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Review of methods for handling
confounding by cluster and informative
cluster size in clustered data
Shaun Seaman,a*† Menelaos Pavloub and Andrew Copasc

Clustered data are common in medical research. Typically, one is interested in a regression model for the asso-
ciation between an outcome and covariates. Two complications that can arise when analysing clustered data are
informative cluster size (ICS) and confounding by cluster (CBC). ICS and CBC mean that the outcome of a mem-
ber given its covariates is associated with, respectively, the number of members in the cluster and the covariate
values of other members in the cluster. Standard generalised linear mixed models for cluster-specific inference
and standard generalised estimating equations for population-average inference assume, in general, the absence
of ICS and CBC. Modifications of these approaches have been proposed to account for CBC or ICS. This article
is a review of these methods. We express their assumptions in a common format, thus providing greater clarity
about the assumptions that methods proposed for handling CBC make about ICS and vice versa, and about when
different methods can be used in practice. We report relative efficiencies of methods where available, describe how
methods are related, identify a previously unreported equivalence between two key methods, and propose some
simple additional methods. Unnecessarily using a method that allows for ICS/CBC has an efficiency cost when
ICS and CBC are absent. We review tools for identifying ICS/CBC. A strategy for analysis when CBC and ICS
are suspected is demonstrated by examining the association between socio-economic deprivation and preterm
neonatal death in Scotland. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: conditional maximum likelihood; confounding by cluster; contextual effect; informative cluster size;
poor man’s method; within-cluster effect

1. Introduction

Clustered data commonly arise in epidemiology, for example, patients clustered within hospitals, pupils
within schools, and teeth within patients. Generalised linear mixed models (GLMM) [1] and gen-
eralised estimating equations (GEE) [2] are commonly used to analyse clustered data when interest
is in the association between outcome Y and covariate vector X measured on each member of the
cluster. GLMM give cluster-specific inference; GEE give population-average inference. Two issues in
the analysis of clustered data are confounding by cluster (CBC) [3–9] and informative cluster size
(ICS) [10–17].

Standard GLMM assume that the random effect u associated with cluster is independent of X values
in the members of that cluster. Violation of this assumption has been called CBC, because even if there
is no confounding within clusters, association of u with X means that there may be confounding in the
population as a whole. An example is the association between childhood IQ (Y) and birth weight (X), with
clusters being families [4]. Although many studies have found that heavier babies tend to have higher
IQ, this may be due to confounding by complex family-level social and economic factors. Although one
could adjust for some measure of familial socio-economic status, it is likely that such a measure would
capture only some of the confounding. When there is CBC, each member’s outcome Y depends on the
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X values of the other members in the same cluster. Covariate X is then said to have a ‘contextual effect’
[4]. Like standard GLMM, standard GEE assume that there is no contextual effect [18].

ICS refers to the situation where cluster size N varies and Y is not independent of N given X. An
example is a toxicology experiment in which pregnant dams are randomised to exposure (X = 1) or non-
exposure (X = 0) to a toxicant and the presence (Y = 1) or absence (Y = 0) of birth defects in each of
her N pups is noted [10]. Dams that are particularly susceptible to the effects of a toxicant may produce
a higher proportion of pups with birth defects and simultaneously experience more foetal resorptions
(and so have smaller litter sizes). Consequently, Y may be positively associated with X and negatively
associated with N given X. Nevalainen et al. (and references therein) give other examples and discuss
data-generating mechanisms giving rise to ICS [19]. Standard GLMM and GEE assume that cluster size
is non-informative.

In some studies, missing data may be the reason for variation in cluster size. For example, in a cohort
study involving M waves, an individual is a cluster, a set of measurements on that individual at a particular
wave is a member, and N is the number of waves attended before dropout. In this case, interest may be
in the association between Y and X in ‘complete clusters’, that is, the clusters composed of both the N
observed members (before dropout) and the M−N missing members (after dropout), and inference about
this association achieved by making some assumption about the missing data, for example, missing at
random. We emphasise that we are not considering inference about such ‘complete clusters’. Instead, we
are assuming that either there are no missing data or interest is in the Y–X association in the clusters of
observed members.

Several modifications of standard GLMM and GEE have been proposed for handling CBC and/or
ICS. Most of the GLMM-based methods separate the effect of X into ‘within-cluster’ and ‘between-
cluster’ components and focus on the former. These components differ when there is CBC [5], and the
danger of using between-cluster estimates to describe within-cluster effects, commonly referred to as the
‘ecological fallacy’, has been known for many years [20, 21]. Some methods estimate contextual effects
in addition to the within-cluster effect, allow the within-cluster effect to vary from one cluster to another,
or explicitly model the association between Y and N. Among the GEE-based methods are those that use
the independence working correlation and weights based on N or X. They vary in their target of inference.

When methods have been described for handling CBC, it has often been carried out without explicit
reference to the potential problem of ICS and vice versa. Yet clustered data may be subject to both
CBC and ICS simultaneously. In this article, we compare the various methods proposed for handling CBC
and/or ICS, placing particular focus on the following: (i) the assumptions they require about both CBC
and ICS; (ii) the relations between the methods; (iii) their estimands; and (iv) their relative efficiencies.
We also propose some simple obvious additions to the available repertoire of methods. We summarise
previous findings about when the standard GLMM consistently estimates within-cluster effects despite
ICS and discuss when it may be appropriate to handle ICS by including N among the covariates X.
We also present a general discussion of choice of method and an illustrative analysis of clustered data
potentially subject to CBC and ICS. The structure is as follows. In Section 2, we define ICS and CBC.
Methods for cluster-specific and population-average inference are reviewed in Sections 3 and 4, respec-
tively. Section 5 discusses the choice of method, and Section 6 illustrates the problem of CBC using data
on infant mortality.

2. Informative cluster size and confounding by cluster

For a given cluster, let N denote its size, and let Xj and Yj denote the covariate vector and outcome,

respectively, of the jth member of the cluster. Partition X as X =
(
XT

va,X
T
co

)T
, where Xva and Xco are the

cluster-varying and cluster-constant elements of X, respectively. Assume that Xco includes an intercept
element, that is, an element that equals 1 for all members. Let X∗ = (X1,… ,XN)T and Y∗ = (Y1,… ,YN)T .
So, X∗ and Y∗ contain covariates and outcome, respectively, for all members of the cluster. Let H be a
random variable uniformly distributed on {1,… ,N} and independent of X∗ and Y∗ given N. So, XH and
YH are the covariates and outcome of a random member of the cluster. We use f (.) to denote a probability
distribution.

Different but closely related definitions of ICS have been given in the literature. Dunson et al. [12],
Gueorguieva [13], Chen et al. [17], and Neuhaus and McCulloch [16] considered random-effects models
and said that cluster size is informative if the cluster-specific random effect u is not independent of N.
Hoffman et al. [10], Williamson et al. [11] and Benhin et al. [14] considered marginal models and defined
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non-ICS to mean E(YH ∣ XH = x,N) = E(YH ∣ XH = x) for all x and ICS to mean that this equality does
not hold. ICS according to the former definition implies ICS according to the latter definition but not vice
versa. In particular, the latter definition does not require a random-effects model. A further definition is
given by Nevalainen et al. [19], but we shall not need this here.

In the literature on random-effect models, the term ‘CBC’ has been used to mean that u is not indepen-
dent of X∗ given N [6, 7, 9]. It has been used less in the GEE literature, but essentially the same problem
has been discussed there [3, 15, 18]. When all clusters are of the same size, CBC can be taken to mean
that the expectation of Yj given X∗ depends on Xk k ≠ j as well as Xj (i.e. E(Yj ∣ X∗) ≠ E(Yj ∣ Xj)). Pepe
and Anderson [18] noted that GEE provide inconsistent estimation when this is the case, unless the inde-
pendence working correlation is used. This definition of CBC is problematic when N varies, because Yj is
only defined in clusters with N ⩾ j. More generally, we interpret CBC to mean E(YH ∣ X∗) ≠ E(YH ∣ XH).
Huang and Leroux [15] used the term ‘informative covariate distribution’. Although they did not formally
define this, they seem to mean E(YH ∣ X∗) ≠ E(YH ∣ XH), and hence be talking about CBC.

