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SUMMARY

Mycobacterium tuberculosis (Mtb) enters the host in
aerosol droplets deposited in lung alveoli, where the
bacteria first encounter lung-resident alveolar mac-
rophages. We studied the earliest mycobacterium-
macrophage interactions in the optically transparent
zebrafish. First-responding resident macrophages
phagocytosed and eradicated infecting mycobacte-
ria, suggesting that to establish a successful infec-
tion, mycobacteria must escape out of the initially in-
fected resident macrophage into growth-permissive
monocytes. We defined a critical role for mycobacte-
rial membrane phenolic glycolipid (PGL) in engineer-
ing this transition. PGL activated the STING cytosolic
sensing pathway in resident macrophages, inducing
the production of the chemokine CCL2, which in turn
recruited circulating CCR2+monocytes toward infec-
tion. Transient fusion of infected macrophages with
CCR2+ monocytes enabled bacterial transfer and
subsequent dissemination, and interrupting this
transfer so as to prolong mycobacterial sojourn in
resident macrophages promoted clearing of infec-
tion. Human alveolar macrophages produced CCL2
in a PGL-dependent fashion following infection,
arguing for the potential of PGL-blocking interven-
tions or PGL-targeting vaccine strategies in the pre-
vention of tuberculosis.

INTRODUCTION

When M. tuberculosis (Mtb) is aerosolized into the lower lung, it

first encounters lung-resident alveolar macrophages that patrol

the air-lung epithelium interface (Srivastava et al., 2014). In the

first few days post-infection, Mtb is found exclusively within alve-

olar macrophages (Srivastava et al., 2014; Urdahl, 2014; Wolf
552 Immunity 47, 552–565, September 19, 2017 ª 2017 The Authors
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et al., 2007). Thereafter, it traverses the lung epithelium to reside

within other myeloid cells that have aggregated into granulomas

(Cambier et al., 2014a; Srivastava et al., 2014). The difficulty of

tracking the early fate of individual mycobacteria in traditional

animal models has precluded elucidation of how mycobacteria

move from alveolar macrophages into other cells and indeed

how they survive these broadly microbicidal first responders

(Hocking and Golde, 1979).

We have exploited the optical transparency of the zebrafish

larva to study the early mycobacterium-phagocyte interactions

by infecting Mycobacterium marinum (Mm), a close genetic

relative of Mtb, into the zebrafish larval hindbrain ventricle, an

epithelium-lined cavity (Cambier et al., 2014b; Yang et al.,

2012). In this model, pathogenic mycobacteria manipulate

host responses immediately upon infection so as to inhibit the

recruitment of neutrophils and microbicidal monocytes, and

instead recruit and infect mycobacterium-permissive myeloid

cells (Cambier et al., 2014b; Yang et al., 2012). To avoid detec-

tion by microbicidal monocytes, mycobacteria mask exposed

pathogen-associated molecular patterns (PAMPs) with the

cell-surface phthiocerol dimycoceroserate (PDIM) lipid, thus

preventing recognition of PAMPs by Toll-like receptors (TLRs)

(Cambier et al., 2014b). Mycobacteria thus inhibit monocyte

signaling through TLRs, which would normally recruit prototyp-

ical microbicidal iNOS-expressing monocytes. In conjunction,

pathogenic mycobacteria recruit growth-permissive mono-

cytes using a PDIM-related surface lipid, phenolic glycolipid

(PGL) that induces the host monocyte chemokine CCL2.

CCL2 recruits mycobacterium growth-permissive monocytes

through signaling via its cognate receptor CCR2. The recruit-

ment of growth-permissive monocytes is critically important

for the ability of mycobacteria to establish infection. PGL-defi-

cient mycobacteria fail to recruit normal numbers of monocytes

and their ability to establish infection is attenuated (Cambier

et al., 2014b).

However, mycobacteria still have to contend with resident

macrophages that are thought to be the first phagocytes

encountered during infection (Srivastava et al., 2014). Here we

found that resident macrophages are default first-responders

to invading bacteria, including mycobacteria, and phagocytosed
. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).

mailto:josephmk@tcd.ie
mailto:lr404@cam.ac.uk
http://dx.doi.org/10.1016/j.immuni.2017.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2017.08.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A B C

D E

F G H

I J K

L

Figure 1. Resident Macrophages Are First Responders to Bacterial Infection

(A) Cartoon of a 2 day post-fertilization (dpf) zebrafish showing the caudal vein (CV) and hindbrain ventricle (HBV) injection sites and representative image of HBV

(outlined with white dashed line) with Hoechst dye negative resident macrophages (black arrowheads) and Hoechst dye positive monocyte (black arrow). Scale

bar, 100 mm.

(B) Mean resident macrophage (RM) and monocyte (Mono) recruitment at 3 hr post infection (hpi) into the HBV after infection with 80 wild-type Mm (Mm) or

PGL-deficient Mm (Mm-PGL�). Significance testing done using one-way ANOVA, with Bonferroni’s post-test against mock injections. **p < 0.01.

(C) Mean resident macrophage and monocyte recruitment at 3 hpi into the HBV of wild-type or Ccr2-deficient fish after infection with 80 wild-type Mm.

Significance testing done using one-way ANOVA, with Bonferroni’s post-test for comparisons shown. **p < 0.01.

(D) Representative images of uninfected resident macrophages (black arrowheads), uninfected monocytes (black arrows), infected resident macrophages (red

arrowheads), infected monocytes (red arrows), and extracellular bacteria (white arrow) following infection of wild-type fish in the HBV with 80 wild-type green

fluorescent Mm at 30, 60, and 120 min post infection (mpi). Scale bar, 20mm.

(E) Mean resident macrophage and monocyte recruitment from 5 to 150 mpi in the HBV of wild-type or Ccr2-deficient fish after infection with 80 wild-type Mm.

(F) Mean resident macrophage andmonocyte recruitment from 5 to 180mpi in the HBV of wild-type or Myd88-deficient fish after infection with 80 PDIM-deficient

Mm (Mm – PDIM�).

(legend continued on next page)
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them rapidly. These first-responding resident macrophages

weremicrobicidal to virulent mycobacteria, and capable of erad-

icating infection unless the mycobacteria escaped into more

permissive cells. We found that PGL rapidly induces the produc-

tion of CCL2 in the resident macrophages via a Sting-associated

pathway. CCL2 recruited CCR2+ monocytes to the close prox-

imity of the infected resident macrophage. The bacteria then

transferred from microbicidal resident macrophages into these

monocytes, thus escaping into a growth-permissive niche to

establish infection. Resident macrophage-mycobacterium inter-

action is thus possibly the earliest determinant of whether infec-

tion will be established or cleared, with PGL acting as a very early

mycobacterial immune evasion determinant. Furthermore, our

findings suggest that STING and CCL2 are host susceptibility

factors that act at the very first steps of infection.

RESULTS

Resident Macrophages Are First Responders to Mm and
Mucosal Commensal Pathogens through Sensing a
Common Secreted Signal
When Mtb is aerosolized into mouse lung, it is found for the first

few days exclusively within alveolar macrophages (Srivastava

et al., 2014; Urdahl, 2014;Wolf et al., 2007). In the zebrafish larva,

directly posterior to the hindbrain ventricle infection site (Fig-

ure 1A), is the brain which, like most organs, has a population

of resident macrophages (Herbomel et al., 2001). We asked

whether these brain-resident macrophages or microglia, analo-

gous to the resident macrophages of the mammalian lung,

participated in the immune response to mycobacterial infection.

In addition to their tissue-specific functions, tissue-resident

macrophages, including those of the brain, play a central

role in host defense against infection (Casano and Peri, 2015).

Like lung-resident macrophages, brain-resident macrophages

phagocytose Mtb and produce inflammatory cytokines in

response to it (Curto et al., 2004; Spanos et al., 2015).

To distinguish between brain-resident macrophages and

monocytes, we used the nuclear dye Hoechst 33342 that does

not cross the blood brain barrier; injection of Hoechst 33342

into the caudal vein of zebrafish larvae labels cells, including

myeloid cells, in the body but not in the brain (Davis and Ramak-

rishnan, 2009). We injected Hoechst dye into the caudal vein and

then injected wild-type Mm into the HBV 2 hr later (Figure 1A).

Three hours following infection, recruited cells were identified

as either brain-resident macrophages (Hoechst-negative) or

peripheral monocytes (Hoechst-positive) (Figure 1A).

