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Abstract

Techniques known as Nonlinear Set Membership prediction or Lipschitz Interpolation are approaches to supervised machine
learning that utilise presupposed Lipschitz properties to perform inference over unobserved function values. Provided a bound
on the true best Lipschitz constant of the target function is known a priori they offer convergence guarantees as well as
bounds around the predictions. Considering a more general setting that builds on Lipschitz continuity, we propose an online
method for estimating the Lipschitz constant online from function value observations that are possibly corrupted by bounded
noise. Utilising this as a data-dependent hyper-parameter gives rise to a nonparametric machine learning method, for which
we establish strong universal approximation guarantees. That is, we show that our prediction rule can learn any continuous
function on compact support in the limit of increasingly dense data, up to a worst-case error that can be bounded by the level
of observational error. We also consider applications of our nonparametric regression method to learning-based control. For
a class of discrete-time settings, we establish convergence guarantees on the closed-loop tracking error of our online learning-
based controllers. To provide evidence that our method can be beneficial not only in theory but also in practice, we apply it
in the context of nonparametric model-reference adaptive control (MRAC). Across a range of simulated aircraft roll-dynamics
and performance metrics our approach outperforms recently proposed alternatives that were based on Gaussian processes and
RBF-neural networks.
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1 Introduction

Among supervised learning methods, nonparametric re-
gression techniques have attracted much attention due
to their great flexibility and ability to learn rich func-
tion classes. Among many others, popular approaches in-
clude kernel methods such as Gaussian Processes (GPs)
[20], the NW-estimator [18,25], local methods such as
LOESS regression [11] as well as Lipschitz Interpolation
(LI) [24,26]. In spite a wealth of classic as well as recent
work that has shed light on the theoretical and practical
properties of these methods, a common limitation re-
mains: typically all results rest on the assumption of the
knowledge of a suitable hyper-parameter that encodes a
priori knowledge about the underlying learning target.
While for some methods, especially for many of the ker-
nel methods with certain choices of kernels, asymptotic
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consistency guarantees can be given for general classes
of target functions, irrespective of the chosen hyper-
parameter, in practice, the choice of hyper-parameter
markedly impacts the predictive performance of the re-
gression method for finite data sets. In Lipschitz Interpo-
lation (LI) or Nonlinear Set Membership (NSM) meth-
ods [24,15,26], the hyper-parameter is a Lipschitz con-
stant of the predictor. If set too low, the class of learnable
target functions is too restrictive. If on the other hand
the parameter is set too high, the resulting predictor will
tend to overfit to noise in the data and might yield poor
generalisation performance. Therefore, a common solu-
tion is to resort to hyper-parameter optimisation [20,5].
While often working well in practice, these approaches
tend to be too computationally expensive to work with
large data and to support online learning and adaptive
control. Moreover, to the best of our knowledge, no the-
oretical insights into the learning-theoretic properties of
the inferences with the hyper-parameter optimisers in
place exist to date.
For Lipschitz Interpolation (LI), this paper addresses
this gap. To this end, we propose a closed-form expres-
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sion to estimate the Lipschitz constant from the data
that is a modification of Strongin’s estimator [23]. It has
the benefit to support computationally tractable online
updates but also offers robustness to (bounded) obser-
vational noise. We then propose to utilise the estimates
in the LI rule to make predictions of function values at
unobserved inputs. This combination of Lipschitz con-
stant estimator and LI yields a new nonparametric re-
gression method which we refer to as Lazily Adaptive
Constant Kinky Inference (LACKI). For our LACKI
method, we provide convergence and sample complex-
ity bounds on the worst-case prediction error showing
that our method can learn any continuous function both
in an online as well as in an offline supervised learn-
ing setting. In the second part of the paper, we ap-
ply LACKI to learning-based control. We provide the-
oretical results on the closed-loop dynamics of a plant
controlled by a learning-based controller that employs
LACKI to learn about uncertain dynamics online. To
illustrate some of the benefits and shortcomings of our
approach, we compare LACKI with a selection of estab-
lished regression methods on a model-reference adaptive
control task where it outperforms competing approaches
across a range of performance metrics and problem se-
tups.

In contrast to most works on learning-based methods,
we treat hyper-parameter estimation as part of the
nonparametric learning process, both practically and in
our theoretical analysis. In the absence of observational
errors or if a noise bound is known, our approach is
truly hyper-parameter free. If a bound on the noise is
unknown, hyperparameter tuning might become nec-
essary. In contrast to most other learning methods,
this process merely entails a one-dimensional optimi-
sation problem rather than a multi-dimensional one.
Furthermore, our theory still quantifies worst-case error
convergence bounds in the presence of a misspecified
hyper-parameter, both in batch and online learning
settings of continuous functions. Moreover, when our
approach is employed in a basic class of online learning-
based control settings, we prove convergence bounds of
the closed-loop dynamics. We are unaware of existing
work with similar theoretical guarantees based on so
few a priori assumptions.

2 Lipschitz Interpolation with adapted Lips-
chitz constant estimates

Setting. Let X be an input space endowed with
(pseudo-) metric d : X 2 → R≥0 and let Y be an out-
put (vector) space endowed with a translation-invariant
pseudo-metric dY : Y2 → R≥0. Let Lip(L) = {φ : X →
Y| dY(φ(x), φ(x′)) ≤ L d(x, x′),∀x, x′ ∈ X} denote the
set of Lipschitz continuous functions with Lipschitz con-
stant L. The best Lipschitz constant of a function f is
the smallest number L∗ such that f ∈ Lip(L∗). A func-
tion is Lipschitz continuous if it has a finite Lipschitz
constant.

Let f : X → Y be a target function we desire to learn
in a supervised fashion. Often, we consider incremental
learning, where over time (indexed by n ∈ N), an in-
creasing amount of data about f becomes available. To
this end, we assume that, at time step n, we have access
to a sample or data set Dn := {

(
si, f̃i

)
| i = 1, . . . , Nn}

containing Nn ∈ N (possibly corrupted) sample values

f̃i ∈ Y of target function f at sample input si ∈ X .
The sampled function values are allowed to have obser-
vational error given by an error function e : X → Y
which may model stochastic noise or systematic error.
That is, we assume dY(f̃i, f(si)) ≤ dY(0, e(si)). For
convenience, we may also write Dn = (Gn,Yn) where
Gn = {si|i = 1, ..., Nn} ⊂ X is the collection (or grid)

of sample inputs and Yn = {f̃i|i = 1, ..., Nn} ⊂ Y is the
pertaining sequence of observed function values. It is our
aim to learn target function f in the sense that we utilise
the available data Dn to infer predictions f̂n(x) of f(x)
at unobserved query inputs x /∈ Gn. In our context, the
evaluation of f̂n is what we refer to as (inductive) infer-

ence or prediction and f̂n is referred to as the predictor.

Learning rule. We will now consider a simplified ver-
sion of Kinky Inference (KI) [6] – a class of nonparamet-
ric learning rules that encompasses a host of other meth-
ods such as NSM methods [15] and standard Lipschitz
Interpolation [24,3,26]. As a special case, we will then
define our proposed method that incorporates an adap-
tive estimator of the Lipschitz constant of the target.

Definition 1 (Kinky inference (KI) rule) Given
access to a sample set Dn and an input space pseudo-
metric d̃(·, ·; Ξ(n)) : X 2 → R parameterised by Ξ(n), we

define the KI predictor by f̂n
(
·; Ξ(n),Dn

)
: X → Y to

perform inference over function values as per:

f̂n
(
x; Ξ(n),Dn

)
:=

1

2
un(x; Ξ(n)

)
+

1

2
ln(x; Ξ(n)

)
. (1)

Here, un
(
·; Ξ(n)

)
, ln
(
·; Ξ(n)

)
: X → Rm are defined

by un
(
x; Ξ(n)

)
:= mini=1,...,Nn f̃i + d̃(x, si; Ξ(n)) and

ln
(
x; Ξ(n)

)
:= maxi=1,...,Nn f̃i − d̃(x, si; Ξ(n)), respec-

tively.

The computational effort for making a prediction is
in O(NnM) where M is the effort for evaluating the
pseudo-metric. However, it is possible to apply (gen-
eralised) nearest-neighbour techniques to reduce this
effort to expected logarithmic growth in the number of
sample points [3,6].

A special case arises for the choice of d̃(x, y; Ξ(n)) =
L(n) ‖x− y‖ which is referred to as Lipschitz Interpo-
lation [3] or as Nonlinear Set Interpolation [15]. Here
the hyper-parameter Ξ(n) = L(n) is the supposed Lips-
chitz constant of the target. And, it is easy to show that
the predictor f̂n(·;L(n),Dn) is Lipschitz continuous with
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Lipschitz constant L(n) [6]. Typically, this constant is
assumed to be either known a priori or estimated from
the data, e.g. [23,15,5]. Unfortunately, little is under-
stood about the effects of the previously proposed pa-
rameter estimation techniques on the predictor’s perfor-
mance and about the impact of observational noise.

Similarly to the kernel learning literature, the generality
afforded by allowing the specification of pseudo-metrics
rather than metrics allows us to support automated rel-
evance determination or taking advantage of peridocity
in the data which we can seek to discover in a data-driven
fashion by hyperparameter tuning [5]. However, for ease
of exposition, we will henceforth make some simplifying
assumptions:

Assumption 2 (1) The output space is an m-
dimensional normed space,Y ⊆ Rm with dY

(
y, y′

)
=

‖y − y′‖∞ ,∀y, y′ ∈ Y.
(2) The input space is a d-dimensional normed space,
X ⊆ Rd with d(x, x′) = ‖x− x′‖∞ ,∀x, x′ ∈ X .

