
Federated Linear Dimensionality
Reduction

Andreas A. Grammenos

Department of Computer Science and Technology
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Wolfson College April 2021

This thesis is dedicated to my loving parents Antonis & Margarita, my brother Marios, and my
wife Vasiliki for their infinite support . . .

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the preface and specified in the text. It is not
substantially the same as any work that has already been submitted before for any degree
or other qualification except as declared in the preface and specified in the text. It does not
exceed the prescribed word limit of 60,000 words for the Computer Science Degree Committee,
including appendices, footnotes, tables and equations.

Andreas A. Grammenos
April 2021

Acknowledgements

Firstly, I would like to thank my supervisors Cecilia Mascolo and Jon Crowcroft. If not for
them, I would not be studying for this degree, nor writing this Thesis and had it not been for
a random email sent in the middle of the night, probably would have followed a completely
different path. During these years both patiently monitored and directed my work, facilitating
the expression and development of the good qualities that I may hold. Both acted as mentors
and instilled different traits which proved invaluable while navigating the rough landscape of
academia. In one hand, Cecilia taught me how to put structure into chaos and narrow my focus
to the things that matter. On the other hand, Jon showed me that pub defined science exists
and can be successful. I consider them to be my academic parents and have treated me as such.
From the bottom of my heart, thank you both for your unreserved support that helped me
make the impossible possible.

Subsequently, I would like to extend my heartfelt gratitude to many people that tagged
along for the journey. More concretely, I want to thank my collaborators without whom I would
not be able to finish this thesis. The first in line, is Gareth T., who apart from his cunning and
elaborate humour allowed me, with a publication, to cross an item out of my bucket-list. As
promised, it will always remain at the top of my “highlighted works”. Next is Rodrigo M., who
was an instrumental collaborator of mine over the years and continues to be. Moreover, I would
like to thank Andrea F. for the awesome times we had chatting about magnets and interference.
It was amazing to quantify how much a Black Sabbath record can affect an earable. From
my Cambridge based group, I would like to extend my thanks to Dimitris S., Lorena Q., and
Alessandro M. for both the science as well as the banter. Moreover, Eva K. and Themis C. were
excellent collaborators but also constant pillars of support. I would also like to acknowledge
the support received from the Alan Turing Institute for not only fully funding my studies but
also providing me with a place I can call an academic home. The amazing interactions there
with Valerio G., Shouto Y., Luca M., Sebastian B., Aris P., Lina G., Abhinav M., Alex B.,
Petros D., and Dave B. were just the icing on the cake. Finally, I would also like to thank my
academic siblings Anastasios N. and Andrius A. for their support throughout the years.

Lastly, I owe my sincere and earnest gratitude to my wife, brother, and parents for their
love and unconditional support through this journey, without which any of my achievements
would not have been possible.

Abstract

In recent years, the explosive rate of dataset expansion has offered the ability for researchers
to access an unprecedented amount of information. Moreover, in addition to actual dataset
size increases, the types and locations of data generators are more heterogeneous than ever -
ranging from traditional servers to a myriad of IoT devices. These facts, coupled with recent
emphasis on privacy and data-ownership, led to the creation of federated datasets. Such datasets
are characterised by their massive size and are usually scattered across decentralised edge
devices, each holding their local data samples. As exciting as these federated datasets might
be, they introduce an astounding challenge: how to efficiently process federated data at scale?
Naturally, given these constraints, centralisation of such datasets is often intractable, thus
making traditional analytical methods inapplicable.

This thesis introduces a suite of mathematical advancements that makes traditional learning
algorithms applicable to the federated setting, by summarising the massive amounts of infor-
mation into succinct dataset-specific representations. Concretely, we focus primarily on linear
dimensionality reduction and, in particular, on Principal Component Analysis (PCA) due to
its pervasiveness, along with its ability to process unstructured data. The first advancement we
introduce is a novel algorithm to perform streaming and memory-limited dimesionality reduction
at the edge that uses a generalisation of incremental Singular Value Decomposition (SVD).
Further, we provide a rank-adaptive SVD extension able to account for distribution shifts
over-time. Subsequently, building upon previous constructions, we present an (ε, δ)-differentially
private federated algorithm for PCA. To achieve federation, we put forth a lightweight merging
algorithm that unlocks the ability to process each subproblem locally at the edge which, in
turn, through merging is propagated accordingly. We are able to guarantee differential privacy
via an input-perturbation scheme in which the covariance matrix of a dataset is perturbed with
a non-symmetric random Gaussian matrix.

To evaluate the practicality of our innovations, we describe an algorithm able to perform
task scheduling on federated data centres. The scheduler enables each decentralised node
to incrementally compute its local model and independently execute scheduling decisions on
whether to accept an incoming job based on the workload seen thus far. Finally, we complement
our findings with an evaluation on synthetic as well as real-world datasets including sensor
node measurements, hard-written images, and wine quality readings, considering a wide range
of data modalities and dimensionalities.

Table of contents

Nomenclature xiii

1 Introduction 1
1.1 Thesis and its substantiation . 4
1.2 Chapters and contributions . 5
1.3 Publication list . 7

2 Background & Preliminaries 11
2.1 Linear algebra preliminaries . 11
2.2 Eigendecomposition . 23
2.3 Singular Value Decomposition . 26
2.4 Principal Component Analysis . 32
2.5 Differential privacy . 36
2.6 Federated computation . 39
2.7 Notation . 40

3 Beyond Regular Singular Value Decomposition 43
3.1 Introduction . 44
3.2 Memory-limited Online Subspace Estimation 45
3.3 Optimisation Viewpoint . 54
3.4 Performance of MOSES . 56
3.5 Experimental Evaluation . 63
3.6 Discussion . 69

4 Federated Principal Component Analysis 73
4.1 Introduction . 73
4.2 Federated PCA . 76
4.3 Experimental Evaluation . 90
4.4 Discussion . 97

xii Table of contents

5 Federated Task Scheduling 101
5.1 Introduction . 101
5.2 Importance of CPU Ready . 104
5.3 A Federated Approach to Real-time Resource Monitoring 105
5.4 Pronto Scheduler . 108
5.5 Experimental Evaluation . 113
5.6 Discussion . 118

6 Reflections and outlook 121
6.1 Summary of contributions . 122
6.2 Future research directions . 124
6.3 Outlook . 126

Appendix A Supplementary Material for Chapter 3 129

Appendix B Supplementary Material for Chapter 4 147

References 175

Nomenclature

Acronyms/Abbreviations

i.i.d. Independent and identically distributed

w.r.t. with respect to

cf. confer

DASM Distributed Agglomerative Summary Model

DP Differentially Private

e.g. exempli gratia

etc. et cetera

i.e. id est

iff if and only if

LHS left hand side

PCA Principal Components Analysis

PD Positive Definite matrix

PL Privacy Loss

PSD Positive Semidefinite matrix

RHS right hand side

s.t. such that

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

Greek Symbols

xiv Nomenclature

O Upper bound of complexity

Ω Lower bound of complexity

Θ Asymptotically tight upper and lower bound of complexity

Distributions

N Normal distribution

Chapter 1

Introduction

Large-scale computation is an instrumental component of modern society, providing the means
and data to make pivotal decisions affecting billions. Useful data representations can form
patterns that can then be exploited to aid in the discovery of underlying disease causes, detect
fraud, and offer user-tailored recommender systems that power tools and services we take for
granted such as personalised music or product recommendations. To do so scientists rely on
vast computing resources that can be used to tap and exploit the wealth of stored information.
One of the main purposes of processing “big-data” is to extract useful and representative
trends or features and has been an active research topic in the scientific literature spanning
decades [54, 129, 39, 176].

However, modern datasets expand at an alarming rate much quicker than the hardware
advancements can keep up with and have long surpassed Moore’s law. Further, the sources of
ever-generating information are more heterogeneous than ever ranging from traditional servers
to a myriad of connected Internet of Things (IoT). These sources are able to provide multiple
continuous streams of data that, in turn, need to be stored and processed. More importantly,
such devices can be resource-restricted, in the sense that they could be located in places of
poor or intermittent connectivity, have limited bandwidth, scarce computing capabilities or a
combination thereof. Inherently, this heterogeneity not only increases the volume of the actual
datasets but imposes severe constraints on how to process vasts quantities of data that can also
be scattered across the globe. Naturally, working on these datasets without any assumptions is
an intractable task; thankfully, has have been a number of intuitive observations that paved
the way to tractable processing of arbitrarily large datasets.

One of the most crucial, and perhaps initially confusing, observations is that that most
real-world datasets are massively redundant - meaning that their intrinsic dimension is con-
siderably lower than their actual one. Moreover, working in high-dimensions not only can be
computationally intractable, but also incurs various anomalies and phenomena not present in
lower dimensions due to the “curse-of-dimensionality” [172, 145]. More importantly, and again
perhaps initially counter-intuitively, this phenomenon is even more evident as the dimensionality

2 Introduction

of the dataset increases; this boils down to the empirical observation that the actual rank-
frequency distribution of the dataset presents itself as an inverse relation. Mathematically, this
could potentially be explained because, as dimensionality increases, the volume of topological
space the data-points reside in grows so large that the data contained in that space become
sparse. Notably, to date, no concrete proof for this conjecture has been provided; however,
mounting empirical evidence has shown this conjecture to be valid; one such example is Zipf’s
law [200] that states many types of data studied in physical and social sciences exhibit this
behaviour [3, 62]. In a nutshell, this observation allows us to guarantee that the minimum
dimensionality required to retain most of the characteristics and features of the original massive
dataset can be summarised into one that has a dimension significantly lower than the original
one. However, while we do know that in such datasets the intrinsic dimension is small, we do
not have a closed form solution in order to find its exact value for all cases. This begs the
question: given this observation, how could we produce summarisations of massive-datasets in
a scalable and efficient manner?

At the same time, a large fraction of the most interesting datasets stems from privacy-
sensitive domains with notable examples being health and personalised user data. Complicating
things further, there has been a number of growing concerns on how to access these datasets
while respecting user privacy [186, 196]. These very issues was what led some countries to
introduce specific legislation trying to address them, such as the recent European Union’s
General Data Protection Regulation (GDPR) [4]. This is because it has been shown numerous
times that even after processing of the actual data the resulting models can reveal user
identifiable information which could then be exploited for nefarious reasons [52]. To that end,
the summarisations produced should be able by construction, if required, to provide formal
guarantees of statistical privacy. That property would, in turn, enable data analysts to tap
into the knowledge offered within these datasets but without the risk of revealing individual
user information. To tackle this problem, several statistical frameworks have been proposed to
achieve this goal. However, the predominant technique that is able to offer such guarantees is
differential-privacy [50]. Essentially, the key idea behind differential privacy is that provided the
effect of an arbitrary substitution in a dataset is sufficiently small, then the query result cannot
be used to infer personally identifiable information about a single individual and therefore is
able to guarantee privacy. However, two of the major drawbacks of differential privacy that
prevented its widespread use were its steep computational costs and more importantly, its
substantial sample complexity requirements [174]. Notably, recent advancements have improved
the computational aspects of differential privacy thus improving its applicability. Unfortunately,
the sample complexity to guarantee differential privacy is by construction significant; meaning
that with traditional, smaller, datasets its applicability remains limited. On the other hand, in
the case of massive datasets, the sample complexity ends up being an opportunity rather than
an actual issue, hence, making such use-cases ideal applications of differential privacy.

3

The aforementioned problem of dataset summarisation can also be thought, a bit more
formally, as dimensionality reduction. There have been many frameworks put forth to achieve
this but by far the most ubiquitous ones are arguably subspace tracking [11] and Principal
Component Analysis (PCA) [100]. Their pervasiveness in most scientific domains makes them
indispensable tools for detecting structure in collected data [6, 110, 169, 181] with minimal
assumptions. More importantly, the best-fit subspaces and computed principal components for
a given dataset, not only can be used for dimensionality reduction, but also provide critical
insights for performing signal estimation, noise filtering, or anomaly detection [159]. This is
because assuming a dataset admits an exploitable low-dimensional structure, these methods
then enable otherwise infeasible tasks, such as large scale inference or parametric studies to be
performed.

Intuitively, the central idea behind PCA is simple: given an arbitrary dataset consisting of
a large number of interrelated variables, reduce its dimensionality by transforming them into a
new set of fewer uncorrelated variables - the Principal Components (PCs) - while retaining the
maximal variance out of the original ones. Notably, PCA can be computed using a number of
different ways; though traditionally, there have been two predominant methods for its derivation.
These can be broadly separated if the computation of PCA requires the expansion of specific
matrices, such as the covariance or correlation matrices of the dataset, or not. However, such
expansions become prohibitively expensive as datasets scale and thus can quickly become an
infeasible option. Necessitated by the scale of datasets considered, the most efficient methods,
resource-wise, are incremental and exploit various techniques in order to avoid the expensive
covariance/correlation expansions.

This dissertation studies the problem of dimensionality reduction on federated datasets
through the lens of subspace estimation with a particular focus on PCA, as is one of the
most ubiquitous tools when performing data analysis. However, its computation is normally
prohibitively expensive and not trivial if the dataset size is large enough. One of the great
uses of a federated algorithm is that analysts could be able to tap into dataset sizes previously
unavailable, whether it is due to the infeasibility of materialising the whole dataset, its processing
- or more commonly both. The applications at hand are numerous, but to give some concrete
examples directly relevant to this work is: analytics. Relating to the work presented herein, we
use the federated metrics to assign tasks appropriately while maximising the utilisation. Taking
this one step further, one could similarly exploit these metrics to produce representative trends
that could be tracked over time. This could potentially help practitioners of large decentralised
systems to monitor the performance of their computation networks providing valuable insights.
Another interesting application is anomaly and outlier detection - a problem that has been
long been a great candidate for approximate sketching or PCA algorithms [27, 150, 93, 90].
Further, PCA has been a widely-used tool in genomics and statistical genetics, employed to
infer cryptic population structure from genome-wide data [1, 2, 35]. However, these methods
lack the quality guarantees our methods provide and are not as scalable to modern large-scale,

4 Introduction

potentially decentralised/federated, datasets. In turn, such problems could be directly solved by
employing our methods faster, more effectively, and at scale. To this end, this thesis provides
a number of advances to the state-of-the-art with several theoretical contributions which are
unified in a practical mathematical framework that makes PCA applicable to federated datasets
while offering attractive properties. Additionally, we exploit a number of the ideas presented
and introduce a novel federated task scheduler that is able to operate and schedule tasks on
large-scale data-centre topologies allowing for increased resource utilisation. In the following
two sections, firstly in Section 1.1 we present the aims of this dissertation and, secondly,
in Section 1.2 we outline its contributions paired with a chapter outline.

1.1 Thesis and its substantiation

As previously discussed, the recent proliferation of dataset size along with data source het-
erogeneity introduced unique and intricate challenges in their analysis. This offered unique
opportunities for researchers to tackle and unlock widespread dissemination and processing of
massive datasets. In this context, this dissertation seeks to unlock the ability of performing
PCA on federated datasets while offering variety of attractive properties, namely: incremental
computation, requiring limited resources, differential privacy guarantees, as well as introducing
a novel adaptive intrinsic rank estimation method.

Consequently, the goal of this dissertation is to to provide a unifying mathematical framework
for processing and performing dimensionality reduction upon federated datasets of arbitrary
dimensionality while using limited resources, offering differential privacy, and being able to
adaptively estimate their intrinsic dimension.

This statement is substantiated with three main threads of research. The first, is the development
of the mathematical primitives in order to perform dimensionality reduction using PCA with
the desired properties at the edge. Concretely, we introduce the algorithmic frameworks
required to enable incremental local model updates at the edge while using limited memory,
guaranteeing differential privacy, and allow adaptive intrinsic dimension estimation. Further, in
order to scale these innovations to be applicable in the context of federated datasets we provide
a novel merging algorithm along with the required properties to ensure the result remains
(ε, δ)-differentially private. To do so, the merging algorithm preserves the embeddings and is
able to hierarchically propagate the intermediate results while also preserving the guarantees
provided at the edge. This means that the aggregated results remain differentially private and
rank adjusting. The final thread of research serves as a practical application that exploits
parts of contributions presented herein. Elaborating, we put forward a novel data-centre scale
task scheduler that is able to allocate incoming jobs when used in both traditional and, more
importantly, federated data-centres of the future.

1.2 Chapters and contributions 5

1.2 Chapters and contributions

This dissertation introduces several theoretical contributions that are presented as parts of a
unified mathematical framework for performing dimensionality reduction in federated datasets.
We begin by introducing Chapter 2 which provides the necessary background and preliminaries
required to follow the rest of the dissertation material. The contributions of this dissertation,
in the form of technical chapters, are outlined below:

• In Chapter 3, we built upon traditional Singular Value Decomposition (SVD) methods
and propose a novel Memory-limited Online Subspace Estimation Scheme for streaming
dimensionality reduction. The key intuition that led to the materialisation of this
work was that we could generalise the traditional incremental SVD to update its current
subspace estimate with every incoming thin block of data, rather than with every incoming
vector. This difference between incremental SVD and our method is what enables us to
complement our method with a comprehensive statistical analysis that was previously
not available for incremental SVD methods. We consider the important case where the
incoming data vectors are drawn from a zero-mean normal distribution. This stochastic
setup is a powerful generalisation of the popular spiked covariance model, common in
statistical signal processing [99]. Further, we prove that our scheme nearly matches the
performance of “offline” truncated SVD, which assumes unlimited memory and computing
resources, provided that the corresponding covariance matrix is well-conditioned and has a
small residual. Unlike prior art, such as in [13, 25], we are able to perform both subspace
tracking as well as reduce the dimensionality of the incoming data at the same time using
only a single pass. Moreover, we concretely interpret our algorithm as an approximate
solver for the underlying non-convex PCA optimisation program. Through our empirical
evaluation we also find that our method exhibits state-of-the-art performance in our
numerical experiments with both synthetic and real-world datasets.

• In Chapter 4, we build on the foundations of the previous chapter and we introduce
the first federated, asynchronous, and (ε, δ)-differentially private algorithm for PCA in
the memory-limited setting. Our algorithm incrementally computes local model updates
using a streaming procedure and adaptively estimates its r leading principal components
when only O(dr) memory is available with d being the dimensionality of the data. We
guarantee differential privacy via an input-perturbation scheme in which the covariance
matrix of a dataset X ∈ Rd×n is perturbed with a non-symmetric random Gaussian matrix
with variance in O

((
d
n

)2
log d

)
, thus improving upon the state-of-the-art [32, 33, 18].

Furthermore, contrary to previous federated or distributed algorithms for PCA and in
the absence of perturbation masks, our algorithm is also invariant to permutations in
the incoming data, which provides robustness against straggler or failed nodes. Through
numerical simulations we show that, while using limited-memory, our algorithm exhibits

6 Introduction

performance that closely matches or outperforms traditional non-federated algorithms,
and in the absence of communication latency, it exhibits attractive horizontal scalability.

• In Chapter 5 by using parts of the building blocks introduced in the previous chapters we
present a federated, asynchronous, memory-limited algorithm for online task scheduling.
Our proposed scheme is able to handle large scale job allocations across networks com-
prising with hundreds of workers. This is achieved through the ability to incrementally
compute local model updates by exploiting Federated-PCA, previously presented in Chap-
ter 4. This unlocks the execution of scheduling decisions within each node, independently,
on whether to accept an incoming job based on the workload seen thus far. Further,
the global “view” of the system can be aggregated, as needed, in order to produce a
holistic perspective of the system which could reflect its overall responsiveness. Through
our empirical evaluation which uses a large-scale real-world dataset of traces gathered
from a production data-centre we show that, while using limited-memory, our algorithm
exhibits state-of-the-art performance. Specifically, it is able to predict changes in the
system responsiveness ahead of time based on industry standard metrics and, in turn,
can lead to better scheduling decisions and overall utilisation of the available resources.

In the last chapter of this dissertation, namely Chapter 6, we provide a summary of the
findings and identify directions for future work that could generalise or improve our federated
PCA scheme.

Summarising, the contributions presented in this thesis introduce several innovations
that help advance theoretical and applied computer science. Starting with the contributions
of Chapter 3, MOSES to the best of our knowledge, is the first method that is able to guarantee
quality on all SVD outputs, namely U, Σ, and VT while providing a deterministic bound on
their quality. It is also able to offer significant performance improvements as it is able to update
its estimates using block sizes in order of the target rank-r, rather than the ambient dimension
compared to seminal prior art [130, 131]. We hope that this provides both practical benefits in
applications, as well as, a starting point for researchers to built upon our constructions to further
advance the field. Moreover, Chapter 4 tackled the issue of scaling out MOSES to be applicable
to federated datasets in the form of Federated-PCA. This unlocks the ability to process massive
decentralised datasets while also providing the same attractive quality guarantees. Notably,
since Federated-PCA is built upon the foundations provided by MOSES, it is a significant
advancement due to its ability to provide a deterministic result (in the absence of DP). This is
contrary to popular SGD-based methods, as they suffer from several drawbacks, which our work
seeks to address. In addition to the above, we bring large scale federated PCA computation
with (ε, δ)−DP guarantees, if the application requires it. To the best of our knowledge it is the
first method to introduce federated computation of PCA with DP guarantees unlocking the
potential to compute PCA in large-scale privacy constrained environments.

1.3 Publication list 7

Notably, the contributions presented in the thesis are tied directly to improvements in
performance of statistical inference and prediction tasks. Namely, since PCA is a tool used
commonly in such tasks to extract meaningful embeddings. The contributions in this thesis help
to perform these tasks better, faster, and at scale which unlocks numerous possibilities. This
is key, as based on the quality of the resulting subspace containing the principal components
along with its associated singular values determines how everything exploiting them performs.
Practically speaking what our contributions achieve, is a way to extract these important
components as close to their offline counterparts as possible, which are assumed to have infinite
resources for their computation. Some potential applications of immediate benefit of these
improvements, follow. Firstly, these can directly improve regression performance due to the
quality guarantees of the produced subspace, especially if the input dataset is large and/or
decentralised. Secondly, a by-product of a high quality resulting subspace and its associated
singular values is the ability to produce the underlying covariance matrix easily. Note, that the
ability to return the associated singular values is key, as normally they are not returned by
similar prior art, making the covariance estimation and tasks that require the singular values
much harder or impossible. Another commonly encountered use-case, is that provided with
full rank data we are able to generate the projected data with ease or even better exploit the
underlying subspace to perform data imputation.

Concluding, we note that the main code repositories pertaining to the contributions of this
dissertation, namely MOSES1 and Federated-PCA2 are publicly accessible.

1.3 Publication list

During my studies I have been fortunate enough to be involved into many fruitful and interdisci-
plinary collaborations that have yielded 10 published papers & 6 pre-prints that span the areas
of Machine Learning, Mobile Systems, Data Centres, Control Theory, Ubiquitous computing,
Social Networks, and Sound Analysis. These works reflect my efforts and technical contributions
made in the last few years; however, none of these would have been possible without the support
of my collaborators. Concretely, related to the context of this dissertation, Chapter 3 is based
on work performed in [76, 56], Chapter 4 is based on [75, 80, 79], and finally Chapter 5 is based
on [74].

Papers & Pre-prints related to this dissertation

• [76] Online pattern discovery in distributed, high-dimensional, streaming data under
the YOLO principle. Grammenos, Andreas and Mascolo, Cecilia and Crowcroft, Jon.
EuroSys 2018 Doctoral Workshop, 2018.

1https://github.com/andylamp/moses
2https://github.com/andylamp/federated pca

https://github.com/andylamp/moses
https://github.com/andylamp/federated_pca

8 Introduction

• [75] Efficient, privacy aware federated model sharing. Grammenos, Andreas and Mascolo,
Cecilia and Crowcroft, Jon. First UK Mobile, Wearable and Ubiquitous Systems Research
Symposium, 2018.

• [78] On Device Federated PCA & Subspace Tracking. Grammenos, Andreas and Mascolo,
Cecilia and Crowcroft, Jon. Second UK Mobile, Wearable and Ubiquitous Systems
Research Symposium, 2019.

• [56] MOSES: A streaming algorithm for linear dimensionality reduction. Eftekhari,
Armin and Hauser, Raphael A and Grammenos, Andreas. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

• [80] Federated PCA with Adaptive Rank Estimation. Grammenos, Andreas and
Mendoza-Smith, Rodrigo and Mascolo, Cecilia and Crowcroft, Jon. arXiv preprint
arXiv:1907.08059v1, 2019.

• [79] Federated Principal Component Analysis. Grammenos, Andreas and Mendoza-Smith,
Rodrigo and Mascolo, Cecilia and Crowcroft, Jon. 34th Conference on Neural Information
Processing Systems (NeurIPS), 2020.

• [74] Pronto: Federated Task Scheduling. Grammenos, Andreas and Kalyvianaki, Evan-
gelia and Pietzuch, Peter. Currently in review, arXiv:2104.13429, 2021.

Other works during PhD study

• [77] You are sensing, but are you biased? A user unaided sensor calibration approach
for mobile sensing. Grammenos, Andreas and Mascolo, Cecilia and Crowcroft, Jon.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2018.

• [81] Dissecting the Workload of a Major Adult Video Portal. Grammenos, Andreas and
Raman, Aravindh and Böttger, Timm and Gilani, Zafar and Tyson, Gareth. International
Conference on Passive and Active Network Measurement, 2020.

• [28] Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound
Data. Brown, Chloë and Chauhan, Jagmohan and Grammenos, Andreas and Han, Jing
and Hasthanasombat, Apinan and Spathis, Dimitris and Xia, Tong and Cicuta, Pietro
and Mascolo, Cecilia. Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020.

• [82] Exploring Automatic COVID-19 Diagnosis via voice and symptoms from Crowd-
sourced Data. Han, Jing and Brown, Chloë and Chauhan, Jagmohan and Grammenos,

https://arxiv.org/abs/2104.13429

1.3 Publication list 9

Andreas and Hasthanasombat, Apinan and Spathis, Dimitris and Xia, Tong and Cicuta,
Pietro and Mascolo, Cecilia. ICASSP, 2021.

• [60] Enabling In-Ear Magnetic Sensing: Automatic and User Transparent Magnetometer
Calibration. Ferlini, Andrea and Montanari, Alessandro and Grammenos, Andreas
and Harle, Robert and Mascolo, Cecilia. IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2021.

• [73] CPU Scheduling in Data Centers Using Asynchronous Finite-Time Distributed
Coordination Mechanisms. Grammenos, Andreas and Charalambous, Themistoklis and
Kalyvianaki, Evangelia. Currently in review, arXiv preprint arXiv:2101.06139, 2021.

• [98] An Asynchronous Approximate Distributed Alternating Direction Method of Multi-
pliers in Digraphs. Wei, Jiang and Grammenos, Andreas and Charalambous, Themistoklis
and Kalyvianaki, Evangelia. 60th IEEE Conference on Decision and Control, 2021.

• [149] Optimal CPU Scheduling in Data Centers via a Finite-Time Distributed Quantized
Coordination Mechanism. Rikos I., Apostolos and Grammenos, Andreas and Charalam-
bous, Themistoklis and Kalyvianaki, Evangelia, and Johansson H., Karl and Hadjicostis
N., Christoforos. 60th IEEE Conference on Decision and Control, 2021.

• [83] Sounds of COVID-19: exploring realistic performance of audio-based digital testing.
Han, Jing and Spathis, Dimitris and Xia, Tong and Bondareva, Erika and Brown, Chloë
and Chauhan, Jagmohan and Grammenos, Andreas and Hasthanasombat, Apinan and
Cicuta, Pietro and Mascolo, Cecilia. Nature npj Digital Medicine, 2021.

• [191] COVID-19 Sounds: A Large-Scale Audio Dataset for Digital COVID-19 Detection.
Xia, Tong and Spathis, Dimitris and Brown, Chloë and Chauhan, Jagmohan and Gram-
menos, Andreas and Han, Jing and Hasthanasombat, Apinan and Bondareva, Erika and
Ting Dang and Andres Floto and Cicuta, Pietro and Mascolo, Cecilia. 35th Conference
on Neural Information Processing Systems (NeurIPS), 2021.

• [42] COVID-19 Disease Progression Prediction via AudioSignals: A Longitudinal Study.
Dang, Ting and Han, Jing and Xia, Tong and Spathis, Dimitris and Bondareva, Erika and
Brown, Chloë and Chauhan, Jagmohan and Grammenos, Andreas and Hasthanasombat,
Apinan and Cicuta, Pietro and Mascolo, Cecilia. Currently in review.

https://arxiv.org/abs/2101.06139

Chapter 2

Background & Preliminaries

This chapter aims to provide the reader with the required background and preliminaries for the
thesis. We set the context by providing an introduction to the linear algebra concepts and tools
used throughout. Further, we provide brief introductions to Singular Value Decomposition
(SVD), Principal Component Analysis (PCA). We also present the various differential privacy
concepts used as our tools for the analysis presented in Chapter 4 as well as a description of
federated computation which we also exploit. Note that, we use lowercase letters c for scalars,
bold lowercase letters v for vectors, bold capitals A for matrices, AT denotes the transpose,
and calligraphic capitals U for subspaces.

2.1 Linear algebra preliminaries

We will start by revisiting basic linear algebra concepts which lead up to the importance of SVD
and PCA. In most applications the collected data forms a matrix, let that matrix be A ∈ Rn×d

where d are the features and n the number of samples contained in the matrix. Such an example
would be a mote sensor providing values of temperature, humidity, and light over time. In this
case, its columns would reflect the individual measurements - namely, temperature, humidity,
and light; whereas, each row would represent an individual sample. Now, a fundamental task
that is performed in data science and analytical tasks is to fit a model to the data. One of the
most deceivingly simple, yet difficult family of fitting problems is the following:

Ax = b (2.1)

Essentially, given A ∈ Rn×d try to find vector x ∈ Rd such as Ax equals vector b ∈ Rn.
Unfortunately, in many real-world cases this leads to unsolvable linear equations. Obviously, in
such cases we cannot solve this as-is nor change its equations without changing the problem
itself. However, for many such instances we still need a solution even if it is an approximate
one. By relaxing the problem in eq. (2.1), we are able to reduce the problem to another widely

12 Background & Preliminaries

studied case: Least Squares - which is part of the minimisation family of problems. The least
squares method formulation of the problem is shown below:

min ∥b−Ax̂∥2 (2.2)

This formulation tries to choose an approximate solution x̂ such that the quantity ∥b−Ax̂∥2 is
as small as possible. Consequently, by minimising that quantity means that its derivatives are
also zero, which are the normal equations ATAx̂ = ATb. Note, that while this formulation of
least squares is most commonly used, it is also frequent in certain domains (e.g. [11, 130, 58])
that the features of A correspond to its rows and the number of samples to its columns. This
leads to a slightly different least squares formulation, but in principle the underlying problem
to solve remains the same. For clarity and to avoid confusion for the remainder of this section
we will use the formulation of (2.2), where the columns of the matrix are its features and the
rows the number of samples.

Another equally important example is the case where we continuously add rows to A as
new measurements arrive. This leads to A gradually becoming highly triangular and eventually
large enough, that we cannot store it in memory or perform analytical tasks using traditional
methods. Thus, in order to alleviate this, we need to decompose matrix A into special matrices
that are able to reconstruct A exactly or as close as possible, yet take much less space in
memory or offer other useful properties. These family of problems is called factorisation, an
example of which can be formulated as follows:

A = CR (2.3)

This problem requires to find two special matrices C and R such that C is made of independent
columns of A and a particular matrix R with certain properties. The interesting part is
that the rank of C has to be equal to the rank of A and if the rank is much less than the
dimension of A then these matrices end up taking less space to store. Consequently, the more
redundancy A has, the lower its rank is; hence, the more space savings we get. Note that
this factorisation is rank-revealing, meaning that the rank of the matrix A is computed (i.e.
“revealed”) during the factorisation process. However, it is worth mentioning that when using
this factorisation technique there is no explicit scoring of the columns and rows within matrices
C and R respectively based on their contribution, which can be a significant limitation.

Matrix properties revisited

Let us now recap a few properties about matrices, as they will become invaluable as we go
along. Recall our fitting problem Ax = b in eq. (2.1); the fundamental observation here is that
we can see Ax as a linear combination of the columns of A. Expanding on this, let us illustrate
it with an example - first, we use row-wise multiplication:

2.1 Linear algebra preliminaries 13

Ax =

1 6
2 3
3 7

[
x1

x2

]
=

x1 + 6x2

2x1 + 3x2

3x1 + 7x2

 (2.4)

This leads to a familiar form, requiring the computation of dot products. Now, let us perform
the same operation but this time using column-wise multiplication instead:

Ax =

1 6
2 3
3 7

[
x1

x2

]
= x1

1
2
3

+ x2

6
3
7

 (2.5)

Naturally, both ways produce the exact same end result - however, we see that eq. (2.4) produces
three dot products which is used to compute the elements of b but its notation is hard to
understand and does not provide the intuitions we seek. On the other hand, column-wise
multiplication presents us with a remarkable finding: that we can express Ax as a linear
combination of columns from A. Now, if we set the columns of A as c1 = [1 2 3]T and
c2 = [6 3 7]T then we can see that,

Ax = x1c1 + x2c2 (2.6)

This formulation, not only forms a more succinct representation of the solution but also provides
insights for its geometric implications. Intuitively, we can see that even if the columns of A are
in R3 all combinations of vectors c1 and c2 which form the feasible solution set for our example
lie on plane instead. This plane is formed by c1 and c2 vectors which also includes the origin
(0, 0, 0) materialising when x1 and x2 are equal to zero. Such spaces are called vector spaces
and we define them below,

Definition. A vector space is defined as the set V which contains r vectors of Rm, with
r,m ≥ 0.

In fact, particular vector space we previously mentioned has a very specific name, it is the
column space of A. Armed with these facts we can now provide our first definition,

Definition (Column space of a matrix). The column space of a matrix A is defined as the set
of all possible linear combinations of its column vectors.

Usually, we denote the column space of a matrix A as col(A) or depending on context just
C. This implies that all vectors b that satisfy eq. (2.1) have to be in the column space of A,
meaning they are within the feasible solution set.

Another key fact is that we mentioned previously that the A = CR factorisation is rank-
revealing, however we did not specify exactly what the rank of A is. To discuss the rank, we
first need to address independence. Recall, that we said that matrix C would be comprised

14 Background & Preliminaries

out of independent columns of A, meaning that we do not want to include columns that can
be produced using a linear combination of existing ones in the set. This property allows us to
create a basis and is defined as follows:

Definition (Subspace basis). The basis of a subspace is defined as a full set of independent
vectors, which are called basis vectors.

The statement above implies that all vectors in a space (e.g. matrix A) can be generated by
using linear combinations of its basis vectors (e.g. matrix C). Let us illustrate this with an
example, suppose that we have a matrix A along with its column space C defined as shown
below:

A =

1 2 6
2 4 3
3 6 7

 , C =

1 6
2 3
3 7

 (2.7)

We see that the column space C only contains the first and third rows of A. This is because we
can see that the second column of A can be expressed as a linear combination of the first row.
As such, this column violates the basis definition provided; hence, cannot be a basis vector and
is excluded from the set. The number of vectors in the column space tells us the rank of the
matrix. Note that we started putting columns in C from left to right, we could have easily
started this process from right to left. This would have resulted in a different basis for the
column space of A but without changing the number of columns within the set. In other words,
a basis is not unique but the amount of columns in the set always stays the same. Consequently,
the rank of the matrix is equal to the dimension of the column space which is equal to the
number of independent columns within the set.

Definition (Column space dimension). The dimension of the column space is defined to be the
number of individual columns within the set.

Given the column space dimension, we are now able to provide a definition for the matrix rank
as follows:

Definition (Matrix rank). The rank of a matrix A is defined as the dimension of its column
space.

In some instances the rank of the matrix can also be known as its intrinsic dimension, in
this dissertation these terms are used interchangeably. Notice, that from the rank definition
it follows that the column space rank is equal to the matrix rank - this is very important.
Referring back to eq. (2.3), we can immediately relate the column space to matrix C but what
about matrix R? We can reconstruct A using linear combinations of vectors from its column
space C but we need a map to indicate these combinations - that map is provided by matrix R.
Let us illustrate that with an example using the previous matrices A and C from eq. (2.7),

2.1 Linear algebra preliminaries 15

A =

1 2 6
2 4 3
3 6 7

 =

1 6
2 3
3 7

︸ ︷︷ ︸

C

[
1 2 0
0 0 1

]
︸ ︷︷ ︸

R

= CR (2.8)

The shapes of the matrices are A ∈ Rm×n, C ∈ Rm×r, and R ∈ Rr×n, where m the rows, n the
columns, and r the rank. In fact, matrix R is instrumental in linear algebra and has a specific
name, it is the row-reduced echelon form of A.

So far, we have only been reasoning about the columns - what about the rows? Now, as we
can see from eq. (2.8) we can get every row of A through the r rows contained within R. This
can be achieved by using C as the map of the linear combinations of the r rows contained in R
to reconstruct A. We can also see that these two rows are independent and thus form a basis.
Meaning, that these rows form a basis for the row space of A. Notably, both the column and
row spaces have the same rank r which is equal to the matrix rank - each formed by r basis
vectors. The column space is constructed using r basis column vectors whereas the row space
is constructed using r basis row vectors. To illustrate the row independence let us revisit the R
matrix from eq. (2.8),

R =
[
1 2 0
0 0 1

]
(2.9)

The rows that contain ones and zeros within R indicate that these are not a linear combination
of each other. This is the case, because there no linear combination that can produce r2 = [0 0 1]
from r1 = [1 2 0] and vice versa. We can easily validate this by computing their dot product
which is zero. Having a zero dot product implies these vectors are perpendicular to each other
and thus no such linear combination exists - thus, are independent.

Matrix as a sum of rank-one matrices

Let us now focus on how we can reconstruct A using rank-one matrices, as this is one of
the fundamental building blocks used throughout. First, suppose that we have decomposed
A ∈ Rm×n into two matrices, let these matrices be C ∈ Rm×p and R ∈ Rp×n, where m the
rows, n the columns, and p the rank. These matrices have the following shapes,

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 , C =

c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
cm1 cm2 · · · cmp

 , R =

r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
rp1 rp2 · · · rpn

 (2.10)

16 Background & Preliminaries

Traditionally, as we said in the previous section, we can multiply C and R using the dot
products as such,

aij = ci1r1j + ci2r2j + · · ·+ ciprpj =
p∑

k=1
cikrkj (2.11)

However, we can get the same result by multiplying the columns of C times the rows of R. Let
us illustrate this with an example - suppose we have the following rank-one matrix A ∈ R3×3:

A =

1 2 4
2 4 8
3 6 12

 (2.12)

We can clearly see all columns are exact multiples of the first one. Thus the column space of A
is the a single vector C = [1 2 3]T and R = [1 2 4]. Having these components, then A can be
decomposed as:

A =

1 2 4
2 4 8
3 6 12

 =

1
2
3

 [1 2 4
]

= CR (2.13)

This operation is called the outer product and produces a matrix; but what happens if the rank
of A is greater than one? Then matrix A is the summation of all rank-one matrices produced
by taking the outer product for each column of C with its respective row of R. To illustrate
this, let us reformulate the A = CR from eq. (2.10) as the sum of multiple rank-one matrices
as follows,

A =

| |
c1 · · · cp

| |

︸ ︷︷ ︸

C

r1
...
rp

︸ ︷︷ ︸

R

= c1r1 + · · ·+ cprp =
p∑

k=1
ckrk (2.14)

Notably, both the end result and the computational complexity are the same for both methods.
However, there is a very important difference and that is its representation. To elaborate, if we
are using dot products to compute the multiplication then each result computed represents its
final value. On the other hand, when we are using the summation of rank-one matrices each
intermediate result is additive. These matrices can be seen as a building blocks for A. Each
containing a portion of A, that when added, can reconstruct the final matrix.

Taking this one step further, let us reformulate eq. (2.13) to use vector notation instead
since we know it is a rank-one matrix as follows,

2.1 Linear algebra preliminaries 17

A =

1
2
3

︸︷︷︸

u

[
1 2 4

]
︸ ︷︷ ︸

vT

=

1 2 4
2 4 8
3 6 12

 (2.15)

Now we know that A = uvT , however we can evidently see that each column of A is a multiple
of u. Similarly, we can also notice that each row of A is a multiple of vT . Interestingly, the
column space of A, and by extension uvT as in eq. (2.15), has only one column and thus its
rank is one. To explain this geometrically, if the column space of a matrix is one dimensional
then it is a line. In our case that line is the one that goes through vector u. However, let us
now discuss AT and how its column space looks like. Using the same notation as in eq. (2.15)
we see that AT can be decomposed as follows,

AT =

1
2
4

︸︷︷︸

v

[
1 2 3

]
︸ ︷︷ ︸

uT

=

1 2 3
2 4 6
4 6 12

 (2.16)

Notice, that the column space of AT is the row space of A transposed and it lies on the line
that goes through the vector v. Generalising, we can state that all rank-one matrices have a
column space that passes through a line, more formally,

Definition (Rank-one matrix from two vectors). Given two non-zero column vectors u ∈ Rm

and v ∈ Rn, then their outer product uvT forms a rank-one matrix that lies in Rm×n.

Further given A, then the column space of AT is the transpose of the row space of A. In fact,
there is a deeper connection here as famously introduced by Strang [164, 166] which is known
as the four fundamental subspaces of a matrix. Specifically, provided a matrix A that has m
rows and n columns then it yields into four fundamental spaces that two of them lie in Rm and
two in Rn. So far we have seen and defined the column space of a matrix A, denoted as col(A)
which a set of vectors that lies Rn and can express as a linear combination all of the columns of
A. We shall now define properly these four spaces as follows,

Definition (Fundamental subspaces of a matrix [164–166]). Suppose we have a matrix A with
m rows and n columns then,

• Column space of A and denoted as col(A), is defined as the subspace of Rm that contains
the set of all possible linear combinations of its column vectors.

• Row space of A and denoted as row(A), is defined as the subspace of Rn that contains
the set of all possible linear combinations of its row vectors.

• (Right) Nullspace of A and denoted as null(A), is defined as the subspace of Rm which
contains all the x’s in Rn that satisfy Ax = 0.

18 Background & Preliminaries

• Left Nullspace of A and denoted as null(AT), is defined as the subspace of Rn which
contains all the y’s in Rm that satisfy ATy = 0.

Interestingly, there is a beautiful symmetry in the above statements. The columnspace of A is
the rowspace of its transpose; equally, the rowspace of AT is the columnspace of A. The same
property holds for the left and right nullspaces of A and AT . This is a very powerful property
as it provides a map from its columns that lie in Rm to its rows that lie in Rn and vice-versa
for any matrix A. The rank of the matrix dictates the dimension of these subspaces, which in
turn sets the dimension of their respective nullspace. That is notable as it shows is when the
solution to our linear problem, namely Ax or Ay, is zero.

Common matrix types

Before we continue it is worth introducing commonly used types of matrices and their properties.
They become our second nature as we discuss various, more advanced, decompositions and
their properties. Let us start by discussing orthogonality in subspaces - in fact orthogonality
is one of the most commonly used terms in linear algebra and it means perpendicular. The
simplest form of that is the dot product between two vectors, where if zero means that these
vectors are perpendicular to each other - in other words, orthogonal. There is also a stricter
form of orthogonality, which to enforce that their length is equal to one - this is denoted as
orthonormal. These properties can be extrapolated for subspaces as well as matrices. We start
by providing the definition of an orthogonal basis,

Definition (Orthogonal subspace basis). An orthogonal basis for a subspace U means that
every pair of basis vectors within the set, let these vectors be ui ∈ Rm and uj ∈ Rm then it
satisfies uTi uj = 0 when i ̸= j else ∥ui∥.

As we previously mentioned, the main difference between orthogonality and orthonormality is
the added constraint with respect to the length of each basis vector; thus the definition for an
orthonormal subspace basis is as follows,

Definition (Orthonormal subspace basis). An orthonormal basis for a subspace U means that
basis vectors within the set, let these vectors be ui ∈ Rm and uj ∈ Rm then it satisfies uTi uj = 0
when i ̸= j else ∥u∥ and have a length of ∥ui∥ = 1.

Converting an orthogonal subspace basis to be orthonormal is easy and requires us to divide
each basis vector ui by its length ∥ui∥. Now provided two subspaces that are orthogonal, let
these be U and V then for this to hold each vector within U must be perpendicular to each
vector within V. Formalising the previous statement we can define this as follows,

Definition (Orthogonal subspaces). Let U and V be two subspaces, these are orthogonal if
and only if each vector contained in U is orthogonal to each of the vectors contained in V and
vice-versa.

2.1 Linear algebra preliminaries 19

So far we talked about subspaces which are a special kind of matrices, what about regular
matrices? Things are a little bit different when dealing with generic matrices rather than just
subspaces and thus warrants a bit more explanation. In general, matrices are not orthogonal if
not square - meaning that the number of rows equal that of the columns. However, if they are
tall and thin while having orthonormal columns then it can be proved that ATA = I. If so,
then for any vector v if multiplied by A then its length will not change. Concretely this means
the following,

∥Av∥ = ∥v∥ (2.17)

This follows because,

(Av)T (Av) = vT ATA︸ ︷︷ ︸
I

v = vT Iv = vTv = ∥v∥ (2.18)

However, tall and thin matrices do not satisfy AAT = I. This is because if rows are greater
than the columns they cannot be orthogonal.

On the other hand, if the matrix is square then it can be orthogonal, meaning that it can
satisfy both ATA = I and AAT = I. Provided this, it follows that AT = A−1, which indicates
that the transpose is equal to the inverse of the matrix. All of the previous statements regarding
orthogonal matrices can be formally packed into the following definition,

Definition (Orthogonal matrix). An orthogonal matrix A is a square matrix with real values
having both orthonormal columns and rows. It satisfies both AAT = ATA = I and AT = A−1,
where AT is its transpose, A−1 its inverse, and I the identity.

Moving on, let us now introduce symmetric matrices. This family of matrices satisfies a
single, yet crucial property; that is A = AT .

Definition (Symmetric matrix). A matrix is symmetrical, if and only if it is equal to its
transpose; meaning provided matrix A then it holds that A = AT .

One handy property that we must prove is that given any matrix A, then ATA is always
symmetric. Now let B = ATA thus we have,

BT = (ATA)T = AT (AT)T = ATA = B (2.19)

The above holds by using the actual definition of symmetric matrices and by the fact that
(AT)T = A, however it is not immediately evident and is immensely useful. Relating to the
above, it has to be noted that for any matrix A the symmetric matrix B = ATA has the
same rank, meaning that rank(A) = rank(B). To prove that, it is sufficient to show that both
programs Ax = 0 and ATAx = 0 share the same solution x. Suppose that there exists an x in

20 Background & Preliminaries

the nullspace of A, that is x ∈ null(A) such that Ax = 0, then it follows that,

Ax = 0⇒ (2.20)
AT (Ax) = AT 0⇒ (2.21)
AT (Ax) = 0, since x ∈ null(A) (2.22)

The last part is crucial, as it holds since x lies in the nullspace of A and thus the left side of
the equation is also zero. It allows us also to claim that the nullspace of A is a subset or equal
to the nullspace of ATA, or more formally,

null(A) ⊆ null(ATA) (2.23)

To complete the proof, we must now prove that ATAx = 0 holds as well. Our proof starts by
making the same assumption as previously, namely that x lies in the nullspace of A, hence we
have,

ATAx = 0⇒ (2.24)
xTATAx = xT 0⇒ (2.25)

(xTAT)(Ax) = 0 (2.26)

The use of parentheses here is key, as it allows us to perform a crucial transformation. We start
by picking up from Equation (2.26),

(xTAT)(Ax) = (Ax)TAx = (Ax)T︸ ︷︷ ︸
vT

Ax︸︷︷︸
v

= 0 (2.27)

The result holds as the dot product of the same vectors is always equal to zero, thus by letting
v = Ax we have vTv = 0; hence arrive at the desired solution. Note, this allows us to claim
that the nullspace of ATA is a subset or equal to the nullspace of A, or more concretely,

null(ATA) ⊆ null(A) (2.28)

More importantly, in light of equations 2.23 and 2.28 we can deduce that the nullspaces of A
and ATA are in fact equal. Thus we can claim the following,

null(ATA) = null(A), see eq. 2.23 and 2.28 (2.29)

Moreover, we know that the dimension of a matrix is the summation of its rank r and the
dimensionality of its nullspace. Provided their nullspaces are equal as we just showed and
that the dimension of A ∈ Rn×d and ATA ∈ Rn×n is n, we can deduce that their rank is
equal and thus conclude our proof. Note that the same result holds for AAT due to the result

2.1 Linear algebra preliminaries 21

of eq. (2.19), meaning that AAT = (AAT)T . However, normally matrices AAT and ATA are
different, hence AAT ̸= ATA unless A is a symmetric matrix.

Another commonly encountered family of matrices is diagonal ones. For a matrix to be
diagonal it needs to satisfy the requirement that all of its entries that are outside of its diagonal
are zero. Formally, we can define this family of matrices as follows,

Definition (Diagonal matrix). A matrix is diagonal, if and only if has non-zero entries across
its diagonal and zeros elsewhere.

To provide a concrete example, the identity matrix I is a special case of both a diagonal and a
symmetric matrix as it satisfies the requirements for both families. Interestingly, looking a bit
more carefully, we can also see that I is also orthogonal - so it is indeed a very special matrix.

Matrix factorisation

At the heart of this dissertation lies matrix factorisation and its implications. Before coming
full circle and discuss Singular Value Decomposition, we need to address why factorisation of
matrices is indeed important. In the previous section we introduced how rank-one matrices can
be added in order to produce the whole matrix. These are essentially outer products of vectors
and can be seen as the building blocks for matrix composition - this is key. Factorisation can be
thought as the reverse of multiplication and is more computationally intensive. More importantly,
factorisation can reveal information about the matrix that otherwise is not immediately visible.
For example, when factoring a matrix we can discover its rank. This in turns tells us how
much redundant information is contained within that matrix - how can we exploit that? One
of the obvious examples is compression. If the rank is low then the matrix as we saw before
can be decomposed into factors that can take much less space to store. Concretely, a rank one
matrix requires exactly two vectors to be stored in order to be expressed in full. Meaning if its
dimensions were m× n then it would require m+ n entries to be stored instead of mn entries.
In other instances these factors can reveal patterns that are not readily available when looking
at the entirety of the matrix. The most commonly encountered factorisation techniques, along
with a brief description for each are outlined below,

• A = LU is is called the Lower-Upper factorisation which splits the matrix A into two
triangular matrices. The first one L is lower triangular while the U is upper triangular.
Common applications for this factorisation technique are elimination when solving linear
systems and inverting a matrix [15].

• A = QR is an orthogonalisation decomposition which results in an orthogonal matrix Q
and an upper triangular matrix R. It is closely related to the traditional Gram-Schmidt
process but it is more expensive in terms of resources but does not suffer from numerical
stability issues plaguing traditional Gram-Schmidt [70].

22 Background & Preliminaries

• A = CUR this is a somewhat related factorisation to the toy one we used previously
in the chapter eq. (2.8). It was introduced by Mahoney et al.[122] and more recently
Boutsidis et al. [22] discussed its performance with respect to its optimality. The main
difference when compared to our version of A = CR is that now the matrix R is also
comprised out of actual rows from the original matrix rather than just C. Recall, that our
R was in row-reduced echelon form - this requirement is now dropped. However, by doing
so the map has to be stored elsewhere as it now does not have the correct form. This is
where the ”mixing” matrix U comes into play. In this decomposition the mapping matrix
is defined to be the pseudo inverse of the intersection of matrices C and R. While we lose
the guarantee of optimality that other decomposition can offer, this has the advantage of
being faster to compute and can be is easier to interpret. This is because the columns
and rows come directly from A rather than being projected into an arbitrary space as is
with other decompositions.