Our prior work had shown that myeloid cell recruitment to the

HBV was substantially dependent on bacterial PGL and host

Ccl2-Ccr2 (Cambier et al., 2014b). We asked whether recruit-

ment of resident macrophages, monocytes, or both were depen-
(G and H) Mean resident macrophage, monocyte, and neutrophil (Neut) recruitme

infection with 138 S. aureus (G) or 156 P. aeruginosa (H).

(I) Mean resident macrophage and monocyte recruitment from 5 to 150mpi in the

mock injection.

(J) Mean resident macrophage andmonocyte recruitment from 5 to 150mpi in the

of wild-type Mm supernatant (Sup), or media mock.

(K and L) Mean resident macrophage, monocyte, and neutrophil recruitment f

supernatant (K) or P. aeruginosa supernatant (L). (A – L) Results representative o
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dent on these. Wild-type Mm recruited both resident macro-

phages and monocytes, whereas the PGL-deficient Mm strain

(Dpks15) recruited resident macrophages but not monocytes

(Figure 1B). Correspondingly in Ccr2-deficient animals, wild-

type Mm recruited resident macrophages but not monocytes

(Figure 1C). We asked whether resident macrophages in the ze-

brafish larvae arrived more rapidly to mycobacteria, similar to

resident macrophages in the mammalian lung. A temporal anal-

ysis revealed that they were the first responders to infection and

arrived independently of Ccr2 signaling (Figures 1D and 1E). In

contrast, monocytes arrived later and in a Ccr2-dependent

fashion (Figures 1D and 1E). Thus, similar to Mtb infection of

the mammalian lung, Mm infection of the zebrafish HBV

recruits both resident macrophages and peripheral monocytes.

The two cell types appear to be recruited sequentially, and

through distinct pathways—Ccr2-independent for resident mac-

rophages and Ccr2-dependent for peripheral monocytes.

We found that resident macrophages were also the first-re-

sponders in bacterial infections wherein overall myeloid cell

recruitment is dependent on Toll-like receptor (TLR-MyD88)

signaling rather than the CCL2-CCR2 axis (Cambier et al.,

2014b), such as in the case of PDIM-deficient Mm (DmmpL7)

and the mucosal commensal-pathogens Staphylococcus

aureus and Pseudomonas aeruginosa (Figures 1F–1H). In addi-

tion to mononuclear phagocytes, S. aureus and P. aeruginosa

elicited the early recruitment of neutrophils, which were distin-

guished from monocytes and macrophages using the trans-

genic lyz::EGFP zebrafish (Yang et al., 2012), through TLR-

Myd88 signaling (Figures 1G and 1H) (Cambier et al., 2014b;

Yang et al., 2012). In all cases, resident macrophage recruit-

ment was independent of TLR-Myd88 signaling, as they were

still responding toward infection in Myd88-deficient fish (Fig-

ures 1F–1H). Thus, tissue-resident macrophages appear to be

default first-responders to invading bacteria, even those that

elicit a robust protective neutrophilic response, with their

recruitment to bacteria being independent of the TLR-Myd88

pathway.

We ruled out the possibility that mechanosensing of a foreign

body at the infection site was driving resident macrophage

recruitment (Wang et al., 2009) by showing that neither resident

macrophages nor monocytes were recruited to sterile beads

(Figure 1I). To examine whether resident macrophage recruit-

ment is mediated by bacterial signals, we assayed recruitment

of resident macrophages to supernatants of cultures of Mm,

S. aureus, and P. aeruginosa; supernatants from these bacterial

cultures recruited resident macrophages (and in the case of the

latter two, neutrophils) but not monocytes (Figures 1J–1L). Thus,

tissue-resident macrophages are recruited in response to a

secreted factor(s) produced by both Gram+ and Gram� bacteria

as well as mycobacteria.
nt from 5 to 180 mpi in the HBV of wild-type or Myd88-deficient fish following

HBV of wild-type fish after injection with 80 wild-type Mm, 300 sterile beads, or

HBV of wild-type fish after infectionwith 80wild-typeMm, an equivalent volume

rom 5 to 180 mpi in the HBV of wild-type fish after infection with S. aureus

f at least three independent experiments.
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Figure 2. Mycobacteria Mediate CCR2-Dependent Monocyte Recruitment by Actively Inducing CCL2 in Resident Macrophages

(A) ccl2messenger RNA levels (mean ± SEMof three biological replicates) induced at 3 hr after caudal vein infection of 2 dpf wild-type ormyeloid cell-deficient fish

with 250–300 wild-type Mm.

(B–D) In situ hybridizations against zebrafish ccl2 mRNA following hindbrain ventricle infections with vehicle (bacterial media) (B), 80 wild-type Mm (C), 80 Mm -

PGL� (D). Black arrows, ccl2 mRNA-positive phagocytes; white arrows ccl2 mRNA-negative phagocytes. Scale bar, 50mm. Results representative of three

independent experiments.

(E) Mean brain resident macrophage numbers of csfr1+/� and csfr1�/� zebrafish at 2dpf. Results representative of two independent experiments.

(F) Mean resident macrophage and monocyte recruitment from 5 to 150 mpi in the HBV of csfr1+/� or csfr1�/� fish after infection with 80 wild-type Mm.

(G) ccl2messenger RNA levels (mean ± SEM of three biological replicates) induced at 3 hr after caudal vein infection of 2 dpf wild-type fish with 250–300 live or

heat-killed wild-type Mm.

(H) Mean resident macrophage and monocyte recruitment from 5 to 120 mpi in the HBV of wild-type fish after infection with 80 live or heat-killed (HK) wild-

type Mm.

(I) Mean resident macrophage and monocyte recruitment from 5 to 150 mpi in the HBV of csfr1+/� or csfr1�/� fish after infection with 80 Mm - PDIM�.
(J) Mean resident macrophage andmonocyte recruitment from 5 to 150mpi in the HBV of wild-type fish after infection with 80 live or heat-killed (HK) Mm - PDIM�.
(K) Mean resident macrophage and monocyte recruitment from 5 to 120 mpi in the HBV of wild-type fish after infection with 80 wild-type or PDIM� Mm.

Results in (F) and (H) through (K) representative of at least three independent experiments.
Mycobacteria Infection Elicits CCL2 Production in
Resident Macrophages to Recruit Monocytes
For mycobacterial infection, our findings that resident macro-

phages are rapidly recruited through a PGL- and Ccl2-indepen-

dent pathway followed by PGL- and Ccl2-dependent mono-

cyte recruitment, led us to ask whether monocyte recruitment

was dependent on resident macrophage recruitment. We first
used zebrafish larvae depleted of myeloid cells (by morpho-

lino-mediated inhibition of myeloid transcription factor pu.1

expression; Clay et al., 2007) and evaluated ccl2 expression

following intravenous infection with PGL-competent Mm.

Myeloid-deficient fish were unable to induce ccl2 consistent

with myeloid cells being responsible for Ccl2 production in

response to mycobacterial infection (Figure 2A). Next, to
Immunity 47, 552–565, September 19, 2017 555



specifically determine whether resident macrophages could

induce ccl2, we infected bacteria into the HBV and used in situ

hybridization analysis (Clay et al., 2007) with an antisense ccl2

RNA probe. At 1 hr post infection, when the recruited phago-

cytes comprise almost entirely resident macrophages (Fig-

ure 1E), ccl2-positive phagocytes were present, but only

following wild-type Mm infection and not PGL-deficient Mm

infection (Figures 2B–2D). Together, these data showed that

resident macrophages, like peripheral monocytes, induce ccl2

in response to mycobacteria. This induction is PGL-dependent

in both cases, suggesting the presence of a common activation

program in both cell types.

