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Abstract

Viral superinfection occurs when multiple viral particles subsequently infect the same host.

In nature, several viral species are found to have evolved diverse mechanisms to prevent

superinfection (superinfection exclusion) but how this strategic choice impacts the fate of

mutations in the viral population remains unclear. Using stochastic simulations, we find

that genetic drift is suppressed when superinfection occurs, thus facilitating the fixation of

beneficial mutations and the removal of deleterious ones. Interestingly, we also find that the

competitive (dis)advantage associated with variations in life history parameters is not neces-

sarily captured by the viral growth rate for either infection strategy. Putting these together,

we then show that a mutant with superinfection exclusion will easily overtake a superinfect-

ing population even if the latter has a much higher growth rate. Our findings suggest that

while superinfection exclusion can negatively impact the long-term adaptation of a viral pop-

ulation, in the short-term it is ultimately a winning strategy.

Author summary

Viral social behaviour has recently been receiving increasing attention in the context of

ecological and evolutionary dynamics of viral populations. One fascinating and still rela-

tively poorly understood example is superinfection or co-infection, which occur when

multiple viruses infect the same host. Among bacteriophages, a wide range of mechanisms

have been discovered that enable phage to prevent superinfection (superinfection exclu-

sion) even at the cost of using precious resources for this purpose. What is the evolution-

ary impact of this strategic choice and why do so many phages exhibit this behaviour?

Here, we conduct an extensive simulation study of a phage population to address this

question. In particular, we investigate the fate of viral mutations arising in an environment

with a constant supply of bacterial hosts designed to mimic a “turbidostat,” as these are

increasingly being used in laboratory evolution experiments. Our results show that allow-

ing superinfection in the long-term yields a population which is more capable of adapting

to changes in the environment. However, when in direct competition, mutants capable of

preventing superinfection experience a very large advantage over their superinfecting

counterparts, even if this ability comes at a significant cost to their growth rate. This indi-

cates that while preventing superinfection can negatively impact the long-term prospects

of a viral population, in the short-term it is ultimately a winning strategy.
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Introduction

Bacteriophages (phages) are viruses that infect and replicate within bacteria. Much like many

other viruses, reproduction in lytic phage is typically characterised by the following key steps:

adsorption to a host cell, entry of the viral genetic material, hijacking of the host machinery,

intracellular production of new phage, and finally, the release of progeny upon cell lysis.

Phages represent one of the most ubiquitous and diverse organisms on the planet, and compe-

tition for viable host can lead to different strains or even species of phage superinfecting or co-

infecting the same bacterial cell, ultimately resulting in the production of more than one type

of phage (Fig 1a) [1–3]. In the following, we define infection terminology in line with Turner

& Duffy [4], such that co-infection occurs when two or more phage have successfully infected

a single bacteria, and superinfection occurs when there is a delay between infection by the first

and second phage. Therefore, all cells which have been successfully superinfected can be said

to be co-infected [4]. To account for different usages throughout the literature and across

fields, we also refer to multiple infections, to indicate any case where multiple viruses exist

within a single host simultaneously.

Fig 1. Modelling setup. (a): In superinfection-excluding scenarios, all of the progeny released as the cell lyses are copies of the initial infecting phage,

whereas when superinfecting is permitted, the progeny are split between both types of phage. (b): During superinfection, pseudo-populations pa and pb
are used to represent the growth of phage inside the host cells. These populations increase by 1 whenever a phage infects the host, and each population

increases by some fraction of its rate β/τ determined by the relative size of the populations in the previous step. (c): An example realisation of the

simulation. The resident phage population initially grows until it reaches a steady state, at which point a mutant phage is introduced to the population,

and the simulation is run until extinction or fixation of the mutant.

https://doi.org/10.1371/journal.pcbi.1010125.g001
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Interestingly, several phages have evolved mechanisms that prevent superinfection (super-

infection exclusion). This can be achieved at the early stage of infection, by preventing further

adsorption of phage, or at a later stage, by preventing the successful injection of subsequent

phage DNA [5, 6]. For instance, bacteriophage T5 encodes a lipoprotein (Llp) that is synthe-

sised by the host at the start of infection and prevents further adsorption events by blocking

the outer membrane receptor site (FhuA protein) [7, 8]. Bacteriophage T4 encodes two pro-

teins, Imm and Sp, that prevent superinfection by other T-even phages by inhibiting the

degradation of bacterial peptidoglycan, whose presence hinders the DNA transfer across the

membrane [9, 10].

Given that populations which allow and prevent superinfection both exist in the wild, it is

natural to wonder what impact either strategy has on the evolution of viral populations. This

question has been studied in various systems from the perspective of intracellular interactions

and competition [11–19]. Multiple infections allow for the exchange of genetic material

between viruses through recombination, which can increase diversity and improve the effi-

ciency of selection, but may also decrease fitness by promoting the presence of deleterious

mutants at low frequencies [20–22]. Additionally, in RNA viruses with segmented genomes,

multiple infections can lead to hybrid offspring containing re-assorted mixtures of the parental

segments (reassortment). This mechanism can in principle improve selection efficiency, as re-

assorted segments may generate highly deleterious variants that will be easily out-competed by

the rest of the population [23]. Multiple infections can also lead to viral complementation,

where defective viruses can benefit from superior products generated by ordinary viruses

inside the host [23–27]. This process increases the diversity of the population, but also allows

cheating individuals to persist in the viral population for long times [23, 24].

The likelihood of multiple infections occurring increases with the number of free phage

available per viable host—multiplicity of infection (MOI)—and several experimental systems

have been used to study the impact of MOI on viral dynamics [25, 26, 28–32]. For instance,

high MOI in RNA phage ϕ6 has been shown to result in a behaviour conforming to the Prison-

er’s Dilemma strategy in game theory, and a reduction in viral diversity [28–31, 33]. Theoreti-

cally, the same question has been investigated in different scenarios [34], in particular in the

context of human immunodeficiency virus (HIV) infections [20, 21, 35–40]. These studies

have focused on determining whether multiple infections preferentially occur simultaneously

or sequentially, in an effort to explain experimental data, and on the role of recombination in

the acquisition of drug resistance, showing that its impact depends on the effective population

size. The role of MOI has also been studied in terms of diversity and evolution of the viral pop-

ulation [20, 21, 37, 41–46], with theoretical predictions suggesting that multiple infection

favours increased virulence, and that within-host interactions can lead to a more diverse

population.

Despite the active work in the area, several fundamental questions on the role of superinfec-

tion exclusion on viral dynamics remain unanswered. First, while decreasing MOI in viral

populations that allow superinfection decreases the likelihood of superinfection, it does not

introduce a superinfection exclusion mechanism that prevents superinfection altogether, mak-

ing it difficult to draw conclusions about the (dis)advantages of this viral strategy. Second, little

is known about how the occurrence of superinfection alone, before even accounting for the

additional effects of any intracellular interactions, impacts the evolution of viral populations,

particularly when it comes to fundamental evolutionary outcomes such as mutant fixation

probabilities. A quantitative understanding of this baseline behaviour is necessary to evaluate

the impact of the many additional intracellular interactions that can occur (recombination,

defective viruses, etc.). The limited work in this area has shown that in the absence of intracel-

lular interactions, high MOI in superinfecting viral populations can promote the presence of
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disadvantageous mutants in the “short term,” and obstruct it in the “long term” [47, 48], but

how the evolutionary outcomes in each case depend on the parameters describing the viral

life-cycle (adsorption rate, lysis time and burst size) and the (dis)advantages of either strategy

remain unclear.

