P1(t)−1 is near singular then there exist trajectories with x(t) far from
x1(t) that fit the measurements z̃ up to time t almost as well. There is a similar interpretation
for P2(t) valid for any time t within the fixed horizon length. These interpretations are closely
analogous to the meaning of the filtered and smoothed state covariances in the stochastic
formulation.

In order to solve the constrained optimisation problem, a tracking problem is introduced
that has a close relation to the estimation problem and has independent interest. In one
respect the estimation and tracking problems are identical, namely it is desired to minimise
the weighted integral squared error between the output of the dynamical system and another
signal that is given, i.e. a set of sensor measurements or a desired trajectory. In the estimation
problem we seek the input and state that is the best explanation of the observed trajectory
given the measurements made, while in the tracking problem we seek the input (and state)
that gives the closest output trajectory of the system to the desired one. In another respect the
two problems differ in that there is a quadratic penalty in the cost criterion on the initial state
(estimation problem) or on the final state (tracking problem). This results in the two problems
having solutions which are dual to each other: in the tracking problem the first stage of the
solution solves a Riccati differential equation backwards in time after which the optimal
control and state trajectory are found by integrating forwards in time, which is the opposite
way round to the estimation problem. This duality is reminiscent of, and closely related to,
the well-known duality between the Kalman filter and the linear quadratic regulator.

Throughout the chapter we make an assumption that the direct feedthrough matrix of
the system has full column rank. It is possible that this could be relaxed at the expense of
making the filter equations more involved. However, we demonstrate in Section 3.5 that the
formulation is still sufficiently general to include the regular Kalman filter, the Kalman filter
with direct feedthrough of process noise to measurements and the linear quadratic regulator
as special cases. We mention that the full column rank assumption is closely related to the
need to avoid differentiating the measured output in the estimation problem.

The chapter goes on to consider the infinite horizon case for the estimation problem in
Section 3.6. It is shown under mild conditions that the limiting form of the end-of-interval
estimator can be written as a linear system solved forwards in time with the system matrices
determined via the solution of an algebraic Riccati equation. We show that the end-of-interval
estimator of the input is a stable left inverse of the original system. We also show that the
unique solution of the estimation problem has a limiting form which includes a second stage
of processing via an anti-stable system, equivalently a system that is stable in the backwards
time direction. We show that the series connection of the end-of-interval estimator (with
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judiciously chosen output) and this anti-causal “smoother" is also a left inverse of the original
system.

Section 3.7 considers the infinite horizon tracking problem. On a finite horizon the
tracking problem solution has a natural two-stage form where the first stage involves a
backwards-in-time integration and the second stage has an integration forwards in time. This
form is maintained in the infinite horizon limit with, under mild conditions, the first stage
being an anti-stable system (equivalently a stable anti-causal system) and the second stage
being a stable system. The analysis takes care to show that the optimal control converges
for any fixed time t to the solution described above. Moreover, we show that the first stage
system is an anti-stable left inverse of the original system, and that the series connection of
the first stage’s computation of a modified output and the second stage system is also a left
inverse of the original system.

3.2 Estimation

Consider the linear, finite-dimensional, continuous time system with the state space descrip-
tion:

ẋ = Ax+Bw, (3.1)

z =Cx+Dw (3.2)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m (full column rank) are fixed known
matrices1 and w ∈ L m

2,e, x ∈ L n
2,e and z ∈ L p

2,e are input, state and output related through this
linear system. We consider the problem to estimate w and x from the measurement of the
signal z, which is the same as estimating w and x(0) since x is generated by (3.1). We assume
that the state x and driving input w are not measured directly, other than (indirectly) through
the measurement of z (i.e. all measurements of the system are made through the output vector
z). Each element of z may correspond to an individual sensor or multiple entries of z may be
generated by a single device. To pose our problem precisely we will denote by z̃ the actual
measured output signal in an experiment (see Fig. 3.1). We introduce the performance index:

CT (w,x(0)) =
∫ T

0
∥z̃(t)− z(t)∥2

R−1dt +∥x(0)− γ∥2
Γ−1 (3.3)

1The assumption that the system matrices are constant is for notational convenience. We note that all finite
horizon results in Sections 3.2-3.5 are valid if the system matrices A, B, C, D are time-varying, with no change
required in the proofs.
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where 0 < R ∈ Rp×p, 0 < Γ ∈ Rn×n, γ ∈ Rn, 0 < T ∈ R are specified. The problem we wish
to solve is:

inf
w,x(0)

CT (w,x(0)) (3.4)

subject to (3.1) and (3.2). In particular we wish to compute the optimal w and x(0) which we
will denote by ŵ and x̂(0). A key step in our solution of (3.4) is a “completion of squares”
construction for the performance index (3.3) which is given in the following lemma.

Lemma 5 Consider the system:

ẋ1 = (A1 −K1C1)x1 +(B1 +K1)z̃, (3.5)

Ṗ1 = A1P1 +P1AT
1 −K1RKT

1 +B1RBT
1 , (3.6)

K1 = P1CT
1 R−1, (3.7)

w1 = D†(z̃− z1), (3.8)

z1 =Cx1 (3.9)

with the initial conditions P1(0) = Γ and x1(0) = γ , where we have defined:

A1 = A−B1C, (3.10)

B1 = BD†, (3.11)

C1 = ΠcC, (3.12)

Πc = I−Π, (3.13)

Π = DD†, (3.14)

D† = (DT R−1D)−1DT R−1. (3.15)

Then the RDE (3.6) has a unique positive definite solution P1(t) > 0 for all t ∈ [0,T ].
Furthermore, the performance index defined in (3.3) is given by:

CT (w,x(0)) =
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt

+
∫ T

0
∥Π(RBT

1 P1(t)−1(x(t)− x1(t))+ z̃(t)− z(t))∥2
R−1dt +∥x(T )− x1(T )∥2

P1(T )−1 (3.16)

(w1 is defined here for convenience and will be first used in Theorem 2).
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Proof: The parallel projection Π satisfies Π2 = Π and:

Π
T
c R−1D = 0. (3.17)

Hence the following identities hold:

K1D = 0, (3.18)

K1C1 = K1C. (3.19)

From (3.2) w = D†(z−Cx). Substituting into (3.1) gives:

ẋ = A1x+B1z = (A1 −K1C1)x+(B1 +K1)z (3.20)

using (3.18) and (3.19). From (3.20) and (3.5) we obtain:

ẋ− ẋ1 = (A1 −K1C1)(x− x1)− (B1 +K1)(z̃− z). (3.21)

We note that Πc(z− z1) =C1(x− x1) from which it follows that:

C1(x− x1)+(z̃− z) = Πc(z̃− z1)+Π(z̃− z). (3.22)

Hence from (3.17) and (3.22):

∥C1(x− x1)+(z̃− z)∥2
R−1 = ∥Πc(z̃− z1)∥2

R−1 +∥Π(z̃− z)∥2
R−1. (3.23)

Using (3.6), (3.21) and (3.23) we verify the calculation:

d
dt

(
∥x− x1∥2

P−1
1

)
=

d
dt

(
(x− x1)

T P−1
1 (x− x1)

)
= 2(x− x1)

T P−1
1 (ẋ− ẋ1)− (x− x1)

T P−1
1 Ṗ1P−1

1 (x− x1)

= 2(x− x1)
T P−1

1 ((A1 −K1C1)(x− x1)− (B1 +K1)(z̃− z))

− (x− x1)
T (P−1

1 A1 +AT
1 P−1

1 −CT
1 R−1C1 +P−1

1 B1RBT
1 P−1

1 )(x− x1)

=−2(x− x1)
T (P−1

1 B1 +CT
1 R−1)(z̃− z)− (x− x1)

T (P−1
1 B1RBT

1 P−1
1 +CT

1 R−1C1)(x− x1)

=−∥RBT
1 P−1

1 (x− x1)+Π(z̃− z)∥2
R−1 +∥Π(z̃− z)∥2

R−1

−∥C1(x− x1)+(z̃− z)∥2
R−1 +∥(z̃− z)∥2

R−1

=−∥RBT
1 P−1

1 (x− x1)+Π(z̃− z)∥2
R−1 −∥Πc(z̃− z1)∥2

R−1 +∥(z̃− z)∥2
R−1 (3.24)
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where in the penultimate step we have noted that B1Π = B1. Integrating (3.24) in the interval
[0,T ] gives the required expression on noting that RBT

1 = ΠRBT
1 . □

Theorem 1 The optimisation problem in (3.4) has a unique solution ŵ, x̂(0) which is ob-
tained as follows: first integrate (3.5)–(3.7) forwards in time in the interval 0 ≤ t ≤ T with
initial conditions P1(0) = Γ and x1(0) = γ; then integrate:

˙̂x = A2x̂+B2z̃2 (3.25)

backwards in time with terminal condition:

x̂(T ) = x1(T ) (3.26)

to compute x̂(0) (and indeed x̂); and lastly set:

ŵ = D†(z̃2 −C2x̂) (3.27)

where:

A2 = A−B2C2, (3.28)

B2 = B1, (3.29)

C2 =C−RBT
1 P−1

1 , (3.30)

z̃2 = z̃−RBT
1 P−1

1 x1. (3.31)

Furthermore, the minimum of the performance index (3.3) is:

inf
w,x(0)

CT (w,x(0)) =
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt (3.32)

=
∫ T

0
∥z̃(t)− ẑ(t)∥2

R−1dt +∥x̂(0)− γ∥2
Γ−1 (3.33)

where we have denoted the optimal output by:

ẑ =Cx̂+Dŵ. (3.34)

Proof: We note by an application of [6, Theorem 1, p. 40] that (3.25) may be integrated
on the interval [0,T ] to yield x̂. Next we verify that (3.1) driven by w = ŵ from the initial
state x(0) = x̂(0) generates the state trajectory x = x̂, i.e. ˙̂x = Ax̂+Bŵ. This is easily seen by
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substituting for ŵ to obtain (3.25). We now claim that the following lower bound:

CT (w,x(0))≥
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt (3.35)

holds for all w and x(0). To see this note that all terms in (3.16) are non-negative and the first
term is independent of w and x(0). We proceed to claim that for x(0) = x̂(0) and w = ŵ the
last two terms in (3.16) are zero. To see that the second term is zero we substitute w = ŵ
from (3.27) and x = x̂ into (3.16) with z defined in (3.2), i.e. z = ẑ = Cx̂+Dŵ. The third
term is zero with x = x̂ from (3.26). We therefore conclude that w = ŵ, x(0) = x̂(0) achieve
a minimum of the performance index with the minimum given by (3.33). The second line in
(3.33) is given by substitution of the optimal solution into (3.3). It remains to show that this
solution is unique, which we will now establish by contradiction. Let:

x = x̂+δx, (3.36)

w = ŵ+δw (3.37)

be another solution that satisfies (3.1) with δx, δw not identically zero in the interval [0,T ].
Substituting (3.36) and (3.37) into (3.1) gives:

δ̇x = Aδx+Bδw (3.38)

by noting that x̂, ŵ also satisfy (3.1) by construction. The difference in the output is given by:

δ z =Cδx+Dδw. (3.39)

We now substitute (3.36) and (3.37) into the performance index (3.16) which gives:

CT (w,x(0)) =
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt +
∫ T

0
∥Π(RBT

1 P1(t)−1
δx(t)−δ z(t))∥2

R−1dt

+∥δx(T )∥2
P1(T )−1 (3.40)

using the fact that with x = x̂ and w = ŵ the integrand in the second term of (3.16) is
identically zero in the interval [0,T ]. Under the assumption that the trajectory in (3.36),
(3.37) is a solution to the optimisation problem, the last two terms in (3.40) have to be zero,
which gives:

D†(RBT
1 P−1

1 δx−δ z) = 0 (3.41)
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on the interval [0,T ] since D is full column rank, and:

δx(T ) = 0 (3.42)

since P1(T )> 0. Substituting δ z from (3.39) into (3.41) gives:

δw =−D†C2δx (3.43)

using (3.30). Substituting δw from (3.43) into (3.38) gives:

δ̇x = A2δx (3.44)

using (3.28). Solving (3.44) backwards in time with the terminal condition (3.42) gives
δx = 0 identically in the interval [0,T ], and from (3.43) we have δw = 0 identically in the
same interval, which results in a contradiction. □

We now turn our attention to the filtered estimates (i.e. end-of-interval estimates) of the
state and input, namely x̂(T ) and ŵ(T ). In real time applications, the horizon T is itself a
variable. It would appear at first glance that a new optimisation problem needs to be solved
at every T to compute end-of-interval estimates. The following result shows that this is not
the case.

Theorem 2 Consider the system (3.5)–(3.8) where P1(0) = Γ and x1(0) = γ . Then for any
fixed T :

x̂(T ) = x1(T ), (3.45)

ŵ(T ) = w1(T ). (3.46)

Proof: The result follows from (3.8), (3.26), (3.27), (3.30) and (3.31). □
Theorem 2 shows that integrating (3.5)–(3.7) as the measurements z̃ become available is

sufficient to recover the end-of-interval estimates without computing x(0) or w. We further
note that the filter is non-anticipating, meaning that the end-of-interval estimates x1(T ) and
w1(T ) do not depend on future measurements, i.e. z̃(t) for t > T . This property is required
of any filter to be applied in a real time application.
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3.3 Tracking

In this section we will consider a related tracking problem (see [63, Ch. 14] for standard
results in optimal control). Assume the state q and input u satisfy:

q̇ = Fq+Gu, (3.47)

y = Hq+ Ju (3.48)

where F ∈ Rn×n,G ∈ Rn×m,H ∈ Rp×n and J ∈ Rp×m (full column rank) are fixed known
matrices and u ∈ L m

2,e, q ∈ L n
2,e and y ∈ L p

2,e are input, state and output related through this
linear system. We wish to find an input u such that the output y best tracks a desired signal
ỹ ∈ L p

2,e over a finite horizon T together with a penalty on the deviation of the terminal state
from a desired state ξ for a given but arbitrary initial state η . More precisely, we introduce
the performance index:

WT (u) =
∫ T

0
∥ỹ(t)− y(t)∥2

R−1dt +∥q(T )−ξ∥2
Ξ−1 (3.49)

where ξ ∈ Rn, 0 < Ξ ∈ Rn×n and propose the problem:

inf
u

WT (u) (3.50)

subject to (3.47), (3.48) and q(0) = η . We denote the optimal solution to (3.50) by û. This
problem differs from the standard finite horizon LQ tracking problem [53, Ch. 8] (see also
[52] and [63, Ch. 15]). In particular, note that this formulation has a full column rank input
feedthrough matrix and no penalty on the input norm. We first give a completion of squares
result similar to Lemma 5 which we then use to solve (3.50) in Theorem 3.

