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Abstract

This work presents a novel, differentiable, way of solving dynamic Flux Balance Analysis (dFBA) problems
by embedding flux balance analysis of metabolic network models within lumped bulk kinetics for biochemical
processes. The proposed methodology utilizes transformation of the bounds of the embedded linear pro-
gramming problem of flux balance analysis via a logarithmic barrier (interior point) approach. By exploiting
the first-order optimality conditions of the interior-point problem, and with further transformations, the
approach results in a system of implicit ordinary differential equations. Results from four case studies, show
that the CPU and wall-times obtained using the proposed method are competitive with existing state-of-the
art approaches for solving dFBA simulations, for problem sizes up to genome-scale. The differentiability of
the proposed approach allows, using existing commercial packages, its application to the optimal control of
dFBA problems at a genome-scale size, thus outperforming existing formulations as shown by two dynamic
optimization case studies.

Keywords: Dynamic flux balance analysis, Ordinary differential equations with embedded optimization,
Linear programming, Genome-scale metabolic network

1. Introduction1

Genome-scale metabolic models provide a reliable representation of metabolism based on available in-2

formation of cellular systems [18]. These models enable the mathematical representation of the metabolic3

processes occurring within the organism and may be analyzed further using available toolboxes based on4

mathematical optimization methods [42].5

The central optimization task in metabolic networks is flux balance analysis (FBA; Orth et al. [27], Savinell6

and Palsson [33]). The most attractive feature of FBA is its ability to make quantitative predictions about7

a metabolic network without any need for detailed kinetic descriptions and given only the stoichiometry8

of the reactions, thus the number of published reconstructed genome-scale metabolic models has increased9

rapidly in recent years [40]. The only necessary inputs for FBA are the metabolic model (i.e., the network10

stoichiometry), a biologically meaningful objective and the growth and environmental conditions defining the11

substrates uptake rates. The fundamental assumption underlying FBA is that the system is at steady-state.12

The steady-state mass balance equation for each metabolite and environmental and growth conditions are13

mathematically described in the form of constraints for the optimization problem. Given that the system of14

equations describing the steady-state mass balances is under-determined (i.e., more reactions than metabolites15

exist), an infinite feasible solution set exists. To obtain a solution, a maximization principle is used as a16

surrogate for the true (and always unknown) totality of interactions. Typically this objective function is the17

maximization of the flux through the biomass formation reaction [27]. This results in a linear programming18
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(LP) formulation that can be solved readily using existing tools, such as GAMS or MATLAB™, or metabolic19

modeling frameworks such as the constrained-based modeling and analysis (COBRA) toolbox [34].20

Dynamic Flux Balance Analysis (dFBA) is an extension of FBA enabling the simulation of the cellular21

dynamics of a culture system by assuming that cells reach an intracellular steady state rapidly in response to22

changes in the extracellular environment. In this way, the rates of product and biomass formation predicted23

by FBA are used to update the extracellular concentration in the environment. In turn, the changes in24

the environment produce variations in the uptake rates of substrates required for growth and metabolites25

production. In this way, the kinetics of the extracellular concentrations of substrates and products, often26

modeled as Ordinary Differential Equations (ODEs), are coupled to an FBA model, i.e, an LP problem. Sev-27

eral strategies have been developed to simulate dFBA models; and have been classified by Höffner et al. [15],28

who also offer a list of applications, as the Static Optimization Approach (SOA), the dynamic Optimization29

Approach (DOA) and the Direct Approach (DA).30

The SOA approach uses the forward Euler’s method to integrate the upper level ODE system and at each31

time step the embedded LP problem is solved using a suitable solver. As recognized by Gomez et al. [11], since32

most dFBA models are stiff, small time steps are required to ensure convergence, thus a large number of LP33

problems need to be solved to calculate the trajectory of the system, making this approach computationally34

expensive. The DOA approach is an attempt to use collocation methods to avoid the embedded nature of35

the dFBA problem. This approach discretizes the time horizon and transforms the problem to a nonlinear36

programming (NLP) problem. Mahadevan et al. [22] analyzed a network of 54 metabolites and 85 reactions37

using both the SOA and DOA approaches, concluding that the large number of constraints and variables38

introduced in the DOA approach limits its applicability to larger metabolic networks.39

The DA approach includes the LP solver in the right hand side evaluator for the ordinary differential40

equations. Although this requires obtaining a solution of the LP problem at every evaluation of the right41

hand side, this approach can be implemented within implicit ODE integrators with adaptive step size for error42

control, thus reducing the number of integration steps compared to the use of SOA. In this regard, Gomez43

et al. [11] presented a DA implementation in MATLAB™, DFBAlab, that incorporates an LP feasibility44

problem and lexicographic linear optimization problems to generate an extended dynamic system for which45

the LP always has a solution. Lexicographic optimization augments the original LP problem, where typically46

the specific growth rate is maximized, by adding constraints from a user-predefined list of fluxes to deal with47

the (possible) existence of multiple flux distributions resulting in the same objective function. In this way,48

the LP problem is first solved by optimizing, for example, the specific growth rate. Next, a constraint is49

added specifying that the biomass flux should be equal or higher than the obtained optimum value and the50

next objective function in the predefined list is used. This idea has been used recently by Harwood et al. [12]51

and extended by exploiting the fact that, during an integration period, the optimal basis of the LP could52

remain unchanged thus transforming the dFBA problem in a system of semi-explicit index-1 differential53

algebraic equations. They also devised methods for detecting a change in the optimal basis of the LP and to54

update it. In this way, obtaining the solution of a dFBA simulation problem reduces to the integration of a55

semi-explicit index-1 system of equations until a change in the basis is detected. After updating the optimal56

basis, the integration can continue until the end of the integration horizon is attained. Theoretically this57

is the most elegant way for solving embedded LP problems within an ODE system and provides the most58

accurate solution without any approximation error. However, the active set method proposed by Höffner59

et al. [15] and Harwood et al. [12], is entirely equivalent to a basis identification method, such as the one60

implemented in DFBAlab. As such, it leads to a dynamic simulation that requires continuous monitoring61

and identification of any active set changes. This in turn constitutes a dynamic simulation involving discrete62

events (hybrid system).63

Finally, Zhao et al. [41] propose a solution approach for dFBA problems with nonlinear objective functions,64

such as the maximization of the biomass yield or the maximization of the ATP yield per flux unit. In65

this approach, the Karush-Kuhn-Tucker (KKT) conditions of the LP are embedded resulting in a quasi66

differential-algebraic system of equations. Since the active set may change during the simulation, they use an67

extreme-ray-based transformation to update the active set. The largest problem solved using this approach68

consists of 45 intracellular reactions and took nearly 20 seconds. Considering that genome-scale models69

include thousands of reactions, new methods for solving large dFBA problems are required.70

The system of differential equations with an embedded linear optimization problem can be reformulated71

as an index-1 differential and algebraic (DAE) system of equations by using the KKT conditions of the72
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embedded LP. However, the KKT conditions involve complementarity constraints. Complementarity is a73

relationship between variables where at least one of the variables must be at its bound [2], see Eqs. (9e) to74

(9h) for a typical set of complementarity constraints. These constraints are linearly dependent, which within75

the context of the aforementioned DAE system renders it unsolvable as it will have a linearly dependent76

Jacobian, as noticed by Zhao et al. [41].77

Increasing demands for the sustainable and economically optimized synthesis of bioproducts, energy78

requirements and environmental concerns and demands for microbial strains that can produce valuable bio-79

chemicals led to efforts to improve the yield and productivity of fermentation processes by optimizing batch80

or fed-batch operation of bioreactors. Optimal control and parameter estimation applications of genome-scale81

dFBA models have been severely limited due to the computational burden of embedding a dFBA model into82

an optimal control problem for large models. In this regard, the solution of the bilevel optimization problem83

has been approached by resorting to its reformulation as a mathematical program with complementarity84

constraints (MPCC) [2]. In this approach the optimality conditions of the inner (FBA) optimization problem85

are imposed as constraints on the outer problem and the differential equations are discretized using different86

collocation strategies [4] leading to a NLP problem. This approach requires handling the complementary87

constraints by one of several regularization techniques to avoid the non-uniqueness of the constraint multipli-88

ers. Regularization approaches include the relaxation of the right hand side of the complementary constraint89

by a small positive value whose value decreases as the optimization proceeds, or the inclusion of a penalized90

sum of the complementary constraints in the objective function (see Section 3 in Baumrucker et al. [2]).91

Finally, MPCC solvers have been developed such as CONOPT-C [30] and also automatic reformulation tools92

of MPCCs are available such as the NLPEC meta-solver in GAMS, which allows using standard NLP solvers93

in GAMS.94

The MPCC reformulation approach for solving optimization problems with embedded dFBA problems95

has been previously reported in the literature. Hjersted and Henson [13] studied the fed-batch optimization96

of a bioreactor with a small-scale model of S. cerevisiae metabolism. The approach used was to discretize the97

state variables, to model the feed stream as piecewise constant control inputs in time and to replace the LP98

problem by its KKT conditions, with this resulting in a nonlinear problem whose solution is limited by the99

size of the network. One year later, Hjersted et al. [14] presented a genome-scale analysis of the production100

of ethanol by S. cerevisiae in fed-batch culture, where in this work no attempts were made to optimize the101

performance of the fed-batch culture using optimal control, presumably because the metabolic model was102

too large to be handled by the current solution methods.103

Kaplan et al. [17] proposed a parameter estimation formulation using a dFBA model of a yeast (42 metabo-104

lites and 48 reactions) handling the complementary constraints obtained by including the KKT conditions of105

the inner LP by using a Fischer-Burmeister smoothing function [2]. Raghunathan et al. [31] used variational106

inequalities to model switches in the objective function and in the uptake rates of substrates in a dFBA107

model of S. cerevisiae with 39 reactions. The model was embedded in a parameter estimation problem aimed108

to obtain the biomass composition in terms of macromolecular fractions of proteins, carbohydrates, nucleic109

acids and lipids. The optimization problem was reformulated as an MPCC and solved using CONOPT-C.110

Although the metabolic network analyzed was small, the resulting MPCC contains 33066 variables and 26192111

constraints. Recently, Emenike et al. [9] applied a similar MPCC-collocation approach to the in-silico op-112

timization of the production of recombinant proteins in Pichia pastoris. The metabolic network consists of113