Here, we explore how allowing or preventing superinfection impacts the evolutionary

fate of neutral and non-neutral variants in a simulated well-mixed phage population with

constant, but limited, availability of host. We choose to focus on superinfection exclusion

mechanisms that allow secondary adsorption events, but prevent DNA insertion, so that in

isolation the phage growth dynamics is the same in the two cases and a direct comparison

between the (dis)advantages of the two strategies is more straightforward. We first quantify

the effective population size of superinfecting (S) and superinfection-excluding (SX) popula-

tions to estimate how these strategies affect genetic drift. We then turn our attention to the

effect of non-neutral mutations on (i) the phage growth rate in isolation and (ii) their ability

to out-compete the wild-type. Having characterised both the neutral dynamics and the fit-

ness of different variants, we put both aspects together to explore the balance between drift

and selection in superinfecting and superinfection-excluding populations, showing that

selection is consistently more efficient in superinfecting populations. Finally, we study the

evolutionary fate of a mutation which changes whether an individual is capable of prevent-

ing superinfection or not. Overall, this work establishes a baseline expectation for how the

simple occurrence of superinfection impacts fundamental evolutionary outcomes and pro-

vides insights into the selective pressure experienced by viral populations with limited, but

constant host density.

Results

Computational modelling framework

We study the evolutionary fate of phage mutants using a stochastic agent-based model. We

simulate a well-mixed population of phages V interacting with a population of host bacteria

that is kept at a constant density, similarly to a turbidostat [49, 50]. Each phage has a defining

set of life history parameters, namely an adsorption rate α, a lysis time τ and a burst size β, and

each bacteria can either be in an uninfected B or an infected I state.

In each simulation time-step, adsorption, phage replication within the host and lysis occur.

The number of infecting phage VI in each step is drawn from a Poisson distribution whose

mean corresponds to the expected value αV(B + I) in a well-mixed population. The infecting

phage are removed from the pool of free phage, and VI bacteria, whether infected or unin-

fected, are chosen uniformly and with replacement to be the infection target. In both superin-

fecting and superinfection-excluding scenarios, the final lysis time τ of the host is set by the

first phage to infect it and it is treated as deterministic to limit the number of model parame-

ters. This choice was made for the sake of simplicity, given the complex and varied nature of

superinfection mechanisms [1–3]. A preliminary analysis of the effect of stochasticity in lysis

time is presented in S1 Appendix. In the case where multiple phage infect the same host in a

single time-step, the ‘first’ phage is chosen uniformly among those infecting the host. Phage

replication within the host post-adsorption depends on whether superinfection is allowed or

prevented:

Absence of superinfection. τ steps after the first adsorption event, the bacteria will lyse,

releasing new phage into the pool of free phage. The number of phage released Y is drawn

from a Poisson distribution with mean β.

Presence of superinfection. Pseudo-populations tracking the growth of phage inside the

host are used (see Fig 1b). Because here we focus on the case of two superinfecting phage
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populations, this results in two pseudo-populations pa and pb. During the intermediate steps

between the first adsorption event and lysis, in the case where there is only one type of phage

inside the host, that population will grow at a constant rate β/τ, where β and τ are both spe-

cific to the type of phage (i.e. pa grows at rate βa/τa and pb grows at rate βb/τb). This is to

reflect previous reports of a positive linear relationship between lysis time and burst size

[51]. In the event where both types of phage are present within the host, to reflect the intra-

cellular competition for the host’s resources, each population increases by only a fraction of

its potential β/τ determined by the size of each population at that time, i.e. pa increases by an

amount βa/τa × pa/(pa + pb) and pb increases by an amount βb/τb × pb/(pa + pb). At the point

of lysis, the total number of phage released Y is drawn from a Poisson distribution with

mean pa + pb − Vn, where Vn represents the number of viruses that infected the host prior to

lysis. This is to ensure that, in the event where a cell is only infected by 1 type of phage, its

mean burst size remains β, regardless of how many phages had infected the cell until that

point. The number of phage released of one type Ya is then drawn from a binomial distribu-

tion with Y attempts and probability pa/(pa + pb) of success, with any remaining phage being

the other type (Yb = Y − Ya).

Following lysis, the lysed bacteria are immediately replaced with a new, uninfected host,

resulting in a bacterial population of constant size. We also introduce a decay, or removal, of

free phage at rate δ, which accounts for natural phage decay and the outflow of the turbidostat

system.

Simulations were initialised with B0 uninfected bacteria and 2B0 “resident” phage, and then

run until the phage, uninfected bacteria and infected bacteria populations each reached steady

state values (Vss, Bss and Iss respectively), as determined by their running average (Fig 1c). This

steady state arises due to a balance between phage production and loss and it is independent of

the initial number of phages (S1 Fig).

Superinfection leads to a larger effective population size

First, we find that genetic diversity consistently declines faster in populations that prevent

superinfection, indicating a smaller effective population size Ne when compared to superin-

fecting populations (see Methods). This can be intuitively understood by considering that in

the superinfecting scenario, each phage has more opportunity to successfully infect a host cell,

since secondary infections can result in the production of some offspring when the cell lyses.

Therefore, more phage are able to contribute to the next generation, thereby slowing down

diversity loss.

In addition, Fig 2 shows that in both superinfecting and superinfection-excluding popula-

tions higher adsorption rate and burst size, and shorter lysis time result in larger effective

populations. This observation is, however, partially attributable to the change in total phage

population NT = (Vss + βIss), where Vss indicates the steady state free phage population, Iss indi-

cates the steady state number of infected bacteria, and so βIss represents the number of phage

that inevitably will join the free phage population.

Indeed, adsorption rate and lysis time impact both the effective and actual population sizes

in the same way (i.e. Ne/NT� const.). By contrast, larger burst sizes increase the effective pop-

ulation size less than the actual population size (Fig 2), resulting in a decrease of Ne/NT. This

can be interpreted by noticing that while increasing burst size results in more phage, the num-

ber of phage that can actually contribute to the next generation (i.e. the effective population

size) is limited by the number of bacteria that are available. Therefore, as burst size is increased,

a larger fraction of phage become wasted.
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Neutral mutants are consistently more likely to fix in superinfecting

populations

To continue our characterisation of the neutral dynamics in both superinfecting and superin-

fection-excluding populations, we turn to the fixation probabilities of neutral mutants, and

determine how they depend on the phage infection parameters.

Because the total phage population size depends on the life history parameters, the initial

mutant frequency corresponding to one mutant phage inoculated in the population also varies

with life history parameters. To account for this effect, we re-scale the fixation probability by

the initial frequency of the mutant f �
0
¼ 1=ðVss þ bIssÞ, which is the same in superinfecting and

superinfection-excluding populations. Fig 3 shows that Pfix=f �0 � 1 as the parameters are var-

ied, indicating that the total number of phages for a given set of parameters is the main con-

troller of neutral dynamics. Indeed, we find that the impact of the life history parameters on

the probability of fixation is what one would intuitively expect (S2 Appendix): larger adsorp-

tion rate and burst size, and shorter lysis time, increase the steady-state size of the phage popu-

lation, and reduce Pfix. By describing the average behaviour of our simulations with a system of

ordinary differential equations (ODEs), we confirm that the ODE solution for the total phage

population at steady-state NT is the same as in the stochastic model (S2 Appendix).