(3) Furthermore, observational errors are bounded by
some ē := supx∈X ‖e(x)‖∞.

Under these simplifying assumptions our Lazily Adapted
Kinky Inference (LACKI) learning rule can be defined
as follows:

For notational convenience, for two sets S, S′ ⊂ X of in-
puts we define U(S, S′) := {(s, s′) ∈ S×S′| ‖s− s′‖∞ >
0} and let Un := U(Gn, Gn) be the set of all pairs of
distinct sample inputs.

Definition 3 (LACKI rule) The Lazily Adapted Lips-
chitz Constant Kinky Inference (LACKI) rule computes a

KI predictor f̂n as per Defn. 1, but where d̃(x, x′;L(n)) =
L(n) d(x, x′) and where we set

L(n) := max
{

0, max
(s,s′)∈Un

∥∥∥f̃(s)− f̃(s′)
∥∥∥
∞
− λ

‖s− s′‖∞

}
. (2)

where ordinarily, we set λ := 2ē.

Remark 4 Note, L(n) is a modified Strongin estimate
[23] of a Lipschitz constant. Here λ compensates for the
influence of observational noise and thereby, is guaran-
teed to prevent L(n) from diverging as n grows, if λ ≥ 2ē
[4]. If set freely, λ is a design parameter acting as a
(hyper-) hyper-parameter of the nonparametric LACKI
prediction rule. Being a Lipschitz constant of the pre-
dictor, boundedness of L(n) can cause the predictor to
smooth out observational noise. On the other hand, if
we erroneously set λ set to a value below 2ē (e.g. be-
cause we underestimate the observational error level)
L(n) might become infinite in the limit of dense data (ef-
fectively learning the noise gradient). In this case, the in-
put distance terms L(n) d(x, si) become dominant in the
LACKI prediction rule (1) and LACKI effectively starts

predicting like 1-nearest neighbour regression (inheriting
its convergence properties). For an illustration, cf. Fig.
1 (lacki vs lacki-nonoise). Similar to the case of Gaus-
sian processes and other nonparametric machine learn-
ing approaches, in the absence of a good guess of ē, we can
attempt to tune hyper-parameter λ by cross-validation,
minimising empirical risk (in lieu to the approach con-
sidered in [5]). Note, since we make no distributional as-
sumptions about the observational noise (in particular it
could be systematic error), our convergence guarantees
we will derive below will generally have to depend on it
and, our worst-case prediction error bounds we will de-
rive below could become arbitrarily poor in the case of
unbounded observational errors. This is unavoidable in
worst-case analysis without restrictive assumptions on
the noise. In the case of i.i.d. stochastic noise that is un-
bounded, we recommend the reader to consider employing
the POKI-LC estimator of the Lipschitz hyperparameters
introduced in [5].

Next, consider an online learning situation where the
available data grows incrementally such that Gn+1 =
Gn ∪ {sn+1},∀n. We can define an incremental update
rule inductively as follows: L(n+ 1) :=

max
{
L(n), max

(s,s′)∈U(Gn,{sn+1})

∥∥∥f̃(s)− f̃(s′)
∥∥∥
∞
− λ

‖s− s′‖∞

}
(3)

for n ∈ N and where L(0) := 0.

The effort for computingL(n+1) in time step n+1 based
on the newly arrived sample point and the previous Lip-
schitz constant estimate L(n) is in O

(
M Nn

)
. It is easy

to see that the incremental update rule yields estimates
consistent with the batch estimate defined in Eq. 2.

3 Learning Theoretical Analysis

3.1 Properties

We will now establish several properties of the LACKI
rules including boundedness of the predictors, sample-
consistency and Lipschitz continuity. Most importantly
however, we will show that the LACKI is a universal ap-
proximator, in the sense that it can be be set to learn any
continuous function with arbitrarily low worst-case error
up to a bound that depends on the observational errors
in the data. First, we establish Lipschitz continuity and
sample-consistency. This allows us to prove that LACKI
can learn any Lipschitz function. Note, some universal
approximators, such as radial basis function networks
(RBFNs) with Gaussian kernels, are provably Lipschitz.
Therefore, learning any continuous function can be in-
terpreted as learning some Gaussian RBFN with an ob-
servational error level that absorbs the discrepancy be-
tween the RBFN and the ground truth. Since a finite
RBFN with smooth, bounded-derivative kernel is prov-
ably Lipschitz and since we can learn any Lipschitz func-
tion with LACKI up to the level of observational error,
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Fig. 1. The predictors of several regression methods for a target function f : x 7→ |cos(2πx)|+ x (dashed line). The Nn = 500
observations (light blue dots) in the sample were perturbed by uniform noise drawn i.i.d. from the interval [−1.5, 1.5]. The
predictions of the trained models are plotted in purple. From top-left to bottom-right: LACKI: Our LACKI method with
correctly set noise parameter, i.e. λ = 1.5. LACKI-nonoise: LACKI with falsely set noise parameter λ = 0. OLS: Ordinary
least squares regression. OLSKI: Kinky inference with L(n) inferred as gradient norm of fitted weights of OLS (following [15]).
The inability of OLS to model the high-variation nonlinearity extends to OLSKI via a Lipschitz constant estimate that is too
low. RBFNN: Radial-basis function neural network fitted with 20 neurons. FLCKI: Kinky inference with L(n) set to the fixed
Lipschitz constant of the fitted RBFNN (following [15]). Note, how the approach exacerbates the fitting issues of the RBFNN
due to the capacity increase. GPR: posterior mean of a Gaussian process regressor with tuned hyper-parameters using an RBF
kernel prior. The plot shows the best result out of 100 restarts of the tuning procedure. Bar plots: Absolute mean predictions
error on test set containing 2000 independently drawn samples.

we can learn the continuous ground-truth up to the ap-
proximation error of the RBFN.

Following this outline, we will now proceed to establish
the desired properties formally.

Lemma 5 (Boundedness) Irrespective of the bound-
edness of input space X and assuming finite sample size
Nn = |Dn| < ∞, the predictor f̂n : X → Y is bounded.
In particular, we have for all x ∈ X :∥∥∥ f̂n(x)

∥∥∥
∞
≤ maxi

∥∥∥f̃i∥∥∥
∞

+L(n)
2 maxi,j ‖si − sj‖∞ <∞.

Proof: Let D = maxi,j=1,...,Nn ‖si − sj‖ and for the kth

output dimension let Fk = maxi=1,...,Nn

∣∣∣f̃i,k∣∣∣. Utilising

the definition of the predictor and the triangle inequality
we see that, for any x ∈ X and any output dimension
k, there are some i, j ∈ {1, ..., Nn} such that we have:

f̂n,k(x) =
f̃j,k+f̃i,k

2 + L(n)
2

(
‖x− si‖∞ − ‖x− sj‖∞

)
≤

f̃j,k+f̃i,k
2 + L(n)

2 ‖sj − si‖∞ ≤ Fk + L(n)
2 D <∞. �

As promised, we establish that the predictors of the
LACKI inference rule are Lipschitz continuous:

Lemma 6 (Lipschitz continuity) The prediction

functions f̂n (n ∈ N) are Lipschitz continuous with Lip-

schitz constant L(n). That is, ∀n ∈ N : f̂n ∈ Lip(L(n)).

Proof: It is easy to show that the one-dimensional map-
pings of the form x 7→ ` ‖x− x′‖ are `− Lipschitz con-
tinuous for any choices of ` and inputs x′. Furthermore,

taking point-wise max, min as well as averages of Lips-
chitz continuous functions is known to not change their
Lipschitz properties (e.g. cf. [6]). Therefore, the output-

component predictors f̂n,j (j = 1, ...,m) are L(n)- Lips-
chitz. �

We now establish how well our LACKI rule can inter-
polate the training data as function of the noise bound
and regularisation parameter λ:

Lemma 7 (Sample-consistency) The LACKI rule is
sample-consistent (up to λ

2 ). That is,

∀q ∈ {1, . . . , Nn} : f̂n(sq) ∈ Bλ
2

(
f̃q
)

where Bλ
2

(
f̃q
)

= {x ∈ Y|
∥∥∥x− f̃q∥∥∥

∞
≤ λ

2 } denotes the

λ
2 -ball around the observation f̃q;

and,
∥∥∥f(sq)− f̂n(sq)

∥∥∥
∞
≤ λ

2 + ‖e(sq)‖∞ ≤ λ
2 + ē.

Proof: For ease of notation, we will confine our
proof to the case of one-dimensional outputs (d = 1).
The multi-dimensional case follows trivially from
the one-dimensional result by applying it to each
output component function. Let n ∈ N be fixed
and, for ease of notation, write L := L(n). Let

j, k ∈ {1, . . . , Nn} with j ∈ argminif̃i + L ‖si − sq‖∞,

k ∈ argmaxif̃i − L ‖si − sq‖∞. By definition of f̂n we
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have:

f̂n(sq) =
1

2

(
f̃j + L ‖sj − sq‖∞︸ ︷︷ ︸

:=B

)
+

1

2

(
f̃k − L ‖sk − sq‖∞︸ ︷︷ ︸

=:A

)
.