Lemma 6 Consider the system:

q̇1 = (F1 +M1H1)q1 +(G1 −M1)ỹ, (3.51)

Ṡ1 = F1S1 +S1FT
1 +M1RMT

1 −G1RGT
1 , (3.52)

M1 = S1HT
1 R−1, (3.53)

u1 = J†(ỹ− y1), (3.54)

y1 = Hq1 (3.55)
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with the terminal conditions S1(T ) = Ξ and q1(T ) = ξ , where we have defined the matrices:

F1 = F −G1H, (3.56)

G1 = GJ†, (3.57)

H1 = ΛcH, (3.58)

Λc = I−Λ, (3.59)

Λ = JJ†, (3.60)

J† = (JT R−1J)−1JT R−1. (3.61)

Then the RDE (3.52) has a unique positive definite solution S1(t) > 0 for all t ∈ [0,T ].
Furthermore, the performance index in (3.49) is given by:

WT (u) =
∫ T

0
∥Λc(ỹ(t)− y1(t)))∥2

R−1dt

+
∫ T

0
∥Λ(RGT

1 S1(t)−1(q(t)−q1(t))− ỹ(t)+ y(t))∥2
R−1dt +∥η −q1(0)∥2

S1(0)−1. (3.62)

Proof: We sketch the outline of two proofs. A direct proof is a completion of squares
argument analogous to Lemma 5. It differs from Lemma 5 only in the signs of some
terms. An indirect proof is to recognise that Lemma 6 is the time reversed Lemma 5.
The transformations d

dt → − d
dt , A → −F , B → −G, C → H, D → J, P1 → S1, x1 → q1,

z1 → y1, z̃ → ỹ and consequential correspondences A1 →−F1 etc. suffice to give the result.
Furthermore, S1(t)> 0 for all t ∈ [0,T ] is guaranteed by the reversed time Lemma 20 (see
Remark 1). □

Theorem 3 The optimisation problem in (3.50) has a unique solution û which is obtained as
follows: first integrate (3.51)–(3.53) backwards in time with terminal conditions S1(T ) = Ξ

and q1(T ) = ξ ; then integrate:

˙̂q = Fq̂+Gû (3.63)

forwards in time with û given by the feedback law:

û = J†(ỹ2 −H2q̂) (3.64)
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and initial condition q̂(0) = η , where we have defined:

H2 = H +RGT
1 S−1

1 , (3.65)

ỹ2 = ỹ+RGT
1 S−1

1 q1. (3.66)

Furthermore, the minimum of the performance index (3.49) is:

inf
u

WT (u) =
∫ T

0
∥Λc(ỹ(t)− y1(t))∥2

R−1dt +∥η −q1(0)∥2
S1(0)−1. (3.67)

Proof: We note that (3.63) with û given by (3.64) and q̂(0) = η may be integrated [6,
Theorem 1, p. 40] on the interval [0,T ] to yield q̂, while û can be computed by substituting q̂
into (3.64). We now claim that the following lower bound:

WT (u)≥
∫ T

0
∥Λc(ỹ(t)− y1(t))∥2

R−1dt +∥η −q1(0)∥2
S1(0)−1 (3.68)

holds for all u. To see this note that all terms in (3.62) are non-negative and the first and third
terms are independent of u. We proceed to claim that for u = û the second term in (3.62)
is zero. To see this we substitute u = û and q = q̂ into (3.62) with y defined in (3.48), i.e.
y = ŷ = Hq̂+ Jû, and noting that Λ2 = Λ. We therefore conclude that u = û is a solution
to the optimisation problem and the minimum of the performance index (3.49) is given
by (3.67). It remains to show that this solution is unique, which we will now establish by
contradiction. Let:

q = q̂+δq, (3.69)

u = û+δu (3.70)

be another solution that satisfies (3.47) with δq, δu not identically zero in the interval [0,T ].
Substituting (3.69) and (3.70) into (3.47) gives:

δ̇q = Fδq+Gδu (3.71)

using (3.63). The difference in the output is given by:

δy = Hδq+ Jδu. (3.72)
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We now substitute (3.71) and (3.72) into the performance index (3.62) which gives:

WT (u) =
∫ T

0
∥Λc(ỹ(t)− y1(t))∥2

R−1dt

+
∫ T

0
∥Λ(RGT

1 S1(t)−1
δq(t)+δy(t))∥2

R−1dt +∥η −q1(0)∥2
S1(0)−1 (3.73)

using the fact that with q= q̂ and u= û the integrand in the second term of (3.62) is identically
zero in the interval [0,T ]. Under the assumption that the trajectory in (3.69), (3.70) is a
solution to the optimisation problem, the second term in (3.73) has to be zero, which gives:

J†(RGT
1 S−1

1 δq+δy) = 0 (3.74)

on the interval [0,T ] since J is full column rank. Substituting δy from (3.72) into (3.74)
gives:

δu =−J†H2δq (3.75)

using (3.65). Substituting δu from (3.75) into (3.71) gives:

δ̇q = (F −G1H2)δq. (3.76)

Solving (3.76) forwards in time with the initial constraint δq(0) = 0, which follows since
q(0) = q̂(0) = η , gives δq = 0 identically in the interval [0,T ]. Using (3.75) we have δu = 0
identically in the same interval, which results in a contradiction. □

3.4 Constrained estimation

We now turn our attention to the constrained optimisation problem:

inf
w,x(0)

CT (w,x(0)) subject to x(τ) = ζ (3.77)

for ζ ∈ Rn and 0 ≤ τ ≤ T where (3.1) and (3.2) hold. Here CT (w,x(0)) is defined as in (3.3)
with the same meaning for z̃, γ and Γ. Again we wish to compute the optimal w and x(0)
which we will denote by ŵ and x̂(0). A solution of this optimisation problem will show how
the optimal cost increases compared to the unconstrained value when we demand that the
state passes through a prescribed point at a given time. This will give an indication in a least
squares sense of how “likely" it is that the state passes through the optimum point for the
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unconstrained problem. For example, if there is a sharp rise in the cost when the state is
required to pass through a different point, then we may have more confidence in the value of
the unconstrained optimum state at that time. We will first give Lemma 7 before deriving the
solution to the optimisation problem (3.77) in Theorem 4.

Lemma 7 Let x1, P1, z1, A2, B2, C2, z̃2 be defined as in Lemma 5 and Theorem 1 and consider
the system:

ẋ2 = A2x2 +B2z̃2, (3.78)

Ṗ2 = A2P2 +P2AT
2 −B2RBT

2 , (3.79)

w2 = D†(z̃2 −C2x2) (3.80)

with the terminal conditions P2(T ) = P1(T ), x2(T ) = x1(T ). (Note that x2, w2 are the optimal
trajectories of the optimisation problem given by (3.4), namely x2 = x̂, w2 = ŵ as defined in
Theorem 1.) Then CT (w,x(0)) is equivalently given by:

CT (w,x(0)) =
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt +
∫

τ

0
∥Π(z̃2(t)−C2x(t)−Dw(t))∥2

R−1dt

+
∫ T

τ

∥Π(z̃3(t)−C3x(t)−Dw(t))∥2
R−1dt +∥x(τ)− x2(τ)∥2

P−1
2 (τ)

(3.81)

where C3 and z̃3 are given by:

C3 =C2 +RBT
2 P−1

2 , (3.82)

z̃3 = z̃2 +RBT
2 P−1

2 x2. (3.83)

Proof: Using (3.2), (3.30) and (3.31) we obtain:

Π(RBT
1 P−1

1 (x− x1)+ z̃− z) = Π(z̃2 −C2x−Dw). (3.84)

Substituting (3.84) into (3.16) gives:

CT (w,x(0)) =
∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt +
∫

τ

0
∥Π(z̃2(t)−C2x(t)−Dw(t))∥2

R−1dt

+
∫ T

τ

∥Π(z̃2(t)−C2x(t)−Dw(t))∥2
R−1dt +∥x(T )− x1(T )∥2

P−1
1 (T ). (3.85)

We next note that Lemma 6 remains true for time varying matrices. The proof will apply
Lemma 6 to the last two terms of (3.85) in the interval [τ,T ] rather than [0,T ]. First we make
the following notational substitutions: q → x, u → w, ỹ → Πz̃2, F → A, G → B, H → ΠC2,
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J → D and setting ξ = x1(T ), Ξ = P1(T ). Making these replacements in (3.56)–(3.61) and
then (3.53) gives F1 = A2, G1 = B2, H1 = 0, Λ = Π, J† = D† and M1 = 0. Substituting
these into (3.51), (3.52) and (3.54) with the notational substitutions q1 → x2, S1 → P2 and
u1 → w2 gives (3.78)–(3.80). We next note that the expression in (3.49) with the notational
substitutions and the lower limit replaced by τ is the same as the last two terms in (3.85).
Therefore, using Lemma 6, we can replace these terms by the expression in (3.62), which
gives (3.81) using (3.82) and (3.83) and the fact that the first integral on the right hand side
of (3.62) is zero since (I −Π)Π = 0. □

Theorem 4 The optimisation problem (3.77) has a unique solution ŵ, x̂(0) which is obtained
as follows: first integrate (3.5)–(3.7) forwards in time in the interval 0 ≤ t ≤ T with initial
conditions P1(0) = Γ and x1(0) = γ which gives x1 and P1 in the interval 0 ≤ t ≤ T ; then
integrate (3.78)–(3.80) backwards in time in the interval τ ≤ t ≤ T with terminal conditions
P2(T ) = P1(T ) and x2(T ) = x1(T ) which gives x2 and P2 in the interval τ ≤ t ≤ T ; then
integrate:

˙̂x = Ax̂+Bŵ (3.86)

backwards in time in the interval 0 ≤ t ≤ τ with the feedback law:

ŵ = D†(z̃2 −C2x̂); (3.87)

and the terminal condition x(τ) = ζ to find x̂, ŵ in the interval 0 ≤ t ≤ τ; then integrate
(3.86) forwards in time in the interval τ ≤ t ≤ T with the feedback law:

ŵ = D†(z̃3 −C3x̂) (3.88)

and the initial condition x(τ) = ζ to find x̂, ŵ in the interval τ ≤ t ≤ T . The minimum of the
performance index is:

∫ T

0
∥Πc(z̃(t)− z1(t))∥2

R−1dt +∥ζ − x2(τ)∥2
P−1

2 (τ)
. (3.89)

Proof: We proceed similarly to the proof of Theorem 1. The first and fourth terms of the
performance index in (3.81) are independent of x(0) and w, subject to the constraint x(τ) = ζ

(i.e. they are constants with respect to the variables of the optimisation problem). The two
integrands in (3.81) are identically zero in their respective intervals for x = x̂ and w = ŵ,
which can be verified by substitution. Uniqueness is proven similarly to Theorem 1 for the
intervals 0 ≤ t ≤ τ and τ ≤ t ≤ T separately. □
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The solution to the constrained optimisation problem (3.77) given in Theorem 4 intro-
duced the vector and matrix variables x2, w2 and P2. We recall that x2 and w2 coincide with
the state and input trajectories on the interval [0,T ] that minimise the performance criterion
(3.3) as shown in Theorem 1. We may now provide an interpretation of the matrix variable
P2. The unique minimum of the constrained optimisation problem (3.77) is given in (3.89)
and consists of two terms. The first term coincides with the minimum of the unconstrained
problem given in (3.32). The second term is a quadratic which is zero when ζ = x2(τ), in
which case we recover the results of Theorem 1. Consider now the eigenvector-eigenvalue
decomposition of P2(τ). Components of ζ − x2(τ) in those eigenvector directions of P2(τ)

which have small eigenvalues (i.e. large eigenvalues of P−1
2 (τ)) give a large contribution to

the second term in (3.89). Hence the measurements provide high confidence that the state
x(τ) should be close to x2(τ) in those directions. Fig. 3.2 illustrates the interpretation of
P2(τ) in the 2-D case. The figure shows an ellipse with centre x2(τ) whose axes are aligned
with the eigenvectors of P2(τ) and lengths given by the corresponding eigenvalue square
roots. All points on the ellipse increase the minimum performance index (3.89) by 1.

x2(τ)

√
λ1(τ)√

λ2(τ)

Fig. 3.2 An ellipse with semi-axes of length given by the eigenvalue square roots of P2(τ),√
λ1(τ) and

√
λ2(τ), and aligned with the corresponding eigenvectors.
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3.5 Special cases

3.5.1 Standard Kalman filter

We now show how the continuous time Kalman filter can be derived as a special case of the
filter in Theorems 1 and 2. We therefore consider a system described by:

ẋ = Ax+Bw (3.90)

z =Cx (3.91)

with noisy measurement z̃ of z. Note that we assume as standard that sensor measurements
of the state are not directly affected by the process noise w. In the standard Kalman filter
the process noise w can be interpreted as a small magnitude disturbance to the system. To
translate into our framework we need to incorporate a weighted 2-norm constraint on w in
the performance index (3.3). In particular, we consider the following optimisation problem:

inf
w,x(0)

(∫ T

0
∥z̃(t)− z(t)∥2

R−1dt +
∫ T

0
∥w∥2

Q−1dt +∥x(0)− γ∥2
Γ−1

)
. (3.92)

To translate this into the framework of this work we introduce a virtual measurement of w
which is equal to zero. More precisely, we consider an augmented system with (real and
virtual) outputs given by:

za =

[
C
0

]
x+

[
0
I

]
w (3.93)

and for which we have the measurement:

z̃a =

[
z̃
0

]
. (3.94)

We define an augmented block diagonal weighting matrix Ra given by:

Ra =

[
R 0
0 Q

]
. (3.95)

The following result is obtained by applying Lemma 5 and Theorem 1 to this augmented
system.
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Theorem 5 Consider the system:

ẋ1 = Ax1 +K(z̃−Cx1), (3.96)

Ṗ1 = AP1 +P1AT −KRKT +BQBT , (3.97)

K = P1CT R−1 (3.98)

for P1(0) = Γ and x1(0) = γ . The optimisation problem (3.92) where z is defined by (3.90)–
(3.91) has a unique solution ŵ, x̂(0) where ŵ is defined by the feedback law:

ŵ = QBT P−1
1 (x̂− x1) (3.99)

and x̂(t) is obtained by solving ˙̂x = Ax̂+Bŵ backwards on the interval [0,T ] with terminal
condition x̂(T ) = x1(T ). Furthermore, the optimal cost (3.92) is given by:

∫ T

0
∥z̃−Cx1∥2

R−1dt. (3.100)

Proof: Replacing (3.2) by (3.93), z̃ and R in (3.3) by (3.94) and (3.95), and applying Lemma
5 gives equations (3.96)–(3.98) after some simplification. Equations (3.99) and (3.100) are
obtained by substituting from (3.93), (3.94) and (3.95) into (3.27) and (3.33) respectively. □

The filter (3.96)–(3.98) is an end-of-interval estimator (cf. Theorem 2) in the sense that
x̂(T ) = x1(T ), ŵ(T ) = w1(T ) and takes the form of the standard Kalman filter with gain K.
The above result reduces to that given in [60] with R = I and Q = I. It is interesting to note
that by substituting for ŵ from (3.99) we obtain an equation for the optimal state estimate:

˙̂x = Ax̂+BQBT P−1
1 (x̂− x1) (3.101)

where x̂(T ) = x1(T ) that coincides with the standard form for the smoothed estimate in
Kalman filtering (see [34, eqn. 34(a)]). Similarly by specialising (3.79) to the present case
we have the equation:

Ṗ2 = (A+BQBT P−1
1 )P2 +P2(A+BQBT P−1

1 )T −BQBT (3.102)

where P2(T ) = P1(T ), which is the corresponding form for the smoothed covariance (see
[34, eqn. 34(b)]).
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3.5.2 Kalman filter with input feedthrough

We consider the extension of the standard Kalman filter to the case where there is direct
feedthrough of the input to the measurements. In particular we consider a system described
by:

ẋ = Ax+Bw, (3.103)

z =Cx+Dw (3.104)

with noisy measurement z̃ of z. As in section 3.5.1 we incorporate a weighted 2-norm
constraint on w in the performance index (3.3) and consider the optimisation problem (3.92)
with z given by (3.104) rather than (3.91). To solve this we proceed similarly and consider an
augmented output given by:

za =

[
C
0

]
x+

[
D
I

]
w (3.105)

and for which we have the measurement z̃a as in (3.94) and we define an augmented weighting
matrix as in (3.95).