37 metabolites and 47 reactions, far from the available genome-scale metabolic models P. pastoris, such as114

iPP668, composed of 1.361 reactions and 1.177 metabolites [5].115

Thereby, new methods are required in dFBA so as to be able to address three key points; (a) produce116

a differentiable simulation of dBFA so that it can be embedded in an optimal control solver, (b) be faster117

computationally than existing methods and able to handle genome-scale metabolic networks, and, (c) be118

able to deal with non-linear objective functions, also under the proviso that the weak Slater’s condition [3] is119

satisfied for the resulting non-linear FBA problem (so that strong duality holds, as is the case with the LP120

formulation in this work).121

In this work, a new approach for the solution of dFBA models is presented. The method relies on a trans-122

formation of the dFBA model to an implicit system of ordinary differential equations. This transformation is123

accomplished by using a logarithmic barrier approach (an Interior Point approach) for the inner LP problem.124

This approach is advantageous since it does not require the detection of a feasible set or an optimal basis,125

neither requires the repeated solution of LP problems. Moreover, our approach can be applied directly to126
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solve dynamic optimization problems with an embedded dFBA model. Hence, all three points presented in127

the previous paragraph are addressed with the contributions put forward with our present work, with actual128

implementation of non-linear objectives being a case that will be addressed in a future publication.129

This paper is organized as follows: section 2 introduced the FBA and dFBA models as well as some130

useful properties of the interior point methods for the solution of LP problems, section 3 presents the interior131

point based formulation to solve dFBA models as implicit systems of ODEs. Finally, section 4 presents seven132

examples covering the simulation and dynamic optimization of dFBA models.133

2. Theoretical background and problem formulation134

2.1. Dynamic Flux Balance Analysis, dFBA135

In the context of Flux Balance Analysis models, a mass balance for every identified metabolite is used to136

derive the stoichiometry of a set of the biochemical reactions taking place inside a cell and the transport of137

metabolites across the cell membrane, resulting in a set of linear equations. Let v be a vector of n fluxes,138

formed by each reaction rate expressed in mmol per hour per gram of dry biomass (mmol(gDWh)−1). The flux139

of biomass is expressed as the specific growth rate (gDW(gDWh)−1) to match the units of the experimental140

measurements. In FBA it is assumed that the rate of the internal reactions and transport rates of the m̃141

metabolites are faster when compared to the dynamics of the fermentation, resulting in a quasi-steady state142

mass balance [37] that can be expressed as Nv = 0, where N is an m̃× n matrix with rank(N) = m̃.143

Generally, the resulting system of linear equations cannot be solved as the number of variables is larger144

than the number of equations. Thereby, it is assumed that a cellular objective exists, such as the maximization145

of the specific cell growth under the prevailing external conditions. Hence, the following linear programming146

(LP) problem can be formulated:147

min
v

− cTv

s.t. Nv = 0,
vlo ≤ v ≤ vup,

(1)

where, c is a column vector of length n with positive or zero entries and vlo and vup are bounds on the148

optimization variable v representing the uptake and product fluxes of the problem. The bounds are chosen149

so as to restrict the value of the fluxes to within realistic intervals.150

FBA is a conveniently simple way to incorporate biochemical pathway information without the need151

of intracellular kinetics to any bulk phase, macroscopic model of biochemical processes. The equality and152

inequality constraints of the FBA problem form a polytope where the problem is feasible. The optimal153

solutions of the LP problem can lay on a vertex of the polytope, and be unique, or be non-unique solutions154

if the objective function hyperplane is parallel to a facet of the constraint polytope at the solution. This155

is a mathematical shortcoming of the model which fails to produce a uniquely defined set of fluxes for the156

underlying biochemical reaction network, without any further specialized manipulation for the case of FBA,157

such as lexicographic optimization [12].158

A second shortcoming of FBA is that it may highlight parts of the biochemical reaction pathway as active159

when in reality there is no way of being certain regarding their activity without further experimental confir-160

mation. This is the result of the problem being incomplete in terms of having more variables than equations161

to obtain a solution which defines the state of the network (the full set of independent fluxes). This second162

problem is an inevitability regardless of the method chosen to solve the FBA LP problem.163

164

In a Dynamic Flux Balance Analysis, the mass balance of the measured species in the bioreactor media165

is defined by a system of ordinary differential equations (ODEs) accounting for the variation of their con-166

centrations in time. The consumption of substrates from the media is linked to the uptake substrate fluxes167

in the FBA model. This is represented by a set of algebraic equations. Thus, for given substrate uptake168

rates a solution of the FBA problem (an optimal flux distribution) can be obtained, which in turn results in169

a specific growth rate and specific product rates. These rates will modify the concentrations of substrates,170

biomass and products in the culture media.171

The FBA problem (Eq. 1) will be modified to accommodate the specification of the substrate uptake172

rates. First, let the matrix A ∈ Rm×n, with m = m̃+ p, be defined as:173
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A =
[

N
C

]
, (2)

where C ∈ Rp×n is a matrix containing only zeros and ones, so that the product Cv ∈ Rp denotes all p174

substrate uptake rates. Let be qupt(x) a vector of p uptake rates defined by algebraic functions of the species175

concentrations in the media (x), then for a given value of the concentrations of the species in the media, the176

mass balance of the intracellular species can be written as:177

Av = b =
[

0
qupt(x)

]
, (3)

The aforementioned situation is described by the following system of ordinary differential equations with178

an embedded linear programming problem:179

dx(t)
dt

= f(x(t),v(t)), x(0) = x0,

qupt(t) = g(x(t)),
v(t) ∈ arg min

w
{−cTw|Aw = b(t) = [0 qupt(t)]T ,wlo ≤ w ≤ wup},

(4)

where x ∈ Rd corresponds to time dependent concentration whose evolution is controlled by a continuous180

function f : Rd × Rn → Rd, qupt ∈ Rp represents the specific uptake rates of p substrates and g : Rd → Rp181

is a continuous C1 vector function. Finally, vector v(t) corresponds to the flux vector minimizing the FBA182

problem. It is noted that strictly speaking the solution of the embedded LP may be an infinite set of values,183

rather than a singular vector, achieving the same objective function in the case where the objective function184

hyperplane of the LP is parallel to a facet of its feasible polytope. This set is defined by the linear combination185

of the vertices of the active facet of the polytope.186

2.1.1. Approaches for solving linear programming problems (LP)187

Several approaches exist for handling the linear equality and inequality constraints in the LP problem (Eq.188

4). A linear programming problem can be written as a primal problem and its corresponding dual problem.189

Alternatively, an augmented objective function can be written by adding a penalization of the inequality190

constraints (the bounds on fluxes). In this section, we will show that the latter results in a differentiable set191

of equations that replaces the optimization problem, and thus can be used to transform Eq. 4 from a ODE192

system with an embedded LP into a set of differential and algebraic equations (DAE).193

Moreover, we will show that the Karush-Kuhn-Tucker (KKT) conditions of an LP reformulation of the194

embedded FBA problem via a primal-dual log-barrier transformation results in a fully differentiable model,195

comprised purely of algebraic equations whose solution depends parametrically on the extracellular environ-196

ment state variables (metabolite and substrate concentrations, pH, etc.). Formulating the FBA LP problem197

KKT conditions directly results in MPCC, thus requiring specialized solution techniques and collocation of198

the differential equations. Use of the interior point formulation handles all these issues automatically and199

smoothly.200

The differentiability of the transformed dFBA model via the primal-dual approach is paramount in order201

to generate reliably sensitivity equations, as discussed in section 3 and Problem 5 of this article. Although202

interior point methods become more efficient when dealing with large- to huge-size LP problems, it should be203

stressed that here we do not have a free-standing LP problem: the LP problem is embedded within an ODE204

bulk-phase model of bioreactors. As evidenced by the computational results, our approach using standard,205

state-of-the-art, dynamic process simulators results in highly competitive solution times even when compared206

with the customized DFBAlab tool [11].207

Although the proposed approach is within the category of complementarity conditions relaxations, as the208

MPCC regularization methodology reviewed in the Introduction section by being effectively a µ-relaxation of209

the complementarity conditions of the LP associated with FBA, it results from writing the KKT conditions210

of optimality of the LP transformed via the interior point method. As such, it has the property that it always211

results in a unique solution regardless of whether or not the exact solution of the LP lies at the vertex or212

a facet of the constrained polytope, as in the case where the objective function hyperplane is parallel to a213

facet of the polytope at the solution. By the properties of interior point methods in the former case the214
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solution will be strictly interior in the vicinity of the active vertex, or in the latter case again in the interior215

of the polytope in the vicinity of the analytic center of the active facet [19]. It is noted that such a solution216

is convenient for simulation and optimization purposes, as one does not have to worry about its uniqueness.217

Arguably, this constitutes an arbitrary choice from among the possible active vertices in this case, which218

lexicographic optimization approaches can handle provided that a suitable ordering of uptake and product219

fluxes is possible to define a priori [12].220

221

An important property of the µ-relaxation which results from the consideration of an interior point trans-222

formation is that the bounds in the variables and consequently on the associated Lagrange multipliers of the223

bounds are always satisfied strictly. Furthermore, the µ-relaxation of complementarity suffices for the solu-224

tion of the associated embedded LP problem without the need for any further introduction of transformations.225

226

In attempting to solve computationally the semi-explicit index one DAE system given in equations (16a227

to 16f) it is observed that numerical solvers exhibit difficulty to converge the initialization phase. This oc-228

curs because these numerical solvers and simulation packages employed a general purpose Newton method.229

However, we are solving non-linear systems which arise from complementarity conditions of an interior point230

reformulation of the LP, and such applications require a customized Newton solver which retracts the search231

space to be strictly within the bounds of the variables. To alleviate this problem an index reduction of the232

DAE system is applied to render it into a pure implicit ODE system, for which consistent initial conditions233

for all states can be provided conveniently outside the integration phase through an interior-point LP solver.234

The particular choice of µ-relaxations of the complementarity conditions results in a very straightforward235

coupled linear ODE subsystem as it will be shown below.236

237

Finally a significant difference of our implementation over the work presented in Raghunathan et al. [31],238

Hjersted and Henson [13], Kaplan et al. [17] and Emenike et al. [9] is that right at the outset we are aiming239

for very large scale dynamic models (genome scale) which can include several thousands of reactions and240

metabolites, and to be implementable as part of larger flowsheets, both for simulation, optimization, and241

parameter estimation purposes, through implementation in existing advanced equation oriented flowsheeting242

packages such as gPROMS [29].243

244

In the remaining of this section we follow closely the approach presented by Monteiro and Adler [24], while245

similar treatments can be found in the work of Kojima et al. [19] and Megiddo [23]. We start by defining the246

following pair of primal P and dual D problems for the inner LP in problem 4:247

248

Primal problem P :249

min
v
−cTv

s.t.
Av = b,

vup − v ≥ 0,
v− vlo ≥ 0.