Note that whether there is ICS or CBC may depend on which variables are included in X. If N is
included in X, cluster size is automatically non-informative. Likewise, it may be possible to eliminate
(or at least reduce) CBC by including observed cluster-level confounders in X. As Williamson et al. [11]
noted, if X is not cluster-size balanced, that is, if it is not true that f (XH ∣ N) = f (XH), then ICS induces
CBC in general: the association between YH and XH is confounded by N.

3. Cluster-specific inference

3.1. Model and assumptions

Assume that

g
{

E(Yj ∣ X∗,N, u)
}
= XT

j 𝜷 + XT
rd,ju (j = 1,… ,N) (1)

where g is a known link function, 𝜷 is a vector of unknown parameters, Xrd is a subvector of X that includes
the intercept term, and u is an unobserved cluster-constant variable. We say that elements of X that are
part of Xrd ‘have random effects’, that the remaining elements of X ‘have fixed effects’, and that u is the
random effect associated with Xrd. Partition 𝜷 as 𝜷 =

(
𝜷T

va, 𝜷
T
co

)T
, where 𝜷va and 𝜷co are the elements

of 𝜷 corresponding to Xva and Xco, respectively. Then partition 𝜷va as 𝜷va =
(
𝜷T

vard, 𝜷
T
vafx

)T
, where 𝜷vard

and 𝜷vafx denote the subvectors of 𝜷va corresponding to elements of Xva that have random effects and
fixed effects, respectively. Similarly, let uva denote the subvector of u corresponding to cluster-varying
elements of Xrd. Assume that if uva is not empty, then it is independent of X∗ given N.

Equation (1) implies that any dependence of Yj on the values Xva,k k ≠ j of other members of the cluster
must be through a cluster-level summary (e.g. mean) of Xva,1,… ,Xva,N and the effect of this summary is
the same for all members j and is absorbed into u. Likewise, any dependence on N is also absorbed into
u. Note that because u includes a random intercept, 𝜷co is not identifiable unless further assumptions are
made about u.

Several statistical methods are based on Equation (1). Before describing these, we list further assump-
tions that could be made about the joint distribution of (N,X∗,Y∗,u). Assumptions A1 and A2 together
define GLMM. A3 and A4 are the non-CBC and non-ICS assumptions, respectively. Assumptions A5,
A6, and A7 will be used less frequently than A1–A4 in this article. They are needed in Sections 3.3.1,
3.3.7, and 3.3.8, respectively.

(A1) Y1,… ,YN are conditionally independent given X∗, u and N; and f (yj ∣ X∗,N, u) = exp[{yj𝜃j −
b(𝜃j)}∕a(𝜙) + c(yj, 𝜙)], where a(.), b(.) and c(.) are known functions, 𝜙 is the scale parameter,
and 𝜃j = XT

j 𝜷 + XT
rd,ju. For ease of presentation, we have assumed a canonical link function, but

this is not necessary.
(A2) u is independent of X∗ and N, and has a specified distribution (usually normal) with mean zero.
(A3) u is conditionally independent of X∗ given N.
(A4) u is independent of N.
(A5) Either X is cluster constant or X1,… ,XN are independent and identically distributed (i.i.d.) given

N. Furthermore, the distribution of X given N does not depend on N (and so X is cluster-size
balanced).

(A6) uva is independent of N and is normally distributed with mean zero.
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(A7) u is normally distributed with mean zero. Xco is independent of u. The distribution of N given u
and Xco takes a specified form. If Xva is not empty, then conditional on Xco, N and u, variables
Xva,1,… ,Xva,N are i.i.d. with a distribution that does not depend on N or u. (This allows for ICS
but rules out CBC).

A2 implies A3 and A4. If u is normally distributed, A2 also implies A6.

3.2. Interpretation of model parameters

Here we briefly discuss interpretation of 𝜷 and Var(u). Seaman et al. [22] discussed it in more depth. If
A3 and A4 hold, interpretation is unproblematic. 𝜷vafx can be interpreted in terms of a within-cluster com-
parison. That is, if two members of the same cluster have covariates Xj and Xk that differ only in elements
corresponding to 𝜷vafx (i.e. in cluster-varying elements with fixed effects), then the difference between
their expected values of Y is 𝜷T (Xj − Xk) for a linear mixed model (LMM). For GLMM more generally,
the expected values are transformed by the link function g. For example, for logit link, 𝜷T (Xj −Xk) is the
log odds ratio of Y for the two members. 𝜷vard and Var(uva) can be interpreted as the mean and variance
over clusters for such within-cluster comparisons. Elements of 𝜷co can be interpreted in terms of between-
cluster comparisons. That is, if two members belonging to different clusters have covariate values Xj and
Xk that differ only in Xco, then the difference between their expected Y values is 𝜷T

co(Xco,j − Xco,k) for
an LMM and, more generally, ∫

{
g−1

(
𝜷T

coXco,j + uTXrd, j

)
− g−1

(
𝜷T

coXco,k + uTXrd, k

)}
fu(u;𝜶) du for

GLMM. Causal interpretations are also possible if additional assumptions are made [22].
Even if A3 or A4 does not hold, 𝜷vafx can still be interpreted, as in the preceding paragraph, in terms

of a within-cluster comparison. We assume throughout Section 3 that uva is independent of X∗ given N.
Therefore, if A6 holds, uva is independent of X∗ and N, and so 𝜷vard and Var(uva) can be interpreted,
as in the preceding paragraph, as the mean and variance for within-cluster comparisons. If A7 holds,
𝜷co can be interpreted, as in the preceding paragraph, in terms of a between-cluster comparison, and if
P(N ⩾ 2 ∣ Xco,u) = P(N ⩾ 2), then 𝜷vard and Var(uva) are the mean and variance for within-cluster
comparisons [22].

3.3. Estimation methods
Methods for obtaining cluster-specific inference are now described. Table I summarises the assumptions
they require and the quantities they estimate.

Table I. Methods for cluster-specific inference: estimands and assumptions needed to estimate them consis-
tently. See main text for more details.

Assumptions Estimands Notes

Methods assuming non-ICS and no CBC
GLMM A1, A2 𝜷, Var(u) Alternative assumptions for LMM:

A3 and A4 for 𝜷; or A3, A5 and
Xrd = 1 for non-intercept elements
of 𝜷

Methods allowing ICS and CBC but requiring Xrd = 1
Conditional ML

(∑
j Yj

)
A1 𝜷va A1 not needed for LMM

Poor man’s method A1 𝜷va, context effects Same as conditional ML for LMM;
approximate otherwise

Brumback et al.’s method A1 𝜷va, context effects Generalisation of poor man’s method
Conditional GEE None 𝜷va Only for identity/log link

Methods allowing ICS and/or CBC, and not requiring Xrd = 1
Conditional ML

(∑
j Xrd,jYj

)
A1 𝜷vafx

Model expectation A1 𝜷va, context effects Generalisation of Brumback’s method
of random intercept
Treat random intercept A1. Also: 𝜷va, Same as conditional ML if Xrd = 1
as fixed effect A6 if Xrd ≠ 1; Var(uva) and identity/log link; same as conditional

and N large LMM if Xrd ≠ 1 and iden. link
if not LMM

Joint model Y and N A1, A7 𝜷, Var(u) See 3.3.8 for alternative to A7 when
Xrd = 1
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3.3.1. Maximum likelihood estimation of generalised linear mixed models. Fitting the GLMM defined
by Equation (1), A1 and A2 by maximum likelihood (ML) or restricted ML consistently estimates 𝜷 and
Var(u) when these assumptions are satisfied. However, consistent or approximately unbiased estimation
is also possible under weaker conditions.

For the LMM, A3 and A4 together with E(u) = 0 are sufficient for consistent estimation of 𝜷. This is
because Equation (1) then implies E(Yj ∣ Xj) = XT

j 𝜷, and the LMM’s score equations for 𝜷 can be viewed
as GEE with a particular choice of working correlation structure. If A1 also holds, Var(u) is consistently
estimated [23].