Theorem 6 Consider the system:

ẋ1 = Ax1 +Bw1 +Kx(z̃−Cx1 −Dw1), (3.106)

Ṗ1 = AP1 +P1AT −KxRKx
T +(B−KxD)Pw(B−KxD)T , (3.107)

w1 = Kw(z̃−Cx1), (3.108)

Kw = QDT (DQDT +R)−1, (3.109)

Kx = P1CT R−1, (3.110)

Pw = (I−KwD)Q (3.111)

with P1(0) = Γ and x1(0) = γ . The optimisation problem (3.92) where z is given by (3.103)–
(3.104) has a unique solution ŵ, x̂(0) where ŵ is defined by the feedback law:

ŵ = Kw(z̃−Cx̂)+PwBT P−1
1 (x̂− x1) (3.112)
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and x̂(t) is obtained by solving ˙̂x = Ax̂+Bŵ backwards on the interval [0,T ] with terminal
condition x̂(T ) = x1(T ). Furthermore, the optimal cost (3.92) is:

∫ T

0
∥z̃−Cx1∥2

(DQDT+R)−1dt. (3.113)

Proof: We will apply Lemma 5 replacing (3.2) by (3.105), z̃ and R in (3.3) by (3.94) and
(3.95). Substituting into (3.15) gives:

D† =
[
Kw I−KwD

]
(3.114)

where we have used the definition (3.109) and the matrix inversion identities (3.1) and (3.2)
of Section 6.3 in [1]. Substituting into (3.10), (3.11), (3.12) and (3.8) using (3.114) gives:

A1 = A−BKwC, (3.115)

B1 = B
[
Kw I−KwD

]
, (3.116)

C1 =

[
I−DKw

−Kw

]
C (3.117)

and (3.108) respectively. Noting the symmetry DKwR = (DKwR)T we find after substituting
into (3.7) using (3.117) and the definition (3.110) that:

K1 = Kx

[
I−DKw −RKT

w Q−1
]
. (3.118)

We now verify:[
I−DKw

−Kw

]T [
R 0
0 Q

]−1[
I−DKw

−Kw

]
= R−1(I−DKw)+KT

w DT R−1(−I+DKw +R(DQDT +R)−1)

= R−1(I−DKw) (3.119)

= (DQDT +R)−1 (3.120)

= R−1(R−DPwDT )R−1. (3.121)

From (3.7) using (3.117), (3.119) and (3.110) we obtain:

K1C1 = Kx(I−DKw)C. (3.122)
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Similarly from (3.7) using (3.117), (3.121) and (3.110) we obtain:

K1RaKT
1 = KxRKT

x − (KxD)Pw(KxD)T . (3.123)

Substituting into (3.5) using (3.115), (3.122), (3.116), (3.118) and (3.108) gives (3.106).
Using (3.109), (3.110) and (3.111) we obtain:

KwCP1 = Pw(KxD)T . (3.124)

By substituting from (3.114) we obtain:

D†RaD†T = Pw. (3.125)

Substituting into (3.6) using (3.115), (3.123), (3.124) and (3.125) gives (3.107). Equation
(3.112) follows from (3.27) using (3.114) and (3.125). Equation (3.113) follows from the
first expression in (3.33) using (3.114) and (3.120). □

We again note that by substituting for ŵ from (3.112) we obtain the differential equation
for the optimal state estimate:

˙̂x = Ax̂+BKw(z̃−Cx̂)+BPwBT P−1
1 (x̂− x1) (3.126)

where x̂(T ) = x1(T ). Similarly (3.79) specialises to:

Ṗ2 = (A−BKwC+BPwBT P−1
1 )P2 +P2(A−BKwC+BPwBT P−1

1 )T −BPwBT . (3.127)

Finally, we point out that the augmented input feedthrough matrix in (3.105) is full
column rank for all D. Furthermore, the regular Kalman filter can be recovered trivially by
setting D = 0 in (3.106)–(3.111), (3.126) and (3.127).

3.5.3 Standard linear quadratic regulator

We now show how the solution of the standard linear quadratic regulator (LQR) on a finite
time horizon can be derived as a special case of the tracking problem in Theorem 3. In the
standard LQR we wish to find a low energy input u that brings the state q to the origin. More
precisely, we consider the optimisation problem:

inf
u

(∫ T

0
∥q(t)∥2

R−1
q
+∥u(t)∥2

R−1
u

dt +∥q(T )∥2
Ξ−1

)
(3.128)
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where the state q and input u satisfy:

q̇ = Fq+Gu (3.129)

and the initial state q(0) = η is known. To put this into the form required to apply Lemma 6
and Theorem 3 we choose:

y =

[
I
0

]
q+

[
0
I

]
u, (3.130)

ỹ = 0, ξ = 0 and:

R =

[
Rq 0
0 Ru

]
. (3.131)

Theorem 7 Consider the RDE:

Ṡ1 = FS1 +S1FT +S1R−1
q ST

1 −GRuGT (3.132)

with the terminal condition S1(T ) = Ξ. The optimisation problem (3.128) has a unique
solution û which is defined by the feedback law:

û =−RuGT S−1
1 q̂ (3.133)

and q̂(t) is obtained by solving ˙̂q = Fq̂+Gû forwards in the interval [0,T ] with the initial
condition q̂(0) = η . Furthermore, the optimal cost (3.128) is:

∥η∥2
S1(0)−1. (3.134)

Proof: We apply Lemma 6 with y, R given by (3.130), (3.131). Note that J† =
[
0 I

]
, F1 = F ,

G1 = G
[
0 I

]
and H1 =

[
I 0

]T
. Since ỹ = 0, q1(T ) = ξ = 0 we have q1(t) = 0 for all t.

Equation (3.132) follows from (3.52). Applying Theorem 3 we obtain (3.133) and (3.134) by
substituting into (3.64) and (3.67) respectively. □

This is recognised as the classical LQR result on a finite time horizon.
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3.6 Steady state filtering

3.6.1 Stability

We first consider the convergence properties of the filter of Lemma 5 (end of interval
estimator) as T → ∞. In order to express convergence conditions directly in terms of
A,B,C,D we first need to establish the following two Lemmas.

Lemma 8 Let D have full column rank. s0 ∈ C is an uncontrollable mode of (A1,B1) if and
only if it is an uncontrollable mode of (A,B).

Proof: If s0 is an uncontrollable mode of (A,B) then there exists 0 ̸= x ∈ Cn such that
x∗A = x∗s0 and x∗B = 0. Hence x∗(A−BD†C) = x∗s0 and x∗BD† = 0. The converse follows
since D† has full row rank. □

Lemma 9 Let D have full column rank. s0 ∈ C is an unobservable mode of (C1,A1) if and

only if it is an invariant zero of the system (3.1)–(3.2), i.e.

[
A− s0I B

C D

]
does not have

full column rank.

Proof: The proof is a more general result to [63, Lemma 13.9] to all system modes. □

Theorem 8 Suppose (A,B) has no uncontrollable mode s0 ∈ C with Re(s0) = 0, the system
(3.1)–(3.2) has no invariant zero s0 ∈C with Re(s0)≥ 0 and z̃(t) ∈ L p

∞ [0,∞). Then the ARE:

A1P∞
1 +P∞

1 AT
1 −K∞

1 RK∞T
1 +B1RBT

1 = 0 (3.135)

where K∞
1 = P∞

1 CT
1 R−1 has a unique solution P∞

1 such that:

A∞ = A1 −K∞
1 C1 (3.136)

is Hurwitz. Furthermore, P∞
1 ≥ 0 and P1(t)→ P∞

1 as t → ∞ where P1(t) is given by (3.6)
with the initial condition P1(0) = Γ. Consider the system:

ẋ∞
1 = A∞x∞

1 +B∞z̃, (3.137)

w∞
1 = D†(z̃−Cx∞

1 ) (3.138)

with any initial condition x∞
1 (0) ∈ Rn where:

B∞ = B1 +K∞
1 . (3.139)

Then:
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1. x1(t)− x∞
1 (t)→ 0 as t → ∞;

2. w1(t)−w∞
1 (t)→ 0 as t → ∞

where x1(t) and w1(t) are given by (3.5) and (3.8) with the initial condition x1(0) = γ .

Proof: The claims in regard to (3.135) follow directly by applying Lemmas 19 and 20 to the
RDE (3.6) and expressing the convergence conditions in terms of A,B,C,D using Lemmas 8
and 9. The convergence results 1) and 2) follow from Lemma 26. □

We remark that the system (3.137)–(3.138) is the “limiting form” of the end-of-interval
estimator of Lemma 5 in which P1(t) is replaced by P∞

1 . We do not assert any convergence
property other than 1) and 2) in Theorem 8.

3.6.2 The steady state filter as a stable left inverse

We adopt the notation introduced in [63, Ch. 3] and denote the transfer function of (3.1)–(3.2)
by: [

A B
C D

]
=C(sI−A)−1B+D. (3.140)

We consider the transfer function of the steady state filter (3.137)–(3.138):[
A∞ B∞

−D†C D†

]
. (3.141)

We will now show that under certain conditions (3.140) is stable left inverse of the system.
Conditions for the existence and stability of inverses of linear time invariant systems are
available in [50] and an example of an inverse when D is full column rank can be found in
[63, Ch. 3].

Theorem 9 Suppose (A,B) has no uncontrollable mode s0 ∈ C with Re(s0) = 0 and the
system (3.1)–(3.2) has no invariant zero s0 ∈ C with Re(s0)≥ 0. Then (3.141) is a stable left
inverse of (3.140).

Proof: To see this we consider the cascade connection of (3.141) with (3.140) and verify the
calculation:

[
A∞ B∞

−D†C D†

][
A B
C D

]
=

 A∞ B∞C B∞D
0 A B

−D†C D†C D†D

=

 A∞ B∞C B
0 A B

−D†C D†C I

 (3.142)
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where we have used the transfer matrix product operation in [63, Sec. 3.6] and noting that
K∞

1 D = 0 (cf. (3.18)). The product is equivalently given by: A∞ 0 0
0 A B

−D†C 0 I

= I (3.143)

using the similarity transformation: [
I −I
0 I

]

after some simplification and noting that K∞
1 C1 = K∞

1 C (cf. (3.19)). We recall from Theorem
8 that A∞ is Hurwitz. □

3.6.3 Filtering error

We now return to the series connection of the original system, sensors and filter as shown in
Fig. 3.1. Suppose w and x are any input and state which satisfy equations (3.1)–(3.2). This
may or may not be the trajectory which generated the measured output z̃ in an experiment.
We may define the state estimation errors e = x− x1 and e∞ = x− x∞

1 . Let the conditions of
Theorem 8 hold. Then the following equations follow from (3.1), (3.2), (3.5) and (3.137):

ė = (A1 −K1C1)e+(B1 +K1)(z− z̃), (3.144)

ė∞ = A∞e∞ +B∞(z− z̃). (3.145)

We note that e∞ is the state of an asymptotically stable linear time invariant system driven by
the error z− z̃ and that e∞(t)− e(t)→ 0 as t → ∞ (by Lemma 26).

3.6.4 The infinite time smoother as a left inverse

Lemma 10 Suppose (A,B) has no uncontrollable mode s0 ∈ C with Re(s0) ≤ 0 and the
system (3.1)–(3.2) has no invariant zero s0 ∈ C with Re(s0)≥ 0. Then P∞

1 > 0. Furthermore,
let:

A∞
2 = A−B1C∞

2 , (3.146)

C∞
2 =C−RBT

1 (P
∞
1 )−1. (3.147)
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Then −A∞
2 is Hurwitz.

Proof: P∞
1 > 0 follows by applying Lemma 19 to the ARE (3.135) using Lemmas 8 and 9 to

express the convergence conditions in terms of A,B,C,D. Now note that:

A∞
2 = A1 +B1RBT

1 (P
∞
1 )−1 (3.148)

by substituting (3.147) into (3.146) and then using (3.10). We may then verify that:

A∞
2 P∞

1 +P∞
1 (A∞)T = 0 (3.149)

by substituting for A∞, A∞
2 and using (3.135). Hence (A∞)T and −A∞

2 are similar which
means that −A∞

2 is Hurwitz. □
We now assume that the conditions of Lemma 10 hold and consider the cascade connec-

tion of two systems. The first system has input z̃ and output z̃∞
2 . It is given by:

ẋ∞
1 = A∞x∞

1 +B∞z̃, (3.150)

z̃∞
2 = z̃−RBT

1 (P
∞
1 )−1x∞

1 (3.151)

and has the transfer function: [
A∞ B∞

−RBT
1 (P

∞
1 )−1 I

]
. (3.152)

(Note that (3.150) coincides with (3.137).) The second system is driven by the output of the
first and has output ŵ∞. It is given by:

˙̂x∞ = A∞
2 x̂∞ +B2z̃∞

2 , (3.153)

ŵ∞ = D†(z̃∞
2 −C∞

2 x̂∞) (3.154)

and has the transfer function: [
A∞

2 B2

−D†C∞
2 D†

]
. (3.155)

This cascade connection is the “limiting form” of the construction for the optimal estimator
of Theorem 1 and is shown next to be a left inverse of the original system. We do not assert
any formal convergence property for this cascade connection.
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Theorem 10 Suppose (A,B) has no uncontrollable mode s0 ∈ C with Re(s0) ≤ 0 and the
system (3.1)–(3.2) has no invariant zero s0 ∈C with Re(s0)≥ 0. Then the cascade connection
of (3.152) with (3.155): [

A∞
2 B2

−D†C∞
2 D†

][
A∞ B∞

−RBT
1 (P

∞
1 )−1 I

]
(3.156)

is a left inverse of the system (3.1)–(3.2).

Proof: To see this consider the cascade connection of (3.156) with (3.140) which is given by:
A∞

2 −B1RBT
1 (P

∞
1 )−1 B2C B

0 A∞ B∞C B
0 0 A B

−D†C∞
2 −D†RBT

1 (P
∞
1 )−1 D†C I

 (3.157)

where we have used the transfer matrix product operation and noting that B2D = B and
B∞D = B (cf. proof of Theorem 9). The product is equivalently given by:

A∞
2 −B1RBT

1 (P
∞
1 )−1 0 0

0 A∞ 0 0
0 0 A B

−D†C∞
2 −D†RBT

1 (P
∞
1 )−1 0 I

= I (3.158)

using the similarity transformation: I 0 −I
0 I −I
0 0 I


after some simplification. □

Remark 2 The conditions of Theorem 10 can be written is several alternative ways, e.g.
(C1,A1) detectable and (−A1,B1) stabilizable, or equivalently (−A,B) stabilizable. We can
interpret this as a forwards in time detectability condition for the first stage of the inversion
and a backwards in time stabilisability condition for the second stage.

Remark 3 It is interesting to note that there is a natural state transformation given by
x2 = (P∞

1 )−1x1 which leads to the alternative state space representation of the transfer
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function in (3.152): [
(−A∞

2 )
T (P∞

1 )−1B∞

−RBT
1 I

]
. (3.159)

We will make use of the analogous state transformation for the infinite horizon tracking
problem in the next section.

3.7 Infinite horizon tracking

3.7.1 An anti-stable left inverse

We begin by considering the convergence of the construction of Lemma 6 as the horizon
length increases. We show that q1(t) and u1(t) converge for any fixed t to the state and input
of an anti-stable time invariant system solved backwards in time. For convenience we first
restate Lemmas 8 and 9 with the relevant notational substitutions.

Lemma 11 Let J have full column rank. s0 ∈ C is an uncontrollable mode of (F1,G1) if and
only if it is an uncontrollable mode of (F,G). □

Lemma 12 Let J have full column rank. s0 ∈ C is an unobservable mode of (H1,F1) if and
only if it is an invariant zero of the system (3.47)–(3.48). □

Theorem 11 Suppose (F,G) has no uncontrollable mode s0 ∈C with Re(s0) = 0, the system
(3.47)–(3.48) has no invariant zero s0 ∈ C with Re(s0)≤ 0 and ỹ(t) ∈ L p

∞ [0,∞). Then the
ARE:

F1S∞
1 +S∞

1 FT
1 +M∞

1 RM∞
1

T −G1RGT
1 = 0 (3.160)

where M∞
1 = S∞

1 HT
1 R−1 has a unique solution S∞

1 such that −F∞ is Hurwitz where:

F∞ = F1 +M∞
1 H1. (3.161)

Furthermore, S∞
1 ≥ 0 and S1(t,T )→ S∞

1 as T → ∞ for any fixed t ≥ 0 where S1(t,T ) equals
S1(t) in (3.52) with the terminal condition S1(T ) = Ξ. Consider the system:

q̇∞
1 = F∞q∞

1 +G∞ỹ, (3.162)

u∞
1 = J†(ỹ−Hq∞

1 ) (3.163)
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with any terminal condition q∞
1 (T ) ∈ Rn where:

G∞ = G1 −M∞
1 . (3.164)

Then:

1. q1(t,T )−q∞
1 (t,T )→ 0 as T → ∞ for any fixed t ≥ 0;

2. u1(t,T )−u∞
1 (t,T )→ 0 as T → ∞ for any fixed t ≥ 0

where q1(t,T ) equals q1(t) in (3.51) with the terminal condition q1(T ) = ξ and u1(t,T )
equals u1(t) in (3.54).

