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ABSTRACT: From a systematic study of the concentration driven
diffusion of positive and negative ions across porous 2D membranes of
graphene and hexagonal boron nitride (h-BN), we prove their cation
selectivity. Using the current−voltage characteristics of graphene and h-BN
monolayers separating reservoirs of different salt concentrations, we
calculate the reversal potential as a measure of selectivity. We tune the
Debye screening length by exchanging the salt concentrations and
demonstrate that negative surface charge gives rise to cation selectivity.
Surprisingly, h-BN and graphene membranes show similar characteristics,
strongly suggesting a common origin of selectivity in aqueous solvents. For
the first time, we demonstrate that the cation flux can be increased by using
ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit
our scalable method to use 2D membranes for applications including osmotic power conversion.
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Ion selective membranes are key targets for the advance-
ment of separation-based technologies with the aim to
reduce their flow resistance while maintaining high

selectivity. In battery design, a low resistance separation
membrane would reduce internal resistance1 with very similar
aims for separators in fuel cells or supercapacitors.2,3 Likewise,
ion selective membranes are attractive for applications in
osmotic power generation based on salinity gradients.4 The
prospect of using two-dimensional (2D) materials like
graphene as selective membranes has generated considerable
excitement, as an atomically thin material presents an obvious
opportunity to reduce the flow resistance.5 All of these
applications require a membrane with excellent selectivity for
positive ions over negative ions while maximizing ionic
transport.
Significant progress has been made in the scalable

manufacture of 2D materials; in particular, chemical vapor
deposited (CVD) mono- and few-layer films are ideally suited
to address the technological needs for atomically thin,
functional membranes.6 While single-crystal monolayer gra-
phene has been shown to be intrinsically impermeable to
gases,7 technologically relevant large-area (>few cm2) 2D CVD
films typically exhibit a range of defects through which ions can
pass in solution, indicating a pathway toward their use as ion
selective membranes.8 Critical to membrane applications is the
combination of high selectivity and high permeance.

A number of methods have been demonstrated to control
perforation of graphene membranes including ion bombard-
ment, ozone treatment, and oxidative etching.9−11 Atomic and
molecular transport through the pores has been characterized
by ionic current as well as optical and conductivity measure-
ments.8,12,13 Despite these positive results, it remains unclear
how selectivity arises, exemplified by the lack of established
methods for controlling selective permeance.14 A fundamental
understanding of selectivity is required for engineering new 2D
materials into functional membranes.15

Furthermore, recent literature has attributed the selective flux
to drilled or etched pores in graphene membranes without
characterizing the contribution from the intrinsic defects
present across all CVD graphene membranes. Consequently,
it is hard to distinguish the contribution to selectivity and
leakage currents from both the engineered pore and the defects.
Since the selectivity of extrinsic material systems like

graphene could arise due to charges on the pores, their size
or a combination of both16,17 highly controlled experiments are
crucial. It was suggested that for desalination by size, physical
control of the pore size is required down to the sub-angstrom
level.16 Alternatively, high selectivity could be achieved by
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exploiting charge effects to exclude co-ions from the pore and
only allow the passage of counterions.18−20

Here, we set out to understand transport and selectivity
through CVD-grown 2D membranes in aqueous solutions,
focusing first on the contribution of intrinsic defects to
selectivity. These are unavoidable in industrially relevant
large-area membranes, so their effect must be well charac-
terized. By investigating the current−voltage (I−V) curves of
graphene and hexagonal boron nitride (h-BN) membranes, we
first prove selectivity to cations and confirm that it mainly arises
due to charge selective pores. We propose a mechanism for
how charge selectivity arises in these pores and demonstrate a
pathway to maximize ion flux while maintaining excellent
selectivity.
In order to acquire large data sets with minimal experimental

overheads, we use our established setup based on glass
capillaries.8,21 We measure the selectivity of 2D membranes
by sealing the layers across the tips of glass nanocapillaries with
typical diameters of 180 nm, unless otherwise stated. Using
electrodes inside the reservoir and the capillary, we apply a
voltage and measure the selective current. We have previously
shown that the resistance is a direct measure of the defect
density in graphene,8 and selectivity can be directly extracted
from the I−V curves.21 In brief, when the concentration in the
reservoir is lower than that in the capillary and the membrane
allows positive ions to cross more easily than negative ions,
then diffusion will cause a net current to flow even at V = 0
(green square in Figure 1a). The voltage needed to stop the
diffusive flow is called the reversal potential (red circle in Figure