Many researchers have investigated how important A2 is for non-LMM GLMM when A1, A3 and
A4 hold and E(u) = 0. McCulloch and Neuhaus [24] reviewed the evidence. They conclude that when
Xrd = 1, deviations from A2 cause only minimal bias in the ML estimator of the non-intercept elements
of 𝜷 (particularly for cluster-varying covariates whose mean is constant between clusters), but there can
be some loss of efficiency. Bias in the ML estimator of the intercept element of 𝜷 may be considerable.
Neuhaus et al. [25] considered the situation where Xrd ≠ 1. They found little bias for non-intercept
elements of 𝜷 whose corresponding elements of X are orthogonal to Xrd. Bias in 𝜷vard also tended to be
small in most cases. Bias in the estimated variance of the random effects could be much greater.

The importance of A3 for consistent estimation of 𝜷 has been demonstrated by Heagerty and
Kurland [26] and Neuhaus and McCulloch [6].

Neuhaus and McCulloch [16] investigated whether A4 is necessary when Xrd = 1. For an LMM with
Xrd = 1, they proved that when A3 and A5 hold, the ML estimators of non-intercept elements of 𝜷 are
consistent even when A4 does not hold. They also proved that the same is true for non-LMM GLMM
when the non-intercept elements of 𝜷 equal zero, and found, in a simulation study, that bias in the ML
estimators of the non-intercept elements of 𝜷 was small even when these elements were non-zero. When
Xrd ≠ 1, the ML estimators of non-intercept elements of 𝜷 are inconsistent in general [16] for both LMM
and GLMM. Su et al. [27] demonstrated that the bias in the subvector of 𝜷 corresponding to Xrd can
be large.

3.3.2. Conditional maximum likelihood. When A1 holds and g is the canonical link, the conditional dis-
tribution of Y∗ given X∗, N, and

∑N
j=1 Xrd,jYj does not involve 𝜷co, 𝜷vard or parameters of Var(u). So,

conditioning on
∑N

j=1 Xrd,jYj eliminates those parameters from the likelihood, leaving only 𝜷vafx [28].
Maximising the resulting conditional likelihood yields the conditional ML estimator, which is a consis-
tent estimator of 𝜷vafx. For example, when Y is discrete, the contribution of a cluster to the conditional

likelihood is
∑

R1
exp

(
𝜷T

va

∑N
j=1 Xva,jyj

)
∕
∑

R2
exp

(
𝜷T

va

∑N
j=1 Xva,jyj

)
, where R1 and R2 are the sets of all

possible values for (y1,… , yN) such that, respectively,
∑N

j=1 Xjyj equals its observed value and
∑N

j=1 Xrd,jYj
equals its observed value [29]. Verbeke et al. [30] gave the form of the conditional likelihood for the
LMM. Conditional ML is easy to apply in standard software (Appendix A). It is most often used when
Xrd = 1, so that conditioning is on

∑N
j=1 Yj. When Xrd = 1 and g is the identity link, A1 is not necessary

for consistent estimation of 𝜷va (Appendix B).

3.3.3. Poor man’s method. When there is only one covariate and it is cluster-varying and has fixed
effect (so, Xco = Xrd = 1 and Xva is a scalar), an alternative to conditional ML is the ‘poor man’s’
method [31]. In this method, a modified form of the GLMM with normally distributed random intercept is
fitted by maximum likelihood. The modification is that Xva,j is replaced by Xva,j−X̄va and X̄va, where X̄va =∑N

j=1 Xva,j∕N. The parameters 𝛾1 and 𝛾2, say, associated with Xva,j − X̄va and X̄va are called, respectively,
the ‘within-cluster’ and ‘between-cluster’ effects of Xva [31]. The term ‘contextual effect’ has been used
variously to mean 𝛾2 − 𝛾1 or 𝛾2 [32–34]. If A3 holds, 𝛾1 and 𝛾2 both equal 𝛽va in Equation (1); otherwise,
only 𝛾1 equals 𝛽va. Whereas the original unmodified GLMM assumes A3 and uses both within-cluster
and between-cluster comparisons of Y to estimate the common effect, the poor man’s method aims to
estimate 𝛽va using only within-cluster comparisons.

In the case of the LMM, 𝛾2 can be interpreted as the true slope in a linear regression of Ȳ = N−1 ∑N
j=1 Yj

on X̄va. Begg and Paredis [4] suggested that 𝛾2 − 𝛾1 is more easily interpreted than 𝛾2: 𝛾2 − 𝛾1 describes
the difference between the (g-transformed) expected outcome of two members with the same Xva belong-
ing to clusters with the same u but different X̄va, whereas 𝛾2 describes the difference for two members
with the same deviation Xva − X̄va from their cluster means. For this reason, they advocated fitting the
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reparameterised version of the poor man’s model g{E(Yj ∣ Xva,j, u)} = 𝛾1Xva,j + 𝛾3X̄va + u, where
𝛾3 = 𝛾2 − 𝛾1.

When g is the identity link, the ML estimate of the parameter associated with Xva,j − X̄va and its cor-
responding estimated standard error are identical to the conditional ML estimate and its corresponding
estimated standard error. Curiously, this result does not seem to be known. Neuhaus and Kalbfleisch [31]
found a small difference (≈ 1% of a SE) between the estimates from conditional ML and the poor man’s
method when analysing one specific data set with a single covariate. They described these two estimates
as ‘nearly identical’. Neuhaus and McCulloch [6] and Goetgeluk and Vansteelandt [7] also referred to
the result of this analysis and used the same phrase: ‘nearly identical’. We are not aware of any published
proof that the methods are, in fact, equivalent and so have provided one in Appendix C.

Neuhaus and McCulloch [6] and Brumback et al. [9] studied the poor man’s method for binary Y .
In simulations, they found the bias for 𝛽va was small. However, Brumback et al. [35] demonstrated that
bias could be more substantial. For Poisson-distributed Y , Goetgeluk and Vansteelandt [7] investigated a
population-average version of the poor man’s method (Section 4.1.3). The maximum bias they found in
simulations was 25%, and the minimum coverage of the nominal 95% confidence interval was 89%.

3.3.4. Method of Brumback et al. Brumback et al. [9] pointed out that if Xco = Xrd = 1 and Xva
is a scalar and the random intercept u can be written in the form u = 𝜓X̄va + 𝛿, where 𝜓 is an
unknown parameter and 𝛿 ∣ X∗

va,N ∼ Normal(0, 𝜏2), then E(Yj ∣ X∗,N, u) = E(Yj ∣ X∗,N, 𝛿) =
g−1

{
𝛽co +

(
Xva,j − X̄va

)
𝛽va + X̄va(𝜓 + 𝛽va) + 𝛿

}
, and hence the poor man’s model is correctly specified.

Thus, when the random intercept has a normal distribution with mean linearly related to X̄va and variance
independent of X∗

va, the poor man’s method gives consistent estimation of 𝜷. Note that this argument
requires A1 and A4 .

Brumback et al. [9] noted that u might not depend linearly on X̄va and proposed a more general method.
This involves specifying a model u = 𝜓q

(
X∗

va

)
+ 𝛿, where q is a known function and 𝛿 ∣ X∗

va,N ∼
Normal(0, 𝜏2). The GLMM with E(Yj ∣ X∗,N, 𝛿) = g−1

{
𝛽co + XT

va,j𝛽va + 𝜓q
(
X∗

va

)
+ 𝛿

}
would then be

fitted. If the model for u is correctly specified and A1 holds, the ML estimator of 𝜷 is consistent. The
poor man’s method is a special case of this approach: it uses q

(
X∗

va

)
= X̄va. Brumback et al. illustrated

their method with q
(
X∗

va

)
= max(Xva).