Fig 3 also shows that, on average, neutral mutants in the superinfecting scenario are more

likely to fix than mutants in an equivalent superinfection-excluding population (blue and red

dashed lines in Fig 3 respectively). This result agrees with that found by Wodarz et al. [48],

who showed that in a superinfecting viral population, higher multiplicities of infection slightly

favoured rare neutral and disadvantageous mutants in the short term. The intuition behind

Fig 2. Effective population size. The effective population size in both superinfecting (S) and superinfection-excluding (SX) populations as a function of

adsorption rate α, burst size β and lysis time τ. Effective population size are also shown scaled by the size of the total phage populationNT = (Vss + βIss).
Parameters used were α = 3 × 10−6, β = 100 and τ = 15 unless otherwise stated. Throughout, δ = 0.1 and B0 = 1000. Error bars are plotted but are too small to

see. The data is obtained from an average of at least 1000 independent simulations.

https://doi.org/10.1371/journal.pcbi.1010125.g002
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this observation can be explained in the following way: at the moment that the mutant is intro-

duced, all infected cells are infected by the resident phage. In the superinfecting scenario, the

mutant population can therefore grow by infecting an uninfected cell, or by infecting an

already infected cell, as this secondary infection will lead to some fraction of the burst size

being allocated to the mutant type. While resident phage can replicate by infecting either types

of host, the resident population cannot further grow by infecting previously infected cells. This

is because all infected cells are already exclusively infected with resident phage, and superinfec-

tion of resident infected cells by more resident phage does not result in any more resident

phage being produced. As a result, superinfection increases the mutant’s chance of survival in

the early stages in comparison to the superinfection-excluding counterpart, similarly to condi-

tions of high vs. low MOI [48].

Higher growth rate does not translate into competitive advantage

To investigate the evolutionary fate of non-neutral mutations, we first characterise how phage

growth rate and competitive fitness is affected by changes to the phage life history parameters,

i.e., adsorption rate α, burst size β and the lysis time τ, relative to the values used in our neutral

simulations (Fig 3).

S2 Fig shows that increasing burst size or adsorption rate results in a larger selective advan-

tage both in isolation and in direct competition (see Methods). However, while variations in

burst size affect similarly the phage growth rate in isolation and its (dis)advantage in a compet-

itive setting (sgrowth� scomp, Fig 4), variations in adsorption rate lead to a stronger competitive

(dis)advantage than what would be predicted by the growth rate (|sgrowth|< |scomp|). The intui-

tion behind this result is that increasing adsorption rate becomes particularly advantageous in

a competitive environment, as being the first virus to infect a host allows the virus to have

largely (superinfection scenario) or completely (superinfection exclusion scenario) exclusive

access to the host resources.

The impact of altering lysis time τ is surprising. S2 Fig shows that increasing τ results in a

reduced growth rate, as intuition suggests. Yet, in the superinfection-excluding scenario no

discernible impact on scomp is observed (Fig 4). This result is supported by our ODE model (S2

Appendix), which shows that once the system is at steady-state, alterations to lysis time offer

no advantage to one phage over the other (S3 Fig). We believe that this is a special feature of a

Fig 3. Fixation of neutral mutants. Probability of mutant fixation Pfix in the superinfecting (S) and non superinfection excluding (SX) scenarios, scaled by the

initial frequency of the mutant f �
0
¼ 1=ðVss þ bIssÞ, as a function of adsorption rate α, burst size β and lysis time τ. Dashed lines indicate the average of the data

for both the superinfecting (blue) and superinfection-excluding (red) scenarios. These lines indicate that neutral mutants in superinfecting populations

experience a small advantage over mutants in an equivalent superinfection-excluding population. Unscaled Pfix data can be seen in S2 Appendix. Unless

otherwise stated, the parameters used were α = 3 × 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. The error in our estimate of the fixation probability ΔPfix is given

by DPfix ¼
ffiffiffiffiffiffinfix
p

=n, where n and nfix represent the total number of simulations and the number of simulations where the mutant fixes respectively. The data is

obtained from a minimum of 14 million independent simulations.

https://doi.org/10.1371/journal.pcbi.1010125.g003
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turbidostat setting, as lysed hosts are immediately replaced by uninfected cells, providing the

same number of viable hosts independently of the time needed by the phage to lyse them. By

contrast, in the superinfecting case, we are able to observe a selective (dis)advantage in direct

competition, although at a significantly reduced level compared to the change in growth rate.

We believe that this effect arises because, while the extracellular competition is limited by the

turbidostat setup, in the superinfecting scenario there is the opportunity for some intracellular

competition to occur, as mutants will grow at different rates inside the host, resulting in differ-

ent numbers of phage (both in total and proportionally) being released upon lysis. We leave a

full characterisation of the relationship between growth rate in isolation and competitive fit-

ness to future works.

Superinfection results in more efficient selection

Having characterised how changes to the phage infection parameters alter first genetic drift

and second fitness, we now put both ingredients together and investigate the dynamics of non-

neutral mutants. To this end, we simulate a resident phage population to steady state, intro-

duce a single non-neutral mutant and then run the simulation until extinction or fixation

occurs.

In agreement with our observations regarding the difference between growth rate and com-

petitive fitness, we find that the value of sgrowth is not sufficient to determine the fixation proba-

bility of the corresponding mutant (Fig 5): a mutation associated with a higher adsorption rate

α increases the mutant’s chance to fix more than a mutation which alters the burst size β and

leads to the same growth rate. We also find that beneficial mutations are consistently more

likely to fix (and deleterious mutations more likely to go extinct) in superinfecting populations

(red) than superinfection-excluding populations (blue). This suggests that superinfection

improves selection efficiency, by more readily fixing beneficial mutations and purging deleteri-

ous ones.

To provide a theoretical framework to our findings, we compare the simulation data to the

fixation probabilities one would expect in a corresponding Moran model. For small selective

advantage scomp, the probability of fixation is given by

Pfix ¼
1 � e� Nescompf0
1 � e� Nescomp

; ð1Þ

Fig 4. Competitive vs isolated selective advantage. The selective advantage in a competitive setting scomp as a function of the change in growth rate

sgrowth, when changing adsorption rate α, burst size β and lysis time τ. Straight line fits are shown as dashed lines, with gradient σ such that scomp =

σsgrowth. From the above data we find σSα = 1.2324, σSXα = 1.2764, σSβ = 1.0432, σSXβ = 0.9134, σSτ = 0.3057 and σSXτ� 0. Resident parameters used were

α = 3 × 10−6, β = 100 and τ = 15. As before δ = 0.1 and B0 = 1000. sgrowth determined from 500 simulations, and scomp determined from 200 simulations.

Error bars are given by the standard error on the mean of the simulations. Error bars on x axis have been omitted for clarity, but are shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1010125.g004
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where f0 is the initial frequency of the mutant in the population with effective population size

Ne [52, 53]. Our earlier results on neutral dynamics and fitness provide independent measure-

ments of the parameters in Eq 1 for different values of α, β and τ: f0 ¼ f �0 from our initial con-

dition (i.e., 1/NT, where NT is the steady-state phage population size when the mutant is

introduced); Ne is measured from the decay of heterozygosity (Fig 2); and scomp = σsgrowth is

derived from our measurements of the relationship between competitive and growth rate

advantage (Fig 4). These theoretical predictions are plotted without additional fitting parame-

ters as lines in Fig 5.

Fig 5 shows that the theoretical prediction from the appropriately parameterised Moran

model matches the simulation data remarkably well, despite the complex internal infection

dynamic (see S3 Appendix for quantitative comparison). We note, however, that the simula-

tion data consistently fails to intersect at the same point when sgrowth = 0 in the superinfecting

scenario. This is because of the effect outlined in Fig 3, where rare mutants initially experience

a slight advantage in the superinfecting scenario because they are able to increase in number

by infecting both uninfected and infected cells. To test the validity of our findings across

parameter space, we also perform all of the above analysis with different resident parameters,

obtaining similar results (S4 Appendix).

