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ABSTRACT

Aims. We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and
Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars.
Methods. In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright
nebulosity surrounding Carina stars.
Results. We find about 400 good candidate members ranging from OB typesdown to slightly subsolar masses. About 100 heavily
reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars
and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The
spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and
the study of the relative placement of stars along the line ofsight.
Conclusions. We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and
spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-
dimensional spatial structure of the Carina clusters and oftheir connection to bright and dark nebulosity and UV sources. The identifi-
cation of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We
are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger
than stars in other subclusters. We find a large percentage offast-rotating stars among Carina solar-mass members, which provide new
constraints on the rotational evolution of pre-main-sequence stars in this mass range.

Key words. Open clusters and associations: individual (Trumpler 14, Trumpler 16, Carina nebula) – stars: pre-main-sequence

⋆ Based on observations collected with the FLAMES spectrograph at
VLT /UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-
ESO Large Public Survey (program 188.B-3002). Tables 1, 2 and 7

are only available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-
bin/qcat?J/A+A/.
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1. Introduction

The Carina nebula is one of the most massive HII regions known
in the Galaxy. It contains a large population of massive OB stars
(the Car OB1 association), several Wolf-Rayet stars, and the
well-known LBV starη Carinae. Most of the stellar content of
the Carina nebula is found concentrated in a few clusters, no-
tably Trumpler 16 (Tr 16, hostingη Car itself) and Trumpler 14
(Tr 14), about 10′ NNW of η Car. Less conspicuous clusters as-
sociated with the nebula include Trumpler 15, Collinder 228,
and Collinder 232. The distance toη Car has been precisely de-
termined to be 2.35±0.05 kpc (Smith 2006). Car OB1 contains
some of the most massive O stars known, including rare exam-
ples of O3 and even O2 stars. The properties of the region were
reviewed by Smith and Brooks (2007, 2008). More recently, the
whole Carina star formation region (SFR) was thoroughly in-
vestigated by means of a mosaic of Chandra X-ray observations
(CCCP: Chandra Carina Complex Project; Townsley et al. 2011,
and all papers in the series), after earlier X-ray studies ofthe cen-
tral clusters Trumpler 16 and 14 with both Chandra (Albacete-
Colombo et al. 2008) and XMM-Newton (Antokhin et al. 2008).
X-ray data have been crucial to demonstrate the existence ofa
population (both clustered and diffuse) of≥ 14000 stars, un-
doubtedly associated with the SFR, which are most likely low-
mass young stars formed in the nebula several millions years
ago. Detailed studies of the stellar population in Carina have un-
til now been exclusively directed toward characterizing its rich
massive-star members, while there have been very few studies of
its lower mass population. For example, DeGioia-Eastwood et al.
(2001) reported optical photometry for only∼ 850 stars in Trum-
pler 16 and 14. Deep optical photometry on more than 4500 stars
in the same region was published by Hur et al. (2012) only fairly
recently, allowing optical counterparts of faint X-ray sources to
be studied. Spectroscopic studies of the low-mass PMS starsin
these clusters are almost entirely lacking; Vaidya et al. (2015)
present low-resolution spectra of 11 PMS stars.

The study of low-mass PMS stars at the distance of Carina,
and sometimes embedded within obscuring dust and/or bright
nebular emission, is time consuming and technically challeng-
ing. At the same time, it is important to test whether the early
evolution of stars under such extreme ambient conditions, dom-
inated by the presence of hundreds OB stars,differ from that in
quieter SFRs (e.g., Taurus-Auriga or also Orion). Recent results
from X-ray and IR surveys suggest that stars formed in rich clus-
ters (e.g., Carina, Cygnus X, NGC3603, and Westerlund 1 and 2)
may be an important, if not dominant, component of all stars
in the Galaxy, thus more representative of the average Milky-
Way star than stars formed in less rich SFRs, such as Tau-Aur,
Chamaeleon or IC348 (see, e.g., Lada and Lada 2003). There-
fore, the study of Carina stars across the whole mass spectrum
is likely to be relevant for a better understanding of the general
stellar population in the Galaxy.

