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Section A. Modelling Clinical Pathways 

For each patient, we define !"#$, &$'$()
*
, Δ, ,- to be a variable-length clinical pathway, which comprises . 

longitudinal observations where /$ ∈ ℝ2 denotes the 3-dimensional observed features including both 

static and time-varying covariates, &$ ∈ ℝ45	is the timing at the 7-th observation, Δ ∈ {0,1} indicates 

whether the patient has experienced the event (Δ = 1) or the patient is right-censored (Δ = 0), and τ ∈

ℝ45 is the time at which the event or censoring occurred, respectively. For ease of notation, we often 

denote the history of observations up to time &> as ?(&>) = "#$, &$'$()
>

.  Note that irregular time intervals 

between observations can be generally described by the actual timestamps &$.  

Define B ∈ ℝ45 be a random variable for the time-to-event and C ∈ ℝ45 be a random variable for the 

time-to-censoring. We assume that B, C are drawn from a conditional distribution that depends on the 

history of a patient’s longitudinal observations, respectively, and we only observe the event or the 

censoring that occurs first, i.e., Δ = D{EFG} and , = min(B, C).  Then, the conditional hazard function 

ℎ"LM?(&>)' [6], which represents the instantaneous risk of the outcome event occurring given the history 

?(&>), can be defined as:  

ℎ"LM?(&>)' = lim
2O→5

Q(L ≤ B ≤ L + 3L|?(&>), B ≥ L)

3L
																																																		(1) 

where L denotes the time elapsed since the latest observation time &> .  Then, we can express the 

probability of the time-to-event outcome (Δ, ,)  given the history ?(&>)  as the following: 

Q"B = , − &>M?(&>)' = ℎ", − &>M?(&>)'W", − &>M?(&>)'  if event X  occurred (i.e., Δ = 1 ) and 

Q"B > , − &>M?(&>)' = W", − &>M?(&>)' if right-censored (i.e., Δ = 0). Here, W(L| ⋅) = exp"∫ ℎ(_| ⋅)3_
O

5
' is 

the survival function which captures the probability of a patient’s event-free survival up to L. 

Now, we assume that the conditional hazard functions follow the Weibull distribution [2], which is one 

of the most common parametric forms to analyze time-to-event processes.  That is, given the history 

?(&>), (1) can be simplified as: 

ℎ"LM?(&>)' = `a"?(&>)'"a"?(&>)'L'
bc)

																																																									(2) 

where a"?(&>)' > 0 is the conditional intensity function given ?(&>) and ` > 0 is the shape parameter.1 

Then, given a clinical pathway ?(&>), we can derive the risk of having an event occur at or before time 

L elapsed since the last observation time &> as 

                                                        
1 The Weibull distribution is a generalization of the exponential distributions.  For instance, when ` = 1, it reduces
 to the standard exponential distribution and has constant hazard function over time, while the hazard function is i
ncreasing and decreasing over time when ` > 1 and ` < 1, respectively. 



f"LM?(&>)' = 1 − exp"−"a"?(&>)'L'
b
'																																																						(3) 

The risk, f"LM?(&>)', denotes the probability of an event occurring at or before time L given the input 

pathway up to timestamp h .  It is worth highlighting that whenever a new observation is collected 

Dynamic-DeepHit-Lite re-issues the risk predictions that start from 0 due to the fact that this patient is 
alive at the time at which the new observation is collected.  

The log-likelihood of a patient’s clinical pathway can be derived as ∑ log Q !B = , − &$l?"&$'-
*
$()  where 

the conditional probability of an outcome event and the timing (Δ, ,) given the history ?(&$) in the log-

likelihood of the outcome sequence can be derived as follows: 

										log Q"B = , − &>M?(&>)' = D{m()} ⋅ log !ℎ", − &>M?(&>)'W", − &>M?(&>)'- + D{m(5} ⋅ log W", − &>M?(&>)' 

																																																									= D{m()} ⋅ log ℎ", − &>M?(&>)' + log W", − &>M?(&>)' 

																																																								= D{m()} ⋅ log !`a"?(&>)'"a"?(&>)'(, − &>)'
bc)

- − a"?(&>)'
b
(, − &>)

b 

Hence, the problem of accurately estimating the log-likelihood of a time-to-event outcome boils down 

to accurately estimating the conditional intensity functions a(⋅)	as a function of the clinical pathway. 