Superinfection exclusion slows down adaptability in the long run, but is a

winning strategy in the short term

Our findings imply that, even in the absence of intra-cellular processes such as recombination,

superinfection results in more efficient selection, so that beneficial mutations are relatively

more likely to fix, and deleterious ones are more likely to be purged, leading to a fitter overall

population in the long run. From the point of view of viral adaptation, allowing superinfection

ultimately seems like the better long-term strategy. It is therefore puzzling why several natural

phage populations have developed sophisticated mechanisms to prevent superinfection,

Fig 5. Fixation of non-neutral mutants. Probability of mutant fixation Pfix as a function of selective growth advantage sgrowth. Points indicate

simulation results, while lines indicate theoretically predicted values in a Moran model with equivalent parameters (Eq 1). Data points for the α and β
mutants have been omitted from the right hand panel for clarity. The error in our estimate of the fixation probability ΔPfix is given by DPfix ¼

ffiffiffiffiffiffinfix
p

=n,

where n and nfix represent the total number of simulations and the number of simulations where the mutant fixes respectively. Error bars in the x-axis

represent the errors on the growth rate fitness sgrowth that each burst size corresponds to. These are calculated by fitting a linear relation to growth rate

measurements such that sgrowth =m(βmut − βres). The fractional error on the sgrowth is then equal to the fractional error on the fitted gradientm. The data

is obtained from a minimum of 5 million independent simulations.

https://doi.org/10.1371/journal.pcbi.1010125.g005
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particularly given that employing these mechanisms is expected to come with a biological cost,

such as reduced burst size [54, 55] or increased lysis time [56].

To address this question, we consider the fate of mutations that either (i) remove the

mutant’s ability to prevent superinfection in a resident superinfection-excluding population or

(ii) provide the mutant the ability to prevent superinfection in a resident superinfecting popu-

lation. Fig 6 shows that if the mutant is neutral (βmut = βres = 100), then the superinfection-

excluding mutant is two orders of magnitude more likely to fix than the expectation based on

its initial frequency f �
0

, and that, by contrast, the superinfecting mutant is at least two orders of

magnitude more likely to go extinct. It should be noted that we actually find no instances of

mutant fixation in this case, but our detection power is limited by the number of simulation

runs. Here, we run at least 20 million simulations, and we can thus infer that Pfix� 10−7. This

indicates that mutants which are able to prevent superinfection experience a very strong selec-

tive advantage over their superinfecting counterparts, and vice-versa.

To account for the possibility that superinfection exclusion comes at a cost in phage growth,

as preventing superinfection likely requires the production of extra proteins, the resources for

which could otherwise have gone to the production of more phage, we consider the case where

superinfection exclusion is associated with a reduction in burst size [54]. Remarkably, we find

that even when preventing superinfection carries a burden of 7% reduction in burst size (sgrowth
< −7%), the superinfection-excluding mutant still fixes more often than a neutral superinfect-

ing mutant (Fig 6). Conversely, a minimum of 8% increase in burst size (sgrowth> 8%) is

necessary to give a superinfecting mutant any chance of fixing in a superinfection-excluding

population. This indicates that while allowing superinfection increases selection efficiency at

the population level, preventing it is ultimately a winning strategy in the short term, partially

explaining why superinfection exclusion is so common in nature [5, 6].

Fig 6. Mutations which alter the ability to prevent superinfection. (a) The probability Pfix of a mutant which prevents

superinfection fixing in a population that allows it, as a function of mutant burst size βmut. (b) The probability Pfix of a mutant

which allows superinfection fixing in a population that prevents it, as a function of mutant burst size βmut. It can be seen that the

superinfecting mutant requires a significantly increased burst size to fix, and conversely the superinfection-excluding mutant can

fix, even if its burst size is greatly reduced. The error in our estimate of the fixation probability ΔPfix is given by DPfix ¼
ffiffiffiffiffiffinfix
p

=n,

where n and nfix represent the total number of simulations and the number of simulations where the mutant fixes respectively.

Error bars in the x-axis represent the errors on the growth rate fitness sgrowth that each burst size corresponds to. These are

calculated by fitting a linear relation to growth rate measurements such that sgrowth =m(βmut − βres). The fractional error on the

sgrowth is then equal to the fractional error on the fitted gradientm. The fixation data is obtained from a minimum of 20 million

independent simulations.

https://doi.org/10.1371/journal.pcbi.1010125.g006
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Discussion

In this work, we have considered the impact of either allowing or preventing superinfection on

the evolution of viral populations. Using a stochastic agent-based model of viral infection, we

have shown that allowing superinfection reduces the strength of genetic drift, leading to an

increase in effective population size. Weaker fluctuations result in a higher efficiency of selec-

tion in viral populations, with beneficial mutations fixing more frequently, and deleterious

ones more readily being purged from the population. Despite the long term, population-wide

benefit of allowing superinfection, we find that if a mutant arises which is capable of prevent-

ing superinfection, it will fix remarkably easily, even if its growth rate is heavily compromised.

Conversely, if the whole population is capable of preventing superinfection, mutants which

allow it will have almost no chance of ever succeeding.

The evolutionary impact of superinfection (and more generally multiple infections) has

most often focused on the role of intracellular interactions and competition [11–14, 16–19],

such as genetic recombination and reassortment [20–23], and viral complementation [23–27].

A prevalent finding (amongst others) is that recombination and reassortment can improve the

efficiency of selection in viral populations which do not exclude superinfection. Remarkably,

our work demonstrates that the basic occurrence of superinfection alone, absent of any recom-

bination or reassortment, is capable of increasing the selection efficiency. In this context, our

results provide a useful baseline for comparison when trying to assess the significance of each

of these more complex effects, which may or may not be present in different situations.

An unexpected finding of this work is that in the turbidostat system we consider, while

increased adsorption rate and burst size both increase the fitness of the phage population in all

respects, in the superinfecting scenario lysis time plays a significantly reduced role in the com-

petitive (dis)advantage experienced once the system has reached a steady-state, and in the

superinfection-excluding scenario it plays no role whatsoever. While it has been demonstrated

previously that changes to fecundity and generation time can have different impacts on muta-

tion fixation probability, even when they have the same impact on long-term growth rate [57],

our result is somewhat in contrast with previous studies showing that well-mixed liquid cul-

tures with an abundance of hosts generally select for higher adsorption rates and lower lysis

times [51, 58–60]. The key difference between such liquid cultures and the turbidostat system

we model here is that in the former host cells are not maintained at a constant density, but the

phage population continues to grow until no bacteria remain. This finding illustrates how the

presence or absence of a co-existing steady-state between phage and bacteria completely alters

the selective pressure on the phage with important implications for studies into the co-evolu-

tion of phage and bacteria populations using continuous culturing set-ups [61–63]. In particu-

lar, our results suggest that in an evolutionary experiment in a turbidostat, the virus should

evolve towards very large burst size even if this feature comes at the cost of longer lysis times,

especially if superinfection exclusion occurs [59]. Reciprocally, detecting a selective pressure

on lysis time could be used to identify potential phages that allow superinfection, as, in this

case, a shorter lysis time is slightly advantageous all else being equal.

Following this, it is natural to wonder how the (dis)advantages and impact of either strategy

depends on the selective pressure experienced in different environments. The relationship

between viral fitness and the phage life-history parameters (adsorption rate, lysis time and

burst size) has been shown to be very context-dependent in both well-mixed and spatially

structured settings. For instance, as noted previously, well-mixed settings generally favour

higher adsorption rates [64], but in spatially structured settings phage with lower adsorption

rates are more successful [65, 66]. Additionally, it has been shown previously that eco-evolu-

tionary feedbacks at the edge of expanding viral populations can result in travelling waves with
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vastly different effective population sizes [67]. Given that competition for resources (i.e. viable

hosts) in spatially structured environments is local rather than global, phage are more likely to

be in competition with other genetically identical phage released by nearby cells. It is therefore

possible that superinfection exclusion proves less useful in this context than in well-mixed

environments where competition is global and phage are more likely to encounter other genet-

ically different viruses. All of this points at the role of superinfection strategies and other social

viral behaviour on the eco-evolutionary dynamics of spatially expanding viral populations as

an exciting avenue for future research.