3.3.5. Modelling expectation of random intercept. The following generalisation of the method of Brum-
back et al. (and hence of the poor man’s method) can be used to deal with CBC and/or ICS and allows
Xco ≠ 1, Xrd ≠ 1 and vector Xva. It involves modelling the conditional expectation of the random intercept
given X∗ and N. In this section only, we shall write u =

(
uint,u

T
slo

)T
, where uint is the random intercept

(‘slo’ means ‘slope’), and denote the subvector of Xrd composed of all but its intercept element by Xrdslo.
Specify a model uint = 𝝍Tq

(
X∗

va,N
)
+ 𝛿, where q is a known function, 𝝍 is an unknown parameter,

and
(
𝛿,uslo

)T ∣ X∗,N ∼ Normal(0,𝚺). Then Equation (1) can be written as g{E(Yj ∣ X∗,N, 𝛿,uslo)} =
XT

j 𝜷 + XT
rdslo,juslo + 𝝍Tq

(
X∗

va,N
)
+ 𝛿. If this GLMM is fitted, the ML estimator of 𝜷 will be consistent,

provided that the model for uint is correctly specified and A1 holds.
To deal with CBC, one might use, for example, q

(
X∗

va,N
)

= X̄va or q
(
X∗

va,N
)

=(
X̄

T
va,

{
max(Xva)

}T
)T

. To deal with ICS, one might use, for example, q
(
X∗

va,N
)
= N or q

(
X∗

va,N
)
=

(N,N2)T . To deal simultaneously with CBC and ICS, one might use, for example, q
(
X∗

va,N
)
=
(

N, X̄
T
va

)T

or q
(
X∗

va,N
)
=
(

N, X̄
T
va,NX̄

T
va

)T
. Such inclusion of N as a covariate in the GLMM, and possibly of inter-

actions between N and elements of X, would be natural if there were scientific interest in the effect of N.
For example, one might be interested in the effect of the numbers of patients (N) treated by a surgeon on
his or her operational success rate or how the effect on that success rate of participation in a surgeons’
training programme (X) depends on the number of patients [36]. Likewise, including X̄ as a covariate
might be useful if there were interest in contextual effects.

3.3.6. Conditional generalised estimating equations. Goetgeluk and Vansteelandt [7] proposed condi-
tional GEE for estimating 𝜷va when Xrd = 1 and g is the identity or log link function. For the identity
link, the conditional ML score equations are a special case of conditional GEE (Appendix C). Whereas
the former are derived under the assumption that, given X∗ and u, Y1,… ,YN are independent with equal
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variance, the latter allow Y1,… ,YN to be correlated and/or have different variances, and estimate these
correlations and variances from the data. It is unclear what the efficiency cost of this estimation will be
when the assumption holds. When the assumption is violated, conditional ML is still consistent, but con-
ditional GEE may then be more efficient. For the log link, conditional GEE have the advantage that it does
not require A1 to hold for consistent estimation, whereas conditional ML does. Software for applying
conditional GEE is not readily available.

3.3.7. Treating the random intercept as a fixed effect. If A1 holds and either Xrd = 1 or A6 holds, then
one approach to estimating 𝜷va and Var(uva) is to treat the random intercept as a fixed effect to be esti-
mated (and remove from Equation (1) XT

con,j𝜷co and all cluster-constant elements of Xrd and corresponding
elements of u, in order to avoid parameter non-identifiability). Equation (1) and A1 then describe a
generalised linear model (if Xrd = 1) or GLMM (if Xrd ≠ 1) with cluster included as a categorical
variable.

The ML estimator from this model is not, in general, consistent, because the number of parameters
increases with the number of clusters [37]. However, when clusters are large, it may be approximately
unbiased. For binary Y , the so-called rule of 10 advocates that the mean number of events per cluster(

i.e. E
(∑N

j=1 Yj

))
should exceed 10 [38].

In the following special cases, the ML estimator is consistent. When Xrd = 1 and the model is a linear
or Poisson regression, the ML estimator of 𝜷va is identical to the conditional ML estimator [30, 39].
When Xrd ≠ 1, Y is normally distributed, g is the identity link, and A1 and A6 hold, treating the random
intercept as a fixed effect is equivalent to fitting what Verbeke et al. called a ‘conditional LMM’ and gives
consistent estimation of 𝜷va and Var(uva) [30].

When the number of clusters is large, fitting a model containing a separate parameter for each cluster
can be computationally intensive. For normally distributed Y , Verbeke et al. [30] describe alternative,
less intensive algorithms (Appendix A).

3.3.8. Joint modelling of Y and N. The GLMM method requires A4 for consistent estimation. This
assumption can be avoided by combining the GLMM with a model for the distribution of N given u
and Xco. Such a joint model for Y and N is known as a shared-parameter model in the missing-data
literature [40]. Dunson et al. [12] and Gueorguieva [13] adopted this approach, which Seaman et al. [22]
discussed in detail. When A1 and A7 hold, the joint model provides consistent estimation of 𝜷 and
Var(u) [22]. It can be fitted in sas [13].

Chen et al. [17] also used the joint model. They assumed A1, Xrd = 1, and that the distribution of N
given u and Xco does not depend on Xco, but modified A7 by allowing Xva to be a deterministic function
of j (e.g. Xva,j = j). This method gives consistent estimation of 𝜷va [22]. However, because there are
other, simpler methods available for estimating 𝜷va when Xrd = 1, this method may be of limited interest
unless one wishes also to model N, u, and the effect of Xco.

4. Population-average inference

Cluster-specific inference is about the effect of X on Y conditional on cluster size N and cluster-level
latent variable u. Population-average inference, on the other hand, concerns the effect of X unconditional
on N or any latent variables (although if desired, N can be conditioned on by including it in X). One way
to make such inference is to fit GLMM and then integrate out u. However, GEE-based approaches are
more commonly used. In this section, we examine methods for population-average inference. Unlike in
Section 3, where the meaning of cluster-specific inference is always defined by Equation (1), the meaning
of ‘population-average inference’ changes according to the method used.

Let eT (x) = E(YH ∣ XH = x) and eA(x) = E(NYH ∣ XH = x)∕E(N ∣ XH = x) (H was defined in
Section 2). The quantity eT (x) describes the relation between Y and X in a randomly chosen member
of a randomly chosen cluster. Inference about eT (x) is ‘inference about a typical member of a typi-
cal cluster’ [11]. Inference about eA(x) concerns the relation between Y and X among all members.
Clusters contribute to this ‘inference about all members’ in proportion to their size. If cluster size is
non-informative, eT (x) = eA(x); otherwise, they differ in general. As discussed by Seaman et al. [22],
either may be of interest. Many of the methods for population-average inference assume either that
eT (x) = g−1

(
𝜷T

Tx
)

or that eA(x) = g−1
(
𝜷T

Ax
)
, where g is a known link and 𝜷T and 𝜷A are unknown

parameters, and some require the following assumption.
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Table II. Methods for population-average inference: estimands and assumptions needed to estimate them
consistently. See main text for further detail.

Method Assumptions Estimand Notes

Methods assuming non-ICS and no CBC
GEE eT (x) = g−1(𝜷T

T x), A8 eT (x) eA(x) = eT (x)
Marginalise over u in GLMM correct (so A8 eT (x) eA(x) = eT (x)
GLMM and eT (x) = g−1(𝜷T

T x))

Methods assuming no CBC
Marginalise over u in Joint model correct eT (x)
joint model

Methods allowing ICS and/or CBC
IEE eA(x) = g−1(𝜷T

Ax) eA(x) eT (x) = eA(x) when A8
Poor man’s method E(Yj|X∗

,N) depends See text
only on Xj and X̄

Include N as covariate Model for E(Yj|Xj,N) See text
Weighted IEE eT (x) = g−1(𝜷T

T x) eT (x) Useful when cluster-size
balance or N on causal pathway

Type 1 doubly weighted Each cluster has all See text
IEE possible x
Type 3 doubly weighted Propensity score model Marginal treatment effect Method of Joffe et al. [41] with
IEE in typical member extra weighting by N−1

(A8) E(Yj ∣ Xj = x,X∗,N) = E(Yj ∣ Xj = x,N) = E(Y1 ∣ X1 = x) for all x and j ⩽ N. That is,
the expectation of Yj given X∗ and N depends only on Xj and is the same for all j. (This implies
non-ICS and no CBC, and so eT (x) = eA(x).)

4.1. Methods

Methods for population-average inference are now described, with their targets of inference and the
assumptions they require. Table II provides a summary.

4.1.1. Marginalising over u in generalised linear mixed models. The assumptions (Equation (1), A1,
and A2) of the GLMM imply A8, and so eT (x) = eA(x). If the assumptions of the GLMM hold, eT (x)
can be estimated by fitting the GLMM and then marginalising over the distribution of u. If, furthermore,
g is the identity link, then eT (x) = 𝜷Tx, where 𝜷 is defined by Equation (1), and so there is no need
actually to perform this marginalisation. Similarly, if Y is binary, Xrd = 1 and u has a bridge distribution
with parameter 𝜙 (e.g. for the logit link function, u has density (2𝜋)−1sin(𝜙u)∕{cosh(𝜙u) + cos(𝜙u)},
−∞ < u < ∞, 0 < 𝜙 < 1), then eT (x) = 𝜙𝜷Tx [42]. In other cases, eT (x) is not, in general, a simple
parametric function of x, but marginalisation could be achieved by numerical integration for specific
values of x.