 

Section B. Modeling TTE Processes via NNs 

We use an RNN to model the underlying dynamics of the time-to-event outcomes given clinical 

pathways.  The key idea here is to determine the conditional intensity functions in (2) from the latent 

representations (i.e., the hidden states) of the RNN.  This allows learning of complex dependencies of 

the conditional hazard functions on the history of observations.  The network comprises an encoder 

that captures the underlying dynamics given a pathway and a predictor that estimates the conditional 

intensity functions based on the output of the encoder.  The biggest distinction of Dynamic-DeepHit-Lite 
from the original work in [1] comes from modeling the time-to-event process as the Weibull distribution. 

The encoder, no:∏ (ℝ2 × ℝs5) → t>
$() , is an RNN (parameterized by u) that takes a sequence of tuples 

?(&>) – i.e., the pathway that contains available observations and the timing up to the h-th time step – 

as inputs and maps the input sequence to latent representations v>, no"?(&>)' ∈ t at each time step h. 

Note that, owing to the RNN structure, our model can flexibly handle the longitudinal data with each 

subject having different numbers of observations that are measured with irregular time intervals.  

Utilizing the Gated Recurrent Unit (GRU) [7], v> can be derived as follows: 

w> = x(yzv>c) + {z[#>	&>] + ~z), 

�> = x(yÄv>c) + {Ä[#>	&>] + ~Ä), 

vÅ> = &ÇÉℎ(yÑ(�> ∘ v>c)) + {Ñ[#>	&>] + ~Ñ), 

v> = "1 − w$' ∘ v>c) + w$,∘ vÅ>, 



where y, {, and ~ are weight matrices and vector which parameterize the encoder, ∘ is element-wise 

multiplication, x(⋅) is the sigmoid function, and &ÇÉℎ(⋅) is the tangent function. 

The predictor, nÜ:∏ t → ℝs5
>
$() , is a fully-connected network (parameterized by á) that estimates the 

conditional intensity functions in (2) given the latent representation of the input sequence at each time 

step h, that is, a"?(&>)' ≝ nÜ(v>) = nÜ !no"?(&>)'-. 

 

Section C. Dynamic Time-to-Event Outcome Predictions 

Our primary goal is to issue the risk of a patient of having the event of interest given the patient’s clinical 
pathway.  To do so, we utilize the output of Dynamic-DeepHit-Lite to re-write the risk function in (3) as: 

f"LM?(&>)' = 1 − exp !−!nÜ !no"?(&>)'- L-
b

-																																																	(4) 

where L is the time elapsed since the latest observation time &>. 

 

Section D. Outcome-Oriented Temporal Clustering 

Given the trained Dynamic-DeepHit-Lite, we now focus on discovering temporal clusters that 

characterize the underlying disease progression in terms of the predictions on the time-to-event 

outcomes made by the trained Dynamic-DeepHit-Lite based on patients’ clinical pathways.  To this goal, 

we modify AC-TPC such that it treats the trained Dynamic-DeepHit-Lite as a black-box function and 

utilizes the inputs and outputs (i.e., time-to-event predictions) of Dynamic-DeepHit-Lite to partition 

patients’ clinical pathways into temporal clusters that share similar time-to-event predictions.  More 

specifically, we formalize temporal clustering defined in [5] as learning discrete representations that 

best characterize the underlying time-to-event process learned by Dynamic-DeepHit-Lite through the 
pathways.  The key insight here is that learning embeddings (i.e., a finite number of latent 

representations available for discrete representation learning) and the mappings from pathways to 

these embeddings can be viewed as learning the centroids of each cluster (i.e., the representative 

representations of each cluster) and the assignments of the pathways to these clusters, respectively. 

Let L> ∈ {1,… ,ã} be the cluster assignment at time step h and ℰ = {ç(1),… , ç(ã)} where ç(é) ∈ t be 

the embedding dictionary.  Then, we define vè> ≝ ç(L>) ∈ t  to be the embedding, a discrete 

representation of clinical pathways in the latent space.  At each time step h, the discrete representation 

can be obtained as follows: first, we find an encoding vê> = ëo"?(&>)' (i.e., a continuous representation 

in the latent space) of an input pathway ?(&>) as an output of the AC-TPC encoder.  Then, based on 

the encoding vê>, the cluster assignment L> is drawn from a categorical distribution defined by the AC-

TPC selector output, i.e., L>~CÇ&(ì>)  where ìî = [ï>(1),… , ï>(ã)] ≝ ëo(vè>).   Once the cluster 

assignment L> is chosen, we allocate the latent encoding vê> to an embedding vè> as described above. 