It is not clear whether the various clusters in Carina are co-
eval, and if not, whether this can be attributed to triggeredor
sequential star formation processes. Evidence for triggered for-
mation in Carina have been discussed by Smith et al. (2010),
but these authors focused on a different part of the nebula (the
southern pillars) than that studied here; there is some overlap in
the Tr 16 SE obscured region alone. In the central part of Ca-
rina studied here, evidence for recent or ongoing star formation
is less frequent than in the southern parts (Povich et al. 2011b).
Among the central Carina clusters, Tr 14 was suggested to be 1-
2 Myr younger than Tr 16 because of its more compact structure
and other characteristics (Walborn 1995, Smith 2006). It ishow-
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Fig. 1. (V,V − I) diagram of all stars in the Hur et al. (2012) catalog.
Big red dots indicate the spectroscopically observed starsstudied here.
The dashed arrow indicates the foreground reddening vector, while the
solid arrow indicates a representative intracluster reddening vector cor-
responding toAV = 1.

ever unclear if Tr 16 can still be considered a single clusterwith
a rather sparse population or rather as several physical clusters,
as suggested by the X-ray results of Feigelson et al. (2011).

We present the first spectroscopic study of a sizable popu-
lation of hundreds lower mass stars down to approximately one
solar mass, using data from the Gaia-ESO Survey (Gilmore et al.
2012, Randich et al. 2013), to complement the studies of mas-
sive stars in Carina and obtain a more complete understanding
of the star formation processes that have taken place in its recent
past. The same observational dataset was used in a previous work
(Damiani et al. 2016, Paper I) to study the dynamics of the ion-
ized gas in the Carina HII region from optical nebular emission
lines.

This paper is structured as follows: In Section 2 we describe
the composition of the observed sample; Section 3 discusses
cluster membership for the observed stars; Section 4 discusses
massive stars that happen to fall within our sample; Section5
discusses the spatial clustering of stars; Section 6 is devoted to
a discussion of reddening; Section 7 presents color-magnitude
diagrams; Section 8 compares results from the present data with
those from X-ray data; Section 9 discusses the structure of the
whole region; Section 10 discusses stellar ages; and Section 11
the rotational properties of Carina stars. Eventually, we summa-
rize our results in Section 12.

2. Observations and data analysis

2.1. Observed sample

We study a set of spectra of 1085 distinct stars in the Carina neb-
ula, which was obtained with the FLAMES/Giraffe multi-fibre
spectrometer at the ESO VLT/UT2 telescope on April 6-9, 2014
and released as part of the iDR4 Gaia-ESO data release. The
total number of individual spectra was 1465, but all spectrarel-
ative to the same star were coadded to improve signal-to-noise
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Fig. 2. Spatial distribution of Hur et al. (2012) stars brighter than V =
18.5 and of observed stars (red). The most massive stars in the region
are indicated with big circles and names. The dashed lines indicate the
approximate positions of the dark obscuring dust lanes bounding Tr 14
and 16.

ratio (S/N). Simultaneously, spectra with the FLAMES/UVES
high-resolution spectrograph were obtained, which will bepre-
sented separately (Spina et al. in prep.). All spectra considered
here are taken using Giraffe setup HR15n (R ∼ 17000, wave-
length range 6444-6818Å), as in all Gaia-ESO observations of
cool stars in open clusters. The (known) OB stars in Carina are
instead observed using different Giraffe setups to obtain a more
comprehensive set of diagnostics, which are better suited to hot
stars; the massive star spectra are not part of the current data
release and will be studied in a later work. As a consequence,
we are only able to give a rough classification for the early-type
stars that happen to fall within the sample studied here. Theap-
proach for deriving stellar parameters for later spectral types was
instead described in Damiani et al. (2014) and Lanzafame et al.
(2015).