Next, to directly test whether resident macrophages are

required for monocyte recruitment, we used zebrafish mutants

in which colonization of the brain by resident macrophages is

delayed due to a genetic mutation in colony-stimulating factor

receptor 1 (CSF1R) (Herbomel et al., 2001). Therefore, at the

time of our recruitment assay (2 days post fertilization),

csf1r�/� fish have normal numbers of circulating monocytes

but very few resident macrophages (Herbomel et al., 2001;

Pagán et al., 2015) (Figure 2E). Following wild-type Mm infec-

tion into the HBV of csf1r�/� fish, resident macrophage

recruitment was decreased and delayed, consistent with the

lack of available cells in the brain (Figure 2F). Importantly,

monocyte recruitment was also markedly decreased, consis-

tent with our hypothesis that resident macrophages mediate

monocyte recruitment (Figure 2F). In conjunction with our

earlier finding that mycobacterial PGL was also required for

monocyte recruitment (Figure 1B), these findings supported

a model where resident macrophages, recruited in response

to generic bacterial signals, engulf the mycobacteria. Myco-

bacterial PGL then induces them to express Ccl2 that

mediates monocyte recruitment. Because PGL is heat-stable

(Onwueme et al., 2005), this model would predict that

heat-killed PGL-expressing Mm would both induce Ccl2 and

recruit monocytes. It did neither, suggesting that live PGL-ex-

pressing mycobacteria are required to recruit monocytes

through Ccl2 induction in resident macrophages (Figures 2G

and 2H). Notably, heat-killed bacteria did recruit resident

macrophages (Figure 2H), consistent with the secreted factor

responsible for resident macrophage recruitment being heat-

stable.

Our finding that peripheral monocytes were dependent on sig-

nals from resident macrophages to participate in mycobacterial

infection was surprising, and we wondered whether this require-

ment was unique to PGL-expressing mycobacteria. To test this,

we used PDIM-deficient Mm, which recruits monocytes through

TLR-Myd88 signaling, not Ccl2. Csf1r�/� zebrafish recruited

monocytes normally to PDIM-deficient bacteria (Figure 2I).

Moreover, in contrast to wild-type mycobacteria, heat-killed

PDIM-deficient Mm recruited monocytes (Figure 2J). These re-

sults suggested a passive detection of the surface-exposed

TLR ligands of this mutant bacterium (Cambier et al., 2014b) in

contrast to an active recruitment process mediated through

live PGL-expressing bacteria. A head-to-head comparison

of the recruitment kinetics of wild-type and PDIM-deficient

strains revealed earlier monocyte recruitment to PDIM-deficient

bacteria (Figure 2K), consistent with their recruitment to this

strain being independent of resident macrophages. In sum,
556 Immunity 47, 552–565, September 19, 2017
resident macrophages specifically promote Ccl2-dependent

monocyte recruitment in response to virulent mycobacteria,

and this is dependent on mycobacterial PGL.

Taken together, our findings suggest that heat-stable bacterial

PAMPs of PDIM-deficient Mm trigger a program of microbicidal

monocyte recruitment that is not dependent on resident macro-

phages. In contrast, when bacterial PAMPs are masked by

PDIM, PGL-mediated recruitment of permissive monocytes is

absolutely dependent on both resident macrophages and live

bacteria, suggesting an active bacterial manipulation of these

default first-responders.

MmPGLRecruitsMonocytes throughSTING-Dependent
CCL2 Induction
Howmight PGL induce Ccl2 in resident macrophages? Because

PGL operated in the context of live bacteria, we wondered

whether a cytosolic sensing pathway was involved. Activation

of the cytosolic signaling pathway STING can induce CCL2

(Chen et al., 2011), so we tested whether Sting was the interme-

diary in PGL-mediated Ccl2 induction. Sting depletion using a

splice-blocking morpholino (Ge et al., 2015) resulted in a lack

of ccl2 induction in response to wild-type Mm in both peripheral

monocytes (Figure 3A) and resident macrophages (Figures 3B

and 3C). Consistent with the inability to induce ccl2 in resident

macrophages, Sting-deficient animals had reduced monocyte

recruitment to Mm (Figure 3D). The initial recruitment of resident

macrophages in these animals was intact, consistent with the

prior finding that it was PGL-independent. Importantly, Sting-

deficient animals recruited monocytes normally to PDIM-defi-

cient Mm confirming that their inability to elicit monocytes was

specifically in the context of Ccl2-mediated and not Myd88-

dependent monocyte recruitment (Figure 3E). Finally, our model

would predict that like Ccr2 deficiency, Sting deficiency should

compromise the ability of wild-type bacteria to establish infec-

tion. Mycobacterial infectivity can be stringently tested by infect-

ing animals with very low inocula that resemble human infection;

in the zebrafishwe have developed an infectivity assaywhich de-

termines howmany animals remain infected 4–5 days after infec-

tion with 1–3 mycobacteria (Cambier et al., 2014b). Using this

infectivity assay, we found that wild-typeMm had reduced infec-

tivity in Sting-deficient animals (Figure 3F), similar to PGL-defi-

cient bacteria in wild-type animals and wild-type bacteria in

Ccr2-deficient animals (Cambier et al., 2014b).

STING can induceCCL2 either through type I interferons (IFNs)

(Cepok et al., 2009; Conrady et al., 2013), or independently of

them (Chen et al., 2011). We evaluated expression of the zebra-

fish type I IFNs, ifnF1-3, that are induced during viral infection of

larvae and adults, promote an antiviral gene program, and are

protective against viral infection (Aggad et al., 2009). They were

not induced appreciably at 3 hpi with wild-typeMm, and themin-

imal induction observed was not PGL-dependent (Figure 3G). As

expected, ccl2 was robustly induced in a PGL-dependent

fashion (Figure 3G). This lack of dependence of type I IFNs on

STING activation was distinct from the two previously reported

pathways by which mycobacteria activate STING either through

bacterial c-di-AMP or bacterial nucleic acid (Dey et al., 2015;

Manzanillo et al., 2012). The latter of these requires the bacterial

ESX-1 secretion system to permeabilize the bacterial phago-

some in order to induce type I IFN (Siméone et al., 2015) that
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Figure 3. Mm PGL Recruits Monocytes through STING-Dependent ccl2 Induction

(A) ccl2messenger RNA levels (mean ± SEM of three biological replicates) induced at 3 hr after caudal vein infection of 2 dpf wild-type or Sting-deficient fish with

250–300 wild-type Mm. Student’s unpaired t test.

(B and C) In situ hybridizations against zebrafish ccl2mRNA following hindbrain ventricle infections with 80 wild-type Mm into wild-type (B) or Sting-deficient (C)

zebrafish. Black arrows, ccl2 mRNA-positive phagocytes; white arrows ccl2 mRNA-negative phagocytes. Scale bar, 50mm. Results representative of three

independent experiments.

(D) Mean resident macrophage and monocyte recruitment from 5 to 180 mpi in the HBV of wild-type or Sting-deficient fish after infection with 80 wild-type Mm.

(E) Mean resident macrophage and monocyte recruitment from 5 to 180 mpi in the HBV of wild-type or Sting-deficient fish after infection with 80 Mm - PDIM-.

(F) Percentage of infected (black) or uninfected (gray) wild-type or Sting-deficient fish 5 dpi with 1-3 wild-type Mm into the HBV. n = number of larvae per group.

Results representative of two independent experiments. Significance testing done using Fisher’s exact test.

(G) ccl2, ifnF1, ifnF2, and ifnF3 mRNA levels (mean ± SEM of three biological replicates) induced at 3 hr after caudal vein infection of 2 dpf wild-type fish with

250–300 wild-type Mm. Significance testing done using Student’s unpaired t test for each gene. p = 0.002 for ccl2, all other comparisons not significant.

(H) Mean resident macrophage and monocyte recruitment from 5 to 150 mpi in the HBV of wild-type fish after infection with 80 wild-type or ESX-1-deficient

(ESX1�) Mm.

(I) Percentage of infected (black) or uninfected (gray) wild-type fish 5 dpi of 1–3 wild-type, ESX1�, or PGL� Mm into the HBV. n = number of larvae per group.

Significance testing done using Fisher’s exact test for comparisons shown. **p < 0.01, ***p < 0.001. Results representative of two independent experiments.

Results in (D), (E), and (H) representative of three independent experiments.
activates STING (Manzanillo et al., 2012). Having ruled out the

involvement of type I IFNs, we used functional studies to further

rule out that STING activation of our pathway was ESX-1-depen-

dent. If STING activation of CCL2 is reliant on ESX-1 induction of

type I IFNs, then monocyte recruitment should be ESX-1-depen-

dent. We found that it was not. ESX-1 mutant bacteria recruited

both resident macrophages and monocytes normally to the

initially infecting bacteria (Figure 3I). Consistent with this finding,
ESX-1-deficient Mm established infection at wild-type levels

(Figure 3J). Our prior work has found that ESX-1 partners with

hostMMP9 to acceleratemacrophage recruitment to the forming

granuloma (Volkman et al., 2004). These new findings showed

that initial macrophage recruitment occurs through a distinct

mechanism—PGL-dependent activation of STING that directly

induces CCL2. It is not surprising that this process is ESX-1 inde-

pendent because of the timing of ccl2 induction (prior to 3 hr post
Immunity 47, 552–565, September 19, 2017 557



infection) versus ESX-1-induced phagosome permeabilization

which takes �24 hr (Siméone et al., 2015). Whether PGL is

directly sensed by STING or works through an intermediary re-

mains to be determined. It also remains to be determined how

PGL or its intermediary contacts the cytosolic signaling pathway.