Proof: The claims in regard to (3.160) follow directly by applying Remark 1 to the RDE
(3.52) and expressing the convergence conditions in terms of F,G,H,J using Lemmas 11
and 12. The convergence results 1) and 2) follow from the time reversed Lemma 26. □

Remark 4 It is interesting to note the contrasting form of of 1) and 2) in Theorems 8 and 11.
At first sight this is unexpected since the estimation and tracking problems are dual to each
other. The difference arises since the infinite horizon limit of the time window [0,T ] is taken
to be [0,∞) in both cases, namely the left hand limit is fixed at the origin while the right hand
limit tends to ∞, which is not symmetric since the two problems are dual by time reversal.

We now consider the transfer function of the system (3.162)–(3.163):[
F∞ G∞

−J†H J†

]
. (3.165)

Theorem 12 Suppose (F,G) has no uncontrollable mode s0 ∈ C with Re(s0) = 0 and the
system (3.47)–(3.48) has no invariant zero s0 ∈ C with Re(s0) ≤ 0. Then (3.165) is an
anti-stable left inverse of the system (3.47)–(3.48).

Proof: To see this we consider the cascade connection of (3.165) with the transfer function
of the system (3.47)–(3.48) and then perform the transfer matrix product and similarity
transformation similarly to the proof of Theorem 9. □

3.7.2 The infinite horizon controller

We now consider the convergence properties of the unique solution û of the tracking problem
(3.50), which is given in Theorem 3, in the infinite time horizon limit, i.e. as T → ∞.
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Theorem 13 Suppose (F,G) has no uncontrollable mode s0 ∈ C with Re(s0) ≥ 0, i.e. it
is stabilizable, the system (3.47)–(3.48) has no invariant zero s0 ∈ C with Re(s0) = 0 and
ỹ(t) ∈ L∞[0,∞). Then the ARE:

S∞
2 F1 +FT

1 S∞
2 −S∞

2 G1RGT
1 S∞

2 +HT
1 R−1H1 = 0 (3.166)

has a unique solution S∞
2 that is stabilising, i.e. F∞

2 in (3.169) is Hurwitz, and S∞
2 ≥ 0.

Consider the system:

˙̂q∞(t) = Fq̂∞(t)+Gû∞(t), (3.167)

û∞(t) = J†(ỹ∞
2 (t)−H∞

2 q̂∞(t)) (3.168)

with the initial condition q̂∞(0) = η where:

F∞
2 = F −G1H∞

2 , (3.169)

G∞
2 = HT

1 R−1 −S∞
2 G1, (3.170)

H∞
2 = H +RGT

1 S∞
2 , (3.171)

ỹ∞
2 (t) = ỹ(t)+RGT

1 q∞
2 (t), (3.172)

q∞
2 (t) =

∫
∞

t
eF∞T

2 (τ−t)G∞
2 ỹ(τ)dτ. (3.173)

Then the unique optimal control input û(t,T ) of the tracking problem (3.50) with the initial
condition q(0) = η (i.e. û as defined in (3.64)) converges as T → ∞, i.e. limT→∞ û(t,T )
exists for any fixed t ≥ 0, and the limit is given by û∞(t).

Proof: Let S1, q1 be defined by (3.51), (3.52) with the terminal conditions S1(T ) = Ξ,
q1(T ) = ξ . We introduce the variables:

S2 = S−1
1 , (3.174)

q2 = S−1
1 q1. (3.175)

Hence S2, q2 are generated by solving:

Ṡ2 =−S2F1 −FT
1 S2 +S2G1RGT

1 S2 −HT
1 R−1H1, (3.176)

q̇2 =
(
−FT

1 +S2G1RGT
1

)
q2 +

(
S2G1 −HT

1 R−1
)

ỹ (3.177)
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backwards in time with the given terminal conditions:

S2(T ) = S−1
1 (T ) = Ξ

−1, (3.178)

q2(T ) = S−1
1 (T )q1(T ) = Ξ

−1
ξ . (3.179)

We now apply Remark 1 to the ARE (3.166) and the RDE (3.176). The conditions of the
theorem are obtained in terms of F,G,H,J using Lemmas 11 and 12. Furthermore F∞

2 is
Hurwitz and:

lim
T→∞

S−1
1 (t,T ) = lim

T→∞
S2(t,T ) = S∞

2 (3.180)

for all Ξ > 0 and for any fixed t ≥ 0. We introduce the anti-stable and time-invariant equation:

q̇∞
2 =−F∞T

2 q∞
2 −G∞

2 ỹ. (3.181)

We now consider the time reversed equations (3.177) and (3.181) for a given T (i.e. solved
forwards in time). These equations take the form of (A.28) and (A.29) on the interval
[0,T ], where we note that u(t) depends on T , but with sup0≤t≤T |u(t)|∞ ≤ ∥ỹ(t)∥∞ for any
T . Now choose any ε > 0 and find the T0 guaranteed by Lemma 26. Then the time reversed
solutions are within ε in norm for T0 ≤ t ≤ T providing T0 ≤ T . Hence, for any T > T0,
|q2(t)−q∞

2 (t)|∞ < ε for 0 ≤ t ≤ T −T0. It follows that:

lim
T→∞

q2(t,T ) = q∞
2 (t) (3.182)

for any fixed t ≥ 0, where q∞
2 (t) is given by the convolution form (3.173). We now return to

compute the limit of the unique optimal input û(t,T ) given in Theorem 3, i.e. limT→∞ û(t,T ).
Taking the limit in (3.65), (3.66) and substituting from (3.180), (3.182) gives:

lim
T→∞

H2(t,T ) = H∞
2 , (3.183)

lim
T→∞

ỹ2(t,T ) = ỹ∞
2 (t) (3.184)

where ỹ∞
2 (t) and H∞

2 are given by (3.169)–(3.173). Rewriting (3.63) for the infinite horizon
with a notational substitution and taking the limit in (3.64) gives the feedback law (3.168). □
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Remark 5 Evaluating q∞
2 for all finite t using (3.173) is costly even if it is possible. It can

be approximated for any finite t0 as accurately as required by:

qλ
2 (t0) =

∫ t0+λ

t0
eF∞T

2 (τ−t0)G∞
2 ỹ(τ)dτ (3.185)

for a sufficiently large λ > 0 since F∞
2 is Hurwitz. Integrating (3.181) forwards in time for

t > t0 with the initial condition qλ
2 (t0) obtained from (3.185) gives q∞

2 (t) approximately for t
near t0 but errors amplify since (3.181) is anti-stable. A practical compromise is to evaluate
(3.185) at regular intervals and to integrate (3.181) within those intervals.

3.7.3 The steady state controller as an unstable right inverse

Theorem 14 Suppose (F,G) has no uncontrollable mode s0 ∈ C with Re(s0)≥ 0, i.e. it is
stabilizable, and the system (3.47)–(3.48) has no invariant zero s0 ∈C with Re(s0) = 0. Then
the infinite horizon controller is given by the cascade connection of an anti-stable system
with input ỹ and output ỹ∞

2 and transfer function:[
(−F∞

2 )T −G∞
2

RGT
1 I

]
(3.186)

followed by a stable system with input ỹ∞
2 and output û and transfer function:[
F∞

2 G1

−J†H∞
2 J†

]
. (3.187)

Furthermore, their cascade connection, given by:[
F∞

2 G1

−J†H∞
2 J†

][
(−F∞

2 )T −G∞
2

RGT
1 I

]
(3.188)

is a left inverse of the system (3.47)–(3.48).

Proof: Apply the transfer matrix product operation and a system similarity transformation
similarly to the proof of Theorem 10. Note that F∞

2 is Hurwitz from Theorem 13. □



Chapter 4

Estimation in systems with discrete time
measurements

4.1 A stochastic formulation: The zero informational in-
put limit

4.1.1 Introduction

In this section we aim to simultaneously estimate the inputs and states of a stochastic discrete
time linear finite dimensional dynamical system where no direct measurement of the driving
inputs is available. In particular, we consider a system with the state space description:

xk+1 = Axk +Bwk (4.1)

yk =Cxk +Dwk + vk (4.2)

where the system matrices are assumed known and the initial state x0 and the measurement
noise vk for all k ∈ N+ are uncorrelated Gaussian random variables with known probability
distributions. There is a wide variety of problem formulations and assumptions in the
literature of this field, we have given a brief account in Section 2.1.2. We approach this
problem similarly to [5], namely we let the input wk be a Gaussian white noise process
of known covariance and consider the limit as the inverse of the input covariance tends to
zero (the zero informational limit). We consider the case that there is direct feedthrough of
the unknown inputs to the measurement vector through a matrix that is full column rank.
In comparison, [5] considers systems without feedthrough and a full column rank Markov
parameter. The approach differs from that of Chapter 3, which formulates an optimisation
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problem for deterministic continuous time systems. The filter recursions take an interesting
form which closely relates to the filter of Gillijns and De Moor [20]. However, the filter of
[20] was derived using a hybrid approach, involving both the computation of expectations
and the formulation of an optimisation problem. More specifically, the contributions of this
section are as follows:

1. To derive directly a (first) form of the Kalman filter in the zero informational limit on
the input when the input feedthrough matrix is full column rank; to note that this limit
filter is closely related to the recursive filter of [20] and thereby to provide a simpler
notion of optimality for that filter.

2. To show that the limit filter equations can be transformed to an alternative (second)
form which is a standard Kalman filter for a new system.

3. To show that the second form of the limit filter allows necessary and sufficient condi-
tions for the stability and convergence of the filter to be stated, which may be expressed
as a controllability condition and a minimum phase condition in terms of the invariant
zeros of the original system.

4.1.2 Estimation

We derive the zero informational limit of the Kalman filter with feedthrough (see Section
2.2.5), namely the limit as the information matrix Q−1 → 0, under the assumption that D has
full column rank. We take P0|−1, x̂0|−1 and z0,z1,z2, . . . as given and consider the limits of
x̂k|k, ŵk|k, Pk|k, Pww

k|k , Pxw
k|k , x̂k+1|k and Pk+1|k as the information matrix Q−1 → 0. We show that

the limits exist for all k and introduce the notation:

x̄k|k = lim
Q−1→0

x̂k|k (4.3)

and similarly for w̄k|k, P̄k|k, etc. We name the resulting recursive equations the limit filter. We
first derive a form of the limit filter written directly in terms of the system matrices A, B, C,
D. For convenience we state the matrix inversion lemma (see [1, Sec. 6.3]) which is used in
the proof.

Lemma 13 Let S = ST > 0, T = T T > 0 and H be arbitrary of compatible dimension. Then:

S−SHT (HSHT +T )−1HS = (S−1 +HT T−1H)−1, (4.4)

SHT (HSHT +T )−1 = (S−1 +HT T−1H)−1HT T−1. (4.5)
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Theorem 15 Let D have full column rank. Then x̂k|k(Q), ŵk|k(Q), Pk|k(Q), etc. for all k have
well-defined limits x̄k|k, w̄k|k, P̄k|k, etc. as Q−1 → 0 given recursively by:

x̄k|k = x̄k|k−1 +Lx,k(zk −Cx̄k|k−1 −Dw̄k|k), (4.6)

w̄k|k = Lw,k(zk −Cx̄k|k−1), (4.7)

P̄k|k = P̄k|k−1 −Lx,k(Σ̄k −DP̄ww
k|k DT )LT

x,k, (4.8)

P̄ww
k|k = Lw,kΣ̄kLT

w,k, (4.9)

P̄xw
k|k =−Lx,kΣ̄kLT

w,k, (4.10)

Lx,k = P̄k|k−1CT
Σ̄
−1
k , (4.11)

Lw,k = (DT
Σ̄
−1
k D)−1DT

Σ̄
−1
k , (4.12)

Σ̄k =CP̄k|k−1CT +R, (4.13)

x̄k+1|k =
[
A B

][ x̄k|k
w̄k|k

]
, (4.14)

P̄k+1|k =
[
A B

][P̄k|k P̄xw
k|k

P̄wx
k|k P̄ww

k|k

][
A B

]T
(4.15)

with P̄0|−1 = P0|−1 and x̄0|−1 = x̂0|−1.

Proof: We will proceed inductively, first considering the recursive expressions (2.23)–(2.32)
in the limit as Q−1 → 0. Suppose for a given k, x̂k|k−1(Q) and Pk|k−1(Q) tend to well-defined
limits x̄k|k−1 and P̄k|k−1(Q) as Q−1 → 0. We will show that x̂k|k(Q), ŵk|k(Q), Pk|k(Q), Pww

k|k (Q),
Pxw

k|k(Q), x̂k+1|k(Q), Pk+1|k(Q) have well-defined limits given by (4.6)–(4.15). Substituting
for Θk from (2.30) into (2.29) and using (4.5) gives:

Kw,k = (Q−1 +DT
Σ
−1
k D)−1DT

Σ
−1
k (4.16)

where:

Σk =CPk|k−1(Q)CT +R. (4.17)

Taking the limit as Q−1 → 0 in (4.16), Kw,k approaches Lw,k, where Σ̄k is defined in (4.13). It
follows that (2.24) has a well-defined limit given by (4.7). Now substitute for Kx,k in (2.27)
and let Lx,k be defined as in (4.11). Then (2.27) has a well-defined limit given by (4.10).
Applying (4.4) to (2.30) gives:

Θ
−1
k = Σ

−1
k −Σ

−1
k D(DT

Σ
−1
k D+Q−1)−1DT

Σ
−1
k . (4.18)
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Substituting for (2.28) and then (4.18) into (2.23) and taking the limit as Q−1 → 0, x̂k|k has a
well-defined limit given by:

x̄k|k = x̄k|k−1 + P̄k|k−1CT
Σ̄
−1
k (I −D(DT

Σ̄
−1
k D)−1DT

Σ̄
−1
k )(zk −Cx̄k|k−1). (4.19)

Making use of the expressions for w̄k|k and Lx,k in (4.19) gives (4.6). Substituting for Kw,k

from (2.29) and Θk from (2.30) into (2.26) and applying (4.4) gives:

Pww
k|k = (Q−1 +DT

Σ
−1
k D)−1. (4.20)

Taking the limit as Q−1 → 0, Pww
k|k has a well-defined limit given by:

P̄ww
k|k = (DT

Σ̄
−1
k D)−1. (4.21)

This expression can be equivalently written in terms of Lw,k in the form (4.9). Substituting
for Kx,k from (2.28) and Θ

−1
k from (4.18) into (2.25), taking the limit as Q−1 → 0, and then

using the expressions for Lx,k and P̄ww
k|k from (4.21), Pk|k has a well-defined limit given by

(4.8). Taking the limit as Q−1 → 0 in (2.31) and (2.32), x̂k+1|k and Pk+1|k have well-defined
limits given by (4.14) and (4.15) respectively. The result follows by induction since, by
definition, x̄0|−1 = x̂0|−1 = limQ−1→0 x̂0|−1 and P̄0|−1 = P0|−1 = limQ−1→0 P0|−1. □

A block diagram illustrating the limit filter equations (4.6), (4.7) and (4.14) is shown in
Fig. 4.1, where Lw,k and Lx,k are defined through (4.8)–(4.13) and (4.15). Fig. 4.2 shows the
recursive form of the limit filter.

Lw,k

D

Lx,k

C B

A

zk

+

+ −

+

x̄k|k−1

−

+

w̄k|k

x̄k|k

+
+

x̄k+1|k

Update Propagation

Fig. 4.1 Block diagram of the limit filter recursion with decomposition into update and
propagation steps.

We now derive an alternative (second) form for the limit filter which takes the form of
the standard Kalman filter for a new system with matrices A1, B1, C1. Note that A1, B1, C1,
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Update +
Propagation

Update +
Propagation

x̄k|k−1 x̄k+1|k x̄k+2|k+1

zk w̄k|k zk+1 w̄k+1|k+1

Fig. 4.2 Block diagram of an interconnection of limit filter recursion steps.

Πc, Π, and D† are defined in (3.10)–(3.15). This form will be very convenient to analyse
convergence and stability. We first establish the following lemma.