(i) Firstly, we show A ∈ [f̃q, f̃q + λ]: If k = q, this holds

trivially true since then A = f̃q. So, assume k 6= q. We

have f̃k ≥ f̃k − L ‖sk − sq‖∞ ≥ f̃q − L ‖sq − sq‖∞ = f̃q
where the second inequality holds due to
k ∈ argmaxif̃i − L ‖si − sq‖∞. That is,

A = f̃k − L ‖sk − sq‖∞ ≥ f̃q. (4)

On the other hand, since L ≥ max(s,s′)∈Un
|f̃(s)−f̃(s′)|−λ
‖s−s′‖∞

we have in particular: L ≥ |f̃k−f̃q|−λ‖sk−sq‖∞
.

Thus, L ‖sk − sq‖∞ + λ ≥
∣∣∣f̃k − f̃q∣∣∣ = f̃k − f̃q.

Hence, f̃q +λ ≥ f̃k −L ‖sk − sq‖∞ = A. In conjunction

with (4), we have shown: A ∈ [f̃q, f̃q + λ].

(ii) The proof of B ∈ [f̃q − λ, f̃q] is completely analogous

to that of (i) and hence, is omitted.

(iii) Together, the statements in (i) and (ii) en-

tail f̂n(sq) = 1
2A + 1

2B ∈ [f̃q − λ
2 , f̃q + λ

2 ]. Hence,∥∥∥ f̂n(sq)− f̃(sq)
∥∥∥
∞
≤ λ

2 . Moreover, for any sample in-

put sq, we have: f̂n(sq) = f(sq) +φq +ψq with ‖ψq‖∞ ≤
λ
2 , ‖φq‖∞ ≤ ‖e(sq)‖∞ ≤ ē. Hence,

∥∥∥ f̂n(sq)− f(sq)
∥∥∥
∞

=

‖φq + ψq‖∞ ≤
λ
2 + ‖e(sq)‖∞ ≤

λ
2 + ē. �

3.1.1 Prediction error bounds and consistency

To asses our learning rule, we might be interested the dis-
crepancy dF ( f̂n, f) between the predictor f̂n and the tar-
get function f relative to some metric dF between func-
tions in the space F of continuous functions. In statis-
tics, a typical choice is the mean-square error metric as-
sessed with respect to some distribution over inputs, the
function space and the noise. However, in many safety-
critical applications, often arising in control, worst-case
error considerations are of greater value, leading to a
worst-case metric dF (f, g) = supx∈I ‖f(x)− g(x)‖∞ for
some subset I ⊆ X of queries one finds interesting to
take into consideration.

Therefore, we will now establish worst-case con-
sistency guarantees of our LACKI inference rules.
That is, we shall study the worst-case error sequence

E∞ :=
(
E∞n
)
n∈N

, E∞n := supx∈I

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞

for

data Dn that becomes increasingly dense over time rela-
tive to a set of query inputs I ⊆ X . To clarify the latter

concept, consider the sequence of grids
(
Gn

)
n∈N

. We say

this sequence converges to a set that becomes dense rel-
ative to a set I in the limit of large n if we can use points
in the sequence to approximate any points in I with
increasing accuracy. That is, if ∀ε > 0, x ∈ I∃n0∀n ≥
n0∃g ∈ Gn : ‖x− g‖∞ < ε. If the rate at which this
happens is independent of x then we say that the grid
sequence becomes dense uniformly. This is the case iff
∀ε > 0∃n0∀n ≥ n0, x ∈ I∃g ∈ Gn : ‖x− g‖∞ < ε.
To make the rates explicit in our notation, we list the
following general definitions:

Definition 8 (Becoming dense, rates,
r−→, r;,

r
�)

Let X be a space endowed with a norm ‖·‖. Let r : N→ R
be a “rate” function. that vanishes, that is, with
limn→∞ r(n) = 0 (i.e. r ∈ o(1)).

• The sequence s =
(
sn

)
n∈N

of points in X is said to

converge to a point x ∈ X with rate r (denoted by s
r−→

x) iff ∀n ∈ N : ‖x− sn‖ ≤ r(n) and r(n)
n→∞−→ 0.

· The sequence s is said to converge to a set S ⊂ X
with rate r : N → R (denoted by s

r−→ S) iff ∀n ∈
N : infx∈S ‖x− sn‖∞ ≤ r(n) and r(n)

n→∞−→ 0.

• A sequence of sets S =
(
Sn

)
n∈N

is said to become

dense relative to x ∈ X with rate r (denoted by S
r
; x)

iff S contains a point sequence that converges to x with
that rate. That is, iff

∃s =
(
sn

)
n∈N

: s
r−→ x ∧ ∀n : sn ∈ Sn.

· Similarly, the sequence of sets S is said to become
dense relative to a set of points S ⊂ X (denoted by
S ; S) iff it becomes dense relative to all points of

S, i.e. iff ∀x ∈ S : S
rx
; x for some vanishing rate

rx : N→ R.
· The sequence is becoming dense relative to S uni-

formly (denoted by S � S) iff there is a single van-
ishing rate for all x ∈ S. That is, if ∃r : N → R :
limn→∞ r(n) = 0 ∧ supx∈S inf sn ∈ Sn ‖sn − x‖ ≤
r(n),∀n. Function r is referred to as the convergence

rate and we write S
r
� S to denote that S becomes

dense relative to S with uniform rate r.

Theorem 9 (Lipschitz learnability) Assume obser-
vational errors are bounded by ē <∞ and that the target
f : X → Y is Lipschitz continuous, that is
∃L∗ ∈ R : f ∈ Lip(L∗). Then we have:

(A) If the grid becomes dense (pointwise), the point-wise
worst-case error vanishes up to λ

2 +ē: If ∀x ∈ I ⊂ X∃rx ∈
o(1) : L(·)rx(·) ∈ o(1) ∧

(
Gn

)
n∈N

rx
; x then we have:

∀x ∈ I :
(∥∥∥ f̂n(x)− f(x)

∥∥∥
∞

)
n∈N

%x−→ [0,
λ

2
+ ē]

where for the error convergence rate %x we have
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%x(n) ≤ (L(n) + L∗)rx(n),∀n ∈ N.

(B) If the grid becomes dense in I ⊂ X uniformly, then
the worst-case prediction error vanishes uniformly (up to
λ
2 + ē). That is,

if ∃r ∈ o(1) : L(·)rx(·) ∈ o(1) ∧ (Gn)
r
� I then we have:

E∞ %−→ [0,
λ

2
+ ē]

where for the uniform error convergence rate % we have
%(n) ≤ (L(n) + L∗)r(n),∀n ∈ N.

Proof: We have established that the predictors f̂n(·) of
the LACKI rule are L(n)- Lipschitz (Lemma 6) and
sample-consistent up to level λ2 (Lemma 7). For any in-
put x ∈ X let ξxn denote a nearest neighbour of x in grid
Gn. That is, ξxn ∈ arg infs∈Gn ‖x− s‖∞. Since Gn is as-
sumed to become dense in the input domain X , for any
input x there is a rate function rx : N → R≥0 such that

rx(n)
n→∞−→ 0 and ‖x− ξxn‖∞ ≤ rx(n),∀n ∈ N. In the

case of uniform convergence a rate function can be cho-
sen independently of x and will be denoted by r rather
than rx.

(A) For all n ∈ N and x ∈ X we have:∥∥∥ f̂n(x)− f(ξxn)
∥∥∥
∞

(i)

≤
∥∥∥ f̂n(x), f̂n(ξxn)

∥∥∥
∞

+
∥∥∥ f̂n(ξxn), f(ξxn)

∥∥∥
∞

(5)

(ii)

≤
∥∥∥ f̂n(x)− f̂n(ξxn)

∥∥∥
∞

+
λ

2
+ ‖e(ξxn)‖∞

(6)

=
∥∥∥ f̂n(x)− f̂n(ξxn)

∥∥∥
∞

+
λ

2
+ ē (7)

(iii)

≤ L(n) ‖x− ξxn‖∞ +
λ

2
+ ē (8)

Here, (i) follows from the triangle inequality, (ii) lever-
ages Lemma 7 and (iii) follows by Lipschitz continuity
of the predictors (Lemma 6). Thus, for x ∈ X , n ∈ N:

0 ≤
∥∥∥ f̂n(x)− f(x)

∥∥∥
∞

≤
∥∥∥ f̂n(x)− f(ξxn)

∥∥∥
∞

+ ‖f(ξxn)− f(x)‖∞
(†)
≤ (L(n) + L∗) ‖x− ξxn‖∞ +

λ

2
+ ē

where (†) follows from (8) and the presupposed Lipschitz
continuity of f .
Since by assumption, ‖x− ξxn‖∞ ≤ rx(n),∀n, this im-
plies:∥∥∥ f̂n(x)− f(x)

∥∥∥
∞
∈
[
0, (L(n) + L∗)rx(n) +

λ

2
+ ē
]
,∀n.

By assumption, rx(n), L(n)rx(n)
n→∞→ 0,∀x and hence,∥∥∥ f̂n(x)− f(x)

∥∥∥
∞

converges to [0, λ2 + ē],∀x with rate

%x ≤ (L(n) + L∗)rx(n).