• S = QΛQT which is able to decomposes only a symmetric matrix A into a basis Q
and diagonal Λ, it is commonly known as the spectral factorisation. In this case Q is
composed out of the eigenvectors of A and Λ is a diagonal matrix holding the eigenvalues
of A along its diagonal [101]. One of the major drawbacks of this decomposition is that
it cannot be used if the provided matrix to factorise is not symmetric.

• A = VΛV−1 this diagonalisation of the matrix A but is more commonly known as the
eigendecomposition [165]. By performing this decomposition we are able to factorise a
square matrix A into V, Λ, and V−1. The matrix V is comprised out of the eigenvectors
of A with V−1 being its inverse, whereas matrix Λ holds the eigenvalues of A.

• A = UΣVT is the celebrated Singular Value Decomposition (SVD) [54, 164]. It is able
to factorise any matrix, regardless if it is square or not, into three special matrices. The
U and V are comprised out of the left and right singular vectors respectively. Further, Σ
is a diagonal matrix which holds the singular values of A in decreasing order across its
diagonal.

Interestingly enough, so far we only discussed how we add all of these rank one matrices to
reconstruct the full matrix. However, what if we could pick the ones that are able to capture
most but not all of the information contained? Surely, in that case since we do not have all
of the rank one matrices required we cannot possibly reconstruct A in full, but how close
can we get without losing too much of A? The answer to this question is one of the goals of
dimensionality reduction, and in our humble opinion, the most important one.

2.2 Eigendecomposition 23

2.2 Eigendecomposition

One last step to do before we delve into Singular Value Decomposition, is to discuss one of its
spiritual relatives which is the Eigendecomposition. As we mentioned in the previous section, it
is a factorisation method that is able given a square matrix A to decompose it into A = VΛV−1.
It is also known in certain textbooks or references as matrix diagonalisation. However, this
can be misleading since it actually produces three matrices only one of which, namely Λ, is
diagonal and contains the eigenvalues of A. But first, let us introduce briefly what eigenvalues
and eigenvectors are. To do so, we need to introduce a new program to solve,

Av = λv (2.30)

Where A is our matrix, λ a scalar, and v a vector we want to find that can solve this equation.
As we can see, this is again a linear transformation since on the RHS of eq. (2.30) we can see
that the result is the summation columns of A multiplied by scalar values in each respective
row of vector v. On the LHS we see that the same holds as v is scaled by a scalar value λ.
The v is an eigenvector of A which has a special property that if multiplied by A it does not
change its direction. What can change, is its scale by a factor of λ. Which is the implication of
applying that transformation to v and is scaled by the magnitude dictated by the eigenvalue
λ. Generally speaking λ can be any value and if, for example, is negative then the direction
is can be reversed by the means of scaling. We are now ready to provide a definition for the
eigenvectors,

Definition (Eigenvector of a square matrix). An eigenvector of a square matrix A is a vector
v in Rm, where n the ambient dimension of A such that Av = λv holds for some scalar λ.

Adding to the definition of the eigenvector, we can now also provide one for the eigenvalues as
follows,

Definition (Eigenvalue of a square matrix). An eigenvalue of a square matrix A with ambient
dimension n is a scalar λ, such that there is a non-zero vector v in Rn providing Av = λv with
a non-trivial solution.

Normally, most square matrices with ambient dimension n have also n different eigenvectors, let
these be v1, ...vn and an equal number of different eigenvalues λ1, ..., λn. Furthermore, a matrix
can have complex numbers as its eigenvalues, a good example of which is orthogonal matrices.
Now, we can see how we can express every n-dimensional vector u as a linear combination of
the eigenvectors; it follows that,

u = c1v1 + ...+ cnvn (2.31)

Suppose that we multiply u with a square matrix A having the same ambient dimension n,
then it follows that,

24 Background & Preliminaries

Aku = c1λ
k
1v1 + ...+ cnλ

k
nvn (2.32)

Where k is the power that A is raised. This is because the direction of the u does not change,
but is only scaled based on the eigenvalues of A as we previously discussed. Now, we can
observe that as eigenvalues grow, so is the significance of that component. Let us now illustrate
the diagnonalisation process of a dense square matrix A that has an ambient dimension n and
an equal number of independent eigenvectors. Suppose, we have these eigenvectors vi where
i ∈ [1, ..n] and they form an invertible matrix V. Then by multiplying that matrix with A and
using the original equality of eigendecomposition eq. (2.30) we get,

A

v1 · · · vn

︸ ︷︷ ︸

V

=

Av1 · · · Avn

 =

λ1v1 · · · λ1vn

 (2.33)

Thus, by using the result of eq. (2.33) we can reformulate as follows,

λ1v1 · · · λ1vn

 =

v1 · · · vn

︸ ︷︷ ︸

V

λ1

. . .
λn

︸ ︷︷ ︸

Λ

(2.34)

Thus we arrived at the conclusion that the following holds,

AV = VΛ (2.35)

but because we said from the beginning that matrix V is indeed invertible we arrive at the
final factorisation form,

A = VΛV−1 (2.36)

However, provided some further assumptions about the matrix A we can arrive at a stronger
factorisation. Let us consider the case in which our matrix is symmetric, meaning that A = AT .
Now, it is well known that symmetric matrices have all of their eigenvalues are real and
additionally their eigenvectors can indeed be orthogonal to each other [91]. In fact, this a
special case of the eigendecomposition in case the provided matrix is symmetric and is called
the spectral theorem or spectral decomposition. What it says is simple and follows from the
definition of symmetric matrices,

A = QΛQT (2.37)

2.2 Eigendecomposition 25

This is because the matrix Q is orthonormal and thus it means that QT = Q−1 as well as
QTQ = I. Out of these matrices, there is an even more special family of matrices that is a subset
of symmetric matrices. As we previously discussed, symmetric matrices have real eigenvalues;
this implies although they are non-conjugate they can be both positive and negative. These
particular matrices are split into two categories, the positive definite and positive semidefinite;
they both share the property that their eigenvalues are positive but on semidefinite case zero
eigenvalues are allowed as well. Formally, the positive definite matrices are defined as,

Definition (Symmetric positive definite matrix). A matrix S is symmetric positive definite
if the quantity vTSv is strictly greater than zero for all non-zero vectors v in Rn where n the
dimension of A.

whereas the positive semidefinite matrices can be defined as follows,

Definition (Symmetric positive semidefinite). A matrix S is symmetric semi-positive definite
if the quantity vTSv is greater or equal to zero for all vectors v in Rn where n the dimension
of A.

The quantity vTSv is also known as energy [70]. Connecting this with symmetric matrices and
why the above definitions hold we can do the following,

Sv = λv⇒ vTSv = vTλv⇒ vTSv = λvTv ≥ 0, provided λ ≥ 0 (2.38)

Then based on the value of the eigenvalues we can see that this dictates if the energy greater or
equal to zero. Notably, one extremely important property is the following,

S = ATA (2.39)

This claims that for any matrix A if we take ATA then it results into a symmetric matrix
S. Further, the matrix S is positive definite in the case that A has independent columns and
positive semidefinite if it has dependent columns. Let us formalise this statement,

vTSv = vTATAv = (Av)T (Av) = ∥Av∥2 (2.40)

S = ATA =

1 2
1 2
2 4

[
1 1 2
1 2 4

]
=

5 5 10
5 5 10
10 10 20

 (2.41)

We can see that the columns of the above matrix are dependent as the first column is equal to
the second while the third column is an exact multiple of the first. The eigenvalues for this
matrix are λ1 = 0, λ2 = 0, and λ3 = 30. Since it has at least one eigenvalue equal to zero
by eq. (2.38) it has zero energy and thus is positive semidefinite. Concluding this section, even

26 Background & Preliminaries

if eigendecomposition is helpful tool the strict requirement of only being applicable to square
matrices ends up rendering the method impractical for many real world applications where
matrices are not normally symmetric. We would like to have something that can be applied to
all matrices, regardless of their shape.

2.3 Singular Value Decomposition

As we said in the previous section due to the limitations of eigendecomposition we would like
to have a factorisation that is able to cater for all matrices rather than ones that are square
or admit special structure. The Singular Value Decomposition, in my opinion, is the perfect
method to fill this gap. To start however, we need to introduce a different program to solve,

Av = σu (2.42)

Recall that in eq. (2.30) we had scalars, the λ’s but the vectors in both sides of the equation
were the same. Instead, in this program we have two different set of vectors, namely v’s and u’s
which we will explain shortly. Intuitively, having two sets of vectors makes sense as by relaxing
the square requirement of the matrix we break the symmetry. More specifically, for a given
matrix A that has m rows and n columns then as per eq. (2.42), the v’s and u’s that satisfy it
would have to reside in Rn and and Rd respectively. Realising this, we cannot possibly apply
eigendecomposition because of the different spaces these vectors lie. Further, note that since we
are not dealing with eigenvectors and eigenvalues, the notation changes; these are now called
using singular vectors and singular values respectively. Concretely, referencing eq. (2.42) u
contains the left singular vector whereas v contains the right singular vector, and σ the singular
value. Of course, regardless of the decomposition, the intrinsic dimension of the matrix does
not change. This fact, as we will see later on, can be used to our advantage. Formally, we claim
for any matrix A with rank r, d rows, and n columns that,

Avi = σiui, for i = [1, r] (2.43)

As we will prove later, this decomposition has a nice property; that every combination of σiui
with an i higher than the matrix rank r is equal to zero. This is because its singular value is
zero and thus the whole product of σiui = 0 for i > r, where r the matrix rank. Not only that,
but the singular values are ordered in descending order based on their significance; meaning
that σ1 ≥ σ2 ≥ ... ≥ σn. Further, since we said that the singular values higher than the rank r
are zero we can claim that,

σ1 ≥ σ1 ≥ ... ≥ σr > 0 (2.44)

Thus the following holds,

2.3 Singular Value Decomposition 27

Avi = σiui, for i ∈ [1..r] and 0 otherwise. (2.45)

Provided the above, we can formulate this program using matrices as follows,

A

| |

v1 · · · vn
| |

︸ ︷︷ ︸
V

=

| |

u1 · · · ud
| |

︸ ︷︷ ︸
U

σ1
. . . 0

σr
0 0

︸ ︷︷ ︸
Σ

(2.46)

One of the key properties of that the d left and n right singular vectors that comprise matrices U
and V matrices respectively are orthogonal. However, it has to be noted that U is orthogonal in
Rd whereas V is orthogonal in Rn. This is because the as we say previously, eigendecomposition
required matrices U and V to be the same and thus orthogonal in the same space. Breaking
that requirement is essentially what enables SVD to be applicable to non-square matrices.
Additionally, note that the singular values that have index greater than the matrix rank r

within Σ are equal to zero. Now, we can pack the full SVD shown in eq. (2.46), as follows,

AV = UΣ (2.47)

Note that eq. (2.47) is not yet a complete formula. In order to have a proper factorisation
scheme we need the matrix A to be in the LHS of the equation on its own. At first glance, it is
not immediately evident how we can bring V over to the other side. However, both V and U
are special, they are orthogonal. This implies, by definition, that they are equal to both their
transpose as well as their inverse. Thus, by multiplying both sides by V−1 = VT we can get,

A = UΣVT (2.48)

The statement above holds under the assumption that A ∈ Rd×n which in turn indicates that
U ∈ Rd×d, Σ ∈ Rd×n, and V ∈ Rn×n. Σ only up to rank r ≤ d if rank r < d then it has d− r
zeros padded in the diagonal after the r-th singular value. Let us now quickly prove eq. (2.48)
in way that, while not optimal for computing the SVD in a real-world application, is able to
provide us with an intuitive proof [165, 166] 1.

Recall, that our goal is to compute the left and right singular vectors of our provided matrix.
To do so, we will use a trick we introduced from the previous section, symmetric matrices. One
way to form a symmetric matrix is to multiply it with its transpose and that holds for any
matrix A. Let us now start with ATA first,

1Note that the SVD holds also for conjugate matrices and such a proof can be found in [170]; however, in
this dissertation we only deal with real matrices.

28 Background & Preliminaries

ATA = (UΣVT)T (UΣVT) = (VΣTUT)(UΣVT) = V ΣTΣ︸ ︷︷ ︸
Λ

VT (2.49)

We are able to arrive at the desired result because U is orthogonal and thus by definition
UTU = I. Now doing the same process for AAT we have the following,

AAT = (UΣVT)(UΣVT)T = (UΣVT)(VΣTUT) = U ΣTΣ︸ ︷︷ ︸
Λ

UT (2.50)

Similarly to eq. (2.49) we can see that V is orthogonal and thus again by definition VTV = I.
Observing closely, these should look a bit familiar with eq. (2.37) for both eq. (2.50) and eq. (2.49).
Knowing that, both AAT and ATA are symmetric and thus can be factorised into QΛQT .
In this case, the Q for the decomposition is equal to U and V for eq. (2.50) and eq. (2.49)
respectively. In other words, V holds the eigenvectors of ATA whereas U holds the eigenvectors
of AAT both of which are orthonormal. As far as the eigenvalues (Λ) for both ATA and AAT

they have the same non-zero eigenvalues and are equal from λ1 = σ2
1 to λr = σ2

r where r the
rank of the matrix. If the matrix rank d is less than its ambient dimension d, then additional
d− r eigenvalues equal to zero are padded to the diagonal as necessary.

Notably, the squared eigenvalues or the possibility of having equal non-zero ones poses a
problem. They are also the reason why SVD requires two different sets of vectors to work
properly. Recall from our definition that Avi = σkui and needs to hold for all i up to the
matrix rank r. This equation can be seen as a map for each of the right singular vectors (vi) to
the left singular vectors (ui) for i ∈ [1, ..., r]. In the case of a squared eigenvalue this it has the
implication that given a symmetric matrix S when we have a positive eigenvalue (λ > 0) then
Su = λu while in the case of a negative one (λ < 0) we have S(−u) = λ(−u). On the other
hand, if there are double eigenvalues then the solutions lie in a plane.

Let us start by picking a ”right” set of orthonormal eigenvectors v1, ...vr from ATA which,
as we previously said form matrix V. This means that based on the eigendecomposition of
ATA we can do,

ATAvi = λivi = σ2
i vi, for i = [1, ..., r] (2.51)

Meaning that vi’s are eigenvectors of ATA. In order for the SVD to hold, we need to pick
certain vectors ui for i = [1, ..., r] such that Aui = σiui for i = [1, ..., r]. For ease of exposition,
we can rewrite the set of desired vectors ui as follows,

ui = Avi
σi

, for i = [1, ..., r] (2.52)

2.3 Singular Value Decomposition 29

Following that step, we need to show that the ui’s are eigenvectors of AAT as follows,

AATui = AAT

(
Avi
σi

)
= A

(
(

σ2
i vi︷ ︸︸ ︷

ATAvi)
σi

)
= A

(
σ2
i vi
σi

)
(2.53)

From the equation above and in order to arrive at our desired form we need to exploit the
result of eq. (2.52) as follows,

A
(
σ2
i vi
σi

)
= σ2

i

(
Avi
σi

)
= σ2

i ui, for i = [1, ..., r] (2.54)

To complete the proof, we need to show that our selected vectors u are indeed orthonormal.
All that is required, is to prove that the quantity uTi uj is equal to one when i = j and zero
otherwise. To do so, we start by expanding uTi uj as follows,

uTj ui =
(

Avj
σj

)T(
Avi
σi

)
=

(vTj AT)Avi
σjσi

=
vTj (ATAvi)

σjσi
=

vTj σ2
i vi

σjσi
= σi
σj

vTj vi (2.55)

We are certain that the above statement holds as σi/σj can be thought as a non-zero scalar, while
the v’s where picked from the eigenvectors of ATA and thus are orthonormal by construction.

However, we are not yet finished. The reason being, what happens if the matrix rank r is
less than either the columns or rows of the initial matrix A? Thankfully, to solve this issue is
trivial. This is because these vectors, by definition, have eigenvalues equal to zero hence they
lie in the nullspace of either row-space or column-space. Concretely, assuming that our matrix
A has d rows and n columns; then we need to pick d− r vectors ur+1, ...,ud from the column
nullspace and n − r vectors vr+1, ...,vn from the row nullspace. Provided with this fact, we
can pick any orthonormal basis for these nullspaces which will automatically be orthogonal to
the u’s and v’s that are already in the respective sets. This concludes our proof and the shape
of SVD can be seen from eq. (2.56) that follows,

A ∈ Rd×n =

| | | |

u1 · · · ur ur+1 · · · ud

| | | |

︸ ︷︷ ︸

U∈Rd×d

σ1
. . . 0

σr

0 0

︸ ︷︷ ︸

Σ∈Rd×n

v1
...

vr
vr+1

...
vn

︸ ︷︷ ︸

VT ∈Rn×n

col(A) null(A)

row(A)

null(AT)

(2.56)

30 Background & Preliminaries

Note that as A is broken down to its respective pieces through the SVD we can see where in
each matrices the actual information and the nullspaces lie. Essentially what this shows is that
all of the important information is help up to the matrix rank r. As we saw in the previous
section, each matrix can be broken into a summation of rank-one matrices. This property also
holds for the SVD and has the following form,

A = UΣVT =
r∑
i=1

uiσivTi (2.57)

More importantly, and perhaps one of its most significant properties, is that these rank-one
matrices are ordered. They are ordered by their significance indicated by their singular value. In
other words, they are ordered by the amount contributed to the total summation of eq. (2.57).
However, these extra rows and columns of the nullspaces they require a significant amount
of space to be stored thus making the decomposition factors taking more space than they
actually require. As we saw from the eq. (2.57), anything above the matrix rank does not
contribute anything; surely we can do better. This realisation was the key idea behind a ”thin”
or ”reduced” representation of SVD which has the following form,

A =

| |

u1 · · · ur
| |

︸ ︷︷ ︸
U

σ1
. . .

σr

︸ ︷︷ ︸
Σ

v1
...

vr

︸ ︷︷ ︸
VT

(2.58)

The representation shown above only stored the information that is indeed required and can
contribute something to the reconstruction of A as per eq. (2.57). The savings can be significant
especially as the gap between the rank r of the matrix and its other dimensions increases.

Optimality of SVD

Let us now briefly address the question of how good actually is SVD. In fact, SVD is so good
that (so far) we cannot find a better representation of equal rank that the SVD can produce.
Furthermore, when compared to other factorisation techniques we mentioned previously such as
QR, LU, and CUR the SVD offers another extremely important property. That the produced
rank-one matrices are ordered by their significance, and if summed, can provide the best rank-k
approximation of A where k is from 1 up to r. Of course, if k = r then we are able to reconstruct
the matrix A, in full. This celebrated theorem was proved by Eckart et al [54] and was also
later independently rediscovered by Mirsky et al [129]. However, we need to state by which
metric we measure the quality of the reconstruction. Normally, such errors are measured with

2.3 Singular Value Decomposition 31

respect to a norm. In this instance, we will formulate the theorem using the Frobenius norm as
follows,

Theorem 2.3.1 (Best rank-k matrix approximation [54, 129]). Given two matrices A and B
if B has rank-k then ∥A−B∥F ≥ ∥A−Ak∥F .

It has to be noted, that there are proofs for this theorem that hold for Spectral (ℓ2), Frobenious
(ℓF), and Manhattan (ℓ1) norms just to name a few [135, 165, 126].

Geometry of SVD

Before concluding our discussion about the Singular Value Decomposition, it is also worth
exploring what this factorisation does geometrically and how. Intuitively, we can say that SVD
factorises the matrix into three different matrices; two of which are orthogonal and one diagonal.
Geometrically, an orthogonal matrix implies either a rotation or a reflection while diagonal
matrices are always stretches. Suppose that we had a matrix A that was 2× 2 and x that was
comprised out of unit vectors, then we could reformulate the transformation Ax as follows,

Ax = UΣVTx. (2.59)

The broad picture can be seen from Figure 2.1 inspired by [164], in which we see how each
of the factorisation components of matrix A affect x along with their reverse operations.
Concretely, matrices U and V can be seen as rotations or reflections; in our case, and for ease
of exposition we use rotation. Moreover, matrix Σ indicates a stretch by the amount dictated
by the respective singular value. Note, that since the singular values in SVD are always greater
or equal to zero we do not have a stretch that can reverse the directions of vectors.

Fig. 2.1 Anatomy of Singular Value Decomposition for a 2× 2 matrix A and x, which contains
the two unit vectors; namely e1 and e2 and is depicted in the far left circle within the figure.
Then we show each of the transformation steps for Ax as each of the SVD pieces is applied to
x.

32 Background & Preliminaries

Firstly, VT rotates x to the correct plane. Then Σ stretches each vector according to the
magnitude of the respective singular value and by construction we have that σ1 ≥ σ2. Finally,
U performs another rotation to bring everything into the correct alignment. The bottom part of
the figure show how these operations can be reversed. The orthogonal parts are straightforward,
since we only need to use their transpose. On the other hand, to reverse the stretch we need to
take the inverted singular values from the original Σ which forms a new matrix Σ′. This matrix
Σ′ has across its diagonal 1/σi for i up to r where r the matrix rank, which in our example is
equal to 2.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is arguably the oldest and most ubiquitous technique to
perform multivariate analysis. It was introduced first by Pearson [143] and also rediscovered
independently by [92]. Due to its complexity to calculate, like most multivariate analysis tools,
only became popular with the advent of computers. This digital revolution was what enabled
the practical application of said techniques to real datasets. Furthermore, it has now become
the “de facto” tool of choice and most statistical packages and libraries come with at least
one implementation of PCA. The pivotal idea behind PCA is to exploit the inherent data
redundancy that most datasets have [200, 16]. It does so by transforming the dataset into a
smaller representation that explains most of the variance present within. This transformation is
linear and is achieved by taking its datapoints that are perhaps interrelated and converts them
into a new set of variables, called the Principal Components (PC’s), which are uncorrelated.
Further, PC’s are ordered by their significance - this is significant. Meaning that the PC
that contributes the maximal variance is always the first while the others must contribute
less or equal follow. Note that in most real-world datasets we expect the total variance to be
concentrated in the first few components due to data-redundancy, as previously discussed.

In fact, this should all sound fairly familiar as it very much looks like something that
the SVD, we previously introduced, would be used to perform - and it does. However, there
is a catch: that for the SVD of a matrix to be equal its PCA then that matrix has to be
centered. Concretely, the PC’s of a matrix A are its singular vectors and are contained in the
orthogonal matrices U and V produced by the SVD. In this context, PCA uses the singular
values produced by the SVD and their corresponding vectors u and v in order to understand
the underlying structure of the data contained within a matrix. Recall, that through the SVD
we can decompose any matrix A into ∑r

i=1 uiσivTi and through Theorem 2.3.1 we know that
this is the best we can do. In statistics we are looking for a given matrix A its pieces that
express most of its contained variance, which is exactly what SVD does.

In the context of machine learning literature, PCA can be classified as a form of unsupervised
learning. Practically, it implies that the SVD does not use any auxiliary information such
as labels or ground truth data to verify its result, but rather just applies the underlying

2.4 Principal Component Analysis 33

transformation. This is conversely with supervised methods such as deep learning which
try to model a non-linear function by using huge datasets as training data. One of the key
benefits of PCA through SVD is that it is a “hands-off” approach requiring no tuning to
provide its guarantees while also being is much more interpretable than other “black-box” based
approaches [156].

Let us now examine the statistical properties of PCA in a bit more detail. We can compute
PCA using a variety of techniques. However, one of the most prominent ones is by either
forming a correlation or a covariance matrix and applying the SVD on it. The main difference
between these two methods usually is that covariance matrix is employed when the variable
scales are similar whereas correlation matrix is used when the variables are on different scales.
In other words, using the correlation matrix is equivalent as performing standardisation of each
of the studied variables. These formulations can produce different results, especially when the
scales of the variables are different.

When performing PCA we are interested to explain the maximal variance from the dataset
at hand. However, an arbitrary dataset has two degrees of freedom w.r.t. to where its datapoints
reside, namely its mean and variance. The mean is defined as the average sum of each row of
our matrix, whereas the variance is defined as the sums of the squared distances from the mean.

Definition (Empirical covariance). The empirical (or sample) covariance of a given matrix A
of d rows and n columns is defined as the symmetric positive semidefinite matrix,

cov(A) = (A− µ)(A− µ)T
n− 1 (2.60)

Now, if the data is centered that implies µ = 0, hence the above transforms to the following,

cov(A) = AAT

n− 1 (2.61)

By construction cov(A) for matrix A ∈ Rd×n is a square and symmetric positive semidefinite
matrix in Rd×d. The variances of A are located across the diagonal entries of cov(A) whereas
the covariances are located in its off-diagonal entries. From the definition of the empirical
covariance we note that if the data are not centered, then we would not be able to get the
PC’s that correspond to the true covariance matrix. Since SVD can be applied to any matrix,
naturally it will applicable to non-centered data. However, the directions produced might differ
when compared to the ones dictated by its application to the true covariance matrix. Moreover,
apart from the significant resources required to construct the covariance matrix of A when
dealing with large matrices, it can also result in numerical stability issues [112]. Fortunately,
we can do better. Since the covariance matrix is a square and positive semidefinite matrix, then
we can use the eigendecomposition to factorise it as follows,

34 Background & Preliminaries

cov(A) = AAT

n− 1 = UΛUT

n− 1 = UΛ2UT

n− 1 (2.62)

Recall, that from eq. (2.50), that the eigendecomposition of AAT contains the left singular
vectors within U. This is exactly what we want PCA to compute for us. If we apply SVD to
the regular matrix A we can get both its left singular vectors as well as its singular values.
Thus the problem is reduced to applying the SVD to the actual matrix A rather than using its
covariance matrix. Which not only is more computationally efficient, but is also much more
robust when dealing with large matrices thus reducing numerical stability issues.

Let us now examine a little closer the problem that traditional PCA tries to solve. Recall,
from the beginning of this chapter the least squares fit problem, namely Ax = b which tries to
minimise the quantity ∥Ax−b∥2. Geometrically, it tries find the best line which minimises the
distances from the given set of points. However, PCA is different; as it can be translated into
applying the SVD to the covariance matrix. This problem is known as orthogonal regression
or perpendicular least squares. What PCA essentially does, is rather than performing a fit it
applies a linear transformation. Further, it guarantees that the line (or subspace) dictated
by the first PC minimises the sum of squared distances between the points and that line (or
subspace). To verify this, we can see this as it is a corollary of theorem 2.3.1. More concretely,
let ∥A∥2,1 be the sum of the Euclidean norms of the matrix columns and ai the i-th column
then we have,

∥A∥2,1 =
n∑
i=1
∥ai∥2 =

r∑
j=1

(
n∑
i=1
|aTi uj |2

)
=

r∑
j=1

uTj AATuj (2.63)

Now if we take the inner term, namely the dot product of |aTi uj |2 and expand it we get
(aTi uj)TaTi uj = uTj aiaTi uj . Summing over n it adds up to uTj AATuj which provides the final
form in eq. (2.63). This is important as if we take the first principal component we maximise
the respective summation and hence, by theorem 2.3.1 the following holds,

uT1 AATu1 ≥ uT2 AATu2 ≥ · · · ≥ uTr AATur (2.64)

Note, that the equality only holds if equal singular values exist, otherwise it is a strict inequality.
Let us now visualise what PCA does with an example. We start, by comparing the results

of PCA and ordinary least squares against a matrix A ∈ R2×50, without any preprocessing, as
shown in Figure 2.2.
In the figures above we can visualise what PCA actually does, we can see that the minimised
distance for all datapoints in our dataset it perpendicular to the line. On the other hand, in
traditional least squares the minimisation objective changes and thus it results in a different line.
However, note that we said that not centering the data before applying the SVD will not get
us the same PC’s if we do. To illustrate that, we now preprocess the dataset to be normalised,

2.4 Principal Component Analysis 35

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

1

2

3

4

5

6

y

PC1

(a) First PC direction, no preprocessing

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

1

2

3

4

5

6

y

lsqr fit

(b) Ordinary least squares fit, no preprocessing

Fig. 2.2 Comparison of the line dictated by the first PC after applying PCA against traditional
Least Squares over a dataset of 50 datapoints in R2 without centering or being zero-mean.

centered, and have zero-mean. After performing that, we reapply the aforementioned methods
once more, the results of which are shown in fig. 2.3.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
x

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

y

PC1

(a) First PC direction

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
x

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

y

lsqr fit

(b) Ordinary least squares fit

Fig. 2.3 Comparison of the line dictated by the first PC after applying PCA against traditional
Least Squares over a dataset of 50 datapoints in R2 after preprocessing ensuring it is normalised,
centered, and has zero-mean.

We can see that PCA produces a different line as its slope changes.

36 Background & Preliminaries

In order to quantify how much information is “explained” or “captured” by each principal
component we can compute the fraction of σi/(n− 1) where n is the number of samples. This
property is a direct consequence of theorem 2.3.1 as the basis formed by the r singular vectors
within U is able to explain the most variance out of any other set of vectors. Formally, we can
define the explained variance as follows,

Definition (Explained variance of a matrix). The explained variance of a matrix A is given
by,

var(A) = ∥A∥
2
F

n− 1 =
∑n
i=1 ∥ai∥2

n− 1
Or equivalently, we can reformulate this using the trace operator,

Tr(cov(A)) = Tr
(

AAT

n− 1

)
= Tr(AAT)

n− 1 =
∑r
i=1 σ

2
i

n− 1

Essentially, what PCA does is provide a principled mechanism of interpreting and understanding
structure of a given matrix A with n datapoints within that reside in Rd. It provides stronger
guarantees than least squares, in the sense that normally regression tasks operate under the
assumption that predictor variables are measured exactly and only the response variance
has an error component. On the other hand, PCA makes no such assumption and thus can
generalise better, meaning that requires no natural distinction between predictor and response
variables [100, 45].

2.5 Differential privacy

Differential privacy (DP) is a formal framework first put forth by Dwork et al. [50, 51] and
provides the mathematical constructions required for quantifying the privacy loss associated
with any query result drawn from a statistical database. By using the term statistical database,
we are referring to a set of data that are collected under the pledge of confidentiality to
produce aggregate cohort statistics, that by their production, the privacy of individuals who
provided the said data is not comprised. Intuitively, differential privacy can be motivated by
the impossibility event. That is, for any given statistical database to achieve the privacy target
of preventing disclosure of information about any individual with the said database against
potential adversaries with arbitrary auxiliary data while still providing useful results. The
curator of such a database for providing the queries is assumed to be a trusted entity whereas
queries to it can be made by untrusted parties that make statistical queries to the said database
and receive responses via randomised mechanisms or algorithms. Provided the above context,
we can proceed to define differential privacy as follows,

Definition (Differential Privacy [51]). A privacy mechanism A guarantees ε-differential privacy
if and only if for any database D ∈ D and D′ ∈ D differing on at most a single record, and for

2.5 Differential privacy 37

any possible result R ∈ Range(A)

e−εP[A(D′) = R] ≤ P[A(D) = R] ≤ eεP[A(D′) = R]

where the probability is taken over the randomness of the privacy mechanism A.

The above definition essentially guarantees us that an adversary, provided with the results of A,
can draw almost the same conclusions about any given individual within the database regardless
if that individual was included in the input of A or not. More succinctly, ε-differential privacy
requires that provided there is change of a single datapoint within the statistical database,
then the output of the algorithm should not differ significantly, with the privacy risk of that
occurring being controlled by the turning parameter ε. Following the definition of differential
privacy, we can now derive the privacy loss as follows,

Definition (Privacy Loss [51]). Let A be a privacy mechanism which provides a result R ⊆
Range(A) to a dataset D ∈ D. Then we can define the privacy loss of A between datasets
D,D′ ∈ D at results R ∈ Range(A) as a random variable P as follows,

P(A, D,D′, R) = log

(P[A(D) = R]
P[A(D′) = R]

)
where the probability is taken over the randomness of the privacy mechanism A.

This formulation of differential privacy while robust suffers from two major limitations that
hinder its practicality. The first is its intractability with respect to resources required for its
computation in the context of large datasets, while the second being its sample complexity
required to offer the aforementioned privacy guarantees [52]. To that end, a weaker definition of
differential privacy exists that relaxes that guarantee of section 2.5 and allows it to be violated
with probability δ > 0.

Definition ((ε, δ)-Differential Privacy [51]). A privacy mechanism A guarantees (ε, δ)-differential
privacy if and only if for any database D ∈ D and D′ ∈ D differing on at most a single record,
and for any possible result S ⊆ Range(A),

P[A(D) ∈ S] ≤ eεP[A(D′) ∈ S] + δ

This can equivalently formulated as follows using our privacy definition from section 2.5,

P
R∼A(D)

[P(A, D,D′, R) > ε] ≤ δ.

This corresponds to the definition of (ε, δ)-differential privacy, which enables tools for tighter
privacy analysis over repeated queries to the data. The relaxation made to the original definition
allows us to provide higher utility guarantees but at the cost of weaker privacy guarantees.

38 Background & Preliminaries

Namely, what this definition allows us to claim is that (ε, δ)-differential privacy ensures that
for all adjacent databases D and D′ the absolute value of the privacy loss will be bounded by ε
with a probability of at least 1− δ, where the probability space is over the domain of privacy
mechanism A. Another way to view this is that the (ε, δ) definition of differential privacy
guarantees that every input to A is almost equally likely, up to ε, on datasets differing at most
in a single datapoint except with probability at most equal to δ. Note, that δ preferably should
be smaller than 1/|D| where |D| is the cardinality of D meaning the number of individual
datapoints within the given statistical database. Additionally, another important yet often
missed remark, is if we fix δ to be equal to zero at all times in our provided definition of
(ε, δ)-differential privacy then it yields our original definition of ε-differential privacy. Thus we
can observe that ε (or pure) differential privacy is a special case of (ε, δ)-differential privacy
and can be often seen as (ε, 0)-differential privacy.

However, a more quantitative explanation of the aforementioned definitions is in order, as
there is a lot to unpack. In practice, what differential privacy does is to describe a promise,
made by the data owner (e.g. a database manager), to a data subject (e.g. a participant in a
dataset). This promise essentially affirms that the subject will not be affected, adversely or
otherwise, by allowing their data to be used in any study or analysis no matter what other
studies, datasets, or information sources are available [51]. What this promise unlocks is the
ability to make confidential data widely available for accurate data analysis without resorting
to any kind of special procedures such as data agreements, data protection plans, or similar
schemes.

Differential privacy techniques exploit the paradox of learning nothing about an individual
while learning useful information about the overall population. For example, a medical database
might tell us that high blood pressure increases the risk of heart attack, in turn affecting the
long-term insurance premiums of those suffering by it. Has an individual with high blood
pressure been harmed? Maybe - as the insurance premiums might be higher as a result if
the condition is disclosed. However, this disclosure might end up helping the individual as a
suitable treatment plan to manage the underlying condition could be provided. Now, has the
privacy of the individual been compromised? Obviously, more is known about the individual
after this disclosure, but the question we need to answer is if the information was actually
“leaked”? The stance of differential privacy is that in fact it was not, with the rationale being
that the impact of suffering with high blood pressure is the same and independent of whether
or not the individual disclosed that information. In a sense, differential privacy guarantees
that the same conclusions, for example that high blood pressure increases the risk of heart
attacks, will be reached, independent of whether any individual opts into or opts out of the
dataset. More precisely for any sequence of outputs (e.g. responses to queries) ensures that
“essentially” have an equal probability of occurring, independent of the presence or absence of
any individual within the dataset. In that context, the probabilities of the event to occur are
taken over random choices made by the privacy mechanism and the firmness of that guarantee

2.6 Federated computation 39

is captured by the (tunable) parameter ε. A smaller ε will yield better privacy at the cost of
the resulting query accuracy, which is also evident in the formulations presented previously.
However, one important detail is that differential privacy is a definition rather than an actual
specification for an algorithm. This means that for any task and a given set of differential
privacy parameters there will be many algorithms for completing that task in a differentially
private way.

Concluding, we note that due to practicality implications, our constructions put forth
in Chapter 4 use the (ε, δ) definition of differential privacy to provide such guarantees for our
Federated Principal Component framework.

2.6 Federated computation

With the advent of powerful mobile phones, tablets, and wearables a significant amount of
users have switched to one as their primary computing device instead of a traditional personal
computer. Such devices are highly portable with far better battery life than most laptops and
are rarely separated from their owners. Further, most of these devices are equipped with a
myriad of different sensors offering rich user interactions and activity monitoring, that in turn
can provide unprecedented amount of data, much of it private in nature. Naturally, insights
gathered from such volume of data hold the promise of unlocking features and experiences that
would be infeasible otherwise. However, their sensitive nature means that there are risks and
implications if gathered in a centralised location. Additionally, in most cases due to the sheer
volume of the data or the communication overhead incurred centralisation might be impossible.

To exploit these datasets this while also providing data ownership for each client participating
in the computation a new computing paradigm was put forth dubbed as federated learning [108,
128]. Concretely, it can be seen as a relaxation of the distributed computation model, whereas
each client solves its own problem but also retains its data. The model is computed using local
and incremental updates only propagating these updates sending them to clients holding the
centralised model for aggregation. For each client, these updates are targeted improvements
to its own model and thus are ephemeral. Meaning that under this model there is no need to
store the training data resulting in considerable space savings. In other words, this framework
allows decentralised training of the model without the massive communication costs incurred
during centralisation procedures that traditional methods employ. Moreover, traditional
training assumes that the data are evenly distributed across each client and the paradigm was
primarily exploited to effectively parallelise the workload across the available computation
nodes. Additionally, under more traditional models it was also assumed that the computing
nodes would be relatively equal in terms of available resources. In contrast, federated learning
aims to train unevenly distributed datasets in clients that are assumed to have heterogeneous
hardware configurations and limited connectivity. For example, it is able to unlock training
using different generations of mobile phones which are known to have large discrepancies in

40 Background & Preliminaries

their capabilities and available resources. Practically speaking, one of the principal benefits of
this approach is that it allows the decoupling of the model training from requiring constant
and direct access to the entire dataset. However, this computation paradigm has been used
for mostly for training of neural networks and federated adaptations of classical data analysis
algorithms are still largely missing [162, 88, 65]. We exploit this method and refine it to be used
as a building block that enables us to put forth a novel algorithm for federated computation of
PCA, which is presented in Chapter 4.

One important consequence of using federated learning for model training is that it ensures
data ownership within each client, which can guarantee a notion of privacy or more precisely,
data-secrecy. Indeed, since no client data, apart from aggregates such as model weights or
parameters are transmitted verbatim for processing this in turn makes it harder for a malicious
actor to perform successful attacks on a federated model. This can be further strengthened
if standard practices are used, such as encrypting data during transmission and having a
verification scheme for when new clients join the federation. Even if the data transmitted
are summaries, sufficient trust to the nodes coordinating the training is still required. This
is because, as we previously mentioned, federated data can contain sensitive information
about individuals and even if only summaries of data are transmitted they still can contain
personally identifiable information. Despite these provisions data can still be potentially leaked
if a malicious actor is able to make multiple specific queries on the dataset. To this end, if
additional privacy is required we can exploit differential privacy randomisation techniques as
previously discussed. Concretely, our federated PCA algorithm we introduce in Chapter 4
can also release a differentially private model which extends the work put forth by [32, 33]
to be applicable in a federated setting and to non-symmetric matrices. This protects both
local models as well as their aggregations which in turn safeguards against malicious leaf nodes
and/or aggregation servers.

2.7 Notation

This section collectively states the notational conventions used throughout this thesis for the
convenience of the reader. We use lowercase letters y for scalars, bold lowercase letters y for
vectors, bold capitals Y for matrices, and calligraphic capitals U for subspaces. The orthogonal
complement of a subspace U is depicted as U⊥. The field of rational numbers is denoted as
R and we write the dimensionality of the domain as its exponent; e.g: Rd×n depicting a two
dimensional matrix of d rows and n columns, with n, d ≥ 0. The transpose and inverse of
any matrix Y is denoted as YT and Y−1 respectively. For any positive definite (PD) and
semidefinite (PSD) matrix Y, we write it as Y ≻ 0 and Y ≽ 0 respectively. We denote the
span(·) operator to be the linear span of a set of vectors. The expectation of a random variable
x is written as E[x], while the probability measure over x is written as P[x]. If Y ∈ Rd×n and
S ⊂ {1, . . . ,m}, then YS is the block composed of columns indexed by S. We reserve 0m×n for

2.7 Notation 41

the zero matrix in Rm×n and In for the identity matrix in Rn×n. Additionally, we use ∥ · ∥F
to denote the Frobenius norm, ∥ · ∥ to denote the ℓ2 norm, and the trace operator with Tr(·).
We denote that the Singular Value Decomposition to be abbreviated as SVD and use it as
an operator with SVD(Y). The truncated SVD is defined by extending the SVD operator as
SVD(Y, r) by adding the truncation rank r as an argument to the operator. If Y ∈ Rd×n we
let Y = UΣVT be its full SVD formed from unitary U ∈ Rd×d and V ∈ Rn×n and diagonal
Σ ∈ Rd×n. The values Σr,r

i,i = σi(Y) ≥ 0 are the singular values of Y. If 1 ≤ r ≤ min(d, n),
we let Ŷr = UrΣrVT

r = SVD(Y, r) be the singular value decomposition of its best rank-r
approximation formed by unitary U ∈ Rd×r and V ∈ Rr×n and diagonal Σ ∈ Rr×r. That is,
the solution of min{∥Z − Y∥F : rank (Z) ≤ r}. Using this notation, we define [Ur,Σr] be
the rank-r principal subspace of Y. We also define SVDS(Y, r) as [Ur,Σr,VT

r] = SVDS(Y, r)
which instead of the computed rank-r matrix returns the individual components of the SVD as
defined above. When there is no risk of confusion, we will abuse notation and use SVDS(Y, r)
to denote the rank-r left principal subspace with the r leading singular values [Ur,Σr]. In
a similar note, we also let [Q,R] = QR(Y) be the rank QR factorisation of Y. We also let
λ1(Y) ≥ · · · ≥ λk(Y) be the eigenvalues of Y when d = n. Finally, we let e⃗k ∈ Rd be the k-th
canonical vector in Rd.

Chapter 3

Beyond Regular Singular Value
Decomposition

In Chapter 2, we introduced SVD, which is an invaluable tool for factorising a matrix with
stringent quality guarantees. However, this optimality comes at a cost. Traditional SVD
requires significant resources both in terms of storage as well as computation. Given that
the datasets have exploded in size and rarely remain as-is, performing the full SVD every
time the dataset is appended with incoming data seems highly inefficient. In this chapter
we introduce an algorithm for Memory-limited Online Subspace Estimation (MOSES) that
attempts to optimally solve this problem. Further, it can be used for both estimating the
principal components of data and reducing its dimension, requiring only one pass over the data.
Concretely, consider a scenario where the data vectors are presented sequentially to a user who
has limited storage and processing time available, for example in the context of sensor networks.
In this scenario, our proposed algorithm maintains an estimate of leading principal components
of the data that has arrived so far while also reducing its dimension with one pass over the
data.

In terms of its origins, our solution is based on generalising the popular incremental Singular
Vale Decomposition (SVD) to handle thin blocks of data. Furthermore, this generalisation, is
in part what allows us to complement our method with a comprehensive statistical analysis
that is not available for incremental SVD, despite its widespread empirical success. Notably, it
also enables us to concretely interpret the proposed algorithm as an approximate solver for the
underlying non-convex optimisation program. We also find that our proposed method shows
state-of-the-art performance in our numerical experiments with both synthetic and real-world
datasets. As we will see later in Chapter 4 this method is one of our primary building blocks
that allows to perform a federated computation of PCA.

44 Beyond Regular Singular Value Decomposition

3.1 Introduction

Linear models are pervasive in data and computational sciences and Principal Component
Analysis (PCA) in particular is an indispensable tool for detecting linear structure in collected
data and has been extensively studied in scientific literature [175, 6, 110, 169, 181]. Principal
Components (PC’s) are the directions that preserve most of the “energy” of a dataset and can be
used for linear dimensionality reduction, among other things. In turn, successful dimensionality
reduction is at the heart of classification, regression, and other learning tasks that often suffer
from the “curse of dimensionality”, where having a small number of training samples in relation
to the dimension of data typically leads to overfitting [87].

We are interested in both computing the principal components and reducing the dimension
of data that is presented sequentially to a client. Due to potential hardware limitations, the
client can only store small amounts of data, which in turn severely limits the available processing
time for each incoming data vector. For example, consider a network of battery-powered and
cheap sensors that must relay their measurements to a central node on a daily basis. Each
sensor has a limited storage and does not have the power to relay all the raw data to the
central node. One solution is then for each sensor to reduce the dimension of its data to make
transmission to the central node possible. Even if each sensor had unlimited storage, the
frequent daily updates scheduled by the central node would force each sensor to reduce the
dimension of its data “on the go” before transmitting it to the central node. In the context of
this work we focus on incremental or “streaming” algorithms for the computation of “subspace
tracking” or “streaming SVD” denoting that such algorithms are able to update and track a
dataset subspace using streaming observations and thus we use these terms interchangeably.
However, we understand that these methods have different connotations and have arisen from
different scientific domains. Concretely, “subspace tracking” originated within signal processing
literature where often is required to update a subspace within a dynamic environment [37]. On
the other hand, the more recent terminology of “streaming“ or “online“ PCA can be found in
machine learning and data-science literature stemming from the need to replicate the behaviour
of batch PCA using streaming or too large for memory data [133, 130] A number of similar
problems are listed in [12, 11].

Motivated by such scenarios, we are interested in developing a streaming algorithm for
linear dimensionality reduction, namely an algorithm with minimal storage and computational
requirements while providing strong guarantees about its output quality. As more and more
data vectors arrive, this algorithm would keep a running estimate of the principal components
of the data and project the available data onto this estimate to reduce its dimension. As we
will see shortly, what we need here is a streaming algorithm to compute truncated SVD.

More specifically, existing incremental SVD algorithms in the literature update its estimate
of truncated SVD of the data matrix with every new incoming vector [29, 26, 25, 37, 116]. This
poses computational issues, as performing the SVD for every new incoming vector can prove

3.2 Memory-limited Online Subspace Estimation 45

costly and thus inefficient. However, more crucially, to the best of our knowledge and despite its
popularity, incremental SVD lacked comprehensive statistical guarantees. In fact, [10] only very
recently provided stochastic analysis for two of the variants of incremental SVD in [109, 137].
Concretely, in [10] the authors studied how well the output of incremental SVD approximates
(only) the leading principal component of data, in expectation. In particular, [10] does not
offer any guarantees for dimensionality reduction, see Section 3.6 for a detailed discussion.
Summary of contributions: In this chapter we put forth a streaming algorithm able to
operate on memory-limited devices that incrementally computes the rank-r truncation of a
given data matrix. Contrary to prior art, our algorithm provides several innovations. Firstly,
our algorithm is able to be computed using thin blocks of data the size of which are bounded
by the target rank-r rather than the ambient dimension which normally is significantly larger.
This increases both the rate of estimate updates, as well as improve its computational efficiency.
Secondly, our algorithm is able to provide quality guarantees on all of the SVD components as
well as the projected data while only requiring a single pass over the data. In fact, we show both
theoretically and empirically that this algorithm is almost equivalent to the offline truncated
SVD of equal rank, which is assumed to have infinite resources for its computation. More
importantly, we complement our algorithm with comprehensive statistical guarantees about its
output quality, which to the best of our knowledge and despite its popularity, incremental SVD
lacked.

3.2 Memory-limited Online Subspace Estimation

Consider a sequence of vectors {y1, ...,yτ} ⊂ Rd, presented to us sequentially, and let

Yτ :=
[

y1 y2 · · · yτ
]
∈ Rd×τ , (3.1)

for short. We conveniently assume throughout that Yτ is centred, namely the entries of each
row of Yτ sum up to zero. It is then a consequence of the theorem 2.3.1 that leading r principal
components of Yτ in fact coincide with leading r left singular vectors of Yτ . More specifically,
let for a given matrix Yτ ∈ Rd×τ

SVD (Yτ) = UτΣτVτ
T , (3.2)

be the data matrix Ŷτ using the outputs of the SVD(Yτ), where Uτ ∈ Rd×d and Vτ ∈ Rτ×n

are orthonormal bases, and the diagonal matrix Στ ∈ Rd×τ contains the singular values of Y
in decreasing order.

Now, provided with the above constructions let us assume that rank(Yτ) ≥ r. Then the
first r columns of Uτ , which we collect in Uτ,r ∈ Rd×r, are leading r principal components of
Yτ . We accordingly decompose Yτ into two components, namely

46 Beyond Regular Singular Value Decomposition

SVD (Yτ) = UτΣτVT
τ

=
[

Uτ,r Uτ,r+

] [Στ,r

Στ,r+

] [
VT
τ,r VT

τ,r+

]
= Uτ,rΣτ,rVT

τ,r + Uτ,r+Στ,r+VT
τ,r+

=: Yτ,r + Yτ,r+ , (3.3)

where the empty blocks are zero. It is easy to see that the column and row spaces of Yτ,r are
orthogonal to those of Yτ,r+ , namely

Yτ,rYT
τ,r+ = 0d×d, YT

τ,rYτ,r+ = 0τ×τ . (3.4)

Moreover, Theorem 2.3.1 implies that Yτ,r = SVDr(Yτ) is the best rank-r truncation of Yτ .
That is, Yτ,r is a best rank-r approximation of Yτ with the corresponding residual,

∥Yτ −Yτ,r∥2F = min
rank(X)=r

∥Yτ −X∥2F

= ∥Yτ,r+∥2F (see (3.4))
=

∑
i≥r+1

σ2
i (Yτ)

=: ρ2
r(Yτ), (3.5)

where σ1(Yτ) ≥ σ2(Yτ) ≥ · · ·σr(Yτ) are the singular values of Yτ . Given the leading r

principal components of Yτ , namely Uτ,r in (3.3), we can reduce the dimension of data from d

to r by projecting Yτ onto the span of Uτ,r, that is

UT
τ,r ·Yτ = STτ,r(Yτ,r + Yτ,r+) (see (3.3))

= UT
τ,rYτ,r (see (3.4))

= Στ,rVT
τ,r ∈ Rr×τ . (see (3.4)) (3.6)

The projected data matrix UT
τ,rYτ ∈ Rr×τ again has τ data vectors (namely, columns) but

these vectors are embedded in, often much smaller, Rr rather than Rd. Note also that,

3.2 Memory-limited Online Subspace Estimation 47

Yτ,r = SVD(Yτ , r)
= Uτ,rUT

τ,r ·Yτ

= Uτ,rUT
τ,r(Yτ,r + Yτ,r+) (see (3.3))

= Uτ,rUT
τ,rYτ,r (see (3.4))

= Uτ,r︸ ︷︷ ︸
PCs

· Στ,rVT
τ,r︸ ︷︷ ︸

projected data

. (see (3.3)) (3.7)

That is, rank-r truncation of Yτ encapsulates both leading r principal components of Yτ ,
namely Uτ,r, and the projected data matrix UT

τ,rYτ = Στ,rVT
τ,r. In other words, computing

a rank-r truncation of the data matrix both yields its principal components and reduces the
dimension of data at once. We are in this work interested in developing a streaming algorithm
to compute Yτ,r = SVD(Yτ , r), which is a rank-r truncation of the data matrix Yτ . More
specifically, to compute Yτ,r, we restrict ourselves to perform only a single pass through the
columns of Yτ , as they arrive. We also operate under the realistic assumption that each device
has limited amount of storage available, namely O(d) bits. Meaning that the amount of memory
available is proportional to the ambient dimension of the the matrix Yτ which is Rd. See also
Figure 3.1.

Fig. 3.1 Given a data matrix Yτ ∈ Rd×τ , truncated SVD finds the best low-dimensional
linear model of rank r to represent the data. For a typically small integer r, we compute
Yτ,r = SVD(Yτ , r) = Uτ,r ·UT

τ,rYτ , where Uτ,r ∈ Rτ×r contains leading r principal components
of Yτ . Further, UT

τ,rYτ ∈ Rr×τ is the projected data matrix with reduced dimension r (instead
of d).