Lemma 14 Suppose D has full column rank, R = RT > 0, S = ST ≥ 0 and Πc is given by
(3.13), then:

(S+R)−1 − (S+R)−1D(DT (S+R)−1D)−1DT (S+R)−1 = Π
T
c

(
ΠcSΠ

T
c +R

)−1
Πc. (4.22)

Proof: We first introduce the projection:

ΠS = D(DT (S+R)−1D)−1DT (S+R)−1. (4.23)

We observe that Π given in (3.14) and ΠS are parallel projections onto the same space, namely
the column space of D, but have different null spaces. Further note that Π2 = ΠSΠ = Π,
Π2

S = ΠΠS = ΠS and:

(I −Π)ΠS = 0, (4.24)

(I −ΠS)Π = 0, (4.25)

Π
T
S R−1(I −Π) = 0, (4.26)

Π
T (S+R)−1(I −ΠS) = 0. (4.27)

We first claim that:(
(I −Π)S(I −Π)T +R

)−1
(I −Π) = (S+R)−1(I −ΠS). (4.28)

To see this note that:

(I −Π)S(I −Π)T +R = (I −Π)(S+R)+
(

R− (I −Π)S
)

Π
T (4.29)
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using ΠR = RΠT . Therefore using (4.24) and (4.27):(
(I −Π)S(I −Π)T +R

)
(S+R)−1(I −ΠS)

= (I −Π)(I −ΠS)+
(

R− (I −Π)S
)

Π
T (S+R)−1(I −ΠS)

= (I −Π) (4.30)

from which (4.28) follows. Further from (4.27) and (4.28):

Π
T
(
(I −Π)S(I −Π)T +R

)−1
(I −Π) = 0. (4.31)

Hence, substituting ΠS from (4.23) into (4.28) gives (4.22). □

Theorem 16 Let D have full column rank. Then the limit filter recursions (4.6)–(4.15) are
equivalent to:

x̄k|k = x̄k|k−1 + K̄k(zk −C1x̄k|k−1), (4.32)

P̄k|k = (I − K̄kC1)P̄k|k−1, (4.33)

x̄k+1|k = A1x̄k|k +B1zk, (4.34)

P̄k+1|k = A1P̄k|kAT
1 +B1RBT

1 , (4.35)

K̄k = P̄k|k−1CT
1 (C1P̄k|k−1CT

1 +R)−1 (4.36)

with the input estimate:

w̄k|k = D†(zk −Cx̄k|k). (4.37)

Proof: We first establish several identities that are needed in the proof.
(1) We claim that:

K̄k = Lx,k(I −DLw,k). (4.38)

To see this note that on substitution from (4.11) and (4.12) the right hand side of (4.38)
becomes:

P̄k|k−1CT (Σ̄−1
k − Σ̄

−1
k D(DT

Σ̄
−1
k D)−1DT

Σ̄
−1
k ) (4.39)
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which equals:

P̄k|k−1CT
(
(I −Π)T((I −Π)S(I −Π)T +R

)−1
(I −Π)

)
(4.40)

after applying (4.22) with S =CP̄k|k−1CT and noting that Σ̄k = S+R from (4.13). Using the
transpose of (4.31), the I −Π on the right in (4.40) can be removed, which gives (4.36) on
substituting from (3.12). This establishes (4.38).

(2) From (4.38) it is easy to see that:

K̄kD = 0 (4.41)

since Lw,kD = I. Hence:

K̄kC = K̄kC1. (4.42)

(3) We claim that:

K̄kC1P̄k|k−1 = Lx,k(Σ̄k −DP̄ww
k|k DT )LT

x,k. (4.43)

To see this note that on substitution from (4.11) and (4.21) the right hand side of (4.43)
becomes:

Lx,k(I −D(DT
Σ̄
−1
k D)−1DT

Σ̄
−1
k )CP̄k|k−1 (4.44)

which equals K̄kCP̄k|k−1 using (4.38). Applying (4.42) establishes the claim.
(4) We claim that:

Lw,k = D†(I −CK̄k). (4.45)

To see this consider:

Lw,k −D†(I −CK̄k) = Lw,k −D† +D†CLx,k(I −DLw,k)

= Lw,k −D† +D†(Σ̄k −R)Σ̄−1
k (I −DLw,k)

=−D†RΣ̄
−1
k (I −DLw,k)

=−(DT R−1D)−1DT
Σ̄
−1
k (I −D(DT

Σ̄
−1
k D)−1DT

Σ̄
−1
k )

= 0 (4.46)

where we have used (4.38), (4.11), (4.13), (3.15) and (4.12).
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(5) We claim that:

P̄xw
k|k =−P̄k|k(D

†C)T . (4.47)

To see this substitute from (4.11) and (4.45) into (4.10) and then use (4.33) and (4.42).
(6) Lastly we claim that:

P̄ww
k|k = D†(CP̄k|kC

T +R)(D†)T . (4.48)

Substituting (4.13) and (4.45) into (4.9) gives:

P̄ww
k|k = D†

(
(I −CK̄k)CP̄k|k−1CT +R−CK̄kR− (I −CK̄k)Σ̄k(CK̄k)

T
)
(D†)T . (4.49)

Using (4.42) note that:

Σ̄kK̄T
k = (CP̄k|k−1CT

1 +R)K̄T
k , (4.50)

K̄kΣ̄kK̄T
k = K̄k(C1P̄k|k−1CT

1 +R)K̄T
k = P̄k|k−1CT

1 K̄T
k (4.51)

from which it follows that:

(I −CK̄k)Σ̄kK̄T
k = RK̄T

k . (4.52)

Noting that D†RK̄T
k = 0 from (4.41) the last two terms in (4.49) are zero. The claim follows

using (4.42) and (4.33) on the first term. We now use the identities to establish the theorem.
Substituting (4.7) into (4.6) and using (4.38) gives (4.32). Substituting (4.43) into (4.8) gives
(4.33). Substituting (4.45) into (4.7) and using (4.32) gives (4.37). Substituting (4.37) into
(4.14) gives (4.34). Substituting (4.47) and (4.48) into (4.15) gives an expansion of (4.35). □

A block diagram illustrating the limit filter equations (4.32) and (4.34) is shown in Fig.
4.3.

4.1.3 Convergence

We will now study the behaviour of the limit filter as the horizon extends to infinity (i.e.
k → ∞). Substituting from (4.33) into (4.35) gives the Riccati difference equation:

P̄k+1|k = A1P̄k|k−1AT
1 +B1RBT

1 −A1P̄k|k−1CT
1 (C1P̄k|k−1CT

1 +R)−1C1P̄k|k−1AT
1 . (4.53)
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K̄k

C1 B1

A1

zk

+

x̄k|k−1

+

−

+ x̄k|k

+

+

x̄k+1|k

Update Propagation

Fig. 4.3 An equivalent block diagram of the limit filter recursion with decomposition into
update and propagation steps.

If P̄k+1|k converges to P̄∞ as k → ∞, then P̄∞ satisfies the algebraic Riccati equation:

P̄∞ = A1P̄∞AT
1 +B1RBT

1 −A1P̄∞CT
1 (C1P̄∞CT

1 +R)−1C1P̄∞AT
1 . (4.54)

A real symmetric nonnegative definite solution of (4.54) is said to be a strong solution if all
the eigenvalues of A1 −A1K̄∞C1 are on or inside the unit circle, where K̄∞ is given by:

K̄∞ = P̄∞CT
1 (C1P̄∞CT

1 +R)−1. (4.55)

If all the eigenvalues are strictly inside the unit circle, the solution is said to be a stabilizing
solution [4], [10]. The standard form taken by Theorem 16 and (4.54) allows well-known
stability and convergence conditions in terms of A1, B1 and C1 to be stated in the next two
lemmas.

Lemma 15 Let D have full column rank, then:

1. the strong solution of (4.54) exists and is unique if and only if (C1,A1) is detectable,

2. the strong solution is the only nonnegative definite solution of (4.54) if and only if
(C1,A1) is detectable and (A1,B1) has no uncontrollable mode outside the unit circle,

3. the strong solution coincides with the stabilising solution if and only if (C1,A1) is
detectable and (A1,B1) has no uncontrollable mode on the unit circle,

4. the stabilising solution is positive definite if and only if (C1,A1) is detectable and
(A1,B1) has no uncontrollable mode inside, or on the unit circle. □

Proof: See [15, Theorem 3.2] and [10, Theorem 3.1]. □

Lemma 16 Let D have full column rank and:
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1. (A1,B1) have no uncontrollable mode on the unit circle,

2. (C1,A1) be detectable,

3. P0|−1 > 0

or

1. (C1,A1) be detectable,

2. P0|−1 ≥ P̄∞

then P̄k+1|k given by the Riccati difference equation (4.53) asymptotically converges to the
unique strong solution P̄∞ of the algebraic Riccati equation (4.54) as k → ∞.

Proof: See [15, Theorem 4.1, Theorem 4.2]. □
We will now express the convergence conditions in terms of the original system matrices

A, B, C and D using Lemmas 17 and 18. We begin with the controllability of modes of
(A1,B1).

Lemma 17 Let D have full column rank. λ0 ∈ C is an uncontrollable mode of (A1,B1) if
and only if it is an uncontrollable mode of (A,B).

Proof: If λ0 is an uncontrollable mode of (A1,B1) then there exists 0 ̸= x ∈ Cn such that
x∗A = x∗λ0 and x∗B = 0. Hence x∗(A−BD†C) = x∗λ0 and x∗BD† = 0. The converse follows
since D† has full row rank. □

We now turn to the detectability of (C1,A1).

Lemma 18 Let D have full column rank. Then (C1,A1) is detectable if and only if the system

matrix

[
A− zI B

C D

]
has full column rank for all z ∈ C with |z| ≥ 1.

Proof: The lemma and proof are the same as [63, Lemma 13.9] except that modes on or
outside the unit circle are considered (rather than the imaginary axis). □

Theorem 17 Let D have full column rank. Then P̄k+1|k given by the Riccati difference
equation (4.53) with P0|−1 > 0 asymptotically converges to the unique stabilising solution
P̄∞ of the algebraic Riccati equation (4.54) as k → ∞, providing the system with realisation
(A,B,C,D) has (1) no uncontrollable modes on the unit circle, and (2) no invariant zeros on
or outside the unit circle.

Proof: This follows from Lemmas 15, 16, 17 and 18. □
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Remark 6 Condition (2) in Theorem 17 that there are no invariant zeros on or outside the
unit circle is a type of minimum phase condition.

Remark 7 From Lemma 18 we see that a necessary condition for (C1,A1) to be detectable
is that (C,A) is detectable, under the assumption that D is full column rank, though it is
clearly not sufficient, e.g. A =−B =C = D = 1. We note that the detectability of (C,A) is
assumed in [20].

Remark 8 The assumption that D is full column rank requires that p ≥ m, i.e. the number
of measurements is no less than the number of unknown inputs. It is interesting to note that
the conditions of Theorem 17 may still hold even if p = m.

4.2 A deterministic formulation: The zero hold input as-
sumption

4.2.1 Introduction

In this section we pose and solve a filtering/ estimation problem for the simultaneous
estimation of the inputs and states in a continuous time linear finite dimensional dynamical
system. The output of the dynamical system is the vector of all variables that are measured at
a discrete sequence of times. The filter should make use only of these discrete time output
measurements. This is in contrast to the formulation of Chapter 3, where the filter has
access to measurements that are continuous time signals. Similarly to Chapter 3 we make
the assumption that the direct feedthrough matrix of the system has full column rank. The
formulation proposed here is motivated by practical considerations, namely that the operation
of modern computers and even sensors (e.g. angular rotation sensors in vehicle wheels) is
intrinsically discrete in nature. The filter should produce the best estimate of the system
states and exogenous inputs. The meaning of “best” is to minimise a weighted sum squared
error between the output at the discrete sequence of times and the corresponding output
measurements. The problem set-up is illustrated in Fig. 4.4, where z̃ is the measurement
of the output at a discrete sequence of times. We adopt the same notation as in Chapter
3, namely the filtered signals w1(t),x1(t) provide best estimates of w and x at a given time
instant t based on measurements up to that time, while the estimates ŵ(t), x̂(t) provide the
best estimates over a fixed time interval.

To ensure the estimation problem is well posed we assume that the exogenous input
is piecewise constant (i.e. zero-order hold) within the measurement intervals. This is the
simplest sensible assumption that can be imposed on the form of the input. Alternative



62 Estimation in systems with discrete time measurements

w

exogenous
input

system
x (state)

z

output

discrete
sensors

z̃

discrete
measured

output

filter/
estimator

w1,x1

ŵ, x̂

Fig. 4.4 Block diagram of a dynamical system with state x, exogenous input w and output
z which is measured with sensors at a discrete sequence of times interconnected with an
estimator.

assumptions for the form of the input are likely to give rise to more complicated algorithms.
Some possible alternatives will later be discussed.

Our formulation here differs from Section 4.1 in two respects, the system dynamics are in
continuous time and the estimation problem considered is deterministic in nature. However,
they are not as different as they appear at first for the following reasons. The zero-order hold
assumption imposed on the input allows us to integrate the continuous time system and in
effect replace it by a discrete time system. Furthermore, we will show in this section that the
close relation between the stochastic and deterministic formulations of the Kalman filter and
smoother extends to problems with unknown inputs. To see this compare the filtering forms
of Section 4.1 and Section 4.2 under an appropriate mapping of the matrices.

Our solution to the problem of Fig. 4.4 is inspired by both the work of Willems in [60] and
more recently French in [7] for the continuous and discrete time Kalman filter respectively. In
particular, we rewrite the cost functional in a convenient form to determine the unique optimal
solution by means of completion of squares. This involves the construction of a forwards
in time algebraic recursion which generates the filtered signals w1(t),x1(t) evaluated at the
discrete sequence of times the output measurements are available. The filtering recursion has
a two-stage form of “update" (containing a projected error signal with a gain based on the
solution of a Riccati algebraic equation) and “propagation” that is reminiscent of the discrete
time Kalman filter and can be solved in real time. A further backwards in time recursion is
required to determine the optimal solution ŵ(t), x̂(t) on a fixed interval.

4.2.2 Estimation

We start by considering the same system of Chapter 3, namely the linear continuous time
system with the state space description:

ẋ = Ax+Bw, (4.56)

z =Cx+Dw (4.57)
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where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m (full column rank) are fixed known
matrices1 and w ∈ L m

2,e, x ∈ L n
2,e and z ∈ L p

2,e are input, state and output related through
this linear system. Let the system output be measured at the discrete finite sequence of times
t0 < t1 < · · ·< tN ∈ R where N ∈ N and denote by z̃i the actual output measurement at time
ti. We consider the problem to estimate w and x from the finite set of measurements z̃i (see
Fig. 4.4). We introduce the performance index:

C(w,x(t0)) = ∥x(t0)− γ∥2
Γ−1 +

N

∑
i=0

∥z̃i − z(ti)∥2
R−1 (4.58)

where 0 < R ∈ Rp×p, 0 < Γ ∈ Rn×n, γ ∈ Rn are specified. The problem we wish to solve is:

inf
w,x(t0)

C(w,x(t0)) (4.59)

subject to

w(t) = w(ti) for all t ∈ [ti, ti+1) (4.60)

where x, w and z satisfy (4.56)–(4.57). Our solution to (4.59) is based on two “completion of
squares” arguments for the performance index (4.58) which are given in the following two
lemmas.

Lemma 19 Let x−i ∈ Rn and P−
i ∈ Rn×n where P−

i > 0 be known, C1,Πc,Π and D† are
given in (3.12)–(3.15) and define x+i , P+

i by the update equations:

x+i = x−i +Ki(z̃i −C1x−i ), (4.61)

P+
i =

(
I−KiC1

)
P−

i , (4.62)

Ki = P−
i CT

1 (C1P−
i CT

1 +R)−1. (4.63)

Then P+
i > 0 and:

∥e−i ∥
2
(P−

i )−1 +∥Πcvi∥2
R−1 = ∥e+i ∥

2
(P+

i )−1 +∥Πcz̃i −C1x−i ∥
2
(C1P−

i CT
1 +R)−1 (4.64)

where:

e−i = x(ti)− x−i , (4.65)

e+i = x(ti)− x+i , (4.66)

vi = z(ti)− z̃i (4.67)

1The assumption that the system matrices are constant is for notational convenience.
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for any x(ti), z(ti) satisfying:

Πcz(ti) =C1x(ti). (4.68)

(Note: (4.68) always holds if (4.57) is satisfied for some choice of w.)