(5)

Dual problem D:250

max
λ, z,y

−bTλ+ yTvlo − zTvup

s.t.
ATλ− y + z = c,

z ≥ 0,
y ≥ 0,

(6)

where λ ∈ Rm, y and z both in Rn, are the dual variables of problem P.251

In our work, we explore the application of logarithmic barrier functions to handle the bounds on variables252

in problem P, allowing its reformulation as:253

254

Problem Pµ:255
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min
v
−cTv− µ

n∑
i=1

[
ln
(
vi − vilo

)
+ ln (vupi − vi)

]
s.t.

Av = b,

(7)

where µ > 0 is the barrier penalty parameter. Before analyzing if problems Pµ, P and D are equivalent, the256

following assumptions are imposed [24]. These assumptions are required to guarantee the existence of a non257

empty solution space for the embedded LP.258

Assumption 1. The problems Pµ, P and D have the following properties (an adaptation of the properties259

stated in Monteiro and Adler [24]):260

a. The set S ≡ {v ∈ Rn; Av = b, v − vlo ≥ 0, vup − v ≥ 0} is non-empty for b = b(t) for all t in the261

integration time-span [t0, tf ].262

b. The set T ≡ {(λ,y, z) ∈ Rm+n+n; ATλ− y + z = c, y ≥ 0, z ≥ 0} is non-empty.263

c. rank(A) = m = rank(N) + rank(C) = m̃+ p.264

Thus, the sets S and T are interior feasible solutions of problems P and D, respectively. Under Assumption265

1, we will show that the first-order conditions for P and D are identical. First-order necessary optimality266

conditions (cf. Theorem 12.1 in Nocedal and Wright [25]) for problems P and D are obtained from its267

Lagrangian functions.268

The Lagrangian function of problem P is:269

L(v,λ,y, z) = −cTv + λT (Av− b)− zT (vup − v)− yT (v− vlo). (8)

Hence, the first-order necessary conditions for v∗ to be a solution of P are that there exists vectors λ∗,270

y∗ and z∗ such that:271

−c + ATλ− y + z = 0, (9a)
Av = b, (9b)

vup − v ≥ 0, (9c)
v− vlo ≥ 0, (9d)

y ≥ 0, (9e)
z ≥ 0, (9f)

zi(vupi − vi) = 0, i = 1, 2..., n, (9g)
yi(vi − vloi ) = 0, i = 1, 2..., n, (9h)

holds for v = v∗, λ = λ∗, z = z∗ and y = y∗.272

For the dual problem D, the Lagrangian function corresponds to:273

L̃(λ,y, z,v,µ1,µ2) = bTλ− yTvlo + zTvup − vT (−c + ATλ− y + z)− ωT1 z− ωT2 y. (10)

The vector triplet (λ∗, y∗, z∗) will be a solution of the dual problem if there exists vectors v∗, ω∗1 and274

ω∗2 in Rn, multipliers for the equality, upper bounds and lower bounds in problem D, respectively, such that275

the first order necessary conditions:276
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∂L̃

∂λ
= Av− b = 0 (11a)

∂L̃

∂y = v− vlo − ω2 = 0 (11b)

∂L̃

∂z = vup − v− ω1 = 0 (11c)

∂L̃

∂v = ATλ− y + z− c = 0 (11d)

y ≥ 0, (11e)
z ≥ 0 (11f)
ω1 ≥ 0 (11g)
ω2 ≥ 0 (11h)

ω1izi = 0 (11i)
ω2iyi = 0, i = 1, 2..., n (11j)

holds for (λ,y, z) = (λ∗,y∗, z∗) and (v,ω1,ω2) = (v∗,vup − v∗,v∗ − vlo). By replacing the optimal values277

for the multipliers in the system above, it can be verified that the first-order for P and D are identical.278

Finally, the first-order necessary conditions for problem Pµ are:279

ATλ− y + z− c = 0, (12a)
Av = b, (12b)

zi(vupi − vi) = µ, (12c)
yi(vi − vloi ) = µ, i = 1, 2..., n. (12d)

Now, we apply the following proposition from Monteiro and Adler [24] to problem Pµ.280

Proposition 2.1. If Assumption 1.a holds and let µ > 0 be given, then Pµ has an optimal solution if and281

only if the set of optimal solutions of P is non-empty and bounded.282

A proof of proposition 2.1 is given in Megiddo [23]. As stated by Monteiro and Adler [24], this implies283

that if Pµ has a solution for some µ > 0, then it has a solution for all µ > 0. Moreover, the Duality Theorem284

of Linear Programming states that if either problem P or D has a solution with finite optimal objective value,285

then so does the other, and the objective values are equal (Theorem 13.1 in Nocedal and Wright [25]). As a286

consequence the following corollary can be stated.287

Corollary 2.1. Under Assumption 1.a and 1.b, problem Pµ has a unique solution v(µ), λ(µ), y(µ) and z(µ)288

for all µ > 0.289

By analyzing the system of equations derived by applying the Karush-Kuhn-Tucker conditions to problem290

P, it can concluded from the last two equations that if v ∈ S and µ > 0, then z > 0 and y > 0. The first291

equation implies that (λ,y, z) is an interior feasible solution to the dual problem D. From assumption 1.c,292

it can be concluded that there is a unique λ satisfying Eqs. (12a) to (12d).293

Finally, the following proposition ensures that the solution of Pµ is identical to the solution of P and D294

as µ→ 0.295

Proposition 2.2. If Assumption 1 holds, as µ → 0, v(µ) and (λ(µ),y(µ), z(µ)) converges to the optimal296

solutions of problems P and D respectively.297

Proof. Let w(µ) = (v(µ),λ(u),y(µ), z(µ)) be the point satisfying Eqs. (12a) to (12d). The duality gap at298

this point is by definition:299

g(w) = −cTv− (−bTλ+ yTvlo − zTvup). (13)
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Using Eqs. (12a) and (12b), one can show that:300

g(w)=
n∑
i=1

[
zi(vupi − vi) + yi(vi − vloi )

]
. (14)

By using Eqs. (12c) and (12d) it can be concluded that:301

g(w) = 2nµ. (15)

Therefore, the duality gap converges to zero as µ→ 0, implying that the objective functions of problems302

P and D converge to a common optimal value.303

3. An interior point based formulation for ODEs with embedded LPs304

The system of ordinary differential equations with en embedded LP defined by Eq. (4) can be transformed305

to a differential and algebraic equation system (DAEs) by replacing the embedded LP with the first-order306

necessary conditions of optimality for problem Pµ (Eqs. (12a) to (12d)):307

dx(t)
dt

= f(x(t),v(t)), x(0) = x0, (16a)

qupt(t) = g(x(t)), (16b)

Av(t) = b(t) =
[

0
qupt(x(t))

]
, (16c)

zi(t)(vupi − vi(t)) = µ, (16d)

yi(t)(vi(t)− vloi ) = µ, i = 1, 2..., n. (16e)

−ATλ(t) + y(t)− z(t) = −c. (16f)

It is noted that in the above model, v(t) constitutes the unique solution of the reformulated instantaneous308

LP problem by the properties of interior point methods as outlined in section 2.1.1.309

The inclusion of the Karush-Kuhn-Tucker conditions of a primal-dual formulation for an LP problem310

contains a µ relaxation of the complementarity conditions of the LP (bounds values times the corresponding311

Lagrange multipliers, c.f. Eq. (7)) in a smooth way which allows its continuous integration without requiring312

further regularization. This is equivalent, in effect, to the regularization scheme presented in Baumrucker313

et al. [2] in equations (19a)-(19e), noting that no inequality constraints are left in the formulation which allows314

their continuous and uninterrupted integration into a uniform DAE/ODE system. A similar approach, to315

handle embedded LP problems into DAE models is presented in Kaplan et al. [17], but it is worth noting that316

in equations (14) and (15) of their paper the approach adopted is non-differentiable in the right hand-side317

and hence would not be suitable for smooth integration with the aim to generate sensitivity equations.318

Unless explicitly stated, the time dependencies of the variables will be omitted for simplicity. The DAE319

(Eqs. 16a to 16f) can be transformed to a system of implicit ODEs by differentiation to yield:320

dx
dt

= f(x,v), x(0) = x0, (17a)

dqupt

dt
= dg(x)

dx
dx
dt
, (17b)

dzi
dt

= µ

(vupi − vi)2
dvi
dt
, i = 1, 2..., n, (17c)
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dyi
dt

= − µ

(vi − vloi )2
dvi
dt
, i = 1, 2..., n, (17d)

Adv
dt

= db
dt

=
[

0
dqupt
dt

]
, (17e)

−AT dλ

dt
+ dy
dt
− dz
dt

= 0. (17f)

The initial point must correspond to the solution of the primal-dual barrier formulation of the FBA321

problem at the initial time (t0 = 0), derived with the same barrier parameter (µ) that is used in the322

simulation of the dFBA model considered.323

Finally, the implicit system of equations can be further reduced (Reduced - implicit ODE or R-iODE).324

This is performed not only to decrease the number of differential variables during the numerical integration,325

but also to create a representation of the system of differential equations suitable to be used in the proofs326

and propositions in this section:327

328

R-iODE problem:329

dx
dt

= f(x,v), x(0) = x0 (18a)

dqupt

dt
= dg(x)

dx
dx
dt
, (18b)

Ã =
[

A 0
D(µ,v) AT

] [
dv
dt
dλ
dt

]
=
[

db
dt
0

]
, (18c)

where D(µ,v) is a positive definite diagonal matrix whose entries are defined as:330

Di,i(µ,v) = µ

(vup
i − vi)2 + µ

(vi − vlo
i )2 (19)

Provided that Assumption 1 holds, then the inner linear problem P in Eq. 4 has a non-empty and331

bounded feasible region, the following result can be stated:332

Proposition 3.1. Under assumption 1, the inner linear program in equation 4 has a unique solution v∗,333

with vlo < v∗ < vup for a given µ > 0 at a certain time t ∈ [t0, tf ]. Then, the system of equations (18a) to334