1a). The reversal potential (Vrev) depends on the concentration
gradient and for a perfectly selective membrane is predicted by
the Nernst equation22
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where R denotes the gas constant, T the absolute temperature,
z the ion valency, F is Faraday’s constant, and Co,i are the ion
concentrations on either side of the membrane. We use
concentrations rather than activities as most of our solutions
are dilute, and this provides a conservative estimate of the
selectivity. For z = 1 at 10× difference in concentration, one
expects a reversal potential of 58 mV. All our results are
benchmarked with control measurements using “bare”
capillaries and Nafion as a positive control (see Supporting
Information).23

While most work across the literature so far has focused on
graphene, our study here extends to CVD-grown monolayer h-
BN24−26 which, while isostructural to graphene, has distinctive
properties. h-BN is a wide band gap semiconductor27 exhibiting
polar bonding/edges. The differences between h-BN and
graphene allow us to establish if selectivity is material-specific
or dominated by external parameters.

RESULTS
We first focus on the cation selectivity arising from the small
number of defects inherently present in the 2D membranes we
studied. The preferred monovalent system is KCl, as the
hydration radii of K+ and Cl− and thus mobilities are similar for
co- and counterions.28 A set of typical I−V curves for a
graphene membrane separating a capillary containing 0.1 M
KCl and reservoirs of different KCl concentrations is shown in
Figure 1a. It is clear that the I−V curves shift and change as the
concentration is varied, indicating selectivity; when there is a
10× difference in concentration across the membrane, the
reversal potential is shifted by 48 mV, and at 100× difference,
the shift is 74 mV. The extent of the selectivity can be
quantified by plotting the value of the reversal potential
(marked by a red circle) against the logarithm of the reservoir
concentration (Figure 2a). In the range of 0.001 to 0.1 M, we
observe a clear linear dependence on reservoir salt concen-
tration for three concentrations in the capillary of 0.01, 0.1, and
1 M. For the lowest concentration in the capillary (0.01 M,
light blue line in Figure 2a), we extract a gradient of 43.3 mV/
log(M), approaching the theoretical limit. Increasing the
capillary concentration to 0.1 M KCl reduces the gradient to
35.9 mV/log(M) (blue line Figure 2a) and even further to 32.0
mV/log(M) at 1 M (navy line Figure 2a). Our results prove
that K+ passes through the membrane more easily than Cl−, and
hence the graphene membranes are cation selective. However,
the reversal potential is only one measure, and the diffusive
current is actually more important in practice.
In Figure 2b, we plot the diffusive current (green square, B,

in Figure 1a). The obvious negative gradient provides more
evidence for selectivity for a capillary concentration of 0.01 M.
However, the selective current is greatly reduced for higher salt
concentrations in the capillary (>0.1 M) (Figure 2b), strongly
suggesting that the Debye screening length on the high
concentration side plays an important role. The dependence on
Debye screening length strongly points toward charge
selectivity; that is, negatively charged pores in the graphene
are the dominating cause.

Figure 1. (a) Typical I−V curves for a capillary (180 nm) sealed
with a monolayer CVD graphene membrane. The solution in the
capillary is 0.1 M KCl, and the reservoir solution is varied from
0.001 to 1 M (all solutions at pH 6). When the concentration in the
reservoir is lower, diffusion causes a positive current (B) to flow,
indicating that the K+ ions cross the membrane more easily. The
voltage to stop this current is indicated by red circles (A). (b)
Representative Raman spectrum of the CVD graphene used in this
work. Acquired after transfer onto SiO2. It indicates high-quality
monolayer graphene.
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Ions have different diameters, and in aqueous solution, both
the size of the hydration shell and the strength it is bound with
need to be considered.28 These differences may influence