Likewise, when the assumptions (Equation (1), A1, and A7) of the joint model are satisfied, eT (x)
(≠ eA(x)) could be estimated by fitting the joint model and marginalising over the random effects.

4.1.2. Independence estimating equations and generalised estimating equations. The GEE with inde-
pendence working correlation (independence estimating equations (IEE)) consistently estimate 𝜷A when
eA(x) = g−1

(
𝜷T

Ax
)

holds [22]. GEE with non-independence working correlation consistently estimate 𝜷A

when eA(x) = g−1
(
𝜷T

Ax
)

and A8 holds [18]. When A8 is violated, the value to which the GEE estimator
of 𝜷A converges as the number of clusters tends to infinity depends on the choice of working correlation,
and equals neither 𝜷A nor 𝜷T in general [11,18]. So, when there is ICS or CBC, GEE should not be used
with a non-independence working correlation.

4.1.3. Poor man’s generalised estimating equations method. Berlin et al. [3] describe a GEE-based
version of the poor man’s method. They described it for a single covariate, but here we generalise to allow
for multiple covariates. This method assumes that any dependence of Yj on Xk k ≠ j and N is mediated
through the mean of X in the cluster, that is, E

(
Yj ∣ Xj = x, X̄ = x̄,X∗,N

)
= E

(
Y1 ∣ X1 = x, X̄ = x̄

)
for

all j ⩽ N, x and x̄, and that E
(
Y1 ∣ X1 = x, X̄ = x̄

)
= g−1

{
𝜷T

M1 (x − x̄) + 𝜷M2x̄
}

. Parameters 𝜷M1 and
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𝜷M2 are estimated using GEE. 𝜷M1 would be interpreted as the difference in the expected outcome of two
members with values of X differing by one unit but with the same cluster mean. Note that (i) 𝜷M1 cannot
be interpreted causally, because intervening to change X would also change X̄ [7, 32]; and (ii) X̄ could
be replaced by another function of X∗, just as Brumback et al. [9] did with the GLMM (Section 3.3.4).

4.1.4. Including cluster size as a covariate. In Section 3.3.5, we observed that cluster size could be made
non-informative by including N as a covariate in GLMM. This would not change the interpretation of 𝜷va
as the within-cluster effect of Xva. One could also eliminate ICS in GEE by including N as a covariate.
In general, however, this changes the meaning of the parameter for X: it now describes the association of
Y and X conditional on N. As discussed in Section 3.3.5, it would be natural to include N if there were
scientific interest in the effect of N. However, there are at least three potential reasons why one might not
want to include N as a covariate.

First, one may wish to estimate the overall effect of X on Y averaged over all clusters, rather than the
effect conditional on N. When X is cluster-size balanced, this could be achieved by estimating the effect of
X on Y in clusters of each size N separately and averaging these effects. When, however, X is not cluster-
size balanced, this simple approach is not possible without specifying a model for f (XH ∣ N). Moreover,
even when X is cluster-size balanced, there may be an issue of ‘non-collapsibility’: if g{E(Y ∣ X,N)} is
a linear function of X and N, this does not usually imply an equally simple functional form for E(Y ∣ X)
unless g is the identity link. Note that ICS does not always cause the association of Y and X conditional on
N to differ from the marginal association. If X is cluster-size balanced and E(Yj ∣ X∗,N) = h(N) + 𝜷T

CXj,
for some function h(N) of N, then eT (x) = 𝜷T

T x, eA(x) = 𝜷T
Ax, and the non-intercept elements of 𝜷T , 𝜷A

and 𝜷C are equal.
Second, N may lie on the causal pathway from X to Y . Consider, for example, a toxicology trial in

which pregnant mice are randomised to exposure to a toxin or no exposure [12]. Here, clusters are litters,
members pups, N the litter size, X an indicator of exposure of the mother, and Y the weight of a pup. The
toxin may cause foetal resorptions, in which case exposed mothers tend to have smaller litters. With fewer
fetuses in the womb, there is more space and nutritional resources for the remaining fetuses. So, even if
the toxin has no direct effect on weight, pups of exposed mothers tend to be heavier: the effect of X on
Y is mediated through N. If Y is regressed on both X and N, the direct effect of X on Y is estimated (i.e.
the effect not mediated through N). If instead the total effect (i.e. the sum of direct and indirect effects)
is required, N should not be included as a covariate.

Third, suppose that X is determined before N and that N is affected by X but not on the causal pathway
from X to Y . If there is an unobserved cluster-constant variable U that affects both N and Y , adjusting
for N may introduce collider-stratification bias [43]. A first example of this is a dental study in which
clusters are mouths, members teeth, Y an indicator of presence of dental caries on a tooth, X a (cluster-
constant) measure of dental hygiene (assumed not to change over time), and U is diet. Suppose poor dental
hygiene and poor diet both cause tooth loss and, for simplicity, that hygiene and diet are independent. If
we regress Y on X and N and look at the parameter associated with X, we are comparing patients with
good hygiene and a certain number of teeth with patients with poor hygiene and the same number of
teeth. More patients in the first group will have poor diet than in the second group. Therefore, diet, which
is not a confounder when caries is regressed on hygiene, becomes a confounder when N is included as
a covariate. A second example is a longitudinal study of aging in which clusters are individuals, Yj is
cognitive function at time j, Xj = (1, j)T consists of intercept and time elements, and U is general state of
health at the beginning of the study. For individuals who survive to the end of the study, N = M; for those
who die earlier, N < M. If individuals with worse health at the beginning tend to have faster cognitive
decline and higher mortality, then U induces ICS. It has been argued that in this setting, eA(x) is often a
more appropriate target of inference than is inference conditional on N [44].

4.1.5. Weighting by N−1 (weighted independence estimating equations). When cluster size is infor-
mative, either of eA(x) and eT (x) may be of interest. As stated earlier, when eA(x) = g−1

(
𝜷T

Ax
)
, 𝜷A

is consistently estimated by IEE. Williamson et al. [11] and Benhin et al. [14] showed that when
eT (x) = g−1

(
𝜷T

Tx
)
, 𝜷T can be consistently estimated by solving the same IEE but with each clus-

ter’s contribution to the estimating equations weighted by N−1. These are the weighted IEE. Hoffman
et al. [10] proposed an alternative procedure, which is asymptotically equivalent but more computation-
ally intensive. Chiang et al. [45] proposed a more efficient version of weighted IEE, but this makes strong
assumptions [46]. Wang et al. [47] discussed the use of weighted IEE for three-level data.
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4.1.6. Weighting by number with same X(type 1 doubly weighted independence estimating equations).
Interpretation of 𝜷T may be problematic when there is ICS and X is not cluster-size balanced, because,
as noted at the end of Section 2, the association between X and Y may then be confounded by N.

Huang and Leroux [15] adapted weighted IEE to deal with CBC caused by unobserved or observed
cluster-level confounders (including N). They proposed ‘doubly weighted IEE’. Type 1 doubly weighted
IEE can be used when X is categorical and every cluster in the population contains at least one member
with each of the possible values of X. Whereas weighted IEE weight each member of the same cluster
equally (by N−1), the weights in type 1 doubly weighted IEE vary within cluster. The inverse weight for
member j equals the total number of members in the cluster who have X = Xj. In this way, the total
weight given to the members with X = x is the same for each possible value x of X. The purpose here is
not to estimate eT (x) but rather to describe the association between X and Y in a population of members
formed by each cluster in the population contributing one member with each possible value of x. In this
population, there is no association between X and any cluster-constant variable, and hence no CBC. The
model E(Y ∣ X) = 𝜷T

DX is assumed to describe the relation between Y and X in this population; solving
the type 1 doubly weighted IEE estimates 𝜷D.