(18c) has a unique solution for dv
dt ,

dλ
dt ,

dqupt
dt and dx

dt at t.335

Proof. Under the assumptions of Proposition 3.1, the diagonal matrix D(µ,v) and its inverse always exist.336

Using block matrices inversion [20], the inverse of Ã is:337

Ã−1 =
[

D−1AT (AD−1AT )−1 D−1−D−1AT (AD−1AT )−1AD−1

−(AD−1AT )−1 (AD−1AT )−1AD−1

]
(20)

and the solution can be expressed in terms of the inverse of the Schur complement AD−1AT , which is well338

defined since A is of full rank [23]. Thereby, dv
dt and dλ

dt can be calculated as the product Ã−1
[

db
dt
0

]
, which339

is unique, then dqupt
dt and dx

dt are also unique at t.340

Consider an explicit integration scheme, such as the Euler’s explicit method, applied to the integration341

of Eqs. (18a) to (18c). At time t = 0, x(0) = x0, qupt(0) = g(x(t0)) and the solution of the inner LP342

problem can be obtained by solving Eqs. 12a to 12d by using an interior-point based algorithm to yield a343

point v(µ,qupt(0)), λ(µ,qupt(0)), y(µ,qupt(0)) and z(µ,qupt(0)). If these solutions exist, it must be true344

that vlo < v(µ,qupt(0)) < vup. Then, the next step in the discretized trajectory of the system of differential345

equations (18a) to (18c) is uniquely determined. These ideas are formalized in the following theorem:346
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Theorem 3.1. Suppose assumption 1 holds for every inner LP problem along a time interval t ∈ [t0, tf ] and347

that a point x(t0) = x0, qupt(t0) = g(x(0)), v(µ,qupt(t0)), λ(µ,qupt(t0)), y(µ,qupt(t0)) and z(µ,qupt(t0))348

can be calculated at t = t0 satisfying the DAE system defined by Eqs. (16a) to (16f). If an explicit integration349

scheme is used to calculate a discretized trajectory (in time) of the system of ODEs defined by Eqs. (18a) to350

(18c), then this trajectory is unique.351

Proof. The proof will proceed by induction. First consider that a solution of the inner LP of the dFBA
problem (Eq. 4) exists at time zero for an initial condition x(0) = x0, thus yielding v0, y0, z0 and λ0 Also
consider that the integration time horizon is discretized, using a constant step size s for simplicity, such that
tk+1 = tk + s. If the explicit Euler method is used to calculate the next step in time of the differential
variables in the system of ODEs defined by Eqs. (18a) to (18c), its value will be given by:

x(0 + s) = f(x0,v0)s, (21)

qupt(0 + s) = dg(x0)
dx f(x0,v0)s,[

v(0 + s)
λ(0 + s)

]
= s

(
Ã(µ,v0 )

)−1
[ db

dt (0)
0

]
.

Similarly, the value of the differential variables at tk+1 can be calculated as:352

x(tk + s) = f(xk,vk)s, (22)

qupt(tk + s) = dg(xk)
dx f(xk,vk)s,[

v(tk + s)
λ(tk + s)

]
= s

(
Ã(µ,vk)

)−1
[

db
dt (tk)

0

]
.

Since the right hand side of Eq. 22 is a function of the known values of v and x at tk, then the values of353

the differential variables at tk+1 are uniquely determined by equations Eq. 22.354

Theorem 3.2. Under the assumptions of Theorem 3.1 the value of the duality gap defined in Eq. (14) is355

constant for every value of t ∈ [t0, tf ] and depends only on the value of µ. Thus, as µ → 0, at each time t,356

the solution of Eqs. (18a) to (18c) v(µ), λ(µ) and y(µ) and z(µ) from Eqs. (17c) and (17d) converges to357

the optimal solutions of the embedded linear programming problem in Eq. (4).358

Proof. We start from the definition of the duality gap in Eq. (14) and differentiate it with respect to time359

to yield:360

dg(w)
dt

= (vup − v)T dz
dt
− zT dx

dt
+ (v− vlo)T dy

dt
− yT dx

dt
. (23)

Replacing dz
dt and dy

dt by their definitions from Eqs. (17c) and (17d), respectively, and factorizing we361

obtain:362

dg(w)
dt

=
[

µ

vupi − vi
− µ

vi − vloi
− zi + yi

]
dx
dt
. (24)

The term in brackets in the previous equation is zero (see Eqs. (17c) and (17d)), thereby:363

dg(w)
dt

= 0→ g(t) = g(t0) = 2nµ (25)

In practice, the value of the duality gap will also depend on the integration error tolerance, which in turn364

is controlled by the step size h of the integration method and its order, n:365

g(t) = 2nµ+O(hn) (26)

366
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3.1. Implementation367

The Direct Approach (DA) for the solution of the ODEs with embedded LPs was implemented using368

either the built-in ODE integration tool ode45 or ode15s in MATLAB™. The inner LPs were solved using369

CPLEX [16] and other LP solvers, such as the MATLAB™ linprog function and CLP in MATLAB’s OPTI370

toolbox[6]. However, only results obtained using CPLEX are presented as this solver was the fastest in all371

test cases, although identical results, in terms of objective function value, were obtained in all of them.372

The DAE systems resulting from the application of the Interior Point approach described in this work373

(Eqs. (16a) to (16f)) were solved using ode15s in MATLAB™. The Jacobians of the algebraic constraints374

were supplied as functions (analytically obtained) and the initial point of the DAE system was obtained using375

an implementation of the Primal-Dual Infeasible Interior-Point algorithm presented by Press et al. [28] to376

calculate the values of the fluxes, multipliers λ, y and z. The solution of the DAE system was also obtained377

using gPROMS (Process Systems Enterprise, Ltd., [29]). The system of implicit differential equations (18a)378

to (18c) was solved in gPROMS and MATLAB™ using ode45. The default value of the penalty parameter379

µ was set to 10−6 and ode15s, ode45 and gPROMS were used with their default options.380

The time required to perform the integration in MATLAB™was obtained using the timeit function,381

that returns the wall-clock time, and also as the difference between two cputime calls, thus returning the382

total CPU time. In gPROMS the time required to calculate the trajectory was obtained, both as wall-time383

and CPU time, as the difference between a run where the integration time was set to reach the end of the384

simulation and a run where no integration was executed (zero integration time). This was necessary since385

gPROMS reports the execution time including the time required for system construction and analysis, solver386

loading and integration. In gPROMS the reported time values are an average of 10 runs.387

Simulation problems were also solved using DFBAlab [11] using its default options for integration and LP388

optimization tolerances. CPLEX was used as the LP solver and the number of LP solved during a simulation389

was obtained as the number of calls to cplex.solve using the profile tool in MATLAB™.390

All calculations were performed on a desktop computer equipped with an Intel® Core i7-6700 CPU and391

32 GB RAM running Windows 10 64 bits.392

4. Case studies393

This section presents several case studies with increasing complexity. First, a fermentation where there394

is only one limiting substrate is analyzed for different metabolic networks. A second problem illustrates how395

our approach handles the changes in phenotypic phase planes [8] as the concentration of two substrates vary396

in a batch culture. As a third example, a medium scale metabolic model of E. coli is analyzed followed397

by a genome-scale one, as to asses the effect of the size of the metabolic network on the computational398

performance of the proposed approach. Finally, a fermentation where both the uptakes of oxygen and glucose399

are considered as inputs is analyzed using the genome-scale metabolic network of S. cerevisiae iND750 [7].400

Finally, the application of the interior-point reformulation of dFBA problems to dynamical optimization401

problems is presented.402

4.1. One limiting substrate, increasing metabolic network sizes.403

4.1.1. Problem 1: Spirallus metabolic network404

The metabolic network used in this example was taken from Zhao et al. [41] and includes only five405

intracellular metabolites (A to E) and three extracellular species (S, P and x). The purpose of this example406

is to serve as a motivating and instructive small case study which is easy to implement and reproduce by407

other researchers wishing to evaluate or adopt out proposed methodology in their own work. The graphic408

representation of the network can be found in Figure 2 in the work of Zhao et al. [41]. The time evolving409
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profile of the extracellular species concentration is given by the following differential equations:410

dx

dt
= v5(t)x(t), x(0) = 1.0 gL−1, (27)

dS

dt
= −qS(t)x(t), S(0) = 20.0 mmolL−1,

dP

dt
= v6(t)x(t), P (0) = 0.0 mmolL−1,

qS(t) = qS,max
S(t)

S(t) +KS
,

with Ks = 1.0 mmolL−1 an affinity constant for the substrate and qS,max = 3.8 mmol(gDWh)−1 its maximum411

uptake rate. The problem involves 7 fluxes and 6 metabolites, including the substrate uptake rate. The412

augmented stoichiometric matrix, A, is given by:413

v1 v2 v3 v4 v5 v6 qS

A =

A
B
C
D
E
S


−1 0 0 −1 0 0 1

1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
−1 0 0 1 −1 0 0

0 1 1 0 0 −1 0
0 0 0 0 0 0 1


and

v = (v1, v2, v3, v4, v5, v6, qS)T

is the vector of fluxes with lower and upper bounds given by

vlo =
(
0, 0, 0,−106, 0, 0, 0

)T mmol(gDWh)−1,

vup = 106 (1, 1, 1, 1, 1, 1, 1) mmol(gDWh)−1.