selective transport.29 To determine if the type of ion affects the
selectivity, we repeated our experiments with NaCl, LiCl, and
MgCl2. Summarizing the reversal potential and diffusive current
in Figure 3a, it can be seen that all three ions show significant
selectivity for the positive ion over the Cl−. The Li+ was
selected for most strongly, whereas for Mg2+, selectivity was
much lower. This is surprising as Mg2+ is larger than Li+. With
this result, we can exclude ion radii as the primary cause of
selectivity. If charge selectivity is dominating, then Mg2+ as a
divalent ion will more effectively screen the charge of the pore,
leading to a shorter Debye screening length and thus reduce the
charge selective effect, as observed. Our results indicate that
selectivity arises primarily through charges on the graphene
layers.
Our selectivity data indicate a fundamental difference of 2D

membranes when compared to that of traditional materials like
Nafion (see Supporting Information). Usually, one expects that
selectivity is controlled by the lowest ion concentration. In
contrast, for graphene, the decisive role of the shortest Debye
screening length is shown by the exponential dependence of the
selectivity (Figure 3b). Clearly, the higher ion concentration
controls the selectivity, regardless of whether it is the reservoir
or the capillary (see Supporting Information). We attribute this
to the atomic thickness of the graphene; that is, the entrance to
the pore is the dominating source of selectivity because the
effective length of the selective channel is negligible.30

Having established that the selectivity depends on the Debye
screening length, we can determine the pore size.19 For a 2 nm
Debye layer, the selectivity is 50% whereas it increases to 100%
at 10 nm (Figure 3b). Given that Debye overlap is essential for
selectivity, we can conclude that the pores are probably
between 0.4 and 3 nm in diameter, in line with previous
literature.8,9,31−33 Because we see no significant selectivity due
to ion size, this suggests that the precise diameter of the pores is
not significant for controlling selectivity, and many intrinsic
pores are larger than 1 nm. Individual defects in graphene
membranes have been imaged using transmission electron
microscopy (TEM),13,31,34 demonstrating that different atomic
arrangements are found. However, our results suggest that the
exact defect shape is not critical for selectivity as it arises from
charge effects. This is in contrast to the transport of gases
through graphene nanopores for which it has been suggested
that small differences in the atomic structure of the pore can
change the permeance.35 In our experiments in aqueous

Figure 2. Measurements to determine the selectivity of monolayer
CVD graphene to KCl. (a) Voltage offsets and (b) current offsets
extracted from the I−V curves as the reservoir concentration is
varied from 1 mM to 2 M KCl for experiments with 0.01, 0.1, and 1
M KCl in the capillary (all solutions unbuffered at pH 7). The
legend indicates the Debye length in the capillary. To account for
the different solution conductivities, the current offsets have been
normalized to the conductivity for 0.1 M solution; for a non-
normalized version, see Supporting Information. For 0.01 M in the
capillary, from the gradient of the fitted line, the voltage offset is
43.3 mV/log(M) and the normalized current offset is −0.2 nA/
log(M). The values for 0.1 M in the capillary are 35.1 mV/log(M)
and −0.02 nA/log(M). For 1 M in the capillary, the values are 32.0
mV/log(M) and −0.003 nA/log(M).

Figure 3. Investigating the selectivity of monolayer graphene to different ions. (a) Voltage offsets (A) and current offsets (B) for a 0.1 M
capillary and reservoir concentrations of 0.001 to 1 M for LiCl, NaCl, KCl, and MgCl2 (all solutions unbufffered at pH 7). All show evidence
for selectivity. (b) Percent of the maximum selectivity for each condition plotted against the Debye length on the high concentration side of
the membrane. The exponential dependence of selectivity on Debye length shows that selectivity is due to charge and is controlled by the
highest ion concentration.
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solution, the charge effects are much longer ranged than such
steric effects and therefore dominate the behavior.
At first glance, it is surprising that CVD graphene is cation

selective. For the development of full control over charge
selectivity, it is important to determine its origin. A negatively
charged graphene surface is the obvious explanation. We tested
this hypothesis by changing the pH, maintaining the same pH
in the capillary and the reservoir. As before, we identify reversal
potentials from I−V curves to assess how selectivity depends on
pH (Figure 4). At pH >5, graphene shows a high selectivity,
becoming gradually nonselective at a pH less than 3 (red line,
Figure 4).