For a block size b ∈ N, our strategy is to iteratively group every b incoming vectors into an d× b
block and then update a rank-r estimate of the data that has been received so far. We assume
throughout that r ≤ b ≤ τ and in fact often take the block size as b = O(r). It is convenient

48 Beyond Regular Singular Value Decomposition

to assume that the number of blocks is an integer and we can claim that K = {1, . . . , ⌈τ/b⌉}.
Upon arrival of a new data block {yτ}kbτ=(k−1)b+1, we concatenate these vectors to form the
matrix,

Bk =
[

y(k−1)b+1 · · · ykb
]
∈ Rd×b.

For every k ∈ [1 : K] := {1, · · · ,K}, we then set

[Ukb,r,Σkb,r,VT
kb,r] = SVDS

([
Ŷ(k−1)b,r Bk

]
, r
)
, (3.8)

where Ukb,r ∈ Rd×d, Σkb,r ∈ Rr×r, VT
kb,r ∈ Rr×kb, and with the convention that Ŷ0,r is the

empty matrix. Then to get the updated projected data matrix Ŷkb,r at block kb, we can do so
by simply multiplying the outputs of Equation 3.8. Concretely, we can do,

Ŷkb,r = Ukb,rΣkb,rVT
kb,r ∈ Rd×kb, (3.9)

In practice this is a recursion using the SVD operator with its input parameters being previous
output namely Ŷ(k−1)b,r concatenated with the newly gathered data block Bk. We call this
simple algorithm MOSES for Memory-limited Online Subspace Estimation. The output of
MOSES after K iterations is,

ŶKb,r = Ŷτ,r,

which contains both an estimate of leading r principal components of Yτ and the projection
of Yτ onto this estimate, as discussed below. For easy reference, MOSES is summarised
in Algorithm 1, which is presented below.

Algorithm 1: MOSES: A streaming algorithm for linear dimensionality reduction
Data: Sequence of vectors {yt}t≥1 ⊂ Rd, rank r, and block size b ≥ r.
Result: Sequence {Ŷkb,r}k, where Ŷkb,r ∈ Rd×kb for every k ≥ 1.
Function MOSES({yt}t≥1 ⊂ Rd, r, b) is

Set Ŷ0,r ← {}.
for k ≥ 1 do

Form Bk ∈ Rd×b by concatenating {yτ}kbτ=(k−1)b+1.
/* use SVD to get a rank-r truncation of its argument. */
Set Ŷkb,r ← SVD([Ŷ(k−1)b,r Bk], r)

end
end

While this algorithm can get us the desired output, it is computationally inefficient. The most
notable inefficiently is that in Algorithm 1 the full rank-r matrix seen thus far, namely Ŷ(k−1)b,r,

3.2 Memory-limited Online Subspace Estimation 49

is required as an input to the recursion. Naturally, as this matrix grows by the size of each
incoming block at every iteration, we can see that this algorithm quickly becomes intractable.
To address this, we provide an efficient implementation of MOSES is given in Algorithm 2.
This implementation, explicitly maintains both the estimates of principal components as well
as the projected data incrementally and without requiring the expansion of Ŷ(k−1)b,r resulting
in significant performance and storage gains. Additionally, as discussed below, we will see that
the storage and computational requirements of Algorithm 2 are nearly optimal.

Discussion

MOSES maintains a rank-r estimate of the data that has been received so far, and updates
its estimate in every iteration to account for the new incoming block of data. In other words,
MOSES simultaneously keeps an estimate of principal components and the projection of the
available data onto this estimate. More specifically, note that the final output of MOSES,
namely Ŷτ,r ∈ Rd×τ , is at most rank-r, and let

Ûτ,rΣ̂τ,rV̂T
τ,r = SVD(Ŷτ,r), (3.10)

be its SVD. We also know that by using the SVD components (though SVDS) that,

Ŷτ,r = Ûτ,rΣ̂τ,rV̂τ,r ∈ Rd×τ

Then, Ûτ,r ∈ Rd×r is MOSES’s estimate of principal components of the data matrix Yτ , and,

ÛT
τ,rŶτ,r = Σ̂τ,rV̂τ,r ∈ Rr×τ

is the projection of Ŷτ,r onto this estimate. That is, ÛT
τ,rŶτ,r is the MOSES’s estimate of the

projected data matrix.
It is natural to ask how MOSES compares with the “offline” truncated SVD. To be

concrete, recall that Yτ,r = SVD(Yτ , r) is a rank-r truncation of the data matrix Yτ with the
corresponding residual of ρ2

r(Yτ), see (3.5). Because Yτ,r is a best rank-r approximation of
Yτ , the final output Ŷτ,r of MOSES cannot be a better approximation of Yτ , that is,

min
rank(X)=r

∥Yτ −X∥2F = ∥Yτ −Yτ,r∥2F = ρ2
r(Yτ) ≤ ∥Yτ − Ŷτ,r∥2F . (3.11)

However, our main technical contribution in Theorem 3.4.2 below states that, under certain
conditions, Ŷτ,r is not much worse than Yτ,r, in the sense that

ρ2
r(Yτ) ≤ ∥Yτ − Ŷτ,r∥2F ≲ poly(τ) · ρ2

r(Yτ), (3.12)

50 Beyond Regular Singular Value Decomposition

and the polynomial factor above is relatively small. That is, MOSES for streaming dimensionality
reduction nearly matches the performance of its offline version that has access to unlimited
storage and computing resources, see Section 3.4 for the details.

Origins

Incremental SVD is a streaming algorithm that updates its estimate of (truncated) SVD of the
data matrix with every new incoming vector [29, 26, 25, 37, 116]. It is easy to verify that MOSES
generalises traditional incremental SVD setting to update its estimate with every incoming
block of data, rather than with every incoming data vector. As detailed later in Section 3.6,
this small difference between incremental SVD and MOSES is in part what enables us to
complement MOSES with a comprehensive statistical analysis in Theorem 3.4.2. To the best
of our knowledge, such results are absent from the literature of incremental SVD, despite its
popularity and empirical success. This refinement also allows us to concretely interpret MOSES
as an approximate solver for the underlying non-convex program, as detailed in Section 3.3.

Storage and computational requirements

The efficient implementation of MOSES in Algorithm 2 is based on the ideas from incremental
SVD and it is straightforward to verify that Algorithms 1 and 2 are indeed equivalent. Con-
cretely, at iteration k, the relation between the output of Algorithm 1 (Ŷkb,r) and the output
of Algorithm 2 (Ûkb,r, Σ̂kb,r, V̂kb,r) is,

SVD(Ŷkb,r) = Ûkb,rΣ̂kb,rV̂T
kb,r,

where the right-hand side above is the SVD of Ŷkb,r. More specifically, Ûkb,r ∈ Rd×r has
orthonormal columns and is the MOSES’s estimate of r leading principal components of
Ykb ∈ Rd×kb, where we recall that Ykb is the data received so far. Moreover,

ÛT
kb,rŶkb,r = Σ̂kb,rV̂T

kb,r ∈ Rr×kb

is the projection of Ŷkb,r onto this estimate, namely ÛT
kb,rŶkb,r is MOSES’s estimate of the

projected data matrix so far. In words, the efficient implementation of MOSES in Algorithm 2
explicitly maintains estimates of both principal components and the projected data, at every
iteration.

Let us now evaluate the storage and computational requirements of the efficient MOSES
algorithm. At the start of iteration k, Algorithm 2 stores the following matrices,

Û(k−1)b,r ∈ Rd×r, Σ̂(k−1)b,r ∈ Rr×r, V̂(k−1)b,r ∈ R(k−1)b×r,

3.2 Memory-limited Online Subspace Estimation 51

and after that also receives and stores the incoming block Bk ∈ Rd×b. This requires O(r(d+
(k − 1)b + 1)) + O(bd) bits of memory, because Σ̂(k−1)b,r is diagonal. Assuming that O =
O(r), Algorithm 2 therefore requires O(r(d + kr)) bits of memory at iteration k. Note that
this is optimal, as it is impossible to store a rank-r matrix of size d× kb with fewer bits when
b = O(r). It is also easy to verify that Algorithm 2 performs O(r2(d+ kb)) = O(r2(d+ kr))
flops in iteration k. The dependence of both storage and computational complexity on k is
due to the fact that MOSES maintains both an estimate of principal components in Ûkb,r

and an estimate of the projected data in Σkb,rVT
kb,r. To maximise the efficiency, one might

optionally “flush out” the projected data after every ⌈d/b⌉ iterations, as described in the last
step in Algorithm 2.

52 Beyond Regular Singular Value Decomposition

Algorithm 2: An efficient implementation of MOSES
Data: Sequence of vectors {yt}t≥1 ⊂ Rd, rank r, and block size b ≥ r.
Result: Sequence {Ŝkb,r, Σ̂kb,r, V̂T

kb,r}k.
Function MOSES({yt}t≥1 ⊂ Rd, r, b,with vt) is

if k is 1 then
Form B1 ∈ Rd×b by concatenating {yt}bt=1.
/* set the first block */
[Ûb,r, Σ̂b,r, V̂T

b,r]← SVDS(B1, r),.
else

Form Bk ∈ Rd×b by concatenating {yt}kbt=(k−1)b+1.
/* project using previous estimate */
ṗk = ÛT

(k−1)b,rBk ∈ Rr×b.
/* get the residual */
ẑk = Uk − Û(k−1)b,rṗk ∈ Rd×b.

/* use QR to get the partials, q̂k ∈ Rd×b and vk ∈ Rb×b */
[q̂k,vk]← QR(ẑk).
/* get the r-SVDS to update, uk, v̂k ∈ R(r+b)×r and Σ̂kb,r ∈ Rr×r */[
uk, Σ̂kb,r, v̂Tk

]
← SVDS

([
Σ̂(k−1)b,r ṗk

0b×r vk

]
, r

)
.

/* update the Ûkb,r ∈ Rd×r estimate */

Ûkb,r =
[
Û(k−1)b,r q̂k

]
uk.

/* optionally, get the projected data, V̂T
kb,r ∈ Rr×kb */

if with vt is true then

V̂T
kb,r =

[
V̂T

(k−1)b,r 0
0 Ib

]
v̂Tk .

else
/* otherwise, flush, v̂k ∈ Rr×b */
V̂T
kb,r = v̂Tk .

end
end

end

3.2 Memory-limited Online Subspace Estimation 53

It has to be noted that while Algorithm 2 is as discussed optimal, in practical implementations
it is bounded by the quality of the auxiliary functions that are used internally. Concretely,
in most implementations we believe that matrix operations are trivial and most packages
have well defined routines. However, SVDS and QR implementations matter a lot and have
high variability depending on the operating system, language, and packages used. To provide
more information about potential implementations, we will now describe the computational
complexity of the these functions as is described by the packages we used for our implementation,
namely MATLAB. Note that these methods are employed one per block, thus these operate in
B ∈ Rd×b as such we will report the complexity of these methods using the dimensions of
each block. The svds function used a variant of the Lanczos bidiagonalization algorithm with
partial reorthogonalization (BPRO) algorithm [111, 9], which has a storage complexity of
O(r(d+ b)) = O(r(d+ r)) and requires O(r2(d+ b)) = O(r2(d+ r)) flops. As for QR, MATLAB
does not provide any publicly available implementation details, however most certainly they
use variants of the QR implementation used in LAPACK. In particular to provide a reference
point one popular way of computing the QR decomposition is by employing Householder
reflections. Its storage requirement is O(db) = O(dr) and has a computational complexity
of O(3db2 − 2

3db
3) = O(3dr2 − 2

3dr
3) [70]. Ignoring the constants and only showing the

asymptotically dominant factor, the final computational complexity for QR is O(dr2). As we
can see, in both instances the dominant factor is the ambient dimension d as asymptotically
our assumption is that d >> b ≈ r.

54 Beyond Regular Singular Value Decomposition

3.3 Optimisation Viewpoint

MOSES has a natural interpretation as an approximate solver for the non-convex optimisation
program underlying PCA, which serves as its primary motivation. More specifically, recall that
r leading principal components of Yτ are obtained by solving the non-convex program

min
U∈G(d,r)

∥Yτ −PUYτ∥2F , (3.13)

where the minimisation is over the Grassmannian G(d, r), the set of all r-dimensional subspaces
in Rd. Above, PU ∈ Rd×d is the orthogonal projection onto the subspace U . By our problem
formulation as per Section 3.2, note that,

Yτ =
[

y1 y2 · · · yτ
]

(see eq. (3.1))

=
[

B1 B1 · · · BK

]
∈ Rd×τ , (3.14)

where {Bk}Kk=1 are the incoming blocks of data. This allows us to rewrite Program (3.13) as

min
U∈G(d,r)

∥YT −PUYτ∥2F = min
U∈G(d,r)

K∑
k=1
∥Bk −PUBk∥2F (see (3.14))

=

min∑K
k=1 ∥Bk −PUK

· · ·PUk
Bk∥2F

U1 = U2 = · · · = UK ,
(3.15)

where the last minimisation above is over all identical subspaces {Uk}Kk=1 ⊂ G(d, r). Our
strategy is to make a sequence of approximations to the program in the last line above. In the
first approximation, we only keep the first summand in the last line of (3.15). That is, our first
approximation reads as

min∑K
k=1 ∥Bk −PUK

· · ·PUk
Bk∥2F

U1 = U2 = · · · = UK
≥

min ∥B1 −PUK
· · ·PU1B1∥2F

U1 = U2 = · · · = UK

= min
U∈G(d,r)

∥B1 −PUB1∥2F , (3.16)

where the second line above follows by setting U = U1 = · · · = UK . Let the candidate subspace
Ŝb,r be a minimiser of the program in the last line above. Note that Ŝb,r simply spans r leading
principal components of the first block in the sequence B1, akin to Program (3.13). This indeed
coincides with the output of MOSES in the first iteration. This because what both MOSES
and SVD do, is practically identical for the first block as is shown below,

3.3 Optimisation Viewpoint 55

Ŷb,r = SVD(B1, r) (see (3.8))
= PŜb,r

y1. (similar to the second line of (3.7)) (3.17)

However, we must now consider the next approximation for all iterates. To do so, we keep two
of the summands in the last line of (3.15), namely that the quantity M ,

M =

min∑K
k=1 ∥Bk −PUK

· · ·PUk
Bk∥2F

U1 = U2 = · · · = UK

is greater or equal than the following,

M ≥

min ∥B1 −PUK
· · ·PU1B1∥2F + ∥B2 −PUK

· · ·PU2B2∥2F
U1 = U2 = · · · = UK ,

and then we substitute U1 = Ŝb,r above to arrive at the new program,min ∥B1 −PUK
· · ·PU2PŜb,r

B1∥2F + ∥B2 −PUK
· · ·PU2B2∥2F

U2 = U3 = · · · = UK

= min
U∈G(d,r)

∥B1 −PUPŜb,r
B1∥2F + ∥B2 −PUB2∥2F , (3.18)

where the second program above follows by setting U = U2 = · · · = UK . Provided this, then we
can rewrite the above program as follows,

min
U∈G(d,r)

∥B1 −PUPŜb,r
B1∥2F + ∥B2 −PUB2∥2F

= min
U∈G(d,r)

∥∥∥[B1 −PUPŜb,r
B1 B2 −PUB2

]∥∥∥2

F

= min
U∈G(d,r)

∥∥∥∥[PŜ⊥
b,r

B1 0d×b

]
+ PU⊥

[
PŜb,r

B1 B2
]∥∥∥∥2

F

= ∥PŜ⊥
b,r

B1∥2F + min
U∈G(d,r)

∥∥∥PU⊥

[
PŜb,r

B1 B2
]∥∥∥2

F
(see the text below)

= ∥PŜ⊥
b,r

B1∥2F + min
U∈G(d,r)

∥∥∥PU⊥

[
Ŷb,r B2

]∥∥∥2

F
, (see (3.17)) (3.19)

and let Ŝ2b,r be a minimiser of the last program above. Above, ⊥ indicates the orthogonal
complement of a subspace. The second to last line above follows because Ŝ2b,r is always within

56 Beyond Regular Singular Value Decomposition

the column span of [PŜb,r
B1 B2]. Note also that Ŝ2b,r is the span of leading r principal

components of the matrix [Ŷ1,r B2], similar to Program (3.13). This again coincides with the
output of MOSES in the second iteration, because

Ŷ2b,r = SVD
([

Ŷb,r B2
]
, r
)

(see (3.8))

= PŜ2b,r

[
Ŷb,r B2

]
. (similar to the second line of (3.7)) (3.20)

Continuing this procedure precisely produces the iterates of MOSES. Therefore we might
interpret MOSES as an optimisation algorithm that can also be an approximate solver of
Program (3.13) by making a sequence of approximations, namely one for each complete block
Bk of input processed.

3.4 Performance of MOSES

In this section, we study the performance of MOSES in a stochastic setup. Consider the
probability space (Rd,B, µ), where B is the Borel σ-algebra and µ is an unknown probability
measure with zero mean, namely

´
Rd yµ(dy) = 0. We are interested in finding an r-dimensional

subspace U that best approximates the probability measure µ. That is, with y drawn from this
probability space, we are interested in finding an r-dimensional subspace U that minimises the
population risk:

min
U∈G(d,r)

E ∥y−PUy∥22 = min
U∈G(d,r)

ˆ
Rd

∥y−PUy∥2F µ(dy)

=: ρ2
r(µ). (3.21)

Since µ is unknown, we cannot directly solve Program (3.21) but suppose that instead we
have access to the training samples {yt}τt=1 ⊂ Rd drawn independently from this probability
space (Rd,B, µ). Let us form Yτ ∈ Rd×τ by concatenating these vectors, see (3.1). In lieu of
Program (3.21), we then replace the population risk above with the empirical risk:

min
U∈G(d,r)

1
τ

τ∑
t=1
∥yt −PUyt∥22 = min

U∈G(d,r)

1
τ
∥Yτ −PUYτ∥2F (see (3.1))

= 1
τ

∥∥Yτ −PSτ,r Yτ

∥∥2
F

(see the text below)

= 1
τ
∥Yτ −Yτ,r∥2F (Yτ,r = SVDr(Yτ))

=: ρ
2
r(Yτ)
τ

. (see (3.5)) (3.22)

3.4 Performance of MOSES 57

Here, Sτ,r ∈ G(d, r) is a minimiser of the above program with orthonormal basis Sτ,r ∈ Rd×r.
Note that Sτ,r consists of r leading principal components of Yτ , namely it contains leading r
left singular vectors of Yτ as per theorem 2.3.1. Given its principal components, we can then
reduce the dimension of the data matrix Yτ ∈ Rd×τ from d to r by computing STτ,rYτ ∈ Rr×τ .
Note also that Sτ,r is a possibly sub-optimal choice in Program (3.21), namely,

Ey∥y−PSτ,r y∥22 ≥ ρ2
r(µ). (see (3.21)) (3.23)

But one would hope that Sτ still nearly minimises Program (3.21), in the sense that

Ey∥y−PSτ,r y∥22 ≈ ρ2
r(µ), (3.24)

with high probability over the choice of training data {yt}τt=1. That is, one would hope that
the generalisation error of Program (3.22) is small. Above, Ey stands for expectation over y,
so that the left-hand side of (3.24) is still a random variable because of its dependence on Sτ .

If the training data {yt}τt=1 is presented to us sequentially and little storage is available,
we cannot hope nor is practical, to directly solve Program (3.22). Moreover, even if we have
enough storage, we might not want to wait for all the data to arrive before solving Program
(3.22). In this streaming scenario, we may apply MOSES to obtain the (rank-r) output Ŷτ,r.
We then set

Ŝτ,r = span(Ŷτ,r), (3.25)

with orthonormal basis Ŝτ ∈ Rd×r. Note that Ŝτ is MOSES’ estimate of leading r principal
components of the data matrix Yτ and is possibly suboptimal in the sense that,

∥Yτ − Ŷτ,r∥F ≥ ρr(Yτ). (see (3.22)) (3.26)

But we would still hope that the output Ŷτ,r of MOSES is a nearly optimal choice in Pro-
gram (3.22), in the sense that,

∥Yτ − Ŷτ,r∥F ≈ ρr(Yτ), (3.27)

with high probability over the choice of {yt}τt=1. Moreover, as with (3.24), Ŝτ,r is again a
possibly sub-optimal choice for Program (3.21), and yet we would hope that,

Ey∥y−PŜτ,r
y∥22 ≈ ρ2

r(µ), (3.28)

with high probability over the choice of {yt}τt=1.
To summarise the discussion above, the key questions are whether (3.24, 3.27, 3.28) hold. Let

us answer these questions for the important case where µ is a zero-mean Gaussian probability
measure with covariance matrix Ξ ∈ Rd×d. For this choice of µ in (3.21), it is not difficult to

58 Beyond Regular Singular Value Decomposition

verify that

ρ2
r(µ) =

d∑
i=r+1

λi(Ξ), (3.29)

where λ1(Ξ) ≥ λ2(Ξ) ≥ · · · are the eigenvalues of the covariance matrix Ξ. From now on, let
us use the shorthand,

ρr = ρr(µ), λi = λi(Ξ), i ∈ [1 : d].

For our choice of µ above as a Gaussian measure with covariance matrix Ξ ∈ Rd×d, one can use
standard tools from the covariance estimation literature to show that (3.24) holds when τ is
sufficiently large, the proof of which is included in Appendix A of the supplementary material
for completeness [57, 179].

Lemma 3.4.1. Suppose that {yt}τt=1 ⊂ Rd are drawn independently from a zero-mean Gaussian
measure µ with covariance matrix Ξ ∈ Rd×d and form Yτ ∈ Rd×τ by concatenating these vectors,
see (3.1). Suppose also that Sτ,r ∈ G(d, r) is the span of leading r principal components of Yτ .
For 1 ≤ α ≤

√
τ/ log(τ), it then holds that

ρ2
r(Yτ)
τ

≲ αρ2
r , (3.30)

Ey∥y−PSτ,r y∥22 ≲ αρ2
r + α(d− r)λ1

√
log(τ)
τ

, (3.31)

except with a probability of at most τ−Cα2, where C is a universal constant. In presentation,
we use ≲ for suppressing any universal constants for a more tidy presentation.

In words, (3.31) states that the generalisation error of Program (3.22) is sufficiently small,
hence (3.24) holds. Indeed, as τ increases, the right-hand side of (3.31) approaches the residual
squared of Yτ/

√
τ , which is bounded by Cαρ2

r . In particular, (3.24) holds when α = O(1) and
τ is sufficiently large. As the dimension r of the subspace that we fit to the data approaches
the ambient dimension d, note that the right-hand side of (3.31) vanishes.

In contrast, MOSES operates in a streaming regime, where we are unable to fully store
the data matrix Yτ and consequently unable to find its principal components directly. That
is, we cannot directly solve Program (3.22) in the streaming regime. However, Theorem 3.4.2
below states that MOSES approximately solves Program (3.22). Put succinctly, MOSES
approximately estimates the leading principal components of Yτ and reduces the dimension
of data from d to r with only O(r(d + τ)) bits of memory. These can provide significant
improvements, as solving Program (3.22) using “offline” truncated SVD would incur a storage
cost in the order of O(dτ) bits. Moreover, as we saw previously MOSES approximately solves
Program (3.21). In other words, MOSES satisfies both (3.27, 3.28). These statements are made
concrete below and proved in Appendix A.2 of the supplementary material.

3.4 Performance of MOSES 59

Theorem 3.4.2. (Performance of MOSES) Suppose that {yt}τt=1 ⊂ Rd are drawn inde-
pendently from a zero-mean Gaussian probability measure µ with covariance matrix Ξ ∈ Rd×d.
Moreover, let us define,

κ2
r := λ1

λr
, ρ2

r =
d∑

i=r+1
λi, ηr := κr +

√
2αρ2

r

p
1
3λr

, (3.32)

where λ1 ≥ λ2 ≥ · · · are the eigenvalues of Ξ. Let Ŝτ,r = span(Ŷτ,r) be the span of the output
of MOSES, see (3.25). Then, for tuning parameters 1 ≤ α ≤

√
τ/ log(τ) and p > 1, it holds

that
∥Yτ − Ŷτ,r∥2F

τ
≲

αp
1
3 4pη2

r

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rλ1 + ρ2

r

)(T

pη2
rb

)pη2
r−1

, (3.33)

Ey∥y−PŜτ,r
y∥22 ≲

αp
1
3 4pη2

r

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rλ1 + ρ2

r

)(τ

pη2
rb

)pη2
r−1

+ α(d− r)λ1

√
log(τ)
τ

,

(3.34)

except with a probability of at most τ−Cα2 + e−Cαr and provided that

b ≥ αp
1
3 r

(p 1
6 − 1)2

, b ≥ Cαr, τ ≥ pη2
rb. (3.35)

The requirement τ ≥ pη2
rb in the last line above is only for a compact bound for (3.33, 3.34)

and is not necessary. A general expression for arbitrary τ is given in the proof, see (A.22). A
few remarks about Theorem 3.4.2 are in order.

Discussion of Theorem 3.4.2

On the one hand, Theorem 3.4.2 and specifically (3.33) state that (3.27) holds under certain
conditions. That is, MOSES approximately solves Program (3.13) or, in other words, MOSES
successfully performs streaming (linear) dimensionality reduction. Indeed, (3.33) loosely speak-
ing states that ∥Yτ − Ŷτ,r∥2F scales with ρ2

rτ
pη2

r/bpη
2
r−1, whereas the residual squared of Yτ

scales with ρ2
rτ by (3.30). That is,

∥Yτ − Ŷτ,r∥2F ∝
(
τ

b

)pη2
r−1

ρ2
r(Yτ)

=
(
τ

b

)pη2
r−1
∥Yτ −Yτ,r∥2F , (see (3.22)) (3.36)

60 Beyond Regular Singular Value Decomposition

after ignoring the less important terms. In words, applying offline truncated SVD to Yτ ,
which is assumed to have unlimited resources, outperforms the streaming MOSES by only a
polynomial factor in the order of τ/b.

• This polynomial factor can be negligible when the covariance matrix Ξ of the Gaussian
data distribution µ is well-conditioned (κr = O(1)) and has a small residual (ρ2

r = O(λr)).
In this case we will have ηr = O(1), see (3.32). With p = O(1), (3.36) then reads as

∥Yτ − Ŷτ,r∥2F ∝
(
τ

b

)O(1)
ρ2
r(Yτ).

In particular, in the case that the covariance matrix of the data distribution is rank-r,
we have by (3.29) that ρr = 0. Consequently, (3.36) reads as Ŷτ,r = Yτ,r = Yτ , namely
the outputs of offline truncated SVD and MOSES coincide. In fact, MOSES correctly
identifies the r-dimensional span of incoming data after processing the very first block.

• At the cost of a larger multiplicative factor on the right-hand side of (3.33), one might
reduce the power of τ in the first term of (3.33) by choosing p closer to one.

• The dependence of our results on the condition number κr and residual ρr is very likely
not an artefact of the proof techniques, see (3.32). Indeed, when κr ≫ 1, certain directions
are less often observed in the incoming data vectors {yt}τt=1, which tilts the estimate
of MOSES towards the dominant principal components corresponding to the very large
singular values. Moreover, if ρr ≫ 1, there are too many significant principal components
and MOSES can at most “remember” r of them from its previous iteration. In this
scenario, approximating the incoming data with a rank-r subspace is not a good idea in
the first place, in the sense that the residual ρr(Yτ) corresponding to the offline truncated
SVD will be large too. An obvious solution to this would be perhaps to increase the
dimension r of the subspace that we wish to fit to the incoming data {yt}Tt=1.

• Note also that, as b increases, performance of MOSES naturally approaches that of the
offline truncated SVD. In particular, when b = τ , MOSES processes all of the data at
once and practically reduces to offline truncated SVD. This trend is somewhat imperfectly
reflected in (3.33).

On the other hand, Theorem 3.4.2 and specifically (3.34) state that (3.28) holds under certain
conditions. Indeed, for sufficiently large τ , (3.34) loosely speaking reads as follows,

Ey∥y−PŜτ,r
y∥22 ∝

(
τ

b

)pη2
r−1

ρ2
r

=
(
τ

b

)pη2
r−1

min
U∈G(d,r)

E ∥y−PUy∥22 . (see Program (3.21)) (3.37)

3.4 Performance of MOSES 61

That is, the output of MOSES is sub-optimal for Program (3.21) by a only polynomial factor in
τ . This factor can be negligible in the case that the covariance matrix Ξ of the data distribution
µ is well-conditioned and has a small residual, see the discussion above.

Spiked covariance model

A popular model in the statistics literature is the spiked covariance model, where the data
vectors {yt}τt=1 are drawn from a distribution with a covariance matrix Ξ. Under this model,
Ξ is a low-rank perturbation of the identity matrix [99, 179], namely λ1(Ξ) = · · · = λr(Ξ) = λ

and λr+1(Ξ) = · · · = λd(Ξ) = 1. Lemma 3.4.1 in this case reads as,

E∥y−PSτ,r y∥22 ∝ (d− r) + (d− r)λ

√
log(τ)
τ

, (3.38)

where Sτ,r spans leading r principal components of the data matrix Yτ . In contrast, Theo-
rem 3.4.2 roughly speaking states that,

E∥y−PŜτ,r
y∥22 ∝ (d− r)

(
τλ

bd

) d
λ

+ (d− r)λ

√
log(τ)
τ

, (3.39)

where Ŝτ,r spans the output of MOSES. When λ ≳ d log(τ/b) = d log(K) in particular, it
follows that the error bounds in (3.38, 3.39) are of the same order. That is, under the spiked
covariance model, MOSES for streaming truncated SVD matches the performance of “offline”
truncated SVD, provided that the underlying distribution has a sufficiently large spectral gap.
However, in practice, (3.39) is often a conservative bound.

Proof strategy

Starting with (3.34), the proof of Theorem 3.4.2 in Appendix A.2 of the supplementary material
breaks down the error associated with MOSES into two primary components, namely

Ey∥y−PŜτ,r
y∥2 ≤

1
τ
∥Yτ −PŜτ,r

Yτ∥2F +
∣∣∣∣1τ ∥Yτ −PŜτ,r

Yτ∥2F − Ey∥y−PŜτ,r
y∥22

∣∣∣∣ . (3.40)

That is, we bound the population risk with the empirical risk. We control the empirical risk in
the first part of the proof by noting that,

∥Yτ −PŜτ,r
Yτ∥F = ∥PŜ⊥

τ,r
Yτ∥F

= ∥PŜ⊥
τ,r

(Yτ − Ŷτ,r)∥τ (see (3.25))

≤ ∥Yτ − Ŷτ,r∥F , (3.41)

62 Beyond Regular Singular Value Decomposition

where the last line gauges how well the output of MOSES approximates the data matrix
Yτ , see (3.33). We then bound ∥Yτ − Ŷτ,r∥F in two steps: As it is common in these types
of arguments, the first step finds a deterministic upper bound for this norm, which is then
evaluated for our particular stochastic setup.

• The deterministic bound appears in Lemma A.2.1 and gives an upper bound for ∥Yτ −
Ŷτ,r∥F in terms of the overall “innovation”. Loosely speaking, the innovation ∥PS⊥

(k−1)b,r
yk∥F

at iteration k is the part of the new data block yk that cannot be described by the leading
r principal components of data arrived so far, which span the subspace S(k−1)b,r.

• The stochastic bound is given in Lemma A.2.2 and uses a tight perturbation result.

Our argument so far yields an upper bound on the empirical loss ∥Yτ −PŜτ,r
Yτ∥F that holds

with high probability. In light of (3.40), it remains to control the following quantity,∣∣∣∣1τ ∥Yτ −PŜτ,r
YT ∥2F − Ey∥y−PŜτ,r

y∥22
∣∣∣∣ = 1

τ

∣∣∣∥Yτ −PŜτ,r
Yτ∥2F − E∥Yτ −PŜτ,r

Yτ∥2F
∣∣∣

= 1
τ

∣∣∣∣∥PŜ⊥
τ,r

Yτ∥2F − E∥PŜ⊥
τ,r

Yτ∥2F
∣∣∣∣ (3.42)

with a standard large deviation bound.

Applicability on other stochastic models

While our current results were restricted to the Gaussian distribution, they extend easily and
with minimal change to the larger class of subgaussian distributions. More concretely, to do so
one can exploit the constructions we used for our proof from [180, 154] in order to prove this.
Namely, they provide similar results for the more general class of subgaussian distributions
which is only slightly different than the one we used for Gaussian distributions. Recall, that we
arrived at (3.28) by not making any assumptions on the distribution of the probably measure µ.
Thus by assuming that this probably measure µ is indeed subgaussian and following through
the proof of Theorem 3.4.2 exploiting Theorem 5.58 in [180] under that assumption one can
see that we arrive at a similar result, albeit with slightly different constraints as dictated
by [180, 179] for subgaussian distributions. Hence, overall Theorem 3.4.2 would still hold
even if the data-generating process changed from the original one with the constraint that the
data-generating process would have to remain within the subgaussian class of distributions.
Beyond subgaussian data models, Lemma A.2.1 is the key deterministic result, directly relating
the MOSES error to the overall innovation. One might therefore control the overall innovation,
namely the right-hand side of (A.19) in Lemma A.2.1, for any other stochastic model at hand.

3.5 Experimental Evaluation 63

3.5 Experimental Evaluation

In this section, we investigate the numerical performance of MOSES and compare it against
competing algorithms, namely GROUSE [13], frequent directions (FD) [47, 120], and power
method (PM) [130, 131], on both synthetic and real-world datasets. In all of our experiments,
we reveal one by one the data vectors {yt}τt=1 ⊂ Rd and, for every t, wish to compute a
rank-r truncated SVD of the data matrix arrived so far, namely [y1, · · · ,yt]. For the tests that
use synthetic data, the vectors {yt}τt=1 are drawn independently from a zero-mean Gaussian
distribution with covariance matrix Ξ = SΛST , where S ∈ Rd×d is a generic orthonormal basis
obtained by orthogonalising a standard random Gaussian matrix. The entries of the diagonal
matrix Λ ∈ Rd×d, namely the eigenvalues of the covariance matrix Ξ, are selected according to
the power law: λi = i−α for a given positive α. To be more succinct, where possible we use
MATLAB’s notation for specifying the value ranges in this section. Note that both MOSES
and Power method updates its estimates after receiving each block of data. For the sake of an
easier comparison with other algorithms (with different block sizes), we properly “interpolate”
the outputs of all algorithms over time. All experiments were performed on a workstation
using an AMD 3970X CPU with 32 cores, 256GB of 3600 MHz DDR4 RAM, and MATLAB
R2021a (build 9.10.0.1602886). To foster reproducibility and dissemination of the contributions
presented in this chapter we remark that the accompanying MATLAB code and the datasets
used for the numerical evaluation are publicly available1.

To assess the performance of MOSES, let Yt = [y1, · · · ,yt] ∈ Rd×t be the data received by
time t and let Ŷm

t,r be the output of MOSES at time t. Then the error incurred by MOSES is
as follows,

1
t
∥Yt − Ŷm

t,r∥2F , (3.43)

see Theorem 3.4.2. Recall from (3.5) that the above error is always worse (i.e. larger) than the
residual of Yt, namely

∥Yt − Ŷm
t,r∥2F ≥ ∥Yt −Yt,r∥2F = ρ2

r(Yt), (see (3.5)) (3.44)

where Yt,r = SVDr(Yt) is a rank-r truncated SVD of Yt and ρ2
r(Yt) is the corresponding

residual.

Quantitative evaluation of MOSES.

To start, we would like to understand how MOSES behaves across different setups. Concretely,
we would like to empirically quantify the error scaling when tweaking the ambient dimension,
rank, and its block size. To so so, we set out to do various tests and report the results.

1https://github.com/andylamp/moses

https://github.com/andylamp/moses

64 Beyond Regular Singular Value Decomposition

Ambient dimension

On a synthetic dataset with α = 1 and τ = 2000, we first test MOSES by varying the ambient
dimension as d ∈ {200 : 200 : 1200}, and setting the rank and block size to r = 15, b = 2r = 30.
The average error over ten trials is reported in Figure 3.2a. Note that the error is increasing in
d, see the discussion under spiked covariance model in Section 3.4.

Block size

On a synthetic dataset with α = 1 and τ = 2000, we test MOSES by setting the ambient
dimension and rank to d = 1200, r = 15, and varying the block size as b ∈ {r : r : 15r}. The
average error over ten trials is reported in Figure 3.2b. It is interesting to note that the MOSES
is particularly robust against the choice of the block size and that, at the extreme case of b = τ ,
error vanishes as MOSES reduces to be equal to the “offline” truncated SVD.

Rank

On a synthetic dataset with α = 1 and τ = 2000, we test MOSES by setting the ambient
dimension and block size to d = 1200, b = 2r, and varying the rank as r ∈ {5 : 5 : 25}. The
average error over ten trials is reported in Figure 3.2c. As expected, the error is decreasing
in the dimension r of the subspace that we fit to the data and in fact, at the extreme case of
r = d, there would be no error at all.

Comparisons against other methods

In this section, we compare MOSES against GROUSE [13], FD [47] and PM [130], as described
in Section Section 3.6. These competing algorithms only estimate the principal components
of the data, as opposed to MOSES which also projects the data onto these estimates. More
specifically, let Ŝgt,r ∈ G(d, r) be the span of the output of GROUSE, Ŝft,r ∈ G(d, r) be the span
of the output of FD, and Ŝpt,r ∈ G(d, r) be the span of the output of PM. These algorithms
then incur the errors,

1
t
∥Yt −PŜg

t,r
Yt∥2F ,

1
t
∥Yt −PŜf

t,r
Yt∥2F ,

1
t
∥Yt −PŜp

t,r
Yt∥2F , (3.45)

respectively. Above, PA ∈ Rd×d is the orthogonal projection onto the subspace A. Even though
robust FD [120] improves over FD in the quality of matrix sketching, since the subspaces
produced by FD and robust FD coincide, there is no need here for computing a separate error
for robust FD.

3.5 Experimental Evaluation 65

200 400 600 800 1000 1200
1.95

2

2.05

2.1

2.15
10-6

(a) varied d, for r = 15, b = 2r.

 r 3r 5r 7r 9r 11r 13r 15r
2.115

2.12

2.125

2.13
10-5

(b) varied b, for n = 1.2k, r = 15.

5 10 15 20 25
1

2

3

4

5

6
10-6

(c) varied r, for n = 1.2k, b = 2r.

Fig. 3.2 Performance of MOSES on synthetic datasets, see Section 3.5 for the details.

Comparisons on synthetic datasets.

On synthetic datasets with α ∈ {0.01, 0.1, 0.5, 1} and τ = 10000, we compare MOSES against
GROUSE, FD, and PM as well as the traditional offline SVD. More specifically, we set the
ambient dimension to d = 200 and the rank to r = 10. For MOSES, the block size was set
to b = 2r. For GROUSE and power method, we set the step size and block size to 2 and
2d = 400, respectively, as these values seemed to produced the best results overall. Both
GROUSE and power method were initialised randomly, as prescribed in [13, 131], whereas
FD does not require any particular initialisation. For the implementation of the proposed
algorithms, namely MOSES, FD, and PM we used MATLAB. Specifically, we based our FD
implementation on the specific algorithm described in [66], a Python version of which can be
found online2. PM was based on the algorithm described in [130] while GROUSE had already
code publicly available3, which we used. The average errors of all four algorithms over ten trials
versus time is shown in Figure 3.3. Because of its large blocks size of O(d) [131]. Note that the
power method updates its estimate of principal components much slower than MOSES, but
the two algorithms converge to similar errors. The slow updates of power method will become

2At: https://github.com/edoliberty/frequent-directions/
3MATLAB code for GROUSE is publicly available at https://web.eecs.umich.edu/˜girasole/grouse/.

https://github.com/edoliberty/frequent-directions/
https://web.eecs.umich.edu/~girasole/grouse/

66 Beyond Regular Singular Value Decomposition

a problem when working with dynamic data, where the distribution of arriving data changes
over time.

2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

MOSES
PM
FD
GROUSE
Offline

(a) α = 0.01.

2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

MOSES
PM
FD
GROUSE
Offline

(b) α = 0.1.

2000 4000 6000 8000 10000
0

2

4

6
10-4

MOSES
PM
FD
GROUSE
Offline

(c) α = 0.5.

2000 4000 6000 8000 10000
0

0.5

1

1.5

2
10-4

MOSES
PM
FD
GROUSE
Offline

(d) α = 1.

Fig. 3.3 Comparisons on synthetic datasets, see Section 3.5 for the details.

Computational complexity on synthetic datasets.

Let us now turn our attention to the computational performance of these three algorithms. On
synthetic datasets with α = 1 and τ = 10000, we compare the run-time of MOSES to GROUSE
and power method, where the block sizes of MOSES and power method, and the step size of
GROUSE were set as described in the synthetic tests earlier. The average run-time of all three
algorithms over five trials and for various choices of rank r is shown in Figure 3.4. We note that
the computational cost of MOSES remains consistently small throughout these simulations,
especially for large ambient dimensions and ranks where GROUSE and power method perform
poorly, see Figure 3.4c. This appears to happen regardless of the desired recovery rank r used,
as the impact on MOSES as the ambient dimension (d) increases is much less, see Figure 3.4c

3.5 Experimental Evaluation 67

and 3.4d. Interestingly enough, FD performs poorly when attempting a relatively low rank
recovery (r ∈ {1, 10}) and closely matches MOSES as r increases, which can be attributed
to the buffering size of FD. However, overall MOSES seems to exhibit graceful performance
scaling regardless of the ambient dimension of the data. In some instances some of the methods
are able to compete with MOSES, such as GROUSE in the case when the target rank recovery
is small as shown in Figures 3.4a and 3.4b, but fail to scale gracefully when it increases as
shown in Figures 3.4c and 3.4d.

200 400 600 800 1000
0

5

10

15

20

25
MOSES
PM
FD
GROUSE

(a) Running time with r = 1.

200 400 600 800 1000
0

5

10

15

20

25
MOSES
PM
FD
GROUSE

(b) Running time with r = 10.

200 400 600 800 1000
0

10

20

30
MOSES
PM
FD
GROUSE

(c) Running time with r = 50.

200 400 600 800 1000
0

10

20

30
MOSES
PM
FD
GROUSE

(d) Running time with r = 100.

Fig. 3.4 Computational complexity of all algorithms on synthetic datasets, see Section 3.5 for
the details.

Comparison using real datasets

In order to better evaluate the practicality of our method we also evaluate all these three
algorithms on actual, publicly available datasets. For our experiments, we use four different
datasets that contain mote (sensor node) voltage, humidity, light, and temperature measurements
over time [48]. These datasets were selected because they are publicly available and are
representative of real-world applications due to their ambient dimension n being sufficiently

68 Beyond Regular Singular Value Decomposition

large (> 45) to reflect practical deployments. These results are aggregated in Figure 3.5 and
a qualitative analysis about the performance of the algorithms on each dataset follows. For
improving presentation, please note that all errors are plotted in logarithmic scale due to
GROUSE and FD exploding errors.

0 2000 4000 6000 8000
100

1010

1020

1030

MOSES
PM
FD
GROUSE

(a) Light dataset, r = 20.

0 2000 4000 6000 8000

100

1010

1020

MOSES
PM
FD
GROUSE

(b) Temperature dataset, r = 20.

0 2000 4000 6000 8000
10-5

100

105

1010

MOSES
PM
FD
GROUSE

(c) Voltage dataset, r = 20.

0 2000 4000 6000 8000

100

1010

1020

MOSES
PM
FD
GROUSE

(d) Humidity dataset, r = 20.

Fig. 3.5 Comparisons on voltage and humidity real-world datasets Section 3.5 for the details.

Comparison on the mote voltage dataset

The first dataset we evaluate has an ambient dimension of n = 46 and has T = 7712 columns. It
is an inherently volatile dataset as it contains the rapid small voltage changes the motes exhibit
during operation. With r = 20 and the rest of the parameters as described in the synthetic
comparison above, the errors over time for all algorithms is shown in Figure 3.5c in logarithmic
scale. MOSES here outperforms both GROUSE and power method.

Comparison on the mote humidity dataset

The second dataset evaluated has an ambient dimension of n = 48 and has T = 7712 columns.
This dataset contains the humidity measurements of motes and is more periodic in nature

3.6 Discussion 69

with a larger range than the voltage dataset. With r = 20 and the rest of the parameters as
described in the synthetic comparison above, the errors over time for all algorithms is shown
in Figure 3.5d in logarithmic scale. MOSES again outperforms the three other algorithms.

Comparison on the mote light dataset

The third dataset has an ambient dimension n = 48 and has T = 7712 columns. This dataset
contains the light measurements of the motes and contains much more frequent value changes
while having the highest range of all four datasets studied in this section. With r = 20 and the
rest of the parameters as described in the synthetic comparison above, the errors over time for
all algorithms is shown in Figure 3.5a in logarithmic scale. As before, MOSES outperforms the
three other algorithms.

Comparison on the mote temperature dataset

The last real dataset we consider in this instance has an ambient dimension of n = 56 and
has T = 7712 columns. This dataset contains the temperature measurements of the sensor
motes and has mostly periodic value changes and infrequent spikes. With r = 20 and the rest
of the parameters as described in the synthetic comparison above, the errors over time for all
algorithms is shown in Figure 3.5b in logarithmic scale. It is evident that MOSES outperforms
the three other algorithms.

3.6 Discussion

In this chapter, we presented MOSES for streaming (linear) dimensionality reduction, an
algorithm with minimal storage and computational requirements. One might think of MOSES
as an online “subspace tracking” algorithm that identifies the linear structure of data as it
arrives. Once the data has fully arrived, both principal components and the projected data are
readily made available by MOSES and the user could immediately proceed with any additional
learning and inference tasks. Note also that t in our notation need not correspond to time,
but rather to a a sequence of vectors {yt}τt=1 ⊂ Rd, presented to us sequentially; see eq. (3.1).
For example, only a small portion of a large data matrix Yτ can be stored in the fast access
memory of the processing unit, which could instead use MOSES to fetch and process the
data in small chunks and iteratively update its estimate of r-leading principal components.
Moreover, MOSES can be easily adapted to the dynamic case where the distribution of data
changes over time. In dynamic subspace tracking, each data vector yt is drawn from a subspace
S(t) ∈ G(d, r) that might vary with time.

A closely related line of work is the incremental SVD [29, 26, 25, 37, 116]. Incremental SVD
is a streaming algorithm that, given the (truncated) SVD of Yt−1 ∈ Rd×(t−1), aims to compute
the truncated) SVD of Yt = [Yt−1 yt] ∈ Rd×t, where yt ∈ Rd is the newly arrived data vector

70 Beyond Regular Singular Value Decomposition

and Yt−1 is the matrix formed by concatenating the previous data vectors, see eq. (3.1). It is
easy to verify that MOSES generalises incremental SVD to handle data blocks, see Algorithm 1.
This small difference between incremental SVD and MOSES is in part what enables us to
complement MOSES with a comprehensive statistical analysis in Theorem 3.4.2 which is, to the
best of our knowledge at the time of publication, not available for incremental SVD, despite its
long history and popularity. Indeed, [10] only very recently provided stochastic analysis for two
of the variants of incremental SVD in [109, 137]. The results in [10] hold in expectation and for
the special case of r = 1, the first leading principal component. Crucially, these results measure
the angle ∠[Sτ,r, Ŝτ,r] between the true leading principal components of the data matrix and
those estimated by incremental SVD. In this sense, these types of results are inconclusive
because incremental SVD estimates both left and right leading singular vectors of the data
matrix. More succinctly, incremental SVD both estimates the leading principal components
of the data matrix Ŝτ,r and reduces the dimension of data by computing ŜTτ,rŶτ,r ∈ Rr×τ ,
where Ŷτ,r is the final output of incremental SVD. In contrast to [10], Theorem 3.4.2 and
specifically (3.33) assesses the quality of both of these tasks and establishes that, under certain
conditions, MOSES performs nearly as well as offline SVD. GROUSE [13] is a closely related
algorithm for streaming SVD (on data with possibly missing entries) that can be interpreted as
projected stochastic gradient descent on the Grassmannian manifold. GROUSE is effectively
identical to incremental SVD when the incoming data is low-rank [13]. In [192], the authors
offer theoretical guarantees for GROUSE that again does not account for the projected data
and are based on the proof techniques of [10]. Their results hold without any missing data, in
expectation, and in a setup similar to the spiked covariance model. Recently, an alternative to
GROUSE was introduced called SNIPE that has much stronger theoretical guarantees in case
of missing data [58, 55]. In Section 3.5, we numerically compared MOSES with GROUSE.

One might also view MOSES as a stochastic algorithm for PCA. Indeed, note that
Program (3.21) is equivalent tomax Ey∥UUTy∥2F

UTU = Ir
=

max Ey⟨UUT ,yyT ⟩

UTU = Ir
=

max Ey⟨UUT ,yyT ⟩

UTU ≼ Ir,
(3.46)

where the maximisation is over matrix U ∈ Rd×r. Above, UTU ≼ Ir is the unit ball with
respect to the spectral norm and if A ≼ B then it follows that B−A is a positive semi-definite
matrix [166]. The last identity above holds because a convex function is always maximised on
the boundary of the feasible set. Using the Schur’s complement, we can equivalently write the
last program above as,

max E⟨UUT ,yyT ⟩ Id U

UT Ir

 ≽ 0(d+r)×(d+r).
=

max ⟨UUT ,Ξ⟩ Id U

UT Ir

 ≽ 0(d+r)×(d+r),
(3.47)

3.6 Discussion 71

where Ξ = E[yyT] ∈ Rd×d is the covariance matrix of the data distribution µ. Note that
Program (3.47) has a convex (in fact, quadratic) objective function that is maximised on a
convex (conic) feasible set. We cannot hope to directly compute the gradient of the objective
function above, namely 2ΞU, because the distribution of y and hence its covariance matrix
Ξ are unknown. Given an iterate Ŝt, one might instead draw a random vector yt+1 from the
probability measure µ and move along the direction dictated by 2yt+1yTt+1Ŝt. Our motivation
to do so, stems from the observation that E[2yt+1yTt+1Ŝt] = 2ΞŜt. This is then followed by
back projection onto the feasible set of Program (3.46). That is,

Ŝt+1 = P
(
St + 2αt+1yt+1yTt+1Ŝt

)
, (3.48)

for an appropriate step size αt+1. Above, P(A) projects onto the unit spectral norm ball by
setting to one all singular values of A that exceed one. The stochastic projected gradient
ascent for PCA, described above, is itself closely related to the so-called power method and
is at the heart of [130, 138, 158, 107, 7]. However, as mentioned previously, all of these
methods lack a statistical analysis similar to Theorem 3.4.2. One notable exception is the
power method in [130] which in a sense applies mini-batch stochastic projected gradient ascent
to solve Program (3.47), with data blocks (namely, batches) of size b = Ω(n). There the
authors offer statistical guarantees for the spiked covariance model, see Section 3.4. As before,
these guarantees are solely for the quality of estimated principal components and silent about
the quality of projected data, both of which are addressed in Theorem 3.4.2. Note also that,
especially when the data dimension d is large, one disadvantage of this approach is its large
block size; it takes a long time of Ω(d) for the algorithm to update its estimate of the principal
components. In this setup, we may think of MOSES as a stochastic algorithm for PCA based
on alternative minimisation rather than gradient ascent, see Section 3.3. Moreover, MOSES
updates its estimate frequently, after receiving every b = O(r) data vectors, and also maintains
the projected data. In Section 3.5, we numerically compared MOSES with the power method
in [130]. A few closely related works are [84, 46, 97, 45].

In the context of online learning and regret minimisation, [188, 7] offer two algorithms
the former of which is not memory optimal and the latter does not have guarantees similar
to Theorem 3.4.2. See also [21]. A Bayesian approach to PCA is studied in [151, 168]. The
expectation maximisation algorithm there could be implemented in an online fashion but without
theoretical guarantees.