Methods

Measuring effective population size of the phage population

Consistently with previous work [52], we expect that the neutral standing diversity of the

phage population, quantified by the heterozygosity H, will decay exponentially at long times

due to genetic drift, so that HðtÞ / e� 2t=Ne (S4 Fig), with the decay rate in units of generations

being expressed in terms of an effective population size 2/Ne (Moran model [52]).

We track the viral heterozygosity H as a function of time, which in a biallelic viral popula-

tion is given by

H ¼ 2hf ð1 � f Þi; ð2Þ

where f and (1 − f) represent the frequencies of two neutral viral alleles in the population, and

h. . .i indicates the average over independent simulations. H(t) can be understood to be the

time-dependent probability that two individuals chosen from the population are genetically

distinct.

To determine the generation time T, we first calculate the net reproduction rate R0, which

represents the number of offspring an individual would be expected to produce if it passed

through its lifetime conforming to the age-specific fertility and mortality rates of the popula-

tion at a given time (i.e. taking into account the fact that some individuals die before reproduc-

ing) [68]. R0 can be calculated as

R0 ¼
P
ltmt; ð3Þ

where lt represents the proportion of individuals (in our case, phage) surviving to age t, andmt

represents the average number of offspring produced at age t.
There are two mechanisms in our simulations by which phages can ‘die’ when superinfec-

tion exclusion applies: either by decaying with rate δ, or by adsorbing to an infected host with

rate αIss. In a sufficiently small timestep Δt, these rates correspond to a proportion δΔt and

αIssΔt of the total phage, respectively. Equivalently, these can be considered to be the probabil-

ity that any single phage will die in the same period. As a result, the probability of a phage sur-

viving to age t is lt = (1 − δΔt − αIssΔt)t/Δt.
The average number of offspring mt produced at age t is 0 if t< τ, because we assume that

no phage is released before the lysis time. For t> τ,mt is given by the probability of success-

fully infecting a viable host in a timestep Δt, τ time earlier (αBssΔt), multiplied by the yield of

new phage (β − 1).

In the limit where Δt! 0, this will result in a net reproductive rate of the form

R0 ¼ lim
Dt!0

X1

t¼0

mtlt ¼ lim
Dt!0

X1

t¼t

DtaBssðb � 1Þð1 � Dtðdþ aIssÞÞ
t=Dt
; ð4Þ
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¼

Z 1

t¼t
aBssðb � 1Þe� ðdþaIssÞtdt; ð5Þ

¼
aBssðb � 1Þ

dþ aIss
e� ðdþaIssÞt; ð6Þ

where the integral starts at τ because no offspring are produced prior to that point.

Then the generation time T, defined as the average interval between the birth of an individ-

ual and the birth of its offspring, is

T ¼ lim
Dt!0

P
tltmt

R0

¼

R1
t¼t taBssðb � 1Þe� ðdþaIssÞtdt

R0

¼ tþ
1

dþ aIss
: ð7Þ

Here, we will use resident phage parameters α = 3 × 10−6, τ = 15, δ = 0.1 and a total bacterial

population of B0 = 1000, which leads to Iss = 681 and a generation time of T = 24.8. This gener-

ation time is also supported by stochastic simulations of the phage adsorption and death pro-

cesses (S5 Appendix). Throughout this work, we use the same generation time for both

superinfecting and superinfection-excluding populations (more details in S5 Appendix).

For comparison, coliphage T7 in liquid culture typically has parameters of τ� 10 − 20 min,

α� 10−9 ml/min and B0� 106 − 108 ml−1, thereby yielding an αB0� 10−3−10−1 min−1 [59,

69]. These values are comparable to our own if we equate 1 timestep = 1 min, and so τ = 15

min and αB0 = 3 × 10−3 min−1, such that the relative timescales in our simulation remain con-

sistent. The reason behind choosing a larger adsorption rate and smaller bacteria population is

purely practical, as the alternative would lead to unreasonably long computational times.

Given these values, our choice of decay rate δ is made such that steady-state population sizes

are reached.

Measuring mutant fitness and growth rate

We start by defining a selective advantage sgrowth in terms of the exponential growth rate rmut
of the mutant phage population relative to that of the resident phage rres [70]:

sgrowth ¼
rmut
rres
� 1: ð8Þ

The exponential growth rate is determined by simulating the growth of the corresponding

phage population in isolation, and performing a linear fit to the log-transformed phage num-

ber as a function of time, which is then averaged over 500 independent simulations. It should

be noted that as there is only one type of phage in these simulations, the growth rate of both

superinfecting and superinfection-excluding populations is the same.

We also characterised the fitness of mutants in a competitive setting, by simulating a resi-

dent population until steady state, and then replacing 50% of the population with the mutant.

In this direct competition scenario, we determine the selective (dis)advantage scomp of the

mutant phage by tracking the relative growth of mutant and resident populations, so that

Vmut

Vres
¼
Vmutðt ¼ 0Þerresð1þscompÞt

Vresðt ¼ 0Þerrest
¼ erresscompt; ð9Þ

as Vmut(t = 0) = Vres(t = 0). scomp is determined from the average of 200 simulations. Impor-

tantly, in contrast to sgrowth, this competitive selective advantage (scomp) can in principle differ

between superinfecting (sS) and superinfection-excluding (sSX) phage populations. In the
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absence of any interactions between the two competing phage populations, sgrowth and scomp
are typically expected to be the same.

Measuring mutant probability of fixation

To measure fixation probabilities of individual mutations, we allow our simulations to reach

steady state, we then introduce a single mutant phage into the free phage population, and run

the simulation until either fixation or extinction occurs. This process is repeated at least 5 mil-

lion times for each set of parameters. The probability of mutant fixation Pfix is determined

from the fraction of simulations where the mutant fixed, nfix, over the total number of simula-

tions run, n (i.e. Pfix = nfix/n). Assuming a binomial distribution, the error in our estimate of

the number of fixation events Δnfix is given by Dnfix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPfixð1 � PfixÞ

q
. Consequently, our

error in the estimate of fixation probability ΔPfix is given by DPfix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pfixð1 � PfixÞ=n

q
. It

can be easily verified that in the case where nfix� n, as we have here, the error approaches

DPfix ¼
ffiffiffiffiffiffinfix
p

=n as would be found in a Poisson distribution.

Supporting information

S1 Fig. Steady-states are independent of intial conditions. The steady-state phage population

Vss reached does not depend on the initial number of phage V0 in the simulations. In all, α =

3 × 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000.

(EPS)

S2 Fig. s as a function of phage life-history parameters. The selective advantage s relative to

a resident phage that results from a change to adsorption rate α, burst size β and lysis time τ.
This is measured both in terms of the effect on the isolated growth rate of the mutant (sgrowth,
Eq 8), and in terms of the change in frequency in a population initiated with 50% mutant and

50% resident (sSX and sS, Eq 9). Resident parameters used were α = 3 × 10−6, β = 100 and τ =

15. As before δ = 0.1 and B0 = 1000. sgrowth determined from 500 simulations, and scomp deter-

mined from 200 simulations. Error bars are given by the standard error on the mean of the

simulations.

(EPS)

S3 Fig. scomp in the ODE model. The relative change in frequency of two populations in the

ODE model (indicating the average behaviour in the stochastic model). It can be seen that

once at steady-state, changing lysis time τ has no effect. Parameters used were α = 3 × 10−6,

β = 100 and τ = 15 unless otherwise stated. As throughout, δ = 0.1 and B0 = 1000.