The problem is completed by defining:

b(t) =
(

0, 0, 0, 0, 0, qS,max
S(t)

S(t) +KS

)T
,

db(t)
dt

=
(

0, 0, 0, 0, 0, qS,max

(S(t) +Ks)2
dS

dt

)T
and the objective weighting vector that ensures that biomass is maximized:

c = (0, 0, 0, 0, 1, 0, 0)T

The computational results are shown in Table 1. CPLEX and MATLAB’s linprog LP solvers fail to produce414

a solution at 0.88 h of cultivation time when ode45 is used. At this point, ODE45 calculates a negative value415

of substrate concentration causing an empty solution set for the inner LP. On the other hand, when using416

ode15s, no integration problems are encountered being CPLEX the LP solver requiring the shortest wall417

and CPU time to perform the simulation using 0.041 and 0.062 s, respectively. The use of our R-iODE418

approach allows for an even faster simulation, requiring only 0.016 s when ode45 is used as the integrator.419

When gPROMS is used to perform the calculations, the overall wall time is 0.8 s, but this time includes the420

construction of the system of equations and its analysis while the time reported for ode45 is only integration421

time. In this regard, gPROMS reports a nearly zero time to perform the integration, making this combination422

(R-iODE & gPROMS) the fastest for this problem.423

The trajectories calculated using R-iODE, the Direct Approach and DFBAlab and the ones presented in424

Zhao et al. [41], are identical. Although the objective function used by Zhao et al. [41] is a non-linear one425

(the maximization of the biomass flux divided by the norm of the flux vector), the trajectories match. It is426

possible to show that, in this particular metabolic network, the linear objective function used in Problem 1427
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Table 1: Computational times and integration statistics for solving Problem 1 by the Direct or the Interior Point approaches
and DFBAlab. The metabolic network in Problem 1 has 7 fluxes and 6 metabolites.

Direct Approach DFBAlab Interior Point Approach
Solver CPLEX CPLEX DAE R-iODE
Integrator ode45 ode15s ode15s ode15s gPROMS ode45 gPROMS
Wall time (s) Fa[0.88h] 0.041 0.565 0.019 1(<1)b 0.016 1(<1)
CPU time (s) - 0.062 0.531 0.047 0.040 0.046 0.032
N° of LPs solved - 121 4 - - - -
Infeasible LPs - 0 0 - - - -
Successful steps - 50 105 87 59 25 60
Failed attemps - 9 12 28 3 4 0
Function evals. - 121 200 837 193 175 151
Jacobian evals. - 3 1 19 16 0 (+18)c 12 (+18)

aIndicates that the method failed to complete the simulation at the time indicated in brackets
bWall-clock time to construct and analyze the system, call solvers and integrate. In parenthesis, wall time for integration

only.
cIn parenthesis, the number of Jacobian evaluations required for solving the LP problem during initialization.

and the objective function used by Zhao et al. [41] are equivalent. It is interesting to note that the CPU428

and wall times required by DFBAlab to calculate the solution of problem 1 are longer than the ones required429

by the Direct Approach and the approaches developed in this work. This can be explained by the fact that430

DFBAlab requires checking at each time step whether a basic variable crosses zero or not, as described in431

Höffner et al. [15], then the basis set is not longer optimal and a new basis needs to be calculated by solving432

an LP problem. The event detection involves solving a pre-factorized linear systems of equations, and has433

an extra computational cost by comparison to R-iODE. Indeed, the CPU times reported by the MATLAB’s434

Profiler tool are 0.274 seconds spent in ode15s execution and 0.233 seconds in the lexicographic optimization435

function of DFBAlab.436

4.1.2. Problem 2: Metabolic network with changes in the phenotypic phase plane437

A second illustrative example was constructed based on the metabolic network presented by Edwards438

et al. [8], which includes four phenotypes that can be reached depending on the uptake fluxes of oxygen439

and the carbon source (A). The metabolic network, extracellular mass balances and uptake rates required440

to represent the FBA problem as in Eq. 4 are given in Table 2 and Eq. 28. For irreversible reactions, the441

bounds on the fluxes are 0 and 100 mmol(gDWh)−1, while for reversible reactions the bounds are -100 and442

100 mmol(gDWh)−1.443

Table 2: Stoichiometry of the metabolic network in example 2, taken from Edwards et al. [8].
qA−−→ A ATP Rft−−→
A + ATP R1−−→ B C + 10ATP Rz−−→ Biomass
B R2−−→ 2ATP + 3NADH + C

qO2−−→ O2

0.2C R3−−→ 2NADH C Cout←−→
C R4←→ ATP + 3D D Dout←−→
C + 2NADH R5−−→ 3E E Eout←−→
NADH + O2

RRes−−−→ 2ATP

The uptake rate of the metabolite A is assumed to follow a Monod-type kinetics depending on the444

extracellular concentration of A (cA, gL−1) while the uptake rate of oxygen was fixed at −15 mmol(gDWh)−1,445

which in practice is equivalent to maintain a constant dissolved oxygen concentration.446
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dcx
dt

= MWzRz(t)cx(t), cx(0) = 1.0 gL−1, (28)

dcA
dt

= MWAqA(t)cx(t), cA(0) = 10.0 gL−1,

dcD
dt

= MWDDout(t)cx(t), cD(0) = 0 gL−1,

dcE
dt

= MWEEout(t)cx(t), cE(0) = 0 gL−1,

qO2(t) = −15 mmol(gDWh)−1,

qA(t) = −qA,max
cA(t)

cA(t) +KA
,

with KA = 2.0 gL−1 an affinity constant for the substrate and qA,max = 12 mmol(gDWh)−1 its maxi-447

mum uptake rate. Molecular weigths for biomass, substrate A, products D and E are given as MWz =448

0.023 g(mmol)−1, MWA = 0.180 g(mmol)−1, MWD = 0.091 g(mmol)−1 and MWE = 0.046 g(mmol)−1.449

The values of the biomass flux (Rz) and product fluxes (Dout and Eout) are obtained as the solution of an LP450

problem where the linear constraints are given by the mass balances dictated by the stoichiometry presented451

in 2 and its bounds. The objective function of this problem is biomass maximization (flux Rz).452

453

Table 3 shows the computational performance of the different methods tested for comparison and for the454

interior-point approaches. Every method tested detected the three changes in the phenotypic phase planes.455

Solution times were similar for the Direct and the R-iODE approaches, although the number of function456

evaluations differs. Although in the Direct Approach fewer function evaluations are required, they involve457

solving an LP problem at each call. On the other hand, for the R-iODE approach and the DAE approach,458

although more function evaluations are required, they are executed faster. As in Problem 1, DFBAlab requires459

more CPU and wall time to achieve a solution. Analysis of DFBAlab execution using the MATLAB’s Profiler460

tool reveals that obtaining the basis of the LP problems and integration using ODE15s accounts for 75% of461

the CPU time. The solution of Problem 2 through the DAE formulation of the Interior Point Approach using462

ode15s required tightening the absolute integration tolerance from its default values to 10−8. This change463

was necessary to produce a solution, but increased the solution times and the number of required steps.464

Table 3: Computational performance obtained in the solution of Problem 2 by the Direct or the Interior Point approaches and
DFBAlab. The metabolic network in Problem 2 has 13 fluxes and 10 metabolites.

Direct Approach DFBAlab Interior Point Approach
Solver CPLEX CPLEX DAE R-iODE
Integrator ode45 ode15s ode15s ode15s gPROMS ode45 gPROMS
Wall time (s) 0.062 0.064 0.478 0.201 1(<1)a 0.045 1(<1)
CPU time (s) 0.078 0.078 0.484 0.220 0.031 0.062 0.020
N° of LPs solved 211 169 4 - - - -
Infeasible LPs - 0 0 - - - -
Successful steps 26 88 106 877 214 60 346
Failed attemps 9 16 1 287 2 17 5
Function evals. 211 169 203 2562 1012 463 1024
Jacobian evals. - 2 4 159 167 118 (+9)b 12 (+9)

aWall-clock time to construct and analyze the system, call solvers and integrate. In parenthesis, wall time for integration
only.

bIn parenthesis, the number of Jacobian evaluations required for solving the LP problem during initialization.

Figure 1.A presents the trajectories of the carbon source (A), biomass and products D and E obtained465

using the R-iODE approach in MATLAB. Figure 1.B shows the phenotypic phase plane of the biomass flux466

for the space of uptakes rates of A and oxygen in the region [0, 10]× [0, 20]; mmol(gDWh)−1.467

The culture begins with a substrate concentration of 10 gL−1 producing an uptake rate of−10 mmol(gDWh)−1,468

at a point located in the facet marked as P4 in the phenotypic phase plane. Region P4 is defined by an ex-469
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cess of carbon available compared to oxygen availability, thus the excess carbon flux was directed to the470

reduced product E. The culture stays in P4 for 3.65 h and then changes to a new region P3 characterized by471

the excretion of products D and E and the use of the cyclic reaction R3 to reduce the production of redox472

equivalents.473

At 4.88 hours, the culture transitions from P3 to P2 as the uptake rate of A is further reduced. In474

this region, the product E is no longer produced as the production of D is sufficient to eliminate the redox475

equivalents under the prevailing oxygen uptake flux values. Finally, the phase plane P1 is a futile region476

where the electron acceptor (oxygen) is provided in excess, and the metabolic network dissipates the excess477

oxygen flux by using reaction R3, producing NADH, at the cost of oxidizing the precursor C. Since ATP is478

produced in excess, it is dissipated using reaction Rft.479

480

Figure 1.C shows the values of the multipliers enforcing the lower bounds of the fluxes, y. The multipliers481

enforcing the upper bounds, z, are not shown as they remain inactive during the simulation.482

Elements of y that are active during the first 3.65 hours corresponds to the exchange fluxes of C and483

D, as these reactions remain inactive in the phase plane P4. A smooth transition to P3 is observed at this484

point, where the element of y for the exchange flux of D changes to a near-zero value as D starts being485

excreted. Conversely, the element of y for the ATP spillage reaction, Rft, changes from zero to a positive486

value indicating an inactivation of this metabolic reaction.487

At 4.88 hours, when the culture changes from the phenotypic phase plane P3 to P2, reactions R5 (pro-488

ducing E) and the excretion of E are inactivated, hence the elements of y corresponding to these reactions489

increase its value. Finally, at the transition from P2 to P1, D and E are inactivated and its elements in the490

vector y increase since the fluxes approximate their lower bounds.491
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Figure 1: Trajectories for the differential variables in Problem 2 obtained by solving Eqs. (18a) to (18c) (R-iODE approach)
using MATLAB™ ode45 with µ = 10−6 (panel A). Panel B shows the trajectory of the culture on the phenotypic phase plane.
Panel C shows the changes in the values of selected elements of the vector enforcing the lower bounds, y, as the culture changes
from phenotypic phase plane.
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4.1.3. Problem 3: E. coli core model492

Problems 3 and 4 consider batch cultures where the time evolving profiles of the substrate (glucose) and493

product (ethanol) concentrations can be described by the following differential equations:494

dx

dt
= vb(t)x(t), x(0) = 1.0 gL−1,

dS

dt
= 180

1000qS(t)x(t), S(0) = 20.0 gL−1, (29)

dP

dt
= 46

1000vP (t)x(t), P (0) = 0.0 gL−1,

qS(t) = −qS,max
S(t)