One possibility is through mycobacterial vesicles that can be

secreted out of the phagosomes of infected macrophages

(Rhoades et al., 2003). Formation of these vesicles requires bac-

terial viability (Athman et al., 2015) but not ESX-1 (Bhatnagar and

Schorey, 2007), both consistent with our findings.

PGL-Expressing Bacteria Can Transfer from Resident
Macrophages to Monocytes
Human TB is thought to result from infection with only 1–3 bac-

teria (Bates et al., 1965; Cambier et al., 2014a; Wells et al., 1948).

In the zebrafish, 1–3Mmare sufficient to establish infection in the

majority of zebrafish larvae provided that bacterial PGL and host

Sting and Ccl2-Ccr2 are present; without these factors, infec-

tivity is reduced (Figure 3F) (Cambier et al., 2014b). Therefore,

it was important to examine myeloid cell recruitment in response

to these low inocula where the role of PGL and CCR2 is

most relevant. To enable a detailed temporal analysis of the

HBV by time-lapse confocal microscopy, we used mpeg::yfp

ormpeg::tdtomato transgenic zebrafishwith fluorescentmyeloid

cells, again using Hoechst dye to distinguish monocytes from

resident macrophages. Imaging each animal every 10 min from

1–11 hr post infection, we quantified the total number of resident

macrophages and monocytes occupying the HBV at each time

point. We observed that resident macrophages arrived early

whereas monocytes were rarely seen during this period (Fig-

ure 4A and Table S1). In contrast, even with these low inocula,

both cell types were recruited early to PDIM-deficient mutants

(Figure 4A). Accordingly, when we analyzed the phagocytosis

event for each bacterium, we found that wild-type bacteria

were phagocytosed only by resident macrophages whereas

PDIM-deficient bacteria were phagocytosed by both resident

macrophages and monocytes (Figure 4B).

Previously, we had shown that the increased infectivity of

PGL-competent bacteria is abrogated by Ccr2 deficiency

(Cambier et al., 2014b). Now we had found that both PGL-

competent and PGL-deficient bacteria are initially in resident

macrophages that are recruited in a Ccr2-independent manner,

with the critical difference between the two strains beingwhether

there is subsequent recruitment of Ccr2-dependent monocytes

or not. Taken together, the two findings suggested that these

monocytes were responsible for the increased infectivity of

PGL-competent bacteria. This could be because the monocytes

comprised a more permissive niche into which the bacteria

were transferring, or because their presence was modulating

the microbicidal capacity of the originally-infected resident

macrophages.

In order to determine whether bacteria were being transferred

to new cells, we had to image infection for the first several days.

Continuous imaging of the infection site in the same animal for

several days is precluded by photobleaching. So we devised a

strategy where we divided the infected larvae into 14 groups,

and imaged each group for one of consecutive 6 or 12 hr periods

that together spanned 4.5 days of infection (Table S2). For wild-

type bacteria, transfer events were observed starting at 54 hr
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and peaking in the 66–72 hrwindow (Figure 4C and 4E andMovie

S1). These transfers were accomplished as follows (Movie S1):

the infected resident macrophage was approached by an unin-

fected peripheral monocyte. The cells then converged for a

period of time before separating again, with the bacteria now be-

ing associated with the peripheral monocyte. Transfer events

were not observed for PGL-deficient infection in the 66–72 hr

window. (Figure 4E and Table S2). Thus, PGL-deficient bacteria

largely remained within resident macrophages longer than wild-

type bacteria. Furthermore, we documented clearance events of

PGL-deficientMmby the initially infectedmacrophage (Figure 4D

and Movie S2). In contrast, clearance events were not observed

during wild-type Mm infection.

To rigorously examine the kinetics of clearance in relation to

the bacterial transfer events we had observed, we monitored

�30 animals for bacterial clearance by imaging them once every

24 hr. Because wild-type bacteria only transfer into permissive

monocytes starting at 54 hr, the differential clearance of wild-

type and PGL-deficient bacteria should become apparent only

after this time-point. This was the case (Figure 4F). In contrast,

PDIM-deficient bacteria started to be cleared within 24 hr (Fig-

ure 4F) consistent with their recruiting microbicidal monocytes

within 2 hr and being phagocytosed by themwithin 12 hr (Figures

4A and 4B).

Imaging of these early mycobacterium-beneficial transfer

events revealed they were distinct in their cellular morphology

from subsequent intercellular bacterial transfer observed in the

forming granuloma, which is dependent on the apoptotic death

of the infected macrophage, the bacterial contents of which

are engulfed by newly arriving macrophages (Davis and Ramak-

rishnan, 2009). In contrast the PGL-dependent transfer event

was characterized bymovement of the ‘‘donor’’ infected resident

macrophage until the time that it converged with the ‘‘recipient’’

peripheral monocyte (Movie S1). Because the ESX-1 locus pro-

motes apoptosis of infected macrophages (Davis and Ramak-

rishnan, 2009), our finding that ESX-1-deficient Mm were not

compromised during early infectivity (Figure 3H), suggested

that efferocytosis is not mediating this transfer event. To confirm

this, we used the pan-caspase inhibitor QVD-OPH that reduces

apoptotic cells substantially (7.2-fold) in the context of Mm infec-

tion of the zebrafish (Yang et al., 2012). QVD-OPH treatment did

not reduce the early infectivity of Mm (Figure 4G), further sug-

gesting that this transfer event is not dependent on efferocytosis.

Rather, transfer was occurring between living cells, similar to the

findings that, following intimate contact between macrophages

in culture, intracellular Gram-negative pathogens can transfer

between the two cells in a process known as trogocytosis (Steele

et al., 2016).

Together, these findings are consistent with the model that

PGL-competent bacteria transfer into the permissive monocytes

they recruit. Conversely, our finding that PGL-deficient myco-

bacteria have a more prolonged sojourn in resident macro-

phages in which they are cleared, suggests that resident macro-

phages are more microbicidal than Ccl2-recruited monocytes.

Resident Macrophages Are More Microbicidal than
Monocytes
Our findings linking increased time in the residentmacrophage to

increased bacterial killing suggested that resident macrophages
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Figure 4. PGL Promotes Intercellular Bacterial Transfer and Prevents Bacterial Clearance

(A) Mean (R5 biological replicates) number of resident macrophages and monocytes occupying the HBV at each time point, quantified every 10 min from 1 to

11 hpi in Tg (mpeg1::yfp) fish with green fluorescent macrophages after infection with 1–3 wild-type or PDIM� red fluorescent Mm.

(B) Percentage of fish where the infecting bacteria were phagocytosed by a resident macrophage (black) or a monocyte (gray) over the first 11 hr following

infection of Tg (mpeg1:YFP) fish in the HBV with red fluorescent 1–3 wild-type or PDIM� Mm. n = number of larvae per group. Significance testing done using

Fisher’s exact test. Results representative of three independent experiments.

(C) Representative images from a time-lapsemovie of a bacterial transfer event. Uninfected Hoechst positive (blue fluorescence) monocyte (yellow arrow) is seen

phagocytosing an infected cell (yellow arrowhead). Scale bar, 50 mm. Time stamp, mpi.

(D) Representative images from a time-lapse movie showing an infected macrophage (green fluorescent) clearing red fluorescent PGL� Mm (yellow arrowhead).

Scale bar, 50mm. Time stamp, mpi. (See also Movies S1 and S2 and Tables S1 and S2.)

(E) Quantification of bacterial transfer events from experiments represented by (C) and (D). Percentage of animals demonstrating a transfer event during the

designated imaging time block.

(F) Percentage of animals remaining infected over the first 5 days of infection with 1–3 wild-type, PGL�, or PDIM� Mm into the HBV of wild-type fish. Numbers of

fish infected with each Mm strain: 30 wild-type, 28 PGL�, and 28 PDIM�. Results representative of two separate experiments.