More generally, MOSES might be interpreted as a deterministic matrix sketching algorithm.
Common sketching algorithms either randomly sparsify a matrix, randomly combine its rows
(columns), or randomly subsample its rows (columns) according to its leverage scores [38, 49]
Ideas from sketching and randomised linear algebra could be integrated into MOSES and other
streaming dimensionality reduction algorithms [171, 34, 144, 68, 66, 67]. It is also perhaps worth
pointing out that one might consider a streaming algorithm as a special case of distributed

72 Beyond Regular Singular Value Decomposition

computing along the “cone” tree shown in Figure 3.6, which we later generalise in Chapter 4
to approximate PCA in the federated setting. When the data vectors have missing entries, a
closely related problem is low-rank matrix completion [43, 59].

B1• B2• B3• · · · •BK

Ŷ1,r

•
Ŷ2,r

•
Ŷ3,r

•
ŶK,r

· · ·

Fig. 3.6 Streaming problems may be interpreted as a special case of distributed computing.
Each data block yk lives on a node of the chain graph and the nodes are combined, from left to
right, following the structure of the “cone” tree.

However, even though MOSES has the benefit of online computation while exhibiting
remarkable performance, even when compared to the offline SVD, fails to scale horizontally.
Meaning that, as presented, MOSES cannot be used in multi-node environments. This is
because, MOSES is currently formulated to expect the dataset input vectors to be streamed
from a central location in order to successfully produce its iterates. In turn, this limitation,
makes the algorithm unable to process distributed or federated datasets, thus limiting its usage
in single-node scenarios. Moreover, MOSES requires a hyper-parameter to be provided for the
intrinsic dimension of the dataset and cannot be adjusted during its execution. Naturally, in a
streaming setup this cannot be possibly known exactly and thus can only be guessed. This can
be problematic in cases of distribution shifts of rapid data changes in which the actual rank
of the observed input changes over time. Further, it lacks the ability to guarantee differential
privacy over its iterates, which is a highly desirable feature. In the next Chapter, we are
going to build upon the ideas presented herein and introduce a novel algorithm for PCA that
is applicable in massive, federated datasets, allows adaptive rank estimation, and is able to
guarantee differential privacy.

Chapter 4

Federated Principal Component
Analysis

In Chapter 3, we introduced a novel algorithm for performing SVD and by extension PCA in a
streaming, memory-limited setup that exhibited remarkable overall performance. However, as
it was initially formulated our proposed solution could not be used outside of the computational
barriers of a single-node. In this chapter, we would like to scale out these ideas and make them
suitable for decentralised computation that is able to harness the voracity of federated datasets.
To do so, we put forth unified mathematical framework that makes PCA applicable to federated
datasets. More specifically, we introduce an asynchronous, rank-adaptive, memory-limited,
and (ε, δ)-differentially private algorithm for PCA in the federated setting. Our algorithm
incrementally computes local model updates using a streaming procedure and adaptively
estimates its r leading principal components when only O(dr) memory is available with d being
the dimensionality of the data. We guarantee differential privacy via an input-perturbation
scheme in which the covariance matrix of a dataset X ∈ Rd×n is perturbed with a non-symmetric
random Gaussian matrix with variance in O

((
d
n

)2
log d

)
, thus improving upon the state-of-the-

art. Furthermore, contrary to previous distributed algorithms for PCA and in the absence of
perturbation masks, our algorithm is also invariant to permutations in the incoming data which
provides robustness against straggler or failed nodes. Numerical simulations show that, while
using limited-memory, our algorithm exhibits performance that closely matches or outperforms
traditional non-federated algorithms, and in the absence of communication latency, it exhibits
attractive horizontal scalability.

4.1 Introduction

In recent years, the advent of edge computing in smartphones, IoT and cryptocurrencies has
induced a paradigm shift in distributed model training and large-scale data analysis. Under this
new paradigm, data is generated by commodity devices with hardware limitations and severe

74 Federated Principal Component Analysis

restrictions on data-sharing and communication, which makes the centralisation of the data
extremely difficult. This has brought new computational challenges since algorithms do not only
have to deal with the sheer volume of data generated by networks of devices, but also leverage
the algorithm’s voracity, accuracy, and complexity with constraints on hardware capacity, data
access, and device-device communication. Moreover, concerns regarding data ownership and
privacy have been growing in applications where sensitive datasets are crowd-sourced and then
aggregated by trusted central parties to train machine learning models. In such situations,
mathematical and computational frameworks to ensure data ownership and guarantee that
trained models will not expose private client information are highly desirable. In light of this,
the necessity of being able to analyse large-scale decentralised datasets and extract useful
insights out of them is becoming more prevalent than ever before. A number of frameworks
have been put forward to train machine-learning models while preserving data ownership
and privacy like Federated Learning [128, 108]. In this work we pursue a federated learning
framework to compute PCA in a decentralised way, using resource constrained devices, offering
asynchronous computation, and the ability to guarantee differential privacy [50, 51]. Seminal
work in federated learning has been made, but mainly in the context of deep neural networks,
see [128, 108]. Specifically, in [108] a federated method for training of neural networks was
proposed and was the first successful, publicly announced, application of federated learning in a
production environment. In this setting one assumes that each of a large number of independent
clients can contribute to the training of a centralised model by computing local updates with
their own data and sending them to the client holding the centralised model for aggregation.
Ever since the publication of this seminal work, interest in federated algorithms for training
neural networks has surged, see [162, 88, 65, 115]. Despite of this, federated adaptations of
classical data analysis techniques are still largely missing.

Out of the many techniques available, Principal Component Analysis (PCA) [143, 100] is
arguably the most ubiquitous one for discovering linear structure or reducing dimensionality in
data, so has become an essential component in inference, machine-learning, and data-science
pipelines. In a nutshell, given a matrix Y ∈ Rd×n of n feature vectors of dimension d, PCA aims
to build a low-dimensional subspace of Rd that captures the directions of maximum variance in
the data contained in Y. Apart from being a fundamental tool for data analysis, PCA is often
used to reduce the dimensionality of the data in order to minimise the cost of computationally
expensive operations. For instance, before applying t-SNE [121] or UMAP [127], as it has the
ability to reduce the variance and only provide to these algorithms the most significant “parts of
the data”. The reason for doing so is that both of the aforementioned methods are much more
expensive than even traditional PCA. Hence, a federated algorithm for PCA is not only desired
when data-ownership is sought to be preserved, but also from a computational viewpoint.

Herein, we propose a federated algorithm for PCA (Algorithm 3). The computation of PCA
is closely related to the Singular Value Decomposition (SVD) [54, 129] which can decompose
any matrix into a linear combination of orthonormal rank-1 matrices weighted by positive

4.1 Introduction 75

scalars Section 2.4. In the context of high-dimensional data, the main limitation stems from
the fact that, in the absence of structure, performing PCA on a matrix Y ∈ Rd×n requires
O(d2n + d3) computation time and O(d2) memory. This cubic computational complexity
and quadratic storage dependency on d makes the cost of PCA computation prohibitive for
high-dimensional data, though it can often be circumvented when the data is sparse or admits
another type of exploitable underlying structure. Moreover, in some decentralised applications,
the computation has to be done in resource constrained, commodity devices with O(d) storage
capabilities. Given these limitations a PCA algorithm with O(d) memory dependency is highly
desirable. On this front, there have been numerous recent works in the streaming setting that
try to tackle this problem, see [131, 130, 125, 7, 8, 21]. However, most of these methods do
not naturally scale well nor can they be parallelised efficiently despite their widespread use,
e.g. [23, 21]. Unfortunately, this limitation also holds for the MOSES algorithm which was
introduced in our previous Chapter. To overcome these issues a reliable and federated scheme
for large decentralised datasets is highly desirable. Distributed algorithms for PCA have been
studied previously in [105, 117, 146]. Similar to this line of work in [134] proposed a federated
subspace tracking algorithm in the presence of missing values. However, the focus in this line of
work is in obtaining high-quality guarantees in communication complexity and approximation
accuracy and do not the ability to guarantee differential privacy, if required.

Focusing on non-distributed but differentially private setups, a number of papers have
attempted to address this and proposed algorithms for the computation of PCA in such settings.
Broadly speaking, these can be roughly divided in two main groups: (i) those which are model
free and provide guarantees for unstructured data matrices, (ii) those that are specifically
tailored for instances where specific underlying structure of the input is assumed. In the
model-free PCA we have (SuLQ) [18], (PPCA) and (MOD-SuLQ) [32], Analyse Gauss [53]. In
the structured case, [85, 86, 84] studies approaches under the assumption of high-dimensional
data [198], considers the case of achieving differential privacy by compressing the database with
a random affine transformation, while [64] proposes a distributed privacy-preserving version for
sparse PCA, but with a strong sparsity assumption in the underlying subspaces.

To the best of our knowledge, the federated, memory-limited setting for the computation
of PCA while being able to guarantee differential privacy in the model free case has not been
previously addressed in literature. This is not surprising as this case is especially difficult to
address. In the one hand, distributed algorithms for computing principal directions are not
generally time-independent. That is, the principal components are not invariant to permutations
the data. On the other hand, guaranteeing (ε, δ)-differential privacy imposes an O(d2) overhead
in storage complexity, which might render the distributed procedure infeasible in limited-memory
scenarios.

Summary of contributions: Our primary contribution is Federated-PCA (Algorithm 3)
an asynchronous, rank-adaptive, memory-limited algorithm for PCA in the federated setting.
It is also able to guarantee, (ε, δ)-differentially privacy. Our algorithm is comprised out of

76 Federated Principal Component Analysis

two independent innovations: (1) An algorithm for the incremental, private, and decentralised
computation of local updates to PCA, (2) a low-complexity merging procedure to aggregate
these incremental updates together. Further, contrary of prior-art in distributed PCA and in
the absence of perturbation masks, is also invariant to permutations in the incoming data, which
provides enhanced resilience against straggler or failed nodes. By design Federated-PCA is only
allowed to do one pass through each column of the dataset Y ∈ Rd×n using an O(d)-memory
device which results in a O(dr) storage complexity. Federated-PCA achieves (ε, δ)-differential
privacy by extending the symmetric input-perturbation scheme put forward in [32] to the
non-symmetric case. In doing so, we improve the noise-variance complexity with respect to the
state-of-the-art for non-symmetric matrices [18].

4.2 Federated PCA

We consider a decentralised dataset D = {y1, . . . ,yn} ⊂ Rd distributed across M clients. The
dataset D can be stored in a matrix Y =

[
Y1|Y2| · · · |YM

]
∈ Rd×n with n≫ d and such that

Yi ∈ Rd×ni is owned by client i ∈ {1, . . . ,M}. We assume that each Yi is generated in a
streaming fashion and that due to resource limitations it cannot be stored in full. Our method
resembles the distributed agglomerative summary model (DASM) [167] in which updates are
aggregated in a “bottom-up” approach following a tree-structure. That is, by arranging the
nodes in a tree-like hierarchy such that, for any sub-tree, the leaves compute and propagate
intermediate results the their roots for merging or summarisation. Furthermore, under the
DASM we assume that the M clients in the network can be arranged in a tree-like structure
with q > 1 levels and approximately ℓ > 1 leaves per node. Without loss of generality, in this
paper we assume that M = ℓq. An example of such tree-like structure is given in Figure 4.1.
We note that such structure can be generated easily and efficiently using various schemes [190].
Our procedure is presented in Algorithm 3.

A

A A

L L L L

A

L L L L L L L L

Fig. 4.1 Federated model: (1) Leaf nodes (L) independently compute local updates asyn-
chronously, (2) The subspace updates are propagated upwards to aggregator nodes (A), (3)
The process is repeated recursively until the root node is reached, (4) FPCA returns the global
PCA estimate.

4.2 Federated PCA 77

Algorithm 3: Federated PCA (FPCA)
Data: Y =

[
Y1| · · · |YM

]
∈ Rd×n: Data for network with M nodes // (ε, δ): DP

parameters // (α, β): Bounds on energy, see (4.5) // B: Batch size for clients
// r: Initial rank ;

Result: [U′,Σ′] ≈ SVDS(Y, r),U′ ∈ Rd×r, Σ′ ∈ Rr×r
Function Federated-PCA(Y, B, (ε, δ), (α, β), r) is

If using DP and to ensure it, compute Tε,δ,d,n as minimum batch size,
see Lemma 4.2.3

/* 1. Initialise clients */
Each client i ∈ [M] :

Initialises PC estimate to (Ui,Σi)← (0, 0), batch Bi ← [], and batch size
bi ← Tε,δ,d,n

end
/* 2. Computation of local updates */
At time t ∈ {1, . . . , n} , each client i ∈ {1, . . . ,M}

Observes data-point yit ∈ Rd and add it to batch Bi ← [Bi,yit]
if Bi has bi columns then

[Ui,Σi]← FPCA-Edge(Bi,Ui,Σi, (ε, δ), (α, β), r)
Reset the batch Bi ← [], and set the batch size bi ← B

end
end
/* 3. Recursive subspace merge */
Arrange clients’ subspaces in a tree-like data structure an example of which is shown
in Figure 4.1) and merge them recursively with Algorithm 6.

end

Note that Algorithm 3, invokes FPCA-Edge (Algorithm 10) to privately compute local updates
to the centralised model and Algorithm 6 to recursively merge the local subspaces in the tree. To
simplify the exposition we assume, without loss of generality, that every client i ∈ [T] observes
a vector yit ∈ Rd at time t ∈ [T], but remark that this uniformity in data sampling need not
hold in the general case. We also assume that clients accumulate observations in batches and
that these are not merged until their size grows to bi. However, we point out that in real-world
device networks the batch size might vary from client to client due to heterogeneity in storage
capacity and could indeed be merged earlier in the process. Finally, it is important to note
that the network does not need to wait for all clients to compute a global estimation, so that
subspace merging can be initiated a new local estimation has been computed without perturbing
the global estimation. It operates under the assumption that the aggregation network is trusted
and the resulting subspace and singular values are only released at the root, when the algorithm
finishes. This in turn implies that that no adversary can eavesdrop on the estimation of any
of the nodes during the computation. However, in the absence of differential privacy, we are
able to guarantee time independence of the end result. In words, this property guarantees

78 Federated Principal Component Analysis

that the principal-component estimations after merging are invariant to permutations in the
incoming data, see Lemma B.3.1 which is particularly useful in a federated setting. Merge and
FPCA-Edge are described in Algorithms 6 and 10.

Subspace merging

Our algorithmic constructions are built upon the concept of subspace merging in which two
subspaces S1 = (U1,Σ1) with U1 ∈ Rd×r1 , Σ1 ∈ Rr1×r1 and S2 = (U2,Σ2) with U2 ∈ Rd×r2

Σ2 ∈ Rr2×r2 are merged together to produce a subspace S = (U,Σ) with U ∈ Rd×r, Σ ∈ Rr×r

describing the combined r principal directions of S1 and S2 where r = max(r1, r2). Note
we operate under the assumption that both subspaces originate from matrices Yd×n1

1 and
Yd×n2

2 respectively, which might now be lost and not available. Our goal is to merge the two
subspaces into one that spans the directions of both. Thankfully, one can perform the merging
by computing a truncated SVD on their concatenation to get its components. Namely we can
formulate the above problem as the solution to the following Program,

[U,Σ,VT]← SVDS([λU1Σ1,U2Σ2], r), (4.1)

where λ ∈ (0, 1] a forgetting factor that allocates less weight to the previous subspace U1.
This is a direct consequence of what SVD achieves once applied. However, while Equation 4.1
works as expected it inefficient as VT is not needed and we do not take into account that both
bases U1 and B2 are already orthonormal. Recently, the utility provided by (4.1) was refined
in [96] to be applicable to multiple subspaces when the computation is incremental, but not
for streaming data. That is, when every subspace has to be computed in full in order to be
processed, merged, and propagated synchronously, which is not ideal for use in a federated
approach. We start by presenting partial SVD uniqueness, which expands the results of [96] to
be applicable in the combined setting of federated computation using streaming matrices.

Lemma 4.2.1 (Federated SVD uniqueness). Consider a network with M nodes where, at
each timestep t ∈ N, node i ∈ {1, . . . ,M} processes a dataset Di

t ∈ Rd×b. At time t, let Yi
t =

[Di
1 | · · · | Di

t] ∈ Rd×tb be the dataset observed by node i and Yt =
[
Y1
t |Y2

t | · · · |YM
t

]
∈ Rd×tMb

be the dataset observed by the network. Moreover, let Zt := [U1
tΣ1

t | · · · | UM
t ΣM

t] where
[Ui

t,Σi
t, (Vi

t)T] = SVDS(Yi
t). If

[
Ut,Σt,VT

t

]
= SVDS(Yt) and [Ût, Σ̂t, (V̂t)T] = SVDS(Zt),

then Σ = Σ̂t, and Ut = ÛtBt, where Bt ∈ Rr×r is a unitary block diagonal matrix with
r = rank(Yt) columns. If none of the nonzero singular values are repeated then Bt = Ir. A
similar result holds if b differs for each worker as long as b ≥ min rank(Yi

t) ∀i ∈ [M].

Lemma 4.2.1 is proved in the Appendix B along with a result on the time-independence
property Lemma B.3.1. In order to expand the result of Lemmas 4.2.1 and B.3.1 we must first
present a proper implementation of eq. (4.1) as an algorithm. This is presented in Algorithm 4.

4.2 Federated PCA 79

Algorithm 4: BasicMerge algorithm
Data: U1 ∈ Rd×r1 , first subspace, Σ1 ∈ Rr1×r1 , first subspace singular values
U2 ∈ Rd×r2 , second subspace, Σ2 ∈ Rr2×r2 , second subspace singular values
r ∈ [r], , the desired rank r, λ1 ∈ (0, 1), forgetting factor, λ2 ≥ 1, enhancing factor
Result: U′ ∈ Rd×r, merged subspace, Σ′ ∈ Rr×r, merged singular values
Function BasicMerge(U1, Σ1, U2, Σ2, λ1, λ2) is

[U′,Σ′, ˜]← SVDS([λ1U1Σ1, λ2U2Σ2], r)
end

As per Lemma 4.2.1 we are able to use this algorithm in order to merge two subspaces with
ease. However, as previously mentioned, there are a few things that we could improve in terms
of both speed as well as storage requirements. Recall, that in our particular care we do not
require VT , which is computed by default when using SVD; this incurs both computational
and memory overheads. We now show how we can do better in this regard.

Our derivation begins by presenting an improved version for merging, shown Algorithm 5.
Notably, this algorithm improves upon the basic merge (Algorithm 4) by exploiting the
fact that the input subspaces are already orthonormal. In this case, we show how we can
transform the Algorithm 4 to Algorithm 5. The key intuition comes from the fact that we can
incrementally update U by using U← QpUR. To do this we need to first create a subspace
basis which spans U1 and U2, namely span(Qp) = span([U1,U2]). This is done by performing
[Qp,Rp] = QR([λ1U1Σ1, λ2U2Σ2]) and use Rp to perform an incremental update. Additionally,
it is often the case that the subspaces spanned by U1 and U2 to intersect; in which case the
rank of Q is less than the sum r1 and r2. Typically, practical implementations of QR will
permute R pushing the diagonal zeros only after all non-zeros which preserves the intended
diagonal shape in the upper left part of R. However, this behaviour has no practical impact to
our results; as in the event this occurs, Q is always permuted accordingly to reflect this [166].
Continuing, we know that Qp is orthogonal but we are not finished yet since Rp is not diagonal,
so an extra SVD needs to be applied on it which yields the singular values in question and the
rotation that Qp requires to represent the new subspace basis. Unfortunately, even with this
improvement, this technique only yields a marginally better algorithm since the SVD has to
now be performed at a much smaller matrix, namely, Rp.
Provided with the above, we are now able to derive our final merge algorithm. More concretely,
for each subsequent block, namely for k > 1, we can refactor Algorithm 2 to be performed in a
recursive manner. Now we will present our final merge algorithm by showing how Algorithm 5
can be further improved when VT is not needed and we have knowledge that U1 and U2 are
already orthonormal. This is done by building a basis U′ for span((I−U1U1

T)U2) via the
QR factorisation and then computing the SVD decomposition of a matrix X such that

[U1Σ1,U2Σ2] = [U1,U′]X. (4.2)

80 Federated Principal Component Analysis

Algorithm 5: FasterMerge algorithm
Data: U1 ∈ Rd×r1 , first subspace, Σ1 ∈ Rr1×r1 , first subspace singular values,

U2 ∈ Rd×r2 , second subspace, Σ2 ∈ Rr2×r2 , second subspace singular values,
r ∈ [r], the desired rank r, λ1 ∈ (0, 1), scaling factor for U1, and λ2 ≥ 1, scaling
factor for U2.

Result: U′ ∈ Rd×r, merged subspace, Σ′ ∈ Rr×r, merged singular values
Function FasterMerge(U1, Σ1, U2, Σ2, λ1, λ2, r) is

[Qp,Rp]← QR(λ1U1Σ1 | λ2U2Σ2)
[UR,Σ′, ˜]← SVDS(Rp, r)
U′ ← QpUR

end

It is shown in [148, Chapter 3] in an analytical derivation that this yields an X of the form

X =
[
UT

1 U1Σ1 UT
1 U2Σ2

U′TU1 U′TU2Σ2

]
=
[
Σ1 UT

1 U2Σ2

0 RpΣ2

]
.

An improvement of Program (4.1) that incorporates the ideas presented above, which resulted
in a refined subspace merging algorithm Algorithm 6, is presented below.

Algorithm 6: Merge, part of Algorithm 2 and [148]
Data: (U1,Σ1) ∈ Rd×r1 × Rr1×r1 : First subspace // (U2,Σ2) ∈ Rd×r2 × Rr2×r2 :

Second subspace // with vt: flag for projected data
Result: (U′′,Σ′′,W),U′′ ∈ Rd×r,Σ′′ ∈ Rr×r, optionally W× Rr×(r1+r2) merged

subspace
Function Merge(U1,Σ1,U2,Σ2,with vt=False) is

/* project */
Z← UT

1 U2 ∈ Rr×r, r is max(r1, r2)
/* get the QR */
[Q,R]← QR(U2 −U1Z)
/* perform the SVDS to get the components */
if with vt=False then

[U′,Σ′′,∼]← SVDS
([

Σ1 ZΣ2
0 RΣ2

]
, r

)
W←∼

else

[U′,Σ′′,W]← SVDS
([

Σ1 ZΣ2
0 RΣ2

]
, r

)
end
/* finally update the subspace */
U′′ ← [U1,Q]U′

end

4.2 Federated PCA 81

Note, that the flushing step is performed when the SVDS practically ignores the W that would
be returned. This is reflected by putting a tilde (∼) as its target output for the projected data
upon calling the function, similar to what MATLAB does. In our instance and for presentation
reasons it is omitted, however this invocation style is used throughout. Moreover, [148] presented
a similar algorithm and was independently discovered but without the statistical guarantees
provided by MOSES. In practice what Algorithm 6 does, can be roughly checked in Figure 4.2
shown below. In a nutshell, provided two subspaces as arguments and their associated singular
values, then it is able to combine them into a resulting subspace and its associated values.
These, in turn, reflect the directions of both, whereas the resulting rank of the subspace and
singular value matrices is max(r1, r2). In Chapter B we also complement our algorithm with
an empirical evaluation which attempts to show the performance gains by using it.

Fig. 4.2 The final Merge procedure as in Algorithm 6, which given as arguments two subspaces
and their associated singular values, namely U1 ∈ Rd×r1 , Σ1 ∈ Rr1×r1 and U2 ∈ Rd×r2 , Σ2 ∈
Rr2×r2 is able to combine them. The resulting subspace and associated singular values reflect
the directions of both, whereas the resulting rank of the subspace and singular value matrices
is max(r1, r2).

Local update estimation: Subspace tracking

Similar to the setting we had in the previous chapter, we consider a sequence {y1, . . . ,yn} ⊂ Rd

of feature vectors. A block of size b ∈ N is formed by taking b contiguous columns of
{y1, . . . ,yn}. Assume r ≤ b ≤ τ ≤ n. If Ŷ0 is the empty matrix, the r principal components of
Yτ := [y1, · · · ,yτ] can be estimated by running the following iteration for k = {1, . . . , ⌈τ/b⌉}
can be computed as,

[Ûr, Σ̂r, V̂T
r] = SVDS

([
Ŷ(k−1)b y(k−1)b+1 · · · ykb

]
, r
)

(4.3)

or, more succinctly, we can represent the approximated r-rank estimation of Yτ at k-th block
as follows,

Ŷkb = ÛrΣ̂rV̂T
r ∈ Rd×kb. (4.4)

82 Federated Principal Component Analysis

The above uses the same formulation as used in the previous chapter, namely eq. (3.8) and its
output after K = ⌈τ/b⌉ iterations contains an estimate Û of the r leading principal components
of Yτ and the projection Ŷτ = ÛΣ̂V̂T of Yτ onto this estimate. The local subspace estimation
of ((4.3), (4.4)) was presented in the previous chapter, specifically in Algorithm 1. However,
while this algorithm is intuitive, it is not particularly computationally efficient. To this end, in
last chapter we introduced an improved version, that requires considerably fewer resources to
run and was materialised in Algorithm 2.

However, this algorithm was iterative and, as we indicated in Algorithm 6 could be refactored.
Essentially, what this allows us to do is separate the incremental update of the subspace and
the associated singular values as an isolated operation, while being able to append the projected
data if required. Streaming procedures are inherently recursive, however the original formulation
of both Algorithm 1, and 2 is not, as they are both based on iterative schemes. To alleviate this
shortcoming, we can exploit these procedures and fuse them into an algorithm that is recursive
and stateless, suitable for federated computation. This refined version based on the building
blocks of MOSES (1) and Merge (6) is called Streaming SVD (S-SVDS) and is presented below.

Algorithm 7: Streaming SVDS (S-SVDS)
Data: D ∈ Rd×b: block to process // U ∈ Rd×r: previous subspace estimate //

Σ ∈ Rr×r: previous singular value estimate // (optionally) rank-r, default is
r = dim(Σ) // (optionally) VT ∈ Rr×(k−1)b projected data estimate after k
blocks, default is VT = NIL

Result: U′ ∈ Rd×r, Σ′ ∈ Rr×r, (optionally) V′T ∈ Rr×b
Function S-SVDS(D,U,Σ, r = dim(Σ),VT = NIL) is

if UΣ is 0 then
if VT is NIL then

U′,Σ′,∼ ← SVDS(D)
else

U′,Σ′,VT ← SVDS(D)
end

else
/* otherwise, perform block update */
if VT is NIL then

U′,Σ′,∼ ← Merge(U,Σ,D, I).
else

U′,Σ′,W ← Merge(U,Σ,D, I).
/* append projected data */

V′T ←
[

V̂T 0
0 Ib

]
W.

end
end

end

4.2 Federated PCA 83

Adaptive rank estimation

One of the major limitations that many streaming schemes suffer from, is that they do not
explicitly cater for distribution shifts. In our particular case, this can materialise by the
estimation changing its effective rank as new data arrives, either upwards or downwards.
Meaning that the data observed after a while, might not be adequately captured by the current
rank r estimate and we need to increase it. Conversely, it might be the case that we notice
increased redundancy and thus can decrease the effective rank resulting in optimal space and
resource allocation for each client. This is especially important in a federated setting, since the
dataset spans across many heterogeneous clients such events are not only expected, but bound
to occur. To tackle this, we introduce a novel solution that tries to adaptively estimate the
rank over time while providing concrete bounds on the resulting reconstruction quality. That
is, by enforcing within each client,

Er(Yτ) = σr(Yτ)∑r
i=1 σi(Yτ)

∈ [α, β], (4.5)

and increasing r whenever Er(Yτ) > β or decreasing it when Er(Yτ) < α. In our algorithm,
this adjustment happens only once per block, though a number of variations to this strategy
are possible. Notably, we can express the global bound in a different form which can give us a
more descriptive overall bound, at least w.r.t. to the reconstruction quality. To this end we
know that for each local worker its ∥ · ∥F accumulated error any given time is bounded by the
ratio of the summation of its singular values.

Lemma 4.2.2. Let ∥ · ∥MF ∈ {1, . . . ,M} be the error accumulated for each of the M clients at
block τ ; then, after merging operations the global error will be ∑M

i=1 E
Yτ
M .

By exploiting Lemma 4.2.2, it allows us to bound the reconstruction quality of Yτ by using
its Frobenious norm operator (∥Ŷτ∥F). This method is a heuristic, but comes with a bound on
the reconstruction quality that throughout our empirical evaluation proved to be an effective
solution for this problem.

Naturally, there can be corner cases in which rounding errors regarding the fraction of
the singular values over time could potentially prove problematic. Another likely source of
numerical issues might be the case when there are rapid (consecutive) phase transitions in
the input data. These changes pose abrupt shift to the directions of the captured PC’s and
might require more significant rank adjustments over consecutive blocks than currently allowed.
However, dropping components quickly can be equally problematic; thus, we settled for allowing
only a single change to the effective rank per block be it either upwards or downwards. We
note, that such corner cases as the ones previously described, are not explicitly studied in this
work. However, we conjecture in real-world scenarios that these are unlikely events or, when

84 Federated Principal Component Analysis

they do manifest, it is probable for these to be isolated to just few clients at any given moment.
Thus we believe that their overall impact to the federation scheme would be minimal.

Now, provided with the results of Lemma 4.2.2 we are now able to present the adjust rank
algorithm which is directly based on the ideas discussed previously. The implementation of
which is presented in Algorithm 8 that follows.

Algorithm 8: AdjustRank
Data: U ∈ Rd×r,Σ ∈ Rr×r, r = dim(Σ), α, β
Result: U′,Σ′ ∈ Rd×r′

,Σ ∈ Rr′×r′

Function AdjustRank(U,Σ, r, α, β) is
if Er(Σ) > β then

/* Increase the rank */
U′,Σ′ ← [U, e⃗r+1],Σ[r+1]

else if Er(Σ) < α then
/* Decrease the rank */
U′,Σ′ ← U[r−1],Σ[r−1]

else
/* Er(Σ) ∈ [α, β], no need to do anything */
U′,Σ′ ← U,Σ

end
end

In words, what the adjust rank algorithm does, is that based on the singular values provided
as its input it either increases or decreases the effective rank r as described previously. More
specifically, in the case of increasing the rank we append the r+ 1-th canonical vector (⃗er+1) to
the subspace and its singular value (σr+1) to a sufficiently small scalar. Typical values for that
scalar would be σr+1 = 0.0001. Another strategy that could work equally well would be to keep
all previously captured singular values in a d-dimensional vector and fetch their previous values
in case of adjustment. Note that, even in the case of storing all of the previous singular values,
asymptotically this does not change the memory requirements. This because this scheme at
most requires O(d) memory since Σ is a diagonal matrix and has at most d entries, which is
linear w.r.t. to the ambient dimension (d). On the other hand, if need to decrease the rank
we just truncate both the target subspace and singular values to their r − 1 elements, which
are then returned. In the case we are within bounds the function does not do anything to the
provided input and returns it as-is. However, we note that one might still want to cap the range
the rank can operate for various reasons. For example in nodes that are particularly resource
restricted then perhaps it might worth the trade-off to cap the maximum rank that these nodes
can reach. Conversely, one might want to cap the minimum rank because at certain nodes we
want at least as many components to be tracked due. Practically speaking what this means is

4.2 Federated PCA 85

that the rank bounds are provided with respect to min and max rank-r observed within the
clients that are participating in the federation. As per our initial conjecture we assume that
the input matrices have a low-dimensional intrinsic rank and thus that enable us to keep the
dimensions of the respective matrices tractable.

Federated-PCA without DP

In the previous sections we discussed on how to incrementally merge blocks and provide the
required iterates in a recursive manner. Further we described how we can adjust the rank of
the estimates based on the distribution data seen thus far while providing a bound on the
reconstruction quality. With these building blocks we are now able to introduce the first version
of our FPCA-Edge algorithm. The implementation of which is presented in Algorithm 9 shown
below.

Algorithm 9: Federated PCA Edge (FPCA-Edge) (No DP)
Data: B ∈ Rd×b: Batch Y{(k−1)b+1,...,kb} // (Ûk−1, Σ̂k−1): SVD estimate for

Y{1,...,(k−1)b} // r: Initial rank estimate // (α, β): Bounds on energy, see (4.5)
// r: Initial rank estimate

Result: (Û, Σ̂), principal r-subspace of Y{1,...,kb}.
Function FPCA-Edge(B, Ûk−1, Σ̂k−1, r, α, β) is

/* Subspace tracking */
(Û′, Σ̂′,∼)← S-SVDS(B, Ûk−1, Σ̂k−1, r)
/* Adjust rank */
(Û, Σ̂)← AdjustRank(Û′, Σ̂′, r, α, β)

end

Note, that this function is slated to be executed within each client independently and the global
dataset is never materialised or propagated upwards but only the estimates. Further, the
rank adjustment also is able to happen in isolation within each client without any causing any
issues during propagation. This is the case, because as we saw previously the Merge algorithm
is able to compose subspaces that have different ranks. Further, note that the storage and
computational requirements of the Subspace tracking procedure of Algorithm 9 are nearly
optimal for the given objective since, at iteration k, only requires O(r(d+ kr)) bits of memory
and O(r2(d+ kr)) flops. However, until now none of the algorithms discussed previously are
able to guarantee differential privacy.

Differential Privacy: Streaming MOD-SuLQ

So far, we have introduced a version of FPCA-Edge algorithm but without providing any
guarantees for differential privacy, which is an increasingly desired property - especially in a
federated setting. However, one might ask - why do we even need privacy in that particular

86 Federated Principal Component Analysis

setting given the associated costs with its computation and maintenance. To illustrate a practical
attack which could reveal private information when performing dimensionality reduction can
serve as an indicator why privacy, in some settings, is indeed quite important and a valid
concern. The kind of attackers we consider in this setting are external adversaries that know
the final output of our algorithm as well as additional prior information about individuals. For
example, one such adversary could be one that had gathered partial input from a node while
also having at their disposal the final output. Suppose we have a matrix W ∈ Rd×n, where d
the number of features and n the number of samples, we know that its covariance is given by,

C = 1
n

WWT .

Notably, if we perform the SVD on matrix W we have,

UΣVT = SVD(W). (4.6)

As we mentioned previously this decomposes W into the unitary matrices U ∈ Rd×d and
VT ∈ Rn×n and the diagonal matrix Σ ∈ Rd×n. The matrices U and VT contain the left and
right singular vectors respectively, while the singular values are contained within Σ. However,
since the covariance matrix C ∈ Rd×d is Hermitian then we know that its eigendecomposition
yields eigenvectors given by the unitary matrix U ∈ Rd×d and with associated eigenvalues λ
placed within the diagonal matrix Λ ∈ Rd×d [165]; more formally we have,

CU = UΛ.

Since C is symmetric, we can factorise it as follows,

C = UΛUT . (4.7)

Which uses its eigenvectors and eigenvalues. One key observation is that we can also perform
this by rearranging (4.6) to produce (4.7), thus we can compute the eigenvectors of W by
applying the SVD on its covariance matrix. In order to fully prove this relationship, we can do

4.2 Federated PCA 87

the following expansions,

C = 1
n

WWT (4.8)

= 1
n

(UΣVT)(UΣVT)T (4.9)

= 1
n

(UΣVTVΣUT) (4.10)

= 1
n

(UΣ2UT) (4.11)

≈ 1
n

(UrΣ2
rUT

r). (4.12)

It is worth mentioning that we can perform the last step since V is a unitary matrix and
thus VTV = I. The covariance contains important information about the data which in
many instances we want to safeguard. Given the tools above and assuming an adversary
gathered partial input from a node while also having at their disposal the final output of
Federated-PCA then it could easily reconstruct the covariance matrix. In addition, it might be
safe to assume that the adversary might also know some of the entries of the target covariance
matrix, let the number of the known entries be m. It is worth pointing, that knowing the
final output of Algorithm 3 is given, as we assume that anyone has access to it. Thus, the
unknown parameters of (4.12) are comprised out of the unknown entries in C ∈ Rd×d that the
adversary wants to find to fully reconstruct C which is d2 −m. However, that there are d2

linear (approximated) equations in (4.12) and the unknown entries of C can be recovered if
d2 ≥ d2 −m, namely m ≥ 0. Which is always the case, as Federated-PCA returns both the
U ∈ Rd×r and its associated singular values Σ ∈ Rr×r. More broadly speaking this and similar
attacks fall into the “reconstruction attacks” category, which is one of the attack types that
differential privacy aims to protect against. Now that we have described a viable attack surface,
we can proceed on how to apply differential privacy techniques in order to protect against
similar attacks.

Our primary innovation lies in refining the seminal work presented by [32] to be applicable
to non-symmetric matrices. This is the case, because in the streaming setting not only the
dataset cannot be fully materialised but is not known beforehand thus making traditional
MOD-SuLQ inapplicable. We refine this algorithmic construction and extend it to be applicable
to non-symmetric matrices which correspond to the blocks presented within each client. We
start to formulate the provided by having a data matrix X ∈ Rd×n and differential privacy
parameters (ε, δ), the MOD-SuLQ algorithm [32] privately computes the k-leading principal
components of

A = 1
n

XXT + Nε,δ,d,n ∈ Rd×d, (4.13)

88 Federated Principal Component Analysis

the covariance matrix of X perturbed with a symmetric random Gaussian matrix Nε,δ,d,n ∈
Rd×d. This symmetric perturbation mask is such that (Nε,δ,d,n)i,j ∼ N (0, ω2) for i ≥ j where

ω := ω(ε, δ, d, n) = d+ 1
nε

√
2 log

(
d2 + d

2δ
√

2π

)
+ 1
n
√
ε
. (4.14)

Materialising (4.13) requires O(d2) memory which is prohibitive in given our complexity
budgets. We can reduce the memory requirements to O(cdn) by computing XXT incrementally
in batches of size c ≤ d. That is, by drawing Nd×c

ε,δ,d,n ∈ Rd×c and merging the non-symmetric
updates

Ak,c = 1
b

X
[
(XT)(k−1)c+1 · · · (XT)ck

]
+ Nd×c

ε,δ,d,n (4.15)

by using Algorithm 6.
In Lemma 4.2.3 we extend the results in [32] to guarantee (ε, δ)-differential privacy in (4.15).

While the SuLQ algorithm [18], guarantees (ε, δ)-differential privacy with non-symmetric noise
matrices, it requires a variance rate of ω2 = 8d2 log2(d/δ)

n2ε2 , which is sub-optimal with respect to
the O(d

2 log(d/δ)
n2ε2) guaranteed by Lemma 4.2.3. The full proof for Lemma 4.2.3 is in Appendix B

(see B).

Lemma 4.2.3 (Streaming Differential Privacy). Let X = [x1 · · ·xn] ∈ Rd×n be a dataset with
∥xi∥ ≤ 1, Nε,δ,d,n ∈ Rd×d and A = 1

nXXT + Nε,δ,d,n. Let {v1, . . . ,vd} be the eigenvectors of
1
nXXT and {v̂1, . . . , v̂d} be the eigenvectors of A. Further, let

ω(ε, δ, d, n) = 4d
εn

√
2 log

(
d2

δ
√

2π

)
+
√

2√
εn
. (4.16)

1. If (Nε,δ,d,n)i,j ∼ N (0, ω2) drawn independently, then (4.15) is (ε, δ)-differentially private.

2. If n ≥ Tε,δ,d,n := ω−1
0

[
4dε−1

√
2 log

(
d2δ−1(2π)−1/2)+

√
2ε−1

]−1
, then (4.15) is (ε, δ)-

differentially private for a noise mask with variance ω2
0.

3. Iteration (4.15) inherits MOD-SuLQ’s sample complexity guarantees, and asymptotic
utility bounds on E [|⟨v1, v̂1⟩|] and E [∥v1 − v̂1∥].

Having provided the differential privacy foundations by extending MOD-SuLQ to be ap-
plicable to non-symmetric matrices, we are now able to introduce our FPCA-Edge algorithm
that takes advantage of that. One additional detail that we need to adhere to is that after
the sample complexity bounds are satisfied the output of each FPCA-Edge client is, and
remains, differentially private for each consecutive estimate. This is especially convenient in
a federated setting, as after the initial estimate lag (in order to guarantee DP) we can then
provide an estimate for each consecutive block without losing the provided DP guarantees.

4.2 Federated PCA 89

This practically means that we can process all blocks however, the estimate is only guaranteed
to be differentially private after the sample complexity bound is satisfied. Furthermore, our
asymptotic analysis indicates that the more blocks we process the stronger the differential
privacy guarantees become. Naturally, this is also affected by the choice of the block size.
Moreover, our conclusions seem to be further validated by recent developments which put forth
the conjecture that online learning is, by definition, private [71].

By using the previous building blocks, namely S-SVDS, Merge, AdjustRank, and the results
of Lemma 4.2.3 we are able to present the (ε, δ)-differentially private Federated-PCA Edge
algorithm below.

Algorithm 10: Federated PCA Edge (FPCA-Edge)
Data: B ∈ Rd×b: Batch Y{(k−1)b+1,...,kb} // (Ûk−1, Σ̂k−1): SVD estimate for

Y{1,...,(k−1)b} // r: Initial rank estimate // (α, β): Bounds on energy, see (4.5)
// (ε, δ): DP parameters // r: Initial rank estimate

Result: (Û, Σ̂), principal r-subspace of Y{1,...,kb}.
Function FPCA-Edge(B, Ûk−1, Σ̂k−1, (ε, δ), (α, β), r) is

if (ε, δ) is NIL then
/* No DP, just do subspace tracking */
(Û′, Σ̂′,∼)← S-SVDS(B, Ûk−1, Σ̂k−1, r)

else
/* Streaming MOD-SuLQ */
(U,Σ)← (0, 0)
for ℓ ∈ {1, . . . , d/c} do

Bs ← 1
bB(B{(ℓ−1)c+1,...,ℓc})T + Nd×c

ε,δ,d,b such that
(
Nd×c
ε,δ,d,b

)
i,j
∼ N (0, ω2) and

ω as in (4.16)
(U,Σ,∼)← S-SVDS(Bs,U,Σ, r)

end
/* Subspace merge */
(Û′, Σ̂′,∼)← Merge(U,Σ, Ûk−1, Σ̂k−1)

end
/* Adjust rank */
(Û, Σ̂)← AdjustRank(Û′, Σ̂′, r, α, β)

end

The above algorithm in order to guarantee DP uses the result of Lemma 4.2.3 for X = B ∈ Rd×b

and computes an input-perturbation in a streaming way in batches of size c. If c is taken as a
fixed small constant the memory complexity of this procedure reduces to O(db), which is linear
w.r.t. to the ambient dimension (d). However, note that in the presence of perturbation masks,
while we are able to reduce the memory complexity the computational complexity remains
O(d2) due to the incremental covariance expansion per block, see Section 4.2. A value for ε can
be obtained from Apple’s differential privacy guidelines [5]. However, in our experiments, we

90 Federated Principal Component Analysis

,

Fig. 4.3 Federated-PCA edge at client i at time t, takes as an argument sequences of vectors
yti ∈ Rd which are concatenated into blocks within each client. These blocks are then processed,
incrementally, in order to produce the new estimates for Ui ∈ Rd×r and Σi ∈ Rr×r for the i-th
client. These results are then propagated upwards to be merged using Algorithm 6.

benchmark across a wider spectrum of values. A rough outline of the FPCA-Edge procedure
can be seen in Figure 4.3, which indicates that at every time t each client observes a vector in
Rd which forms a block that is processed accordingly. The differentiation happens depending if
there is a requirement to guarantee differential-privacy or not.

4.3 Experimental Evaluation

To validate our proposed scheme, we divide our evaluation into two separate segments. The
first focuses on the differentially private aspects of our scheme while the second one presents
the results in the absence of perturbation masks - i.e. traditional PCA. We try to evaluate our
scheme using both established real-world (e.g. MNIST, Wine) as well as synthetic datasets
in order to provide a better overall view of its performance. All of our experiments for this
section were performed on a workstation using an AMD 1950X CPU with 16 cores at 4.0GHz
having 128 GB of 3200 MHz DDR4 RAM, and MATLAB R2020a (build 9.8.0.1380330). To
foster reproducibility and accelerate dissemination of the contributions presented both code
and datasets used for our numerical evaluation are made publicly available1.

Differential Privacy empirical evaluation

In this section we focus on on comparing Federated-PCA against an offline differentially private
algorithm, MOD-SuLQ [32]. To quantify the loss with the application of differential private
that our scheme has we compare the quality of the projections using the MNIST [113] and
Wine [41] datasets which contain, respectively, 10000 labelled images of handwritten digits and
physicochemical data for 6498 variants of red and white wine. Further, we empirically test
the utility loss across a variety of spectrums and show that Federated-PCA exhibits attractive
performance when compared to the non-streaming variants.

1At: https://www.github.com/andylamp/federated pca

https://www.github.com/andylamp/federated_pca

4.3 Experimental Evaluation 91

MNIST and Wine evaluation

To retrieve our baseline we performed the full-rank PCA on the MNIST and (red) Wine datasets
and retrieved the first and second principal components, see Figs. 4.4a and 4.5a. Then, on the
same datasets, we applied FPCA with rank estimate r = 6, block size b = 25, and DP budget
(ε, δ) = (0.1, 0.1). The projections for Offline PCA, FPCA with no DP mask, FPCA with DP
mask, and vanilla MOD-SuLQ for the MNIST and (red) Wine datasets are shown in Fig. 4.4.
We note that to keep the comparison fair with MOD-SuLQ, the rank estimation was disabled
in this first round of experiments.

-3000 -2000 -1000 0
1st PC

-1000

0

1000

2000

2n
d

P
C

(a) Offline PCA

0 1000 2000 3000
1st PC

-1000

0

1000

2000

2n
d

P
C

(b) F-PCA (no mask)

-3000 -2000 -1000 0
1st PC

-2000

-1000

0

1000

2000

2n
d

P
C

(c) F-PCA (with mask)

-3000 -2000 -1000 0
1st PC

-2000

-1000

0

1000

2n
d

P
C

(d) MOD-SuLQ

Fig. 4.4 MNIST projections, for (a) Offline PCA, (b) F-PCA without DP mask, (c) F-PCA
with DP mask, (d) (symmetric) MOD-SuLQ. Computed with DP budget of (ε, δ) = (0.1, 0.1).

We start by discussing the MNIST dataset results. It can be seen from Figure 4.4 that in all cases
FPCA correctly learnt the principal subspace of Offline PCA (up to a rotation) and managed
to preserve the underlying structure of the data. In fact, in this case FPCA outperformed
traditional MOD-SuLQ. We believe that this is because the MNIST is a large enough dataset
with a relatively low true intrinsic dimension of r = 10. We also conjecture that the large

92 Federated Principal Component Analysis

volume of samples contained within MNIST when compared to the dataset rank aided the
preservation of the underlying structure.

-300 -200 -100 0
1st PC

-40

-20

0

20

40

60

80

2n
d

P
C

(a) Offline PCA

-300 -200 -100 0
1st PC

-80

-60

-40

-20

0

20

40

2n
d

P
C

(b) F-PCA (no mask)

0 100 200 300
1st PC

-40

-20

0

20

40

60

2n
d

P
C

(c) F-PCA (with mask)

-300 -200 -100 0
1st PC

-20

0

20

40

60

80

2n
d

P
C

(d) MOD-SuLQ

Fig. 4.5 Wine projections, for (a) Offline PCA, (b) F-PCA without DP mask, (c) F-PCA with
DP mask, (d) (symmetric) MOD-SuLQ. Computed with DP budget of (ε, δ) = (0.1, 0.1).

Next we proceed to discuss the Wine dataset results. In this instance it seems that although
FPCA performed well, traditional MOD-SuLQ had the edge. We conjecture that this is because
the sample complexity of this dataset relative to its rank is considerably lower than the MNIST
and thus there ware not enough samples for a streaming algorithm to completely capture the
full structure of the data.

Overall, as we saw from Figure 4.4 and 4.5, we note that in all cases FPCA correctly learnt
the principal subspace of Offline PCA (up to a rotation) and managed to preserve the underlying
structure of the data. This was particularly evident in traditional dimensionality reduction
workloads, meaning when the target recovery rank (r) was less than the ambient dimension
of the data (d). Moreover, we observed that in datasets that the samples far outnumber the
intrinsic dimensionality FPCA performed remarkably well, even beating offline methods, which
have no restrictions on the availability of computing resources. We note that the presence

4.3 Experimental Evaluation 93

of arbitrary rotations is expected as the guarantees for our algorithm hold up to a unitary
transform, for more details see Appendix C. Further, when we used our adaptive rank estimation
in separate runs, we note that the final estimated rank for MNIST when using differential
privacy was r = 8 and expressed most of the dataset’s variance. Notably, this was very close
to the true rank of the MNIST dataset which is r = 10 and equal to the number of different
handwritten digit digit classes, namely 0 through 9.

Utility loss evaluation

To evaluate the utility loss with respect to the privacy-accuracy trade-off we fix δ = 0.01
and plot qA = ⟨v1, v̂1⟩ for ε ∈ {0.1k : k ∈ {1, . . . , 40}} where v1 and v̂1 are defined as
in Lemma 4.2.3. Synthetic data was generated from a power-law spectrum using the Synth
function2 as Yα ∼ Synth(α)d×n ⊂ Rd×n and using α ∈ {0.01, 0.1, .5, 1}. The results are shown
in Figure 4.6 where we see that a larger ε increases the utility, but at the cost of lower DP.
Quantitatively speaking, our experiments suggest that the more uniform the spectrum is, the
harder it is to guarantee DP and preserve the utility.

0.1 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1
a=0.01
a=0.10
a=0.50
a=1.00

(a) F-PCA (with mask).

0.1 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1
a=0.01
a=0.10
a=0.50
a=1.00

(b) MOD-SuLQ (non-sym.).

0.1 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

a=0.01
a=0.10
a=0.50
a=1.00

(c) MOD-SuLQ (symmetric).

Fig. 4.6 Utility loss of qA for (a) F-PCA, (b) non-symmetric MOD-SuLQ, and (c) symmetric
MOD-SuLQ using δ = 0.05, N = 5k, and d = 20 across different ε and Yα ∼ Synth(α)d×n.

Federated-PCA results in the absence of perturbation masks.

To further evaluate our scheme and its efficacy in more traditional setups we compare its accuracy
without perturbation masks on both synthetic, real datasets. The algorithms considered in
this instance are: FPCA-Edge (on a single node network), GROUSE [13], Frequent Directions
(FD) [47, 120], the Power Method (PM) [130], and a variant of Projection Approximation
Subspace Tracking (PAST) [194], named SPIRIT (SP) [142]. In the spirit of a fair comparison,
we run FPCA-Edge without its DP features; we elected to do this, as no other streaming
algorithm out of the ones we compare against is able to guarantee DP. Figures 4.7b, 4.7a,
and 4.7c evaluate the performance of FPCA-Edge against the competing streaming algorithms.

2If Y ∼ Synth(α)d×n iff Y = UΣVT with [U, ∼] = QR(Nd×d), [V, ∼] = QR(Nd×n), and Σi,i = i−α, and
Nm×n is an m × n matrix with i.i.d. entries drawn from N (0, 1).

94 Federated Principal Component Analysis

0.0001 0.001 0.5 1 2 3
-25

-20

-15

-10

-5

0

SP
PM
FD
GROUSE
F-PCA

(a) Errors on synthetic datasets.

Light Temp Volt Humid MNIST WINE
-20

-10

0

10

20
SP
PM
FD
GROUSE
F-PCA

(b) Errors on real datasets.

200 400 600 800 1000
0

5

10

15

20

25
SP
PM
FD
GROUSE
F-PCA

(c) Average execution time.

Fig. 4.7 Approximation (a-b) and execution (c) benchmarks against other streaming algorithms
for a single-node network and without DP masks. Note that the RMSE errors for Figs. 4.7b
and 4.7a are in logarithmic scale. The execution time shown in Fig. 4.7c is in seconds and
indicates the average time per trial for each of the algorithms across the different ambient
dimensions tested (d).