S(t) +KS
,

where KS is the affinity constant for glucose (1.0 gL−1) and qS,max the maximum specific uptake rate for495

glucose (10 mmol(gDWh)−1). In remaining problems in this work, the values of the specific growth rate,496

vb(t), and the specific products rates, vk(t) with k a selection of product fluxes such as ethanol or glycerol,497

are calculated as the solution of the following LP problem:498

min
v
−cTv

s.t.
Av = b,

vup − v ≥ 0,
v− vlo ≥ 0,
vj = qj(t),

(30)

where vj is the uptake rate of j substrates in the metabolic model and is equal to the specific substrate499

consumption rate of the culture qj . For example, in Problem 2, vS , vP and vb are elements of vector v.500

The matrix A and the vectors vlo, vup, c and b are specific to each problem. In this problem (Problem 3),501

the stoichiometric matrix and bounds correspond to a flux balance representation of the central carbon502

metabolism of E. coli as published by [26], including 95 fluxes and 72 metabolites. The model is a subset of503

the genome-scale model iAF1260 reported by Feist et al. [10]. The computational results for this problem,504

where biomass flux is maximized, are presented in Table 4. In terms of CPU time used for integration only,505

the R-iODE formulation running in gPROMS was the less demanding combination, followed by R-iODE506

with ode45 and CPLEX with ode45 in the Direct Approach. It is interesting to note that in Table 4 the507

number of function evaluations for the Direct Approach is smaller that the value reported for the Interior508

Point based methods. However, in the Direct Approach, each evaluation of the right hand side of the system509

of differential equations implies solving an LP. For the E. coli core model, each LP requires on average 60510

iterations to reach a solution using the linprog algorithm in MATLAB™, while this number reduces to an511

average of 30 iterations when CPLEX is used. Similarly to the results found in Problems 1 and 2, DFBAlab512

shows higher CPU and wall time when compared to the Direct Approach and R-iODE.513

The quality of the obtained solution is as relevant as the computational performance. Thereby, the514

trajectories of the biomass, substrate and product concentration calculated using DFBAlab and the R-515

iODE approach were compared. Figure 2.A shows the trajectories calculated using the R-iODE approach516

in gPROMS. Figure 2.B shows the average error between the glucose trajectories calculated using DBAlab517

and the R-iODE approaches while Figure 2.C shows the point-wise difference between the trajectories. The518

point-wise difference is defined, at a given time value t′ in the integration time span as:519

∆Es(t′) = S(t′)DFBAlab − S(t′)R−iODE (31)
while the average error is given by:520

∆Ēs[%] = (tf − t0)−1
∫ tf

t0

∆Es(t)dt (32)

As stated in Theorem 3.2, the gap between the trajectories vanishes as the value of µ approaches zero.521

This is also true for the duality gap (Figure 2.D).522
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Table 4: Comparison of the computational performance obtained by solving Problem 3 by the Direct or the Interior Point
approaches and DFBAlab. The embedded FBA problem for this case study is composed of 95 fluxes and 72 metabolites and
the biomass flux is maximized

Direct Approach DFBAlab Interior Point Approach
Solver CPLEX CPLEX DAE R-iODE
Integrator ode45 ode15s ode15s ode15s gPROMS ode45 gPROMS
Wall time (s) 0.047 0.038 0.339 0.054 1.1(<1)a 0.043 1.1(<1)
CPU time (s) 0.047 0.078 0.344 0.078 0.015 0.045 0.016
N° of LPs solved 68 48 4 - - - -
Infeasible LPs 0 0 0 - - - -
Successful steps 11 19 59 23 32 11 47
Failed attempts 0 0 11 15 1 0 0
Function evals. 68 49 111 85 92 67 113
Jacobian evals. - 1 1 13 9 0 (+19)b 11 (+19)

aWall-clock time to construct and analyze the system, call solvers and integrate. In parenthesis, wall time for integration
only.

bIn parenthesis, the number of Jacobian evaluations required for solving the LP problem during initialization.

4.1.4. Problem 4: Genome-scale metabolic model of E. coli (iJR904)523

This example considers the same description of the fermentation kinetic as in Problem 4, in this way, the524

effect of a larger metabolic network over the computational performance of the Direct and Interior Point based525

approaches can be compared. The growth rate (vb(t)) and the specific ethanol production rate (vP (t)) at each526

time are obtained as the solution of the LP problem shown in Eq. (30). The stoichiometric matrix, objective527

function and bounds represents the genome-scale metabolic model of E. coli (iJR904 GSM/GPR) as reported528

by Reed et al. [32]. The model consists of 761 metabolites, 931 intracellular fluxes, 144 exchange fluxes and529

a flux representing biomass generation, which is maximized as the objective function of the embedded LP.530

Table 5 shows the computational performance of the Direct and Interior Point approaches. Once more, the R-531

iODE formulation implemented in gPROMS is the fastest one followed by the implementation of the R-iODE532

formulation using ode45 and the Direct Approach using CPLEX, although the difference in CPU and wall533

time between the Direct Approach and DFBAlab is reduced when compared to Problem 1 and 3. We think534

this can be explained as follow. For embedded LP problems of small size (as in problems 1 and 3), obtaining535

its solution in CPLEX is faster than checking the optimality of the basis in DFBAlab at each integration536

time. Thus, for small problems, the Direct Approach should be faster than using DFBAlab, but, as the size537

of the LP problems increases, this difference reduces. For large scale problems, the performance of DFBAlab538

should be eventually better than the performance of the Direct Approach, since the computational cost of539

solving an LP is higher than the cost of solving a system of linear equations. Alternatively, using LP solvers540

such as CLP in MATLAB™ also reduces the difference in CPU and wall time between the Direct Approach541

and DFBAlab for problems 1, 3 and 4 (CLP wall times: 0.270, 0.146 and 1.488 seconds, respectively using542

ODE15s).543

The DAE approach failed to produce a complete solution when using ode15s and gPROMS failed during544

initialization. The same initial point was used in both cases, which was calculated as the solution of an FBA545

problem at the starting time using an interior point method with the same barrier parameter value as the one546

used during dynamic simulation. From the theoretical point of view, the DAE formulation should have been547

solvable by any standard DAE solver using an exact Jacobian of the system both at the initialization and548

integration phases, as the Newton iteration involved is effectively the same as that within an interior-point549

solver would have used to solve the embedded optimization problem. The only significant difference that can550

be considered is that within an interior-point solver the line search step is safeguarded against violating the551

bounds (actually backtracking by a small scale factor from the step size that would render a bound exactly552

as active). This issue is not considered further in the current work and rather the full-ODE reformulation (R-553

iODE) also proposed in this work will be the main focus in the following case studies. Further investigation554

of the DAE formulation will be carried out in future work.555

Figure 3 shows the trajectories of the differential variables obtained using gPROMS and its comparison556

with the trajectories calculated using the DFBAlab. As in Problem 3, the duality gaps (Figure 3.D) and the557
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Figure 2: Trajectories for the differential variables in Problem 3 obtained by solving Eqs. (18a) to (18c) using gPROMS with
µ = 10−6 (panel A). Panel B shows the average error between the glucose trajectories obtained using R-iODE and DFBAlab
for different values of the barrier parameter µ, while panel C shows the pointwise difference between both methods for the
glucose trajectories. Panel D shows the duality gap obtained for the direct solution approach using CPLEX (stars), and the
ones obtained by solving Eqs. (18a) to (18c) with different values of the barrier parameter µ.

difference between the calculated trajectories at each time (Figure 3.C) decrease as the value of µ is reduced.558

559

4.2. Problem 5: Ethanol production during a fed-batch culture of Saccharomyces cerevisiae560

Industrial production of ethanol by fermentation is usually accomplished using the yeast S. cerevisiae.561

Hjersted et al. [14] used a kinetic model of the uptake of glucose and oxygen, coupled with the genome-scale562

metabolic model reported by Duarte et al. [7] to analyze the effects of an interruption of the supply of air in563

a fed-batch culture. The model considers that the specific uptake of glucose (G) and oxygen (O, as dissolved564

oxygen concentration) can be described as:565

qg = qg,max
G

(G+Kg)
1

(1 + E/KiE) , (33)

qO = qO,max
O

KO +O
, (34)

where KO and Kg are saturation constants and KiE is an inhibition constant for ethanol. The parameters566

qg,max and qO,max correspond to the maximum uptake rates of glucose and oxygen, respectively. Parameter567
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Table 5: Computational times and integration statistics for solving Problem 4 (761 metabolites, 1075 fluxes), where the biomass
growth rate is maximized, by the Direct or the Interior Point approaches and DFBAlab.

Direct Approach DFBAlab Interior Point Approach
Solver CPLEX CPLEX DAE R-iODE
Integrator ode45 ode15s ode15s ode15s gPROMS ode45 gPROMS
Wall time (s) F[2.9]a 0.993 1.532 F[0.9] F[0] 0.929 16(<1)b

CPU time (s) - 1.000 1.593 - - 0.930 0.234
N° of LPs solved - 78 84 - - - -
Infeasible LPs - 0 0 - - - -
Successful steps - 28 113 - - 11 70
Failed attemps - 8 18 - - 1 3
Function evals. - 78 245 - - 67 211
Jacobian evals. - 3 5 - - 0 (+18)c 21 (+18)

aFailed at the integration time indicated in brackets
bWall-clock time to construct and analyze the system, call solvers and integrate. In parenthesis, wall time for integration

only.
cIn parenthesis, the number of Jacobian evaluations required for solving the LP problem during initialization.

values used during the simulation are shown in Table 6. The balances of the extracellular environment (the568

culture broth) are given by:569

dV

dt
= F, V (0) = 0.5 L (35)

d(xV )
dt

= vb(t)xV, x(0) = 0.05 gL−1 (36)

d(OV )
dt

= kLa(Osat −O)V − qOxV, O(0) = 0.5Osat (37)

d(GV )
dt

= FGf − qgxV, G(0) = 10 gL−1 (38)

d(EV )
dt

= vexV, E(0) = 0 gL−1 (39)

where V is the liquid volume in the reactor at a given time, x is the biomass concentration, Gf is the glucose570

concentration in the feed (100 gL−1) and F is the feed flow rate (0.044 Lh−1). The simulation time is 16.0 h.571