In order to clarify the molecular origin of this pH-dependent
charge, we compared membrane materials with very different
characteristics. Figure 4 depicts the selectivity for graphene and
h-BN (positive control measurements for Nafion are shown in
the Supporting Information). We observe no significant
difference in selectivity between the 2D materials over the
entire pH range. Since h-BN and graphene behave almost the

same, we propose that selectivity arises as a result of external
factors. The different chemical composition of graphene and h-
BN makes it unlikely that negative surface charge arises due to
edge chemistry alone. Likewise, the different electrical proper-
ties, where graphene is conducting and h-BN is insulating,
suggest that the glass surface charge is not transferred to the
pores.
Previous studies of the selectivity of defects in graphene

membranes have largely focused on the chemical functionaliza-
tion of the pores18 or the precise pore size.16 However, it is
well-known that properties of 2D materials like electron
mobility are often strongly dependent on the substrate.36 For
2D membranes submerged in aqueous solution, adsorption of
OH− ions was suggested recently as the origin of both
selectivity of BN4 and carbon nanotubes.37 We also observe
slight shifts in the peaks and changes of the G to 2D ratio and
fwhm of the peaks in the Raman spectra for graphene floating
on water compared to graphene on SiO2, which correspond
with the graphene acquiring charge in solution (see Supporting
Information).38 The exact origin of charge at the liquid−2D
interface is still under debate. Any surface exposed even briefly
to air may acquire hydrocarbon molecules, reactions of which
can contribute to negative surface charge.39−42 The impact of
adsorbed molecules is much more significant on 2D materials
as they are composed almost entirely of interfaces. Interest-
ingly, our explanation is also supported by the recent work of
Rollings et al.,43 who have studied single graphene nanopores
fabricated by voltage breakdown. They found that 2−20 nm
engineered pores are cation selective with a similar dependence
on pH. OH− absorption is fully consistent with our observation
that at low pH the high concentration of H+ will passivate the
charges and hence reduce selectivity for both h-BN and
graphene.
Having established the source of selectivity for 2D

membranes to be surface charge, we now focus on the
technologically important question: how flux can be increased
while maintaining high selectivity. One method of opening new
pores in graphene is brief exposure to ozone.8 We investigated
graphene that had been exposed to ozone at 200 °C for 5 and
20 s. As a reference, we compare these samples to one

Figure 4. Effect of pH on selectivity for K+ over Cl− for graphene
and h-BN. The capillary concentration was 0.1 M, and the reservoir
varied from 1 to 100 mM. The pH of the reservoir and the capillary
was set using HCl and KOH. The graphene membrane and h-BN
both demonstrate increasing selectivity as pH increases to pH 6.
For control measurements, see Supporting Information.

Figure 5. Effect of blocking and creating defects on selectivity to KCl. The defects in a graphene sample were blocked by depositing 2 nm of
Al2O3 and created by exposing the graphene to ozone. These are compared with a sample of as-grown monolayer graphene (MLG). The
capillary (180 nm) is at 0.1 M KCl, and the reservoir varied between 1 mM and 0.1 M (all solutions unbuffered at pH 7). (a) All four
membranes show a positive voltage offset, indicating they are selective to the positive ion. The gradients are 31.7, 32.8, 32.8, and 34.4 mV/
log(M). (b) Current due to diffusion at 0 V when there is 100× concentration difference across the membrane. This demonstrates that the
ozone treatment creates new defects which are as selective as the intrinsic defects in graphene. (c) Voltage offsets showing how the selectivity
of a graphene sample to K+ over Cl− changes as it is etched in acidic KMnO4. The capillary (180 nm) is 0.1 M KCl, and the reservoir is 1 mM
and 0.1 M. Initially, the selectivity is 52.4 mV/log(M); after 10 min of etching, the selectivity is 23.0 mV/log(M), and after 20 min, the
selectivity has reduced to 14.4 mV/log(M).
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decorated with Al2O3. Atomic layer deposition (ALD) of Al2O3
directly on graphene44−47 with tightly controlled nucleation
behavior significantly reduces the size of defects due to the poor
wetting of the precursors.10,21 We have previously shown that
the Al2O3 treatment decreases the current flowing through the
defects by at least an order of magnitude, while ozone
treatments controllably create new defects, resulting in higher
current flows.8,21