The basis for our FLAMES target selection was the optical
photometry published by Hur et al. (2012). This study covered a
field, approximately 25′×25′ in size, comprising only the central
portions of the entire nebula, and thus limited to the large clusters
Tr 16 and 14 and the less rich Collinder 232. Moreover, with the
HR15n setup, we did not observe stars brighter thanV = 12,
i.e., massive stars, observed with different Giraffe setups, nor
fainter thanV = 18.5 in order to obtain an acceptable minimum
S/N. Since low-mass stars in the Carina SFR have not yet ar-
rived on the zero-age main sequence (ZAMS), we also excluded
stars in that region of the color-magnitude diagram (CMD). Also
a spatial region near the edge of the photometric field of view,
apparently dominated by field stars, was not observed, and fi-
nally, a random sampling of the remaining stars was performed
to avoid an exceedingly long target list. This procedure follows
the general strategy for target selection in the Gaia-ESO Survey
described in Bragaglia et al. (in preparation). The CMD of both
the Hur et al. (2012) input catalog and our spectroscopically ob-
served stars is shown in Fig. 1. Fig. 2 shows instead the spatial

distribution of input and observed stars. The median S/N of our
1085 spectra is 36.2.

2.2. Data analysis

The Gaia-ESO Survey data analysis process is distributed among
several working groups, whose task is to apply homogeneous
procedures to all datasets to ensure a high degree of internal co-
herence. As explained in Paper I, however, the Carina nebula
presents a number of unanticipated features that are not dealt
with accurately using standard procedures/pipelines; these fea-
tures include the spatially nonuniform sky continuum levelfrom
reflection nebulosity and the wide Hα wings from both high-
velocity ionized gas and reflection in the nebula. This required
us to take a step back and redo part of the analysis, especially
regarding a more appropriate subtraction of the sky spectrum, as
described in the following. All derived parameters used here are
released in the internalGESiDR4 data release, database tableAs-
troAnalysis. This reports the detailed results from each analysis
node and their merged values produced by the relevant Work-
ing Group (WG12 in our case); because of the mentioned dif-
ficulties, results obtained from individual nodes sometimes us-
ing nonstandard, ad hoc procedures were preferred to WG12 re-
sults in the case of stellar parameters (from node “OAPA”) and
of lithium equivalent widths (EW; node “OACT”), while radial
and rotational velocities were taken as those produced by WG12
(or node OAPA when these latter were missing).

The details of the special background-subtraction procedure
employed by the OAPA node before evaluating stellar parame-
ters are given in Appendix A. In short, after having separately
corrected all atmospheric sky features, nebular lines are cor-
rected using each of the nearest five sky spectra: the range of
corrections obtained is an estimate of the uncertainty involved in
the procedure, while the median of the five corrected spectrais
taken as the best estimate stellar spectrum, for stellar parameter
derivation. Lithium EWs were computed by different nodes, with
results in good mutual agreement, using slightly different meth-
ods as explained in Lanzafame et al. (2015); the EW set from the
OACT node was chosen because of its largest sample coverage.
The WG12 radial and rotational velocities include contributions
from both the OACT node, using methods detailed in Frasca et
al. (2015), and OAPA node, using cross-correlation as briefly de-
scribed in Damiani et al. (2014); a very good agreement is found
for stars in common.

With the collection of five-fold nebular-subtracted stellar
spectra obtained as explained in Appendix A, we proceeded with
our estimates of stellar parameters (done five times per star), us-
ing the method explained in Damiani et al. (2014). This latter
was purposely developed to deal with the spectral range and res-
olution of Giraffe HR15n data, and defines a set of spectral in-
dices and their calibration to derive Te f f , logg, and [Fe/H] for
stars later than∼A2. The range spanned by each parameter in
its own set of five determinations corresponds to the systematic
error introduced by sky correction, which is often larger than
the statistical error. Depending on the intensity ratio between
the nebular Hα wings and stellar Hα wings, these latter may
in some cases be exceedingly affected by nebular emission and
cannot be used as a temperature diagnostic, for example in A to
mid-G stars1. For mid-A to lower mass stars, fortunately, other
indicators may be used to estimate temperatures (although the
increased dependence on metallicity must be treated with cau-