Unlike the work presented by Hjersted et al. [14], a balance for the dissolved oxygen in the culture was572

included.573

Table 6: Parameters used in Problem 5, taken from Hjersted et al. [14].
Variable Value Units
qO,max 8 mmol(gDWh)−1

qg,max 20 mmol(gDWh)−1

Kg 0.5 g L−1

KiE 10 g L−1

KO 0.003 mmol L−1

Osat 0.30 mmol L−1

The specific growth rate and the specific ethanol production rate are calculated as the solution of an574

embedded FBA problem, where the flux of biomass is maximized, and its right hand side depends on the575

values of the substrates uptake rates vS(t) and vO(t). The metabolic model is comprised of 1059 metabo-576

lites and 1266 fluxes as described by Duarte et al. [7]. To allow for growth under anaerobic conditions,577

the lower bound of the following exchange reactions were set to −1000 mmol(gDWh)−1: R_EX_ergst_e_,578

R_EX_zymst_e_,R_EX_hdcea_e_, R_EX_ocdca_e_, R_EX_ocdcea_e_ and R_EX_ocdcya_e_. Mimicking the579
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Figure 3: Trajectories for the differential variables in Problem 4 obtained by solving Eqs. (18a) to (18c) using gPROMS with
µ = 10−6 (panel A). Panel B shows the average error between the glucose trajectories obtained using R-iODE and DFBAlab for
different values of the barrier parameter µ, while panel C shows the pointwise difference between both methods for the glucose
trajectories. Panel D shows the duality gap obtained for the direct solution approach using CPLEX (continuous line), and the
ones obtained by solving Eqs. (18a) to (18c) with different values of the barrier parameter µ. When µ was reduced to 10−7 the
integration tolerance was set to 10−8. In every other instance, gPROMS default tolerances were used.

simulations performed by Hjersted et al. [14], an step change at 7.7 h in the dissolved oxygen concentration580

from 50% saturation to anaerobic conditions was imposed. This change was forced by a changing the kLa581

value from 25 h−1 to zero. The trajectories of the differential variables for this simulation are shown in582

Figure 4.A for the trajectories obtained using DFBAlab and in panel B for the trajectories calculated using583

the R-iODE approach in gPROMS. They are not exactly the same as the ones presented in Hjersted et al.584

[14]. The difference can be explained by the fact that in our model the dissolve oxygen concentration reaches585

a near-zero value after five hours of culture, while in Hjersted et al. [14] step-change from 50% saturation of586

dissolved oxygen to anaerobic conditions at 7.7 h.587

The computational results for the application of the Direct Approach, using CPLEX as the inner LP solver,588

DFBAlab and the Interior Point based approach are presented in Table 7. Results indicate that R-iODE &589

ode45 was the most efficient approach to obtain the solution of the problem. Contrary to problems 1, 3 and590

4, DFBAlab CPU and wall time for Problem 5 were approximately five times smaller than the ones obtained591

by using the Direct Approach. This can be explained by the use of the MATLAB’s event detector function592

by DFBAlab, which allows stopping the integration at time 7.7 h (at the step-wise change in the oxygen593

concentration) and its reinitialization after the discontinuity. On the other hand, in our implementation of594

the Direct Approach, no event detection was used and the integration was forced to continue during the595

step-wise change in the oxygen concentration. This results in 484 LP problems solved during the integration596

in the Direct Approach using ODE15s compared to 22 LPs solved by DFBAlab.597
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Table 7: Solution summary for Problem 5 including results obtained using the Interior Point or the Direct approaches and
DFBAlab. The embedded LP problem has 1059 metabolites and 1266 fluxes, biomass flux is maximized.

Direct Approach DFBAlab Interior Point Approach
Solver CPLEX CPLEX R-iODE
Integrator ode45 ode15s ode15s ode45 gPROMS
Wall time (s) 11.32 7.64 1.68 1.714 27.8(<1)a

CPU time (s) 10.81 6.80 2.01 5.129 0.372
N° of LPs solved 724 484 22 - -
Infeasible LPs 0 0 0 - -
Successful steps 110 149 226 26 137
Failed attemps 26 39 12 0 21
Function evals. 724 484 606 136 422 (+70)
Jacobian evals. - 20 23 0 (+70) b 45

aWall-clock time to construct and analyze the system, call solvers and integrate. In parenthesis, wall time for integration
only.

bIn parenthesis, the number of Jacobian evaluations required for solving the LP problem during initialization.
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Figure 4: Biomass, glucose and ethanol time profiles for Problem 5. A stepwise change in the dissolved oxygen concentration was
forced at 7.7 h by imposing a change in the value of kLa. The simulation in panel A was obtained using DFBAlab (maximizing
biomass, ethanol and glycerol production using lexicographic optimization) while the simulation in panel B was obtained using
the R-iODE approach implemented in gPROMS. Panel C shows the values of biomass specific growth rate and glycerol flux
calculated using the R-iODE approach and DFBAlab for the complete integration time span, while panel D shows those fluxes
around 7.7 hours.

Figure 4.C and Figure 4.D shows the fluxes of biomass and glycerol during the simulation. At 7.7 hours,598

when the kLa value is changed to zero, the basis of the inner LP problem changes. Consequently the values599

of the biomass and glycerol fluxes change abruptly but continuously. However, Figure 4.D shows that this600
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change is, in fact, continuous. On the other hand, DFBAlab [11] formulation relies on the fact that within601

a phenotypic phase plane [8], the objective changes proportionally to changes in the uptake rates. This602

means that within the phenotypic phase plane, the solution basis does not change. During the dynamics of a603

fermentation, this allows recalculation of the fluxes’ values without the need of further LP solution, rather a604

simple back-substitution provides their values. When the culture moves to a new phenotypic phase plane, a605

new solution basis must be determined and factorized to be reused accordingly until the next potential basis606

change. As shown in Figure 4.D, the change from one basis to another is discontinuous when DFBAlab is607

used.608

The active set selection, or equivalently, the basis selection, has nothing to do with the use of an interior609

point method, as the active vertex solution of an LP is approached from the interior of the feasible region610

of the inequality constraints. As such, our approach is a smoothing of the LP problem as is standard in all611

interior point methods. There is no active set, or basis, to deal with in the proposed methodology in our612

work. The interior point formulation, embedded within a dynamic system, will exhibit no discontinuities in613

base changes, which would be reflected by abrupt changes in the Lagrange multiplier values. Instead, the614

interior-point formulation smooths out the trajectories of moving from the vicinity of one active vertex to615

the next active vertex when this happens, which corresponds to the change of basis of the original dFBA616

formulation as implemented in DFBAlab.617

It is noted that in the simulations reported by Harwood et al. [12] and Hjersted et al. [14] using lexico-618

graphic optimization and the Direct Approach, respectively, glycerol is produced during the anaerobic phase619

of the culture. In fact, the flux of glycerol is not uniquely determined and the glycerol concentration can620

take any value between zero and the maximum glycerol trajectory shown in 4.A. Vargas et al. [36], obtained621

glycerol production by modifying the ATP maintenance flux through a coupling of this variable with the622

nitrogen uptake rate.623

In our current implementation, the solution of the barrier-formulated LP problem will tend, from the624

interior of the feasible region, to the analytic center of the facet defined by the alternative vertices giving the625

same solution, in the case the objective function hyperplane is parallel to a facet of the feasible set polytope626

[19]. The analytic center of a facet of the feasible polytope of the embedded FBA problem, is the barrier627

problem without the objective function and taking into account only the active set of bounds defining the628

’active’ facet subject to the equality constraints (flux balances). As the analytic center of each facet of the629

feasible set polytope is a uniquely defined point, the dFBA approach as reformulated via an interior-point630

method will always give a unique solution to the underlying embedded optimization problems at each time631

of the simulation horizon. It is noted that this solution is one of many possible solutions, and the fact that632

it is unique is artificial to the specific methodology – yet very convenient for the purpose of simulation This633

artificiality is not unique to our methodology. In fact, in the methodology adopted by DFBAlab [11], the634

nonuniqueness of a solution is dealt with a lexicographic optimization. This is based on an arbitrary choice of635

substrates which are prioritized accordingly to previous knowledge of substrate uptakes and products output636

involved in the metabolic process.637

4.3. Dynamic optimization problems638

The formulation proposed in this work for the solution of dFBA problems, as for example given in639

Eqs. (18a) to (18c), results in a smooth ODE simulation problem. As such, the simulation problem can640

be embedded within any continuous optimization algorithm to provide function and gradient evaluations641

towards calculation of optimal profiles for control variables for time-evolving biochemical processes. This is642

demonstrated with two illustrative case studies in this section.643

It is noted that the methodology proposed by Höffner et al. [15] and Harwood et al. [12], and implemented644

in the computational package DFBAlab [11], as reviewed in the Introduction section of this paper, leads to645

the most direct way to solve dFBA simulation problems. However, as it was explained in the same section,646

the methodology relies on the identification of LP base changes during the integration process − which may647

occur correctly when LPs are embedded in a dynamic system. This identification of base changes constitutes648

implicit discontinuity event detections, which although leads to C0 continuous state variable profiles, these649

are nonetheless non-differentiable at the points in time where the events take place (i.e., where the LP base650

changes).651

Solution of optimal control problems requires the underlying dynamic models to not contain implicit652

discontinuities in order for the associated function evaluations to be differentiable with respect to the opti-653
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mization parameters of the models (or those parameterizing control functions). As such, to our knowledge654

there has been no other smooth simulation model approach proposed in the open literature to this date other655

than the methodology being put forward in this work that has this required property −as a result of the656

interior point method transformation used, and although the smoothing introduced results in an approximate657

solution of the dFBA problems. This allows the efficient and robust optimization of dFBA models through658

the feasible path approach for optimal control problems [38, 39]. The only alternative way to ensure a dif-659

ferentiable approach that can guarantee the smooth solution of associated dFBA optimal control problems660

is via collocation [13], as reviewed in the Introduction section, which however results in requirement to solve661

optimization problems of prohibitive size for any realistic metabolic network model.662

4.3.1. Problem 6: E. coli fed-batch fermentation considering substrate inhibition663

This example corresponds to a dynamic optimization problem where a piecewise constant feed flow rate664

profile is optimized to maximize the mass of E. coli cells at the end fermentation time in a fed-batch culture:665

max
F (·)