(B) Proceeding analogously as before, but utilising uni-
form convergence with rate r, we obtain:∥∥∥ f̂n(x)− f(x)

∥∥∥
∞
∈
[
0, (L(n) +L∗)r(n) +

λ

2
+ ē
]
,∀x∀n.

By assumption, L(n)r(n) ∈ o(1) and thus,
limn→∞ L(n)r(n) = 0. Hence,

E∞ =
(

sup
x∈I

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞

)
n∈N

%−→ [0,
λ

2
+ ē]

with rate % such that %(n) ≤ (L(n) + L∗)r(n),∀n. �

Note a necessary condition was that the product of L(n)
and the rate was in o(1), that is, vanishing in the limit
of n → ∞. A sufficient condition for this to hold is if
L(n) is guaranteed to be bounded (assuming the rate
is vanishing). It is easy to show that ∃L̄ < ∞∀n ∈ N :
L(n) ≤ L̄, as long as parameter λ ≥ 2ē + q for any
q ≥ 0 [4]. This yields the following result:

Corollary 10 With definitions and assumption as be-
fore, if the parameter λ is chosen to be 2ē + q for some
arbitrary q ≥ 0 then convergence to the ground truth is
guaranteed (up to an twice the observational error and a
term dependent on q). In particular, if the data becomes
dense uniformly in I ⊆ X with a rate of r(n) then, for
some L̄ ∈ [0, L∗] and any n ∈ N, we have

sup
x∈I

∥∥∥ f̂n(x)− f(x)
∥∥∥ ≤ (L̄+L∗)r(n)+

q

2
+2ē

n→∞−→ q

2
+2ē.

(9)

Of course in the absence of observational errors, one can
choose λ = 0. In this case, the corollary implies that
LACKI will learn the ground-truth arbitrarily well in
the limit of infinitely dense data.

Having established that our LACKI rule can learn any
Lipschitz function with any Lipschitz constant, we will
now attend to extend the results to non-Lipschitz func-
tions. In preparation of the necessary derivations we
will first rehearse universality and Lipschitz properties
of radial basis function networks. Park and Sandberg
derived universal approximation guarantees for radial-
basis function networks [19]. In particular, on page 252
in their article the authors make an assertion that trans-
lates to our notation as follows:

Lemma 11 (Expressiveness of RBFNs) Assume
X ⊆ Rd is compact. Given parameter vector θ :=

6



(w1, . . . , wm, σ1, ..., σm, c1, . . . , cm) and kernel func-
tion K : X → Y let β(·; θ) =

∑m
i=1 wiK( ·−ciσi

) de-

note a radial basis function network (RBFN). As-
sume K : Rd → R is continuous and has non-
vanishing integral, i.e.

∫
Rd K(x) dx 6= 0. Then, the set

SK := {β(·; θ)|m ∈ N, θ ∈ R3m} of all RBFNs is uni-
formly dense in the set C(X ) of continuous functions on
compact domain X . That is, ∀f ∈ C(X )∀ε > 0∃m, θ ∈
R3m : supx∈X |f(·)− β(·; θ)| < ε.

Remark 12 We note that, for any finite-dimensional
parameter θ, any RBFN β(·; θ) is Lipschitz continuous as
long as the kernel K is. This can be seen by applying Lip-
schitz arithmetic (see appendix of [4]) which allows us to
conclude that the Lipschitz constant of RBFN β(·; θ) =∑m
i=1 wiK( ·−ciσi

) is given by Lβ =
∑m
i=1

∣∣∣wiσi ∣∣∣LK where

LK ∈ R≥0 denotes a Lipschitz constant of K. By the
same Lemma it is easy to see that choosing the Gaussian
kernel for K satisfies both the Lipschitz requirement as
well as the integrability requirements of Lemma 11. As
a by-product this means that on a compact support, any
continuous function can be approximated by some Lips-
chitz function with arbitrarily small, positive worst-case
error ε > 0. Note, it may well be the case that the Lips-
chitz constant of the approximator grows with decreasing
approximation error bound ε. We consider this to be in-
evitable when the approximated function is not Lipschitz.

Harnessed with these preparatory statements we can
move on to show that the LACKI rule can be set up to
learn any continuous function up to arbitrary low error.

Theorem 13 (Universality and consistency)

Assume we are given a sequence
(
Dn
)
n∈N

of samples

with observational errors bounded by ē ∈ R≥0. We set
the parameters of the LACKI rule to and λ := 2ē+ q for
some arbitrary q > 0. In this theorem, we assume that
the set of interest I ⊆ X is compact. Then, we have:

The LACKI rule as per Def. 3 is a universal approxima-
tor in the following sense: If the sequence of input grids(
Gn

)
n∈N

converges to I (uniformly) then the sequence

of predictors
(
f̂n

)
n∈N

computed by the LACKI rule (uni-

formly) converges to any continuous target f : X → R
up to error 2ē + 3q

2 . That is, the following holds true:

• (I) Let x ∈ I. If ∃rx ∈ o(1) : (Gn)
rx
; x then

∃C ∈ R :
(∥∥∥ f̂n(x)− f(x)

∥∥∥
∞

)
Crx−→ [2ē +

3q

2
].

• (II) If ∃r ∈ o(1) : (Gn)
r
� I then:

∃C ∈ R : E∞ Cr−→ [2ē +
3q

2
].

Proof: We choose any parameter λ = 2ē+ q with q > 0.
As observed in Rem. 12, Lemma 11 allows us to infer that
there exists a Lipschitz function h that approximates
the target with worst-case error of at most q

2 . That is,
supx∈X ‖h(x)− f(x)‖∞ ≤

q
2 .

Consequently, there exists a function φ′ : X → Y with
supx ‖φ′(x)‖∞ ≤

q
2 accounting for the discrepancy be-

tween the Lipschitz function h and the target f :

f = h+ φ′.

Furthermore, we define φ to be the bounded ob-
servational noise. Hence, we have f̃ = f + φ and
supx ‖φ(x)‖∞ ≤ ē. Combining both functions into

ψ := φ+φ′, we can write f̃ = h+ψ with supx ‖ψ(x)‖∞ ≤
q
2 + ē =: ν̄.

This can be interpreted as follows: Instead of viewing
the given sample as being generated by target f (with
some observational error φ) we can view the sample as
being generated by the Lipschitz function h corrupted
by the extended “observational noise” ψ accounting for
both the original observational error and the discrep-
ancy between the target and Lipschitz function h. This
gives us a reduction to the case of learning Lipschitz
functions with observational error bounded by ν̄. Firstly,
we note that λ = 2ē + q = 2ν̄ (which entails that

the sequence
(
L(n)

)
n∈N

is bounded by some constant

L̄ = supx 6=x′
‖h(x)−h(x′)‖∞−q

‖x−x′‖∞
≤ Lh). Linking this with

Theorem 9, we obtain all the desired statements with
regard to learning h. These can easily be converted into
statements about learning f by adding the worst-case
difference q

2 between f and h to all error bounds. For
example, leveraging supx ‖φ′(x)‖∞ ≤

q
2 and λ = 2ē + q

and going through analogous steps as in the previous
theorem we obtain:∥∥∥ f̂n(x)− f(x)

∥∥∥
∞

=
∥∥∥ f̂n(x)− h+ φ′(x)

∥∥∥
∞

≤
∥∥∥( f̂n(x)− h(x)

∥∥∥
∞

+ ‖φ′(x)‖∞

≤ (L̄+ Lh) ‖x− ξxn‖∞ +
λ

2
+ ν̄ +

q

2
(∗)
≤ (L̄+ Lh) ‖x− ξxn‖∞ + 2ē +

3q

2

where ξxn := arg infs∈Gn ‖x− s‖∞ denotes a nearest
neighbour of x in the input sample Gn. So, convergence
(pointwise or uniform) of the grid to the input space
with a rate of at most r(n) implies that the right-hand
side of Ineq. (*) and hence, the prediction error, con-
verges (pointwise or uniformly) to the interval [0, 2ē+ 3q

2 ]

with a rate of at most (L̄+ Lh)r(n) as n→∞.

�
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3.1.2 Sample complexity bounds and worst-case consis-
tency for uniformly distributed inputs

Above we have given guarantees relative to the deter-
ministic convergence rates of the input sample to the
domain. In this subsection, we shall study probabilistic
convergence rates as a function of the sample size in sit-
uations where the sample is obtained by drawing inputs
independently from a uniform probability distribution
on I = X := [0, 1]d.

We can show that the worst-case prediction error van-
ishes (up to the usual worst-case bounds in the presence
of observational errors) in probability:

Theorem 14 Let X = [0, 1]d be the domain of tar-
get function f ∈ Lip(L∗). Assume the input data
Gn = {s1, . . . , sn} contains n data sample inputs
which are drawn independently at random from a uni-
form distribution over X . Furthermore, assume there
are no observational errors, i.e. ē = 0. The worst-case
error of our LACKI predictor vanishes in probability:
∀ε > 0∀δ ∈ (0, 1)∃N ∈ N∀n ≥ N :

Pr[sup
x∈X

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
> ε] ≤ δ. (10)

In particular, for all δ ∈ (0, 1), (10) holds for :

(1) any ε ≥ 2L∗, provided that n ≥ 1;
(2) any ε < 2L∗, provided that

n ≥ N :=
⌈

log(δ 2−kd)
log(1−2−kd)

⌉
with k =

⌈
log(ε−12L∗)

log 2

⌉
.