Finally, we can estimate the conditional intensity function as a̅"?(&>)' ≝ ëo(vè>). 



Given the conditional intensity functions given the cluster assignment and those estimated by the 

trained Dynamic-DeepHit-Lite, we can compute the JS-divergence between the two time-to-event 

processes as the following2: 

.W"a||a̅' =
1

2
ò
a"?(&>)'

a̅"?(&>)'
ô

b

+
1

2
ò
a̅"?(&>)'

a̅"?(&>)'
ô

b

− 1																																														(5) 

Finally, we replace the loss functions in [5] with the newly defined divergence (5) and train the modified 

AC-TPC to discover the outcome-oriented temporal clusters based on the time-to-event predictions of 

the trained Dynamic-DeepHit-Lite. 

 

Section E. Hyper-Parameters of DDHL and AC-TPC 

For the network architecture of DDHL, we construct the encoder (no) utilizing two-layer GRU with 100 

nodes in each layer, and the predictor (nÜ) and the selector (nõ) utilizing three-layer fully-connected 

network with 100 nodes in each layer.  The parameters (u, á, ú) are initialized by Xavier initialization 

and optimized via Adam optimizer with learning rate 0.001 and dropout with keep probability 0.6.  All 

the balancing coefficients are chosen based on the grid search over the possible set of values as 

suggested in [1] and [5] based on the validation loss (i.e., 20 percent of the training set is used when 

choosing the balancing coefficients). 

 

Section F: Partial dependence plot to determine the order of contributing variables on cluster movement 

 

A partial dependence plot was used to change the value of each variable while fixing the values of other 
variables to see how the assigned temporal cluster changes [8]. Since the three variables – PSA, MRI 

Stage, and Grade – are not in the same scale and with different categories, we plotted the average 

effect on the cluster status in Figure F1-F3. In these figures, the transition frequency implies the 

frequency of making a transition to a higher risk cluster (e.g., from Cluster 2 to Cluster 3) when positive, 

and that of making a transition to a lower risk cluster (e.g., from Cluster 2 to Cluster 1) when negative. 

As can be seen in the figure, the order of most contributing variable on the status of temporal cluster is 

Grade, PSA, and Stage. 

 
 
 
 
 
 
 
 
 
 
 
                                                        
2 We use JS-divergence between the two Weibull distributions instead of using KL-divergence in the original AC-
TPC [5] due to the symmetric property. 



Figure F1 
 
 

 
Figure F2 
 
 
 

 
Figure F3 
 
 

Section G. Benchmarks and comparison with the Canary-PASS risk stability model 

We compare our model against the commonly used methods in the medical setting: Cox proportional 

hazards [8], [9] at baseline (using static covariates only) and landmarking Cox [10], [11] (using both 

static and temporal covariates up to the prediction times) in the dynamic setting.  The full set of features 

is used, as with Dynamic-DeepHit-Lite, and the regularization parameter ù is set to 1e-3.  For the 

landmarking Cox, we set the landmarking times as û = 0, 1, 2, and 3 years. 

For evaluating discriminative performance, we use time-dependent concordance index for right-

censored data based on inverse probability of censoring weights [13] throughout; for calibration 

performance evaluation, time-dependent Brier score [14] is computed. 



When evaluating the discriminative performance to compare the discovered clusters and simple 

stratification approaches, we use the time-dependent concordance index as above, with cluster index 

or stratum index (higher index corresponding to higher risk group) used as risk estimates. The time-to-

event models, including DDHL, LM-Cox, and static Cox, make risk predictions whose value is between 
0 and 1. Thus, we use those outcomes directly to evaluate the discrimination and prediction 

performance. In contrast, the clustering methods, including AC-TPC and Canary-PASS, predicts to 

which cluster a patient belongs based on his longitudinal observations. We compared the 

“discriminative power” of the two clustering methods by using the average predicted risks for each 

cluster, as an indirect way to compare how similar the patients are within a cluster and how dissimilar 

the patients are across different clusters. Considering the description above, we provided the best 

comparison that we could to compare the two clustering methods. More specifically, when building the 

Canary-PASS model, we first trained a LM-Cox using the same training set; in particular, time-to-event 
information was also provided to build Canary-PASS model during training. To provide a fair comparison 

with respect to the discriminative power of the discovered groups (i.e., clusters in the proposed method 

and stratifications of Canary-PASS model), we wanted to match the numbers of groups. Hence the 

results of the Canary-PASS as a 4 strata model, which is the same number of clusters discovered by 

our method, were utilized.
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Cambridge 
Prognostic Group 