Concretely, in Figure 4.7a we evaluate the resulting subspace using synthetic datasets; these
were generated according to the power law distribution and in a similar fashion as in the
utility evaluation by using the Synth function3 as Yα ∼ Synth(α)d×n ⊂ Rd×n albeit with a
wider gamut for α, namely α ∈ {0.0001, 0.001, 0.5, 1, 2, 3}. Moving on, in the second figure,
namely Figure 4.7b we examine the performance of the algorithms against the sensor readings
from the Berkeley Mote dataset which contains measurements of humidity, voltage, temperature,
and light [48]. We also compare against the traditional MNIST and Wine datasets as in the
previous section. In both Figures 4.7b and 4.7a we report log(RMSE) errors with respect to
the offline full-rank PCA and show that FPCA exhibits state-of-the-art performance across all
datasets. In particular, we note that the performance of FPCA in real datasets was significantly
better when compared with the other methods tested.

The third figure attempts to quantify the computational performance of FPCA against
the algorithms tested. In this comparison, we measured the time it took for each method to
complete across different ambient dimensions (d) over 3 trials. The total number of columns for
each ambient dimension was n = 104 while the recovery rank for all methods was set to r = 10.
The results of these measurements are depicted in 4.7c in which we observe that both FPCA
and SP scale gracefully and exhibit state of the art performance while the other methods suffer
from degraded performance as the ambient dimension grows. Overall, we believe that FPCA in
most scenarios outperforms the state-of-the-art while also having the desirable ability to scale
gracefully as the ambient dimension grows.

3If Y ∼ Synth(α)d×n iff Y = UΣVT with [U, ∼] = QR(Nd×d), [V, ∼] = QR(Nd×n), and Σi,i = i−α, and
Nm×n is an m × n matrix with i.i.d. entries drawn from N (0, 1).

4.3 Experimental Evaluation 95

Memory Evaluation

We benchmarked each of the methods used against its competitors and found that our
Federated-PCA performed favourably. With respect to the experiments, in order to ensure
accurate measurements, we started measuring after clearing the previous profiler contents. The
tool used in all profiling instances was MATLAB’s built-in memory profiler which provides a
rough estimate about the memory consumption; however, it has been reported that can cause
issues in some instances. These empirical results support the theoretical claims about the
storage optimality of FPCA. In terms of average and median memory allocations, FPCA is
most of the times better than the competitors. Naturally, since by design, PM requires the
materialisation of larger block sizes it requires more memory than both FPCA as well as FD.
Moreover, GROUSE, in its reference implementation requires the instantiation of the whole
matrix again; this is because the reference version of GROUSE is expected to run on a subset
of a sparse matrix which is copied locally to the function - since in this instance we require
the entirety of the matrix to be allocated and thus results in a large memory overhead. An
improved, more efficient implementation of GROUSE would likely solve this particular issue.
Concluding, we note that although Federated-PCA when using perturbation masks consumes
slightly more memory, this is due to the inherent added for supporting differential privacy;
however, this cost appears to be in line with our O(db) memory bound and not quadratic with
respect to d, as with competing algorithms.

Table 4.1 Average / median memory allocations (Kb) for a set of real-world datasets.

Humidity Light Voltage Temperature
FPCA (with mask) 166.57 / 81.23 Kb 172.00 / 99.17 Kb 289.02 / 143.79 Kb 257.00 / 195.30 Kb
FPCA (no mask) 138.11 / 58.99 Kb 104.00 / 76.03 Kb 204.58 / 23.47 Kb 187.74 / 113.28 Kb
PM 905.45 / 666.11 Kb 685.48 / 685.44 Kb 649.12 / 644.35 Kb 657.57 / 668.27 Kb
GROUSE 2896.61 / 2896.62 Kb 2896.84 / 2896.62 Kb 2772.86 / 2772.62 Kb 3379.62 / 3376.62 Kb
FD 162.70 / 117.92 Kb 170.48 / 127.91 Kb 114.46 / 112.66 Kb 196.11 / 118.59 Kb
SP 476.68 / 405.01 Kb 1009.03 / 508.11 Kb 348.84 / 351.98 Kb 541.56 / 437.61 Kb

Federated performance evaluation

In this part of the evaluation we aim to simulate a federated environment and how the
performance of our scheme would look like. Specifically, we create a tree like network structure
following a binary tree pattern with different depths and number of nodes. The depth of the
tree was provided by ℓ = log2(Node count) where the node count was picked from 2i ∈ {1 : 6}.
This was primarily done for practical reasons rather than a limitation of the algorithm itself,
as it can work in the absence of structure. However, MATLAB did not allow through its
parallel toolbox easy sharing of non-aligned memory blocks without a huge penalty impact thus
everything had to be properly aligned, which the binary tree topology ensured. In particular,
we measured the total time it took to execute each trial for which we reported the average. We
used an ambient dimension of d = 103 for all trials while we scaled the column of the dataset

96 Federated Principal Component Analysis

accordingly; the number of columns we tested for was n ∈ {640k, 1.28M, 1.92M, 2.56M, 3.2M}.
To provide deeper insights into where the CPU cycles were spent, we separated the global
computation time into its components, namely the time to compute Merge and PCA. We
report our findings in for the average of total CPU time spend for the total trial duration,
Merge, and PCA in Figures 4.8a, 4.8b, and 4.8c respectively.

2 4 8 16 32 64
0

5

10

15

20

25
T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(a) FPCA: Total time.

2 4 8 16 32 64
0

5

10

15

20

25
T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(b) FPCA: PCA time.

2 4 8 16 32 64
0

0.02

0.04

0.06

0.08

T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(c) FPCA: Merging time.

Fig. 4.8 Computational scaling of FPCA on multi-node networks with binary-trees of depth
ℓ = log2(Node count). We report the average execution time over 5 trials for total execution
time (fig. 4.8a), PCA (fig. 4.8b), and Merge (fig. 4.8c) operations respectively. The dataset had
d = 103 features, varying columns n with n ∈ {640k, 1.28M, 1.92M, 2.56M, 3.2M} using node
count equal to 2i, i ∈ {1 : 6}.

The results indicate that there is a regression after exceeding the number of physical cores
available within our machine, which is an expected behaviour. This behaviour is expected, as
due to the lack of processing nodes, not all of the sub-problems can be executed concurrently.
One way to estimate how this would be extrapolated into networks that would have enough
nodes for processing each subproblem independently is to amortise the computation. Notably,
we see that the majority of the time is spent for PCA computation as is expected, however
we remark Merge exhibits favourable scalability. This empirical discovery further validates
its applicability in a federated setting, where it is desirable that the aggregation procedure
is as lightweight as possible. In order to provide additional information with respect to the
evaluation we also report the amortised execution times per number of workers, as if the workers
exceed the number of available compute nodes in our workstation then computation cannot be
completed in parallel thus hindering the potential speedup. In Figure 4.9 we show the amortised
total (fig. 4.9a), PCA (fig. 4.9b), and Merge (fig. 4.9c) times respectively.
These results indicate, that in the presence of enough resources, Federated-PCA exhibits an
extremely favourable scalability curve emphasising the practical potential of the method if used
in conjunction with thin clients (i.e. mobile phones).

4.4 Discussion 97

2 4 8 16 32 64
0

2

4

6

8

10

12
T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(a) Amortised execution time.

2 4 8 16 32 64
0

2

4

6

8

10

12
T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(b) Amortised PCA time.

2 4 8 16 32 64
0

0.02

0.04

0.06

0.08

T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(c) Amortised merging time.

Fig. 4.9 Amortised computational scaling of FPCA on multi-node networks with binary-trees of
depth ℓ = log2(Node count). We report the amortised average execution times over 5 trials for to-
tal execution time (fig. 4.9a), PCA (fig. 4.9b), and Merge (fig. 4.9c) operations respectively. The
dataset had d = 103 features, varying columns n with n ∈ {640k, 1.28M, 1.92M, 2.56M, 3.2M}
using node count equal to 2i, i ∈ {1 : 6}.

4.4 Discussion

In this chapter, we have put forth Federated-PCA, which is a unified mathematical framework
that makes traditional PCA applicable in the federated setting, consisting of several innovations.
More specifically, our framework offers several attractive properties, such as the ability of
streaming computation, adaptive rank estimation, and the ability to guarantee differential
privacy. We note, in the streaming setup the notion of time used is the same as in Chapter 3;
namely that it corresponds to sequence of vector arrivals which are presented to each node rather
than actual time units. Its origins are based on the ideas previously established in Chapter 3;
but as previously discussed in Section 3.6, even with its considerable merits, MOSES had
several drawbacks. Notably, one its major limitations was its lack of horizontal scalability due
to its design that restricted its applicability to single node use-cases. In fact, this limitation is
shared across most established methods [130, 13, 8] as they all lack the ability to operate in a
distributed or decentralised setting. Recently however, there has been a surge of methods trying
to tackle PCA computation while offering horizontal scalability [21, 105]. Unfortunately, none
of aforementioned methods are able to estimate the rank of the input, rely on the incoming
data to admit special structure, or require explicit synchronisation. In our case, we were able
to address these limitations by reformulating the problem presented in Chapter 3 such that
the actual merging was decoupled from the iterate computation. In doing so, allowed us to
introduce Federated-PCA Edge (Algorithm 10) algorithm that offered horizontal scalability by
construction. In turn, this separation, is what provided the required insights that helped us to
devise our intrinsic rank estimation scheme and addresses another significant limitation that
many algorithms share [13, 8, 131], including MOSES. We complement this result with bounds
on the reconstruction error which is provided in Lemma 4.2.2. Notably, there might be instances
in which one might still want to cap the range of the rank for various reasons. Specifically, one

98 Federated Principal Component Analysis

such case would be in the event that some of the nodes are particularly resource restricted;
then perhaps it might worth the trade-off to cap the maximum rank that these nodes can reach
in order to conserve resources. We note that, if desired, this can be trivially supported from
our scheme. Moreover, our Merge (Algorithm 6 procedure is lightweight and as empirically
observed throughout our evaluation exhibited remarkable scalability. This is a desirable trait,
as we expect to perform these merges frequently in a federated setting. Another attribute of
our proposed scheme that can be particularly useful, is time-independence of the result, which
for Federated-PCA holds in the absence of perturbation masks (i.e. when we do not require
DP). This property was formalised in Lemma B.3.1 and enables the input samples to arrive
in any order while guaranteeing that the final output of the algorithm will remain the same.
Such explicit guarantees for the end result and input perturbation invariance were not present
in prior art. However, we note, that in works such as [66] or [130] the result was provided
in expectation and only for one of the principal subspaces rather than both; in our case, we
provide a deterministic result for both principal subspaces as well as the singular values.

Interestingly, one particular question that might arise is why not use Stochastic Gradient
Descent (SGD) for solving this problem. In general, SGD based approaches work reasonably
well in practice. However, they suffer from a few drawbacks that are worth considering when
picking a suitable algorithm in a particular domain. Firstly, they are stochastic - meaning
that they results are not deterministic, which might hinder their explainability [155]. This
property can be a necessity in sensitive decision making applications. In addition, normally
SGD based approaches require multiple iterations to converge, which in turn implies multiple
passes over the data (and their availability). On the other hand, our approach follows a line
of work that tries to provide deterministic guarantees on the output while only requiring one
pass over the data. In particular, our approach requires only a single block of data to be stored
at any given time within each node and is able to iteratively update both the estimates as
well as the projected data. Normally, SGD based approaches are only able to produce the
subspace, rather than also provide access to the projected data - if that is desired. More
importantly however, SGD based approaches can perform, at best, as well as the SVD. This is
a consequence of the Eckart-Young-Mirsky Theorem [54, 129], as the SVD can produce the
best possible rank-r approximation of any given matrix. However, in the past methods similar
to ours were computationally expensive or had probabilistic bounds. Our line of work tries
to alleviate that by firstly introducing MOSES in the previous chapter and Federated-PCA
herein, attempting to make such methods scalable as well as practical while providing their
attractive guarantees.

Unfortunately, none of the aforementioned algorithms provided the ability to guarantee
differential privacy, which is an increasingly desirable property and, in some instances, a
requirement. Indeed recently, there have been many seminal works in the model-free PCA
setting, namely (SuLQ) [18] which was improved in [32] that yielded (PPCA) and (MOD-SuLQ)
as well as Analyse Gauss [53]. On the other hand, if we assume that the input data admits specific

4.4 Discussion 99

underlying structure [85, 86, 84] studies approaches under the assumption of high-dimensional
data whereas in [198], considers the case of guaranteeing differential privacy by compressing
the database by using a random affine transformation. More recently and closely related to
our work [64] proposed a distributed privacy-preserving version for sparse PCA, but requires
synchronisation and a strong sparsity assumption in the underlying subspaces. In our work, to
guarantee differential privacy we exploited the celebrated MOD-SuLQ algorithm [32, 33] and
extended its results to be applicable in the streaming and non-symmetric setting. We note, that
we are able to do so while preserving the same nearly-optimal asymptotic guarantees provided by
MOD-SuLQ and our provided bound of O

((
d
n

)2
log d

)
improves the bound previously provided

by [18]. In addition, we complement our analysis with bounds for both utility (Lemma B.2.5) as
well as a sample complexity (Lemma B.2.6). More importantly, having visibility on the sample
complexity is an extremely useful insight as it allows to have a precise minimum sample horizon
on when the result is able to be released while guaranteeing differential privacy. On the other
hand, one limitation is that when our scheme guarantees differential privacy then this voids its
time-independence property. This is because as currently formulated, Lemma B.3.1 preserves
the absolute weights of the end result. Naturally, this is something that cannot possibly hold in
the case of DP due to the noise added in order to guarantee it. Note, that in the context of
perturbation masks, we have assumed that the network is trusted and that no adversary can
eavesdrop on the estimation of any of the nodes. A number of interesting DP settings occur
when this assumption is relaxed. For instance, such cases are when the network is not trusted
or when the values of (U,Σ) are not initialised to the zero matrix in Algorithm 10. In these
cases, it is important to quantify the privacy loss of observing several queries to the dataset
which can be addressed via composition theorems [51, 102]. Concretely, such an example
is [64] in which they assume that the central server is an untrusted entity and thus during each
iteration of the algorithm a privacy cost has to be paid. For the purposes of this work these
are not cases we consider and leave them as future work. Another avenue for future work, is
to devise a formulation of Lemma B.3.1 that measures the time independence with respect to
the utility rather than the absolute weights. In doing so, such a formulation could yield the
same time-independent guarantees, but using a metric that is appropriate in the setting of DP.
The final avenue for potential future work that we will address is to extend Federated-PCA in
the setting of missing values while preserving differential privacy. Indeed, one of the current
limitation of our approach is its inability to operate with datasets that have missing values and
obtaining a formulation that can handle this would greatly enhance its applicability.

Concluding, in this chapter we introduced an algorithm to compute PCA that is able to scale
to federated datasets, can estimate their intrinsic dimension, and also guarantee (ε, δ)-differential
privacy. At the edge, our proposed method is able to process the individual sub-problems
using limited memory and resources. It is also streaming, meaning that is able to produce
its iterates incrementally while using small blocks of data. This allows faster updates of its

100 Federated Principal Component Analysis

iterates, resulting into more frequent and accurate iterate estimations. Further, the lightweight
merging procedure enables us to guarantee that aggregation will be swift and accurate with the
ability to process aggregates from multiple nodes with minimal latency. These properties along
with their provided theoretical guarantees make this method an ideal candidate to be used as
building block for a federated task scheduler in decentralised setups. In the next chapter, we
are going to introduce a novel task scheduler that is able to operate on traditional but is also
to federated data centres of the future. We are also going to exploit the produced subspace
iterates within each node that employ the learnt embeddings to make job acceptance decisions
while maximising the overall system responsiveness.

Chapter 5

Federated Task Scheduling

In this chapter, using the previous constructions we present a federated, asynchronous, memory-
limited algorithm for online task scheduling. Our scheme is able to handle large scale job
allocations across networks comprising with hundreds of workers. This is achieved by using
a variant of Federated-PCA which was presented in Chapter 4 and exploiting its ability to
incrementally compute local model updates. This local model is then used along with incoming
data to generate a rejection signal which reflects the overall node responsiveness and if it is able
to accept an incoming task without resulting in degraded performance. Through this innovation,
we allow each node to execute scheduling decisions on whether to accept an incoming job
independently based on the workload seen thus far. Further, using the aggregate of the iterates
a global view of the system can be constructed, as needed, and could be used to produce a
holistic perspective of the system. We complement our findings, by an empirical evaluation
on a large-scale real-world dataset of traces from a virtualised production data centre that
shows, while using limited-memory, that our algorithm exhibits state-of-the-art performance.
Concretely, it is able to predict changes in the system responsiveness ahead of time based on
the industry standard CPU Ready metric and, in turn, can lead to better scheduling decisions
and overall utilisation of the available resources. Finally, in the absence of communication
latency, it exhibits attractive horizontal scalability.

5.1 Introduction

Data centre resource allocation or scheduling is the fundamental task of allocating resources (e.g.,
CPU, memory, network bandwidth, and disk space) to workloads such that their performance
objectives are satisfied and the overall data centre utilisation is kept high. Even small deviations
from the desired objectives can have substantial detrimental effects with millions of dollars in
revenue potentially lost [14].

There exist many different data centre scheduling approaches, e.g., [20, 106, 178, 69, 123,
139]. Such approaches rely on estimates of nodes’ future resource availability to schedule

102 Federated Task Scheduling

workloads in ways to avoid saturation and to efficiently utilise resources across data centre
nodes. For predicting resource availability, schedulers either probe available nodes on an
on-demand basis [139, 178], or collectively analyse time-series of performance data generated
by the underlying physical and virtual infrastructure (e.g., servers and virtual machines (VMs))
across data centre nodes [41, 123]. For example, Microsoft’s Recourse Central gathers VM
utilisation data on a centralised cluster and uses offline machine learning prediction to tackle
servers’ over-subscriptions [41]. Although performance data (usually referred to as telemetry
data) can provide a very detailed view of resource consumption over time, it is a challenge how
to effectively analyse this to accurately predict in near real-time resource availability across
nodes in a scalable manner.

Related work has shown that when schedulers have access to performance data from all
data center nodes, they can generate improved holistic models for efficient provisioning [178,
69, 20, 123, 41]. However, these works operate on a near offline fashion and consume network
bandwidth to transfer data from servers to centralised locations for processing. As such, they
lack the ability to react to performance problems in real-time. Furthermore, to tackle data
centre scalability the vast majority of schedulers are distributed or hierarchical and continuously
probe subsets of servers about their resource consumption, such as CPU and memory utilisation,
to make scheduling decisions based on nodes’ availability after probing [139]. Although they can
identify resource availability relatively fast they operate on a partial view of the data centre and
so they lack global efficiency. It remains a challenge how to collectively analyse performance
data in near real-time for efficient scheduling across data centre nodes.

To tackle the problem of large-scale performance data analysis with minimal latency we
exploit recent advancements in edge computing. Under this new paradigm, data is generated
by commodity devices with potential hardware limitations and important restrictions on data-
sharing and communication, which makes centralised processing of data extremely challenging.
The dominant, scalable training model that has shown to be able to tackle such challenges is
Federated Learning (FL) [108, 128]. Since the publication of these seminal works, we observe
an increased interest in federated algorithms for training neural networks [162, 88]. In this
setting, there is a large number of independent clients running at the edges that contribute to
the training of a centralised model by computing local updates with their own data and sending
them to a designated client holding the centralised model for aggregation [195]. Over the year,
FL has attracted significant interest and has eventually expanded into its own field with most of
the literature to focus on deep neural networks, see [115]. The first notable example of a truly
decentralised and federated cluster was put forth by Google to collaboratively train the Gboard1

Android keyboard with great success. Specifically, their approach used the technique from [108]
which was the first publicly announced federated method for training of neural networks.

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

5.1 Introduction 103

Despite the wide adoption of FL in many areas, to the best of our knowledge, this paradigm
has not been yet applied into solving the large-scale, data analysis and data centre task allocation
problems. Notably, traditional data centres are not federated, as all nodes operate under the
same administration. Here, we advocate that the need for real-time large-scale analysis of
performance data makes FL the ideal solution for the problem in-hand.

We also believe that based on the trends observed [115, 19] that federated schemes as the
one used for training Gboard could expand in-scope and soon pave the way for the formation of
federated data centres. In this case, traditional schedulers which assume full access to all data
centre nodes will not be applicable. The scope of this paper is on exploiting FL for scheduling
on today’s data centres which could be further relevant to potentially future federated data
centres.

In this paper, we present Pronto, a federated algorithm that uses real-time performance
data from virtualised data centre nodes for online task scheduling. Pronto, to the best of
our knowledge, is the first to approach the data centre scheduling problem as a federated
processing one. In particular, our approach focuses on predicting the spikes in values of the CPU
Ready performance metric generated by the VMware vSphere leading virtualisation platform
as these are generated by each data centre node. The CPU Ready VMware metric captures the
percentage of time a VM is ready to run but is not scheduled in one of the available CPUs. As
a rule of thumb the CPU Ready values should be kept low and below a predefined threshold for
the system to operate well and without performance problems [44]. Higher CPU Ready values
than the predefined threshold typically indicate that the VM’s performance is degrading as the
VM in question does not run despite being ready [184]. The CPU Ready is used extensively as
an industry standard indicator of performance problems [183]. Despite being an instrumental
performance indicator with years of application in the industry, we are not aware of any data
centre schedulers based on this metric.

In Pronto, we aim to predict the performance degradation of a node by detecting CPU
Ready spikes. At its core, Pronto predicts an incoming CPU Ready spike based on our empirical
observation from a real-world data centre trace that a spike in the weighted summation of the
top-r tracked projections within a node is highly indicative of an incoming spike. To this end,
Pronto tracks in real-time the top-r projections within each node and by exploiting spikes
detected over a sliding window it decides whether to accept an incoming job or not. Concretely,
at each timestep and for every node, Pronto generates a Boolean flag based on the weighted
summation of the number of projection spikes detected over a sliding window. The flag is raised
(i.e., true) if the node at time t cannot accept a job, and lowered (i.e., false) otherwise. This
Boolean flag over-time can be thought as a binary signal, which which we deb as the “Rejection
signal”. In other words, we treat a system to be in a degraded state, if at any given time t its
CPU Ready value exceeds a predefined threshold.

Pronto is designed to be federated, streaming, and unsupervised. It is federated as it
executes scheduling plans in a decentralised fashion without knowledge of the global performance

104 Federated Task Scheduling

dataset. This is one of the key benefits of our approach, as nodes are able to immediately take
decisions about incoming workloads without the need for global synchronisation and so reducing
communication overhead and scheduling latency. To achieve this, we combine recent advances
of federated PCA to accurately compute the d-dimensional, r-rank embedding space U ∈ Rd×r

of data incrementally [79]. This approach also provides an efficient mechanism to adaptively
estimate the embedding rank [79] with high accuracy which is likely to happen as workload
trends evolve. Additionally, it is streaming and only requires memory linear to the number
of features considered, namely the required memory is proportional to O(d). Furthermore, it
ensures data ownership, as each node keeps its own incremental and evolving estimate while
catering for distributional shifts; which can be crucial if some parts of the data centre process
orthogonal or sensitive workloads. Finally, experimental evaluation shows that it is fast as it
can incrementally track thousands of features per second while having no “offline” components.
This means that the computation of Pronto is streaming requiring only a single pass over the
incoming data without having to store any historical data in order to update its estimates. This
method can provide tangible benefits to data centres as it enables, in an online fashion, the
allocation of incoming jobs across thousands of nodes efficiently and effectively while improving
overall allocation. To the best of our knowledge this is the first work to tackle large-scale online
workload scheduling using a FL-based algorithm.

Summary of contributions: In this chapter, we introduce a novel federated task
scheduler that is able to operate in the streaming and memory-limited setting. It allows each
of the computing nodes to independently take decisions for upcoming task assignments without
the need for global synchronisation. Further, each node only accepts an incoming job if its
responsiveness will not be affected; a node’s deterioration is captured by spikes of the CPU
Ready metric. To the best of our knowledge, although CPU Ready is widely used, it has not
been used as a task scheduling predictor before. We also provide a thorough discussion about
the importance of CPU Ready for performance predictions and we present exploratory results
on the use of traditional offline methods to predict CPU Ready values. Finally, we evaluate our
proposed scheme using traces gathered from the virtualised data centre of an international
bank organisation (hereafter referred to as the Company) to validate our claims.

5.2 Importance of CPU Ready

The CPU Ready is an important VM performance metric and it is widely used by system
administrators to identify CPU saturation at-run-time. It reports the % of time a VM is ready
to run but was not scheduled in a CPU. The higher the CPU Ready values are, the longer a VM
is waiting for a virtual CPU (vCPU) to run and so its hosted workloads are not executing and
suffer from performance degradation. When the CPU Ready values of a VM are higher than a
threshold then this VM is saturated and it needs more resources to run efficiently.

5.3 A Federated Approach to Real-time Resource Monitoring 105

Although the CPU Ready metric is a key performance indicator, most schedulers focus on
using the CPU utilisation metric to allocate workloads to nodes. Typically schedulers assume
known CPU workload demands which they schedule on node(s) where the predicted CPU
availability matches the workload demands. To accommodate for mis-predictions on workload
demands and nodes’ availability and time-varying workload CPU utilisation, workloads are
typically allocated with a higher than demanding share of nodes’ CPU resources. Despite
CPU over-subscription, workloads can still saturate nodes and the CPU Ready metric is able to
capture at real-time when workloads are inadequately provisioned with CPU resources.

The empirical rule-of-thumb is to keep the CPU Ready values below a predefined threshold
number, however there does not exist an exact number as this depends on setup particular,
expected workloads, and hardware specifications. Normally, this can be successfully after trial
and error during initial cluster deployment setup procedures. This is shown by many online
sources, e.g., [36, 182, 94, 185] and this is inline with private discussions we had with the
Company’s system administrators regarding the available to us dataset. In a nutshell, one of
the main innovations of this scheduler is the ability to accurately predict the upcoming CPU
Ready spikes of a VM. We define a spike when the CPU Ready values exceed a certain threshold.
The CPU Ready spikes are caused by CPU saturation and so they can be used to identify CPU
performance bottlenecks. However, forecasting CPU Ready values is challenging [74], because:
a) the CPU Ready values are highly variable and do not follow regular patterns, b) spikes of
different values occur abruptly, and c) the values of the spikes vary significantly.

Our ultimate goal is to accurately predict CPU Ready spikes given past CPU Ready values
and so to identify future CPU contentions. In past literature, the attempts to predict the
occurrence of CPU Ready spikes followed two main approaches. The first approach revolved
around forecasting CPU Ready values and then uses the predicted values to find spikes above a
certain threshold. On the other hand, the second approach focused more on predicting the CPU
Ready spikes directly using past spikes only. For both approaches a more systematic review
and why traditional methods failed was conducted in [74].

5.3 A Federated Approach to Real-time Resource Monitoring

An important element in task scheduling is knowing the resource availability of all nodes across
the data centre for globally informed allocation decisions. Maintaining such a global resource
view is challenging and often centralised schedulers operate on cached data and distributed
approaches work with different subsets of nodes to tackle large-scale scalability. To this end, we
explore a different avenue for tackling this problem by exploiting recent advances on federated
edge computing to accurately track both the individual node status (“specialised view”) while
also having the ability to get a holistic view of the system by intelligently synthesising data
from different nodes. This approach allows each node to independently accept tasks, without
the need for frequent global synchronisation.

106 Federated Task Scheduling

Formally, we consider a data centre to be comprised out of M nodes each having finite
computing resources and each node has to accept the maximum number of jobs without
impacting their own overall responsiveness. Further, nodes produce a wealth of performance
telemetry data used for scheduling, crash recovery, health monitoring, etc. However, the
number of such metrics that each node outputs can be highly dimensional, thus making their
understanding and exploitation for scheduling in a streaming fashion very difficult.

We exploit unsupervised learning techniques as they are able to discover hidden correlations
within unstructured data, with minimal assumptions about the input underlying structure. Such
methods, could eventually lead to improved allocation decisions with minimal user effort. Out
of the many techniques available, Principal Component Analysis (PCA) [143, 100] is arguably
the most ubiquitous one for discovering linear structure or reducing dimensionality in data,
and so it has become an essential component in inference, machine-learning, and data-science
pipelines. In a nutshell, given a matrix Y ∈ Rd×n of n feature vectors of dimension d, PCA aims
to build a low-dimensional subspace of Rd that captures the directions of maximum variance in
the data contained in Y. Each of these captured directions are d-dimensional vectors called
Principal Components (PC’s) which contain linear combinations of the features exhibiting
their contribution to the total magnitude of each PC. Conveniently, the PCs resulting from
PCA are ordered in descending significance which is provided by the associated singular values.
However, even if the iterates can capture most of the information within the data they still
lie in d-dimensional space. This high dimensionality makes their interpretation difficult and
limits their usefulness. To this end, and to effectively reduce its dimensionality, we exploit the
resulting subspace estimate along with the incoming data in order to reveal the hidden patterns
within the data. These patterns can then be leveraged to improve our scheduling decisions.

The general intuition behind our scheme stems from the observation that each PC can be
projected to the incoming data, which yields a scalar value for each PC that can be tracked
over time. This value is a key indicator of the PC magnitude evolution over time and can
reveal hidden trends and capture fluctuations of the overall direction pattern without knowing
precisely which feature contributed to it at any given time. Such trends and fluctuations could
then be easily captured using traditional algorithms like averaging and Kalman filters. This is
because for each PC its projection is a single scalar that is tracked over time.

More formally, we assume that each of the compute nodes produces at each time-step a
feature vector in Rd that contains all the metrics gathered. Each node can be thought as part
of a decentralised dataset D = {y1, . . . ,yn} ⊂ Rd distributed across these M clients. The
dataset D can be stored in a matrix Y =

[
Y1|Y2| · · · |YM

]
∈ Rd×n with n ≫ d and such

that Yi ∈ Rd×ni is wholly owned by each compute client i ∈ [M]. We assume that each Yi

is generated in a streaming fashion and that due to resource limitations it cannot be stored
in full. Furthermore, under the DASM and as defined previously in Section 4.2, we assume
that the M clients in the federation can be arranged in a computation graph with q levels and
computation nodes only as its “leaves”. The computation graph contains computation nodes

5.3 A Federated Approach to Real-time Resource Monitoring 107

and aggregators which can be joined to create an independent federation group. An example of
such a computation graph is given in Figure 5.1. We note that such structure can be generated
easily and efficiently using various schemes [190]. Moreover, we fully expect the computation
graph to be shallow yet exhibit a very large fan-out which is typical for federated applications.

C C C C C C C C C

A A

A

Fig. 5.1 An indicative federation network structure in which compute nodes (C) independently
compute and make decisions based on the data they have seen so far. The updated subspaces
are propagated upwards to aggregator nodes (A) upon completion of every block and the
difference between the previous subspace estimate is below ϵ. Each subspace is propagated
upwards until the root is reached. At this point we update the global estimate for the cluster
workload seen thus far.

Local Iterates

We now introduce our local update scheme which is responsible for producing the iterates we
use within our scheduler. The local iterates are produced by exploiting FPCA-Edge which
was introduced in Section 4.2 which is also rank-adaptive. This is particularly convenient
as it allows each of the processing nodes to adjust, independently of each other, their rank
estimate based on the workload seen so far. Its iterates are then used by our scheduler and play
an important role for deciding at any given time if accepting a new job at the node has the
potential to impact its performance. That is because these iterates contain a “specialized” view
tailored for each node specifically, which reflects its overall responsiveness at any given time. If
the new job will severely impact the nodes’ performance according to our metrics discussed
below, the scheduler rejects the job, otherwise the job is accepted.

To elaborate on the local update algorithm internals, let us consider a sequence {y1, . . . ,yn} ⊂
Rd of feature vectors and let their concatenation at time τ ≤ n be

Y[τ] =
[

y1 y2 · · · yτ
]
∈ Rd×τ . (5.1)

A block of size b ∈ N is formed by taking b contiguous columns of Y[τ]. Hence, a matrix
Y[τ] with r ≤ b ≤ τ induces K = ⌈τ/b⌉ blocks. For convenience, we assume K ∈ N, so that
τ = Kb ∈ N. In this case, block k ∈ [K] corresponds to the sub-matrix containing columns

108 Federated Task Scheduling

Sk = {(k− 1)b+ 1, . . . , kb}. It is assumed that all blocks Sk are owned and observed exclusively
by client i ∈ [M], but that due to resource or time constraints can only store a small subset of
them. Hence, once client i ∈ [M] has observed YSk

∈ Rd×b it uses it to update its estimate
of the r principal components of [Y[(k−1)b],YSk

]. If Ŷ0,r is the empty matrix, the r principal
components of Y[τ] can be estimated by computing the following iteration,

[Uk,r,Σk,r,VT
k,r] = SVDS

([
Ŷ[(k−1)b],r YSk

]
, r
)
, Ŷ[kb],r = Uk,rΣk,rVT

k,r ∈ Rd×kb. (5.2)

Its output after K iterations contains an estimate UK,r of the leading r principal components
of Y[τ] and the projection Ŷ[τ],r = UK,rΣK,rVT

K,r of Y[τ] onto this estimate. Naturally, the
closer Ŷ[τ],r is to Y[τ],r the better our embedding. Further, for every processed block each
client keeps r PC projections such that Yb,rUk,r ∈ Rr×b which allow us to track over the block
duration if any anomalies (e.g. peaks) were found in any of the tracked PC’s.

Global Updates

In this section we describe how the global federation of the embedding happens in our scheme.
Notably, the only data structure that is propagated upwards is the actual embedding and
no nodes can perform predictions other than the leaf (computation) nodes themselves which
happens in real-time and allows the scheduling to be both timely and independent. To efficiently
transfer knowledge of the workload embeddings seen so far, each node periodically requests
a copy of the global embedding which can be merged against its local. Further, this strategy
can also be employed for new or transient nodes as they join into the computation pool. Our
algorithmic constructions are built upon the concept of subspace merging in which two subspaces
S1 = (U1,Σ1) with U1 ∈ Rd×r1 , Σ1 ∈ Rr1×r1 and S2 = (U2,Σ2) with U2 ∈ Rd×r2 Σ2 ∈ Rr2×r2

are merged together to produce a subspace S = (U,Σ) with U ∈ Rd×r, Σ ∈ Rr×r describing
the combined r principal directions of S1 and S2 where r = max(r1, r2). One can merge two
sub-spaces by computing a truncated SVD on a concatenation of their bases. Namely,

UΣVT = SVD([λU1Σ1,U2Σ2], r), (5.3)

where λ ∈ (0, 1] a forgetting factor that allocates less weight to the previous subspace U1. In
the previous chapter, through Merge (Algorithm 6) it is shown how eq. (5.3) can be further
optimised, resulting in additional resource savings.

5.4 Pronto Scheduler

Herein, we propose a new task scheduler called Pronto that is designed to accept an incoming
job only if by doing so the performance of the existing running job(s) in the proposed node
will not deteriorate significantly. This deterioration is measured by spikes in CPU Ready, as

5.4 Pronto Scheduler 109

previously discussed. Formally, at any given time t, Pronto decides, if by accepting a new
job at time t will result in a CPU Ready spike in the next few intervals after t. In this section,
we describe how by exploiting and extending the algorithmic constructions introduced in
the previous chapter, namely Section 4.2, we can derive a federated and reliable task cluster
scheduler by exploiting the CPU Ready metric.

The intuition behind Pronto originates from our initial exploratory analysis and empirical
observations on the available to us dataset that a spike in the top-r tracked projections is
indicative of incoming CPU Ready spikes. Our proposed scheme exploits this observation
by using it to compute a binary rejection signal based on the currently tracked embedding
projections within each node. The rejection signal is raised if the weighted summation of the
current nodes’ tracked projections at time t exceeds a predefined threshold. This event, indicates
there enough projections spikes which implies rapid change in the magnitude of the tracked
principal components. Such rapid change is highly correlated with imminent CPU Ready spikes,
which as previously discussed, are highly indicative of degraded node performance. An overview
of the system architecture for the scheduling process within each node is shown in Figure 5.2.

Fig. 5.2 Projection of incoming y ∈ Rd onto embedding U ∈ Rd×r producing r projections in
v ∈ R1×r. These projections are then tracked over time for spikes which form the basis of our
rejection signal. The sliding window for spike detection for each projection is of size w as is
shown in the figure.

To better illustrate the way the projections, the rejection signal, and the CPU Ready signal
work together consider Figure 5.3. At its left, we can see the tracked projections over time for
a particular node, for which we see various rapid changes to them over time. On the right,
we observe the rejection signal over the same period of time along with the detected spikes of
CPU Ready. In this instance the spike threshold for CPU Ready is set to be below .2 and the
rejection signal is produced by observing the spikes in an online fashion of the projections shown
in Figure 5.3a. Provided with this, we can observe that each of the detected CPU Ready spikes
is preceded by at least one raise of the rejection signal within few timesteps of its occurrence.
Note, that consecutive CPU Ready spikes might indicate that for the next few intervals the node
will experience deteriorated performance and thus we cannot possibly accept a job - which is
precisely what Pronto exploits.

110 Federated Task Scheduling

10 20 30 40 50 60 70 80
-4

-3

-2

-1

0

1

2

PC1
PC2
PC3
PC4

(a) PC Projections (b) Rejection and CPU-Ready Signals

Fig. 5.3 Left (fig. 5.3a): An example of the projections, Right (fig. 5.3b): An example of the
rejection signal based on the projections seen in the left drawn concurrently with the CPU Ready
signal serving as the ground-truth. Further, green and teal arrows depict spikes in the rejection
and CPU Ready signals respectively. Our goal is to show that spikes in the rejection signal
precede spikes in CPU Ready over time.

Elaborating, each node at a given time t uses its own subspace iterate U ∈ Rd×r as produced
by FPCA-Edge and each incoming vector of features in Rd is projected into it to produce the
projections of that node at time t. As mentioned previously for each of the tracked projections,
we monitor their abrupt changes (i.e., the signal spikes) in a streaming fashion over a sliding
window of size w. Our spike detection algorithm is based on a z-score based scheme put forth
in [24] which we implement within our rejection signal computation. The results of the detection
are stored as r binary variables setting each to 1 if a positive and to −1 if a negative spike is
detected for that projection at time t while being 0 otherwise. Moreover, at each time t we
compute the weighted sum of these r binary variables multiplied by their associated singular
value as, Rs = ∑r

i=0 ri,tσri,t where ri,t and σi,t the i-th binary variable and i-th singular value
at time t respectively. Then, the rejection signal value at time t is set to 1 if the weighted sum
of Rs is above a certain threshold and 0 otherwise; throughout our experiments we set the
threshold value to be equal to 1. We present the implementation of Reject-Job in Algorithm 11.

This principled approach in predicting CPU Ready spikes is enabled due to the properties
inherited by the incremental embedding computation as described in Section 4.2 and specif-
ically Algorithm 10. Exploiting the algorithm introduced previously, not only provides us
with concrete guarantees with respect to the embedding quality but is also systematic and
deterministic with the only variable left to tune being the threshold for raising the rejection
signal. Note, that in this instance we do not require the differential privacy aspects provided
by FPCA-Edge and thus the perturbation masks are disabled throughout.

5.4 Pronto Scheduler 111

Algorithm 11: Reject-Job
Data: U ∈ Rd×r: embedding estimate at time t, Σ ∈ Rr: embedding singular values at

time t, y ∈ Rd: observed data-point at time t, wp ∈ Rr×lag: the dampened
signal, wavg ∈ Rr×lag: the average filter, wstd ∈ Rr×lag: the std filter

Result: True if a job should be rejected at t, false otherwise.
Function Reject-Job(U,Σ,y,wp,wavg,wstd) is

/* Init. */
lag ← 10, α← 3.5, β ← 0.5, b← 01×r, tr← 1
/* Compute projections */
p← yTU ∈ R1×r

/* Has lag buffer filled? */
if len(wavg < lag) then

return false
end
/* Find peaks for each projection */
for i = 0; i < len(p); i+ + do

if abs(p[i]−wavg[i][lag − 1]) > αwstd[i][lag − 1] then
/* Peak detected, check sign */
if p[i] > wavg[i][lag − 1]) then

b[i]← 1
else

b[i]← −1
/* Reduce wp influence */
wp[i][lag]← βwp[i][lag] + (1− β)wp[i][lag − 1]

end
else

/* No peaks */
b[i]← 0
wp[i][lag]← p[i]

end
/* Adjust the buffers */
wavg[i, :]← mean([wavg[i, 2 :],p[i]])
wstd[i, :]← std([wstd[i, 2 :],p[i]])

end
/* Do we reject a job? */
if
∑
i(b[i]Σ[i]) greater or equal than tr threshold then

return true
else

return false
end

end

In order to see how the spikes are detected in practice, we can observe what happens to a
node upon initialisation. This is depicted in Figure 5.4 which shows three indicative snapshots
at different timesteps that illustrate how spike detection works in practice. As we previously

112 Federated Task Scheduling

said we cannot start making predictions until at least w observations have been processed. At
that point, we set out a reference point through which we set our prediction horizon. This is
shown in the first row of the figure. In the second row of the same figure we can see that a
full window has been observed and thus we can start to reliably detect potential spikes. This
relative point is essentially what Pronto considers its current time. This means that the spikes
happen to the left of the reference point are considered to be incoming predictions while the
ones on the right side are considered to have already happened in the past. This segmentation
is shown in the third row of the aforementioned figure.

Fig. 5.4 Illustration using two projection signals over three indicative timesteps, namely
t = {w/2,w, 2w}. It shows how the sliding window operates and indicates that the minimum
observations required to start predicting is equal to the size of our window w. In the final
row we show where left and right sided spikes reside with respect to the reference point, which
also acts as the current time for the scheduler. These spikes for each projection - after w
observations - are then used to compute the rejection signal as described previously.

Having fully described how the rejection signal is computed, we now describe our federated
scheduling scheme. To do so, we will exploit the technique we previously introduced in Chapter 4,
namely Federated-PCA. Practically, we aim to establish a principled way that the iterates can
be propagated upwards in order to be able to generate a holistic view of the system exactly like
the way Federated-PCA is designed to do. Provided these details, we are now ready to present
our Pronto scheduler implementation which is depicted in Algorithm 12.
Note, that in our current setting and in order to save bandwidth we can elect to propagate only
if the estimate has changed above a certain threshold. To achieve that, we employ a heuristic
which checks if the absolute weights of the subspace iterate surpassed the set threshold.

5.5 Experimental Evaluation 113

Algorithm 12: Pronto scheduler
Data: Y =

[
Y1| · · · |YM

]
∈ Rd×n: Data vectors

(α, β): Upper and lower bounds on E(Y)
b: Batch size at the client level
Function Pronto(Y, b | α, β) is

/* Initialise clients */
Each client i ∈ [M] :

Initialises PC estimate to (Ui,Σi)← (0, 0)
Initialises batch to Bi ← []

end
Arrange clients’ merge paths in a computation graph such as in Figure 4.1
/* Computation of local updates */
At time t ∈ [T] , each client i ∈ [M] with job set [J]

Observes data-point yit ∈ Rd
Adds yit to batch Bi ← [Bi,yit]
Accepts job j′ ∈ [J] based on Reject-Job
if Bi has b columns then

(Ui,Σi)← FPCA-Edge
Bi ← []

end
end
/* Merge only if needed */
if absdiff(U t,i, U t−1,i) > ϵ then

Use Algorithm 6 to merge subspaces recursively within the computation graph
(Fig. 5.1)

end
end

5.5 Experimental Evaluation

This section is focused on the empirical evaluation of Pronto against real-world traces. In
a nutshell, the primary goal of this evaluation is to quantify the efficiency of our scheme to
predict the CPU Ready spikes based only on the Company’s unstructured trace observed from
each of the compute nodes. To do so, we use a real-world dataset of performance data traces
gathered from the data centres of a global bank organisation (hereafter referred to as the
Company) from 2012. The dataset includes time-series VMware performance data from the
Company’s virtualised data centres. The Company collected such data across their virtualised
infrastructure and stored it on NFS servers but derived little further value from it. The available
to us dataset contains performance data from 100 virtualised clusters in a data centre over
four weeks. Each cluster has about 14 VMware ESX hosts, supporting 250–350 VMs. The
performance data consists of metrics output by the VMware ESX hypervisor every 20 seconds
related to the CPU, memory, disk and network resource consumption of physical hosts and

114 Federated Task Scheduling

VMs. There are 134 different resource metrics for a typical ESX host in our dataset, and 52
metrics for a VM. The total size of the dataset is 1TB

Formally, we use Pronto to predict at any given time t that a raise in the rejection signal
occurs shortly before or coincides with an observed CPU Ready spike contained in a sliding
window of size w. This enables us to accurately predict incoming CPU Ready spikes which we
can use to prevent further accepting additional jobs on a node with performance shortages.
We use the Company’s dataset trace to evaluate our approach. The rejection signal is then
compared with the baseline (i.e., the actual CPU Ready values) and we check if a spike is indeed
detected in CPU Ready and if that’s reflected in the rejection signal. If the rejection signal was
raised a few timesteps before or coincides with the actual CPU Ready spike we classify it as a
successful prediction. As noted in the previous section, the window w of timesteps can be easily
adjusted. However, throughout our evaluation we observe that values close to ten timesteps
give us good performance so we use this value for all experiments.

Practically speaking, to generate the rejection signal we only need the actual embedding (U)
and its singular values (Σ). The actual subspace embedding U can be generated using a plethora
of methods which we also evaluate. We evaluate against, in addition to Federated-PCA Edge,
with SPIRIT [142] (SP), frequent directions [118] (FD), and finally power method [130] (PM).
These algorithms represent the state-of-art in the area, are well-established, and each uses
a different mathematical approach into tackling this problem. Unfortunately, none of these
algorithms are neither inherently distributed and, apart from SP, rank adaptive. We note
however, that the singular values are needed for Pronto to work in a truly federated setting
which can only be reliably produced by Federated-PCA Edge and partially by [142]. Concretely,
SP is able to produce singular values but without any guarantees about their quality, while both
FD and PM lack the ability to produce any. For the methods that were not able to generate
their own singular values we used predefined values for them that were generated using an
exponential decay spectrum, namely σr = 1/r. While not exact, this approximation enables
us to test against all of the competing methods. We now set forth to present our simulation
results.

Simulation Results

As we discussed before, our goal is to evaluate how efficiently incoming CPU Ready spikes can
be predicted and so we use the actual Company’s trace as our baseline. Pronto is designed to
operate using a sliding window of size w for which we use the Reject-Job algorithm to decide if
at time t the node can accept an incoming job or not. In reality, this sliding window imposes a
slight “lag” between the observed values and actual prediction time when the scheduler has to
decide. We elect to at least see one window in order to make a prediction which equates in
our case to w timesteps throughout our experiments. We believe this delay will, in practice,
be insignificant as the rate of incoming trace observation is much higher than the number

5.5 Experimental Evaluation 115

of incoming jobs. Note also that typical window sizes in practical applications should range
between 10− 50 timesteps2. Further, throughout our experiments we use a rank r equal to 4.
Evaluation on higher values provided little to no benefit in terms of prediction quality with the
added downside of increasing computation cost.

Before presenting the results we need to describe how we define a successful prediction.
Hence, in this context we classify a successful prediction if a CPU Ready spike is preceded by at
least one rejection signal raise within the current window. Moreover, we use the reference point
within the window which equals half of the window size, namely w/2. Thus, at any given time
we can classify the detected spikes into left and right based on their location in the current
window relative to our reference point.

Formally, we measure at each timestep t how many spikes are contained within the current
sliding window as well as their “side” with respect to the reference point t. We also measure
the overall downtime, which is the amount of time the rejection signal is raised during our
evaluation. This reflects the overall job acceptance availability at each node. Ideally, we would
like to have the rejection signal raised before or coincide with a CPU Ready spike, but also
minimise the downtime so that the node can accept more jobs.

We start by quantifying the spike behaviour and we evaluate the types of spikes observed
throughout the trace and the empirical Cumulative Distribution Functions (CDF) are presented
in Figure 5.5a and Figure 5.5b for left- and right-sided spikes respectively. We note, that
left-sided spikes are the most important ones, as these indicate that a CPU Ready spike is
imminent in the next few timesteps. Right-sided spikes can be an indication of consecutive CPU
Ready spikes or delayed detection; this is because CPU Ready spikes might occur consecutively
or very close to each other thus indicating a significantly deteriorated node.

The above Figures show that the left-sided spikes are considerably more frequent than the
right-sided ones. This means that we are able to detect incoming CPU Ready spikes with high
accuracy. Notably Pronto and FD have the highest number of left-sided spikes, followed by
PM and SP. Although our goal is to predict CPU Ready spikes as accurately as possible we also
want to have the highest availability (i.e., nodes can accept jobs) for a higher overall utilisation.
To quantify this we need to show the CDFs of the overall downtime and the contained spike
percentages across the traces; this is shown in Figure 5.6a and Figure 5.6b for the downtime
and contained spike percentages respectively.

These figures indicate that Pronto, SPIRIT, and PM have very little downtime compared
to the actual spikes detected and thus are able to utilise each compute node more efficiently
than FD. Notably, we observe that FD performs poorly as its downtime is greater than half of
the total time - which means it could be similar to using a random scheduler. The contained
spike percentage CDF shows the amount of total spikes that are contained by all methods
considered in this evaluation. In this context, values greater than 100% show the proportion of

2This applies to Pronto itself, SPIRIT, and FD. PM needs to have a block size at least equal to the
dimensionality of the data, which necessitates a larger window than the other methods.

116 Federated Task Scheduling

0 200 400 600 800
x

0

0.2

0.4

0.6

0.8

1

C
D

F

Pronto
FD
PM
SP

(a) Left-sided peaks CDF

0 50 100 150 200 250 300
x

0

0.2

0.4

0.6

0.8

1

C
D

F

Pronto
FD
PM
SP

(b) Right-sided peaks CDF

Fig. 5.5 Left: The empirical CDF of the number of left-sided spikes. Right: The empirical CDF
of the right-sided spikes. Both are measured against our reference point at time t.

the spikes detected over the actual CPU Ready signal spikes. This could either indicate that
these methods detect more congestion points or overestimate and raise the rejection signal
without having to do so. Most methods are always near or over 100% and the skewing present
in the graph is mostly attributed to FD. However, this is to be expected as it is also reflected
by the downtime percentage CDF, that indicates FD has almost constantly the rejection signal
raised - thus accepting minimal jobs.

Performance

Another important consideration is the performance of each method. Our prototype imple-
mentation is developed using Python employing standard libraries and established packages
(e.g. scipy, numpy). To this end we measure the performance to update the predictions for
each incoming data vector. Note, that, even if the embedding is updated per block the actual
predictions job acceptance happens per data vector. We amortise the cost of block methods by
averaging the running time over each block to extrapolate the cost to perform the rejection
signal computation per incoming data vector. For memory we opt to use the maximum amount
per block or per vector required. However due to the built-in methods use of “slack” space all
costs end up being fairly similar. Further, to avoid confusion we report rounded numbers. The
results for all methods considered are shown in Table 5.1.

All of the considered algorithms do not consume a lot of resources and predictions happen
in near real-time as they are updated every second (or around 100ms). However, we note that
even with very small matrices when using built-in functions splinalg.svds and linalg.svd
of scipy package the required memory was about ≈ 100 MB at its peak without increasing
much even for larger ones. That is, we observed that the memory difference for performing
SVD for 40× 7 and 300× 7, was ≈ 0.45MB as measured using the memory profiler module.