It is instructive to consider the relation between 𝜷 in Equation (1) and 𝜷D. It is straightforward to show
that the non-intercept elements of 𝜷 and 𝜷D are equal when Equation (1) holds, g is the identity link and
Xrd = 1. When g is the identity link but Xrd ≠ 1, non-intercept elements of 𝜷D represent a sort of averaged
within-cluster effect. When g is the logit link and Xrd = 1, the property that population-average effects
are less than cluster-specific effects [5] means that the absolute value of each non-intercept element of
𝜷D is less than or equal to that of the corresponding element of 𝜷.

4.1.7. Weighting by propensity score and N−1 (type 3 double weighted independence estimating
equations). Suppose that interest is in the association between Y and a binary treatment. Observed con-
founders could be handled by including them along with the treatment covariate in X and using GEE.
An alternative to this ‘regression adjustment’ approach is weighting by propensity score [41]. Here, a
model is specified for the probability of being treated given the confounders, and then GEE are applied
with treatment as a covariate and each treated (respectively, untreated) member inversely weighted by
its probability of being treated (respectively, untreated). If this treatment probability model is correctly
specified and there is no unmeasured confounding or ICS, a consistent estimate of the marginal treatment
effect is obtained. Cepeda et al. [48] and Stürmer et al. [49] discussed advantages and disadvantages of
propensity score weighting compared with regression adjustment.

Just as with the GEE of Section 4.1.2, when A8 is violated, the estimand of the propensity-score
weighted GEE depends on the choice of working correlation. In particular, the independence-working
correlation yields an estimate of the treatment effect in the population of all members. Huang and Ler-
oux [15] proposed using the independence-working correlation but with additional inverse weighting by
cluster size. This method, ‘type 3 doubly weighted IEE’, estimates the treatment effect in the population
of typical members of typical clusters. It reduces to what Huang and Leroux [15] called ‘type 2 doubly
weighted IEE’ when all confounders are cluster-constant (see also Seaman et al. [22] for a discussion of
type 2 double weighting).

5. Considerations in choosing a method

The choice between cluster-specific and population-average inference has been widely discussed.
Neuhaus et al. [50] suggested that population-average inference may be more appropriate for cluster-
constant covariates, and cluster-specific inference for cluster-varying covariates. Graubard et al. [51]
agreed that populative-average inference be used for cluster-constant covariates but observed that some-
times it may also be more suitable for cluster-varying covariates. Drum and McCulloch [52] suggested
that the choice of approach should depend on whether the analysis is carried out to improve scientific
understanding, to make clinical predictions, to make public policy decisions, or for epidemiological pur-
poses. As noted in Section 3.2, the interpretation of 𝜷co in a cluster-specific model is problematic when
there is CBC or ICS.

Unnecessarily allowing for ICS and/or CBC has an efficiency cost when ICS and CBC are absent.
For cluster-specific inference, methods that assume that between-cluster and within-cluster effects of Xva
are the same are more efficient than those that do not. The gain in efficiency from making this assump-
tion is greatest with binary Y , small N, and high intra-cluster correlation of X [31, 53]. For example, if
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N = 2 for all clusters, (X1,X2) has a bivariate normal distribution with mean 0 and variance 1, and logit
P(Yj = 1 ∣ Xj, u) = 𝛽0 + 𝛽1Xj + u with u ∼ N(0, 4), 𝛽0 = −1 and 𝛽1 = 0, then the asymptotic relative
efficiency of the conditional ML estimator of 𝛽1 versus the ML estimator is 0.67 when X1 and X2 are
independent, but 0.43 when Corr(X1,X2) = 0.5 (Table 1 of [53]). Including as covariates in a GLMM
functions of N when cluster size is non-informative would be expected to cause some loss of efficiency.
However, unless the number of extra parameters introduced to model the effect of N is large, this loss may
be small. On the other hand, using weighted IEE rather than IEE when cluster size is non-informative
may cause substantial loss of efficiency if Var(N) is large, unless the intra-cluster correlation of Y is also
large [14]. For example, if Y1,… ,YN are independent and there are no covariates, the relative efficiency of
the weighted IEE estimator of E(Y) relative to the IEE estimator is (from (5.1) and (5.2) in [14]) approx-
imately {E(N)E(N−1)}−1 , which equals 0.64 when P(N = 1) = P(N = 4) = 0.5. Mancl and Leroux [54]
(see also [55]) investigated the efficiency loss caused by using IEE rather than GEE with the true work-
ing correlation when the true correlation structure is exchangeable. They concluded that when cluster
size does not vary, there is no efficiency loss for cluster-constant covariates or for cluster-varying covari-
ates whose mean does not vary between clusters. When cluster size varies, the efficiency loss increases
with Var(N) and with intra-cluster correlation of Y , especially for cluster-constant covariates. For cluster-
varying covariates, the efficiency loss is greatest when the covariate vectors of all population members
are i.i.d. For example, when E(N) = SD(N) = 20, X1,… ,XN are i.i.d., Corr(Yj,Yk) = 0.1 for j ≠ k, and
g is the identity link, the asymptotic relative efficiency is appproximately 0.7 (Figure 2 of [54]).

So, in the absence of ICS and CBC, greatest efficiency is achieved by using standard GLMM or GEE
with a realistic working correlation matrix. Several approaches have been proposed for assessing whether
CBC or ICS is present. McCulloch et al. [56] recommended testing whether the ML and conditional
ML estimators of 𝜷va are estimating the same quantity [57]. This is a test for ICS or CBC. When a joint
model for Y and N is used, CBC can be tested for by testing whether the ML estimator of 𝜷vafx from the
joint model and the conditional ML estimator are estimating the same quantity [58]. Benhin et al. [14]
presented a formal test of ICS when making population-average inference. This involves estimating 𝜷A
and 𝜷T using IEE and weighted IEE and testing whether 𝜷A = 𝜷T . Alternatively, one could include
N in a GLMM and test whether its effect is zero. When cluster size is non-informative and Xrd = 1,
Ten Have et al. [5] pointed out that CBC can cause a deviation from the usual relation between cluster-
specific effects and population-average effects. They suggested estimating 𝜷va using conditional ML and
the corresponding population-average parameter using IEE. In the absence of CBC, the latter parameter
is attenuated towards zero compared with the former, with the degree of attenuation a function of Var(u).
An informal assessment of CBC is therefore to see whether this is approximately true of the estimates.
Another strategy to assess CBC would use the poor man’s method (or its generalisation in Section 3.3.5)
to test for a significant difference between within-cluster and between-cluster effects.

If there is concern about CBC or ICS, standard GLMM/GEE will not be suitable, and another method
(or methods) from Section 3 or 4 should be used. For cluster-specific inference, conditional ML has the
advantage of making few assumptions, but is limited to canonical link functions. The poor man’s method,
that of Brumback et al., and their generalisation, ‘modelling expectation of random intercept’, also esti-
mate between-cluster or contextual effects, which may themselves be of interest. Unlike conditional ML,
however, these methods rely on correct specification of the model for q

(
X∗

va,N
)
. In general, methods

making more assumptions would be expected to be more efficient, provided these assumptions are true,
and indeed Brumback et al. [9] showed that their approach can be more efficient than conditional ML
when the model for the expected random intercept is correctly modelled. Conditional ML may therefore
be more efficient than conditional GEE when A1 holds, but less efficient otherwise. However, there is a
lack of software for conditional GEE, and it does not allow the logit link function. Like modelling expec-
tation of random intercept, treating the random intercept as a fixed effect and joint modelling of Y and N
allow for—and estimate the effects of—cluster-varying covariates with random effects. Treating the ran-
dom intercept as a fixed effect requires fewer assumptions than the other two methods, but it requires a
large average cluster size when Y is binary. The other two methods should be more efficient, but require
correct specification of q

(
X∗

va,N
)

or f (N ∣ Xco,u). Joint modelling provides an estimate of all of 𝜷 and
Var(u) but requires strong assumptions, including no CBC.