1 The most important features of stellar spectra in the HR15N wave-
length range are described in Damiani et al. (2014).
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tion). The problem is worst for early-A stars, where almost the
only spectral line in HR15n range is Hα. Much weaker lines
are found in the blue extreme of the HR15n range, where grat-
ing efficiency is however very low, and are therefore difficult to
use in low-S/N spectra. In practice, many faint early-A stars are
recognized in the Tr 14/16 dataset as those having a nearly flat,
featureless continuum spectrum with indefinite propertiesin the
Hα region because of the predominant nebular emission. B-type
stars are instead easily recognized because of their He I 6678Å
line. The He I nebular line at the same wavelength usually hasno
wings (Paper I) and is much narrower than the stellar line, often
broadened by fast rotation.

The wide nebular Hα wings are also of great nuisance when
trying to select stars with intrinsic wide Hα emission owing to
accretion from a circumstellar disk (e.g., classical T Tauri stars,
CTTS, or Herbig Ae/Be stars, HAeBe). Here again, the five-fold
nebular-subtracted star spectra are of invaluable help in separat-
ing cases where the apparent wide emission in the net spectrum
arises from poorly subtracted nebular Hα wings (as it will not
be present in all five net spectra) from truly wide Hα lines of
CTTS/HAeBe stars.

2.3. Auxiliary datasets

The stellar population of the Carina nebula was the object ofsev-
eral recent studies. We have therefore cross-matched our spectro-
scopic targets with objects in several existing catalogs. Amatch
with the CCCP X-ray source catalog (Broos et al. 2011a) yielded
352 matches among our 1085 sample stars. The match was made
assuming a constant 1σ error on optical positions of 0.2 arcsec,
individual catalogued X-ray position errors, and a 4σmaximum
distance. The number of spurious matches was estimated as 13,
by artificially shifting one of the two position lists by±1 arcmin.
Then we considered the VPHAS+ DR2 Point Source Catalogue
(Drew et al. 2014) with photometry in the bandsugri and Hα.
Using a maximum matching distance of 5σ, and constant posi-
tion errors of 0.2 arcsec for both optical and VPHAS+ catalogs,
we obtain 1074 matches (of which∼ 140 estimated as spurious).
However, the number of stars with aclean=yes photometric flag
in all of r, i, and Hα bands, matching our target list, is of only
171. Last, we similarly matched our targets to the young stellar
object (YSO) catalog of Zeidler et al. (2016), obtained fromboth
VISTA and Spitzer near/mid-IR data. The number of matches is
64 (∼ 1 spurious), of which however only 7 have catalogued
magnitudes in all four Spitzer IRAC bands (3.6− 8.0µ). All of
these latter were already members by spectroscopic criteria; see
below.

3. Cluster membership

Since the chosen sample-selection strategy for Gaia-ESO Giraffe
observations is inclusive of most possible members, the mem-
bership of observed stars to each cluster must be determinedex
post facto. Since our emphasis is on young, low-mass stars (FGK
stars), the most useful membership indicators are the lithium line
EW and strong X-ray emission in addition to radial velocity (RV)
as usual. Wide Hα emission wings, which are indicative of cir-
cumstellar accretion in pre-main-sequence (PMS) stars, provide
strong evidence of extreme youth and probable membership toa
SFR, even in the absence of a RV measurement (e.g., in cases of
strong-emission stars without observable photospheric absorp-
tion lines). As described above, a star must show wide Hα emis-
sion consistently across the multiple (five) sky-subtraction op-
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Fig. 3.Histogram of (heliocentric) RV for all stars withTe f f < 8800 K
and S/N> 15 (white-colored bars). The red filled histogram represents
stars with lithium EW> 150 mÅ; the dashed green histogram are stars
detected in X-rays. The vertical dashed blue lines atRV = (−25,+15)
indicate our fiducial limits for RV membership.