(G) Percentage of infected (black) or uninfected (gray) untreated, DMSO control, or QVD-OPH treated wild-type fish 5 dpi with 1-3 wild-type Mm into the HBV.

n = number of larvae per group. Results representative of two separate experiments.
are more microbicidal than Ccr2-recruited monocytes. To

address this question, we took advantage of our finding that

following infection with 1–3 bacteria, only resident macrophages

harbor PGL-deficient bacteria for at least the first 4.5 days (Fig-

ure 4E). We found that in Pu.1 morphant animals lacking myeloid
cells and therefore the resident macrophage niche they occu-

pied at this stage, PGL-deficient bacteria were able to establish

infection at wild-type levels (Figure 5A). These data further sug-

gested that resident macrophages are microbicidal to PGL-defi-

cient bacteria. We found that PGL-deficient infection resulted in
Immunity 47, 552–565, September 19, 2017 559
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Figure 5. Resident Macrophages Are More Microbicidal than Monocytes

(A) Percentage of infected (black) or uninfected (gray) wild-type ormyeloid-deficient fish at 5 dpi after HBV infection with 1–3wild-type or PGL�Mm. n = number of

larvae per group.

(B) Percentage of iNOS-positive infected myeloid cells in the HBV or CV at 3 dpi with 80 wild-type, PDIM� or PGL� Mm.

(C) Percentage of infected (black) or uninfected (gray) wild-type fish at 5 dpi after HBV infection with 1–3 PGL� Mm. Control, CTRL; Reactive nitrogen species

scavenger CPTIO. n = number of larvae per group.

(D) Percentage of infected (black) or uninfected (gray) wild-type fish at 5 dpi with 1–3 wild-type or PGL� Mm into the HBV or CV. n = number of larvae per group.

(E) Percentage of infected (black) or uninfected (gray) wild-type or Ccr2-deficient fish at 5 dpi with 1–3 wild-type Mm in the HBV or CV. n = number of larvae

per group.

(F) Percentage of infected (black) or uninfected (gray) wild-type or Sting-deficient fish at 5 dpi with 1–3 wild-type Mm in the HBV or CV. n = number of larvae

per group.

(G) Mean bacterial volume at 1 and 4 dpi with a single wild-type Mm bacterium in the HBV or CV of wild-type fish.

Results in (A)–(G) representative of three independent experiments. (B) and (G) significance testing done using one-way ANOVA, with Bonferroni’s post-test for

comparisons shown. (A) and (C)–(F) significance testing done using Fisher’s exact test for the comparisons shown. *p < 0.05, **p < 0.01, ***p < 0.001.
more inducible nitric oxide synthase (iNOS)-positive cells than

wild-type infection (Figure 5B). This was similar to the case of

the PDIM-deficient mutant whose TLR-recruited monocytes ex-

press more iNOS than Ccl2-elicited monocytes (Figure 5B)

(Cambier et al., 2014b). However, since PGL-deficient Mm re-

cruits only resident macrophages, the increased iNOS produc-

tion must be coming from the resident macrophages—i.e., resi-

dent macrophages, like TLR-recruited monocytes, also produce
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more iNOS than Ccl2-elicited permissive monocytes following

infection. If this were the case then following delivery directly

tomonocytes via caudal vein infection (Figure 1A), PGL-deficient

bacteria should result in the same low number of infected iNOS-

positive cells as wild-type bacteria, and they did (Figure 5B).

PDIM-deficient infection induced more iNOS in the caudal

vein also (Figure 5B), suggesting that myeloid cells responding

to PDIM-deficient bacteria are more activated regardless of
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Figure 6. PGL-Dependent CCL2 Protein Pro-

duction following Mm Infection of Human

Alveolar Macrophages

(A and C) Fold increase (over uninfected cells) in

CCL2 protein levels in the supernatant of primary

human alveolar macrophages following a 60 min (A)

or 30 min (C) infection with wild-type Mm or PGL-

deficient Mm.

(B and D) The same data as in (A) and (C) analyzed

as fold increase in CCL2 of wild-type Mm over PGL-

Mm at 60 min (B) and 30 min (D) post infection.

Significance testing done using a one sample t test

to a hypothetical value of 1, corresponding to the

null hypothesis that PGL does not influence CCL2

production following infection. (See also Table S3.)
location. Finally, we showed that the increased iNOS expression

in the resident macrophages contributed to their increased

microbicidal activity, as it does for TLR-recruited monocytes

(Cambier et al., 2014b)—treatment of animals with the nitric ox-

ide scavenger CPTIO increased the infectivity of PGL-deficient

bacteria delivered into the HBV (Figure 5C). Together these re-

sults suggested that the reduced infectivity of PGL-deficient

bacteria is due to their prolonged sojourn in resident macro-

phages. If so, then the infectivity of PGL-deficient bacteria

should be restored when delivered directly to monocytes by

intravenous infection. It was (Figure 5D), and this result further

showed that mycobacterial PGL does not protect mycobacteria

from themicrobicidal activity of residentmacrophages but rather

promotes their escape into the more permissive monocytes.

Both Ccr2-deficiency and Sting-deficiency, which produced

the expected decrease in infectivity of wild-type Mm upon hind-

brain ventricle infection, failed to do so when the bacteria were

delivered directly to monocytes through caudal vein infection

(Figures 5E and 5F). Together, these findings highlighted the

role of STING and CCL2 as early host susceptibility factors

that work by enabling recruitment of peripheral monocytes to

sites of infection.

Finally, we asked whether the 54–90 hr sojourn in resident

macrophages was at all detrimental to wild-type bacteria. The

infectivity assay we had used so far only assessed whether

the animals had cleared the bacteria or not, and not the extent

of bacterial growth in the animals that did not clear them. We

now tested this following infection of animals with a single bac-

terium. We found twice as much bacterial growth in the caudal

vein compared to the HBV (Figure 5G). Together these results

show that resident macrophages are more microbicidal than

the permissive monocytes to which the wild-type bacteria

eventually gain access. Moreover, the resident macrophage

plays a growth-restrictive role even to wild-type PGL-express-

ing bacteria during the truncated time period that they remain

in it.
Imm
Human Alveolar Macrophages
Rapidly Secrete CCL2 after
Mycobacterial Infection in a PGL-
Dependent Fashion
Our prior work had shown that pathogenic

mycobacteria establish infection by re-

cruiting and infecting permissive mono-
cytes while having specialized strategies to avoid recruiting

microbicidal cells, neutrophils (Yang et al., 2012), and TLR-

stimulated monocytes (Cambier et al., 2014b). The latter strat-

egy requires that mycobacteria initiate infection in the lower

lung, so as to avoid the TLR-stimulated microbicidal mono-

cytes by the mucosal flora of the upper airway. The present

work had now identified the resident macrophage as another

default rapid first-responder microbicidal cell that mycobacteria

cannot avoid even in the lower airways. It must therefore co-opt

them into their escape strategy by inducing them to secrete

CCL2. In terms of human relevance of our zebrafish findings,

our findings that resident macrophages are more microbicidal

than peripheral monocytes already had support from human

studies: human alveolar macrophages have substantial myco-

bactericidal activity ex vivo, in contrast to peripheral blood

monocytes which not only fail to kill mycobacteria but are

growth-permissive (Aston et al., 1998; Hirsch et al., 1994;

Rich et al., 1997; van Zyl-Smit et al., 2014). Moreover, consis-

tent with our findings, the microbicidal activity of human alve-

olar macrophages is at least in part mediated by nitric oxide

(Hirsch et al., 1994).

Our model would further predict that human alveolar macro-

phages would rapidly produce CCL2 upon mycobacterial infec-

tion in a PGL-dependent fashion. To test this prediction, we per-

formed a pilot experiment with human alveolar macrophages

obtained by bronchoalveolar lavage. We infected them with

either PGL-expressing or PGL-deficient Mm. CCL2 was induced

in a PGL-dependent fashion at 60 min post-infection (Figure 6A

and 6B, Donor 1). We then recruited 12 additional donors and

infected their alveolar macrophages with PGL-expressing or

PGL-deficient mycobacteria as well as with LPS (100 ng/ml), a

known CCL2 inducer. LPS induced CCL2 (> 1.2 fold over unin-

fected) in 5 of 12 donors suggesting that the remaining were

not capable of inducing CCL2 rapidly in response to a known

inducer (Table S3). The LPS-nonresponding macrophages also

did not induce CCL2 upon mycobacterial infection (Table S3).
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This nonresponsiveness is consistent with significant donor vari-

ation in human alveolar macrophage cytokine secretion after

mycobacterial infection (Keane et al., 2000). Of the LPS-re-

sponding macrophages, four of five induced CCL2 upon myco-

bacterial infection and this response was PGL-dependent (Fig-

ures 6A and 6B, and Table S3). In order to see whether CCL2

induction occurred even earlier than 60 min, we had collected

supernatants at 30 min. Only those donor alveolar macrophages

that induced CCL2 in response to LPS and mycobacterial infec-

tion at the 60 min time point, did so at the 30 min time point (Fig-

ure 6C and Table S3). Again, CCL2 induction was PGL-depen-

dent (Figures 6C and 6D). These experiments suggest that the

rapid induction of CCL2 in human alveolar macrophages in

response to mycobacterial infection is PGL-dependent.