For population-average inference, IEE and weighted IEE are the principal methods for estimating eA(x)
and eT (x), respectively. Hoffman et al. [10], Williamson et al. [11], and Seaman et al. [22] discussed
situations where one may be preferred to the other. Marginalising over u in a GLMM may be more
efficient but requires a correctly specified GLMM. Inclusion of N as a covariate is one way to handle
ICS and may be attractive if there is scientific interest in the effect of N on Y . However, as discussed in
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Section 4.1.4, the effect of X on Y not adjusted for N may be of more interest. Type 3 doubly weighted
IEE is an alternative to weighted IEE for adjusting for observed confounders. It uses propensity score
weighting instead of regression adjustment. When there is CBC, IEE and weighted IEE can still be used,
but the effects of X they estimate are confounded. Two methods change the estimand in an effort to
describe an unconfounded effect. The poor man’s GEE method attempts to eliminate confounding by
stratifying clusters according to X̄va and estimating the within-stratum effect of X assuming that it is the
same in all strata. It allows for ICS when the dependence of Y on N is through X̄va. Type 1 doubly weighted
IEE eliminate confounding by considering the population formed by sampling one member with each
value of X from each cluster. Its use is limited to situations where X is categorical and all possible X
values are represented in all clusters (although Huang and Leroux suggested that a mixture of categorical
and continuous covariates be handled using weighting for the former and regression adjustment for the
latter [15]).

In summary, when choosing a method for analysis, we recommend first deciding whether cluster-
specific or marginal inference will best answer the scientific question. When either ICS or CBC is
suspected, we may often be concerned about both, and so methods that handle both are recommended
in general. It is clear from Table II that for marginal inference the choice of method will be driven by
the choice of estimand, because none of the methods are excessively computationally challenging. For
cluster-specific inference, the next question to be asked (as is apparent from Table I) is whether Xrd = 1
is a reasonable assumption for the data in hand, that is, whether covariate effects are the same in different
clusters. If this is assumed, methods such as conditional ML and the poor man’s method are relatively
simple and well established. For the more general case where covariate effects differ across clusters, the
choice of method is more complex and exactly which assumptions best suit the data needs to be carefully
considered, following the text earlier in this section and Table I.

6. Example

Wood et al. [59] examined the association between socio-economic deprivation and preterm neonatal
death in Scotland. There were 920 566 births and 440 preterm neonatal deaths during 1992–2008. Depri-
vation was measured by the Carstairs score, which ranges from 1 (least deprived) to 7 (most deprived).
Using IEE, they found a significant population-average association. Treating deprivation as a continuous
variable, the crude log OR was 0.600 (SE 0.178) for a six-point increase in deprivation.

An alternative to population-average inference is cluster-specific inference, that is, a comparison of
mothers with different deprivation scores attending the same hospital. This might be of interest if, for
example, one were contemplating an intervention designed to reduce deprivation (such as offering child-
care support to working mothers). The within-cluster (hospital) effect of deprivation could be estimated
using a logistic regression model with random intercept for hospital. However, the populations served by
different hospitals may differ in their demographic characteristics (in particular, deprivation), and there
may be an association between a hospital’s quality of care and the mean deprivation of the population
it serves. If this is so, there would be CBC and the random-intercept model would be misspecified. We
shall investigate whether there is CBC and estimate the within-hospital deprivation effect.

There were 69 hospitals, and the number of births per hospital varied from 19 to 80 749, with mean
13 342. The estimated within-hospital log OR for deprivation from the random-intercept model was 0.546
(SE 0.189) (Table III). The estimated standard error of the random-intercept was 0.249 (p = 0.006),
indicating evidence for a hospital effect. There was also evidence that the distribution of deprivation
varies between hospitals. A proportional-odds model with random intercept (for hospital) was fitted to the
deprivation scores. The estimated variance of the random intercepts was 0.498 (p < 0.001). Therefore,
the conditions required for CBC are present: there is between-cluster variation in the distribution of the
covariate and in the distribution of the outcome given the covariate.

Using conditional logistic regression (conditional ML), the log OR of the within-hospital effect of
deprivation on mortality was 0.460 (SE 0.195). As mentioned in Section 5, the fact that this estimate is
closer to zero than the population-average estimate of 0.600 is suggestive of CBC [5]. The Tchetgen and
Coull test for CBC or ICS mentioned in Section 5 [56,57], which compares the estimates 0.546 and 0.460
from ML and conditional ML, respectively, yielded a p-value of 0.07. So, evidence for CBC is not sig-
nificant but is suggestive. The estimated log OR for the within-hospital effect from the poor man’s model
was 0.470 (SE 0.198), which is similar to that from conditional ML. The estimated between-hospital log
OR was 1.262 (SE 0.641), and the difference between the between-hospital and within-hospital effects
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Table III. Log odds ratios of preterm neonatal death for six-point
increase in deprivation score.

Method log OR SE 95% CI p

IEE 0.600 0.178 0.251 0.949 0.001
ML estimation of GLMM 0.546 0.189 0.175 0.917 0.004
Conditional ML 0.460 0.195 0.076 0.843 0.019

Poor Man’s method
Within-cluster 0.470 0.198 0.083 0.858 0.017
Between-cluster 1.262 0.641 0.005 2.519 0.049

Model random intercept
Within-cluster 0.464 0.197 0.079 0.850 0.018
Between-cluster 0.987 0.630 −0.248 2.222 0.117
Cluster size (×1000) 0.007 0.003 0.000 0.013 0.035

Methods are independence estimating equations, maximum likelihood estimate
from random-intercept logistic regression model, conditional ML estimate from
the same model, poor man’s method, and modelling expectation of random
intercept as linear function of mean deprivation in cluster and cluster size.

was 0.792 (SE 0.676). Although this difference is not significant and we are not here interested in con-
textual effects, it would be interpreted as meaning that of two women with the same deprivation giving
birth in two hospitals with different mean deprivations, the women attending the hospital with the higher
mean deprivation would, on average, be at higher risk.

To assess whether ICS was present, we added N, the number of women giving birth in each hospital, to
the poor man’s model

(
this is ‘modelling expectation of random intercept’ with q

(
X∗

va,N
)
=
(
X̄va,N

)T
)

.
The estimated parameter associated with N in this extended poor man’s model was 0.00694 per thou-
sand births (SE 0.00329, p = 0.04), indicating evidence of ICS. The estimated within-hospital effect
of deprivation from conditional ML does not assume non-ICS. However, the presence of ICS raises the
possibility that there may be an interaction between cluster-size and deprivation in the model for mor-
tality. However, when we included a cluster-size-deprivation interaction term in the conditional logistic
regression model, this interaction term was not significant (p = 0.24).

Finally, the ‘treating the random intercept as a fixed effect’ method was used to include a random effect
for deprivation. However, we found no evidence that the effect of deprivation on mortality varies between
hospitals (p = 1.0).

In conclusion, there is weak evidence of CBC (and ICS), with the within-hospital effect of depriva-
tion being possibly smaller than the between-cluster effect. However, accounting for CBC and ICS does
not change the substantive conclusion that there is a significant association between deprivation score
and mortality.

7. Discussion

In this article, we have reviewed methods that have been proposed for population-average or cluster-
specific inference in the presence of CBC or ICS. We have clarified what the methods proposed for
handling CBC assume about ICS and vice versa. We have explained more fully than previous authors the
potential of, and problems with, including cluster size as a covariate. We have proved equivalence of the
poor man’s method and conditional ML when the identity link is used, in line with an empirical finding of
similar estimates in a particular data set noted by previous authors. We found that the methods available
typically make strong assumptions about the exact nature of ICS or CBC and about other aspects of the
data, and this article has expressed these assumptions in a common format that allows easy comparison.
No single method is sufficiently flexible to handle any scenario in which there is ICS or CBC. However,
we consider that for most research studies, methods exist which would provide inference of interest.

We hope that our comparison of the assumptions made by the various methods and our discussion of
choice of method, and in particular the issue of efficiency, will assist analysts to select suitable methods for
clustered data where CBC or ICS is considered possible. As methods to handle CBC or ICS are typically
less efficient than standard methods that assume the absence of both, it is likely that some analysts will use
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a two-stage approach: an initial test for CBC and/or ICS, followed by the selection of a suitable method
if either is indicated and a standard method otherwise. Such a strategy is not unreasonable. However,
a preferable approach when ICS or CBC is thought possible would be to verify that the results from a
standard method do not change substantially when a method designed to handle ICS and/or CBC is used
instead. We consider that CBC and ICS are realistic in many research settings and may arise together.
We hope this review will lead to a wider awareness of the problems of CBC and ICS and of the failure
of standard methods when they are present, and also of the availability of alternative methods.