5.5 Experimental Evaluation 117

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0

0.2

0.4

0.6

0.8

1

C
D

F

Pronto
FD
PM
SP

(a) CDF of the percentage of time that the rejection
signal was raised

0 100 200 300 400 500
x

0

0.2

0.4

0.6

0.8

1

C
D

F

Pronto
FD
PM
SP

(b) Contained peak percentage CDF

Fig. 5.6 Left: The empirical CDF of the percentage of the contained spikes, as we can see
all methods perform desirably containing almost all spikes. We note that, values above 100%
indicate that methods detected more spikes than the ones detected by just using CPU-Ready.
Right: Shows the empirical CDF of the downtime of the rejection signal per method, indicating
the percentage of the total time a compute job is able to accept an incoming job.

Table 5.1 Extrapolated average execution time (ms) per timestep (i.e.: per vector that the
rejection signal is computed) and approximate mean memory allocation to process each
block/vector, including any overheads (MB).

Execution time Memory allocation (rounded)
Pronto 15 ms ≈ 148 MB
PM 22 ms ≈ 155 MB
FD 25 ms ≈ 151 MB
SP 9 ms ≈ 123 MB

We conjecture that this is due to the use of generous slack space and debug symbols used
by Python. However during our experiments memory consumption never reached over ≈ 150
MB. Practically speaking, the most expensive operation throughout the whole pipeline is the
computation of SVD. Though, given the fact that since all methods are able to exploit the
truncated SVD instead of the normal one we are able to keep resource runtime requirements
reasonable and able to update the estimates using either per vector or per small blocks. Finally,
we note that the measurements are taken with debug symbols enabled and no particular
optimisations; thus potential optimisations could help bring the cost further down.

118 Federated Task Scheduling

5.6 Discussion

Today’s data centres (especially virtualised) generate a plethora of real-time telemetry per-
formance data consisting of fine-grained time-series measurements such as CPU utilisation,
memory consumption, and I/O transactions. This data uniquely captures real-time behaviour
of the data centre and can be used for resource predictions. Numerous related works highlight
the importance to accurately analyse this data for resource prediction and modelling. We
further discuss the most relevant works below.

VM resource management and prediction. In the past, there had been a lot of interest
in the area of autonomic VM resource management and prediction using feedback control, mostly
targeting small-scale cluster deployments.

Early works [187, 199, 141] use non-linear controllers to regulate the relative CPU utilisation
across VMs under contention. The problem of resource contention in shared virtualised clusters
is also studied by [119]; their approach allocates CPU resources based on a response time
ratio between workloads on saturated VMs. For instance, [140] use a second-order ARMA
model to capture the relationship between resource utilisation and application performance.
[17] address the problem of boot storms when multiple VM workloads start to execute at the
same time. They propose a feedback approach to control the concurrency level, improving
end-to-end latency. [103, 104] propose linear feedback controllers that are based on the Kalman
filtering technique and a widely applicable model of CPU utilisation. These controllers use
online measurements to predict future demands and configure their parameters. The use of the
min-max H∞ filters to minimise the maximum error during under-provisioning was explored
in [31]. Although the above approaches use resource utilisation data to derive performance
models in a real-time manner they however target small-scale virtualised clusters.

The previous feedback control-based approaches ignore regular long-term patterns, which
may exist in the time-series data and could potentially assist with performance management
issues. For example, [193] present a predictive controller that regulates the relative utilisation
of a single-tier virtualised server based on three time-series prediction algorithms (AR auto-
regressive model, the ANOVA decomposition and the MP multi-pulse model). Their results
show that, when utilization exhibits regular patterns, their predictive controller outperforms
the relative-utilisation feedback controller proposed by [187].

Additionally, a wavelet-based approach was proposed by [136] for online demand prediction
of resource utilisation. The advantage of such an approach is the decomposition of the original
signal into multiple detailed signals that capture different patterns and finally are synthesised
into an approximation signal for predictions. Their approach uses a history of the past several
minutes to generate a new model. To make short-term predictions in the absence of long-term
patterns, PRESS by [72] combines state or signature-based pattern predictors for resource
allocation using previous utilisation measurements. CloudScale by [161] targets the problem of
fast reaction to hot-spots in deployments. It combines online adaptive padding based on burst

5.6 Discussion 119

detection with additional allocation correction using feedback from SLO violations and relative
utilisation. While this works efficiently for patterns reported in training data, it is unclear if
CloudScale can handle scaling of multiple metrics and application with multiple components
with correlated utilisation.

The above predictive approaches show that resource utilisation predictions are possible
when considering long-term history of a measured metric and that this could assist towards
resource management problems. However, these approaches have either focused on short-term
prediction with a small history or long-term patterns as found in a single or small group of
monitored resource utilisation traces. More recent works recognise the need to analyse telemetry
data in the large-scale. Most notably, Microsoft’s Recourse Central gathers all VM telemetry
data on a centralised cluster and it focuses on offline analysis for predictions to tackle servers’
over-subscriptions [40]. When compared to these works, Pronto is the first approach to target
real-time predictions of the CPU Ready spikes using data from large-scale deployments.

Further, there exists different centralised and distributed approaches in the area of large-scale
resource management. In the remainder of this section, we will outline the key ideas behind
each and describe a number of seminar works for each. We note that our approach does not
strictly belong to any of the two categories but shares similarities with distributed approaches,
as it operates on a more relaxed model.
Centralised schedulers: Centralised schedulers gather performance data from nodes peri-
odically to take globally informed scheduling decisions. In doing so, they have a global view
of the data centre availability and so ultimately they could take well informed, even optimal,
allocation decisions under specific constraints and performance goals, e.g., Decima [123], Firma-
ment [69], Quincy [95], Resource Central [40], Google’s Omega [160], and Tetrisched [173]. For
example, Google’s Borg centralised scheduler provisions for thousands of machines per cell by
employing a similar to Omega’s cached state [160] and a number of heuristics such as score
caching and relaxed randomisation [178]. More recently, Microsoft’s Resource Central uses
performance prediction based on workload characteristics and machine learning to increase re-
source utilisation but requires gathering of resource utilisation data in centralised locations [40].
Although powerful, centralised schedulers do not scale easily and often employ heuristics that
decrease allocations’ efficiency. Their approach increases the overall end-to-end processing
and adds traffic to the data centre network. In fact, related papers do not adequately discuss
their approach to maintaining a consistent central view of the data centre, e.g., [69, 40, 123].
Furthermore, their decisions are based on old, cached data as by the time solutions are found
and new allocations are in place, resource utilisation at the server nodes have changed risking
to make scheduling decisions obsolete, e.g., Borg [178].
Distributed approaches: To handle scalability, fault-tolerance, and speedup scheduling time,
different decentralised schedulers have been proposed. Popular systems such as Kubernetes [30],
Mesos [89], Autopilot [157], Yarn [177], Sparrow [139], Medea [63], and Apollo [20] provide
scalable and fault-tolerant managers for scheduling but they do not work on a global view of the

120 Federated Task Scheduling

data centre. Their focus is on engineering robust, practical and scalable frameworks tailored
for specific workloads with very good performance. However, we would like to generalise and
thus Pronto is the first scheme to use unsupervised learning techniques in the context of
scheduling and shows that is able to predict saturation indicated by the CPU Ready metric and
uses several innovations to do so. Firstly, it relies on method that was presented in Chapter 4
to accurately update the local estimates that reside within each node. These iterates are then
exploited by projecting incoming traces onto them, which results in the generation of the
projections reflecting the overall trend of each of the Principal Components contained in that
iterate. Finally, these insights are used to generate a binary rejection signal which unlocks
the ability for each node to perform scheduling decisions independently. To the best of our
knowledge, this is the first scheme that exploits projection tracking in the scheduling domain
and is able to accurately predict CPU Ready spikes in the unsupervised setting within minimal
assumptions over the input data.

Chapter 6

Reflections and outlook

Understanding the intricate underlying structure within a given dataset has been long been
sought after and is thought to be one of the most fundamental research questions posed over
the years. Answering this question has been the focus of many scientific disciplines attempting
to tackle this problem from various perspectives with rich literature spanning decades. This
is because such discoveries can unlock previously unknown patterns or provide novel insights
paving the way for important scientific advancements. Such prescience holds the potential to
have numerous economical, societal, and scientific implications.

More importantly, in recent years these implications have been further amplified by the
rise of data-driven decisions that many governments, companies, and policy makers have
shifted towards. Naturally, these have been primarily guided by insights, patterns, and
sagacity extracted out of datasets of interest. However, practical analysis of the aforementioned
data sources has proven challenging in numerous occasions, primarily due to the inherent
scalability issues with traditional analytical tools. Further, another important factor is the
that conventional algorithms for data analysis were designed in an era when privacy was an
afterthought, rather than an essential feature. This is further motivated, as a large percentage
of datasets involved for critical decision making stems from privacy sensitive-domains, such as
health, socioeconomic status records, and movement tracking data just to name a few.

In this dissertation introduced several innovations that aimed in advancing the state of the
art within one of the most cardinal research domains in large-scale data analytics, which is
dimensionality reduction. In the context of this work, the focus of our contributions was in
arguably the most ubiquitous method at our disposal to perform that task, namely, Principal
Component Analysis (PCA). Concretely, through the contributions presented herein, we were
able to scale PCA and make it applicable to both traditional, but more importantly, to federated
datasets. This allowed us to create scalable reductions of massive datasets under practical
constraints, such as the ability to offer efficient computation, adaptability, and guarantee privacy
which are commonly encountered in real-world data analysis tasks.

122 Reflections and outlook

6.1 Summary of contributions

In this section we will summarise and reflect on the contributions presented within the context
of this dissertation. We begin by discussing the contributions put forth in Chapter 3, which
essentially started as an exploration on how to leverage techniques to accelerate matrix factori-
sation techniques in a streaming setting. Unfortunately, most techniques around that topic
explicitly require the input data to admit specific underlying structure or exhibit sparsity. On
the other hand, methods such as Singular Value Decomposition (SVD) work under minimal
assumptions and have been popularised due to their optimality guarantees as well as their utility.
However, this optimality comes at a cost. Traditional SVD requires significant resources both
in terms of storage as well as computation. This necessitated the introduction of approximate
techniques for its calculation resulting in dramatic computational gains. Nevertheless, there was
still a gap in the literature as none of the previous approaches was able to operate using thin
blocks of data nor provide concrete guarantees about the produced iterates. One of the first
contributions of this dissertation was to provide such a solution in the form of a Memory-limited
Online Subspace Estimation (MOSES) algorithm that attempts provide these highly desirable
traits. In a nutshell, our solution exploited the idea of using thin blocks of data and adapted
incremental r-truncated SVD to be able to operate using such blocks instead. We demonstrated
both theoretically and empirically that our proposed algorithm was almost the same in terms
of performance to the offline r-truncated SVD, which is assumed to have infinite resources for
its computation.

However, even though our proposed scheme had the benefit of online computation while
exhibiting state of the art performance, failed to scale horizontally. Meaning that, as initially
formulated, MOSES could not be used in distributed environments or leverage multiple compu-
tation nodes. This inherent limitation stemmed from the fact that MOSES was designed to
expect the dataset input vectors to be streamed from a central location in order to successfully
produce its iterates. Therefore, this significant impediment, rendered the proposed solution
inapplicable for distributed computation or federated datasets, thus constraining its use-cases
to single-node scenarios. Another drawback of our initial approach, was that MOSES required
a hyper-parameter to be provided for the “estimated” rank of the dataset and could not be
adjusted during its execution. This could result into sub-optimal choices for the target rank as,
in a streaming setting, one could not possibly know its value exactly upon initialisation and thus
could only be estimated. Naturally, this could prove problematic in the event of distribution
drifts or phase transitions within the incoming data that could potentially necessitate on-the-fly
rank adjustments of the estimates. Moreover, our initial formulation does not offer the ability
to guarantee differential privacy, which is a highly desirable feature.

We attempted to address all of the aforementioned limitations in Chapter 4, by introducing
a novel algorithm for Federated-PCA that required several innovations. We started by using the
aforementioned primitives presented in Chapter 3 and reformulated the problem in a recursive

6.1 Summary of contributions 123

manner. In doing so, it forced us to rethink the problem in a different way and introduced
two novel algorithms; one that is able to merge two subspaces together and one that allowed
incremental update of the iterate estimates. In practice, this was what facilitated the federated
computation of PCA as decoupling the iterate updates from the actual merging resulted into the
reliable and federated aggregation of the produced iterates. Another property we introduced,
that is particularly useful in a federated setting, is time-independence of the end result in the
absence of perturbation masks. Essentially, we provided the first proof that the merging of the
iterates will result in the same global iterate regardless of the order of merging thus enabling the
asynchronous computation of each subproblem. However, until now we have not addressed the
limitation of the hyper-parameter required by MOSES for the rank estimate. To address this,
we exploited a heuristic and proposed a novel solution that attempts to adaptively estimate the
rank over time by monitoring the ratio of the last singular value against their summation and
ensuring it remains within a certain range. This provided us with the ability to detect potential
distribution shifts or rapid changes and adjust the rank estimate of the iterates as required. To
ensure robustness of our approach, we also provided concrete bounds about the reconstruction
quality for both local as well as global estimates.

So far, we have discussed how we addressed most of the limitations regarding the method
presented in Chapter 3. Their resolution, is what enabled the computation of PCA in a federated
setting, albeit without any differential privacy guarantees. To provide (ε, δ)-differential privacy
we used an input-perturbation scheme in which the covariance matrix of a dataset is perturbed
using a non-symmetric random Gaussian matrix. However, to enable this we had to extend the
state of the art and provide three distinct contributions, which we will now summarise. Firstly,
we refined the popular MOD-SuLQ algorithm to be applicable when using non-symmetric
matrices but also able to work in a streaming setting, which was an essential properly in
the context of federated computation. Secondly, we improved the current state-of-the-art
lower bound of the variance required in order to guarantee differential privacy when using
non-symmetric matrices, while also offering similar asymptotic guarantees. Thirdly, we provided
sample complexity bound for guaranteeing differential privacy and thus delivered an exact
sample horizon onto when we would be able to allow the release of differentially-private iterates.
We noted that the sample complexity bound yielded was dependent only with respect to the
ambient dimension (d) and the privacy budget parameters (i.e. ε and δ). This is particularly
useful in a streaming setting, where the exact samples contained in a dataset are unknown upon
initialisation. By alleviating all of the limitations discussed so far, we were able to offer the
first complete mathematical framework for the computation of PCA in the combined federated,
model free, and differential private setting.

In the final chapter, we presented a novel practical application of the methods previously
introduced. Concretely, in Chapter 5 instituted a federated, asynchronous, memory-limited
algorithm for online task scheduling that is applicable to data centres. The basis of our approach
exploited Federated-PCA as described in Chapter 4 and used its ability to incrementally compute

124 Reflections and outlook

the iterates of each subproblem. Through the proposed scheme, we unlocked the ability for
every node to execute scheduling decisions independently on whether to accept an incoming job
based on the workload seen thus far. The workload seen thus far was reflected within the local
iterates produced by each node. However, even if the iterates could indeed capture most of
the information within the data they still resided in d-dimensional space. To this end, and to
effectively reduce its dimensionality, we tried to exploit the resulting subspace estimate along
with the incoming data in order to reveal the hidden patterns within the data. These patterns
could then be leveraged to improve each nodes’ scheduling decisions. Further, we can utilised
the federated properties in order to generate a “global” view of the system by aggregating the
iterates, as needed. In turn, this aggregated iterate could yield a holistic perspective of the
system and potentially indicate its overall responsiveness. Through our empirical evaluation on
a large-scale real-world dataset of traces gathered from a production data-centre we validated
the practicality of our approach. More specifically, it was able to predict changes in the system
responsiveness ahead of time based on industry standard metrics and, in turn, could lead to
better scheduling decisions and overall utilisation of the available resources. Notably, we noted
that our proposed task scheduling algorithm was explicitly designed to be applicable to both
traditional as well as federated data centres of the future.

6.2 Future research directions

The contributions presented in this dissertation unlocked the ability to perform the federated
computation of PCA in a tractable and reliable fashion while also indicating a potential practical
application in the form a federated task scheduling algorithm. Yet they allude to a large set of
unexplored research directions, some of which we outline in the remainder of this section.

One of the primal questions that can be posed, is how to extend the proposed algorithmic
frameworks in the setting of missing values. Keeping track of the embeddings accurately and
effectively is a line of work that resonates closely with the contributions in this thesis. Indeed,
lately there has been a resurgence of studying how to compute traditional methods while
being able to tolerate missing values. This is because in many practical scenarios, at each
timestep, only a small subset of the data features may be observed, be it due to hardware
limitations, resource constraints, privacy concerns, or just simply lack of enough observations.
Therefore, traditional algorithms which are not designed to handle for missing data may be
outright inapplicable or yield highly sub-optimal performance [11]. Investigating, how the
current framework presented can be adapted in the case of missing values while also retaining
all of the proposed properties remains a challenge. Notably, in the absence of differential privacy
potentially [58] could be extended and be applicable in our setting and such an extension that
exploits the contributions contained in this thesis is already in the works. However, since our
proposed scheme for guaranteeing differential privacy requires each block in full renders this
scheme inapplicable as-is. Broadly speaking, the solution to this problem lies in two main

6.2 Future research directions 125

directions. Namely, either attempt to fill the missing data within each incoming block and
apply our proposed DP scheme or redesign how we are able to guarantee DP. Operating under
the assumption of recovering the missing values within each block, is indeed a very interesting
setting as it can be explored through the lens of imputation or inference, both of which have
rich literature surrounding them [153, 124]. However, in some instances a complete redesign of
the algorithms to inherently handle missing data, might indeed be required. Which avenue is
best to pursue, remains unanswered, but we conjecture it is unlikely that a universal solution
exists [11]. This is because the best scheme in each use-case will depend on the expected missing
data of the input, along with its ambient dimension. It is likely that the less information
contained within each block (i.e. the more missing entries it has), the harder it will be to
reconstruct the incoming data.

More recently, while federated learning can guarantee by design better privacy and efficiency,
most frameworks operate under the common assumption that collected data are received in an
i.i.d manner. This, depending on circumstances, could result to data distribution shift issues
between nodes in practical scenarios [132]. One promising avenue to achieve that would be to
pursue models learnt using causal features as they can generalise better to unseen data. In
particular, it has been shown on data from different distributions than the train distribution [61].
Hence, it would be interesting to explore how our proposed framework could be formulated to
operate in a casual inference setting.

Another interesting direction to explore is to provide a time-invariance property in the
case of differential privacy. Currently, our time-invariance guarantee is able to hold with the
formulation presented herein, only in the absence of perturbation masks i.e. without differential
privacy. That is because, in the current setting we aim to preserve the absolute values in the
end result. In the case of DP, we try to preserve the utility rather than the absolute value
of the resulting iterate. Thus by reformulating the time-invariance lemma to describe the
preservation of utility rather than the absolute iterate weights we can then, perhaps, extend
this property in the DP setting. This is a direction we are currently pursuing for an upcoming
journal submission that pertains an extended version of Federated-PCA we previously presented
in Chapter 4.

So far, we have addressed only potential improvements to the theoretical contributions
contained in this dissertation. However, a very exciting avenue for future work is addressing
the problem of how the federated computation graph is constructed and maintained from a
systems point of view. In this dissertation, we assumed that the network topology was static
for the context of our experiments. Naturally, this assumption cannot hold always in practice
and our algorithmic constructions are able to cater for abstract network topologies. In its more
general case, our scheme only requires each node to have, or be able to discover, a path to the
“root” of the federation node. Defining how this process happens remains an open questions and
there are a number of potential strategies to do so. Moreover, peer discovery is something that
is very important in federated topologies, which is also a direction to consider. Both of these

126 Reflections and outlook

topics can benefit of prior art in peer-to-peer and mesh networks. Concrete examples would be
to potentially exploit distributed hash table (DHT) based solutions such as Chord [163] or
mesh routing [147] for topology maintenance and peer discovery. Very recently, solutions such
as Braintorrent [152] have been put forth that indeed exploit DHT’s for federated learning
with promising results. Such solutions, could potentially be used in the case of self-organising
federated data centres as well, meaning that nodes would be able to use peer discovery schemes
to join or leave the data centre at will. This could pave the way for a form of “work-sharing”
scheme for edge devices in which they would participate in the federated computation only
when idle in a user transparent way.

On the practical side, there have been a number of discussions on how the contributions
presented in this thesis could be applied to different real-world problems. Firstly, there was
a proposal to exploit the Federated-PCA and its differential privacy capabilities to help plot
individual COVID-19 cases in London boroughs, which could help facilitate better policies for
introducing localised measures, quarantine, and isolation. Another potential application that
was discussed, is to exploit the computational gains within the context of COVID-19 Sounds
project phone applications. The contributions presented in this thesis could help to perform
on-device processing of the audio samples instead of uploading them to our servers. Naturally,
this would overall enhance user privacy as sensitive voice related data would ever leave the
device and is being explored as a possibility in a future version of the applications.

6.3 Outlook

The introduction of Federated Learning (FL) as a computation paradigm has paved the way
for a new generation of services, applications, and methodologies. Coupled with the focus on
privacy and data-ownership these constraints make FL the de-facto computation method of
choice for datasets that are scattered in variable sized pieces within edge nodes across the
globe, each with their own set of limitations i.e. they form federated datasets. Such drastic
shifts in how computation is actually performed has rendered many of the traditional methods
inapplicable and hence necessitated their redesign in order to be usable in a federated context.
We conjecture, it will take some time until federated datasets are fully digested by academics,
institutions, as well as the industry and even more time to tap into the full potential within
these datasets. Naturally, when this eventuality occurs and as history has shown, more data
and more questions will emerge.

In this dissertation we have attempted to make one oldest of the most commonly used
methods in dimensionality reduction, namely PCA, applicable to federated datasets while
offering attractive properties and concrete guarantees. Specifically, through the contributions
presented herein, we are able scale PCA to “federated-scale” datasets and aspire that our
methods serve as a powerful analytical tool that will help practitioners discover interesting
underlying structures within them. Finally, we hope that apart from the obvious quantitative

6.3 Outlook 127

applications of our work, through this dissertation we can inspire researchers to improve upon
our findings but, perhaps more importantly, empower them to embrace the FL paradigm by
rethinking how other classical algorithms could be made applicable in a federated setting.

Appendix A

Supplementary Material for
Chapter 3

This comes as supplementary material to the work presented in Chapter 3. Most of the material
in this section is to aid the reader in understanding the intricate details about MOSES, if
desired.

Let us start by recalling some of the necessary spectral properties of a standard random
Gaussian matrix, namely a matrix populated with independent random Gaussian variables
with zero-mean and unit variance. For a standard Gaussian matrix G ∈ Ra×b with a ≥ b and
for fixed α ≥ 1, Corollary 5.35 in [180] dictates that,

√
a− α

√
b ≤ σb(G) ≤ σ1(G) ≤

√
a+ α

√
b, (A.1)

except with a probability of at most e−Cα2b. Note that the t in Corollary 5.35 mentioned
previously is translated as t = (α− 1)

√
b, hence the requirement for α ≥ 1. For the next part,

we will exploit the Hanson-Wright inequality, which for brevity presented below,

Theorem A.0.1 (Hanson-Wright inequality [154]). Let x = (x1, ..., xd) ∈ Rd be a random
vector with independent components xi which satisfy E[xi] = 0 and ∥xi∥ψ2 ≤ K. Let A be a
matrix in Rd×d. Then, for every t ≥ 0,

P
[
|xTAx− E[xTAx]| > t}

]
≤ 2exp

[
− cmin

(
t2

K4∥A∥2HS
,

t

K2∥A∥

)]
.

A random variable ξ is called subgaussian if its distribution is dominated by that of a normal
random variable. This can be expressed by requiring that E[exp(ξ2/K2] ≤ 2 for some K > 0.
The infimum of such K is traditionally called the subgaussian or ψ2 norm of ξ. This turns the set
of subgaussian random variables into the Orlicz space with the Orlicz function ψ2(t) = exp(t2)−1.
For more details and an expanded reasoning about this, see [154].

130 Supplementary Material for Chapter 3

Moreover, for a matrix Γ ∈ Ra′×a and α ≥ 1, an application of the Hanson-Wright inequality
(as in Theorem A.0.1) yields that,

∣∣∣∥ΓG∥2F − E∥ΓG∥2F
∣∣∣ ≤ β, (A.2)

for β ≥ 0 and except with a probability of at most,

exp
(
−min

(
β2

b∥Γ∥2∥Γ∥2F
,

β

∥Γ∥2

))
,

where ∥ · ∥ stands for the spectral norm. In particular, with the choice β = α2∥Γ∥2F b above and
α ≥ 1, we find that

∥ΓG∥2F ≤ (1 + α2)∥Γ∥2F b ≤ 2α2∥Γ∥2F b, (A.3)

except with a probability of at most,

exp
(
−Cα2b

∥Γ∥2F
∥Γ∥2

)
≤ exp(−Cα2b).

In a different regime, with the choice of β = α2∥Γ∥2F
√
b in (A.2) and α2 ≤

√
b, we arrive at,

∣∣∣∥ΓG∥2F − E∥ΓG∥2F
∣∣∣ =

∣∣∣∥ΓG∥2F − b∥Γ∥2F
∣∣∣ ≤ α2∥Γ∥2F

√
b, (A.4)

except with a probability of at most,

exp
(
−Cα4 ∥Γ∥2F

∥Γ∥2

)
≤ exp(−Cα4).

We are now ready to proceed with the proof Lemma 3.4.1.

A.1 Proof of Lemma 3.4.1

We start by letting,
Ξ = SΛST = SΣ2ST ∈ Rd×d (A.5)

be the eigendecomposition of the covariance matrix Ξ, where S ∈ Rd×d is an orthonormal
matrix and the diagonal matrix Λ = Σ2 ∈ Rd×d contains the eigenvalues of Ξ in non-increasing
order, namely

Λ = Σ2 =

σ2

1
σ2

2
. . .

σ2
d

 ∈ Rd×d, σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d. (A.6)

A.1 Proof of Lemma 3.4.1 131

Throughout, we also make use of the condition number and residual, namely

κr = σ1
σr
, ρ2

r = ρ2
r(Ξ) =

d∑
i=r+1

σ2
i . (see (3.29)) (A.7)

Recall that {yt}τt=1 ⊂ Rd are the data vectors drawn from the Gaussian measure µ with zero
mean and covariance matrix Ξ, and that Yτ ∈ Rd×τ is obtained by concatenating {yt}τt=1. It
follows that,

yt = SΣgt, t ∈ [1 : τ],

Yτ = SΣGτ , (A.8)

where gt ∈ Rd and Gτ ∈ Rd×τ are standard random Gaussian vector and matrix, respectively.
That is, gt and Gτ are populated with independent Gaussian random variables with zero mean
and unit variance. With these preparations, we are now ready to prove Proposition 3.4.1. For
y drawn from the Gaussian measure µ, note that,

Ey∥y−PSτ,r y∥22 = Ey∥PS⊥
τ,r

y∥22
= Ey⟨PS⊥

τ,r
,yyT ⟩

= ⟨PS⊥
τ,r
,Ξ⟩

=
〈

PS⊥
τ,r
,Ξ− YτYT

τ

τ

〉
+ 1
τ
⟨PS⊥

τ,r
,YτYT

τ ⟩

=
〈

PS⊥
τ,r
,Ξ− YτYT

τ

τ

〉
+ 1
τ
∥PS⊥

τ,r
Yτ∥2F

=
〈

PS⊥
τ,r
,Ξ− YτYT

τ

τ

〉
+ ρ2

r(Yτ)
τ

(see Program (3.22))

= 1
τ

(
E∥PS⊥

τ,r
Yτ∥2F − ∥PS⊥

τ,r
Yτ∥2F

)
+ ρ2

r(Yτ)
τ

. (see (A.8)) (A.9)

Next let us now, attempt to control the two components in the last line above. The first
component above involves the deviation of random variable ∥PS⊥

τ,r
Yτ∥2F from its expectation.

By invoking the Hanson-Wright inequality (as in Theorem A.0.1) and for α̃2 ≤
√
τ , we write

that

E∥PS⊥
τ,r

Yτ∥2F − ∥PS⊥
τ,r

Yτ∥2F = E∥PS⊥
τ,r

SΣ ·Gτ∥2F − ∥PS⊥
τ,r

SΣ ·Gτ∥2F (see (A.8))

≤ α̃2∥PS⊥
τ,r

SΣ∥2F
√
τ (see (A.4))

≤ α̃2∥PS⊥
τ,r

S∥2F ∥Σ∥
2√τ

≤ α̃2(d− r)σ2
1
√
τ , (see (A.6, A.7)) (A.10)

132 Supplementary Material for Chapter 3

except with a probability of at most e−Cα̃4 . In particular, for the choice of α̃2 = α2√log τ with
α2 ≤

√
τ

log τ , we find that

E∥PS⊥
τ,r

Yτ∥2F − ∥PS⊥
τ,r

Yτ∥2F ≤ α2(d− r)σ2
1

√
τ

log τ , (A.11)

except with a probability of τ−Cα4 . We next bound the second term in the last line of (A.9),
namely the residual of Yτ . To do so, let us start by noting that,

ρ2
r(Yτ) = ρ2

r(SΣGτ) (see (A.8))

= ρ2
r(ΣGτ)

(
STS = Id

)
= min

rank(X)=r
∥ΣGτ −X∥2F . (see (A.7)) (A.12)

By substituting above the suboptimal choice of,

Xo =
[

Σ[1 : r, 1 : r] ·Gτ [1 : r, :]
0(d−r)×τ

]
, (A.13)

we can deduce that,

ρ2
r(Yτ) = min

rank(X)=r
∥ΣGτ −X∥2F (see (A.12))

≤ ∥ΣGτ −Xo∥2F
= ∥Σ[r + 1 : d, r + 1 : d] ·Gτ [r + 1 : d, :]∥F . (see (A.13)) (A.14)

Note that Gτ [r + 1 : d, :] ∈ R(d−r)×τ is a standard Gaussian matrix. For α ≥ 1, an application
of the Hanson-Wright inequality (as in Theorem A.0.1) therefore implies that,

ρ2
r(Yτ) ≤ ∥Σ[r + 1 : d, r + 1 : d] ·Gτ [r + 1 : d, :]∥2F (see (A.14))

≤ 2α2∥Σ[r + 1 : d, r + 1 : d]∥2F τ (see (A.3))
= 2α2ρ2

rτ, (see (A.7)) (A.15)

except with a probability of at most e−Cα2τ . Let us now substitute the bounds in (A.11)
and (A.15) back into (A.9) then we are arrive to arrive that the following,

E∥y−PSτ,r y∥22 ≤ α2(d− r)σ2
1

√
τ

log τ + 2α2ρ2
r , (A.16)

A.2 Proof of Theorem 3.4.2 133

when α2 ≤
√

τ
log τ and except with a probability of at most equal to,

τ−Cα4 + e−Cα2τ ≤ τ−Cα4
,

(
α2 ≤

√
τ

log τ

)
where we abuse the notation in which C is a universal constant with the property is allowed to
change in every appearance. This completes the proof of Proposition 3.4.1.

A.2 Proof of Theorem 3.4.2

In the rest of this paper, we slightly unburden the notation by using Yk ∈ Rd×kb to denote
Ykb. For example, we will use YK ∈ Rd×τ instead of Yτ because τ = Kb. We also write Ŝk,r
instead of Ŝkb,r. As with the proof of Proposition 3.4.1, we argue that,

Ey∥y−PŜK,r
y∥22 ≤

1
τ

(
E∥PŜ⊥

K,r

Yτ∥2F − ∥PŜ⊥
K,r

Yτ∥2F
)

+ 1
τ
∥PŜ⊥

K,r

YK∥2F (similar to (A.9))

≤ α2(d− r)σ2
1

√
log τ
τ

+ 1
τ
∥PŜ⊥

K,r

YK∥2F (see (A.11))

= α2(d− r)σ2
1

√
log τ
τ

+ 1
τ
∥PŜ⊥

K,r

(YK − ŶK,r)∥2F (see (3.25))

≤ α2(d− r)σ2
1

√
log τ
τ

+ 1
τ
∥YK − ŶK,r∥2F , (A.17)

except with a probability of at most τ−Cα4 and provided that α2 ≤
√

τ
log τ . It therefore remains

to control the norm in the last line above. Let us recall that the output of MOSES, namely
ŶK,r, is intended to approximate a rank-r truncation of YK . We will therefore compare the
error ∥YK−ŶK,r∥F in (A.17) with the true residual ρr(YK). To that end, our analysis consists
of a deterministic bound and a stochastic evaluation of this bound. The deterministic bound is
as follows, see Appendix A.3 for the proof.
Lemma A.2.1. For every k ∈ [1 : K], let Yk,r = SVD(Yk, r) ∈ Rd×kb be a rank-r truncation
of Yk and set Sk,r = span(Yk,r) ∈ G(d, r). For p > 1, we also set,

θk := 1 + p
1
3 ∥Bk∥2

σr(Yk−1)2 . (A.18)

Where Bk is the concatenated vectors y ∈ Rd contained in the k-th block. Then the output of
MOSES, namely ŶK,r, satisfies the following inequality,

∥YK − ŶK,r∥2F ≤
p

1
3

p
1
3 − 1

K∑
k=2

 K∏
l=k+1

θl

 ∥PS⊥
k−1,r

Bk∥2F , (A.19)

134 Supplementary Material for Chapter 3

where PS⊥
k−1,r

∈ Rd×d is the orthogonal projection onto the orthogonal complement of Sk−1,r.
Above, we use the convention that ∏K

l=K+1 θl = 1.

In words, (A.19) gives a deterministic bound on the performance of MOSES. The term
∥PS⊥

k−1,r
Bk∥F in (A.19) is in a sense the “innovation” at iteration k, namely the part of the

new data block Bk that cannot be described by the current estimate Sk−1,r. We note, that
the overall innovation in (A.19) clearly controls the performance of MOSES. In particular, if
the data blocks are drawn from the same distribution, this innovation gradually reduces as
k increases. For example, if {Bk}Kk=1 are drawn from a distribution with a rank-r covariance
matrix, then the innovation term vanishes almost surely after finitely many iterations. In
contrast, when the underlying covariance matrix is high-rank, the innovation term decays more
slowly and never completely disappears even as k →∞. We will next evaluate the right-hand
side of (A.19) in a stochastic setup, see Appendix A for the proof.

Lemma A.2.2. Suppose that {yt}τt=1 are drawn from a zero-mean Gaussian probability measure
with the covariance matrix Ξ ∈ Rd×d. Further, let σ2

1 ≥ σ2
2 ≥ · · · ≥ σd be the eigenvalues of Ξ

and recall the notation in (A.7). For p > 1, also we let,

ηr := κr +
√

2αρr
p

1
6σr

.

For α ≥ 1, it then holds that,

∥YK − ŶK,r∥2F ≤
50p

4
3α2

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
η2
rb

(2K
pη2

r

+ 2
)pη2

r

, (A.20)

except with a probability of at most e−Cα2r and provided that,

b ≥ p
1
3α2r

(p 1
6 − 1)2

, b ≥ Cα2r.

Substituting the right-hand side of (A.20) back into (A.17) yields that,

Ey∥y−PŜK,r
y∥22 ≤ α2(d− r)σ2

1

√
log τ
τ

+ 1
τ
∥YK − ŶK,r∥2F , (see (A.17))

≤ α2(d− r)σ2
1

√
log τ
τ

+ 50p
4
3α2

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

) η2
r

K

(2K
pη2

r

+ 2
)pη2

r

.

(A.21)

A.3 Proof of Lemma A.2.1 135

In particular, if K ≥ pη2
r , we may simplify the above bound to read as follows,

Ey∥y−PŜK,r
y∥22 ≤ α2(d− r)σ2

1

√
log τ
τ

+ 50p
1
3α24pη2

r

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)(K

pη2
r

)pη2
r−1

,

(A.22)

which completes our proof of Theorem 3.4.2.

A.3 Proof of Lemma A.2.1

Recall that the output of MOSES is the sequence of rank-r matrices {Ŷk}Kk=1. For every
k < K, it is more convenient in the proof of Lemma A.2.1 to pad both Yk, Ŷk,r ∈ Rd×kb with
zeros to form the d×Kb matrices which can be formalised as,[

Yk 0d×(K−k)b

]
,

[
Ŷk,r 0d×(K−k)b

]
. (A.23)

We overload the notation Yk, Ŷk,r to show the new d×Kb matrices in (A.23). Let,

Ŝk,r = span(Ŷk,r) ∈ G(d, r),

Q̂k,r = span(ŶT
k,r) ∈ G(Kb, r) (A.24)

denote the (r-dimensional) column and row spaces of the rank-r matrix Ŷk,r ∈ Rd×Kb, respec-
tively. Let also Ŝk,r ∈ Rd×r and Q̂k,r ∈ RKb×r be orthonormal bases for these subspaces. We
also let Ik ⊂ RKb denote the b-dimensional subspace spanned by the coordinates [(k−1)b+1 : bk],
namely

Ik = span

0(k−1)b×b

Ib
0(K−k)b×b

 ∈ G(Kb, b), (A.25)

and we use the notation

Jk := I1 ⊕ I2 · · · ⊕ Ik ∈ G(Kb, kb), k ∈ [1 : K], (A.26)

to denote the kb-dimensional subspace that spans the first kb coordinates in RKb. The following
technical lemma, proved in Chapter A, gives another way of expressing the output of MOSES,
namely {Ŷk,r}Kk=1.
Lemma A.3.1. For every k ∈ [1 : K], it holds that,

Ŷk,r = YKPQ̂k,r
, (A.27)

136 Supplementary Material for Chapter 3

or equivalently
Ŷk−1,r + YkPIk

= YKPQ̃k
, (A.28)

where
Q̃k := Q̂k−1,r ⊕ Ik ⊂ RKb (A.29)

is the direct sum of the two subspaces Q̂k−1,r and Ik. In particular, the update rule (3.8) can
be written as follows,

YKPQ̂k,r
= SVD

(
YKPQ̃k

, r
)
, k ∈ [2 : K]. (A.30)

Lastly we have the inclusion,

Q̂k,r ⊂ Q̃k ⊂ Jk ∈ G(Kb, kb). (A.31)

In particular, (A.27) and (A.31) together imply that,

Ŷk,r = YKPJk
PQ̂k,r

= YkPQ̂k,r
,

that is, only Yk (containing the first kb data vectors) contributes to the formation of Ŷk,r, the
output of algorithm at iteration k, which was to be expected of course. Now, recall that Ŷk,r

is intended to approximate Yk,r = SVD(Yk, r). In light of Lemma A.3.1, let us now derive a
simple recursive expression for the residual Yk − Ŷk,r. For every k ∈ [2 : K], it holds that,

Yk − Ŷk,r = YKPJk
−YKPQ̂k,r

(see (A.26) and (A.27))

= YKPJk−1 + YKPIk
−YKPQ̂k,r

(see (A.26))

= Yk−1 + YKPIk
−YKPQ̂k,r

(see (A.26))

= Yk−1 − Ŷk−1,r + YKPQ̂k−1,r
+ YKPIk

−YKPQ̂k,r
(see (A.27))

=
(
Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̂k−1,r

+ PIk

)
−YKPQ̂k,r

=
(
Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̃k

−PQ̂k,r

)
. (see (A.29)) (A.32)

Interestingly, the two terms in the last line of (A.32) are orthogonal, as proved by induction
in Chapter A.

Lemma A.3.2. For every k ∈ [2 : K], it holds that,〈
Yk−1 − Ŷk−1,r,YK

(
PQ̃k

−PQ̂k,r

)〉
= 0. (A.33)

A.3 Proof of Lemma A.2.1 137

For fixed k ∈ [2 : K],then Lemma A.3.2 immediately implies that,

∥Yk − Ŷk,r∥2F =
∥∥∥(Yk−1 − Ŷk−1,r

)
+ YK

(
PQ̃k

−PQ̂k,r

)∥∥∥2

F
(see (A.32))

= ∥Yk−1 − Ŷk−1,r∥2F + ∥YK(PQ̃k
−PQ̂k,r

)∥2F (see Lemma A.3.2)

= ∥Yk−1 − Ŷk−1,r∥2F + ρr
(
Ŷk−1,r + YkPIk

)
. (see (A.30) and (A.28))

(A.34)

Recalling from (A.24) that Ŝk−1,r = span(Ŷk−1,r), and thus we are able to bound the above
expression as follows,

∥Yk − Ŷk,r∥2F = ∥Yk−1 − Ŷk−1,r∥2F + ρr
(
Ŷk−1,r + YkPIk

)
≤ ∥Yk−1 − Ŷk−1,r∥2F +

∥∥∥∥PŜ⊥
k−1,r

(
Ŷk−1,r + YkPIk

)∥∥∥∥2

F

= ∥Yk−1 − Ŷk−1,r∥2F + ∥PŜ⊥
k−1,r

Bk∥2F , (see (A.24)) (A.35)

where the second line follows from the sub-optimality of the choice of subspace Ŝk−1,r. Let us
focus on the last norm above. For every k, let Yk,r = SVD(Yk, r) be a rank-r truncation of
Yk with the column span Sk,r = span(Yk,r). We now write that,

∥PŜ⊥
k−1,r

Bk∥F ≤ ∥PŜ⊥
k−1,r

PSk−1,r
Bk∥F + ∥PŜ⊥

k−1,r

PS⊥
k−1,r

Bk∥F (triangle inequality)

≤ ∥PŜ⊥
k−1,r

PSk−1,r
∥F · ∥Bk∥+ ∥PS⊥

k−1,r
Bk∥F . (A.36)

The first norm in the last line above gauges the principal angles between the two r-dimensional
subspaces Ŝk−1,r and Sk−1,r. It turns out that we can bound this norm with a standard
perturbation result, for example see [58, Lemma 6] or [189]. More specifically, we may imagine
that Yk−1 is a perturbed copy of Yk−1,r. Then the angle between Sk−1,r = span(Yk−1,r) and
Ŝk−1,r = span(Ŷk−1,r) is controlled by the amount of perturbation. Namely given matrices
A and W with Wr the rank-r SVD truncation of W then the perturbation is controlled as
A = Ŷk−1,r,W = Yk−1,Wr = Yk−1,r proved in [58, Lemma 6]. Provided the above result we
can then find that,

∥PŜ⊥
k−1,r

PSk−1,r
∥F ≤

∥Yk−1 − Ŷk−1,r∥F
σr (Yk−1) . (A.37)

By plugging (A.37) back into (A.36), we find that the following holds,

∥PŜ⊥
k−1,r

Bk∥ ≤
∥Bk∥

σr (Yk−1) · ∥Yk−1 − Ŷk−1,r∥F + ∥PS⊥
k−1,r

Yk∥F . (A.38)

138 Supplementary Material for Chapter 3

In turn, for p > 1, substituting the above inequality into (A.35) yields that,

∥Yk − Ŷk,r∥2F ≤ ∥Yk−1 − Ŷk−1,r∥2F + ∥PŜ⊥
k−1,r

Bk∥2F (see (A.35))

≤
(

1 + p
1
3 ∥Bk∥2

σr (Yk−1)2

)
∥Yk−1 − Ŷk−1,r∥2F + p

1
3

p
1
3 − 1

∥PS⊥
k−1,r

Bk∥2F (see (A.38))

=: θk∥Yk−1 − Ŷk−1,r∥2F + p
1
3

p
1
3 − 1

∥PS⊥
k−1,r

Bk∥2F . (A.39)

where we used the inequality (a1 +a2)2 ≤ qa2
1 + qa2

2
q−1 for scalars a1, a2 and q > 1, with the choice

of q = p
1
3 . By unfolding the recursion in (A.39), we arrive at

∥YK − ŶK,r∥2F ≤
p

1
3

p
1
3 − 1

K∑
k=2

 K∏
l=k+1

θl

 ∥PS⊥
k−1,r

Bk∥2F , (A.40)

which completes the proof of Lemma A.2.1.

A.4 Proof of Lemma A.3.1

The proof is by induction. For k = 1, it holds that,

Ŷ1,r = SVD(Y1, r) (see Algorithm 1)
= Y1PQ̂1,r

(see (A.24))

= YKPI1PQ̂1,r

= YKPQ̂1,r
,

(
Q̂1,r ⊆ I1

)
(A.41)

which proves the base case of the induction. Let us now suppose that (A.27-A.31) hold for
[2 : k] with k < K. We now show that (A.27-A.31) hold also for k + 1. We can then write that,

Ŷk+1,r = SVD
(
Ŷk,r +

[
0d×kb Bk+1 0d×(K−k−1)b

]
, r
)

(see 1)

= SVD
(
YKPQ̂k,r

+ YKPIk+1 , r
)

(assumption of induction)

= SVD
(
YKPQ̃k+1

, r
)
, (see (A.29)) (A.42)

which completes the proof of Lemma A.3.1.

A.5 Proof of Lemma A.3.2

In this proof only, it is convenient to use the notation rowspan(A) to denote the row span
of a matrix A, namely rowspan(A) = span(AT). For every k ∈ [1 : K], recall from (A.30) that

A.5 Proof of Lemma A.3.2 139

YK(PQ̃k
−PQ̂k,r

) is the residual of rank-r truncation of YKPQ̃k
. Consequently,

YK(PQ̃k
−PQ̂k,r

) = YKPQ̂C
k,r

, k ∈ [1 : K], (A.43)

where Q̂Ck,r is the orthogonal complement of Q̂k,r with respect to Q̃k, namely

Q̃k = Q̂k,r ⊕ Q̂Ck,r, Q̂k,r ⊥ Q̂Ck,r k ∈ [1 : K], (A.44)

in which we conveniently set Q̃1 = I1, see (A.25). Now by exploiting (A.43), we can
rewrite (A.32) as

Yk − Ŷk,r = (Yk−1 − Ŷk−1,r) + Yk(PQ̃k
−PQ̂k,r

) (see (A.32))

= (Yk−1 − Ŷk−1,r) + YKPQ̂C
k,r

, k ∈ [2 : K]. (A.45)

With the preliminaries out of the way, let us rewrite the claim of Lemma A.3.2 as follows,〈
Yk−1 − Ŷk−1,r,YKPQ̂C

k,r

〉
= 0, k ∈ [2 : K], (A.46)

see (A.33) and (A.43). Because Q̂Ck,r ⊂ Q̃k by consequence of (A.44), it suffices to instead prove
the stronger claim that,

rowspan(Yk−1 − Ŷk−1,r) ⊥ Q̃k, k ∈ [2 : K]. (A.47)

We next prove (A.47) by induction. The base case of the induction, namely k = 2, is trivial.
Suppose now that (A.47) holds for [2 : k] with k < K. We next show that (A.47) holds for
k + 1 as well. Note that,

rowspan(Yk − Ŷk,r) = rowspan
(

(Yk−1 − Ŷk−1,r) + YKPQ̂C
k,r

)
(see (A.45))

⊆ rowspan(Yk−1 − Ŷk−1,r)⊕ Q̂Ck,r. (A.48)

As we next show, both subspaces in the last line above are orthogonal to Q̃k+1. Indeed, on the
one hand we have the following,rowspan(Yk−1 − Ŷk−1,r) ⊥ Q̃k ⊇ Q̂k,r, (induction hypothesis and (A.31))

rowspan(Yk−1 − Ŷk−1,r) ⊂ Jk−1 ⊥ Ik+1, (see (A.31) and (A.26))

=⇒ rowspan(Yk−1 − Ŷk−1,r) ⊥ (Q̂k,r ⊕ Ik+1) = Q̃k+1. (see (A.29)) (A.49)

140 Supplementary Material for Chapter 3

While on the other hand,Q̂
C
k,r ⊥ Q̂k,r,

Q̂Ck,r ⊂ Q̃k ⊂ Jk ⊥ Ik+1, (see (A.31) and (A.26))

=⇒ Q̂Ck,r ⊥ (Q̂k,r ⊕ Ik+1) = Q̃k+1. (see (A.29)) (A.50)

By combining (A.49) and (A.50), we can deduce that,

rowspan(Yk − Ŷk,r) ⊆ rowspan(Yk−1 − Ŷk−1,r)⊕ Q̂Ck,r (see (A.48))
⊥ Q̃k+1. (see (A.49, A.50)) (A.51)

Therefore, (A.47) holds for every k ∈ [2 : K] by induction. Thus, by extension, this
proves Lemma A.3.2 and concludes our proof.

A.6 Proof of Lemma A.2.2

Recall that Bk ∈ Rd×b,Yk ∈ Rd×kb denote the k-th block and the concatenation of the first
k blocks of data, respectively. Since the data vectors are independently drawn from a zero-mean
Gaussian probability measure with covariance matrix Ξ, it follows from (A.5, A.6) that,

Bk = SΣWk,

Yk = SΣGk, (A.52)

and that holds for every k ∈ [1 : K], where Wk ∈ Rd×b and Gk ∈ Rd×kb are standard random
Gaussian matrices. For fixed k ∈ [2 : K], let us now study each of the random quantities on
the right-hand side of (A.19). The following results are proved in Appendices A.7 and A.8,
respectively.
Lemma A.6.1. (Bound on ∥Bk∥) For α ≥ 1, p > 1, and fixed k ∈ [1 : K], it holds that

∥Bk∥ ≤ p
1
6 (σ1 +

√
2αp− 1

6 ρr)
√
b, (A.53)

except with a probability of at most e−Cα2b and provided that,

b ≥ α2r

(p 1
6 − 1)2

. (A.54)

Lemma A.6.2. (Bound on σr(Yk)) For α ≥ 1, p > 1, and fixed k ∈ [1 : K], it holds that,

σr(Yk) ≥ p− 1
6σr
√
kb, (A.55)

A.6 Proof of Lemma A.2.2 141

except with a probability of at most e−Cα2r and provided that,

b ≥ α2r

(1− p−1
6)2

. (A.56)

By combining Lemma A.6.1 and A.6.2, we can then find for fixed k ∈ [2 : K] that,

θk = 1 + p
1
3 ∥Bk∥2

σr(Yk−1)2 (see (A.18))

≤ 1 + p(σ1 +
√

2αp− 1
6 ρr)2b

σ2
r (k − 1)b (see Lemma A.6.1 and A.6.2)

=: 1 + pη2
r

k − 1 , (A.57)

except with a probability of at most e−Cα2r and provided that (A.56) holds. In particular, it
follows that,

K∏
l=k+1

θl ≤
K∏

l=k+1

(
1 + pη2

r

l − 1

)
(see (A.57))

≤ (K − 1 + pη2
r)K−1+pη2

r

(K − 1)K−1 · (k − 1)k−1

(k − 1 + pη2
r)k−1+pη2

r
(see below)

=
(

1 + pη2
r

K − 1

)K−1(
1 + pη2

r

k − 1

)−k+1(
K − 1 + pη2

r

k − 1 + pη2
r

)pη2
r

, (A.58)

holds for every k ∈ [2 : K] and except with a probability of at most Ke−Cαr, where the failure
probability follows from an application of the union bound. The second line above is obtained
by bounding the logarithm of the product in that line with the corresponding integral. More
specifically, it holds that,

log

 K∏
l=k+1

(
1 + pη2

r

l − 1

)
=

K−1∑
l=k

log
(

1 + pη2
r

l

)

≤
ˆ K−1

k−1
log

(
1 + pη2

r

x

)
dx

= (K − 1 + pη2
r) log(K − 1 + pη2

r)− (K − 1) log(K − 1)
− (k − 1 + pη2

r) log(k − 1 + pη2
r) + (k − 1) log(k − 1), (A.59)

where the third line above follows because the integrand is decreasing in x. Let us further
simplify (A.58). Note that K ≥ k ≥ 2 and that pη2

r ≥ 1 by its definition in (A.57). Consequently,

142 Supplementary Material for Chapter 3

by using the relation 2 ≤ (1 + 1/x)x ≤ e for x ≥ 1, we can then write that,

2 ≤
(

1 + pη2
r

k − 1

) k−1
pη2

r

≤ e, 2 ≤
(

1 + pη2
r

K − 1

)K−1
pη2

r

≤ e. (A.60)

In turn, by exploiting (A.60) is what allows us to simplify (A.58) as follows:

K∏
l=k+1

θl ≤
(

1 + pη2
r

K − 1

)K−1(
1 + pη2

r

k − 1

)−k+1(
K − 1 + pη2

rηr
k − 1 + pη2

r

)pη2
r

(see (A.58))

≤
(
e

2

)pη2
r

(
K − 1 + pη2

r

k − 1 + pη2
r

)pη2
r

. (see (A.60)) (A.61)

Next we control the random variable ∥PS⊥
k−1

Bk∥F in (A.19) with the following result, proved
in Section A.9.