(EPS)

S4 Fig. Example decay in heterozygosity. Linear fit to log transformed heterozygosity data,

with slope Λ� 2/Ne revealing that allowing superinfection (red) results in a larger effective

population size compared to the case where superinfection is prevented (blue). Parameters

used were α = 3 × 10−6, β = 100, τ = 15, δ = 0.1 and B0 = 1000. Data obtained is the average of

1000 independent simulations.

(EPS)

S1 Appendix. Stochasticity in lysis time. Here we discuss the decision to not incorporate sto-

chasticity in lysis time in the model presented in the main text.

(PDF)
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S2 Appendix. ODE description of model. The average behaviour of the model used in the

main text is described by a set of ordinary differential equations (ODEs), showing good agree-

ment with our stochastic simulations.

(PDF)

S3 Appendix. Comparison with expectation from Moran model. A quantitative comparison

between the fixation probabilities obtained in our stochastic simulations with those that would

be predicted in a similarly parameterised Moran model.

(PDF)

S4 Appendix. Repeat measurements with βres = 70. Here we repeat a subset of the measure-

ments carried out in the main text with different resident phage parameters, in this instance

βres = 70.

(PDF)

S5 Appendix. Calculation of generation time. Here we support the generation time calcu-

lated in the main text with results of stochastic simulations. We also include a more detailed

discussion about the differences in generation time between superinfecting and superinfec-

tion-excluding populations.

(PDF)

Author Contributions

Conceptualization: Michael Hunter, Diana Fusco.

Formal analysis: Michael Hunter.

Investigation: Michael Hunter.

Methodology: Michael Hunter, Diana Fusco.

Project administration: Diana Fusco.

Resources: Diana Fusco.

Software: Michael Hunter.

Supervision: Diana Fusco.

Validation: Michael Hunter.

Visualization: Michael Hunter.

Writing – original draft: Michael Hunter.

Writing – review & editing: Michael Hunter, Diana Fusco.

References
1. Adams MH. Bacteriophages. An Interscience reprint. Interscience Publishers; 1959.

2. Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from

publicly available microbial genomes. eLife. 2015; 4(JULY2015). https://doi.org/10.7554/eLife.08490

PMID: 26200428

3. Dı́az-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse

microbial taxa and environments. Virus Evolution. 2017; 3(1). https://doi.org/10.1093/ve/vex011 PMID:

28469939

4. Turner PE, Duffy S. Evolutionary ecology of multiple phage adsorption and infection. In: Abedon ST,

editor. Bacteriophage Ecology. Cambridge: Cambridge University Press; 2008. p. 195–216.

PLOS COMPUTATIONAL BIOLOGY Superinfection exclusion: The pros and cons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010125 May 10, 2022 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010125.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010125.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010125.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010125.s009
https://doi.org/10.7554/eLife.08490
http://www.ncbi.nlm.nih.gov/pubmed/26200428
https://doi.org/10.1093/ve/vex011
http://www.ncbi.nlm.nih.gov/pubmed/28469939
https://doi.org/10.1371/journal.pcbi.1010125


5. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nature Reviews Microbiol-

ogy. 2010; 8(5):317–327. https://doi.org/10.1038/nrmicro2315 PMID: 20348932

6. van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Micro-

biology and molecular biology reviews: MMBR. 2016; 80(3):745–63. https://doi.org/10.1128/MMBR.

00011-16 PMID: 27412881

7. Braun V, Killmann H, Herrmann C. Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a

phage T5 lipoprotein at the periplasmic face of the outer membrane. Journal of Bacteriology. 1994; 176

(15):4710–4717. https://doi.org/10.1128/jb.176.15.4710-4717.1994 PMID: 8045901

8. Pedruzzi I, Rosenbusch JP, Locher KP. Inactivation in vitro of the Escherichia coli outer membrane pro-

tein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiology Letters. 1998; 168(1):119–125.

https://doi.org/10.1111/j.1574-6968.1998.tb13264.x PMID: 9812372

9. Lu MJ, Stierhof YD, Henning U. Location and unusual membrane topology of the immunity protein of

the Escherichia coli phage T4. Journal of Virology. 1993; 67(8). https://doi.org/10.1128/jvi.67.8.4905-

4913.1993 PMID: 8331731

10. Lu MJ, Henning U. Superinfection exclusion by T-even-type coliphages. Trends in Microbiology. 1994;

2(4):137–139. https://doi.org/10.1016/0966-842X(94)90601-7 PMID: 8012757

11. Frank SA. All of life is social; 2007.

12. Weitz JS, Mileyko Y, Joh RI, Voit EO. Collective decision making in bacterial viruses. Biophysical Jour-

nal. 2008; 95(6):2673–2680. https://doi.org/10.1529/biophysj.108.133694 PMID: 18567629

13. Refardt D. Within-host competition determines reproductive success of temperate bacteriophages.

ISME Journal. 2011; 5(9):1451–1460. https://doi.org/10.1038/ismej.2011.30 PMID: 21412345

14. Ojosnegros S, Perales C, Mas A, Domingo E. Quasispecies as a matter of fact: Viruses and beyond; 2011.

15. Dı́az-Muñoz SL, Sanjuán R, West S. Sociovirology: Conflict, Cooperation, and Communication among

Viruses; 2017.

16. Koelle K, Farrell AP, Brooke CB, Ke R. Within-host infectious disease models accommodating cellular

coinfection, with an application to influenza†. Virus Evolution. 2019; 5(2):18. https://doi.org/10.1093/ve/

vez018

17. Iranzo J, Faure G, Wolf YI, Koonin EV. Game-Theoretical Modeling of Interviral Conflicts Mediated by

Mini-CRISPR Arrays. Frontiers in Microbiology. 2020; 11:381. https://doi.org/10.3389/fmicb.2020.

00381 PMID: 32265856

18. Vafadar S, Shahdoust M, Kalirad A, Zakeri P, Sadeghi M. Competitive exclusion during co-infection as

a strategy to prevent the spread of a virus: A computational perspective. PLOS ONE. 2021; 16(2):

e0247200. https://doi.org/10.1371/journal.pone.0247200 PMID: 33626106

19. Sanjuán R, Domingo-Calap P. Genetic Diversity and Evolution of Viral Populations. In: Encyclopedia of

Virology. Elsevier; 2021. p. 53–61.

20. Bretscher MT, Althaus CL, Müller V, Bonhoeffer S. Recombination in HIV and the evolution of drug

resistance: for better or for worse? BioEssays. 2004; 26(2):180–188. https://doi.org/10.1002/bies.

10386 PMID: 14745836

21. Vijay NNV,Vasantika, Ajmani R, Perelson AS, Dixit NM. Recombination increases human immunodefi-

ciency virus fitness, but not necessarily diversity. Journal of General Virology. 2008; 89(6):1467–1477.

https://doi.org/10.1099/vir.0.83668-0

22. Weller SK, Sawitzke JA. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus.

Annual Review of Microbiology. 2014; 68(1):237–258. https://doi.org/10.1146/annurev-micro-091313-

103424 PMID: 25002096

23. Gao H, Feldman MW. Complementation and epistasis in viral coinfection dynamics. Genetics. 2009;

182(1):251–263. https://doi.org/10.1534/genetics.108.099796 PMID: 19270273

24. Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE. Co-infection Weakens Selection

Against Epistatic Mutations in RNA Viruses. Genetics. 2004; 168(1):9–19. https://doi.org/10.1534/

genetics.104.030205 PMID: 15454523

25. Garcı́a-Arriaza J, Manrubia SC, Toja M, Domingo E, Escarmı́s C. Evolutionary Transition toward Defec-

tive RNAs That Are Infectious by Complementation. Journal of Virology. 2004; 78(21):11678–11685.