While we have focused on the estimation of regression parameters in models for uncensored data,
other authors have considered ICS in other contexts. Datta and colleagues generalised rank-sum and
signed-rank tests to account for ICS [60–62]. Fan and Datta [63] used inverse cluster-size weighting in
accelerated failure time models for clustered survival data. VanderWeele et al. [64] used an approach
similar to the poor man’s method for decomposing the indirect effect of vaccination into contagion and
infectiousness effects in the presence of spill-over effects.

Appendix A: Conditional ML in standard software

Conditional logistic regression for a binary outcome is widely available in standard statistical software,
for example, the clogit command in the survival library of R. Some routines for conditional logistic
regression can be slow when clusters are large, because they need to evaluate all permutations of Y .
Fortunately, the clogit function uses a clever method to overcome this (see ‘Methods and Formulae’
section of STATA clogit manual).

The conditional ML estimator of 𝜷 for the GLMM with a Poisson distributed outcome, log link function
and Xrd = 1 is identical to the ML estimator of 𝜷 obtained by simply fitting a Poisson regression with a
fixed effect for cluster [39].

This is also true when the outcome is instead normally distributed and g is the linear link function.
However, less computationally intensive methods are available. First, when Xrd = 1, the poor man’s
method can be used, as it is equivalent to conditional linear regression (Appendix C). Second, Verbeke
et al. [30] described an even less computationally intensive way to maximise the conditional likelihood
of an LMM, which applies whether or not Xrd = 1. Let q denote the dimension of Xrd. For each value of
N observed in the data set, let ANq denote a N × (N − q) matrix of orthogonal contrasts, that is, a matrix
ANq whose columns each sum to zero and for which AT

NqANq = I. Then the conditional ML estimator of

𝜷 is equal to the ML estimator of 𝜷 from the model that assumes AT
Niq

Y∗
i ∼ Normal

(
AT

Niq
X∗

i 𝜷, INi−q𝜎
2
)

independently for each cluster i. So, standard linear regression can be used.
Verbeke et al. [30] also described an extension of this method for fitting conditional LMMs. This

involves premultiplying Y∗ and X∗ by AN1 and fitting an LMM for the transformed variables.
Verbeke et al. [30] provided sas code for determining the matrix ANq. Also, AN1 can be found using

the contr.poly command in R.

Appendix B: Proof that A1 is not necessary for consistency of conditional ML
in LMM

The contribution of a cluster of size N to the conditional likelihood for the LMM with Xrd = 1 is propor-
tional to the density of AT

N1Y∗ given AT
N1X∗ implied by AT

N1Y∗ ∼ Normal
(
AT

N1X∗𝜷, I𝜎2
)

[30]. The value
𝜷̃, say, to which the conditional ML estimator of 𝜷 converges as the number of clusters tends to infin-
ity therefore obeys E

{
X∗TAN1

(
AT

N1Y∗ − AT
N1X∗𝜷̃

)}
= 0, regardless of whether or not A1 holds. Let X̄

∗

denote the matrix each of whose rows equals X̄
T
, and let 1 = (1,… , 1)T . The true value 𝜷0, say, of 𝜷 obeys

E
(
Y∗ − Ȳ1 ∣ X∗) =

(
X∗ − X̄

∗)
𝜷0 = 0, regardless of whether A1 holds. Because AT

N1Ȳ1 = AT
N1X̄

∗ = 0
(because each column of AN1 sums to zero), it follows that AT

N1E
(
Y∗ − Ȳ1 ∣ X∗)− AT

N1

(
X∗ − X̄

∗)
𝜷0 =

E
(
AT

N1Y∗ ∣ X∗) − AT
N1X∗𝜷0 = 0. Therefore, E

{
X∗TAN1

(
AT

N1Y∗ − AT
N1X∗𝜷0

)}
= 0, and so 𝜷̃ = 𝜷0.

Appendix C: Equivalence of poor man’s method and conditional ML

We consider the general case where Xco and Xva can be vectors. Let X̄
∗
va denote the matrix each of

whose rows equals X̄
T
va. For the random-intercept LMM, the contribution of a cluster to the conditional
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log likelihood of Y∗ given Ȳ is −(2𝜎2)−1
{

Y∗ − Ȳ1 −
(
X∗

va − X̄
∗
va

)
𝜷va

}T {
Y∗ − Ȳ1 −

(
X∗

va − X̄
∗
va

)
𝜷va

}
,

where 𝜎2 is the residual error variance [6]. The contribution of the cluster to the score vector for the
conditional ML estimate of 𝜷va is the derivative of this, that is,

(
X∗

va − X̄
∗
va

)T {
Y∗ − Ȳ1 −

(
X∗

va − X̄
∗
va

)
𝜷va

}
=
(
X∗

va − X̄
∗
va

)T {
Y∗ −

(
X∗

va − X̄
∗
va

)
𝜷va

}
(C.1)

The poor man’s method generalised to allow Xco and Xva to be vectors uses the model Yj ∣ X∗, u ∼
N
{(

Xva,j − X̄va

)T
𝜸1 + X̄

T
𝜸2 + u, 𝜎2

e

}
with u ∼ N

(
0, 𝜎2

u

)
. When u is integrated out, the result is a

multivariate normal model [65] (Chapter 5). The contribution of a cluster to the log likelihood of this
model is −2−1

{
Y∗ −

(
X∗

va − X̄
∗
va

)
𝜸1 − X̄

∗
𝜸2

}T
V−1 {Y∗ −

(
X∗

va − X̄
∗
va

)
𝜸1 − X̄

∗
𝜸2

}
, where V = JN𝜎

2
u +

IN𝜎
2
e , with JN denoting a N×N matrix of ones and IN denoting a N×N identity matrix. So, the contribution

of the cluster to the score vector for the ML estimate of the poor man’s method is[ (
X∗

va − X̄
∗
va

)T

X̄
∗T

]
V−1 {Y∗ −

(
X∗

va − X̄
∗
va

)
𝜸1 − X̄

∗
𝜸2

}
Because V−1 = aNJN + 𝜎−2

e IN , where aN = −𝜎2
u

{
𝜎2

e

(
𝜎2

uN + 𝜎2
e

)}
, and also

∑N
j=1

(
Xj − X̄

)
= 0,

(
X∗

va − X̄
∗
va

)T
V−1 {Y∗ −

(
X∗

va − X̄
∗)

X̄
∗
va𝜸1 − X̄

∗
𝜸2

}
=
(
X∗

va − X̄
∗
va

)T
𝜎−2

e IN

{
Y∗ −

(
X∗

va − X̄
∗
va

)
𝜸1 − X̄

∗
va𝜸2

}
(C.2)

= 𝜎−2
e

(
X∗

va − X̄
∗
va

)T {
Y∗ −

(
X∗

va − X̄
∗
va

)
𝜸1

}
(C.3)

Apart from the constant of proportionality 𝜎−2
e and the replacement of 𝜷va by 𝜸1, expressions (C.1)

and (C.3) are the same. This means that the conditional ML estimate of 𝜷va and the ML estimate of 𝜸1
are identical, and so are their corresponding estimated standard errors (obtained from the derivative of
the score vector).

Also notice that, apart from the constant of proportionality 𝜎−2
e and the replacement of 𝜷M1 by 𝜸1,

expression (C.2) is the same as the quasi-score vector used for estimating 𝜷M1 in the poor man’s GEE
method when the independence working correlation matrix is used. This means that the estimate of 𝜷M1
obtained by applying the poor man’s GEE method with independence working correlation is also identical
to the conditional ML estimate. However, their estimated standard errors may be different, because the
GEE method uses robust standard errors.

Furthermore, notice that expression (C.1) reduces to
(
X∗

va − X̄
∗
va

)T {
Y∗ − X∗

va𝜷va

}
, which is the same

as Goetgeluk and Vansteelandt’s [7] conditional GEE equation (3) if d is given by their equation (8)
and Var(Yi ∣ Li,Ci) is assumed to equal I𝜎2

g for some 𝜎2
g . Therefore, for the identity link function, the

only difference between conditional GEE and the score equations for the conditional ML estimator is
that the latter are based on the assumption that, given X∗ and u, Y1,… ,YN are independent and have
equal variance, whereas the former allow Y1,… ,YN to be correlated given X∗ and u and/or have different
variances (and estimate these correlations and variances from the data).
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