Proof: Let rn := supx∈X mins∈Gn ‖x− s‖∞ ≤ 1 and

let P εn := Pr[supx∈X

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞

> ε] which we

intend to bound from above. From Cor. 10, remember that

supx

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
≤ 2L∗rn. Hence, for ε ≥ 2L∗,

P εn ≤ 0,∀n ∈ N.

So, it suffices to focus on the case where ε < 2L∗. Now,

supx

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
≤ ε is implied by

supx

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
≤ 2L∗rn, provided that rn ≤ ε

2L∗ .

So, we define an event En that ensures rn satisfies the
latter inequality with a probability that grows as n in-
creases. To this end, we introduce a partition of the do-
main into m hyper-rectangles H1, ...,Hm of equal size,
each having edge length lk = 1

2k
where k is a natural

number such that lk ≤ ε
2L∗ . As a valid choice, we set

k :=
⌈

log(ε−12L∗)
log 2

⌉
. Note, Pr[si ∈ Hj ] = ldk = 1

2dk
. By

construction, in the event that each hyper-rectangle ends
up containing at least one sample input of Gn, we have
rn ≤ ε

2L∗ . We define the complement of this event as

Ēn := {(s1, ..., sn) ∈ Xn|∃j ∈ {1, ...,m}∀i ∈ {1, ..., n} :
si /∈ Hj}.

Let W := {s = (s1, ..., sn)| supx

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
> ε}

be the event that the sample inputs are located in such
a fashion that they give rise to a worst-case error larger
than ε. We have: s /∈ Ē implies that r(n) ≤ ε

2L∗ which in

turn implies supx

∥∥∥ f̂n(x)− f(x)
∥∥∥
∞
≤ ε, i.e. that s /∈W .

Hence, W ⊆ Ēn and thus, P εn = Pr[W ] ≤ Pr[Ēn]. So,
to bound P εn from above it suffices to bound Pr[Ēn] from
above which we will do next: We can employ the union
bound, utilise that m = 2kd and the fact that the si
are drawn i.i.d. from a uniform to see that Pr[Ēn] ≤∑m
j=1

∏n
i=1 Pr[si /∈ Hj ] = 2kd(1 − 1

2dk
)n

n→∞−→ 0 which
shows the main statement of the theorem. To find an
n sufficently large to ensure Pr[W ] ≤ δ we consider
the inequality 2kd(1 − 1

2dk
)n ≤ δ. Taking the log on

both sides and rearranging yields the sufficient condition:

n ≥ log(δ 2−kd)
log(1−2−kd)

. �

3.2 Online learning guarantees

Above, we considered the worst-case asymptotics for the
case where the data becomes dense in the domain with
high probability. Here the error was evaluated on the
entire input domain under an i.i.d. uniform input distri-
bution. In online learning and control however, impos-
ing such distributional assumptions is typically unreal-
istic. Therefore, we will now consider an online learning
setting where we incrementally get to observe samples

along the trajectory of inputs
(
xn

)
n∈N

and are inter-

ested in the long-term one-step-lookahead prediction er-
rors on this trajectory irrespective of distributional as-
sumptions. That is, we are interested in the evolution of
worst-case prediction errors, where the predictor f̂n(·) is

based on Dn = Dn−1 ∪ {
(
xn−1, f̃(xn−1)

)
},∀n > 1.

We will show that this error trajectory vanishes (up to
observational errors), provided that the input sequence(
xn

)
n∈N

is bounded. In preparation of these considera-

tions, we will establish the following facts:

Lemma 15 Assume we are given a trajectory
(
xn

)
n∈N

of inputs with xn ∈ X where input space X can be en-
dowed with a shift-invariant measure. Furthermore, as-
sume the sequence is bounded, i.e. ‖xn‖∞ ≤ β for some
β ∈ R+ and all n ∈ N. Finally assume the inputs of the
available data coincide with the complete history of past
inputs, i.e. Gn = {xi|i ∈ N, i < n}. Then we have:

dist(Gn, xn) = min{‖g − xn‖∞ | g ∈ Gn}
n→∞−→ 0.

Proof: The intuition behind the following proof is that
if the distances were not to converge, there was an in-
finite number of disjoint balls around the input points
that summed up to infinite volume. This however, would
be a contradiction to the presupposed boundedness of the

8



sequence. We formalise this intuition as follows: We
can rephrase the desired convergence statement as ∀ε >
0∃n ∈ N∀m ≥ n : dist(xm, Gm) ≤ ε.

For contradiction, assume that ∃ε > 0∀n ∈ N∃m(n) ≥
n : dist(xm(n), Gm(n)) > ε. Hold such an ε > 0 fixed and
choose any n ∈ N. By definition of Gm(n) = {xi|i <
m(n)} we have:

∀i < m(n) :
∥∥xm(n) − xi

∥∥
∞ > ε. (11)

LetCn :=
⋃
i<nB ε

2

(
xi
)

be the union of all ε2 -balls around

each point in Gn and define Ī =
⋃
n∈N Cn. By defini-

tion, each xn is contained in Ī. Since sequence (xn)n∈N is
bounded, Ī has a finite volume relative to some positive,
shift-invariant measure µ. I.e. µ(Ī) < ∞ (e.g. choose
the Lebesgue measure for µ). Furthermore, µ(Cn) ≤∑
i<n µ(Bi) ≤ µ(Ī) < ∞ where Bi := B ε

2

(
xi
)
. Owing

to the assumed shift-invariance, we can assign the same
measure M each ball, i.e. M := µ(B1) = µ(Bn)∀n ∈ N.

Thus, µ(Cn) ≤ nM . Define q :=
⌈
µ(Ī)
M

⌉
∈ N. This is an

upper bound on the number of disjoint balls of measure
M that can be contained in Ī. Intuitively, since this num-
ber is finite, there cannot be an infinite number of non-
intersecting balls around the elements of the sequence
(xn)n∈N. More formally our argument proceeds as fol-
lows: Choose n > q + 1. Statement (11) yields:

∀i ∈ {1, ..., n}∃p(i) ≥ i∀j ≤ p(i) :
∥∥xp(i) − xj∥∥∞ > ε.

(12)
Define a permutation π such that π(p(1)) ≤ . . . ≤
π(p(n)). With Statement (12) it follows that
dX (xπ(p(i)), xπ(p(j))) > ε , ∀i, j = 1, ..., n, i < j. Thus,
we conclude the disjointness conditions Bπ(p(i)) ∩
Bπ(p(j)) = ∅,∀i, j = 1, ..., n, i 6= j. Hence, µ(Ī) ≥
µ(Cπ(p(n))) ≥ µ(Cπ(p(1))) +

∑n
i=1 µ(Bπ(p(i)))

= µ(Cπ(p(1))) + nM > µ(Cπ(p(1))) + (q + 1)M ≥
µ(Cπ(p(1))) + µ(Ī), where the last inequality follows

from the fact that Mq = M
⌈
µ(Ī)
M

⌉
≥ µ(Ī). Since

µ(Cπ(p(1))) ≥ 0, we have concluded the false statement

µ(Ī) > µ(Ī). �

Theorem 16 Assume that, for some q ≥ 0, we chose
λ = 2ē + q in our LACKI prediction rule. And, let f be
Lipschitz continuous up to some error level Ēh. That is,
f = φ+ ψ with φ ∈ Lip(L∗) and a function ψ such that
supx ‖ψ(x)‖∞ ≤ Ēh ∈ R.

Assume we are given a trajectory
(
xn

)
n∈N

of inputs that

is bounded, i.e. where ‖xn‖∞ ≤ β for some β ∈ R+

and all n ∈ N. Furthermore, assume Dn+1 = Dn ∪
{
(
xn, f̃(xn)

)
} and thus, Gn = {xi|i ∈ N, i < n}. Then

the prediction error on the sequence vanishes up to the

level of sample-consistency and Lipschitz continuity in
the following sense:∥∥∥ f̂n(xn)− f(xn)

∥∥∥
∞

n→∞−→ [0,
q

2
+ 2ē + 2Ēh].

In particular, in case the observations are error-free (f̃ =
f) and assuming the target is Lipschitz continuous then,
when choosing λ = 0, the prediction error is guaranteed
to vanish. That is,∥∥∥ f̂n(xn)− f(xn)

∥∥∥
∞

n→∞−→ 0.

Proof: Let ξn ∈ argming∈Gn ‖xn − g‖∞ denote the
nearest neighbour of xn in Gn = {x1, ..., xn−1}.
Since sequence (xn) is bounded, Lemma 15 is appli-
cable and hence: (i) limn→∞ ‖xn − ξn‖∞ = 0. In [4],

Lemma 2.7, it was shown that
∥∥∥f(sq)− f̂n(sq)

∥∥∥
∞
≤

λ
2 + ‖e(sq)‖∞ ≤

λ
2 + ē. Therefore, if we set λ = 2ē + q

then
∥∥∥ f̂n(ξn)− f(ξn)

∥∥∥
∞
≤ 2ē + q

2 . Hence, appealing to

the triangle inequality, we see that

(ii)
∥∥∥ f̂n(xn)− f(ξn)

∥∥∥
∞
≤
∥∥∥ f̂n(xn)− f̂n(ξn)

∥∥∥
∞

+2ē+ q
2 .