Proof: First note that KiΠ = 0. Then from (4.61):

x+i =
(
I −KiC1

)
x−i +KiΠcz̃i (4.69)

and from (4.68):

x(ti) =
(
I −KiC1

)
x(ti)+KiΠcz(ti) (4.70)

and hence the difference is given by:

e+i =
(
I −KiC1

)
e−i +KiΠcvi. (4.71)

It can be verified directly that:(
I −KiC1

)−1
= I +P−

i CT
1 R−1C1 (4.72)

and hence P+
i > 0 follows from:

(P+
i )−1 = (P−

i )−1(I −KiC1
)−1

. (4.73)

Using (4.71) and (4.73):

(P+
i )−1e+i = (P−

i )−1e−i +(P+
i )−1KiΠcvi. (4.74)

Using (4.63), (4.73) and (4.72):

KT
i (P

+
i )−1Ki = KT

i

(
(P−

i )−1 +CT
1 R−1C1

)
Ki

= (C1P−
i CT

1 +R)−1C1P−
i CT

1 R−1

= R−1 − (C1P−
i CT

1 +R)−1. (4.75)
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Therefore using (4.71), (4.74) and then (4.75) we verify:

∥e+i ∥
2
(P+

i )−1 = (e+i )
T (P+

i )−1e+i = (e−i )
T (P−

i )−1e−i − (C1e−i )
T (C1P−

i CT
1 +R)−1C1e−i

+2(Πcvi)
T (C1P−

i CT
1 +R)−1C1e−i +(Πcvi)

T R−1
Πcvi − (Πcvi)

T (C1P−
i CT

1 +R)−1
Πcvi

= ∥e−i ∥
2
(P−

i )−1 +∥Πcvi∥2
R−1 −∥Πcvi −C1e−i ∥

2
(C1P−

i CT
1 +R)−1 (4.76)

from which the required result follows using (4.68). □

Lemma 20 Let x+i ∈ Rn, P+
i ∈ Rn×n where P+

i > 0 be known and A1d , B1d given by:

A1d = eA∆ti −B1dC, (4.77)

B1d =
∫

∆ti

0
eA(∆ti−τ)dτB1 (4.78)

with A1d nonsingular where ∆ti = ti+1 − ti and B1 is given by (3.11). Define x−i+1, P−
i+1 by the

propagation equations:

x−i+1 = A1d x+i +B1d z̃i, (4.79)

P−
i+1 = A1d P+

i AT
1d
+B1d RBT

1d
. (4.80)

Then P−
i+1 > 0 and:

∥e+i ∥
2
(P+

i )−1 +∥Πvi∥2
R−1 = ∥e−i+1∥

2
(P−

i+1)
−1 +∥Πvi −RBT

1d
(P−

i+1)
−1e−i+1∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1

(4.81)

for any x, w, z satisfying (4.56), (4.57) and (4.60) where e−i , e+i , vi are given by (4.65)–(4.67).
(Note: the condition that A1d is nonsingular is required for the inverses in (4.81) to exist.)

Proof: First note that B1d = B1d Π. Then from (4.56), (4.57) and (4.60):

x(ti+1) = A1d x(ti)+B1d Πz(ti) (4.82)

and hence using (4.79):

e−i+1 = A1d e+i +B1d Πvi. (4.83)

Substituting from (4.83) gives:

Πvi −RBT
1d
(P−

i+1)
−1e−i+1 = (R−RBT

1d
(P−

i+1)
−1B1d R)R−1

Πvi −RBT
1d
(P−

i+1)
−1A1d e+i (4.84)
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hence:

∥Πvi −RBT
1d
(P−

i+1)
−1e−i+1∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1 = ∥Πvi∥2

R−1 −∥B1d Πvi∥2
(P−

i+1)
−1

−2(B1d Πvi)
T (P−

i+1)
−1A1d e+i +∥RBT

1d
(P−

i+1)
−1A1d e+i ∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1. (4.85)

Substituting from (4.83) gives:

∥e−i+1∥
2
(P−

i+1)
−1 = ∥A1d e+i ∥

2
(P−

i+1)
−1 +∥B1d Πvi∥2

(P−
i+1)

−1 +2(B1d Πvi)
T (P−

i+1)
−1A1d e+i (4.86)

and adding (4.85) and (4.86) gives:

∥Πvi −RBT
1d
(P−

i+1)
−1e−i+1∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1 +∥e−i+1∥

2
(P−

i+1)
−1

= ∥Πvi∥2
R−1 +∥A1d e+i ∥

2
(P−

i+1)
−1 +∥RBT

1d
(P−

i+1)
−1A1d e+i ∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1. (4.87)

To establish the claim it remains to show that:

∥e+i ∥
2
(P+

i )−1 = ∥A1d e+i ∥
2
(P−

i+1)
−1 +∥RBT

1d
(P−

i+1)
−1A1d e+i ∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1 (4.88)

which follows directly from the matrix inversion lemma (see [1, pg. 139]) and noting that the
various inverses exist. □

The “completion of square” lemmas can be combined to give an alternative equivalent
form for the performance index C(w,x(t0)) in (4.58). The new form is given in Lemma 21
and is the key step in solving the optimisation problem (4.59)–(4.60).

Lemma 21 Let x, w, z satisfy (4.56), (4.57) and (4.60) and A1d be nonsingular. Compute x−i ,
P−

i , x+i and P+
i for i = 0 to N using the forward recursions (4.61)–(4.62) and (4.79)–(4.80)

setting the initial conditions x−0 = γ and P−
0 = Γ. Then the performance index C(w,x(t0)) in

(4.58) is given by:

C(w,x(t0))= ∥e+N∥
2
(P+

N )−1 +∥ΠvN∥2
R−1 +

N−1

∑
i=0

∥Πvi−RBT
1d
(P−

i+1)
−1e−i+1∥

2
(R−RBT

1d
(P−

i+1)
−1B1d R)−1

+
N

∑
i=0

∥Πcz̃i −C1x−i ∥
2
(C1P−

i CT
1 +R)−1 (4.89)

where e−i , e+i , vi have been defined in (4.65)–(4.67).

Proof: Taking the sum of (4.64) for i = 0 to N, adding this to the sum of (4.81) from i = 0
to N − 1, adding ∥ΠvN∥2

R−1 on both sides and noting the cancellations, gives the required
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expression. Further note that we have also used the Pythagorean expression:

∥vi∥2
R−1 = ∥Πvi∥2

R−1 +∥Πcvi∥2
R−1 (4.90)

which follows from the orthogonality condition:

Π
T
c R−1

Π = 0. (4.91)

□

Theorem 18 Let x, w, z satisfy (4.56), (4.57) and (4.60) and A1d be nonsingular. Compute
x−i , P−

i , x+i and P+
i for i = 0 to N using the forward recursions (4.61)–(4.62) and (4.79)–

(4.80) setting the initial conditions x−0 = γ and P−
0 = Γ. Then the optimisation problem

(4.59)–(4.60) has a unique solution w(t) = ŵ, x(t0) = x̂(t0) given by solving:

x̂(tN) = x+N , (4.92)

x̂(ti) = x+i +K2e−i+1 (4.93)

recursively backwards in time from i = N to 0 to find x̂(t0) (and indeed x̂(ti) for all i) and
then computing the input ŵ(t) in the intervals ti ≤ t < ti+1 for i = 0 to N −1 by:

ŵ(t) = D†(z̃i −Cx̂(ti)+K3e−i+1) (4.94)

and at t = tN by:

ŵ(tN) = D†(z̃N −Cx̂(tN)) (4.95)

where:

K2 = P+
i AT

1d
(P−

i+1)
−1, (4.96)

K3 = RBT
1d
(P−

i+1)
−1 (4.97)

and e−i is defined in (4.65).

Proof: We first verify that the initial state x(t0) and input w(t) as computed in (4.92)–(4.94)
generate the intermediate states x(ti) given by (4.92)–(4.93). To see this we first note using
(3.1) and (4.60) that:

x(ti+1) = A1d x(ti)+B1d z(ti). (4.98)
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Substituting from (4.93), (3.2) and (4.94) gives:

x(ti+1)−A1d x(ti)−B1d z(ti)

= x(ti+1)−A1d(x
+
i +K2e−i+1)−B1d(Cx(ti)+Π(z̃i −Cx(ti)+K3e−i+1))

= x(ti+1)− (A1d x+i +B1d z̃i)− (A1d K2 +B1d K3)e−i+1

= x(ti+1)− x−i+1 − e−i+1 = 0 (4.99)

for every i = 0 to N −1 using B1d = B1d Π, (4.79) and noting that A1d K2 +B1d K3 = I from
(4.80). We then note that all terms in (4.89) are nonnegative, and the last term is independent
of w and x(0). It is easy to verify that: the first term is zero by substitution from (4.92); the
second term is zero by substitution from (4.95); and the third term is zero by substitution
from (4.94) on noting that ΠK3 = K3. Hence the system trajectory generated by the x(t0),
w(t) constructed in the theorem give a minimum of the performance index. Uniqueness can
be shown by considering a variation of the above optimal trajectory, noting that the weighting
matrices in (4.89) are strictly positive definite. □

Remark 9 The assumption that A1d is nonsingular has been imposed to ensure that the
inverses in Lemma 20 exist. The condition is satisfied for a sufficiently small time step ∆ti.
Similar conditions are imposed in the deterministic formulation of the discrete time Kalman
filter to ensure that the state weighting matrices remain strictly positive definite (see [7]). It
is thought that Theorem 18 can be extended to the case when A1d is singular at the cost of
mathematical complexity. Here we will be satisfied with a proof when the condition that A1d

is nonsingular is imposed.

In real time applications the number of measurements N and horizon length of the
optimisation problem (4.59)–(4.60) increase. It might appear at first sight that a fresh solution
of the optimisation problem needs to be calculated at each step. However, the optimal end-
of-interval input and state estimates w+

N and x+N are given by w1(tN) and x1(tN) respectively,
which are computed by forward recursions only. Similarly, we can see that the optimal
estimates at time ti based on knowledge of z̃(t0), . . . , z̃i only are given by x+i and w+

i . Thus, to
apply the algorithm in real time as measurements z̃i come in one at a time, all that is required
is to execute a single step of the update and propagation equations of Lemmas 19 and 20. In
summary, from (4.92) and (4.95) it follows that at t = ti the filtered estimates are given by:

x1(ti) = x+i , (4.100)

w1(ti) = D†(z̃i −Cx+i ) (4.101)
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where x+i is computed by the forwards in time recursions (4.61)–(4.62) and (4.79)–(4.80):

x+i = x−i +Ki(z̃i −C1x−i ), (4.102)

P+
i =

(
I −KiC1

)
P−

i , (4.103)

Ki = P−
i CT

1 (C1P−
i CT

1 +R)−1, (4.104)

x−i+1 = A1d x+i +B1d z̃i, (4.105)

P−
i+1 = A1d P+

i AT
1d
+B1d RBT

1d
(4.106)

with the initial conditions x−0 = γ , P−
0 = Γ and where we have defined:

A1d = eA∆ti −B1dC, (4.107)

B1d =
∫

∆ti

0
eA(∆ti−τ)dτB1, (4.108)

B1 = BD†, (4.109)

C1 = ΠcC, (4.110)

Πc = I −Π, (4.111)

Π = DD†, (4.112)

D† = (DT R−1D)−1DT R−1 (4.113)

In offline applications the number of measurements N and horizon length are fixed. The
optimal input and state estimates over the interval, denoted by ŵ and x̂, were derived in
Theorem 18. In summary, the construction of the smoothed estimates ŵ, x̂ has a two stage
form. First the filtered estimates are computed by a forwards recursion (4.102)–(4.113). Then
from (4.92)–(4.97) the backwards recursion:

x̂(ti) = x+i +P+
i AT

1d
(P−

i+1)
−1e−i+1, (4.114)

ŵ(ti) = D†(z̃i −Cx̂(ti)+RBT
1d
(P−

i+1)
−1e−i+1) (4.115)

with terminal condition x̂(tN) = x+N uses the filtered estimates to compute the smoothed
estimates. Computing the smoothed estimates requires additional computational effort but
estimates may be substantially improved. It should be noted that the smoothed input and
state signals are trajectories of the system, the same is not true for the filtered signals. This is
easy to verify by substituting the input and state signals into the differential equation (4.56)
and noting whether the dynamics are satisfied. The above can be easily observed in the
simulation example of Chapter 5 on road profile mapping (see Fig. 5.2 and Fig. 5.3).
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4.2.3 Convergence

We will now study the asymptotic behaviour of the filter by noting that the filtering equations
(4.102)–(4.106) take the form of the standard discrete time Kalman filer. Standard theory
can be applied by appropriate matrix substitutions. We substitute from (4.103) into (4.106),
which gives the Riccati difference equation (RDE):

P−
i+1 = A1d P−

i AT
1d
−A1d P−

i CT
1 (C1P−

i CT
1 +R)−1C1P−

i AT
1d
+B1d RBT

1d
. (4.116)

If P−
i converges to P−

∞ as i → ∞, then P−
∞ satisfies the algebraic Riccati equation (ARE):

P−
∞ = A1d P−

∞ AT
1d
−A1d P−

∞ CT
1 (C1P−

∞ CT
1 +R)−1C1P−

∞ AT
1d
+B1d RBT

1d
. (4.117)

Lemma 22 Let D have full column rank, then:

1. the strong solution of (4.117) exists and is unique if and only if (C1,A1d) is detectable,

2. the strong solution is the only nonnegative definite solution of (4.117) if and only
if (C1,A1d) is detectable and (A1d ,B1d) has no uncontrollable mode outside the unit
circle,

3. the strong solution coincides with the stabilising solution if and only if (C1,A1) is
detectable and (A1d ,B1d) has no uncontrollable mode on the unit circle,

4. the stabilising solution is positive definite if and only if (C1,A1d) is detectable and
(A1d ,B1d) has no uncontrollable mode inside, or on the unit circle. □

Proof: See Lemma 15. □

Lemma 23 Let D have full column rank and:

1. (A1d ,B1d) have no uncontrollable mode on the unit circle,

2. (C1,A1d) be detectable,

3. P−
0 > 0

or

1. (C1,A1d) be detectable,

2. P−
0 ≥ P−

∞

then P−
i+1 given by the Riccati difference equation (4.116) asymptotically converges to the

unique strong solution P−
∞ of the algebraic Riccati equation (4.117) as i → ∞.

Proof: See Lemma 16. □
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4.2.4 Nonlinear extension

Formulation

We will now turn our attention to estimation in nonlinear systems by considering the same
problem formulation (4.58)–(4.60) we introduced for linear systems. More precisely, let
x(t) ∈ Rn, w(t) ∈ Rm and z(t) ∈ Rp satisfy the nonlinear dynamics:

ẋ = f (x,w), (4.118)

z = h(x,w) (4.119)

where f : Rn ×Rm → Rn and h : Rn ×Rm → Rp. Consider the optimisation problem:

inf
w,x(t0)

C(w,x(t0)) (4.120)

subject to

w(t) = w(ti) for all t ∈ [ti, ti+1) (4.121)

with the performance index:

C(w,x(t0)) = ∥x(t0)− γ∥2
Γ−1 +

N

∑
i=0

∥z̃i − z(ti)∥2
R−1 (4.122)

where 0 < R ∈ Rp×p, 0 < Γ ∈ Rn×n, γ ∈ Rn are specified. The optimisation problem here
is identical to the previous section with the exception that the dynamics (4.118)–(4.119)
are nonlinear. We will propose a heuristic algorithm for this problem without deriving any
optimality or convergence guarantees. In essence, we propose applying the algorithm of
Theorem 18, with the linear system matrices replaced by local linear approximations to the
nonlinear system along the estimated trajectory.