DISCUSSION

By tracking the dynamics and kinetics of the earliest myeloid

cell responses in the first hours of mycobacterial infection, we

found that tissue-resident macrophages are the first cells to

come in contact with any infecting bacteria in response to a

ubiquitous heat-stable secreted bacterial signal. Arriving to

virulent mycobacteria, resident macrophages were rapidly in-

fected and could subsequently eradicate infection. In turn, my-

cobacterium’s counterstrategy to circumvent this first-line host

defense that it cannot evade was to engineer its escape from

these cells.

The PGL-STING-mediated pathway of ccl2 induction was

shared by both resident macrophages and monocytes. It is

interesting then that mycobacteria deploy PGL-CCL2-mediated

recruitment only initially. The involvement of CCL2 in subse-

quent monocyte recruitment to the forming granuloma is less

clear. CCR2-deficient animals are not compromised for granu-

loma formation (C.J.C. and L.R., unpublished data). Rather

monocyte recruitment to the granulomas is dependent on

another bacterial virulence determinant, the ESX-1 locus that

induces monocyte recruitment through induction of the host

matrix metalloproteinase 9 (Volkman et al., 2010). Intercellular

bacterial transfer in the granuloma requires the apoptotic death

of a highly-infected macrophage that is then engulfed by

multiple new recruits so as to expand the bacterial niche

(Davis and Ramakrishnan, 2009). Therefore, this mechanism

of granuloma expansion depends upon bacteria being in a

growth-permissive cell and might be less effective when the

bacteria are still within the more microbicidal-resident macro-

phage. In contrast, this work shows that PGL-induced CCL2

occurred even under the bacteriostatic or bactericidal condi-

tions imposed by the resident macrophage, allowing even the

few remaining bacteria to escape into permissive cells. On

the other hand, it remains unclear why the PGL-CCL2 pathway

becomes less relevant during granuloma formation. Perhaps

the kinetics of ESX-1-MMP9 recruitment are faster, benefitting

the bacterium by allowing for its greater intercellular expansion

and spread at this stage.

We have recently shown that Mycobacterium leprae’s PGL-1,

differing from Mm’s and Mtb’s PGL in the carbohydrate domain,

is required for monocyte-mediated demyelination at a later

step of the infection (Madigan et al., 2017). However, M. leprae

also mediates recruitment of monocytes through CCL2-CCR2
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signaling, suggesting that its specialized PGL-1 still retains the

basal function of eliciting permissive monocytes to promote its

infectivity at the first steps of infection. It is noteworthy that

both PGL-mediated functions—establishment of infection and

demyelination—are through manipulation of host myeloid cells

(Madigan et al., 2017, and this work).

Our findings highlight not only both phylogenetic and onto-

genic conservation of resident macrophage function but also

suggest that different tissue resident macrophages—even the

most specialized brain-resident macrophages (Casano and

Peri, 2015)—all retain their primal function as sentries against

invading pathogens (Epelman et al., 2014; Gordon et al.,

2014). The finding that resident macrophages can make short

shrift of mycobacteria, notoriously pernicious pathogens, is

particularly noteworthy given their key role in tissue homeo-

stasis (Epelman et al., 2014). It is curious that CCL2-elicited

monocytes provided a safe-haven to mycobacteria as CCR2+

monocytes are broadly microbicidal against bacterial, fungal

protozoan, and viral pathogens (Serbina et al., 2008). Indeed,

these cells, also called inflammatory monocytes, are implicated

in the pathogenesis of multiple inflammatory diseases affecting

the brain, gut, and vascular system (Lauvau et al., 2014; Shi and

Pamer, 2011). On the other hand, CCR2+ myeloid cells have

been implicated in promoting an immunosuppressive tumor

environment (Lesokhin et al., 2012). Our data identified a

permissive role for these cells in the context of an important

intracellular infection. Consistent with our findings, CCL2-re-

cruited monocytes have been previously shown to be more

permissive to Mtb growth in the lungs of mice (Antonelli et al.,

2010), and mice overexpressing CCL2 were found to be more

susceptible to challenge with Mtb (Rutledge et al., 1995). Their

reduced microbicidal capacity in response to mycobacterial

infection might simply reflect the masking of activating TLR li-

gands by mycobacteria, though it is notable that even in the

absence of TLR-mediated activation, resident macrophages

are more microbicidal to mycobacteria than monocytes. Of

course TB is a complex infection and it is possible that as infec-

tion progresses, these same inflammatory monocytes could

take on a host-beneficial role in delivering mycobacterial anti-

gens to pulmonary lymph nodes to eventually lead to antigen-

specific T cell responses (Samstein et al., 2013). However,

even this role might have complex consequences—while

T cell responses are clearly protective for individuals, they might

also be paradoxically benefitting bacteria by promoting trans-

mission to new individuals (Comas et al., 2010). Overall, our

findings add to the discussion of the plasticity and context-

dependent function of myeloid cells, for which there is

increasing appreciation particularly with the advent of in vivo

studies suggesting that myeloid cell functions defy rigid classi-

fications (Martinez and Gordon, 2014; Murray et al., 2014).

Finally, we note that while evolutionary ancestors of Mtb e.g.,

Mm and Mycobacterium cannetti uniformly express PGL, the

prevalence of PGL-expression in modern-day Mtb strains is

not clear (Gagneux et al., 2006; Pang et al., 2012). This work

emphasizes the need to assess the prevalence of PGL-positive

strains, and to thoroughly examine TB transmission epidemi-

ology in regions where PGL-expressing strains abound, while

devising therapeutic strategies to block PGL to prevent TB infec-

tion and transmission.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-iNOS BD Biosciences Cat#610333

Anti-DIG-AP Sigma Cat# 11093274910

Bacterial and Virus Strains

M. marinum M strain transformed with pMSP12:tdTomato or

pMSP12:wasabi

(Takaki et al., 2013) derivatives of ATCC #BAA-535

Dpks15M.marinumMstrain transformedwith pMSP12:tdTomato

or pMSP12:wasabi

(Cambier et al., 2014b) N/A

DmmpL7 M. marinum M strain transformed with

pMSP12:tdTomato or pMSP12:wasabi

(Cambier et al., 2014b) N/A

Desx1 M. marinum M strain transformed with pMSP12:tdTomato

or pMSP12:wasabi

(Volkman et al., 2004) N/A

S. aureus Newman strain expressing pOS1-SdrC-mCherry #391 J. Bubeck Wardenburg N/A

P. aeruginosa PAO1 expressing GFP (Brannon et al., 2009) N/A

Chemicals, Peptides, and Recombinant Proteins

cPTIO (carboxy-a-phenyltetramethylnitronyl nitroxide) Sigma CAS # 148819-94-7

Hoechst 33342 Thermo Fisher CAS # 23491-52-3

QVD-OPH ((3S)-5-(2,6-Difluorophenoxy)-3-[[(2S)-3-methyl-1-

oxo-2-[(2-quinolinylcarbonyl)amino]butyl]amino]-4-oxo-

pentanoic acid hydrate)

Sigma CAS# 1135695-98-5

Experimental Models: Organisms/Strains

Zebrafish: wildtype AB University of Washington ZFIN ID: ZDB-GENO-960809-7

Zebrafish: Tg(mpeg1:Brainbow)w201 (Pagán et al., 2015) ZFIN ID: ZDB-FISH-151204-7

Zebrafish: Tg(lysC:EGFP)nz117 (Hall et al., 2007) ZFIN ID: ZDB-FISH-150901-28454

Zebrafish: Tg(mpeg1:YFP)w200Tg (Roca and Ramakrishnan, 2013) ZFIN ID: ZDB-FISH-150901-6828