Moreover we note that the predictors f̂n have Lipschitz
constants L(n) and that the L(n) are bounded from above

by some L̄ ∈ R. Thus, (iii) ∃L̄ ∈ R∀n ∈ N : f̂n ∈ Lip(L̄).

In conclusion,∥∥∥ f̂n(xn)− f(xn)
∥∥∥
∞
≤
∥∥∥ f̂n(xn)− f(ξn)

∥∥∥
∞

+ ‖f(ξn)− f(xn)‖∞
(ii)

≤
∥∥∥ f̂n(xn)− f̂n(ξn)

∥∥∥
∞

+2ē + q
2

+ ‖f(ξn)− f(xn)‖∞
≤
∥∥∥ f̂n(xn)− f̂n(ξn)

∥∥∥
∞

+ 2ē + q
2

+ ‖φ(ξn)− φ(xn)‖∞ + 2Ēh

(iii)

≤ (L̄+L∗) ‖xn − ξn‖∞+ 2ē+ q
2

+ 2Ēh
n→∞−→ 2ē+ q

2
+ 2Ēh.

�

4 Online Learning-Based Control

In (discrete-time) control, many classical control tasks
desire to turn certain aspects of the dynamics of a plant
into a contraction. For example, consider tracking con-
trol where one wishes the state xn ∈ X at time step
n ∈ N to follow a reference trajectory ξn. Defining the
error as en = ξn − xn one might wish to define a con-
trol law that ideally would cause the error to satisfy
en+1 = φ(en) (n ∈ N) for some contraction φ with a
desirable fixed point e∗ (normally e∗ = 0), ensuring ex-
ponentially fast convergence of the error to (approxi-
mately) e∗. Unfortunately, most of these control designs,
such as linearising controllers or model-predictive con-
trollers, require an accurate model of the original dy-
namics. In absence of good model knowledge, we might

9



wish learn the dynamics model online with a learning ap-
proach. With the control inputs based on predictions of
the learned model, the prediction errors enter the closed-
loop dynamics as a sequence of disturbances (dn)n∈N.
Fortunately, we can translate our convergence results on
the prediction errors derived above to guarantees on the
closed-loop error dynamics resulting from employing the
learning-based controller.

Theorem 17 With notation as before, let r = q
2 + 2ē +

2Ēh and ‖·‖ be some norm on X . Assume the refer-
ence ξn is bounded and that a plant’s state xn at time
n ∈ N satisfies the recurrence relation xn+1 = f(xn, un);
here un denotes the control input applied at time n and
f is an a priori uncertain, continuous function we de-
sire to learn online utilising LACKI. We assume on-
line learning is performed and that after each time step
n, LACKI has access to (possibly erroneous with er-
ror up to ē) samples of the function values f(xi, ui) for
all past time steps i < n. That is we can compute a
LACKI predictor f̂n(xn, un;Dn) on the basis of a data

set Dn = {
(
(xi, ui), f̃i

)
|i < n}. Assume that a learning-

based control law un = u
(
xn; f̂n(·;Dn)

)
is defined such

that, utilising f̂n, we obtain the closed-loop error dynam-
ics

en = φ(en) + dn

where dn = f(xn, un)− f̂n(xn, un) is the one-step predic-
tion error and φ is a contraction with fixed-point e∗ ∈ X
and Lipschitz constant λφ ∈ [0, 1). Then we have:

‖en − e∗‖
n→∞→

[
0,

r

1− λφ

]
.

Proof: Define the nominal reference error ēn inductively
by ē0 = e0, ēn+1 = φ(ēn), (n ≥ 0). Note, we can define

σ :=

∞∑
i=0

λiφ = lim
n→∞

n−1∑
i=0

λn−1−i
φ =

1

1− λφ
.

where we have applied a change of variables and the ge-
ometric series formula in the last step.

The assumptions of our theorem assure that the assump-

tions of Theorem 16 are met. Hence, ‖dn‖
n→∞→ [0, r].

Let ε > 0. We desire to show:

∃M∀m ≥M : ‖em − e∗‖ ≤ ε+ σr.

To this end, firstly, we note that due to convergence of
xn to the fixed point x∗, we can find n0 such that

∀n ≥ n0 : ‖ēn − e∗‖ <
ε

3
. (13)

Secondly, we note that, by induction, it is easy to show
that for all k, n ∈ N, we have

‖ek+n − ēk+n‖ ≤ λnφ ‖ēk − yk‖+

n−1∑
i=0

λn−1−i
φ ‖dk+i‖

(14)

≤ λnφ ‖ēk − ek‖+ N̄k,nσ (15)

where N̄k,n := max{‖dk‖ , . . . , ‖dk+n−1‖}. Due to the
convergence property of the disturbances, we know that
there exists k0 such that

∀k ≥ k0, n ∈ N : N̄k,n ≤
ε

3σ
+ r. (16)

Now choose anym0 := max{k0, n0}. We notice that there
exists q0 ∈ N such that

λnφ ‖ēm0
− em0

‖ < ε

3
,∀n ≥ q0. (17)

Now, let m > M := m0 + q0. Then we can find n ≥ q0

such thatm = m0 +n. And, for anym = m0 +n, n ≥ q0,
we have :

‖em − e∗‖ ≤ ‖e∗ − ēm‖+ ‖em − ēm‖
(13)

≤ ε

3
+ ‖em − ēm‖

(15)

≤ ε

3
+ λnφ ‖ēm0

− em0
‖+ N̄m0,nσ

(16)

≤ ε

3
+ λnφ ‖ēm0

− em0
‖+ (

ε

3σ
+ r)σ

(17)

≤ ε

3
+
ε

3
+ (

ε

3σ
+ r)σ = ε+ σr.

�

Note, λφ will have to be quantified on a case-by case
basis. Below, we will do so, considering the special case
of tracking in model-reference adaptive control where
feedback-linearisation will be employed to yield closed-
loop error dynamics en+1 = φ(en) + dn with φ(e) =
Me for some Schur matrix M . To see this is a special
case, note φ is an eventually contracting map with fixed
point 0 (cf. [12], Corollary 3.3.5) and hence, a contraction

relative to some metric d̃ uniformly equivalent to the
metric d : (x, x′) 7→ ‖x− x′‖ [12]. Finally, we note that
convergence to an interval relative to a metric entails
convergence relative to all equivalent metrics (including
the canonical metric derived from the maximums norm)
and hence, Theorem 17 is applicable to give a bound
on the Euclidean norm of the long-term tracking error.
Next, we will consider this special case in greater detail.
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4.1 Application to Online Learning-Based Model Ref-
erence Adaptive Control

While there are many different controllers where LACKI
might be applicable, we consider model-reference adap-
tive control (MRAC) [1] of a feedback-linearisable
control-affine system with unknown drift vector field
as considered in [9]. This setting is a special case of
the general online learning-based control framework
considered above.

We begin this section by rehearsing the problem set-
ting and assumptions made by [9], before proving that
LACKI applied to MRAC in discrete-time versions of
this setting can control a plant successfully to a given
reference trajectory. We will conclude the section by ex-
tending experiments by other authors, who have applied
machine learning methods to MRAC to a discrete-time
approximation of fighter jet roll dynamics under wing
rock. Our experiments demonstrate the advantages of
utilising LACKI over previously proposed solutions for
this benchmark scenario.

4.2 MRAC– definitions and assumptions

Assume m ∈ N to be the dimensionality of a configura-
tion of the system in question and define d = 2m to be
the dimensionality of the pertaining state space X .

Let x = [x1;x2] ∈ X denote the state of the plant to be
controlled. Given the feedback linearisable control-affine
system

ẋ1 = x2, ẋ2 = a(x) + b(x)u(x) (18)

it is desired to find a control law u(x) such that the
closed-loop dynamics exhibit a desired reference be-
haviour: ξ̇1 = ξ2, ξ̇2 = fr(ξ, r) where r is a reference
command, fr some desired response and t 7→ ξ(t) is the
reference trajectory.

If a priori a and b are believed to coincide with â0, b̂0
respectively, the inversion control u = b̂−1

0 (−â0 + u′)
is applied. This reduces the closed-loop dynamics to
ẋ1 = x2, ẋ2 = u′ + ã(x, u) where ã(x, u) captures the
modelling error of the dynamics:

ã(x, u) = a(x)− â0(x) +
(
b(x)− b̂0(x)

)
u. (19)

Let Id ∈ Rd×d denote the identity matrix. If b is perfectly

known, then b − b̂−1
0 = 0 and the model error can be

written as ã(x) = a(x)− â0(x). In particular, ã has lost
its dependence on the control input.

In this situation [9,8] propose to set the pseudo control
as follows: u′(x) := νr + νpd − νad where νr = fr(ξ, r) is
a feed-forward reference term, νad is a yet to be defined

output of a learning module adaptive element and νpd =
[K1K2]e is a feedback error term designed to decrease
the tracking error e(t) = ξ(t)−x(t) by definingK1,K2 ∈
Rm×m as described in what is to follow.

Inserting these components, we see that the resulting
error dynamics are:

ė = ξ̇ − [x2; νr + νpd + ã(x)] = Me+B
(
νad(x)− ã(x)

)
(20)

where M =

(
Om Im

−K1 −K2

)
and B =

(
Om

Im

)
. If the

feedback gain matrices K1,K2 parametrising νpd are
chosen such that M is stable then the error dynamics
converge to zero as desired, provided the learning error

Eλ vanishes: Eλ(x(t)) = ‖νad(x(t))− a(x(t))‖ t→∞−→ 0.