tions to be considered a reliable CTTS/HAeBe. This conserva-
tive approach undoubtedly misses some real emission-line mem-
bers, but is a minor issue for building a reliable member listsince
the other membership criteria may compensate for this. Narrow,
chromospheric Hα emission cannot be used as a youth indicator
because it is swamped by the nebular emission lines no mat-
ter which sky-subtraction option is chosen. In order to minimize
the number of spurious members, a star is generally accepted
as member only when it satisfies at least two criteria among:
|RV−RV0| < ∆RV (with RV0 and∆RV to be determined), lithium
EW> 150 mÅ, X-ray detection, and CTTS/HAeBe status. How-
ever, since each of these criteria may include significant numbers
of contaminants (e.g., G stars up to an age of about 1 Gyr would
fall above our lithium EW threshold), some additional screening
was applied, as described below.

To help determineRV0 and∆RV, Figure 3 shows a histogram
of RV for stars withTe f f < 8800 K (and S/N> 15). Colored his-
tograms refer to lithium- and X-ray-selected candidates; these
indicators select essentially the same population of low-mass
Carina members. From this Figure, we find that good values
for RV0 and∆RV are−5 and 20 km/s, respectively; the latter
is chosen to be rather inclusive since additional indicators are
also used for final membership assessment2. According to the
above-stated general rule, inside the dashed RV limits onlyone
membership criterion (the RV criterion being fulfilled) is suffi-
cient to consider a star a member; outside of these limits, atleast
two indicators are needed. The number of stars shown in the to-
tal histogram is 755; scaled to this number, we expect nine spu-
rious optical X-ray matches to be included in these histograms,
distributed uniformlyper star (not per RV interval). Therefore,
most of the spurious X-ray matches lie inside the dashed lines,

2 The value of mean radial velocityRV0 is in good agreement with that
of the local molecular gas; see, e.g., Rebolledo et al. (2016, their Fig.5),
with heliocentricRV0 = −5 km/s, corresponding toVLS R = −13.8 km/s.
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where most stars are found. This justifies in part several bins
containing X-ray detections in excess of lithium-rich stars. For
the same reason, we expect 6-7 contaminants among candidate
members found only from RV and X-ray criteria.

A handful of stars satisfying the general membership criteria
above are found in the CMD very near the ZAMS at the cluster
distance (or, in any case, at apparent ages> 20Myr according to
Siess et al. 2000 isochrones), even after accounting for redden-
ing as in the following sections. Upon individual examination,
only two3 of these 17 stars showed strong enough indications of
membership to be retained in our list, while the others, mostly
low-S/N spectra with poorly constrained parameters, were re-
moved. Of these latter, 6 were simultaneously RV- and X-ray
members, in very good agreement with their expected number.

Among our targets, we searched for additional candidate
CTTS members, but did not find any candidates by looking in
other catalogs, such as the VPHAS+ data, in particular, using the
(r−i, r−Hα) diagram locus as in Kalari et al. (2015); the 2MASS
data; and finally the Spitzer data from Broos et al. (2011a; ta-
ble 6), considering disk-bearing stars with colors [3.6−4.5] > 0.2
and [5.8−8.0] > 0.2. To this stage, the number of low-mass can-
didate Carina members (colder than∼ 8000 K) found is 303, of
which approximately 150 are candidate CTTS.

We find also many stars with Te f f above 6500 K, which al-
ready at this young age have no traces of lithium and are some-
times rotating so fast that an accurate derivation of RV might
not be possible. Moreover, it is known that A-type stars are not
strong coronal X-ray emitters (e.g., Schmitt 1997), such that our
member list is least reliable for stars earlier than type F (approx-
imatelyTe f f ≥ 7000 K). Early-A and B-type stars, of which we
find several tens, are instead rare in the field, so that most ofthem
can be safely considered as Carina members (adding to the 303
low-mass candidates), even though their RVs might sometimes
not be accurately determined because of fast rotation.