Figure 5a shows the reversal potentials associated with each
of these samples. All the samples are selective to positive ions
with selectivity in the range of 31−34 mV/log(M). However,
this measure does not capture the significant differences in the
current flowing through each of these membranes. Figure 5b
shows the magnitude of the selective current dramatically
increasing with the number of defects. This crucial result of
enhanced diffusive current while maintaining high reversal
potential shows that the ozone treatment on this short time
scale has predominately created new pores which are as
selective as the intrinsic defects. The Al2O3-decorated graphene
has a much lower current due to diffusion, even though the
selectivity is maintained. This demonstrates that the defects
blocked by the Al2O3 are the selective pathways.
To further increase the flux, the size of defects could be

increased, though this may cause selectivity to decrease. We
etched our samples with acidic potassium permanganate (2 mM
KMnO4·0.5 M H2SO4) to grow the defects (Figure 5c). It has
been established by us and others that acidic KMnO4 attacks
defects.9 Over a period of up to 20 min, we observed the
resistance of the membrane decrease by a factor of 4. At regular
intervals, we stopped the etching process and exchanged the
reservoir solution to determine the selectivity. We observed a
decrease in selectivity from 52 mV/log(M) initially to 14 mV/
log(M) after 20 min. By assuming that the defect density
remains constant, we can estimate the change in defect size
from the change in resistance. From this calculation, we
estimate the defects to be 1−6 nm when selectivity is removed
after 20 min of etching. Recent work by Rollings et al.20 has
suggested that pores drilled in graphene are selective up to 20
nm diameter; this may highlight the importance of intrinsic
defects.
While the ozone treatment creates new defects that are

clearly selective, etching using KMnO4 allows for fine-tuning of
the resulting pore diameter. Thus, optimization of the
membrane permeability and selectivity to specific types of
ions should be achievable. Combining ozone and etching
treatments is a potential pathway to maximize the selective flux.
Importantly, brief ozone treatments are industrially relevant as
they can be applied to large areas to create many pores. Parallel
fabrication of pores has distinct advantages over methods
relying on drilling pores using TEM or voltage-induced
etching.20 Due to the charge selective nature of the defects,
precise control over the pore size is not required.16 This
remarkable finding also strengthens our interpretation that we
see transport through intrinsic defects in graphene membranes
and that leakage currents are negligible.
The high flux through our selective membranes could be

utilized within energy generation. A promising approach is the
osmotically driven current created from salinity gradients. We
calculate that at pH 7 the osmotically driven current through
the ozone-treated graphene equates to a power of 700 Wm−2

compared to 500 Wm−2 for Nafion. We note that 1100 Wm−2

has been demonstrated for a boron nitride nanotube. However,
the BN nanotube samples require more complex fabrication.4

Given the scalability of CVD graphene and the ozone process
used, porous 2D materials could be used for renewable energy
generation or desalination if anion selectivity is demonstrated.

CONCLUSIONS

In summary, we have carried out a comprehensive study of the
selectivity of CVD-grown two-dimensional membranes to
different ions. Our results have shown that charge selectivity
is the dominant effect. It follows that precise control of the pore
size is not required to create an ion selective membrane. We
found that at high pH, positive ions are strongly selected for,
but selectivity decreases as pH decreases. Given that this is
observed in different 2D materials, clearly extrinsic factors due
to the aqueous environment such as adsorbed OH− are the
likely cause of the negative surface charge. Our results
demonstrate that ozone and etching treatments can increase
the number of pores, thus greatly enhancing flux while
maintaining high selectivity of the 2D membranes.

METHODS
Glass nanocapillaries are pulled using a laser capillary puller (Sutter
P2000) to give 180 nm tips. These are filled with the appropriate salt
solution.