It is assumed that the adaptive element is the output of a
learning algorithm that is tasked to learn ã online. This
is done by continuously feeding it training examples of
the form

(
x(ti), ã(x(ti)) + εi

)
where εi is observational

noise.

Intuitively, assuming the learning algorithm is suitable
to learn target ã (i.e. ã is close to some element in the
hypothesis space [16] of the learner) and that the con-
troller manages to keep the visited state space bounded,
the learning error (as a function of time t) should vanish.

Substituting different learning algorithms yields dif-
ferent adaptive controllers. RBFN-MRAC [13] utilises
radial basis function neural networks for this purpose
whereas GP-MRAC employs Gaussian process learning
[20] to learn ã [9,8].

In what is to follow, we utilise our LACKI method as
the adaptive element. Following the nomenclature of the
previous methods we name the resulting adaptive con-
troller LACKI-MRAC.

4.2.1 Convergence Guarantees

We now provide guarantees for LACKI-MRAC con-
troller in the discrete-time setting where LACKI is
allowed to perform online learning. That is, we assume
that at time step n + 1, the controller gets to see an
additional sample of the uncertain drift at the state
visited in the previous time step n. That is, the predic-
tor f̂n+1(·) is based on Dn+1 = Dn ∪ {

(
xn, f̃(xn)

)
},∀n.

Let X denote state space endowed with a norm ‖·‖. We
consider a first-order Euler time-discretised version of
the dynamics described in the previous subsection.

Here the error dynamics become :

en+1 = Men + ∆F (xn) (21)
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where ∆ ∈ R+ is a positive time increment, Fn :=

F (xn) = Eλ(xn) = f(xn) − f̂n(xn) 1-step look-ahead
prediction error of the LACKI model utilised to com-
pute the feedback-linearising control law at time step
n ∈ N0. Remember, we have shown that the prediction
error vanishes up to a level that depends on the obser-
vational and representational error levels. Furthermore,

Fn := F (xn) = f(xn)− f̂n(xn) = B
(
νad(xn)− ã(xn)

)
is a disturbance due to the model error of the learner,

B =

(
Om

∆Im

)
and M =

(
Im ∆Im

−∆K1 Im −∆K2

)
is the

(error state) transition matrix. Here, m = d
2 is half the

dimensionality of the state space, Im denotes the m×m
identity matrix and K1,K2 are gain matrices that can
be freely chosen by the designer of the linear pseudo
controller. In particular, they can be set to ensure that
M is a stable matrix with spectral radius strictly less
than 1, i.e ρ(M) < 1 and ∀n : ‖Fn‖ < N̄ for some
upper bound N̄ on the disturbance. By induction, it is
easy to show that for all k ∈ N0, n ∈ N we have: ek+n=

Mn ek +
∑n−1
i=0 M

n−1−i Fi+k. Thus,

‖ek+n‖ ≤ |||Mn||| ‖ek‖+

n−1∑
i=0

∣∣∣∣∣∣Mn−1−i∣∣∣∣∣∣ ‖Fi+k‖ (22)

≤ |||Mn||| ‖ek+n‖+ N̄k,n

n−1∑
i=0

∣∣∣∣∣∣Mn−1−i∣∣∣∣∣∣ (23)

where |||·||| denotes the spectral norm and

N̄k,n := max
i=0,...,n−1

‖Fi+k‖ ≤ N̄.

Since M is stable, the terms in (23) are bounded and
convergent as n → ∞ (see e.g. [6]). In particular, with
Gelfand’s formula and the standard root test for series
it is easy to establish convergence of the series: That is,

there exists σ ∈ R with limk→∞
∑k−1
i=0

∣∣∣∣∣∣Mk−1−i
∣∣∣∣∣∣ =∑∞

i=0

∣∣∣∣∣∣M i
∣∣∣∣∣∣ =: σ. 1 And,

∑n−1
i=0

∣∣∣∣∣∣Mn−1−i
∣∣∣∣∣∣ ≤ σ, ∀n.

Hence,

‖ek+n‖ ≤ |||Mn||| ‖ek‖+ σ N̄k,n,∀n ∈ N, k ∈ N0. (24)

Above, we have seen that any continuous function can be
approximated by some Lipschitz continuous LACKI pre-
dictor up to an arbitrarily small error. For convenience,
we will establish the following definition:

Definition 18 We say that a continuous function f is
L∗-Lipschitz up to error Ēh ∈ R on domain X iff there

1 In [6], a practically computable upper bound on σ can be
found.

is an L∗-Lipschitz function φ ∈ Lip(L∗) and a function
ψ such that:
∀x : f(x) = φ(x) + ψ(x), supx∈X ‖ψ(x)‖∞ ≤ Ēh.

Theorem 19 (Tracking error convergence) Assume
that, for some q ≥ 0, we choose λ = 2ē+q in our LACKI
prediction rule and that the sequence of prediction er-

rors
(
Fn(xn)

)
n∈N

as well as the reference
(
ξn

)
n∈N

are bounded. If the initial error innovation function is
bounded, i.e. if ∃b ∈ R∀x : ‖F0(x)‖∞ ≤ b, and, if M is
a stable matrix, i.e. if ρ(M) < 1, then the tracking error
converges to the interval σ[0, q2 + 2ē + 2Ēh]. That is,

‖en‖∞
n→∞−→ [0, σ

(q
2

+ 2ē + 2Ēh
)
]

where σ := ∆
∑∞
i=0

∣∣∣∣∣∣M i
∣∣∣∣∣∣ <∞.

Proof: Let ‖·‖ := ‖·‖∞ with accociated matrix norm

|||·||| :=
√
d|||·|||2. Let ε > 0. We desire to show:

∃N ∈ N∀n ≥ N : ‖en‖ ≤ ε+
q

2
+ 2ē + 2Ēh. (25)

If sequence
(
Fn(xn)

)
n∈N

is bounded then, owing to M

being stable,
(
en

)
n∈N

is bounded. That is, ∃b ∈ R∀n :

‖en‖ ≤ β. Knowing that the error dynamics are bounded

by some β ≥ 0 we see that
∣∣∣∣∣∣Mk

∣∣∣∣∣∣ ‖en‖ ≤ ∣∣∣∣∣∣Mk
∣∣∣∣∣∣β k→∞−→

0. Here, the convergence to zero follows from the as-
sumption that M is a stable matrix. Hence, we have:

(I) ∀n∃k0(n) ∈ N∀k ≥ k0(n) :
∣∣∣∣∣∣Mk

∣∣∣∣∣∣ ‖en‖ ≤ ε

2
.

If in addition, the reference is bounded this implies that
the sequence (xn) is bounded, too. Theorem 16 implies
convergence of the innovations and hence, assuming
dY(f, f ′) = ‖f − f ′‖, we have:

∀ε > 0∃n0∀n ≥ n0 : ‖Fn(xn)‖ ≤ ε+
q

2
+2ē+2Ēh. (26)

We can convert Ineq. (23) to state that for all k ∈ N, n ∈
N0 we have:

‖en+k‖ ≤
∣∣∣∣∣∣Mk

∣∣∣∣∣∣ ‖en‖+ ∆Qn:n+k

k−1∑
i=0

∣∣∣∣∣∣Mk−1−i∣∣∣∣∣∣
(27)

Qn:n+k := max{‖Fn(xn)‖ , . . . , ‖Fk+n−1(xk+n−1)‖}.
With Gelfand’s formula and the standard root test for
series it is easy to establish convergence of the series:

That is, σ = limk→∞∆
∑k−1
i=0

∣∣∣∣∣∣Mk−1−i
∣∣∣∣∣∣ < ∞. And,

we have ∆
∑k−1
i=0

∣∣∣∣∣∣Mk−1−i
∣∣∣∣∣∣ ≤ σ, ∀k. Hence,

‖en+k‖ ≤
∣∣∣∣∣∣Mk

∣∣∣∣∣∣ ‖en‖+ σQk:n+k,∀n ∈ N0, k ∈ N.
(28)
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With (26) follows that there exists n0 ∈ N0 such that we
have:

(II) ∀k ∈ N : Qn0:n0+k ≤
ε

2σ
+
q

2
+ 2ē + 2Ēh.

Combining (I) and (II) with Eq. 28 allows us to conclude
that for any n ≥ N := n0 + k0(n0) we have

‖en‖ ≤
ε

2
+σ
( ε

2σ
+
q

2
+2ē+2Ēh

)
= ε+σ(

q

2
+2ē+2Ēh

)
.

�

Note, since the error converges to a bounded set the
state will converge to the target trajectory. So, if the tar-
get trajectory is bounded, the continuity of the control
law (as a function of state) implies that the control is
bounded as well.

Corollary 20 In the special case of error-free observa-
tions of a Lipschitz continuous target function, choosing
a parameter λ = 0 implies that the tracking error van-
ishes, i.e. :

‖en‖∞
n→∞−→ 0.

The control action sequence
(
u(xn)

)
n∈N

converges,

provided the reference trajectory
(
ξn

)
n∈N

converges.