Filtering

We begin by noting that the solution of Theorem 18 holds for piecewise linear systems (we
previously assumed constant system matrices for notational convenience). Here we will
approximate the nonlinear system by a piecewise linear system and then apply the solution
of Theorem 18. We now introduce a local linear approximation to (4.118)–(4.119) near
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x = x(ti), w = w(ti) which is given by:

ẋ = fi +Ai(x− x(ti))+Bi(w−w(ti)), (4.123)

z = hi +Ci(x− x(ti))+Di(w−w(ti)) (4.124)

where fi, hi, Ai, Bi, Ci and Di are constant parameters of appropriate dimensions. The
true state x(ti) and input w(ti) are unknown and cannot be used to generate a local linear
approximation, but they can be replaced by the best available estimates. Possible methods
of linearisation (i.e. computation of the constant parameters fi, hi, Ai, Bi, Ci and Di) are
discussed in the next sections. Then the forward recursion of Theorem 18 is given by:

x+i = x−i +Ki(z̃i −hi), (4.125)

w+
i = w+

i−1 +D†
i (z̃i −hi), (4.126)

P+
i =

(
I−KiC1

)
P−

i , (4.127)

x−i+1 = x+i +A3 fi, (4.128)

P−
i+1 = A1d P+

i AT
1d
+B1d RBT

1d
, (4.129)

Ki = P−
i CT

1 (C1P−
i CT

1 +R)−1 (4.130)

where:

A1d = eAi∆ti −B1dC, (4.131)

A3 =
∫

∆t

0
eAi(∆t−τ)dτ, (4.132)

B1d = A3B1, (4.133)

B1 = BiD†, (4.134)

C1 = ΠcCi, (4.135)

Πc = I −Π, (4.136)

Π = DiD†, (4.137)

D† = (DT
i R−1Di)

−1DT
i R−1 (4.138)

with the initial conditions x−0 = γ and P−
0 = Γ. The filtered input and state estimates are

computed by forward recursion only and are given by w1(ti) = w+
i and x1(ti) = x+i .
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Smoothing

We now consider the computation of the smoothed input and state estimates ŵ and x̂ over
a fixed horizon. For a given piecewise linear approximation the backwards recursion of
Theorem 18 is given by:

x̂(ti) = x+i +K2e−i+1, (4.139)

ŵ(ti) = w+
i +D†(z̃i −hi +K3e−i+1) (4.140)

where:

e−i = x̂(ti)− x−i , (4.141)

K2 = P+
i AT

1d
(P−

i+1)
−1, (4.142)

K3 = RBT
1d
(P−

i+1)
−1 (4.143)

with the terminal condition x̂(tN) = x+N . Note that the piecewise linear approximation used
for filtering and smoothing may be different. It remains to discuss how the piecewise linear
approximations are generated. Two approaches are discussed in the next two sections.

Explicit linearisation

The true input and state trajectories are of course unknown and cannot be used to generate
local linear approximations. Here we propose to instead explicitly linearise the nonlinear
system at the best available estimates of the input and state (i.e. linearising along the
estimated system trajectory). For the forwards recursion the best available estimates are
the filtered estimates x1(ti) and w1(ti), while for the backwards recursion it is the smoothed
estimates x̂(ti) and ŵ(ti). The explicit linearisation is given by evaluating the nonlinear
system functions f (x,w) and h(x,w) and computing their Jacobians (with respect to the state
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and input)2 at the best available estimates. More specifically, for filtering we have:

fi = f (x1(ti),w1(ti)), (4.144)

hi = h(x1(ti),w1(ti)), (4.145)

Ai =
∂ f (x,w1(ti))

∂x

∣∣∣
x=x1(ti)

, (4.146)

Bi =
∂ f (x1(ti),w)

∂w

∣∣∣
w=w1(ti)

, (4.147)

Ci =
∂h(x,w1(ti))

∂x

∣∣∣
x=x1(ti)

, (4.148)

Di =
∂h(x1(ti),w)

∂w

∣∣∣
w=w1(ti)

(4.149)

while for smoothing we replace the filtered estimates x1(ti), w1(ti) by the smoothed estimates
x̂(ti), ŵ(ti). This linearisation approach is similar to the Extended Kalman filter (EKF).

Implicit linearisation

We will now propose an alternative approach to linearising the nonlinear system which
is based on sampling the nonlinear functions f (x,w) and h(x,w). It is reminiscent of the
unscented Kalman filter (UKF) but differs both in terms of interpretation and application.
In particular, we sample the nonlinear functions at a deterministically chosen set of points
and associate weights to each. We then generate linear function approximations based on the
weighted samples. Let λ ∈ R, 0 <V ∈ RL×L where L = n+m and introduce the samples:

Q j =

[
X j

W j

]
=


q for j = 0,

q+λ
√

V ∗, j for j = 1, . . . ,L,

q−λ
√

V ∗, j−L for j = L+1, . . . ,2L

(4.150)

and associated weights:

W0 = 1−2LWj for j = 0, (4.151)

Wj =
1

2λ 2 for j = 1, . . . ,2L (4.152)

2We have assumed that the functions are differentiable, i.e. f ∈C1(Rn ×Rm,Rn), h ∈C1(Rn ×Rm,Rp).
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where q is the augmented vector of the best state and input estimate and evaluate:

Y j =

[
f (X j,W j)

h(X j,W j)

]
(4.153)

for all the samples Q j. Then a local linear approximation is given by:

y =

[
fi

hi

]
=

2L

∑
j=0

WjY j, (4.154)

Y =
2L

∑
j=0

Wj(Y j − y)(Q j −q)T , (4.155)[
Ai Bi

Ci Di

]
= YV−1. (4.156)

Using a Taylor series expansion note that the linearisation is independent of the tuning
parameter λ up to second order. Furthermore, the matrices Ai,Bi,Ci and Di are independent
of the tuning parameter V up to second order and the vectors fi and hi up to first order. In the
limit as V → 0 this approach coincides with explicitly linearising the system at the point q.
In filtering, V can be chosen to coincide with the solution of the RDE, i.e. P+

i at time ti, to
account for second order effects in estimating fi and hi.





Chapter 5

Estimation theory applied to vehicle
examples

In this chapter we will apply the algorithm of Section 4.2 to two vehicle examples. The first
example is on (offline) road elevation mapping and the second is on (online) slip estimation.

5.1 Road profile mapping

5.1.1 Model

We consider the problem of constructing (offline) an accurate map of a road profile using a
vehicle equipped with a global positioning system (GPS) sensor and basic suspension sensors
but without any dedicated optical sensors (e.g. profilometer). We consider the quarter-car
suspension model of Fig. 5.1 with dynamical equations:

msẍs =−ks(xs − xu)− cs(ẋs − ẋu),

muẍu = ks(xs − xu)+ cs(ẋs − ẋu)− kt(xu − xr)

where ms and mu are sprung and unsprung masses, ks and cs are suspension spring and
damper constants, kt is a tire stiffness constant and the coordinates xs, xu and xr represent
displacements of ms, mu and road respectively. For simplicity we have neglected inertial and
aero forces applied to the suspension, those can be included by modelling the dynamics of
the entire vehicle. The road profile xr is treated as an unknown system input.

We begin by considering a sensor set consisting of accelerometers located on ms and
mu and a strut deflection sensor which generates measurements every ∆t and a GPS sensor



78 Estimation theory applied to vehicle examples

located on ms that measures xs. Hence, the state, input and output vectors are given by:

x =:
[
xs ẋs xu ẋu

]T
, (5.1)

w =:
[
xr

]
, (5.2)

z =:
[
xs xs − xu ẍs ẍu

]T
. (5.3)

ms

xs

ks cs

mu

xu

kt xr

Fig. 5.1 Diagram of a quarter vehicle suspension model.

5.1.2 Stability analysis

We now consider the convergence properties of the filter assuming the model used is identical
to the system which generates the measurements (i.e. vehicle and suspension). Note that
among the outputs in (5.3) it is ẍu (i.e. the use of an unsprung mass accelerometer sensor)
which ensures that D is full column rank. The detectability condition on (C1,A1d) in Lemma
22 and 23 is up to first order in ∆t equivalent to:

1−z ∆t 0 0 0
−ks∆t

ms
1−z− cs∆t

ms

ks∆t
ms

cs∆t
ms

0
0 0 1−z ∆t 0

ks∆t
mu

cs∆t
mu

− (ks+kt)∆t
mu

1−z− cs∆t
mu

kt∆t
mu

1 0 0 0 0
1 0 −1 0 0

− ks
ms

− cs
ms

ks
ms

cs
ms

0
ks
mu

cs
mu

− (ks+kt)
mu

− cs
mu

kt
mu


(5.4)
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full column rank for all z ∈C with |z| ≥ 1. Denoting by ρn the nth row of (5.4) and noting that
elementary row operations preserve rank, we perform sequentially the following operations:

ρ1 → ∆t−1(ρ1 − (1− z)ρ5),

ρ6 →−ρ6 +ρ5,

ρ3 → ∆t−1(ρ3 − (1− z)ρ6),

ρ8 → muρ8 − ksρ5 +(ks + kt)ρ6 − cs(ρ1 −ρ3)

followed by reordering and rescaling to obtain a matrix whose first five rows are the identity
matrix, which is obviously full column rank for all z. In a similar way, we can show that
the matrix (A1d ,B1d) has full row rank for all z. It therefore follows that the stability and
convergence results of Lemma 22 and 23 hold. It can be verified that the conditions hold
even without measurement of xs − xu (strut deflection) and ẍs (sprung mass acceleration) but
fails if measurement of xs (GPS sensor) is removed.

A similar analysis to the above can be carried out for other choices of sensors. For
example, a profilometer which measures xs − xr could be considered and in this case another
non-zero entry appears in the D matrix. Thus the profilometer could be considered as an
alternative to measurement of ẍu to ensure that D is full rank. Similar conclusions hold in this
case, namely the required detectability holds if xs is measured but not if only measurements
of ẍu and xs − xr are available.

5.1.3 Simulations

We demonstrate the performance of the filter and smoother on simulated data. We set the
vehicle model parameters to ms = 350kg, mu = 50kg, ks = 20kN/m, cs = 1kNs/m and
kt = 200kN/m. We assume that the strut deflection and acceleration measurements are
available every 1ms and the GPS measurements every 1s. Simulated white noise is added to
the GPS, strut deflection and accelerometer signals of standard deviation given by 1m, 10−2m
and 10−1m/s2 respectively to generate the measurement signals. We choose the measurement
weighting matrix accordingly, namely we take R = diag{1,10−4,10−2,10−2}. (In practise
the true level of noise is unknown and R can be treated as a tuning parameter.) We let the
initial states for the sprung and unsprung mass position have an error of 1m and set the initial
state weighting matrix to Γ = diag{1,0.1,1,0.1}.

We consider two alternative road profiles, a square wave (period 1s, amplitude 0.1m)
and a ramp (slope 0.1m/s). The true, filtered and smoothed position signals are plotted in
Fig. 5.2 (square wave) and Fig. 5.3 (ramp). Note that for both road profiles the filter reduces
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the large initial estimation error, which is expected given the system satisfies the conditions
derived in Section 4.2.3. Furthermore, the smoother generates a plausible state and input
system trajectory which in effect differs from the true signal only by an offset due to the
inaccuracy of the few available GPS measurements.

Fig. 5.2 True, filtered and smoothed position signals of sprung mass, unsprung mass and
road for a square wave road profile.

5.2 Vehicle slip estimation

5.2.1 Model

We consider the problem of (online) vehicle slip estimation using a simple vehicle model
on data generated from a high fidelity vehicle simulation. The simulation data are provided
by McLaren Automotive using the “McLaren Integrated Data Analysis and Simulation”
(MIDAS) simulation tool. We apply the nonlinear version of the algorithm of Section 4.2
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Fig. 5.3 True, filtered and smoothed position signals of sprung mass, unsprung mass and
road for a ramp road profile.

using the implicit linearisation method. The high fidelity simulation signals supplied to the
filter include the steering angle, longitudinal and lateral accelerations and yaw rate. We
consider the 2D bicycle model of a vehicle given in Fig. 5.4. In the vehicle frame of reference
the acceleration of the centre of mass is:

r̈ = axi′+ayj′ = (u̇x −ωuy)i′+(u̇y +ωux)j′ (5.5)

where ux, uy are the longitudinal and lateral velocities of the centre of mass in the vehicle
reference frame and ω is the yaw rate. Applying Newton’s 2nd Law gives:

max = FFx cos(δ )−FFy sin(δ )+FRx −Cdu2
x , (5.6)

may = FFx sin(δ )+FFy cos(δ )+FRy, (5.7)

Izzω̇ = lFFFx sin(δ )+ lFFFy cos(δ )− lRFRy (5.8)

where m is the vehicle mass, Izz is the vehicle moment of inertia (around the vertical axis),
δ is the steering angle, FFx, FRx, FFy and FRy are front and rear longitudinal and lateral tyre
forces, lF , lR are vehicle length dimensions as shown in Fig. 5.4 and Cd is the aerodynamic
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drag coefficient. (For simplicity we have assumed that drag acts in the longitudinal direction
and is quadratic in the longitudinal velocity.)

(x,y)

u

ux

uy

uF

uR

j

i

j′ i′

ψ

δ

αF

αR

lR

lF

FFx

FFy

FRx
FRy

Fig. 5.4 Diagram of a bicycle model of a vehicle.

We treat the longitudinal and lateral velocities and yaw rate as model states and the
steering angle and tyre forces as model inputs. In particular, we define the vector signals:

x =:
[
ux uy ω

]T
, (5.9)

w =:
[
δ FFy FRy FFx FRx

]T
(5.10)

which satisfy a nonlinear vector state equation ẋ = f (x,w) derived from (5.6)–(5.8). We now
define the front and rear tyre slip angles:

αF = δ − arctan
(

uy +ωlF
ux

)
, (5.11)

αR =−arctan
(

uy −ωlR
ux

)
. (5.12)
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We assume that the front and rear vertical tyre forces FFz, FRz are constant and given by:

FFz =
lR

lF + lR
mg, (5.13)

FRz =
lF

lF + lR
mg. (5.14)

We model the longitudinal tyre forces FFx, FRx using a heuristic switch logic. When the
vehicle is in “driving mode”, the front longitudinal tyre force is assumed to be approximately
zero, i.e. FFx ≈ 0. When the vehicle is in “braking mode”, the front and rear longitudinal
tyre forces are assumed to be approximately equal, i.e. FFx ≈ FRx. We determine whether the
vehicle is in driving or braking mode based on the sign of FRx. Based on these assumptions
we derive the approximation:

FFx −H(−FRx)FRx ≈ 0 (5.15)

where H is the Heaviside function:

H(x) =

{
1 for x ≥ 0,

0 for x < 0.

Furthermore, we assume that the lateral tyre forces FFy, FRy approximately satisfy:

FFy −FFzDF sin(CF arctan(BFαF))cos(GFFFx)≈ 0, (5.16)

FRy −FRzDR sin(CR arctan(BRαR))cos(GRFRx)≈ 0. (5.17)

We let z = h(x,w) denote a nonlinear vector output function which consists of δ , ax, ay and
ω augmented by the functions on the left hand side of (5.15), (5.16) and (5.17) and where ax

and ay are given by (5.6) and (5.7) respectively. We then let:

z̃ =:
[
δ̃ ãx ãy ω̃ 0 0 0

]T
(5.18)

where δ̃ , ãx, ãy and ω̃ are the steering angle, longitudinal and lateral acceleration and yaw
rate signals generated by the high fidelity vehicle simulation.

5.2.2 Simulations

We apply the same filtering algorithm of Section 4.2 using approximate values for the vehicle
and tyre model parameters. The simulated measurement signals δ̃ , ãx, ãy and ω̃ are available
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at a frequency of 100Hz. We treat the weighting matrix R as a tuning parameter and manually
choose to assign the diagonal matrix R = diag{10−2,10−1,10−1,10−2,104,104,104}2. We
offset the initial filter estimate of the longitudinal velocity such that it has an error of 10 m/s.
The true (i.e. from a high fidelity vehicle simulation) and filtered signals for the longitudinal
velocity, lateral velocity, front slip angle and rear slip angle are plotted in Fig. 5.5, Fig. 5.6,
Fig. 5.7, and Fig. 5.8 respectively for a 90s simulation around a track.

Fig. 5.5 True and filtered longitudinal vehicle velocity signals.

Fig. 5.6 True and filtered lateral vehicle velocity signals.