3.1. A young field-star population

A more detailed examination of candidate members is performed
from their cumulative RV distribution, as shown in Figure 4.The
black curve is the RV cumulative distribution for all singlemem-
ber stars withTe f f < 7000 K, v sini < 50 km/s, and S/N> 15
(177 stars). A cumulative Gaussian distribution fitted to the me-
dian RV range between (−20, 40) km/s is shown with the green
curve (maximum-likelihood parameters< RV >= −5.9 km/s,
σ(RV) = 4.66 km/s). However, an obvious asymmetry is present
between the two tails of the Gaussian distribution with an excess
of stars atRV > 0 km/s. Unrecognized binaries are only expected
to produce symmetric tails. We inspected all spectra of stars with
RV > 0, to check that no RV determination errors were present
to a level that might justify the observed discrepancy. The red
curve therefore shows the cumulative distribution corresponding
to two superimposed Gaussians with maximum-likelihood pa-
rameters as follows:< RV1 >= −7.07 km/s,σ(RV)1 = 3.48 km/s
and< RV2 >= 7.81 km/s,σ(RV)2 = 6.37 km/s. The main Gaus-
sian distribution accounts for 77% of stars in the subsamplecon-
sidered here. The still misfit tail atRV ∼ −20 km/s may be at-
tributed to either binaries or an additional small population, of
6-7 stars, which was not examined further. The∼ 40 stars in the
positive-velocity Gaussian are too numerous to be explained by
spurious X-ray matches, whose number was quantified above.

3 These are the candidate HAeBe star [HSB2012] 2504 and the star
[HSB2012] 2692, showing strong lithium, IR excess in the 2MASS
bands, and an association with a YSO.
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Therefore, they are likely genuine X-ray bright and/or lithium
rich stars or young stars in general. Their discrepant RV distribu-
tion with respect to the main Carina population does not entitle
us to consider them Carina members. Based on their approxi-
mate RV, we refer to these stars as “RV10 stars”. There are 29
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RV10 stars withRV > 3 km/s,Te f f < 7000 K,v sini < 50 km/s,
and S/N> 15.

We investigate the nature of the RV10 group by means of the
Te f f -lithium EW diagram (Figure 5). The RV10 stars account for
most of the low-lithium candidate members; however, more than
one-half of the RV10 stars have Li EW> 150 mÅ and follow
the same relation with Te f f as Carina members, which are ap-
parently coeval. All RV10 stars with Li EW> 250 mÅ have ex-
tinction (as determined in Section 6) higher than the foreground
A fg

V toward Carina (Hur et al. 2012). Nearly one-half of the RV10
stars have instead low extinction, suggesting that they arefore-
ground stars; at the same time, many of these stars have signif-
icant Li EWs, indicating they are young stars (say< 100 Myr)
in agreement with their frequent X-ray detection (18/29 stars).
The spatial distribution of RV10 stars does not show clustering
and their location on the optical CMD often does not overlap the
main cluster locus. We conclude that the RV10 are dominated by
a group of (17) foreground young stars, unrelated to the Carina
cluster, probably spanning a significant age range, and charac-
terized by a common dynamics. Also theirv sini distribution is
typical of young low-mass stars. We therefore speculate that they
are a remnant from a now dissolved cluster, closer to us than the
Carina nebula, in the same sky direction.

The 12 RV10 stars withAV > A fg
V are instead probable

Carina low-mass members, whose net number becomes 286.
Among these stars we find 8 SB2 binaries; this appears to be a
low percentage compared to other studies (e.g., Mathieu 1994);
however, fast rotation, frequently found among Carina members
(see Section 11) may render double-lined systems more difficult
to detect, so we cannot draw firm conclusions on this subject for
Carina stars. We do not consider these SB2 stars in the rest of
the paper. The identifications and properties of Carina members
are listed in Tables 1 and 2, while those of the RV10 group are
in Tables 3 and 4.

Three stars with strong lithium lines, but showing no other
membership indicator, turned out to be nonmember lithium-
rich giants, upon a detailed examination of their stellar parame-
ters. Their identifications and properties are reported in Tables 5
and 6.