Zebrafish: csf1raj4blue (csf1r mutants) (Parichy et al., 2000) ZFIN ID: ZDB-FISH-150901-1291

Oligonucleotides

ccl2 mRNA forward primer for qPCR, sequence:

GTCTGGTGCTCTTCGCTTTC

(Cambier et al., 2014b) N/A

ccl2 mRNA reverse primer for qPCR, sequence:

TGCAGAGAAGATGCGTCGTA

(Cambier et al., 2014b) N/A

beta actin mRNA forward primer for qPCR, sequence:

AGAGGGAAATCGTGCGTGAC

(Ramirez-Carrozzi et al., 2009) N/A

beta actin mRNA reverse primer for qPCR, sequence:

CAATAGTGATGACCTGGCCGT

(Ramirez-Carrozzi et al., 2009) N/A

ifnF1 mRNA forward primer for qPCR, sequence:

TTAATACACGCAAAGATGAGAACTC

this paper N/A

ifnF1 mRNA reverse primer for qPCR, sequence:

GCCAAGCCATTCGCAAGTAG

this paper N/A

ifnF2 mRNA forward primer for qPCR, sequence:

CCTCTTTGCCAACGACAGTT

this paper N/A

ifnF2 mRNA reverse primer for qPCR, sequence:

CGGTTCCTTGAGCTCTCATC

this paper N/A

ifnF3 mRNA forward primer for qPCR, sequence:

GAGGATCAGGTTACTGGTGT

this paper N/A

ifnF3 mRNA reverse primer for qPCR, sequence:

GTTCATGATGCATGTGCTGTA

this paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

tmem173 (STING) forward primer for morpholino efficiency

screen, sequence: CTGCTGGACTGGGTTTTCTTACTC3

this paper N/A

tmem173 (STING) reverse primer for morpholino efficiency

screen, sequence: TGGGTGATCTTGTAGACGCTGTTA

this paper N/A

pu.1 morpholino component 1, sequence:

CCTCCATTCTGTACGGATGCAGCAT

(Clay et al., 2007) N/A

pu.1 morpholino component 2, sequence:

GGTCTTTCTCCTTACCATGCTCTCC

(Clay et al., 2007) N/A

ccr2 morpholino, sequence: AACTACTGTTTTGTGTCGCCGAC (Cambier et al., 2014b) N/A

myD88 morpholino, sequence:

GTTAAACACTGACCCTGTGGATCAT

(Bates et al., 2007) N/A

tmem173 (STING) morpholino sequence:

TGGAATGGGATCAATCTTACCAGCA

this paper N/A

ccl2 mRNA forward primer for design of in situ probe sequence:

GTCAGCTAGGATCCATGAGGCCGTCCTGCATCC

this paper N/A

ccl2 mRNA reverse primer for design of in situ probe sequence:

GTCAGCTATCTAGATTAGGCGCTGTCACCAGAG

this paper N/A

Recombinant DNA

pCS2+ plasmid Marc Kirschner Addgene #17095

Critical Commercial Assays

Human MCP-1 (CCL2) chemokine kit Meso Scale Discovery Cat.# K151AYA

Software and Algorithms

Imaris Bitplane N/A

Prism GraphPad N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lalita

Ramakrishnan (lr404@cam.ac.uk).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Zebrafish Husbandry and Infections
Wild-type AB (University ofWashington), csf1raj4blue homozygousmutant (csf1r�/�) zebrafish (Parichy et al., 2000), Tg(mpeg1:YFP)w200

(Roca and Ramakrishnan, 2013), and Tg(mpeg1:Brainbow)w201 (expressing tdTomato) (Pagán et al., 2015), and the Tg(lyz:EFGP)nz117

(Hall et al., 2007) lines were maintained in buffered reverse osmotic water systems. Fish were fed twice daily a combination of dry feed

and brine shrimp and were exposed to a 14 hr light, 10 hr dark cycle to maintain proper circadian conditions. Larvae (of undetermined

sex given the early developmental stages used) were infected at 48 hr post-fertilization (hpf) via caudal vein (CV) or hindbrain ventricle

(HBV) injection using single-cell suspensions of known titer (Takaki et al., 2012; 2013). Number of animals to be used for each exper-

iment was guided by pilot experiments or by past results with other bacterial mutants and/or zebrafish. On average 35 to 40 larvae per

experimental condition were required to reach statistical significance and each experiment was repeated at least twice. Larvae were

randomly allotted to the different experimental conditions. All experiments where csf1r�/� zebrafish were used, csf1r�/�were either in-

crossed or outcrossed to wild-type ABs to generate csf1r+/� which are phenotypically wild-type (Pagán et al., 2015). The zebrafish

husbandry briefly described above and all experiments performed on them were in compliance with guidelines from the UK Home

Office (Cambridge experiments) and in compliancewith theU.S. National Institutes of Health guidelines and approved by the University

of Washington Institutional Animal Care and Use Committee (Seattle experiments) and the Stanford Institutional Animal Care and Use

Committee (Stanford experiments).

Human Alveolar Macrophage Collection
Human alveolar macrophages (AMs) were retrieved at bronchoscopy as approved by the Research Ethics Committee of St. James’s

Hospital (Reference number 2008/17/17), and previously reported (Berg et al., 2016; O’Leary et al., 2014). Briefly all donors were pa-

tients undergoing clinically indicated bronchoscopy and written informed consent for retrieving additional bronchial washings for

research was obtained prior to the procedure. Thirteen donors were recruited to this study, of which 8 were male and 5 were female.
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The mean age of donors was 56yrs ± 3.4yr, with a range 32-70yrs. Bronchial washing fluid was filtered through a 100 mm nylon

strainer (BD Falcon, BD Bioscience, Belgium) and centrifuged at 390 g for 10min. Alveolar macrophages were resuspended in

RPMI 1640 culture media supplemented with 10% fetal bovine serum (FBS, GIBCO), 2.5ug/ml fungizone and 50 mg/ml cefotaxime.

AMs were seeded at a density of 53 104 cells/well in 96-well plates (Corning Costar, Nijmegen, Netherlands). AMs were purified by

plastic adherence, non-adherent cells were removed by washing after 24hrs.

METHOD DETAILS

Bacterial Strains and Methods
MmstrainM (ATCCBAA-535)DmmpL7,Dpks15, andDesx-1mutants expressing either TdTomato orWasabi under the control of the

msp12 promoter (Cambier et al., 2014b; Takaki et al., 2013) were grown under hygromycin (Mediatech) selection in 7H9 Middle-

brook’s medium (Difco) supplemented with oleic acid, albumin, dextrose, and Tween-80 (Sigma). To prepare heat-killed Mm, bac-

teria were incubated at 80�C for 20 min. To prepare bacterial supernatants, bacteria were grown to an OD600 of 0.6, pelleted and the

supernatant was then filtered twice through a 0.2mm filter. The P. aeruginosa PAO1 fluorescent strain has been described (Brannon

et al., 2009). The S. aureus Newman strain expressing pOS1-SdrC-mCherry #391 was a gift from Dr. Juliane Bubeck Wardenburg.

Bead Injections
Sterile red-fluorescent 1mm beads (Thermo-Fisher Scientific F8821) were diluted ten fold with sterile PBS resulting in 3.64 3 103

beads/nL. Approximately 5 nL of the beadmixture was injected into the hindbrain ventricle of 2 dpf larvae for a total of 1.8 x104 beads

per larva.

iNOS Immunofluorescence
To detect iNOS in infected larvae, larvae were euthanized by tricaine overdose, fixed overnight at 4�C in 4% paraformaldehyde

(Sigma), permeabilized for 30 min with proteinase K (Thermofisher) at 10mg/mL in PBST (PBS + 0.1% Tween20 (Sigma)), then

stained overnight at 4�C in iNOS antibody (see Key Resources Table) diluted 1:200, as described (Cambier et al., 2014b). After

washing in PBST, secondary antibodies conjugated to Alexa Fluors (Molecular Probes) were added at 1:500 and incubated overnight

at 4�C.

QVD-OPH and CPTIO Treatment
CPTIO or QVD-OPH (Sigma) was used at a final concentration of 50 mM and 50 mM, respectively, in 0.5% dimethylsulphoxide in fish

water. Control fish were incubated in 0.5% dimethylsulphoxide only. Fish were incubated immediately following infection and fresh

inhibitor was added every 24 hr until experiment end point.