Graphene is grown by chemical vapor deposition in an Aixtron BM
Pro (4 in.) reactor, using 25 μm thick Cu foil (Alfa Aesar, 99.8%) as
the catalyst and CH4 (diluted in Ar and H2) as the precursor at 1050
°C.6 Hexagonal boron nitride is grown by chemical vapor deposition
on an Fe catalyst using HBNH3 at a temperature of 940 °C and a
pressure of 1 × 10−3 mbar.25

After growth, it is transferred to a single salt crystal using a standard
PMMA wet transfer process.48 The 2D material is floated on the
surface of a water reservoir by placing the salt crystal carrying the
material into the reservoir and allowing it to dissolve. As it dissolves,
the material is released so that it is floating freely on the surface.8

The nanocapillary is mounted on a micromanipulator, and Ag/AgCl
electrodes in the capillary and reservoir connect to a patch clamp
amplifier (Axopatch 200B) to apply voltages and measure currents.
The capillary is lowered slowly onto the graphene so that it forms a
seal which can be assessed using the I−V characteristic. A coated
electrode is used to maintain the reservoir electrode at a constant
potential, and the amplifier offset is set to zero when the solution in
the reservoir matches the capillary. The reservoir electrode is coated in
agarose made up in 0.1 M of the solution under test, usually KCl. The
reservoir solution is then exchanged and an I−V curve obtained for
each from which the reversal potential is extracted.21

The short ozone treatments are carried out in a Cambridge
Nanotech Savannah system at 200 °C.45 A constant flow of N2 (20
sccm) provides a background pressure of 6 × 10−1 mbar to which
ozone pulses of ∼200 mbar and 0.5 s duration are added with 20 s
purges between them.46 The ozone is generated using a Del Ozone
LG-7 corona discharge ozone generator. Total ozone exposure times
of 5 and 20 s are used, and the resulting increase in defect density can
be observed in Raman spectroscopy and as a decrease in the resistance
of the membrane.8 CVD graphene is decorated with 2 nm of Al2O3 by
atomic layer deposition using a 20 cycle process at 200 °C in a
Cambridge Nanotech Savannah ALD system. The cycles consist of
alternating pulses of trimethylaluminum and water both carried in N2
(20 sccm) separated by 8 s purges between them.45,47 This would
typically yield a 2 nm thick film on Si with a native oxide. However,
this relatively high-temperature, water-based process leads to
preferential decoration at defects because of the poor wetting of the
Al2O3 on graphene.44−46,49

The potassium permanganate etching is conducted by immersing
the tip of the graphene-coated capillary in 0.5 M H2SO4 and 2 mM
KMnO4 for a timed period.9 This causes the resistance of the
membrane to decrease as well as the selectivity change shown above.
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C.; Schlögl, R.; Meyer, J. C.; Hofmann, S. Controlling Catalyst Bulk
Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. Nano
Lett. 2016, 16, 1250.
(27) Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride is an
Indirect Bandgap Semiconductor. Nat. Photonics 2016, 10, 262−266.
(28) Marcus, Y. Ionic Radii in Aqueous Solutions. Chem. Rev. 1988,
88, 1475−1498.
(29) Jain, T.; Rasera, B. C.; Guerrero, R. J. S.; Boutilier, M. S. H.;
O’Hern, S. C.; Idrobo, J.-C.; Karnik, R. Heterogeneous Sub-
Continuum Ionic Transport in Statistically Isolated Graphene
Nanopores. Nat. Nanotechnol. 2015, 10, 1053−1057.
(30) Geim, A. K. Graphene: Status and Prospects. Science 2009, 324,
1530−1534.
(31) Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie,
M. F.; Zettl, A. Direct Imaging of Lattice Atoms and Topological
Defects in Graphene Membranes. Nano Lett. 2008, 8, 3582−3586.
(32) Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S.
Graphene Reknits its Holes. Nano Lett. 2012, 12, 3936−40.

ACS Nano Article

DOI: 10.1021/acsnano.6b06034
ACS Nano 2017, 11, 1340−1346

1345

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b06034
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b06034/suppl_file/nn6b06034_si_001.pdf
mailto:ufk20@cam.ac.uk
http://orcid.org/0000-0002-1182-5652
http://orcid.org/0000-0001-8677-1647
http://orcid.org/0000-0001-6375-1459
http://dx.doi.org/10.1021/acsnano.6b06034