Criteria 

1 Gleason score 6 (grade group 1) 
 

and 
prostate-specific antigen (PSA) less than 10 microgram/litre 

 

and 
Stages T1–T2 

2 Gleason score 3 + 4 = 7 (grade group 2) or PSA 10 

microgram/litre to 20 microgram/litre 

and 
Stages T1–T2 

3 Gleason score 3 + 4 = 7 (grade group 2) and PSA 10 

microgram/litre to 20 microgram/litre and Stages T1–T2 

or 
Gleason 4 + 3 = 7 (grade group 3) and Stages T1–T2 

4 One of: Gleason score 8 (grade group 4), PSA more than 20 

microgram/litre, Stage T3 

5 Two or more of: Gleason score 8 (grade group 4), PSA more 

than 20 microgram/litre, Stage T3 

or 
Gleason score 9 to 10 (grade group 5) 

or 
Stage T4 

  

A.                                                                                                                                 B. 
 
Supplementary Figure 1.  A. The UK National Institute for Health and Care Excellence (NICE) prognostic grouping criteria used in this study 
(https://www.nice.org.uk/guidance/ng131/chapter/recommendations). B. An illustration of data selection and assembly before analysis. 
 
 
 



 
 
 
 
 
             

 
         
 
                        
Supplementary Figure 2.  An illustration of the network architecture of the Dynamic-DeepHit-Lite (DDHL) method.  
 
 
 
 
 
 
 
 
 



                                                   

 
 
 
     
Supplementary Figure 3.  An illustration of Actor-Critic approach for temporal predictive clustering (AC-TPC). 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Method Prediction Time 
Evaluation Time 

3 years 5 years 

Dynamic-DeepHit-Lite 

From baseline 472/574 (+ 12) 875/1012 (+ 28) 

+ 1 yr F/up data 781/914 (+ 72) 903/1054 (+ 64) 

+ 2 yr F/up data 466/518 (+ 71) 524/587 (+ 71) 

+ 3 yr F/up data 444/480 (+ 58) 471/507 (+ 61) 

 

 
Supplementary Table 1.  Number of correctly ordered pairs / number of acceptable pairs] for prediction of progression to Cambridge Prognostic 
Group 3 (CPG3) for the Dynamic-DeepHit-Lite (DDHL) method.  The value in red brackets is the number of correctly ordered pairs compared to 
the landmarking Cox model.  Evaluation time is the follow-up period over which events were predicted.  Results shown here are for one particular 
training/testing set split, as the number of acceptable pairs varies between data splits. 
 
 
 
 
 
 
 
 
 
 
 
 



 

Method Prediction Time 
 Evaluation Time  

3 years 5 years 

Cox (Standard) 

From baseline 0.079 ± 0.02 0.114 ± 0.02 

+ 1 yr F/up data 0.091 ± 0.01 0.132 ± 0.03 

+ 2 yr F/up data 0.076 ± 0.02 0.136 ± 0.03 

+ 3 yr F/up data 0.085 ± 0.03 0.126 ± 0.04 

Landmarking Cox 

From baseline 0.079 ± 0.02 0.114 ± 0.02 

+ 1 yr F/up data 0.093 ± 0.01 0.131 ± 0.02 

+ 2 yr F/up data 0.076 ± 0.02 0.136 ± 0.03 

+ 3 yr F/up data 0.090 ± 0.03 0.148 ± 0.04 

Dynamic-DeepHit-Lite 

From baseline 0.084 ± 0.02 0.120 ± 0.02 

+ 1 yr F/up data 0.089 ± 0.00 0.134 ± 0.04 

+ 2 yr F/up data 0.074 ± 0.02 0.129 ± 0.03 

+ 3 yr F/up data 0.077 ± 0.03 0.105 ± 0.03 
 

 

 

 

  