https://doi.org/10.1128/JVI.78.21.11678-11685.2004 PMID: 15479809

26. Garcı́a-Arriaza J, Ojosnegros S, Dávila M, Domingo E, Escarmı́s C. Dynamics of Mutation and Recom-

bination in a Replicating Population of Complementing, Defective Viral Genomes. Journal of Molecular

Biology. 2006; 360(3):558–572. https://doi.org/10.1016/j.jmb.2006.05.027 PMID: 16797586

27. Gelderblom HC, Vatakis DN, Burke SA, Lawrie SD, Bristol GC, Levy DN. Viral complementation allows

HIV-1 replication without integration. Retrovirology. 2008; 5(1):60. https://doi.org/10.1186/1742-4690-

5-60 PMID: 18613957

PLOS COMPUTATIONAL BIOLOGY Superinfection exclusion: The pros and cons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010125 May 10, 2022 16 / 18

https://doi.org/10.1038/nrmicro2315
http://www.ncbi.nlm.nih.gov/pubmed/20348932
https://doi.org/10.1128/MMBR.00011-16
https://doi.org/10.1128/MMBR.00011-16
http://www.ncbi.nlm.nih.gov/pubmed/27412881
https://doi.org/10.1128/jb.176.15.4710-4717.1994
http://www.ncbi.nlm.nih.gov/pubmed/8045901
https://doi.org/10.1111/j.1574-6968.1998.tb13264.x
http://www.ncbi.nlm.nih.gov/pubmed/9812372
https://doi.org/10.1128/jvi.67.8.4905-4913.1993
https://doi.org/10.1128/jvi.67.8.4905-4913.1993
http://www.ncbi.nlm.nih.gov/pubmed/8331731
https://doi.org/10.1016/0966-842X(94)90601-7
http://www.ncbi.nlm.nih.gov/pubmed/8012757
https://doi.org/10.1529/biophysj.108.133694
http://www.ncbi.nlm.nih.gov/pubmed/18567629
https://doi.org/10.1038/ismej.2011.30
http://www.ncbi.nlm.nih.gov/pubmed/21412345
https://doi.org/10.1093/ve/vez018
https://doi.org/10.1093/ve/vez018
https://doi.org/10.3389/fmicb.2020.00381
https://doi.org/10.3389/fmicb.2020.00381
http://www.ncbi.nlm.nih.gov/pubmed/32265856
https://doi.org/10.1371/journal.pone.0247200
http://www.ncbi.nlm.nih.gov/pubmed/33626106
https://doi.org/10.1002/bies.10386
https://doi.org/10.1002/bies.10386
http://www.ncbi.nlm.nih.gov/pubmed/14745836
https://doi.org/10.1099/vir.0.83668-0
https://doi.org/10.1146/annurev-micro-091313-103424
https://doi.org/10.1146/annurev-micro-091313-103424
http://www.ncbi.nlm.nih.gov/pubmed/25002096
https://doi.org/10.1534/genetics.108.099796
http://www.ncbi.nlm.nih.gov/pubmed/19270273
https://doi.org/10.1534/genetics.104.030205
https://doi.org/10.1534/genetics.104.030205
http://www.ncbi.nlm.nih.gov/pubmed/15454523
https://doi.org/10.1128/JVI.78.21.11678-11685.2004
http://www.ncbi.nlm.nih.gov/pubmed/15479809
https://doi.org/10.1016/j.jmb.2006.05.027
http://www.ncbi.nlm.nih.gov/pubmed/16797586
https://doi.org/10.1186/1742-4690-5-60
https://doi.org/10.1186/1742-4690-5-60
http://www.ncbi.nlm.nih.gov/pubmed/18613957
https://doi.org/10.1371/journal.pcbi.1010125


28. Turner PE, Chao L. Sex and the Evolution of Intrahost Competition in RNA Virus ϕ6. Genetics. 1998;

150(2):523–532. https://doi.org/10.1093/genetics/150.2.523 PMID: 9755186

29. Turner PE, Chao L. Prisoner’s dilemma in an RNA virus. Nature. 1999; 398(6726):441–443. https://doi.

org/10.1038/18913 PMID: 10201376

30. Turner PE, Chao L. Escape from prisoner’s dilemma in RNA phage ϕ6. American Naturalist. 2003; 161

(3):497–505. https://doi.org/10.1086/367880 PMID: 12699226

31. Dennehy JJ, Duffy S, O’Keefe KJ, Edwards SV, Turner PE. Frequent Coinfection Reduces RNA Virus

Population Genetic Diversity. Journal of Heredity. 2013; 104(5):704–712. https://doi.org/10.1093/

jhered/est038 PMID: 23828608

32. Donahue DA, Bastarache SM, Sloan RD, Wainberg MA. Latent HIV-1 Can Be Reactivated by Cellular

Superinfection in a Tat-Dependent Manner, Which Can Lead to the Emergence of Multidrug-Resistant

Recombinant Viruses. Journal of Virology. 2013; 87(17):9620–9632. https://doi.org/10.1128/JVI.01165-

13 PMID: 23804632

33. Chao L. Evolution of sex in RNA viruses; 1992.

34. Asatryan A, Wodarz D, Komarova NL. New virus dynamics in the presence of multiple infection. Journal

of Theoretical Biology. 2015; 377:98–109. https://doi.org/10.1016/j.jtbi.2015.04.014 PMID: 25908207

35. Dixit NM, Perelson AS. Multiplicity of Human Immunodeficiency Virus Infections in Lymphoid Tissue.

Journal of Virology. 2004; 78(16):8942–8945. https://doi.org/10.1128/JVI.78.16.8942-8945.2004

PMID: 15280505

36. Dixit NM, Perelson AS. HIV dynamics with multiple infections of target cells. Proceedings of the National

Academy of Sciences of the United States of America. 2005; 102(23):8198–8203. https://doi.org/10.

1073/pnas.0407498102 PMID: 15928092

37. Althaus CL, Bonhoeffer S. Stochastic Interplay between Mutation and Recombination during the Acqui-

sition of Drug Resistance Mutations in Human Immunodeficiency Virus Type 1. Journal of Virology.

2005; 79(21):13572–13578. https://doi.org/10.1128/JVI.79.21.13572-13578.2005 PMID: 16227277

38. Fraser C. HIV recombination: What is the impact on antiretroviral therapy? Journal of the Royal Society

Interface. 2005; 2(5):489–503. https://doi.org/10.1098/rsif.2005.0064 PMID: 16849208

39. Wodarz D, Levy DN. Effect of different modes of viral spread on the dynamics of multiply infected cells

in human immunodeficiency virus infection. Journal of the Royal Society Interface. 2011; 8(55):289–

300. https://doi.org/10.1098/rsif.2010.0266 PMID: 20659927

40. Cummings KW, Levy DN, Wodarz D. Increased burst size in multiply infected cells can alter basic virus

dynamics. Biology Direct. 2012; 7(1):16. https://doi.org/10.1186/1745-6150-7-16 PMID: 22569346

41. May RM, Nowak MA. Superinfection, metapopulation dynamics, and the evolution of diversity. Journal

of Theoretical Biology. 1994; 170(1):95–114. https://doi.org/10.1006/jtbi.1994.1171 PMID: 7967636

42. Nowak MA, May RM. Superinfection and the evolution of parasite virulence. Proceedings of the Royal

Society B: Biological Sciences. 1994; 255(1342):81–89. https://doi.org/10.1098/rspb.1994.0012 PMID:

8153140

43. Van Baalen M, Sabelis MW. The dynamics of multiple infection and the evolution of virulence. American

Naturalist. 1995; 146(6):881–910. https://doi.org/10.1086/285830

44. Alizon S, Van Baalen M. Multiple infections, immune dynamics, and the evolution of virulence. American

Naturalist. 2008; 172(4):150–168. https://doi.org/10.1086/590958 PMID: 18702601

45. Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecology Letters.