Note that the filter reduces the initial error in the longitudinal velocity and tracks closely
all the required signals. In this simulation example it appears unintuitive at first sight that
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acceleration signals can be used successfully to estimate velocity signals. The apparent
paradox is resolved after noting that using a vehicle and tyre model we can obtain velocity
information from acceleration signals. We have performed many simulations where we vary
the initial state estimate error, the model constant parameters and the vehicle manoeuvre.
The filter performs similarly and surprisingly well even for large errors and highly dynamic
vehicle manoeuvres and is robust against parameter variations.

Fig. 5.7 True and filtered front tyre slip angle signals.

Fig. 5.8 True and filtered rear tyre slip angle signals.





Chapter 6

Discussion

6.1 Contributions

This thesis has explored directions of theoretical and practical interest in the field of estimation
and control. In Chapter 3 we proposed a framework for estimation in which the output of the
dynamical system comprises all variables that are measured, and the variables to be estimated
comprise, equally, system states and exogenous inputs. This framework is quite general in
that if an exogenous input is measured then we may include a direct feedthrough component
in the output vector to reflect this. This estimation problem was solved for linear systems
with a full column rank feedthrough matrix. The unique optimum solution on a finite horizon
takes a two-stage form in which the first stage provides an end-of-interval estimator which
can be solved in real time as the horizon length increases. It was shown that the full rank
assumption is general enough to include the Kalman filter and, for the dual tracking problem,
the linear quadratic regulator as special cases. Generalising this result to the case where this
condition, or similar full rank assumptions on the Markov parameters, does not hold remains
an open problem. Furthermore, the solution of a matrix Lyapunov differential equation P2(t)
is shown to have an analogous (deterministic) interpretation to the smoothed covariance
in the stochastic case. This has been achieved by considering the least-squares estimation
problem with an additional constraint that the state passes through a prescribed point at a
given time in the fixed horizon. To solve this problem a tracking problem was also considered
which is dual to our estimation problem. We also considered the time invariant limiting
forms of the estimation and tracking problems. Conditions were given for the convergence
of the finite horizon solutions to these limits. Stability of the end-of-interval estimator on the
infinite horizon requires a minimum phase condition (i.e. that there are no invariant zeros of
the system in the closed right half plane) as well as the absence of uncontrollable modes on
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the imaginary axis. The time invariant systems were shown to be stable or anti-stable left
inverses of the original system under appropriate conditions.

In Chapter 4 we derived two forms for the zero informational limit of the discrete time
Kalman filter with feedthrough of the process noise to the measurements. We have shown
that the recursions in the first form are closely related to those of [20] and hence we have
provided a simpler notion of optimality for that recursive filter. The second form takes
the form of the standard Kalman filter for a modified system (Theorem 16). This form is
convenient to derive conditions for the asymptotic convergence of the limit filter to steady
state form which are expressed in terms of the original system matrices as a minimum phase
and a controllability condition (Theorem 17). Additionally, we proposed a deterministic
formulation for simultaneous state and input estimation in continuous time systems with
discrete time measurements. To pose the problem well we assumed that the exogenous input
is piecewise constant (i.e. zero-order hold) within measurement intervals. We derived the
solution to this problem for a fixed length horizon and the asymptotic form of the filter.

In Chapter 5 we apply the filtering and smoothing algorithms of Section 4.2 to two vehicle
examples of interest. The first example is on (offline) road elevation mapping and the second
is on (online) slip estimation. The first example is a linear example that serves to demonstrate
the benefits of smoothing compared to filtering in offline applications. Furthermore, it
shows how the use of an estimator and basic suspension sensors can be used in place of a
dedicated sensor (i.e. profilometer) without compromising high estimation accuracy. Lastly,
it shows the relevance of simultaneous state and input estimation algorithms to mapping
problems of practical interest. The second example is a challenging nonlinear example of
major practical interest. More specifically, accurate slip estimation can enhance vehicle
safety and performance by increasing traction, reducing braking distances and improving
stability control. It is particularly important in advancing self-driving capabilities. The
example demonstrates how it is possible to achieve accurate and robust slip estimation with a
surprisingly simple vehicle model and very basic sensors. This is in contrast to [2] which
requires additional torque sensors and develops a complicated model for the suspension
and wheel dynamics. The proposed approach which is based on the simultaneous state and
input estimation algorithm reduces computational cost by dramatically decreasing the model
dimensionality and complexity and significantly improving ease of tuning.

6.2 Further work

This work has sparked a lot of new and intriguing ideas that require further development.
Many of the ideas developed in Chapter 3 for systems with continuous time measurements,
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e.g. the constrained estimation problem, have not been extended to the case of discrete time
measurements. We speculate that this is possible if we assume that the exogenous input
is piecewise constant (i.e. zero-order hold). It is also interesting to consider alternative
assumptions on the input behaviour which may arguably be more realistic. They may lead to
more accurate estimation algorithms but may also require more complicated algorithms. For
example we may wish to assume continuity in the input (e.g. first-order hold) or its derivatives.
It is also possible to consider penalising deviations from a zero-order (or first-order) hold
input trajectory by augmenting the performance index without assuming a zero-order hold.
The tracking formulation of Chapter 3 assumes full knowledge of the initial state and the
absence of any input disturbances. It is of theoretical interest to consider a deterministic
formulation of control in the face of uncertainty and to establish if the separation principle
holds. Another major challenge of theoretical and practical importance is estimation and
control when the feedthrough matrix (or another Markov parameter) is not full column
rank. In the literature few results of limited applicability currently exist in this topic and
virtually none relating to stability. Solving this challenge by developing estimation (or
control) algorithms and stability conditions that can be easily implemented can have an
immediate impact on applied problems.

Estimation and control problems that are outside the idealised linear-quadratic domain
present further challenges. While the extended and unscented Kalman filters attempt to give
approximate solutions, the recursions involved are correct only up to first or second order.
A solution that is both very interesting and successful but limited only to systems defined
on matrix Lie groups (e.g. robot navigation) is the invariant Kalman filter (IKF). The IKF
applies the Kalman filtering algorithm to a deliberately chosen set of coordinates and the
resulting distributions are no longer Gaussian in the original coordinates. It is particularly
interesting to consider whether it is possible to extend the ideas behind the IKF to systems
with different nonlinearities. It is thought that the theory of Koopman operators which uses
(nonlinear) observable functions of the state may offer a path to achieve this for estimation
and control problems alike. Monte Carlo methods are a successful alternative to address
the challenges of nonlinear estimation. To ensure that the effective sample size (ESS) at the
present time remains sufficiently high for accurate filtering, they use resampling techniques
which have the downside of reducing the number of unique sample trajectories (degeneracy)
(see discussion in Chapter 2). This limitation is particularly important for problems with
large horizon lengths. It is interesting to explore whether it is possible to develop techniques
which simultaneously exploit the benefits of Monte Carlo methods and Kalman filtering and
smoothing. An approach that has been proposed and is inspired by both particle methods
and the Kalman filter is the Gaussian sum filter which replaces the Gaussian distribution by
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a sum of Gaussians which resemble particles. This approach is not a Monte Carlo method
since it does not rely on random sampling and it does not address the degeneracy problem.
A promising direction is to consider particle filtering and smoothing techniques with a
resampling stage that is based on a Gaussian mixture model (GMM) and exploits classical
GMM fitting techniques.

Lastly, a range of vehicle applications can be explored based on the developments of this
thesis. An example that stands out is the estimation of aero loads a vehicle experiences. This
is an inherently difficult problem due to the complexity of performing accurate simulations
which couple computational fluid dynamics (CFD) with vehicle dynamics. An alternative
that can be explored is the approach considered within this thesis, namely the application of
filtering and smoothing algorithms for simultaneous state and input estimation using a simple
vehicle model and basic vehicle on-board sensors. This approach can be used to either verify
CFD simulations (offline) or for real time stability control.
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Appendix A

Notation and lemmas

A.1 Spaces and norms

A real scalar, a real m dimensional vector and a real m× l dimensional matrix are denoted
by R, Rm and Rm×l respectively. A square symmetric matrix Θ = ΘT ∈ Rm×m is positive
(semi-positive or negative) definite and is denoted by Θ > 0 (Θ ≥ 0 or Θ < 0) if θ T Θθ > 0
(θ T Θθ ≥ 0 or θ T Θθ < 0) for all 0 ̸= θ ∈ Rm and we denote by ∥θ∥2

Θ−1 the norm on Rm

defined by ∥θ∥2
Θ−1 := θ T Θ−1θ if Θ > 0. Furthermore, we define the vector norm and

induced matrix norm:

|x(t)|∞ = max
j

|x j(t)|, (A.1)

|G(t)|∞ = max
i

∑
j
|Gi j(t)| (A.2)

where x(t) ∈ Rn and G(t) ∈ Rn×n. L m
2,e denotes the space of vector signals of dimension m

whose Lebesgue integrated squared 2-norm exists on any finite interval. Let L m
∞ denote the

space of Lebesque integral m dimensional vector functions of bounded ∞-norm. We define
the signal norms:

∥x(t)∥∞ = sup
t≥0

|x(t)|∞, (A.3)

∥G(t)∥∞ = sup
t≥0

|G(t)|∞ (A.4)

for signals which belong to the corresponding Lebesgue space L n
∞[0,∞) or L n×n

∞ [0,∞).
(Strictly we should take the essential supremum in (A.3) and (A.4) though this will always
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coincide with the supremum for signals encountered here.) We further define the norm:

∥G(t)∥1 = max
i

∑
j

∫
∞

0
|Gi j(τ)|dτ. (A.5)

A.2 Asymptotically stable linear systems with bounded in-
put

Lemma 24 Suppose x(t) ∈ Rn satisfies:

ẋ(t) = A(t)x(t)+ f (t) (A.6)

where A(t) is continuously time varying and limt→∞ A(t) = A with A Hurwitz, f (t) ∈
L n

∞[0,∞) and x(0) ∈ Rn. Then x(t) is uniformly bounded, i.e. ∥x(t)∥∞ < ∞.

Proof: First we set:

M1 = ∥eAt∥1 (A.7)

noting that M1 < ∞ since A is Hurwitz. Next we choose δ > 0 such that δM1 < 1. Since
A(t)→ A we can find t0 such that |A(t)−A|∞ < δ for all t > t0. We next consider the free
and forced solution of (A.6) on the interval [0, t0]. We define:

M2 =

{
sup

0≤t≤t0
|x(t)|∞ : ẋ(t) = A(t)x(t), x(0) = x0

}
(A.8)

where M2 = M2(x0) and:

M3 =

{
sup

0≤t≤t0
|x(t)|∞ : ẋ(t) = A(t)x(t)+ f (t),x(0) = 0, ∥ f (t)∥∞ ≤ 1 for t ∈ [0, t0]

}
.

(A.9)

We note that M2 < ∞ and M3 < ∞ follows from [6, Theorem 1, p. 40]. Hence:

|x(t)|∞ < M2 +M3∥ f (t)∥∞ for all t ∈ [0, t0]. (A.10)

We next define:

M4 = ∥eAt∥∞. (A.11)
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We can see that M4 < ∞ as follows. Let A = T JT−1 be a Jordan decomposition and let λ̄ be
the largest real part among the eigenvalues of A. Then:

|eAt |∞ ≤ |T |∞|T−1|∞e−λ̄ t
(

1+ t + · · ·+ tn−1

(n−1)!

)
(A.12)

which is uniformly bounded since A is Hurwitz and thus λ̄ < 0. We now consider the solution
of (A.6) for t ≥ t0. We can write:

x(t) = eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)u(τ)dτ (A.13)

where we have defined:

u(t) = (A(t)−A)x(t)+ f (t). (A.14)

Then:

|x(t)|∞ =

∣∣∣∣eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)u(τ)dτ

∣∣∣∣
∞

(A.15)

≤ |eA(t−t0)x(t0)|∞ +

∣∣∣∣∫ t

t0
eA(t−τ) f (τ)dτ

∣∣∣∣
∞

+

∣∣∣∣∫ t

t0
eA(t−τ)(A(t)−A)x(t)dτ

∣∣∣∣
∞

(A.16)

≤ M4(M2 +M3∥ f (t)∥∞)+M1(∥ f (t)∥∞ +δ sup
t0≤τ≤t

|x(τ)|∞). (A.17)

Combining (A.17) with (A.10) we obtain:

|x(t)|∞ ≤ max{1,M4}(M2 +M3∥ f (t)∥∞)+M1(∥ f (t)∥∞ +δ sup
0≤t≤t1

|x(t)|∞) (A.18)

for all t ∈ [0, t1] and any t1. Since this is true for all t we can replace the LHS of (A.18) by
sup0≤t≤t1 |x(t)|∞. Therefore:

sup
0≤t≤t1

|x(t)|∞ ≤ 1
1−δM1

(
max{1,M4}(M2 +M3∥ f (t)∥∞)+M1∥ f (t)∥∞

)
(A.19)

Since this is true for all t1 the RHS is an upper bound for ∥x(t)∥∞ which completes the proof.
□
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A.3 Stable linear systems with asymptotically vanishing in-
put

Lemma 25 Suppose x(t) ∈ Rn satisfies:

ẋ(t) = Ax(t)+ f (t) (A.20)

where A∈Rn×n is Hurwitz, f (t)∈L n
∞[0,∞), limt→∞ f (t)= 0 and x(0)∈Rn. Then limt→∞ x(t)=

0.

Proof: We consider the solution to (A.20):

x(t) = eAtx(0)+
∫ t

0
eA(t−τ) f (τ)dτ. (A.21)

Since A is Hurwitz it follows that limt→∞ eAt = 0 and thus without loss of generality we set
x(0) = 0 in (A.21). We set:

M =
∫

∞

0
|eAt |∞dt (A.22)

where M < ∞ using (A.12). Choose any ε > 0. We first set δ = ε/2M. Since limt→∞ f (t) = 0
we can find t0 such that | f (t)|∞ < δ for all t > t0. Then for t > t0:

|x(t)|∞ =

∣∣∣∣∫ t

0
eA(t−τ) f (τ)dτ

∣∣∣∣
∞

(A.23)

≤
∫ t0

0
|eA(t−τ)|∞| f (τ)|∞dτ

+
∫ t

t0
|eA(t−τ)|∞| f (τ)|∞dτ (A.24)

≤ ∥ f (t)∥∞

∫ t

t−t0
|eAτ |∞dτ +δ

∫ t−t0

0
|eAτ |∞dτ (A.25)

< ∥ f (t)∥∞

(
sup

t−t0≤τ≤t
|eAτ |∞

)
t0 +δM. (A.26)

We note using (A.12) that limt→∞ |eAt |∞ = 0 and thus there exists t1 > t0 such that:

sup
t−t0≤τ≤t

|eAτ |∞ ≤ ε

2∥ f (t)∥∞t0
(A.27)

for all t > t1. It follows that |x(t)|∞ < ε for all t > t1. □
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A.4 Convergence of asymptotically stable linear systems
with bounded input

Lemma 26 Suppose x(t), x1(t) ∈ Rn satisfy:

ẋ(t) = A(t)x(t)+B(t)u(t), (A.28)

ẋ1(t) = Ax(t)+Bu(t) (A.29)

where A(t), B(t) are continuously time varying, limt→∞ A(t)=A with A Hurwitz, limt→∞ B(t)=
B, u(t) ∈ L m

∞ [0,∞) and x(0), x1(0) ∈ Rn. Then limt→∞(x(t)− x1(t)) = 0. More precisely,
given any ε > 0, ∃T0 such that |x(t)−x1(t)|∞ < ε for all t > T0, where T0 depends on ∥u(t)∥∞

but not u(t) itself.

Proof: First note from Lemma 24 that ∥x(t)∥∞ is finite. Moreover it can be seen from the
proof of Lemma 24 that ∥x(t)∥∞ has an upper bound which depends on ∥B(t)∥∞∥u(t)∥∞ but
otherwise does not depend on u(t) (see (A.19)). Now write:

ẋ(t)− ẋ1(t) = A(x(t)− x1(t))+(A(t)−A)x(t)+(B(t)−B)u(t). (A.30)

The conclusion follows from Lemma 25 by noting that the choice of t0 and t1 can be made
independent of the choice of u(t) for a given bound on ∥u(t)∥∞. □
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