Supplementary Table 2 Brier scores in model calibration for prediction of progression to Cambridge Prognostic Group 3 (CPG3) event comparing standard 
Cox model using baseline variables only, landmarking and the Dynamic-DeepHit-Lite (DDHL) method. Prediction time refers to the period over which data 
was collected: at baseine and + 1 to 3 years after starting AS (standard Cox model only used data at baseline). Evaluation time is the follow-up period over 
which events were predicted.   
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 4.  Cluster transition diagram illustrating scenarios of the population-level probability of making a transition from one 
cluster to the other.  Each number represents the average probability of transitions to the same cluster or a cluster higher or lower based on the 
individual disease trajectory and a new data point.  For example, if a patient is currently in Cluster 3, on average, this man will make a transition 
to Cluster 2 with a probability of 0.120, Cluster 4 with a probability of 0.023, and will stay in Cluster 3 with a probability of 0.858.  The transition 
probabilities (i.e., the probabilities of cluster assignments) are different for each individual patient which may also change over time within a single 
patient. 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 5.  Illustration of how temporal phenotypic cluster assignments may change (yellow star) based on given set of datapoints: 
in this example the next PSA (x-axis) and PSA density PSAd (y-axis) for patient scenarios with different baseline Grade Group and Stage is 
shown (Blue: Cluster 1 (lowest risk- not seen in this case), Orange: Cluster 2, Green: Cluster 3, Red: Cluster 4 (highest risk). 
 
                                            
 
 
 
 
 
 
 

Grade 2, T-stage 2 Grade 2, T-stage 1 Grade 1, T-stage 1 Grade 1, T-stage 2 

PSA PSA PSA PSA 

PS
Ad

 



 

Method Prediction Time 
Evaluation Time 

3 years 5 years 

 
Canary-PASS 
3 risk strata*  

From baseline 0.625 0.597 

+ 1 yr F/up data 0.624 0.594 

+ 2 yr F/up data 0.733 0.646 

+ 3 yr F/up data 0.629 0.632 

Canary-PASS 
4 risk strata** 

From baseline 0.697 0.727 

+ 1 yr F/up data 0.708 0.705 

+ 2 yr F/up data 0.783 0.745 

+ 3 yr F/up data 0.794 0.782 

Dynamic-DeepHit-Lite 

From baseline 0.704 0.751 
+ 1 yr F/up data 0.765 0.739 
+ 2 yr F/up data 0.794 0.769 
+ 3 yr F/up data 0.920 0.867 

 
Supplementary Table 3.  Discrimination comparison versus risk stratified deciles in the Canary-PASS calculator (16) for prediction of progression 
to Cambridge Prognostic Group 3 (CPG 3) event.  For simplicity the Canary Pass model was tested with 2 scenarios:  * a 3-risk group stratification 
model categorized by the lowest and highest 10th percentiles and an intermediate risk group from 10th to 90th percentile; ** a 4-risk group 
stratification model evenly divided using 25th, 50th, and 75th percentiles.  Prediction time refers to the period over which data was collected: at 
baseline and + 1 to 3 years after starting AS (standard Cox model only used data at baseline).  Evaluation time is the follow-up period over which 
events were predicted. In the DDHL model comparing the derived 4-cluster versus overall model predictions with 3 years of data collection and 
3 years follow-up showed a difference in C-index of 0.920 versus 0.925 suggesting only a modest impact on model performance.  

  



                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6.  Representative image from a demonstration interface of the DDHL model showing the historic view available 
at  https://demo-dynamic-tte.herokuapp.com/. Case A shown here represents a man who has been on stable AS for some time with no 
progression or change.   
 
 
 



                            
 
Supplementary Figure 7.  Representative image from a demonstration interface for Case A who had a long period of stable observations and 
no progression to CPG3.  Cluster space tab illustrates his trajectory over time and progressive movement through the clusters and eventually to 
the lowest risk cluster with a prolonged period of no change. 
 
 



        
 
Supplementary Figure 8.  New observations tab for Case A. A new observation can be added and the future risk recalculated taking into 
consideration the long stable history.  If new observations are added with higher risk features, the overall change of progression is higher but is 
mitigated by the long stable period on AS.  
 
 



         
 
Supplementary Figure 9.  Effect of changing the observations in Case A in the New Observations tab using higher risk features and without the 
long antecedent of stable observations on AS.  It can be seen that the patient progresses to a higher cluster group and the predicted risk of a 
CPG3 event rises over time instead of remaining stable. 
 



    
 
Supplementary Figure 10.  Demonstration interface of the DDHL model showing the Historic risk tab of Case B - a man who has been on AS 
and progressed to CPG3.  Over time each observation suggested a risk of progression which is reset with a new observation.  Because of the 
ongoing risk he remains in the same (highest) risk cluster.  This would prompt closer surveillance than in the previous discussed case. 



                        
                                           
Supplementary Figure 11.  Representative image from a demonstration interface for Case B who had a higher risk of progression at the outset 
for progression to CPG3.  Cluster space tab illustrates the patient remained in the highest cluster as observations remained the same or predicted 
a more likely progression course. 
 