Confocal Microscopy and Image-Based Quantification of Infection
Larvae were embedded in 1.5% agarose (low melting point) (Davis and Ramakrishnan, 2009). A series of z stack images with a 2 mm

step size was generated through the infected HBV, using the galvo scanner (laser scanner) of the Nikon A1 confocal microscope with

a 20x Plan Apo 0.75 NA objective. Bacterial burdens were determined by using the 3D surface-rendering feature of Imaris (Bitplane

Scientific Software) (Yang et al., 2012).

Hindbrain Kinetic Assays
Macrophage recruitment assays were performed as previously described (Takaki et al., 2012), 2 dpf zebrafish were injected in the

HBV with the bacterial strain or reagent and dose reported in the figure legends. At the specified time post injection, the number

of myeloid cells in the HBV was quantified using differential interference contrast microscopy as described below. For assays dis-

tinguishing resident macrophages from monocytes, 200 mg/ml Hoechst 33342 (ThermoFisher) was injected via the caudal vein as

previously described (Davis and Ramakrishnan, 2009) 2 hr prior to infection into the HBV. Differential interference contrast and fluo-

rescent imaging usingNikon’s Eclipse E600was done every�30min to identify residentmacrophages (Hoechst negative) andmono-

cytes (Hoechst positive). Objectives used in this assay included 20x Plan Fluor 0.5 NA and 40x Plan Fluor 0.75 NA.

Morpholinos
The Stingmorpholino 50TGGAATGGGATCAATCTTACCAGCA30 (see Key Resources Table) was designed to block the exon 2 intron 2

border. The following primer pair 50CTGCTGGACTGGGTTTTCTTACTC30 and 50TGGGTGATCTTGTAGACGCTGTTA30 was used to

assess morpholino efficiency. Stingmorpholino injection led to nonsensemediated decay of mRNA transcripts out to 5dpf. The Sting

morpholino and the Ccr2, Pu.1(Cambier et al., 2014b), and Myd88 morpholinos (Bates et al., 2007) (see Key Resources Table) pre-

viously described were injected into the 1-4 cell stage of the developing embryo (Tobin et al., 2010).

Quantitative Real-time PCR (qRT-PCR)
Total RNA was isolated from pools of 20-40 larvae as previously described (Clay et al., 2007) and described herein, using TRIzol Re-

agent (Life Technologies), followed by chloroform precipitation. Isolated RNA was used to synthesize cDNA with Superscript III

reverse transcriptase and oligo DT primers (ThermoFisher Scientific). Quantification of ccl2, ifnF1, ifnF2, and ifnF3 RNA levels
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were determined using SYBR green PCR Master Mix (Applied Biosystems) on an ABI Prism 7300 Real-Time PCR System (Applied

Biosystems) using the following primer pairs; ccl2: 50GTCTGGTGCTCTTCGCTTTC30 and 50TGCAGAGAAGATGCGTCGTA30, ifnF1:
50TTAATACACGCAAAGATGAGAACTC30 and 50GCCAAGCCATTCGCAAGTAG30, ifnF2: 50CCTCTTTGCCAACGACAGTT30 and

50CGGTTCCTTGAGCTCTCATC30, ifnF3: 50GAGGATCAGGTTACTGGTGT30 and 50GTTCATGATGCATGTGCTGTA30. Average

values of technical triplicates of each biological replicate were plotted. Data were normalized to b-actin for DDCt analysis using

the following primer pair for b-actin: 50AGAGGGAAATCGTGCGTGAC30 and 50CAATAGTGATGACCTGGCCGT30 (Ramirez-Carrozzi

et al., 2009).

Infectivity Assay
2 dpf larvae were infected via the hindbrain ventricle with an average of 0.8 bacteria per injection as previously described (Cambier

et al., 2014b). Fish harboring 1-3 bacteria for some experiments or 1 bacterium for others were identified at 5 hr post infection by

confocal microscopy. These infected fish were then evaluated at 5 dpi, or every 24 hr following infection, andwere scored as infected

or uninfected, based on the presence or absence of fluorescent bacteria.

CCL2 In Situ Hybridization
In situ hybridization was performed as previously described (Clay et al., 2007) and described herein: Zebrafish ccl2 (ENS-

DARG00000041835) was cloned from adult pooled cDNA constructed from isolating RNA from homogenized adult tissues using Tri-

zol (ThermoFisher), chloroform extraction and purification using RNeasy mini kit (QIAGEN). Superscript III reverse transcriptase

(ThermoFisher) was used to make cDNA and the following primer pair 50GTCAGCTAGGATCCATGAGGCCGTCCTGCATCC30 and
50GTCAGCTATCTAGATTAGGCGCTGTCACCAGAG30 was used to clone zebrafish ccl2. ccl2 cDNA was then cloned into the

pCS2+ plasmid (A gift from Marc Kirschner, Addgene plasmid #17095), the plasmid was then linearized with the restriction factor

HindIII (Thermofisher) and in vitro antisense RNA was synthesized with the T7 Megascript kit (Thermofisher) using DIG RNA labeling

mix (Sigma) to make the antisense RNA in situ probe. Mm infected fish were then overdosed in tricaine and fixed overnight in 4%

paraformaldehyde and then dehydrated by storage at �20C overnight in methanol. Fish were then rehydrated in PBS with 0.1%

Tween 20 (PBST) and digested in 10mg/ml Proteinase K (Thermofisher) for 30min at room temperature. Fish were then refixed in

4% paraformaldehyde, washed in PBST and then hybridized with the antisense probe at 65C for 3hours. Fish were washed in

PBST and then incubated with blocking reagent (PBST, 5% sheep serum (Sigma) and 2 mg/ml BSA (Sigma)) for 2hrs at room tem-

perature. Fish were then incubated with anti-DIG-AP antibody (Sigma) at 1:5000 in blocking reagent overnight at 4C. Fish were then

washed with PBST and developed with BM-purple (Sigma). Fish were then stored in glycerol and imaged.

Infection of Human Alveolar Macrophages
On the day of infection Mm wild-type and Dpks15 growing in Middlebrook 7H9 medium were centrifuged at 2900 g for 10min and

resuspended in RPMI 1640 containing 10% FCS. Clumps were disrupted by passing the bacilli through a 25-gauge needle 6-8 times

and the sample was centrifuged at 100 (x)g for 3 min to remove any remaining clumps. To assess the adequacy of dispersion and to

determine the MOI, macrophages were infected with varying amounts of resuspended Mm wild-type and PGL-deficient for 2hrs.

Extracellular bacteria werewashed off, and cells were fixedwith 2%paraformaldehyde for 10mins.Macrophage nuclei were counter-

stained with 10 mg/ml of Hoechst 33258 (Sigma). The percentage of infected cells and the number of bacilli per cell were determined

by fluorescent microscopy (Olympus IX51, Olympus Europa GmbH, Germany) for each donor, as previously described (Gleeson

et al., 2016; O’Leary et al., 2011; O’Sullivan et al., 2007; O’Leary et al., 2014). Based on this result alveolar macrophageswere infected

at an estimated MOI of 1-10 bacilli. At 1hr post-infection supernatants were harvested for CCL2 (MCP-1) assay.

MesoScale Discovery Chemokine (CCL2 (MCP1)) Assay
Human MCP-1 chemokine kit (Meso Scale Discovery�, Maryland, USA) was used as per manufacturers’ instructions, briefly sam-

ples, standards and controls were added at 25 mL per well. Detection antibody was added at 25 mL per well, 150 mL of the MSD Read

Buffer was added to each well and the MSD plates were analyzed on the MSD Sector Imager 2400 plate reader. The raw data was

measured as electrochemiluminescence signal (light) detected by photodetectors and analyzed using the Discovery Workbench 3.0

software (MSD). A 4-parameter logistic fit curve was generated for CCL2 (MCP1) using the standards and the concentration of each

sample calculated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
The following statistical analyses were performed using Prism 5.01 (GraphPad): One-way ANOVA with Bonferroni’s post-test,

Fisher’s exact test, Student’s unpaired t test, and one sample t test. Error bars represent standard error of mean. Post-test P values

are as follows: *p < 0.05; **p < 0.01; ***p < 0.001. The statistical tests used for each figure can be found in the corresponding figure

legend. Where the n value is given and not represented graphically in the figure, n represents the number of zebrafish used for each

experimental group.
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