(xV )|tf

s.t. dV

dt
= F, V (0) = 1.0L

dx

dt
= vbx− x

F

V
, x(0) = 1.0 gL−1

dS

dt
= (SF − S)F

V
+ 180

1000qsx, S(0) = 2.0 gL−1

dP

dt
= 46

1000vPX − P
F

V
, P (0) = 0.0 gL−1

qs = −qs,max
S

S +KS + S2/KI

(40)

with qs,max = 10 mmol(gDWh)−1, KS = 1.0 gL−1 and KI = 10.0 gL−1. Glucose is fed to the reactor666

at a concentration of SF = 100 gL−1 at a piecewise constant rate F (t) that is determined by solving the667

optimal control problem stated in Eq. (40). The specific growth rate of E. coli and the ethanol specific668

production rate (vP ) are determined from the metabolic network model of the E. coli central metabolism669

[26], previously described in Problem 3. The flux balance model is an LP problem of the form presented in670

Eq. (30) and biomass flux is maximized. Thus, the solution of the LP problem is connected to the solution671

of the optimal control problem by the exchange flux of glucose vS . The optimal control problem was solved672

using two approaches: (i) by a Direct Approach where the inner LP problem is solved using CPLEX during673

the integration by ode45 in MATLAB™ and the optimal profile is determined by MATLAB’s fmincon, and674

(ii) by appending the ODEs derived by applying the R-iODE approach to an optimal control problem in675

gPROMS. While in (ii), gPROMS can calculate the gradient of the objective function with respect to the676

piecewise constant values of the flow rate during the integration using sensitivity equations, in (i) fmincon677

estimates by numerical differentiation. Thus, one would expect an improved performance of gPROMS over678

fmincon. Table 8 shows the time required to achieve a solution and the objective function value. Results679

indicate that, as expected, gPROMS requires less CPU time compared to MATLAB’s fmincon, and produces680

also a significantly better optimal solution in terms of the objective function value.681

Table 8: CPU time, NLP solver major iterations and the value of the objective function obtained for the solution of Problem
6 (95 fluxes and 72 metabolites) for five and ten control intervals. The objective function of the embedded LP problem is the
maximization of the biomass flux and the objective function of the dynamic optimization problem is the mass of E. coli cells at
the end time.

ode45 & CPLEX & fmincon R-iODE & gPROMS
Number of control intervals 5 10 5 10
CPU time (s) 266.4 1027.6 123.8 107.6
NLP iterations 15 25 52 55
Objective function 485.4 473.7 596.7 669.3

The trajectory of the objective function and the calculated feed flow rate profiles are shown in Figure 5.682

The profile of the optimal feed flow rate can be analyzed by considering that the solution of the problem683
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is to maintain the glucose specific uptake rate at its maximum. Using Eq. (40) which defines qs it can be684

calculated that the maximum glucose uptake is achieved at a concentration of 3.2 gL−1 of glucose. Thereby,685

an optimal feed flow rate will maintain the glucose concentration as close to this value as possible, which686

necessarily implies that the feed flow profile will be exponential as a consequence of the exponential growth687

rate of the culture. As shown in Figure 5.B, the profile calculated by gPROMS approaches an exponential688

one and allows for an average substrate concentration during the culture of 3.8 gL−1.689
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Figure 5: Trajectories for the accumulated biomass (A) and the calculated optimal feed flow rate profile (B) in Problem 6. for
10 piecewise constant control elements obtained using gPROMS and MATLAB’s fmincon

4.3.2. Problem 7: Maximization of ethanol production in a fed-batch culture of S. stipitis690

During the last decade, ethanol production from sugars obtained from lignocellulose, a natural polymer691

composed of cellulose, lignin and hemicellulose has been the subject of intensive investigation [21]. While692

glucose fermentation by S. cerevisiae is a mature technology, the fermentation of xylose, one of the sugars693

released by the depolymerization of hemicellulose in certain species of plants, is still in development. In694

this regard, Slininger et al. [35] proposed a dynamic model describing the growth and ethanol production695

by Scheffersomyces (Pichia) stipitis fed with xylose as the sole carbon and energy source. The unstructured696

kinetic model describes the growth of the yeast (viable and total cells) and the dynamics of xylose and oxygen697

consumption as well as the production of ethanol as a system of linear differential equations. The model,698

coupled with an FBA description of the metabolism, was used for the formulation of an optimal control699

problem whose objective function is the maximization of the ethanol mass produced at the end time of the700

fermentation and in a reactor with a maximum operation volume of 8.0 L.701
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max
F (·),kLa

(PV )|tf

s.t. dV

dt
= F, V (0) = 1.0L

dxT
dt

= vbxT − xT
F

V
, xT (0) = 1.0 gL−1

dx

dt
= vb(1− fd)x− x

F

V
, x(0) = 1.0 gL−1

dS

dt
= (SF − S)F

V
+ 150

1000qsx, S(0) = 2.0 gL−1

dP

dt
= 46

1000vPx− P
F

V
, P (0) = 0.0 gL−1

dO2

dt
= kLa(Csat −O2)− 32qO2x−O2

F

V
, O2(0) = 0.0 , gL−1

µb = µm

(
S

Ks + S
− Ki

Ki + Sm − S

)(
1−

(
P

Pm

)A)(
O2

Kox +O2

)
,

fd = (0.194 + 0.000381 · S)(1− 0.00356 · P + 0.000555 · P 2),
Csat = 0.21 · 1.08 · (34.6− 0.0644 · S + 0.000156 · S2),

β = βm ·
(
e−S/KiP − e−S/KSP

)(
1−

(
P

PmP

)B)
,

qs = αµb + β

0.421− 0.343µb
,

qO2 = µb
YO2

.

(41)

Model parameters are given in Table 9 and were taken from Slininger et al. [35]. The xylose concentration
in the feed flow was set at 50 gL−1. In the original model of Slininger et al. [35], the ethanol specific production
rate and the specific growth rate and are given as:

vP = 1000
46 qP = 1000

46 (αµb + β),

vb = µb.

On the other hand, we coupled the unstructured kinetic model from Slininger et al. [35] with the metabolic702

network model presented by Balagurunathan et al. [1], defined by matrix A and vectors b, vup and vlo.703

Thus, the specific growth rate (vb) and the specific ethanol production rate (vP ) are determined by solving704

an embedded LP defined by Eq. (30).705

Optimization runs were done for a fermentation time span of 15 hours and considering 20 control intervals706

and two control variables, namely, the feed flow rate and the oxygen feed flow rate (this was done indirectly707

by taking the kLa as control). This lead to an optimal ethanol production of 139.5 g. Since this value is708

only marginally higher than the one obtained by only optimizing the feed flow rate as a piecewise constant709

function and the kLa as a fixed value (see Table 10) only the latter results will be presented.710
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Table 9: Parameters used in Problem 7, taken from Slininger et al. [35].
Variable Value Units
A 1.32 −
B 0.935 −
Pm 64.3 g L−1

PmP 189 g L−1

Ki 60.2 g L−1

KiP 72.7 g L−1

Kox 0.1 mg L−1

KS 0.36 g L−1

KSP 45.91 g L−1

Sm 253 g L−1

YO2 0.00270 g mg−1

βm 1.43 g gh−1

α 1.43 g g−1

µmax 0.71 h−1

Table 10: Solution summary for Problem 7 including CPU time, NLP iterations and the value of the objective function. The
embedded FBA problem has 1371 fluxes and 971 metabolites. The objective function of the embedded FBA problem is biomass
flux, while the objective function maximized in the dynamic optimization problem is the mass of ethanol at the end time.

Controls F Piecewise Piecewise
kLa Time-invariant Piecewise

CPU time (s) 223.0 863.5
NLP iterations 29 37
Ethanol (PV (g)) 137.7 139.5
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Figure 6: Trajectories for the state variables and controls in Problem 7. Panel A shows the trajectories of ethanol, xylose,
biomass and oxygen. Panel B presents the profile of the control variables, while panel C shows the values of the specific growth
rate, ethanol yield and the objective function.

Figure 6.B presents the optimal profiles for the xylose fed and the optimal kLa value for fed batch-culture.711

Panel A, shows the xylose, ethanol, total biomass and oxygen concentration profiles calculated, and panels712

C displays the trajectories for the ethanol yield, specific growth rate and the accumulated mass of ethanol.713

To the best of our knowledge, Problem 7 represents the largest ever dynamic optimization problem with an714

embedded dFBA model solved with 1371 fluxes and 971 metabolites. Previously, Hjersted and Henson [13]715

optimized the feed flow rate profile of a fed-batch culture of S. cerevisiae using the DOA approach, with the716

dFBA model used being a representation of the central carbon metabolism with 82 fluxes.717
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5. Conclusions718

This work presents a new approach for solving dynamic flux balance analysis problems. The approach719

replaces the embedded linear programming problem by the first order optimality conditions of an equivalent720

problem where the bounds on the fluxes values are handled by logarithmic barrier functions. Based on721

theoretical results from the duality theory of linear programming, we show that the system of differential722

equations with an embedded LP, the typical formulation of a dFBA problem, can be converted into a system723

of implicit ordinary differential equations that can be solved efficiently using standard integration methods.724

The proposed approach was shown to produce a uniquely determined trajectory that can be made arbi-725

trarily close to the exact trajectory of the dFBA problem by reducing the size of a penalty parameter. The726

proposed approach was tested by applying our interior point based formulation for the solution of dynamic727

flux balance analysis on six examples obtained from the open literature, and the results show that the method728

presented in this work is highly competitive, in terms of computational time, all other methodologies and729

solvers tested, even when highly efficient LP solvers such as CPLEX are used. Moreover, the method was730

used to solve to the best of our knowledge, for the first time, a dynamic optimization problem (optimal con-731

trol problem) with a genome-scale dFBA model embedded using the advanced process simulation package732

gPROMS.733

Future work will continue exploring the capabilities offered by the new methodology, such as applications734

to real-world large-scale metabolic networks, co-cultures including several species of microorganisms, parame-735

ter estimation in kinetic models embedding FBA to enhance their predictive ability, and further investigation736

and generalization of including nonlinear convex objective functions in dFBA. Also, the issue of the numeri-737

cal challenges posed by the DAE formulation of dFBA proposed in this work, as discussed in Section 4.1.4,738

will be also further investigated. Finally, our approach to solve dFBA problems by inclusion into standard739

process simulation packages opens up the scope for further applications to include dFBA within entire plant740

simulation models.741
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