Lemma A.6.3. (Bound on the Innovation) For α ≥ 1 and fixed k ∈ [2 : K], it holds that,

∥PS⊥
k−1,r

Bk∥F ≤ 5αmin
(
κrρr,

√
rσ1 + ρr

)√
b, (A.62)

except with a probability of at most e−Cα2r and provided that b ≥ Cα2r.

By combining Lemma A.6.3 and (A.61), we are able to finally deduce a stochastic bound for
the right-hand side of (A.19). More specifically, it holds that,

∥YK − ŶK,r∥2F

≤ p
1
3

p
1
3 − 1

K∑
k=2

 K∏
l=k+1

θl

 ∥PS⊥
k−1,r

Bk∥2F (see (A.19))

by using (A.61) and Lemma A.6.3 we have that,

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
b ·
(
e

2

)pη2
r (
K − 1 + pη2

r

)pη2
r
K∑
k=2

(
k − 1 + pη2

r

)−pη2
r

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
b ·
(
e

2

)pη2
r (
K − 1 + pη2

r

)pη2
r

ˆ ∞

pη2
r

x−pη2
r dx

= 50p
1
3α2

p
1
3 − 1

min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
b ·
(
e

2

)pη2
r (
K − 1 + pη2

r

)pη2
r · (pη2

r)−pη2
r+1

pη2
r − 1

≤ 50p
1
3α2

p
1
3 − 1

min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
b

(2K
pη2

r

+ 2
)pη2

r pη2
r

pη2
r − 1

≤ 50p
4
3α2

(p 1
3 − 1)2

·min
(
κ2
rρ

2
r , rσ

2
1 + ρ2

r

)
η2
rb

(2K
pη2

r

+ 2
)pη2

r

, (p, ηr ≥ 1) (A.63)

A.7 Proof of Lemma A.6.1 143

except with a probability of at most e−Cα2r and provided that,

b ≥ p
1
3α2r

(p 1
6 − 1)2

, b ≥ Cα2r.

This completes the proof of Lemma A.2.2.

A.7 Proof of Lemma A.6.1

Let us start our proof by noting that,

∥Bk∥ = ∥SΣWk∥ (see (A.52))

= ∥ΣWk∥
(
STS = Id

)
≤ ∥Σ[1 : r, 1 : r] ·Wk[1 : r, :]∥+ ∥Σ[r + 1 : d, r + 1 : d] ·Wk[r + 1 : d, :]∥ (triangle inequality)
≤ σ1 · ∥Wk[1 : r, :]∥+ ∥Σ[r + 1 : d, r + 1 : d] ·Wk[r + 1 : d, :]∥
≤ σ1 · ∥Wk[1 : r, :]∥+ ∥Σ[r + 1 : d, r + 1 : d] ·Wk[r + 1 : d, :]∥F , (A.64)

where we used MATLAB’s matrix notation as usual. Note that both Wk[1 : r, :] ∈ Rr×b and
Wk[r + 1 : d, :] ∈ R(d−r)×b in (A.64) are standard Gaussian random matrices. For α ≥ 1 and
p > 1, invoking the results about the spectrum of Gaussian random matrices as presented in
the beginning of Chapter A yields that,

∥Bk∥ ≤ σ1 · ∥Wk[1 : r, :]∥+ ∥Σ[r + 1 : d, r + 1 : d] ·Wk[r + 1 : d, :]∥F (see (A.64))
≤ σ1(

√
b+ α

√
r) +

√
2α∥Σ[r + 1 : d, r + 1 : d]∥F

√
b (see (A.1,A.3) and b ≥ r)

= σ1(
√
b+ α

√
r) + αρr

√
2b (see (A.6,A.7))

≤ p
1
6σ1
√
b+ αρr

√
2b,

(
if b ≥ α2r

(p 1
6 − 1)2

)
(A.65)

except with a probability of at most e−Cα2r + e−Cα2b ≤ e−Cα2r, where this final inequality
follows from the assumption that b ≥ r. This completes the proof of Lemma A.6.1. We remark
that a slightly stronger bound could be obtained by using Slepian’s inequality for comparing
Gaussian processes, see [180, Section 5.3.1] and [114, Section 3.1].

A.8 Proof of Lemma A.6.2

For a matrix A ∈ Rd×kb, it follows from the Fisher-Courant representation of the singular
values that,

σr(A) ≥ σr(A[1 : r, :]). (A.66)

144 Supplementary Material for Chapter 3

Alternatively, (A.66) might be verified using Cauchy’s interlacing theorem applied to AAT .
For a vector γ ∈ Rr×r and matrix A ∈ Rr×r, we also have the useful inequality,

σr(diag(γ)A) ≥ min
i∈[r]
|γ[i]| · σr(A), (A.67)

where diag(γ) ∈ Rr×r is the diagonal matrix formed from the entries of γ. Using the above
inequalities, we may write that,

σr(Yk) = σr(SΣGk) (see (A.52))

= σr(ΣGk)
(
STS = Id

)
≥ σr (Σ[1 : r, 1 : r] ·Gk[1 : r, :]) (see (A.66))
≥ σr · σr (Gk[1 : r, :]) . (see (A.67, A.6)) (A.68)

Note also that Gk[1 : r, :] ∈ Rr×kb above is a standard Gaussian random matrix. Now by using
the spectral properties listed in Chapter A, we can therefore write the following,

σr(Yk) ≥ σr · σr (Gk[1 : r, :]) (see (A.68))
≥ σr · (

√
kb− α

√
r) (see (A.1) and b ≥ r)

≥ σr · p− 1
6
√
kb,

(
if b ≥ α2r

(1− p− 1
6)2

)
(A.69)

except with a probability of at most e−Cα2r. This completes our proof for Lemma A.6.2.

A.9 Proof of Lemma A.6.3

Without loss of generality, we set S = Id in (A.5) to simplify the presentation, as this
renders the contribution of the bottom rows of Bk to the innovation typically small. We first
separate this term via the following inequality,

∥PS⊥
k−1,r

Bk∥F =
∥∥∥∥∥PS⊥

k−1,r

[
Bk[1 : r, :]

Bk[r + 1 : d, :]

]∥∥∥∥∥
F

≤
∥∥∥∥∥PS⊥

k−1,r

[
Bk[1 : r, :]
0(d−r)×b

]∥∥∥∥∥
F

+ ∥Bk[r + 1 : d, :]∥F . (triangle inequality)

(A.70)

A.9 Proof of Lemma A.6.3 145

Now, in order to control the last norm above, we can simply write the following to do so,

∥Bk[r + 1 : d, :]∥F = ∥Σ[r + 1 : d, r + 1 : d] ·Wk[r + 1 : d, :]∥F (see (A.52))
≤ α∥Σ[r + 1 : d, r + 1 : d]∥F

√
2b (see (A.3))

= αρr
√

2b, (see (A.7)) (A.71)

except with a probability of at most e−Cα2b. In the second line above, we used the fact that
Wk is a standard Gaussian random matrix. It therefore remains to control the first norm in
the last line of (A.70). Note that,

∥∥∥∥∥PS⊥
k−1,r

[
Bk[1 : r, :]
0(d−r)×b

]∥∥∥∥∥
F

=
∥∥∥∥∥PS⊥

k−1,r

[
Ir

0d−r

]
·
[

Bk[1 : r, :]
0(d−r)×b

]∥∥∥∥∥
F

=:
∥∥∥∥∥PS⊥

k−1,r
Jr ·

[
Bk[1 : r, :]
0(d−r)×b

]∥∥∥∥∥
F

≤ ∥PS⊥
k−1,r

Jr∥F · ∥Bk[1 : r, :]∥

≤ ∥PS⊥
k−1,r

Jr∥F · ∥Σ[1 : r, 1 : r]∥ · ∥Wk[1 : r, :]∥ (see (A.52))

≤ ∥PS⊥
k−1,r

Jr∥F · σ1 · (
√
b+ α

√
r) (see (A.6, A.1))

≤ ∥PS⊥
k−1,r

Jr∥F · σ1
√

2b,
(
if b ≥ Cα2r

)
(A.72)

except with a probability of at most e−Cα2r and provided that b ≥ Cα2r. The fifth line above
again exploits the fact that Wk is a standard Gaussian random matrix. Let us now estimate
the norm in the last line above. To do so, let us recall that PSk−1,r

∈ Rd×d projects onto
the span of Yk−1,r = SVD(Yk−1, r). That is, PSk−1,r

projects onto the span of leading r

left singular vectors of Yk−1 = ΣGk−1, see (A.52). Further, because the diagonal entries of
Σ ∈ Rd×d are in non-increasing order, it is natural to expect that PSk−1,r

≈ Jr. We now
formalise this notion using standard results from perturbation theory. Note that one might
think of Yk−1,r = SVD(Yk−1, r) as a perturbed copy of Yk−1. Further, note also that Jr is
the orthogonal projection onto the subspace

span
([

Yk−1[1 : r, :]
0(d−r)×(k−1)b

])
,

because Yk−1[1 : r, :] is almost surely full-rank. An application of Lemma 6 in [58] with the
first matrix A as specified inside the parenthesis above and for the second matrix we can use

146 Supplementary Material for Chapter 3

Yk−1 then it follows that,

∥PS⊥
k−1,r

Jr∥F ≤

∥∥∥∥∥Yk−1 −
[

Yk−1[1 : r, :]
0(d−r)×(k−1)b

]∥∥∥∥∥
F

σr(Yk−1)

= ∥Yk−1[r + 1 : d, :]∥F
σr(Yk−1)

= ∥Σ[r + 1 : d, r + 1 : d] ·Gk−1[r + 1 : d, :]∥F
σr(Yk−1) (see (A.52))

≤ α∥Σ[r + 1 : d, r + 1 : d]∥F
√

2(k − 1)b
σr
√

(k − 1)b/2
(see (A.3) and Lemma A.6.2 with p = 8)

= 2αρr
σr

, (see (A.7)) (A.73)

provided that b ≥ Cα2r and except with a probability of at most e−Cα2b + e−Cα2r ≤ e−Cα2r,
where this last inequality follows from the assumption that b ≥ r. It also trivially holds that,

∥PS⊥
k−1,r

Jr∥F ≤ ∥PS⊥
k−1,r
∥ · ∥Jr∥F ≤ ∥Jr∥F = ∥Ir∥F =

√
r,

where we used above the definition of Jr in (A.72). Therefore, overall we find that,

∥PS⊥
k−1,r

Jr∥F ≤ min
(2αρr

σr
,
√
r

)
. (A.74)

Substituting the above bound back into (A.72) yields that,

∥∥∥∥∥PS⊥
k−1,r

[
Bk[1 : r, :]
0(d−r)×b

]∥∥∥∥∥
F

≤ ∥PS⊥
k−1,r

Jr∥F · σ1
√

2b (see (A.72))

≤ min
(
ακrρr, σ1

√
r
)√

8b, (see (A.74, A.7)) (A.75)

except with a probability of at most e−Cα2r. Combining (A.71) and (A.75) finally controls the
innovation as follows,

∥PS⊥
k−1,r

Bk∥F ≤
∥∥∥∥∥PS⊥

k−1,r

[
Bk[1 : r, :]
0(n−r)×b

]∥∥∥∥∥
F

+ ∥Bk[r + 1 : d, :]∥F (see (A.70))

≤ min
(
ακrρr, σ1

√
r
)√

8b+ αρr
√

2b (see (A.75, A.71))
≤ 5αmin

(
κrρr, σ1

√
r + ρr

)√
b, (α, κr ≥ 1) (A.76)

except with a probability of at most e−Cα2r and provided that b ≥ Cα2r. Finally, this step
completes the proof of Lemma A.6.3.

Appendix B

Supplementary Material for
Chapter 4

This comes as supplementary material for Chapter 5. The appendix is structured as follows:

1. Federated-PCA’s local update guarantees,

2. Federated-PCA’s differential privacy properties,

3. In-depth analysis of algorithm’s federation,

4. Additional evaluation and discussion.

Furthermore, we complement our theoretical analysis with additional empirical evaluation on
synthetic and real datasets which include details on memory consumption.

B.1 Local Update Guarantees

We note that the local updating procedure in Algorithm 10 inherits the theoretical guarantees
from the incremental SVD algorithm, namely MOSES, we proposed in Chapter 3. This is used
as a primary building block for Federated-PCA and is not discussed again, as is the case in the
original paper which was done for brevity.
B.1.1 Adaptive Rank Estimation

Our algorithm provides a scheme to adaptively adjust the rank of each individual estimation
based on the distribution seen so far. This can be helpful when there are distribution shifts
and/or changes in the data over time. The scheme uses a thresholding procedure that consists
in bounding the minimum and maximum contributions of σr(Yτ) to the variance ∑r

i=1 σi(Yτ)
of the dataset. That is, by enforcing

EYτ
r = σr(Yτ)∑r

i=1 σi(Yτ)
∈ [α, β], (B.1)

148 Supplementary Material for Chapter 4

for some α, β > 0 and increasing r whenever Er(Yτ) > β or decreasing it when Er(Yτ) < α.
As a guideline, from our experiments a typical ratio of α/β should be less or equal to 0.2 which
could be used as an reference point when picking their values. This ensure that each client will
have a bounded Frobenius norm at any given point in time. With this procedure, we are able
to bound the global error as

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb). (B.2)

Proof. At iteration k ∈ {1, . . . ,K}, each node computes Ŷlocal
kb , the best rank-r approximation

of Ykb using iteration (4.3). Hence, for each k ∈ {1, . . . ,K}, the error of the approximation is
given by ∥Ykb − Ŷlocal

kb ∥F = ρr(Ykb). Let rmin = rmin(α, β) and rmax = rmax(α, β) > 0 be the
minimum and maximum rank estimates in when running FPCA. The result follows from

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb).

Where Yerr = ∥Ykb − Ŷlocal
kb ∥F

Furthermore, we can express the global bound in a different form which can give us a more
descriptive overall bound. To this end we know that for each local worker its ∥ · ∥F accumulated
error any given time is bounded by the ratio of the summation of its singular values.

Lemma B.1.1. Let ∥ · ∥MF ∈ {1, . . . ,M} be the error accumulated for each of the M clients at
block τ ; then, after merging operations the global error will be ∑M

i=1 E
Yτ
M .

Proof. By Equation (B.1) we know that the error is deterministically bounded for each of the
M clients at any given block τ . Further, we also know that the merging as in (Algorithm 6) is
able to merge the target subspaces with minimal error and thus at any given block τ we can
claim that ∑M

i=1 E
Yτ
M +cm where cm is a small constant depicting the error accumulated during

the merging procedure of the subspaces, thus when asymptotically eliminating the constant
factors the final error is ∑M

i=1 E
Yτ
M .

B.2 Privacy Preserving Properties of Federated PCA

In this section we prove Lemma 4.2.3, which summarises the differential privacy properties
of our method. The arguments are based on the proofs given by [32]. Lemma B.2.1 proves
the first part of Lemma 4.2.3 by extending MOD-SuLQ to the case of non-symmetric noise
matrices. The second part of Lemma 4.2.3 is a direct corollary of Lemma B.2.1. The third part
follows directly from Lemmas B.2.5 and B.2.6.

B.2 Privacy Preserving Properties of Federated PCA 149

Lemma B.2.1 (Differential privacy). Let X ∈ Rd×n be a dataset with orthonormal columns
and A = 1

nXXT . Let

ω(ε, δ, d, n) = 4d
εn

√
2 log

(
d2

δ
√

2π

)
+
√

2√
εn
, (B.3)

and Nε,δ,d,n ∈ Rd×d be a non-symmetric random Gaussian matrix with i.i.d. entries drawn from
N (0, ω2). Then, the principal components of 1

nXXT + Nε,δ,d,n are (ε, δ)-differentially private.

Proof. Let N, N̂ ∈ Rd×d be two random matrices such that Ni,j and N̂i,j are i.i.d. random
variables drawn from N (0, ω2). Let D = {xi : i ∈ [n]} ⊂ Rd be a dataset and let D̂ =
D ∪ {x̂n} \ {xn}. Form the matrices

X = [x1, . . . ,xn−1,xn] (B.4)
X̂ = [x1, . . . ,xn−1, x̂n]. (B.5)

Let Y = [x1, . . .xn−1]. Then, the covariance matrices for these datasets are

A = 1
n

[YYT + xnxTn] (B.6)

Â = 1
n

[YYT + x̂nx̂Tn]. (B.7)

Now, let G = A + B and Ĝ = Â + B̂ and consider the log-ratio of their densities at point
H ∈ Rd×d.

log fG(H)
fĜ(H) = 1

2ω2

d∑
i,j=1

(
−(Hi,j −Ai,j)2 + (Hi,j − Âi,j)2

)

= 1
2ω2

d∑
i,j=1

(2
n

(Ai,j −Hi,j)(x̂nx̂Tn − xnxTn)i,j + 1
n2 (x̂nx̂Tn − xnxTn)2

i,j

)

= 1
2ω2

d∑
i,j=1

(2
n

(Ai,j −Hi,j)(x̂n,ix̂n,j − xn,ixn,j) + 1
n2 (x̂n,ix̂n,j − xn,ixn,j)2

)
.

(B.8)

Note that if x,y ∈ Rd are such that ∥x∥ = ∥y∥ = 1 are unit vectors, then

d∑
i,j=1

(xixj − yiyj)2 ≤ 4. (B.9)

150 Supplementary Material for Chapter 4

Moreover,

d∑
i,j=1

(x̂n,ix̂n,j − xn,ixn,j) ≤
d∑

i,j=1
|x̂n,ix̂n,j |+

d∑
i,j=1
|xn,ixn,j | (B.10)

≤ 2 max
z:∥z∥≤1

d∑
i,j=1

zizj (B.11)

≤ 2 max
z:∥z∥≤1

∥z∥21 (B.12)

≤ 2 max
z:∥z∥≤1

(
√
d∥z∥2)2 (B.13)

≤ 2d. (B.14)

Using these observations to bound (B.8), and using the fact that for any γ ∈ R the events
{∀ i, j : Ni,j ≤ γ} and {∃ i, j : Ni,j > γ} are complementary, we obtain that for any measurable
set S of matrices,

P(G ∈ S) ≤ exp
(1

2ω2

(4
n
dγ + 4

n2

))
+ P(∃ i, j : Ni,j > γ). (B.15)

Moreover, if γ > ω, we can use the union bound with a Gaussian tail bound to obtain

δ := P(∃ i, j : Ni,j > γ) = P

 d⋃
i,j=1
{Ni,j > γ}

≤

d∑
i,j=1

P (Ni,j > γ)

≤
d∑

i,j=1

(1√
2π
e− γ2

2ω2

)

= d2
√

2π
e− γ2

2ω2 (B.16)

Now, solving for γ in (B.16) we obtain,

γ = ω

√
2 log

(
d2

δ
√

2π

)
(B.17)

Substituting (B.17) in (B.15) we can give an expression for (ε, δ)-differential privacy by letting

ε = 1
2ω2

(
4
n
d

(
ω

√
2 log

(
d2

δ
√

2π

))
+ 4
n2

)
. (B.18)

B.2 Privacy Preserving Properties of Federated PCA 151

This yields a quadratic equation on ω, which we can rewrite as

2εω2 − 4
n
d

(
ω

√
2 log

(
d2

δ
√

2π

))
ω − 4

n2 = 0. (B.19)

Using the quadratic formula to solve for ω in (B.19) yields,

ω = 2d
εn

√
2 log

(
d2

δ
√

2π

)
± 2
εn

√
2d2 log

(
d2

δ
√

2π

)
+ ε

2

≤ 2d
εn

√
2 log

(
d2

δ
√

2π

)
+ 2
εn

(√
2d2 log

(
d2

δ
√

2π

)
+
√
ε

2

)

= 4d
εn

√
2 log

(
d2

δ
√

2π

)
+
√

2√
εn
.

To prove the utility bound in Lemma B.2.5 of Streaming MOD-SuLQ, we will exploit Lem-
mas B.2.2, B.2.3, and B.2.4.

Lemma B.2.2 (Packing result [32]). For ϕ ∈ [(2πd)−1/2, 1), there exists a set C ⊂ Sd−1 with

|C| = 1
8 exp

(
(d− 1) log 1√

1− ϕ2

)
(B.20)

and such that |⟨µ,v⟩| ≤ ϕ for all µ,v ∈ C.

Lemma B.2.3 (Kullback-Leibler for Gaussian random variables). Let Σ be a positive definite
matrix and let f and g denote, respectively, the densities N (a,Σ) and N (b,Σ). Then,

KL(f || g) = 1
2(a − b)TΣ(a − b). (B.21)

Proof. The proof follows directly by using the definition of the Kullback-Leibler (KL) divergence
and simplifying.

Lemma B.2.4 (Fano’s inequality [197]). Let R be a set and Θ be a parameter space with a
pseudo-metric d(·). Let F be a set of r densities {f1, . . . , fr} on R corresponding to parameter
values {θ1, . . . , θr} in Θ. Let X have a distribution f ∈ F with corresponding parameter θ and
let θ̂(X) be an estimate of θ. If for all i, j, d(θi, θj) ≥ τ and KL(fi || fj) ≥ γ, then

max
j

Ej
[
d(θ̂, θj)

]
≥ τ

2

(
1− γ + log 2

log r

)
. (B.22)

We are now ready to give a bound on the utility for Streaming MOD-SuLQ. We note that the
proof for Lemma B.2.5 is identical as the one given in [32] except for a few equations where

152 Supplementary Material for Chapter 4

the dimension of the object considered changes from d(d+1)
2 to d2. We also note that while the

utility bound has the same functional form, it is not identical to the one given in [32] since it
depends on the value of ω = ω(ε, δ, d, n) given in Lemma 4.2.3.

Lemma B.2.5 (Utility bounds). Let d, n ∈ N and ε > 0 be given and let ω be given as in
Lemma 4.2.3, so that the output of Streaming MOD-SuLQ is (ε, δ) differentially private for all
datasets X ∈ Rd×n. Then, there exists a dataset with n elements such that if v̂1 denotes the
output of the Streaming MOD-SuLQ and v1 is the top eigenvector of the empirical covariance
matrix of the dataset, the expected correlation ⟨v1, v̂1⟩ is upper bounded,

E [|⟨v1, v̂1⟩|] ≤ min
ϕ∈Φ

1− 1− ϕ
4

1− 1/ω2 + log 2
(d− 1) log 1√

1−ϕ2
− log 8

2 (B.23)

where

Φ ∈

max

 1√
2πd

,

√
1− exp

(
−2 log(8d)

d− 1

)
,

√
1− exp

(
−2/ω2 + log 256

d− 1

)
 . (B.24)

Proof. Let C be an orthonormal basis in Rd. Then, |C| = d, so solving for ϕ in (B.20) yields

ϕ =
√

1− exp
(
−2 log(8d)

d− 1

)
. (B.25)

For any unit vector µ let A(µ) = µµT + N where N is a symmetric random matrix such that
{Ni,j : i ≤ i ≤ j ≤ d} are i.i.d. N (0, ω2) and ω2 is the noise variance used in the Streaming
MOD-SuLQ algorithm. The matrix A(µ) can be thought of as a jointly Gaussian random
vector on d2 variables. The mean and covariance of this vector is

E[µ] = (µ2
1, . . . ,µ

2
d,µ1µ2, . . . ,µd−1µd,µ2µ1, . . . ,µdµd−1) ∈ Rd

2
, (B.26)

Cov[µ] = ω2Id2×d2 ∈ Rd
2×d2

. (B.27)

For µ,ν ∈ C, the divergence can be calculated using Lemma B.2.3 yielding

KL(fµ || fν) ≤ 1
ω2 . (B.28)

B.2 Privacy Preserving Properties of Federated PCA 153

For any two vectors µ,ν ∈ C, we have that |⟨µ,ν⟩| ≤ ϕ, so that −ϕ ≤ −⟨µ,ν⟩. Therefore,

∥µ− ν∥2 = ⟨µ− ν,µ− ν⟩ (B.29)
= ∥µ∥2 + ∥ν∥2 − 2⟨µ,ν⟩ (B.30)
= 2(1− ⟨µ,ν⟩) (B.31)
≥ 2(1− ϕ). (B.32)

From (B.28) and (B.32), the set C satisfies the conditions of Lemma B.2.4 with F = {fµ : µ ∈ C},
r = K and τ =

√
2(1− ϕ), and γ = 1/ω2. Hence, this shows that for Streaming MOD-SuLQ,

max
µ∈C

Efµ [∥v̂ − µ∥] ≥
√

2(1− ϕ)
2

(
1− 1/ω2 + log 2

logK

)
(B.33)

As mentioned in [32] this bound is vacuous when the term inside the parentheses is negative
which imposes further conditions on ϕ. Setting K = 1/ω2 + log 2, we can solve to find another
lower bound on ϕ:

ϕ ≥

√
1− exp

(
−2/ω2 + log 256

d− 1

)
(B.34)

Using Jensen’s inequality on the left hand side of (B.33) yields

max
µ∈C

Efµ [2(1− |⟨v̂,µ⟩|)] ≥ (1− ϕ)
2

(
1− 1/ω2 + log 2

logK

)2

(B.35)

so there is a µ such that

Efµ [|⟨v̂,µ⟩|] ≤ 1− (1− ϕ)
4

(
1− 1/ω2 + log 2

logK

)2

. (B.36)

Now, consider the dataset D = [µ · · ·µ] ∈ Rd2×n. This dataset has covariance matrix equal
to µµT and has top eigenvector equal to v1 = µ. The output of the algorithm Streaming
MOD-SuLQ applied to D approximates µ, so satisfies (B.36). Minimising this equation over ϕ
yields the required result.

Lemma B.2.6 (Sample complexity). For (ϵ, δ) and d ∈ N, there are constants C1 > 0 and
C2 > 0 such that with

n ≥ C1
d3/2√log(d/δ)

ε

(
1− C2

(
1− Efµ [|⟨v̂,µ⟩|]

))
, (B.37)

where µ is the first principal component of the dataset X ∈ Rd×n and v̂ is the first principal
component estimated by Streaming MOD-SULQ.

154 Supplementary Material for Chapter 4

Proof. Using (B.36), and letting Efµ [|⟨v̂,µ⟩|] = ρ, we obtain,

2
√

1− ρ ≥ min
ϕ∈Φ

√
1− ϕ

1− 1/ω2 + log 2
(d− 1) log 1√

1−ϕ2
− log 8

 (B.38)

Picking ϕ so that the fraction in the right-hand side becomes 0.5, we obtain,

4
√

1− ρ ≥
√

1− ϕ. (B.39)

Moreover, as d, n→∞, this value of ϕ guarantee implies an asymptotic of the form

log 1√
1− ϕ2 ∼

2
ω2d

+ o(1). (B.40)

This implies that ϕ = Θ(ω−1d−1/2), and by (4.16) that ω ≳ d2(εn)−2 log(d/δ). Therefore, there
exists C > 0 such that ω2 > Cd2(nε)−2 log(d/δ). Since ϕ = Θ(ω−1d−1/2) we have that for some
D > 0

ϕ2 ≤ D n2ε2

d3 log(d/δ) . (B.41)

By (B.39) we get

(1− 16(1− ρ)) ≤ D n2ε2

d3 log(d/δ) (B.42)

Solving for n in (B.42) yields

n ≥ C1
d3/2√log(d/δ)

ε
(1− C2(1− ρ)), (B.43)

for some constants C1 and C2.

B.3 Federated PCA Analysis

In this section we will present a detailed analysis of Federated-PCA in which we will describe
the merging process in detail as well as provide a detailed error analysis in the streaming and
federated setting that is based is based on the mathematical tools introduced in [96].
B.3.1 Asynchronous Independent Block based SVD

We begin our proof by proving Lemma 4.2.1 (Streaming partial SVD uniqueness) which
applies in the absence of perturbation masks and is the cornerstone of our federated scheme.
Proof. Let the reduced SVD representation of each of the M nodes at time t be,

B.3 Federated PCA Analysis 155

Yi
t =

r∑
j=1

uijσi
j(vij)T = Ûi

tΣ̂i
t(V̂i

t)T , i = 1, 2, . . . ,M. (B.44)

We also know that each of the blocks Yi
t ∈ [M] can be at most of rank d. Note that in this

instance, the definition applies for only fully materialised matrices. However, substituting
each block of Yt

i with our local updates procedure as in Algorithm 10 then will generate an
estimation of the reduced SVD r of that particular Yt

i block with an error at most as presented
in Theorem 3.4.2 subject to each update chunk being in Rd×b with b ≥ min rank(Yi

t) ∀i ∈ [M].
Now, let the singular values of Yt be the positive square root of the eigenvalues of YtYT

t ,
where as defined previously Yt is the data seen so far from the M nodes. Then, by using the
previously defined streaming block decomposition of a matrix Yt we have the following,

YtYT
t =

M∑
i=1

Yi
t(Yi

t)T =
M∑
i=1

Ûi
tΣ̂i

t(V̂t
i)T (V̂i

t)(Σ̂i
t)T (Ûi

t)T =
M∑
i=1

Ûi
tΣ̂i

t(Σ̂i
t)T (Ui

t)T (B.45)

Equivalently, the singular values of Zt are similarly defined as the square root of the eigenvalues
of ZtZTt .

ZZT =
M∑
i=1

(Ûi
tΣ̂i

t)(Ûi
tΣ̂i

t)T =
M∑
i=1

Ûi
tΣ̂i

t(Σ̂i
t)T (Ûi

t)T (B.46)

Thus YtYT
t = ZtZT

t at any t, hence the singular values of matrix Zt must surely equal to
those of matrix Yt. Moreover, since the left singular vectors of both Yt and Zt will be also
eigenvectors of YtYT

t and ZtZT
t , respectively; then the eigenspaces associated with each -

possibly repeated - eigenvalue will also be equal thus Ût = Û′
tBt. The block diagonal unitary

matrix Bt which has p unitary blocks of size p× p for each repeated eigenvalue; this enables
the singular vectors which are associated with each repeated singular value to be rotated in the
desired matrix representation Ût. In case of different update chunk sizes per worker the result
is unaffected as long as the requirement for their size (b) mentioned above is kept and their
rank r is the same.

Time Order Independence

Further, a natural extension to Lemma 1 which is pivotal to a successful federated scheme
is the ability to guarantee that our result will be the same regardless of the merging order in
the case there are no input perturbation masks.
Lemma B.3.1 (Time independence). Let Y ∈ Rd×n. Then, if P ∈ Rn×n is a row permutation
of the identity. Then, in the absence of input-perturbation masks, FPCA(Y) = FPCA(YP).

156 Supplementary Material for Chapter 4

Proof. If Y = UΣVT is the Singular Value Decomposition (SVD) of Y, then YP = UΣ
(
VTP

)
.

Since V′ = PTV is orthogonal, UΣ(V′)T is the SVD of YP. Hence, both Y and YP have the
same singular values and left principal subspaces.

Notably, by formally proving the above Lemmas we can now exploit the following important
properties: i) that we can create a block decomposition of Yt for every t without fully
materialising the block matrices while being able to obtain their truncated r-SVD incrementally,
and ii) that the result will hold regardless of the arrival order.

B.3.2 Subspace Merging

Complimentary to the material shown in Section 4.2 and to illustrate the practical benefits
of the merging algorithm we conducted an experiment in order to evaluate if the proposed
algorithms’ empirical performance is as expected. Concretely, we created synthetic data using
Synth(1)d×n function1 with d = 800 and n ∈ {800, 1.6k, 2.4k, 3.2k, 4k}; then we split each
dataset into two equal chunks each of which was processed using Federated-PCA with a target
rank of 100. Then we proceeded to merge the two resulting subspaces with two different
techniques, namely, with the Algorithm 4 and Algorithm 6 as well as find the offline subspace
using traditionally SVD. We then show in Figure B.1 the errors incurred with respect to the
offline SVD against the resulting merged subspaces and singular values of the two techniques
used, as well as their execution. We can clearly see that the resulting subspaces are identical
in all cases and that the error penalty in the singular values is minimal when compared
to Algorithm 4. As expected, we also observe that derived algorithm is faster while consuming
less memory. Critically speaking, the speed benefit is not significant in the single case as
presented. However, these benefits can be additive in the presence of thousands of merges that
would likely occur in a federated setting.

800 1600 2400 3200 4000
1.8

2

2.2

2.4
10-10

fast
svd

(a) U errors.

800 1600 2400 3200 4000
0

1

2

3

4
10-6

fast
svd

(b) Singular Value errors.

800 1600 2400 3200 4000
0.01

0.011

0.012

0.013

fast
svd

(c) Execution time.

Fig. B.1 Illustration of the benefits of Algorithm 6, in of errors of subspace (fig. B.1a), singular
values (fig. B.1b), and its execution speed (fig. B.1c).

1If Y ∼ Synth(α)d×n iff Y = UΣVT with [U, ∼] = QR(Nd×d), [V, ∼] = QR(Nd×n), and Σi,i = i−α, and
Nm×n is an m × n matrix with i.i.d. entries drawn from N (0, 1).

B.3 Federated PCA Analysis 157

B.3.3 Federated Error Analysis

In this section we will give a lower and a upper bound of our federated approach. This is
also based on the mathematical toolbox we previously used [96] but is adapted in the case of
streaming block matrices.
Lemma B.3.2. Let Yi

t ∈ Rd×tMb, i = [M] for a any time t and a fixed update chunk size b.
Furthermore, suppose matrix Yi

t at time t has block matrices defined as Yi
t =

[
Y1
t |Y2

t | · · · |YM
t

]
,

and Zt at the same time has blocks defined as Zt =
[
(Y1

t)r|(Y2
t)r| · · · |(YM

t)r
]
, where r ≤ d.

Then, ∥(Zt)r −Yt∥F ≤ ∥(Z)r − Zt∥F + ∥Zt −Yt∥F ≤ 3∥(Yt)r −Yt∥F holds for all r ∈ [d].

Proof. We base our proof on an invariant at each time t the matrix Yt, although not kept
in memory, due to the approximation described in chapter B can be treated as such for the
purposes of this proof. Thus, we have the following:

∥(Zt)r −Yt∥F ≤ ∥(Zt)r − Zt∥F + ∥Zt −Yt∥F
≤ ∥(Yt)r − Zt∥F + ∥Zt −Yt∥F
≤ ∥(Yt)r −Yt∥F + 2∥Zt −Yt∥F.

We let (Yi
t)r ∈ Rd×tMb, i = 1, 2, . . . ,M denote the ith block of (Yt)r, we can see that

∥Zt −Yt∥2F =
M∑
i=1
∥(Yi

t)d −Yi
t∥2F ≤

M∑
i=1
∥(Yi

t)r −Yi
t∥2F = ∥(Yt)r −Yt∥2F.

Hence, if we combine these two estimates we complete our proof.

To bound the error of the federated algorithm, we use Lemma B.3.2 to derive a lower and
an upper bound of the error. Suppose that we choose a r ≤ d which is a truncated version of
Yt while also having the depth equal to 1. We can improve over Lemma B.3.2 in this particular
setting by requiring no access on the right singular vectors of any given block - e.g. the Vi

t
T .

Furthermore, it is possible to also show that this method is stable with respect to (small)
additive errors. We represent this mathematically with a noise matrix Ψ.

Theorem B.3.3. Let Yt ∈ Rd×tMb at time t has its blocks defined as Yi
t ∈ Rd×tMb, i = [M], so

that Yt =
[
Y1
t |Y2

t | · · · |YM
t

]
. Now, also let Zt =

[
(Y1

t)r
∣∣ (Y2

t)r
∣∣ · · · ∣∣ (YM

t)r
]
, Ψt ∈ Rd×tMb,

and Zt
′ = Zt + Ψt. Then, there exists a unitary matrix Bt such that∥∥∥(Zt

′)r −YtBtt

∥∥∥
F
≤ 3
√

2∥(Yt)r −Yt∥F +
(
1 +
√

2
)
∥Ψt∥F

holds for all r ∈ [d].

158 Supplementary Material for Chapter 4

Proof. Let Y′
t =

[
Y1
t

∣∣ Y2
t

∣∣ · · · ∣∣ YM
t

]
. Note that Y′

t = Yt by Lemma 4.2.1. Thus, there
exists a unitary matrix Bt

′′ such that Y′
t = YtBt

′′. Using this fact in combination with the
unitary invariance of the Frobenius norm, one can now see that

∥∥(Zt
′)
r −Y′

t

∥∥
F =

∥∥∥(Zt
′)
r −YtBt

′′
∥∥∥

F
=

∥∥∥(Zt
′)r −YtBt

′
∥∥∥

F
=
∥∥∥(Zt

′)r −YtBt
∥∥∥

F

for some (random) unitary matrices Bt
′ and Bt. Hence, it suffices to bound the norm of

∥(Zt
′)r −Y′

t∥F. Having said that, we can now do,

∥∥(Zt
′)
r −Y′

t

∥∥
F ≤

∥∥(Zt
′)
r − Zt

′∥∥
F +

∥∥Zt
′ − Zt

∥∥
F +

∥∥Zt −Y′
t

∥∥
F

=

√√√√√ d∑
j=r+1

σ2
j (Zt + Ψt) + ∥Ψt∥F +

∥∥Zt −Y′
t

∥∥
F

=

√√√√√⌈ d−r
2 ⌉∑
j=1

σ2
r+2j−1(Zt + Ψt) + σ2

r+2j(Zt + Ψt) + ∥Ψt∥F +
∥∥Zt −Y′

t

∥∥
F

≤

√√√√√⌈ d−r
2 ⌉∑
j=1

(σr+j(Zt) + σj(Ψt))2 + (σr+j(Zt) + σj+1(Ψt))2 + ∥Ψt∥F +
∥∥Zt −Y′

t

∥∥
F

the result follows from applying Weyl’s inequality in the first term [91]. By the application of
the triangle inequality on the first term we now have the following,

∥∥(Zt
′)
r −Y′

t

∥∥
F ≤

√√√√√ d∑
j=r+1

2σ2
j (Zt) +

√√√√√ d∑
j=1

2σ2
j (Ψt) + ∥Ψt∥F +

∥∥Zt −Y′
t

∥∥
F

≤
√

2
(
∥(Zt)r − Zt∥F + ∥Zt −Y′

t∥F
)

+
(
1 +
√

2
)
∥Ψt∥F.

Finally, Lemma B.3.2 for bounding the first two terms concludes the proof if we note that
∥(Y′

t)r −Y′
t∥F = ∥(Yt)r −Yt∥F.

Now, we introduce the final theorem which bounds the general error of Federated-PCA with
respect to the data matrix Yt and up to multiplication by a unitary matrix.

Theorem B.3.4. Let Yt ∈ Rd×tMb and q ≥ 1. Then, Federated-PCA is guaranteed to recover
an Yq+1,1

t ∈ Rd×tMb for any t such that
(
Yq+1,1
t

)
r

= YtBt + Ψt, where Bt is a unitary matrix,

and ∥Ψt∥F ≤
((

1 +
√

2
)q+1

− 1
)
∥(Yt)r −Yt∥F.

B.3 Federated PCA Analysis 159

Proof. For the purposes of this proof we will refer to the approximate subspace result for Yp+1,i
t

from the merging chunks as

Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · · ∣∣∣ (Zt
p,itMb

)
r

]
,

for p ∈ [q], and i ∈ [M/(tMb)p]. Which, as previously proved is equivalent to Yt, for any t

and up to a unitary transform. Moreover, Yt will refer to the original - and, potentially full
rank - matrix with block components defined as Yt =

[
Y1
t |Y2

t | · · · |YM
t

]
, where M = (tMb)q.

Additionally, Yp,i
t will refer to the respective uncorrupted block part of the original matrix Yt

whose values correspond to the ones of Zt
p,i. 2

Hence, it follows that Yt =
[
Yp,1
t |Y

p,2
t | · · · |Y

p,M/(tMb)(p−1)

t

]
holds for all p ∈ [q + 1], in

which
Yp+1,i
t :=

[
Yp,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t

]
for all p ∈ [q], and i ∈ [M/(tMb)p]. For p = 1 we have Zt

1,i = Yi
t = Y1,i

t for i ∈ [M] by
definition. Our target is to bound

(
Zt

q+1,1
)
d

matrix with respect to the original matrix Yt,
which can be done by induction on the level p. Concretely, we have to formally prove the
following for all p ∈ [q + 1], and i ∈ [M/(tMb)(p−1)],

1.
(
Zt

p,i
)
r

= Yp,i
t W

p,i + Ψp,i
t , where

2. Bt
p,i is always a unitary matrix, and

3. ∥Ψp,i
t ∥F ≤

((
1 +
√

2
)p
− 1

) ∥∥∥(Yp,i
t)d −Yp,i

t

∥∥∥
F
.

Notably, requirements 1 − 3 are always satisfied when p = 1 since Zt
1,i = Yi

t = Y1,i
t for all

i ∈ [M] by definition. Hence, we can claim that a unitary matrix Bt
1,i for all i ∈ [M] satisfying

(
Zt

1,i
)
d

=
(
Y1,i
t

)
r

=
(
Y1,i
t

)
r

Zt
1,i = Y1,i

t Bt
1,i +

((
Y1,i
t

)
r
−Y1,i

t

)
Bt

1,i,

where Ψ1,i :=
((

Y1,i
t

)
r
−Y1,i

t

)
W 1,i has

∥Ψ1,i
t ∥F =

∥∥∥(Y1,i
t

)
r
−Y1,i

t

∥∥∥
F
≤
√

2
∥∥∥(Y1,i

t

)
r
−Y1,i

t

∥∥∥
F
. (B.47)

Moreover, let’s assume that conditions 1− 3 hold for some p ∈ [q]. In which case, we can see
see from condition 1 that

2Meaning, Zt
p,i is used to estimate the approximate singular values and left singular vectors of Yp,i

t for all
p ∈ [q + 1], and i ∈ [M/(tMb)p−1]

160 Supplementary Material for Chapter 4

Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · · ∣∣∣ (Zt
p,itMb

)
r

]
=

[
Yp,(i−1)tMb+1
t Bt

p,(i−1)tMb+1 + Ψp,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t Bt

p,itMb + Ψp,itMb
t

]
=

[
Yp,(i−1)tMb+1
t Bt

p,(i−1)tMb+1
∣∣∣ · · · ∣∣∣ Yp,itMb

t Bt
p,itMb

]
+
[
Ψp,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Ψp,itMb
t

]
=

[
Yp,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t

]
B̃t + Ψ̃t,

where Ψ̃t :=
[
Ψp,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Ψp,itMb)
t

]
, and

B̃t :==

Bt
p,(i−1)tMb+1 0 0 0

0 Bt
p,(i−1)tMb+2 0 0

0 0 . . . 0

0 0 0 Bt
p,i(tMb)

.

Of note is that B̃t is always unitary due to its diagonal blocks all being unitary by condition 2
(and hence, by construction). Hence, we can claim that Zt

p+1,i = Yp+1,i
t B̃t +Ψ̃t. Following this,

we can now bound the quantity
∥∥∥(Zt

p+1,i
)
r
−Yp+1,i

t B̃t
∥∥∥

F
by the use of a similar argument to

the one we employed during the the proof of Theorem B.3.3.

∥∥∥(Zt
p+1,i

)
r
−Yp+1,i

t B̃t
∥∥∥

F
≤

∥∥∥(Zt
p+1,i

)
r
− Zt

p+1,i
∥∥∥

F
+
∥∥∥Zt

p+1,i −Yp+1,i
t B̃t

∥∥∥
F

=

√√√√√ d∑
j=r+1

σ2
j

(
Yp+1,i
t B̃t + Ψ̃t

)
+ ∥Ψ̃t∥F

≤

√√√√√ d∑
j=r+1

2σ2
j

(
Yp+1,i
t B̃t

)
+

√√√√√ d∑
j=1

2σ2
j (Ψ̃t) + ∥Ψ̃t∥F

=
√

2
∥∥∥Yp+1,i

t −
(
Yp+1,i
t

)
r

∥∥∥
F

+
(
1 +
√

2
)
∥Ψ̃t∥F. (B.48)

B.3 Federated PCA Analysis 161

Appealing to condition 3 in order to bound ∥Ψ̃t∥F we obtain,

∥Ψ̃t∥2F =
tMb∑
j=1
∥Ψp,(i−1)tMb+j

t ∥2F ≤
((

1 +
√

2
)p
− 1

)2 tMb∑
j=1

∥∥∥(Yp,(i−1)tMb+j
t)r −Yp,(i−1)tMb+j

t

∥∥∥2

F

≤
((

1 +
√

2
)p
− 1

)2 tMb∑
j=1

∥∥∥(Yp+1,i
t)jd −Yp,(i−1)n+j

t

∥∥∥2

F
,

where (Yp+1,i
t)jr denotes the block of (Yp+1,i

t)d corresponding to Yp,(i−1)n+j
t for j ∈ [tMb].

Hence,

∥Ψ̃t∥2F ≤
((

1 +
√

2
)p
− 1

)2 tMb∑
j=1

∥∥∥(Yp+1,i
t)jd −Yp,(i−1)tMb+j

t

∥∥∥2

F

=
((

1 +
√

2
)p
− 1

)2 ∥∥∥(Yp+1,i
t)r −Yp+1,i

t

∥∥∥2

F
. (B.49)

By using both (B.48) and (B.49) we can claim that,

∥∥∥(Zt
p+1,i

)
r
−Yp+1,i

t B̃t
∥∥∥

F
≤
[√

2 + (1 +
√

2)
((

1 +
√

2
)p
− 1

)] ∥∥∥(Yp+1,i
t

)
r
−Yp+1,i

t

∥∥∥
F

=
((

1 +
√

2
)p+1

− 1
)∥∥∥(Yp+1,i

t

)
r
−Yp+1,i

t

∥∥∥
F
. (B.50)

In the above, of note is that
∥∥∥(Zt

p+1,i
)
r
−Yp+1,i

t B̃t
∥∥∥

F
=
∥∥∥∥(Zt

p+1,i
)
r
−Yp+1,i

t Bt
p+1,i

∥∥∥∥
F

where

Bt
p+1,i is always unitary. Hence, we can see that conditions 1 - 3 hold at any t and any p+ 1

with Ψp+1,i
t :=

(
Zt

p+1,i
)
r
−Yp+1,i

t Bt
p+1,i.

Theorem B.3.4 proves that at any given time t, Federated-PCA will accurately compute low
rank approximations Yt of the data seen so up to time t so long as the depth of the tree is
relatively small. This is a valid assumption in our setting since we expect federated deployments
to be shallow and have a large fanout. That is, we expect that the depth of the tree will be
low and that many nodes will be using the same aggregator for their merging procedures. It is
also worth mentioning that the proof of Theorem B.3.4 can tolerate small additive noise (e.g.
round-off and approximation errors) in the input matrix Yt at time t. Finally, we fully expect
that, at any t, the resulting error will be no higher than min rank(Yi

t) ∀i ∈ [M] and no lower
than max rank(Yi

t) ∀i ∈ [M]

162 Supplementary Material for Chapter 4

B.4 Further Evaluation Details

In addition to the traditional MNIST results presented in the main paper, we further
evaluate FPCA against other competing methods which show that it performs favourably both
in terms of accuracy and time when using synthetic and real datasets.
B.4.1 Synthetic Datasets

For the tests on synthetic datasets, the vectors {yt}τt=1 are drawn independently from a
zero-mean Gaussian distribution with the covariance matrix Ξ = SΛST , where S ∈ O(d) is a
generic basis obtained by orthogonalising a standard random Gaussian matrix. The entries
of the diagonal matrix Λ ∈ Rd×d (the eigenvalues of the covariance matrix Ξ) are selected
according to the power law, namely, λi = i−α, for a positive α. To be more succinct, wherever
possible we employ MATLAB’s notation for specifying the value ranges in this section.

To assess the performance of Federated-PCA, we let Yt = [y1, · · · ,yt] ∈ Rd×t be the data
received by time t and ŶFPCA

t,r be the output of FPCA at time t. 3 Then, the error incurred by
FPCA is

1
t
∥Yt − ŶFPCA

t,r ∥2F , (B.51)

Recall, that the above error is always larger than the residual of Yt, namely,

∥Yt − ŶFPCA
t,r ∥2F ≥ ∥Yt −Yt,r∥2F = ρ2

r(Yt). (B.52)

In the expression above, Yt,r = SVDr(Yt) is a rank-r truncated SVD of Yt and ρ2
r(Yt) is the

corresponding residual. Additionally, we compare our proposed scheme against GROUSE [13],
FD [47], PM [130] and a version of PAST [142, 194]. Interestingly and contrary to FPCA, the
aforementioned algorithms are only able to estimate the principal components of the data and
not their projected data on-the-fly. Although, it has to noted that in this setup we are only
interested in the resulting subspace U along with its singular values Σ but is worth mentioning
that the projected data, if desired, can be kept as well. More specifically, let Ŝgt,r ∈ G(d, r) be
the span of the output of GROUSE, with the outputs of the other algorithms defined similarly.
Then, these algorithms incur errors

1
t
∥Yt −PŜv

t,r
Yt∥2F , v ∈ g, f, p,FPCA,

where we have used the notation PA ∈ Rd×d to denote the orthogonal projection onto the
subspace A. Even though robust FD [120] improves over FD in the quality of matrix sketching,
since the subspaces produced by FD and robust FD coincide, there is no need here for computing
a separate error for robust FD.

3Recall, since block-based algorithms like Federated-PCA, do not update their estimate after receiving feature
vector but per each block for convenience in with respect to the evaluation against other algorithms (which
might have different block sizes or singular updates), we properly interpolate their outputs over time.

B.4 Further Evaluation Details 163

Throughout our synthetic dataset experiments we have used an ambient dimension d = 400,
and for each a ∈ (0.001, 0.1, 0.5, 1, 2, 3) generated N = 4000 feature vectors in Rd using the
method above. This results in a set of with four datasets of size Rd×N . Furthermore, in our
experiments we used a block size of b = 50 for FPCA, while for PM we chose b = d. FD &
GROUSE perform singular updates and do not need a block-size value. Additionally, the step
size for GROUSE was set to 2 and the total sketch size for FD was set 2r. In all cases, unless
otherwise noted in the respective graphs the starting rank for all methods in the synthetic
dataset experiments was set to r = 10.

We evaluated our algorithm using the aforementioned error metrics on a set of datasets
generated as described above. The results for the different a values are shown in Figure B.3,
which shows FPCA can achieve an error that is significantly smaller than SP while maintaining
a small number of principal components throughout the evolution of the algorithms in the
absence of a forgetting factor λ. When a forgetting factor is used, as is shown in B.2 then the
performance of the two methods is similar. This figure was produced on pathological datasets
generated with an adversarial spectrum. It can be seen that in SPIRIT the need for PC’s
increases dramatically for no apparent reason, whereas Federated-PCA behaves favourably.

164 Supplementary Material for Chapter 4

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

P
C

 c
ou

nt
PCs evolution over T (4000) with 400 feats for alpha: 0.001

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.6

0.7

0.8

0.9

1

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.001

SP
F-PCA

(a) α = 0.001.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.5

1

1.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.1

SP
F-PCA

(b) α = 0.1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

8

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.5

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.2

0.3

0.4

0.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.5

SP
F-PCA

(c) α = 0.5.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

8

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.05

0.1

0.15

0.2

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 1

SP
F-PCA

(d) α = 1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 2

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

0.04

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 2

SP
F-PCA

(e) α = 2.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

1

2

3

4

5

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 3

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 3

SP
F-PCA

(f) α = 3.