2013; 16(4):556–567. https://doi.org/10.1111/ele.12076 PMID: 23347009

46. Leeks A, Segredo-Otero EA, Sanjuán R, West SA. Beneficial coinfection can promote within-host viral

diversity. Virus Evolution. 2018; 4(2). https://doi.org/10.1093/ve/vey028 PMID: 30288300

47. Phan D, Wodarz D. Modeling multiple infection of cells by viruses: Challenges and insights. Mathemati-

cal Biosciences. 2015; 264:21–28. https://doi.org/10.1016/j.mbs.2015.03.001 PMID: 25770053

48. Wodarz D, Levy DN, Komarova NL. Multiple infection of cells changes the dynamics of basic viral evolu-

tionary processes. Evolution Letters. 2019; 3(1):104–115. https://doi.org/10.1002/evl3.95 PMID:

30788146

49. Bryson V, Szybalski W. Microbial selection; 1952.

50. Gresham D, Dunham MJ. The enduring utility of continuous culturing in experimental evolution. Geno-

mics. 2014; 104(6):399–405. https://doi.org/10.1016/j.ygeno.2014.09.015 PMID: 25281774

51. Wang IN. Lysis Timing and Bacteriophage Fitness. Genetics. 2006; 172(1):17–26. https://doi.org/10.

1534/genetics.105.045922 PMID: 16219778

52. Moran PAP. Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophi-

cal Society. 1958; 54(1):60–71. https://doi.org/10.1017/S0305004100033193

PLOS COMPUTATIONAL BIOLOGY Superinfection exclusion: The pros and cons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010125 May 10, 2022 17 / 18

https://doi.org/10.1093/genetics/150.2.523
http://www.ncbi.nlm.nih.gov/pubmed/9755186
https://doi.org/10.1038/18913
https://doi.org/10.1038/18913
http://www.ncbi.nlm.nih.gov/pubmed/10201376
https://doi.org/10.1086/367880
http://www.ncbi.nlm.nih.gov/pubmed/12699226
https://doi.org/10.1093/jhered/est038
https://doi.org/10.1093/jhered/est038
http://www.ncbi.nlm.nih.gov/pubmed/23828608
https://doi.org/10.1128/JVI.01165-13
https://doi.org/10.1128/JVI.01165-13
http://www.ncbi.nlm.nih.gov/pubmed/23804632
https://doi.org/10.1016/j.jtbi.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25908207
https://doi.org/10.1128/JVI.78.16.8942-8945.2004
http://www.ncbi.nlm.nih.gov/pubmed/15280505
https://doi.org/10.1073/pnas.0407498102
https://doi.org/10.1073/pnas.0407498102
http://www.ncbi.nlm.nih.gov/pubmed/15928092
https://doi.org/10.1128/JVI.79.21.13572-13578.2005
http://www.ncbi.nlm.nih.gov/pubmed/16227277
https://doi.org/10.1098/rsif.2005.0064
http://www.ncbi.nlm.nih.gov/pubmed/16849208
https://doi.org/10.1098/rsif.2010.0266
http://www.ncbi.nlm.nih.gov/pubmed/20659927
https://doi.org/10.1186/1745-6150-7-16
http://www.ncbi.nlm.nih.gov/pubmed/22569346
https://doi.org/10.1006/jtbi.1994.1171
http://www.ncbi.nlm.nih.gov/pubmed/7967636
https://doi.org/10.1098/rspb.1994.0012
http://www.ncbi.nlm.nih.gov/pubmed/8153140
https://doi.org/10.1086/285830
https://doi.org/10.1086/590958
http://www.ncbi.nlm.nih.gov/pubmed/18702601
https://doi.org/10.1111/ele.12076
http://www.ncbi.nlm.nih.gov/pubmed/23347009
https://doi.org/10.1093/ve/vey028
http://www.ncbi.nlm.nih.gov/pubmed/30288300
https://doi.org/10.1016/j.mbs.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/25770053
https://doi.org/10.1002/evl3.95
http://www.ncbi.nlm.nih.gov/pubmed/30788146
https://doi.org/10.1016/j.ygeno.2014.09.015
http://www.ncbi.nlm.nih.gov/pubmed/25281774
https://doi.org/10.1534/genetics.105.045922
https://doi.org/10.1534/genetics.105.045922
http://www.ncbi.nlm.nih.gov/pubmed/16219778
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1371/journal.pcbi.1010125


53. Dinh KN, Corey SJ, Kimmel M. Application of the Moran Model in Estimating Selection Coefficient of

Mutated CSF3R Clones in the Evolution of Severe Congenital Neutropenia to Myeloid Neoplasia. Fron-

tiers in Physiology. 2020; 11:806. https://doi.org/10.3389/fphys.2020.00806 PMID: 33041834

54. Delbrück M. Interference between bacterial viruses; the mutual exclusion effect and the depressor

effect. Journal of bacteriology. 1945; 50(2):151–170. https://doi.org/10.1128/jb.50.2.151-170.1945

55. Karam JD, Drake JW, Kreuzer KN, Hall DH, Mosig G. Molecular Biology of Bacteriophage T4. American

Society for Microbiology; 1994.

56. Abedon ST. Lysis of lysis-inhibited bacteriophage T4-infected cells. Journal of Bacteriology. 1992; 174

(24):8073–8080. https://doi.org/10.1128/jb.174.24.8073-8080.1992 PMID: 1459956

57. Wahl LM, DeHaan CS. Fixation probability favors increased fecundity over reduced generation time.

Genetics. 2004; 168(2):1009–1018. https://doi.org/10.1534/genetics.104.029199 PMID: 15514071

58. Wang IN, Dykhuizen DE, Slobodkin LB. The evolution of phage lysis timing. Evolutionary Ecology.

1996; 10(5):545–558. https://doi.org/10.1007/BF01237884

59. Heineman RH, Bull JJ. Testing optimality with experimental evolution: lysis time in a bacteriophage.

Evolution; international journal of organic evolution. 2007; 61(7):1695–709. https://doi.org/10.1111/j.

1558-5646.2007.00132.x

60. Shao Y, Wang IN. Bacteriophage adsorption rate and optimal lysis time. Genetics. 2008; 180(1):471–

482. https://doi.org/10.1534/genetics.108.090100 PMID: 18757924

61. Spanakis E, Horne MT. Co-adaptation of Escherichia coli and coliphage γvir in continuous culture. Jour-

nal of General Microbiology. 1987; 133(2):353–360. PMID: 3309153

62. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H. Coevolution of bacteriophage PP01 and

Escherichia coli O157:H7 in continuous culture. Applied and Environmental Microbiology. 2003; 69

(1):170–176. https://doi.org/10.1128/AEM.69.1.170-176.2003 PMID: 12513992

63. Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary pro-

cesses in microbial communities. FEMS Microbiology Reviews. 2014; 38(5):916–931. https://doi.org/

10.1111/1574-6976.12072 PMID: 24617569

64. Bull JJ, Heineman RH, Wilke CO. The phenotype-fitness map in experimental evolution of phages.

PLoS ONE. 2011; 6(11):27796. https://doi.org/10.1371/journal.pone.0027796 PMID: 22132144

65. Kerr B, Neuhauser C, Bohannan BJM, Dean AM. Local migration promotes competitive restraint in a

host-pathogen ‘tragedy of the commons’. Nature. 2006; 442(7098):75–78. https://doi.org/10.1038/

nature04864 PMID: 16823452

66. Roychoudhury P, Shrestha N, Wiss VR, Krone SM. Fitness benefits of low infectivity in a spatially struc-

tured population of bacteriophages. Proceedings of The Royal Society B: Biological Sciences. 2014;

281 (1774). https://doi.org/10.1098/rspb.2013.2563 PMID: 24225463
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