(33) Robertson, A. W.; Lee, G.-d. D.; He, K.; Gong, C.; Chen, Q.;
Yoon, E.; Kirkland, A. I.; Warner, J. H. Atomic Structure of Graphene
Subnanometer Pores. ACS Nano 2015, 9, 11599−11607.
(34) Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S.
Direct Evidence for Atomic Defects in Graphene Layers. Nature 2004,
430, 870−873.
(35) Drahushuk, L. W.; Wang, L.; Koenig, S. P.; Bunch, J. S.; Strano,
M. S. Analysis of Time-varying, Stochastic Gas Transport through
Graphene Membranes. ACS Nano 2016, 10, 786−795.
(36) Chan, J.; Venugopal, A.; Pirkle, A.; McDonnell, S.; Hinojos, D.;
Magnuson, C. W.; Ruoff, R. S.; Colombo, L.; Wallace, R. M.; Vogel, E.
Reducing Extrinsic Performance Limiting Factors in Graphene Grown
by Chemical Vapor Deposition. ACS Nano 2012, 6, 3224−3229.
(37) Secchi, E.; Nigues, A.; Jubin, L.; Siria, A.; Bocquet, L. Scaling
Behavior for Ionic Transport and its Fluctuations in Individual Carbon
Nanotubes. Phys. Rev. Lett. 2016, 116, 154501.
(38) Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.;
Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, a. K.;
Ferrari, A. C.; Sood, A. K. Monitoring Dopants by Raman Scattering in
an Electrochemically Top-Gated Graphene Transistor. Nat. Nano-
technol. 2008, 3, 210−5.
(39) Kudin, K. N.; Car, R. Why Are Water - Hydrophobic Interfaces
Charged ? J. Am. Chem. Soc. 2008, 130, 3915−3919.
(40) Roger, K.; Cabane, B. Uncontaminated Hydrophobic/Water
Interfaces are Uncharged: A Reply. Angew. Chem., Int. Ed. 2012, 51,
12943−12945.
(41) Roger, K.; Cabane, B. Why are Hydrophobic/Water Interfaces
Negatively Charged? Angew. Chem., Int. Ed. 2012, 51, 5625−5628.
(42) Aria, A. I.; Kidambi, P. R.; Weatherup, R. S.; Xiao, L.; Williams,
J. A.; Hofmann, S. Time Evolution of the Wettability of Supported
Graphene under Ambient Air Exposure. J. Phys. Chem. C 2016, 120,
2215−2224.
(43) Rollings, R.; Graef, E.; Walsh, N.; Nandivada, S.; Benamara, M.;
Li, J. The effects of geometry and stability of solid-state nanopores on
detecting single DNA molecules. Nanotechnology 2015, 26, 044001.
(44) Wang, X.; Tabakman, S.; Dai, H. Atomic Layer Deposition of
Metal Oxides on Pristine and Functionalized Graphene. J. Am. Chem.
Soc. 2008, 130, 8152−8153.
(45) Dlubak, B.; Kidambi, P. R.; Weatherup, R. S.; Hofmann, S.;
Robertson, J. Substrate-Assisted Nucleation of Ultra-Thin Dielectric
Layers on Graphene by Atomic Layer Deposition. Appl. Phys. Lett.
2012, 100, 173113.
(46) Martin, M. B.; Dlubak, B.; Weatherup, R. S.; Yang, H.; Deranlot,
C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; Robertson,
J.; Fert, A.; Seneor, P. Sub-nanometer Atomic Layer Deposition for
Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-
Filtering Membranes. ACS Nano 2014, 8, 7890−7895.
(47) Weatherup, R. S.; Baehtz, C.; Dlubak, B.; Bayer, B. C.; Kidambi,
P. R.; Blume, R.; Schloegl, R.; Hofmann, S. Introducing Carbon
Diffusion Barriers for Uniform, High-Quality Graphene Growth from
Solid Sources. Nano Lett. 2013, 13, 4624−4631.
(48) De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. Synthesis,
Transfer, and Devices of Single- and Few-Layer Graphene by
Chemical Vapor Deposition. IEEE Trans. Nanotechnol. 2009, 8,
135−138.
(49) Robinson, J. A.; Labella, M.; Trumbull, K. A.; Weng, X.;
Cavelero, R.; Daniels, T.; Hughes, Z.; Hollander, M.; Fanton, M.;
Snyder, D. Epitaxial Graphene Materials Integration: Effects of
Dielectric Overlayers on Structural and Electronic Properties. ACS
Nano 2010, 4, 2667−2672.

ACS Nano Article

DOI: 10.1021/acsnano.6b06034
ACS Nano 2017, 11, 1340−1346

1346

http://dx.doi.org/10.1021/acsnano.6b06034