Fig. B.2 Performance measurements across the spectrum (when using forgetting factor λ = 0.9).

Additionally, in order to bound our algorithm in terms of the expected error, we used a
fixed rank version with a low and high bound which fixed its rank value r to the lowest and
highest estimated r-rank during its normal execution. We fully expect the incurred error of

B.4 Further Evaluation Details 165

our adaptive scheme to fall within these bounds. On the other hand, Figure B.2 shows that
a drastic performance improvement occurs when using an exponential forgetting factor for
SPIRIT with value λ = 0.9, but the generated subspace is of inferior quality when compared to
the one produced by FPCA.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.001

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.4

0.6

0.8

1

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.001

SP
F-PCA

(a) α = 0.001.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.5

1

1.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.1

SP
F-PCA

(b) α = 0.1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

200

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.5

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.1

0.2

0.3

0.4

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.5

SP
F-PCA

(c) α = 0.5.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

200

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.1

0.2

0.3

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 1

SP
F-PCA

(d) α = 1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

15

20

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 2

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

0.04

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 2

SP
F-PCA

(e) α = 2.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

1

2

3

4

5

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 3

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 3

SP
F-PCA

(f) α = 3.

Fig. B.3 Pathological examples for adversarial Spectrums.

166 Supplementary Material for Chapter 4

Figures B.4a and B.4b show the results of our experiments on synthetic data Synth(α)d×n ⊂
Rd×n with (d, n) = (400, 4000) generated as described above. In the experiments, we let λ be the
forgetting factor of SP. Figure B.2 compares FPCA with SP when (α, λ) = (1, 0.9) and Figure
B.3 when (α, λ) = (2, 1). While Federated-PCA exhibits relative stability in both cases with
respect to the incurred || · ||F error, SP exhibits a monotonic increase in the number of principal
components estimated, in most cases, when λ = 1. This behaviour is replicated in Figures B.4a
and B.4b where RMSE subspace error is computed across the evaluated methods; thus, we can
see while SP has better performance when λ = 1 the number of principal components kept in
most cases is unusually high.

0.001 0.1 0.5 1 2 3
-25

-20

-15

-10

-5

0

SP
PM
FD
GROUSE
F-PCA

(a) λ = 0.9.

0.001 0.1 0.5 1 2 3
-30

-20

-10

0

SP
PM
FD
GROUSE
F-PCA

(b) λ = 1.

Fig. B.4 Resulting subspace U comparison across different spectrums generated using different
α values.

B.4.2 Real Datasets

To further evaluate our method against real datasets we also report in addition to the final
subspace errors the Frobenious norm errors over time for all datasets and methods we used in the
main paper. Namely, we used one that contains light, volt, and temperature readings gathered
over a significant period of time, each of which exhibiting different noteworthy characteristics4.
These datasets are used in addition to the MNIST and Wine quality datasets discussed in the
main paper. As with the synthetic datasets, across all real dataset experiments we used an
ambient dimension d and N equal to the dimensions of each dataset. For the configuration
parameters we elected to use a block size of b = 50 for FPCA and b = d for PM. The step size
for GROUSE was again set to 2 and the total sketch size for FD equal to 2r. Additionally, we
used the same bounding technique as with the synthetic datasets to bound the error of FPCA
using a fixed r with lowest and highest estimation of the r-rank and note that we fully expect
FPCA to fall again within these bounds. Note, that most reported errors are logarithmic; this

4Source of data: https://www.cs.cmu.edu/afs/cs/project/spirit-1/www/data/Motes.zip

https://www.cs.cmu.edu/afs/cs/project/spirit-1/www/data/Motes.zip

B.4 Further Evaluation Details 167

was done in order for better readability and to be able to fit in the same plot most methods -
of course, this is also reflected on the y-axis label as well. We elected to do this as a number of
methods, had errors orders of magnitude higher which posed a challenge when trying to plot
them in the same figure.
Motes datasets

In this we elaborate on the findings with respect to the Motes dataset; below we present
each of the measurements included along with discussion on the findings.
Humidity readings sensor node dataset evaluation. Firstly, we evaluate against the
motes dataset which has an ambient dimension d = 48 and is comprised out of N = 7712 total
feature vectors thus its total size being R48×7712. This dataset is highly periodic in nature and
has a larger lower/higher value deltas when compared to the other datasets. The initial rank
used for all algorithms was r = 10. The errors are plotted in logarithmic scale and can be seen
in Figure B.5a and we can clearly see that FPCA outperforms the competing algorithms while
being within the expected FPCA(low) & FPCA(high) bounds.

Light readings sensor node dataset evaluation. Secondly, we evaluate against a motes
dataset that has an ambient dimension d = 48 and is comprised out of N = 7712 feature vectors
thus making its total size R48×7712. It contains mote light readings can be characterised as
a much more volatile dataset when compared to the Humidity one as it contains much more
frequent and rapid value changes while also having the highest value delta of all mote datasets
evaluated. Again, as with Humidity dataset we used an initial seed rank r = 10 while keeping
the rest of the parameters as described above, the errors over time for all algorithms is shown
in Figure B.5d plotted logarithmic scale. As before, FPCA outperforms the other algorithms
while being again within the expected FPCA(low) & FPCA(high) bounds.

Temperature readings sensor node dataset evaluation. The third motes dataset we
evaluate contains temperature readings from the mote sensors and has an ambient dimension
d = 56 containing N = 7712 feature vectors thus making its total size R56×7712. Like the
humidity dataset the temperature readings exhibit periodicity in their value change and rarely
have spikes. As previously we used a seed rank of r = 20 and the rest of the parameters as
described in the synthetic comparison above, the errors over time for all algorithms is shown
in Figure B.5b plotted in logarithmic scale. It is again evident that FPCA outperforms the
other algorithms while being within the FPCA(low) & FPCA(high) bounds.

Voltage readings sensor node dataset evaluation. Finally, the fourth and final motes
dataset we consider has an ambient dimension of d = 46 contains N = 7712 feature vectors
thus making its size R46×7712. Similar to the Light dataset this is an contains very frequent
value changes, has large value delta which can be expected during operation of the nodes due
to various reasons (one being duty cycling). As with the previous datasets we use a seed rank

168 Supplementary Material for Chapter 4

of r = 10 and leave the rest of the parameters as described previously. Finally, the errors
over time for all algorithms is shown in Figure B.5c and are plotted in logarithmic scale. As
expected, Federated-PCA here outperforms the competing algorithms while being within the
required error bounds.

MNIST

To evaluate more concretely the performance of our algorithm in a streaming setting and
how the errors evolve over time rather than just reporting the result we plot the logarithm of the
Frobenious norm error over time while using the MNIST dataset used in the main manuscript.
From our results as can be seen from Figure B.5e Federated-PCA consistently outperforms
competing methods and exhibits state of the art performance throughout.
Wine

The final real dataset we consider to evaluate and plot the evolving errors is the (red)
Wine quality dataset, in which we also used in the main manuscript albeit, as with MNIST,
we only reported the resulting subspace quality error. Again, as we can see from Figure B.5f
Federated-PCA performs again remarkably, besting all other methods in this test as well.
Real dataset evaluation remarks

One strength of our algorithm is that it has the flexibility of not having its incremental
updates to be bounded by the ambient dimension d - i.e. its merges. This is especially true
when operating on a memory limited scenario as the minimum number of feature vectors
that need to be kept has to be a multiple of the ambient dimension d in order to provide
their theoretical guarantees (such as in [130]). Moreover, in the case of having an adversarial
spectrum (e.g. α > 1), energy thresholding can quickly overestimates the number of required
principal components, unless a forgetting factor is used, but at the cost of approximation
quality and robustness as it can be seen through our experiments. Notably, in a number of
runs SP ended up with linearly dependent columns in the generated subspace and failed to
complete. This is an inherent limitation of Gram-Schmidt orthonormalisation procedure used in
the reference implementation and substituting it with a more robust one (such as QR) decreased
its efficiency throughout our experiments.

B.4 Further Evaluation Details 169

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA

F-PCA
lo

F-PCA
hi

PM
GROUSE

(a) Humidity.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

0

2

4

6

8

10

12

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(b) Temperature.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA

F-PCA
lo

F-PCA
hi

PM
GROUSE

(c) Volt.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

4

6

8

10

12

14

16

18

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(d) Light.

0 2000 4000 6000 8000 10000
time ticks

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(e) MNIST.

0 200 400 600 800 1000 1200 1400 1600
time ticks

-5

0

5

10

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(f) (red) Wine Quality.

Fig. B.5 Comparisons against the Motes dataset containing Humidity (fig. B.5a), Temperature
(fig. B.5b), Volt (fig. B.5c), and Light (fig. B.5d) datasets with respect to the Frobenious norm
error over time; further, we compare the same error over time for the MNIST (fig. B.5e) and
(red) Wine quality (fig. B.5f) datasets. We compare against SPIRIT (SP), FPCA, non-adaptive
FPCA (low/high bounds), PM, & GROUSE; Frequent directions was excluded due to exploding
errors.

170 Supplementary Material for Chapter 4

B.4.3 Differential Privacy

Due to spacing limitation we refrained from showing the projections using a variety of
differential privacy budgets for the evaluated datasets; in this section we will show how the
projections behave for two additional DP budgets, namely for: ε ∈ {0.6, 1} and δ = 0.1 for both
datasets. The projections for MNIST can be seen in Figure B.6; the quality of the projections
produced by Federated-PCA appear to be closer to the offline ones Figure B.6a than the ones
produced by MOD-SuLQ for both DP budgets considered.

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-1500

-1000

-500

0

500

1000

1500

2000

2n
d

P
C

(a) Offline.

0 500 1000 1500 2000 2500 3000 3500
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-1500

-1000

-500

0

500

1000

1500

2000

2n
d

P
C

(d) FPCA (with masks), (ε, δ) = (1, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Fig. B.6 MNIST projections using different differential privacy budgets, at the top (fig. B.6a) is
the full rank PCA while on the left column is Federated-PCA with perturbation masks and
on the right column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1 while starting
from a recovery rank of 6. Note here that Federated-PCA exhibits remarkable performance
producing higher quality projections than MOD-SuLQ in both cases.

B.4 Further Evaluation Details 171

However, on the Wine quality dataset projections seen in Figure B.7 it seems that
MOD-SuLQ can produce projection that are closer to the offline ones than Federated-PCA
but not too far apart. Notably, this can be attributed to the higher sample complexity required
by Federated-PCA as it is an inherently streaming method and the (red) Wine dataset is
considerably smaller than MNIST.

-300 -250 -200 -150 -100 -50 0
1st PC

-40

-20

0

20

40

60

80

2n
d

P
C

(a) Offline.

-300 -250 -200 -150 -100 -50 0
1st PC

-60

-40

-20

0

20

40

2n
d

P
C

(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-20

0

20

40

60

80
2n

d
P

C

(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-40

-20

0

20

40

60

2n
d

P
C

(d) FPCA (with masks), (ε, δ) = (1, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-20

0

20

40

60

80

2n
d

P
C

(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Fig. B.7 (red) Wine quality projections using different differential privacy budgets, at the top
(fig. B.7a) is the full rank PCA while on the left column is Federated-PCA with perturbation
masks and on the right column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1
while starting from a recovery rank of 6. Note here that due to the higher sample complexity
requirements of Federated-PCA the projections appear slighly worse.

172 Supplementary Material for Chapter 4

B.4.4 Extended Time-Order Independence Empirical Evaluation

The figures show the errors for recovery ranks r equal to 5 (B.8a), 20 (B.8b), 40 (B.8c),
60 (B.8d), and 80 (B.8e). It has to be noted, that legends which are subscripted with s

(e.g. grs) compare against the SVD output while the others against its own output of the
perturbation against the original Y. As in our previous examples, we created synthetic data
using Synth(1)d×n function5 We remark that when trying a full rank recovery (i.e. r = 100),
SPIRIT failed to complete the full run as it ended up in some instances with linearly dependent
columns, while the other methods perform similarly to the previous examples.

5If Y ∼ Synth(α)d×n iff Y = UΣVT with [U, ∼] = QR(Nd×d), [V, ∼] = QR(Nd×n), and Σi,i = i−α, and
Nm×n is an m × n matrix with i.i.d. entries drawn from N (0, 1).

B.4 Further Evaluation Details 173

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-80

-70

-60

-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(a) Permutation errors for recovery rank r = 5.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-60

-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(b) Permutation errors for recovery rank r = 20.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(c) Permutation errors for recovery rank r = 40.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-25

-20

-15

-10

-5

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(d) Permutation errors for recovery rank r = 60.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-30

-25

-20

-15

-10

-5

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(e) Permutation errors for recovery rank r = 80.

Fig. B.8 Mean Subspace errors over 20 permutations of Y ∈ R100×10000 for recovery rank r
equals 5 (a), 20 (b), 40 (c), 60 (d), and 80 (e).

References

[1] Abraham, G. and Inouye, M. (2014). Fast principal component analysis of large-scale
genome-wide data. PloS one, 9(4):e93766. Publisher: Public Library of Science San Francisco,
USA. (see page 3.)

[2] Abraham, G., Qiu, Y., and Inouye, M. (2017). FlashPCA2: principal component analysis
of Biobank-scale genotype datasets. Bioinformatics. (see page 3.)

[3] Adamic, L. A. and Huberman, B. A. (2002). Zipf’s law and the Internet. Glottometrics,
3(1):143–150. (see page 2.)

[4] Albrecht, J. P. (2016). How the GDPR will change the world. Eur. Data Prot. L. Rev.,
2:287. Publisher: HeinOnline. (see page 2.)

[5] Apple (2018). Apple Differential Privacy Technical Overview. Apple. (see page 89.)

[6] Ardekani, B. A., Kershaw, J., Kashikura, K., and Kanno, I. (1999). Activation detection
in functional MRI using subspace modeling and maximum likelihood estimation. IEEE
Transactions on Medical Imaging, 18(2):101–114. Publisher: IEEE. (see pages 3 and 44.)

[7] Arora, R., Cotter, A., Livescu, K., and Srebro, N. (2012). Stochastic optimization for PCA
and PLS. In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton
Conference on, pages 861–868. IEEE. (see pages 71 and 75.)

[8] Arora, R., Mianjy, P., and Marinov, T. (2016). Stochastic optimization for multiview
representation learning using partial least squares. In International Conference on Machine
Learning, pages 1786–1794. PMLR. (see pages 75 and 97.)

[9] Baglama, J. and Reichel, L. (2005). Augmented implicitly restarted Lanczos bidiagonalization
methods. SIAM Journal on Scientific Computing, 27(1):19–42. Publisher: SIAM. (see
page 53.)

[10] Balsubramani, A., Dasgupta, S., and Freund, Y. (2013). The fast convergence of incremental
pca. In Advances in Neural Information Processing Systems, pages 3174–3182. (see pages 45
and 70.)

[11] Balzano, L., Chi, Y., and Lu, Y. M. (2018). Streaming pca and subspace tracking: The
missing data case. Proceedings of the IEEE, 106(8):1293–1310. Publisher: IEEE. (see pages
3, 12, 44, 124, and 125.)

[12] Balzano, L., Nowak, R., and Recht, B. (2010). Online identification and tracking of
subspaces from highly incomplete information. In Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 704–711. IEEE. (see page 44.)

176 References

[13] Balzano, L. and Wright, S. J. (2013). On GROUSE and incremental SVD. In IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pages 1–4. IEEE. (see pages 5, 63, 64, 65, 70, 93, 97, and 162.)

[14] Barroso, Luiz Andraand Halzle, U. and Ranganathan, P. (2018). The Datacenter as a
Computer: Designing Warehouse-Scale Machines, Third Edition. Synthesis Lectures on
Computer Architecture, 13(3):i–189. (see page 101.)

[15] Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming using
LU decomposition. Communications of the ACM, 12(5):266–268. Publisher: ACM New York,
NY, USA. (see page 21.)

[16] Benford, F. (1938). The law of anomalous numbers. Proceedings of the American philo-
sophical society, pages 551–572. Publisher: JSTOR. (see page 32.)

[17] Bhatt, C., Desai, A., Kambo, R., Li, Z., and Zadok, E. (2013). vATM: VMware vSphere
Adaptive Task Management. In Proceedings of the VMware Technical Journal, pages 29–33.
(see page 118.)

[18] Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005). Practical privacy: the SuLQ
framework. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 128–138. ACM. (see pages 5, 75, 76, 88, 98, and 99.)

[19] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon,
C., Konečnỳ, J., Mazzocchi, S., McMahan, H. B., and others (2019). Towards federated
learning at scale: System design. arXiv preprint arXiv:1902.01046. (see page 103.)

[20] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu, M., and Zhou, L. (2014).
Apollo: Scalable and coordinated scheduling for cloud-scale computing. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages 285–300. (see
pages 101, 102, and 119.)

[21] Boutsidis, C., Garber, D., Karnin, Z., and Liberty, E. (2015). Online principal components
analysis. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 887–901. Society for Industrial and Applied Mathematics. (see pages 71,
75, and 97.)

[22] Boutsidis, C. and Woodruff, D. P. (2017). Optimal CUR matrix decompositions. SIAM
Journal on Computing, 46(2):543–589. Publisher: SIAM. (see page 22.)

[23] Bouwmans, T. and Zahzah, E. H. (2014). Robust PCA via principal component pursuit:
A review for a comparative evaluation in video surveillance. Computer Vision and Image
Understanding, 122:22–34. Publisher: Elsevier. (see page 75.)

[24] Brakel, J.-P. v. (2014). z-score based streaming peak detection. (see page 110.)

[25] Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing
values. ECCV 2002, pages 707–720. Publisher: Springer. (see pages 5, 44, 50, and 69.)

[26] Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition.
Linear algebra and its applications, 415(1):20–30. Publisher: Elsevier. (see pages 44, 50,
and 69.)

[27] Brauckhoff, D., Salamatian, K., and May, M. (2009). Applying PCA for traffic anomaly
detection: Problems and solutions. In IEEE INFOCOM 2009, pages 2866–2870. IEEE. (see
page 3.)

References 177

[28] Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Xia,
T., Cicuta, P., and Mascolo, C. (2020). Exploring automatic diagnosis of covid-19 from
crowdsourced respiratory sound data. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3474–3484. (see page 8.)

[29] Bunch, J. R., Nielsen, C. P., and Sorensen, D. C. (1978). Rank-one modification of the
symmetric eigenproblem. Numerische Mathematik, 31(1):31–48. Publisher: Springer. (see
pages 44, 50, and 69.)

[30] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J. (2016). Borg, Omega,
and Kubernetes. ACM Queue, 14:70–93. (see page 119.)

[31] Charalambous, T. and Kalyvianaki, E. (2010). A Min-Max Framework for CPU Resource
Provisioning in Virtualized Servers using $\mathcalH ınfty$ Filters. In Proceedings of the
49th IEEE Conference on Decision and Control (CDC), pages 3778–3783. (see page 118.)

[32] Chaudhuri, K., Sarwate, A., and Sinha, K. (2012). Near-optimal differentially private
principal components. In Advances in Neural Information Processing Systems, pages 989–997.
(see pages 5, 40, 75, 76, 87, 88, 90, 98, 99, 148, 151, 152, and 153.)

[33] Chaudhuri, K., Sarwate, A. D., and Sinha, K. (2013). A near-optimal algorithm for
differentially-private principal components. The Journal of Machine Learning Research,
14(1):2905–2943. Publisher: JMLR. org. (see pages 5, 40, and 99.)

[34] Chiu, J. and Demanet, L. (2013). Sublinear randomized algorithms for skeleton decom-
positions. SIAM Journal on Matrix Analysis and Applications, 34(3):1361–1383. Publisher:
SIAM. (see page 71.)

[35] Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H.-J., Yoon, D., Lee,
M. H., Kim, D.-J., Park, M., and others (2009). A large-scale genome-wide association study
of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature
genetics, 41(5):527–534. Publisher: Nature Publishing Group. (see page 3.)

[36] CodeNotary (2015). The good the bad and the ugly about CPU Ready. (see page 105.)

[37] Comon, P. and Golub, G. H. (1990). Tracking a few extreme singular values and vectors
in signal processing. Proceedings of the IEEE, 78(8):1327–1343. Publisher: IEEE. (see pages
44, 50, and 69.)

[38] Cormode, G., Dickens, C., and Woodruff, D. (2018). Leveraging well-conditioned bases:
Streaming and distributed summaries in minkowski p-norms. In International Conference on
Machine Learning, pages 1048–1056. (see page 71.)

[39] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–
297. Publisher: Springer. (see page 1.)

[40] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., and Bianchini, R.
(2017). Resource central: Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 153–167. (see page 119.)

[41] Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine
preferences by data mining from physicochemical properties. Decision Support Systems,
47(4):547–553. Publisher: Elsevier. (see pages 90 and 102.)

178 References

[42] Dang, T., Han, J., Xia, T., Spathis, D., Bondareva, E., Brown, C., Chauhan, J., Grammenos,
A., Hasthanasombat, A., Cicuta, P., and Mascolo, C. (2021). COVID-19 Disease Progression
Prediction via AudioSignals: A Longitudinal Study. arXiv. (see page 9.)

[43] Davenport, M. A. and Romberg, J. (2016). An overview of low-rank matrix recovery from
incomplete observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622.
Publisher: IEEE. (see page 72.)

[44] Davis, D. M. (2002). Demystifying CPU Ready (%RDY) as a Performance Metric.Don’t
Trust Available CPU. (see page 103.)

[45] De la Torre, F. (2012). A least-squares framework for component analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 34(6):1041–1055. Publisher: IEEE. (see
pages 36 and 71.)

[46] De Sa, C., Olukotun, K., and Ré, C. (2014). Global convergence of stochastic gradient
descent for some non-convex matrix problems. arXiv preprint arXiv:1411.1134. (see page 71.)

[47] Desai, A., Ghashami, M., and Phillips, J. M. (2016). Improved practical matrix sketching
with guarantees. IEEE Transactions on Knowledge and Data Engineering, 28(7):1678–1690.
Publisher: IEEE. (see pages 63, 64, 93, and 162.)

[48] Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., and Hong, W. (2004).
Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 588–599. VLDB Endowment. (see
pages 67 and 94.)

[49] Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and Woodruff, D. P. (2012). Fast
approximation of matrix coherence and statistical leverage. The Journal of Machine Learning
Research, 13(1):3475–3506. Publisher: JMLR. org. (see page 71.)

[50] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pages 265–284. Springer. (see
pages 2, 36, and 74.)

[51] Dwork, C., Roth, A., and others (2014a). The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407. Publisher: Now
Publishers, Inc. (see pages 36, 37, 38, 74, and 99.)

[52] Dwork, C., Smith, A., Steinke, T., and Ullman, J. (2017). Exposed! a survey of attacks on
private data. Annual Review of Statistics and Its Application, 4:61–84. Publisher: Annual
Reviews. (see pages 2 and 37.)

[53] Dwork, C., Talwar, K., Thakurta, A., and Zhang, L. (2014b). Analyze gauss: optimal
bounds for privacy-preserving principal component analysis. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 11–20. ACM. (see pages 75 and 98.)

[54] Eckart, C.\ and Young, G. (1936). The approximation of one matrix by another of lower
rank. Psychometrika, 1:211–218. (see pages 1, 22, 30, 31, 74, and 98.)

[55] Eftekhari, A., Balzano, L., and Wakin, M. B. (2016a). What to Expect When You Are
Expecting on the Grassmannian. arXiv preprint arXiv:1611.07216. (see page 70.)

[56] Eftekhari, A., Hauser, R. A., and Grammenos, A. (2019a). MOSES: A streaming algorithm
for linear dimensionality reduction. IEEE transactions on pattern analysis and machine
intelligence, 42(11):2901–2911. Publisher: IEEE. (see pages 7 and 8.)

References 179

[57] Eftekhari, A., Li, P., Wakin, M. B., and Ward, R. A. (2016b). Learning the Differential Cor-
relation Matrix of a Smooth Function From Point Samples. arXiv preprint arXiv:1612.06339.
(see page 58.)

[58] Eftekhari, A., Ongie, G., Balzano, L., and Wakin, M. B. (2019b). Streaming Principal
Component Analysis From Incomplete Data. J. Mach. Learn. Res., 20:86–1. (see pages 12,
70, 124, 137, and 145.)

[59] Eftekhari, A., Wakin, M. B., and Ward, R. A. (2016c). MC$ˆ2$: A two-phase algorithm
for leveraged matrix Completion. arXiv preprint arXiv:1609.01795. (see page 72.)

[60] Ferlini, A., Montanari, A., Grammenos, A., Harle, R., and Mascolo, C. (2021). Enabling In-
Ear Magnetic Sensing: Automatic and User Transparent Magnetometer Calibration. In 2021
IEEE International Conference on Pervasive Computing and Communications (PerCom).
(see page 9.)

[61] Francis, S., Tenison, I., and Rish, I. (2021). Towards Causal Federated Learning For
Enhanced Robustness and Privacy. arXiv preprint arXiv:2104.06557. (see page 125.)

[62] Gabaix, X. (1999). Zipf’s law for cities: an explanation. The Quarterly journal of economics,
114(3):739–767. Publisher: MIT Press. (see page 2.)

[63] Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., and Rao, S. (2018). Medea:
Scheduling of Long Running Applications in Shared Production Clusters. In Proceedings of
the 13th EuroSys Conference. (see page 119.)

[64] Ge, J., Wang, Z., Wang, M., and Liu, H. (2018). Minimax-optimal privacy-preserving
sparse pca in distributed systems. In International Conference on Artificial Intelligence and
Statistics, pages 1589–1598. (see pages 75 and 99.)

[65] Geyer, R. C., Klein, T., and Nabi, M. (2017). Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557. (see pages 40 and 74.)

[66] Ghashami, M., Liberty, E., Phillips, J. M., and Woodruff, D. P. (2016). Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792.
Publisher: SIAM. (see pages 65, 71, and 98.)

[67] Gilbert, A. C., Park, J. Y., and Wakin, M. B. (2012). Sketched SVD: Recovering spectral
features from compressive measurements. arXiv preprint arXiv:1211.0361. (see page 71.)

[68] Gittens, A. and Mahoney, M. W. (2016). Revisiting the Nystrom method for improved
large-scale machine learning. The Journal of Machine Learning Research, 17(1):3977–4041.
Publisher: JMLR. org. (see page 71.)

[69] Gog, I., Schwarzkopf, M., Gleave, A., Watson, R. N. M., and Hand, S. (2016). Firma-
ment: Fast, Centralized Cluster Scheduling at Scale. In Operating Systems Design and
Implementation (OSDI). (see pages 101, 102, and 119.)

[70] Golub, G. H. and Van Loan, C. F. (2013). Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press. (see pages 21, 25, and 53.)

[71] Gonen, A., Hazan, E., and Moran, S. (2019). Private learning implies online learning: An
efficient reduction. arXiv preprint arXiv:1905.11311. (see page 89.)

[72] Gong, Z., Gu, X., and Wilkes, J. (2010). PRESS: Predictive Elastic Resource Scaling for
Cloud Systems. In International Conference on Network and Service Management (CNSM),
pages 9–16. IEEE Computer Society. (see page 118.)

180 References

[73] Grammenos, A., Charalambous, T., and Kalyvianaki, E. (2021a). CPU Scheduling in
Data Centers Using Asynchronous Finite-Time Distributed Coordination Mechanisms. arXiv
preprint arXiv:2101.06139. (see page 9.)

[74] Grammenos, A., Kalyvianaki, E., and Pietzuch, P. (2021b). Pronto: Federated Task
Scheduling. arXiv. eprint: arXiv:2104.13429. (see pages 7, 8, and 105.)

[75] Grammenos, A., Mascolo, C., and Crowcroft, J. (2018a). Efficient, privacy aware federated
model sharing. First UK Mobile, Wearable and Ubiquitous Systems Research Symposium.
(see pages 7 and 8.)

[76] Grammenos, A., Mascolo, C., and Crowcroft, J. (2018b). Online pattern discovery in
distributed, high-dimensional, streaming data under the YOLO principle. In EuroSys 2018
Doctoral Workshop. (see page 7.)

[77] Grammenos, A., Mascolo, C., and Crowcroft, J. (2018c). You are sensing, but are you
biased? a user unaided sensor calibration approach for mobile sensing. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):1–26. Publisher:
ACM New York, NY, USA. (see page 8.)

[78] Grammenos, A., Mascolo, C., and Crowcroft, J. (2019a). On Device Federated PCA
& Subspace Tracking. In Second UK Mobile, Wearable and Ubiquitous Systems Research
Symposium. (see page 8.)

[79] Grammenos, A., Mendoza Smith, R., Crowcroft, J., and Mascolo, C. (2020a). Federated
Principal Component Analysis. In Advances in Neural Information Processing Systems,
volume 33. (see pages 7, 8, and 104.)

[80] Grammenos, A., Mendoza-Smith, R., Mascolo, C., and Crowcroft, J. (2019b). Federated
PCA with Adaptive Rank Estimation. arXiv preprint arXiv:1907.08059. (see pages 7 and 8.)

[81] Grammenos, A., Raman, A., Böttger, T., Gilani, Z., and Tyson, G. (2020b). Dissecting
the Workload of a Major Adult Video Portal. In International Conference on Passive and
Active Network Measurement, pages 267–279. Springer. (see page 8.)

[82] Han, J., Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., Xia,
T., Cicuta, P., and Mascolo, C. (2021a). Exploring Automatic COVID-19 Diagnosis via voice
and symptoms from Crowdsourced Data. In ICASSP 2021. (see page 8.)

[83] Han, J., Spathis, D., Xia, T., Bondareva, E., Brown, C., Chauhan, J., Grammenos, A.,
Han, J., Hasthanasombat, A., Cicuta, P., and Mascolo, C. (2021b). Sounds of COVID-19:
from digital screening to disease progression. arXiv. (see page 9.)

[84] Hardt, M. and Price, E. (2014). The noisy power method: A meta algorithm with
applications. In Advances in Neural Information Processing Systems, pages 2861–2869. (see
pages 71, 75, and 99.)

[85] Hardt, M. and Roth, A. (2012). Beating randomized response on incoherent matrices.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
1255–1268. ACM. (see pages 75 and 99.)

[86] Hardt, M. and Roth, A. (2013). Beyond worst-case analysis in private singular vector
computation. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 331–340. ACM. (see pages 75 and 99.)

References 181

[87] Hastie, T., Tibshirani, R., and Friedman, J. (2013). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer New York.
(see page 44.)

[88] He, L., Bian, A., and Jaggi, M. (2018). Cola: Decentralized linear learning. In Advances
in Neural Information Processing Systems, pages 4536–4546. (see pages 40, 74, and 102.)

[89] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., Shenker,
S., and Stoica, I. (2011). Mesos: A Platform for Fine-grained Resource Sharing in the Data
Center. In USENIX Symposium on Networked Systems Design and Implementation (NSDI).
(see page 119.)

[90] Hoang, D. H. and Nguyen, H. D. (2018). A PCA-based method for IoT network traffic
anomaly detection. In 2018 20th International conference on advanced communication
technology (ICACT), pages 381–386. IEEE. (see page 3.)

[91] Horn, R. A. and Johnson, C. R. (1994). Topics in matrix analysis. Cambridge University
Press. (see pages 24 and 158.)

[92] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417. Publisher: Warwick & York. (see page 32.)

[93] Huang, L., Nguyen, X., Garofalakis, M., Jordan, M. I., Joseph, A., and Taft, N. (2006).
In-network PCA and anomaly detection. In NIPS, volume 2006, pages 617–624. (see page 3.)

[94] IBM (2019). Virtual machine CPU ready. (see page 105.)

[95] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg, A. (2009).
Quincy: fair scheduling for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating systems Principles, pages 261–276. (see page 119.)

[96] Iwen, M. and Ong, B. (2016). A distributed and incremental svd algorithm for agglomerative
data analysis on large networks. SIAM Journal on Matrix Analysis and Applications,
37(4):1699–1718. Publisher: SIAM. (see pages 78, 154, and 157.)

[97] Jain, P., Jin, C., Kakade, S. M., Netrapalli, P., and Sidford, A. (2016). Streaming PCA:
Matching matrix Bernstein and near-optimal finite sample guarantees for Oja’s algorithm.
In Conference on Learning Theory, pages 1147–1164. (see page 71.)

[98] Jiang, W., Grammenos, A., Kalyvianaki, E., and Charalambous, T. (2021). An Asyn-
chronous Approximate Distributed Alternating Direction Method of Multipliers in Digraphs.
arXiv. eprint: arXiv:2104.11866. (see page 9.)

[99] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal com-
ponents analysis. Annals of statistics, pages 295–327. Publisher: JSTOR. (see pages 5
and 61.)

[100] Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical
science, pages 1094–1096. Springer. (see pages 3, 36, 74, and 106.)

[101] Kadison, R. V. (1984). Diagonalizing matrices. American Journal of Mathematics,
106(6):1451–1468. Publisher: JSTOR. (see page 22.)

[102] Kairouz, P., Oh, S., and Viswanath, P. (2015). The composition theorem for differential
privacy. In International conference on machine learning, pages 1376–1385. PMLR. (see
page 99.)

182 References

[103] Kalyvianaki, E., Charalambous, T., and Hand, S. (2009). Self-adaptive and Self-configured
CPU Resource Provisioning for Virtualized Servers Using Kalman Filters. In ICAC. (see
page 118.)

[104] Kalyvianaki, E., Charalambous, T., and Hand, S. (2014). Adaptive Resource Provisioning
for Virtualized Servers Using Kalman Filters. Transactions on Autonomous and Adaptive
Systems (TAAS) (to appear). Publisher: ACM. (see page 118.)

[105] Kannan, R., Vempala, S., and Woodruff, D. (2014). Principal component analysis and
higher correlations for distributed data. In Conference on Learning Theory, pages 1040–1057.
(see pages 75 and 97.)

[106] Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K., Fumarola, G. M.,
Heddaya, S., Ramakrishnan, R., and Sakalanaga, S. (2015). Mercury: Hybrid Centralized
and Distributed Scheduling in Large Shared Clusters. In USENIX ATC. (see page 101.)

[107] Kim, K. I., Franz, M. O., and Scholkopf, B. (2005). Iterative kernel principal component
analysis for image modeling. IEEE transactions on pattern analysis and machine intelligence,
27(9):1351–1366. Publisher: IEEE. (see page 71.)

[108] Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D.
(2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492. (see pages 39, 74, and 102.)

[109] Krasulina, T. (1969). The method of stochastic approximation for the determination
of the least eigenvalue of a symmetrical matrix. USSR Computational Mathematics and
Mathematical Physics, 9(6):189–195. Publisher: Elsevier. (see pages 45 and 70.)

[110] Krim, H. and Viberg, M. (1996). Two decades of array signal processing research: The
parametric approach. IEEE Signal processing magazine, 13(4):67–94. Publisher: IEEE. (see
pages 3 and 44.)

[111] Larsen, R. M. (1998). Lanczos bidiagonalization with partial reorthogonalization. DAIMI
Report Series, 1(537). (see page 53.)

[112] Läuchli, P. (1961). Jordan-elimination und Ausgleichung nach kleinsten Quadraten.
Numerische Mathematik, 3(1):226–240. Publisher: Springer. (see page 33.)

[113] LeCun, Y., Cortes, C., and Burges, C. J. (2010). The MNIST database of handwritten
digits, 2010. (see page 90.)

[114] Ledoux, M. and Talagrand, M. (2013). Probability in Banach Spaces: Isoperimetry and
Processes. Classics in Mathematics. Springer Berlin Heidelberg. (see page 143.)

[115] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60. Publisher:
IEEE. (see pages 74, 102, and 103.)

[116] Li, Y. (2004). On incremental and robust subspace learning. Pattern recognition,
37(7):1509–1518. Publisher: Elsevier. (see pages 44, 50, and 69.)

[117] Liang, Y., Balcan, M.-F. F., Kanchanapally, V., and Woodruff, D. (2014). Improved
distributed principal component analysis. In Advances in Neural Information Processing
Systems, pages 3113–3121. (see page 75.)

References 183

[118] Liberty, E. (2013). Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
581–588. ACM. (see page 114.)

[119] Liu, X., Zhu, X., Padala, P., Wang, Z., and Singhal, S. (2007). Optimal Multivariate
Control for Differentiated Services on a Shared Hosting Platform. In Proceedings of the 46th
IEEE Conference on Decision and Control, pages 3792 –3799. IEEE Computer Society. (see
page 118.)

[120] Luo, L., Chen, C., Zhang, Z., Li, W.-J., and Zhang, T. (2017). Robust Frequent Directions
with Application in Online Learning. arXiv preprint arXiv:1705.05067. (see pages 63, 64, 93,
and 162.)

[121] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605. (see page 74.)

[122] Mahoney, M. W. and Drineas, P. (2009). CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702. Publisher:
National Acad Sciences. (see page 22.)

[123] Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng, Z., and Alizadeh, M. (2019).
Learning Scheduling Algorithms for Data Processing Clusters. In Proceedings of the ACM
Special Interest Group on Data Communication, SIGCOMM, pages 270–288. event-place:
Beijing, China. (see pages 101, 102, and 119.)

[124] Mardani, M., Mateos, G., and Giannakis, G. B. (2015). Subspace learning and imputation
for streaming big data matrices and tensors. IEEE Transactions on Signal Processing,
63(10):2663–2677. Publisher: IEEE. (see page 125.)

[125] Marinov, T. V., Mianjy, P., and Arora, R. (2018). Streaming Principal Component
Analysis in Noisy Settings. In International Conference on Machine Learning, pages 3410–
3419. (see page 75.)

[126] Markovsky, I. and Usevich, K. (2012). Low rank approximation, volume 139. Springer.
(see page 31.)

[127] McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426. (see page 74.)

[128] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and others (2016).
Communication-efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629. (see pages 39, 74, and 102.)

[129] Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The quarterly
journal of mathematics, 11(1):50–59. Publisher: Oxford University Press. (see pages 1, 30,
31, 74, and 98.)

[130] Mitliagkas, I., Caramanis, C., and Jain, P. (2013). Memory limited, streaming PCA. In
Advances in Neural Information Processing Systems, pages 2886–2894. (see pages 6, 12, 44,
63, 64, 65, 71, 75, 93, 97, 98, 114, 162, and 168.)

[131] Mitliagkas, I., Caramanis, C., and Jain, P. (2014). Streaming PCA with many missing
entries. Preprint. (see pages 6, 63, 65, 75, and 97.)

184 References

[132] Moneta, A., Entner, D., Hoyer, P. O., and Coad, A. (2013). Causal inference by
independent component analysis: Theory and applications. Oxford Bulletin of Economics
and Statistics, 75(5):705–730. Publisher: Wiley Online Library. (see page 125.)

[133] Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now Publishers
Inc. (see page 44.)

[134] Narayanamurthy, P., Vaswani, N., and Ramamoorthy, A. (2020). Federated Over-the-Air
Subspace Learning from Incomplete Data. arXiv preprint arXiv:2002.12873. (see page 75.)

[135] Nelson, J. and Nguyên, H. L. (2013). OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In 2013 ieee 54th annual symposium on foundations of
computer science, pages 117–126. IEEE. (see page 31.)

[136] Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. (2013). AGILE: Elastic
Distributed Resource Scaling for Infrastructure-as-a-Service. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC), pages 69–82. (see page 118.)

[137] Oja, E. (1983). Subspace methods of pattern recognition. Electronic & electrical engineering
research studies. Research Studies Press. (see pages 45 and 70.)

[138] Oja, E. and Karhunen, J. (1985). On stochastic approximation of the eigenvectors and
eigenvalues of the expectation of a random matrix. Journal of mathematical analysis and
applications, 106(1):69–84. Publisher: Elsevier. (see page 71.)

[139] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. (2013). Sparrow: Distributed,
Low Latency Scheduling. In Symposium on Operating Systems Principles (SOSP). (see pages
101, 102, and 119.)

[140] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., and
Merchant, A. (2009). Automated Control of Multiple Virtualized Resources. In EuroSys.
(see page 118.)

[141] Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
and Salem, K. (2007). Adaptive Control of Virtualized Resources in Utility Computing
Environments. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages 289–302. (see page 118.)

[142] Papadimitriou, S., Sun, J., and Faloutsos, C. (2005). Streaming pattern discovery in
multiple time-series. In Proceedings of the 31st international conference on Very large data
bases, pages 697–708. VLDB Endowment. (see pages 93, 114, and 162.)

[143] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572. Publisher: Taylor & Francis. (see pages 32, 74, and 106.)

[144] Pourkamali-Anaraki, F. and Becker, S. (2016). Randomized Clustered Nystrom for
Large-Scale Kernel Machines. arXiv preprint arXiv:1612.06470. (see page 71.)

[145] Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of
dimensionality, volume 703. John Wiley & Sons. (see page 1.)

[146] Qu, Y., Ostrouchov, G., Samatova, N., and Geist, A. (2002). Principal component
analysis for dimension reduction in massive distributed data sets. In Proceedings of IEEE
International Conference on Data Mining (ICDM). (see page 75.)

References 185

[147] Raniwala, A. and Chiueh, T.-c. (2005). Architecture and algorithms for an IEEE
802.11-based multi-channel wireless mesh network. In Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies., volume 3, pages 2223–2234.
IEEE. (see page 126.)

[148] Rehurek, R. (2011). Subspace tracking for latent semantic analysis. In European Confer-
ence on Information Retrieval, pages 289–300. Springer. (see pages 80 and 81.)

[149] Rikos, A. I., Grammenos, A., Kalyvianaki, E., Hadjicostis, C. N., Charalambous, T.,
and Johansson, K. H. (2021). Optimal CPU Scheduling in Data Centers via a Finite-Time
Distributed Quantized Coordination Mechanism. arXiv. arXiv:2104.03126. (see page 9.)

[150] Ringberg, H., Soule, A., Rexford, J., and Diot, C. (2007). Sensitivity of PCA for traffic
anomaly detection. In Proceedings of the 2007 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages 109–120. (see page 3.)

[151] Roweis, S. T. (1998). EM algorithms for PCA and SPCA. In Advances in neural
information processing systems, pages 626–632. (see page 71.)

[152] Roy, A. G., Siddiqui, S., Pölsterl, S., Navab, N., and Wachinger, C. (2019). Brain-
torrent: A peer-to-peer environment for decentralized federated learning. arXiv preprint
arXiv:1905.06731. (see page 126.)

[153] Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American
statistical Association, 91(434):473–489. Publisher: Taylor & Francis Group. (see page 125.)

[154] Rudelson, M., Vershynin, R., and others (2013). Hanson-Wright inequality and sub-
gaussian concentration. Electronic Communications in Probability, 18. Publisher: The
Institute of Mathematical Statistics and the Bernoulli Society. (see pages 62 and 129.)

[155] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747. (see page 98.)

[156] Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215.
Publisher: Nature Publishing Group. (see page 33.)

[157] Rzadca, K., Findeisen, P., Swiderski, J., Zych, P., Broniek, P., Kusmierek, J., Nowak, P.,
Strack, B., Witusowski, P., Hand, S., and Wilkes, J. (2020). Autopilot: Workload Autoscaling
at Google. In Proceedings of the 15th European Conference on Computer Systems (EuroSys).
(see page 119.)

[158] Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural networks, 2(6):459–473. Publisher: Elsevier. (see page 71.)

[159] Scharf, L. L. (1991). The SVD and reduced rank signal processing. Signal processing,
25(2):113–133. Publisher: Elsevier. (see page 3.)

[160] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes, J. (2013). Omega:
Flexible, Scalable Schedulers for Large Compute Clusters. In EuroSys. (see page 119.)

[161] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. (2011). CloudScale: Elastic Resource
Scaling for Multi-Tenant Cloud Systems. In Proceedings of the 2nd ACM Symposium on
Cloud Computing (SOCC), pages 5:1–5:14. (see page 118.)

186 References

[162] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017). Federated multi-task
learning. In Advances in Neural Information Processing Systems, pages 4424–4434. (see
pages 40, 74, and 102.)

[163] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer
Communication Review, 31(4):149–160. Publisher: ACM New York, NY, USA. (see page 126.)

[164] Strang, G. (1993). The fundamental theorem of linear algebra. The American Mathematical
Monthly, 100(9):848–855. Publisher: Taylor & Francis. (see pages 17, 22, and 31.)

[165] Strang, G. (2016). Introduction to linear algebra. Wellesley-Cambridge Press Wellesley,
MA, 5 edition. (see pages 22, 27, 31, and 86.)

[166] Strang, G. (2019). Linear algebra and learning from data. Wellesley-Cambridge Press
Cambridge. (see pages 17, 27, 70, and 79.)

[167] Tanenbaum, A. S. and Van Steen, M. (2007). Distributed systems: principles and
paradigms. Prentice-Hall. (see page 76.)

[168] Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622.
Publisher: Wiley Online Library. (see page 71.)

[169] Tong, L. and Perreau, S. (1998). Multichannel blind identification: From subspace
to maximum likelihood methods. Proceedings of IEEE, 86:1951–1968. Publisher: IEEE
INSTITUTE OF ELECTRICAL AND ELECTRONICS. (see pages 3 and 44.)

[170] Trefethen, L. N. and Bau III, D. (1997). Numerical linear algebra, volume 50. Siam. (see
page 27.)

[171] Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. (2017). Fixed-Rank Approximation
of a Positive-Semidefinite Matrix from Streaming Data. In Advances in Neural Information
Processing Systems, pages 1225–1234. (see page 71.)

[172] Trunk, G. V. (1979). A problem of dimensionality: A simple example. IEEE Transactions
on pattern analysis and machine intelligence, 3:306–307. Publisher: IEEE. (see page 1.)

[173] Tumanov, A., Zhu, T., Park, J. W., Kozuch, M. A., Harchol-Balter, M., and Ganger,
G. R. (2016). TetriSched: Global Rescheduling with Adaptive Plan-Ahead in Dynamic
Heterogeneous Clusters. In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys. (see page 119.)

[174] Vadhan, S. (2017). The complexity of differential privacy. In Tutorials on the Foundations
of Cryptography, pages 347–450. Springer. (see page 2.)

[175] van Overschee, P. and de Moor, B. L. (2012). Subspace identification for linear systems:
Theory, implementation, applications. Springer US. (see page 44.)

[176] Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic
Perspectives, 28(2):3–28. (see page 1.)

[177] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves,
T., Lowe, J., Shah, H., Seth, S., and others (2013). Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing, pages
1–16. (see page 119.)

References 187

[178] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J. (2015).
Large-scale cluster management at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems, pages 1–17. (see pages 101, 102, and 119.)

[179] Vershynin, R. (2012a). How close is the sample covariance matrix to the actual covariance
matrix? Journal of Theoretical Probability, 25(3):655–686. Publisher: Springer. (see pages
58, 61, and 62.)

[180] Vershynin, R. (2012b). Introduction to the non-asymptotic analysis of random matrices.
In Eldar, Y. C. and Kutyniok, G., editors, Compressed Sensing: Theory and Applications,
pages 95–110. Cambridge University Press. (see pages 62, 129, and 143.)

[181] Vidal, R., Ma, Y., and Sastry, S. (2016). Generalized Principal Component Analysis.
Interdisciplinary Applied Mathematics. Springer New York. (see pages 3 and 44.)

[182] Vladan (2017). What is vmware CPU ready. (see page 105.)

[183] VMWare (2008). Server Consolidation and Containment, With Virtual Infrastructure.
arXiv. (see page 103.)

[184] VMWare (2020). vSphere Datacenter Administration Guide. VMware. (see page 103.)

[185] VMWare, L. (2018). PERFORMANCE TROUBLESHOOTING – CPU READY TIME.
VMware. (see page 105.)

[186] Wang, H., Lee, M. K., and Wang, C. (1998). Consumer privacy concerns about Internet
marketing. Communications of the ACM, 41(3):63–70. Publisher: ACM New York, NY,
USA. (see page 2.)

[187] Wang, Z., Zhu, X., and Singhal, S. (2005). Utilization and SLO-Based Control for
Dynamic Sizing of Resource Partitions. In Proceedings of the 16th IFIP/IEEE Ambient
Networks International Conference on Distributed Systems: Operations and Management,
DSOM’05, pages 133–144. (see page 118.)

[188] Warmuth, M. K. and Kuzmin, D. (2008). Randomized online PCA algorithms with
regret bounds that are logarithmic in the dimension. Journal of Machine Learning Research,
9(Oct):2287–2320. (see page 71.)

[189] Wedin, P. (1972). Perturbation bounds in connection with singular value decomposition.
BIT Numerical Mathematics, 12(1):99–111. Publisher: Springer. (see page 137.)

[190] Wohwe Sambo, D., Yenke, B. O., Förster, A., and Dayang, P. (2019). Optimized
clustering algorithms for large wireless sensor networks: A review. Sensors, 19(2):322.
Publisher: Multidisciplinary Digital Publishing Institute. (see pages 76 and 107.)

[191] Xia, T., Spathis, D., Ch, J., Grammenos, A., Han, J., Hasthanasombat, A., Bondareva,
E., Dang, T., Floto, A., Cicuta, P., and others (2021). COVID-19 Sounds: A Large-Scale
Audio Dataset for Digital Respiratory Screening. In 35th Conference on Neural Information
Processing Systems (NeurIPS). (see page 9.)

[192] Xie, Y., Huang, J., and Willett, R. (2013). Change-point detection for high-dimensional
time series with missing data. IEEE Journal of Selected Topics in Signal Processing, 7(1):12–
27. Publisher: IEEE. (see page 70.)

[193] Xu, W., Zhu, X., Singhal, S., and Wang, Z. (2006). Predictive Control for Dynamic
Resource Allocation in Enterprise Data Centers. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS), pages 115–126. (see page 118.)

188 References

[194] Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on
Signal processing, 43(1):95–107. Publisher: IEEE. (see pages 93 and 162.)

[195] Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–
19. Publisher: ACM New York, NY, USA. (see page 102.)

[196] Young, A. L. and Quan-Haase, A. (2009). Information revelation and internet privacy
concerns on social network sites: a case study of facebook. In Proceedings of the fourth
international conference on Communities and technologies, pages 265–274. (see page 2.)

[197] Yu, B. (1997). Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages
423–435. Springer. (see page 151.)

[198] Zhou, S., Ligett, K., and Wasserman, L. (2009). Differential privacy with compression. In
2009 IEEE International Symposium on Information Theory, pages 2718–2722. IEEE. (see
pages 75 and 99.)

[199] Zhu, X., Wang, Z., and Singhal, S. (2006). Utility-Driven Workload Management using
Nested Control Design. In Proceedings of the American Control Conference (ACC), page 6.
(see page 118.)

[200] Zipf, G. and Behavior, H. (1950). The principle of least effort. Massachusetts: Addison.
(see pages 2 and 32.)

	Nomenclature
	1 Introduction
	1.1 Thesis and its substantiation
	1.2 Chapters and contributions
	1.3 Publication list

	2 Background & Preliminaries
	2.1 Linear algebra preliminaries
	2.2 Eigendecomposition
	2.3 Singular Value Decomposition
	2.4 Principal Component Analysis
	2.5 Differential privacy
	2.6 Federated computation
	2.7 Notation

	3 Beyond Regular Singular Value Decomposition
	3.1 Introduction
	3.2 Memory-limited Online Subspace Estimation
	3.3 Optimisation Viewpoint
	3.4 Performance of MOSES
	3.5 Experimental Evaluation
	3.6 Discussion

	4 Federated Principal Component Analysis
	4.1 Introduction
	4.2 Federated PCA
	4.3 Experimental Evaluation
	4.4 Discussion

	5 Federated Task Scheduling
	5.1 Introduction
	5.2 Importance of CPU Ready
	5.3 A Federated Approach to Real-time Resource Monitoring
	5.4 Pronto Scheduler
	5.5 Experimental Evaluation
	5.6 Discussion

	6 Reflections and outlook
	6.1 Summary of contributions
	6.2 Future research directions
	6.3 Outlook

	Appendix A Supplementary Material for Chapter 3
	Appendix B Supplementary Material for Chapter 4
	References