Proof: The convergence statement is an immediate
consequence of the preceding theorem. Remember from
Sec. 4.1 that the control action at time n is of the form
un := u(xn) = − f̂n(xn)−Ken + c for some constant c.
We show that (un) is a Cauchy sequence, provided that
the reference sequence ξn is. Since X is a Hilbert space,
the desired convergence result follows.

So, let ε > 0. Since (en), (ξn) converge, also the state
sequence (xn) converges. Hence, all three are conver-
gent Cauchy sequences. In particular, there is an N
such that for all n,m > N : ‖en − em‖ < ε

2|||K||| and

‖xn − xm‖ < ε
2L̄

. Hence, utilising the definition of the
control law and the fact that all predictors are Lipschitz
continuous with Lipschitz constant L̄, for allm,n > N :

‖un − um‖ ≤ |||K||| ‖en − em‖ +
∥∥∥ f̂n(xn)− f̂m(xm)

∥∥∥
≤ ε

2 + L̄ ‖xn − xm‖ ≤ ε. Therefore, (un) is a Cauchy
sequence and hence, convergent. �

Next, we will illustrate the performance of LACKI-
MRAC in a simulated application scenario that fits the
theory developed up to this point.

4.2.2 Learning-based tracking control of an F-4 fighter
jet under wing rock

As pointed out in [10], modern fighter aircraft designs are
susceptible to lightly damped oscillations in roll known

as “wing rock”. Commonly occurring during landing
[21], removing wing rock from the dynamics is crucial for
precision control of such aircraft. Precision tracking con-
trol in the presence of wing rock is a nonlinear problem
of practical importance and has served as a test bed for
a number nonlinear adaptive control methods [9,17,10].

For comparison, we replicated the experiments of
Chowdhary et. al. [9,8]. 2 Using a realistic model of the
roll dynamics of an F-4 fighter jet, the authors examined
the task of using a model-reference adaptive controller
(MRAC) to perform a roll manoeuvre under uncertain
wing rock. Within a time span between t0 and tf , the
task was to control the aircraft’s ailerons in order to
cause the aircraft’s state trajectory x : [t0, tf ] → R2 to
closely follow a roll manoeuvre prescribed by the ref-
erence trajectory ξ(·). Here the first component of the
state and reference was the roll angle and the second
was the angular velocity.

Since wing rock can destabilise the dynamics, the au-
thors proposed to utilise a (budgeted) Gaussian process
approach to learn a model of the wing rock dynamics
online and demonstrated this could significantly im-
prove tracking performance over competing methods.
They compared their Gaussian process based approach,
called GP-MRAC, to the more established adaptive
model-reference control approach based on RBF neural
networks [22,13], referred to as RBFN-MRAC. As the
controller was meant to adapt to the uncertain wing
rock dynamics online during runtime, computational
real time constraints necessitated to fix the kernel hyper-
parameters of the GP. Furthermore, they also proposed
to limit the GP to a fixed budget of training examples
which would be incrementally updated online.

Replacing the GP by our LACKI learner, we readily
obtain an analogous learning-based controller which we
call LACKI-MRAC. For baseline comparison, we also
examined the performance of a simple PD-controller.

We created 700 randomised test runs of the wing rock
tracking problems and tested each control algorithm on
each one of them. The initial state x(t0) was drawn
uniformly at random from [0, 7] × [0, 7], the initial ker-
nel length scales were drawn uniformly at random from
[0.05, 2], and used both for RBF-MRAC and GP-MRAC.
For LACKI, we chose λ = 0 and L(0) = 0. The parame-
ter weights W of the system dynamics (cf. [9]) were mul-
tiplied by a constant drawn uniformly at random from
the interval [0, 2]. To allow for better predictive perfor-
mance of GP-MRAC, we set the maximal budget to 100
training examples (as in the experiments of [9]) as well as
GP2-MRAC using a budgeted GP with up to 1000 train-
ing examples. The feedback gains of the linear pseudo

2 We are grateful to the authors for kindly providing their
code.
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controller were chosen to be K1 = K2 = 1 (see [9] for
more explanations). As a baseline comparison, we also
tested the performance of a simple PD− controller with
just these feedback gains.

The performance of all controllers across these ran-
domised trials is depicted in Fig. 2. Each data point of
each boxplot represent a performance measurement for
one particular trial.

For each method, the figures show the boxplots of the
following recorded quantities:

• log-XERR: cummulative angular position error (log-

deg), i.e. log(
∫ tf
t0
‖ξ1(t)− x1(t)‖ dt ).

• log-XDOTERR: cummulative roll rate error (log-

deg/sec.), i.e. log(
∫ tf
t0
‖ξ2(t)− x2(t)‖ dt ).

• log-PREDERR: log-prediction error, i.e.

log(
∫ tf
t0

∥∥∥ f̂n(x(t))− f(x(t))
∥∥∥ dt ) where f is a vector

field affected by the wing rock.
• log-CMD : cumulative control magnitude (log-scale),

i.e. log(
∫ tf
t0
‖u(t)‖ dt ).

• log-max. RT (predictions): the log of the maximal run
time (within time span [t0, tf ]) each method took to
generate a prediction νad within the time span.
• log-max. RT (learning): the log of the maximal run

time (within time span [t0, tf ]) it took each method
to incorporate a new training example of the drift ã.

Discussion: All adaptive methods outperformed the
simple PD− controller in terms of tracking error. With
regard to prediction run time, RBFN-MRAC outper-
formed all nonparametric learning-based controllers
GP-MRAC, GP2-MRAC and LACKI-MRAC. This is
hardly surprising. After all, RBFN-MRAC is a paramet-
ric method with constant prediction time. By contrast,
non-parametric methods have prediction times grow-
ing with the number of training examples. That is, it
would be the case if GP-MRAC were given an infinite
training size budget. Indeed one might argue whether
GP-MRAC, if operated with a finite budget, actually is
a parametric approximation where the parameter con-
sists of the hyper-parameters along with the fixed-size
training data matrix. When comparing the (maximum)
prediction and learning run times one should also bear
in mind that GP-MRAC predicted with up to 100 and
GP2-MRAC with 1000 examples in the training data
set. By contrast, fast enough to process large online
data, LACKI-MRAC undiscerningly had incorporated
all 10001 training points by the end of each trial. In
spite of having significantly more training data incorpo-
rated, LACKI’s prediction times were competitive with
the budgeted Gaussian processes. Across the remain-
ing metrics, LACKI-MRAC markedly outperformed all
other methods. Note, we also attempted comparisons
to a non-budgeted Gaussian process learning-based
controller, as well as to one utilising GPs with hyperpa-

rameter optimisation. However, the resulting learning-
based approach ran into conditioning problems (with-
out extensive manual tweaking of initial conditions for
each problem instance) and performed poorly both in
terms of runtime and predictive performance. In fact,
we would argue that one of the advantages of LACKI is
its numerical simplicity and independence from a pri-
ori hyperparameter choices. The simplicity facilitates
potential embeddability where the controller needs to
run on RISC micro-controllers. Furthermore, LACKI
robustness and performance without any manual fine
tuning seems to afford it with greater black-box learn-
ing capabilities even under computational real-time
constraints.

5 Conclusions

We have introduced Lazily Adapted Constant Kinky In-
ference (LACKI) as an approach to nonparametric ma-
chine learning. Our method was built on the frame-
work of Kinky Inference which is a generalisation of
well-known approaches such as LI and NSM methods
that have become popular in numerical mathematics and
learning-based control. Our approach inherits the nu-
merical simplicity of these methods but does not require
a priori knowledge of a Lipschitz constant of the under-
lying target function. Of course, this is of great practi-
cal interest since it endows LACKI with substantially
improved black-box learning capabilities. In contrast to
competing approaches based on Lipschitz constant esti-
mation [15,5,20], LACKI is fast enough to support on-
line learning and we can still give theoretical guarantees
on the learning performance showing that LACKI can
learn any continuous function. Being a nonparametric
regression method that is simple but can learn rich func-
tion classes, LACKI hits a sweet spot between efficiency
on the one hand and high learning capacity on the other.
Furthermore, it is fast enough to be utilised in an online
learning setting. This is in contrast to other methods,
for instance in Gaussian process regression, that rely on
hyper-parameter optimisation but which involve large
computational overhead to work well. In turn, this al-
lows LACKI to be utilised in model-reference adaptive
control where we can convert our learning guarantees
into guarantees on tracking success.

Our theoretical guarantees assume the observational er-
rors to be bounded. Knowledge of such a bound is a
common assumption in learning-based control [7,2], al-
beit not always a realistic one in practice. And, other
common assumptions, such as white-noise disturbances,
are physically unrealistic. Nonetheless, ongoing work in-
vestigates probabilistic consistency proofs in the pres-
ence of stochastic, potentially unbounded noise. For first
results where the Lipschitz hyperparameter is directly
tuned via empirical risk minimisation see [5] .

The illustrations of our control applications have fo-
cussed on model reference adaptive control. In recent
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Fig. 2. Performance of the different online controllers over a range of 700 trials with randomised parameter settings and initial
conditions. LACKI-MRAC outperformed all other methods with respect to all performance measures, except for prediction
run time (where the parametric learner RBFN-MRAC performed best).

work, has considered applications to data-based model-
predictive control [14] restricted to an offline learning
setting. However, combining the stability results pro-
vided therein with our online guarantees derived in this
paper could provide novel online learning-based MPC
guarantees in the increasing data limit.
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