4. Massive stars

Our observed sample selection was made with the aim of study-
ing low-mass stars in Carina, starting from A-type stars. How-
ever, a number of earlier-type stars are serendipitously found
among the spectra studied here. Those O-type and B-type stars
are intrinsically more luminous than the rest of the sample,but
some were included here because of their higher extinctionsor,
in some cases, because they are located at significantly longer
distances; the Carina nebula is close to the tangent of a spiral
arm. Although HR15n spectra are not ideal for a detailed classi-
fication of hot stars, we attempt here to assign a qualitativeclas-
sification of these stars, whose importance in the study of the
Carina SFR cannot be neglected. The spectroscopic information
is complemented with a study using archival photometry.

4.1. Spectroscopic analysis

As mentioned in Sect. 2, the HR15n wavelength range contains
the He I 6678.15Å line, which is a very useful diagnostic to se-
lect B-type stars. Of course, care must be used since at nearly
the same wavelength a Fe I line is found in cooler stars, so that
establishing a B-type spectrum also requires absence of metallic

lines and in particular of the group of lines between 6490-6500Å
(Damiani et al. 2014), which are strong enough to remain rec-
ognizable even in fast rotators. As explained in Sect. 2 above
(and see Paper I for details), Hα and He I lines, which are the
most intense lines in the HR15n range for late-B stars, and the
only detectable at low S/N, are both coincident with nebular sky
lines, whose contribution is often impossible to subtract accu-
rately. Therefore, classification of late-B stars on the basis of the
present data may only be approximate. In practice it is oftenim-
possible to confirm or exclude the presence of a weak He I line in
the spectrum of a fast-rotating star without metallic linesto dis-
criminate between a late-B and an early-A type and, therefore,
we assign to these stars a generic "late-B/early-A" type. In tens
of other cases, He I is safely detected, but again nebular lines
make the determination of the stellar He I EW unreliable; these
stars were thus classified as "B-type" without better detail. Ex-
amples of B-type stars in our dataset are shown in Fig. 6-a. In
this Figure, differences in the adopted sky correction are evident
only in the cores of nebular lines Hα, [N II] 6548,6584Å, He I,
and [S II] 6717,6731Å.

Some of the B stars show a characteristic C II doublet at
6578-6583Å, which is typical of mid-B stars, but is enhanced
in bright giants or supergiants (Grigsby et al. 1992, Sigut 1996,
McErlean et al. 1999). We therefore consider these stars can-
didate B supergiants, although some of them may be main-
sequence B stars as well. We show some of these spectra in Fig-
ure 6-b, together with spectra of two known B supergiants (top
two spectra) from the UVES/POP dataset (Bagnulo et al. 2003).

The Gaia-ESO spectra of two of our stars show features sug-
gesting an O stellar type: these are the Heii lines at 6527 Å
and 6683 Å. Their spectra are shown in Figure 7-a (bottom
two spectra), compared with known O stars from UVES/POP.
The intensity ratio between Hei 6678 Å and the neighboring
Heii 6683 Å line would be a sensitive measure of spectral type;
however, the nebular contamination at 6678 Å is strong for both
stars, since they are highly reddened and faint, which prevents
accurate derivation of their spectral types. Furthermore,a large
percentage of OB stars are spectroscopic binaries (Sota et al.
2014) and an examination of these lines in the sample covered
by spectroscopic surveys such as OWN (Barbá et al. 2010), IA-
COB (Simón-Díaz et al. 2011), or CAFÉ-BEANS (Negueruela
et al. 2015) reveal a number of cases where a B+B SB2 (each star
with a Hei 6678 Å line) masquerades as a single object with both
Hei and Heii lines. Finally, Heii 6527 Å is close to a broad DIB.
Therefore, their identification as O stars based on their spectra is
tentative at this stage. Both stars have already appeared inthe lit-
erature on Carina stars, first as bright IR sources in Smith (1987;
the corresponding designation is reported in Fig. 7-a), then as
candidate massive stars from both X-ray and IR observations
(Sanchawala et al. 2007, Povich et al. 2011a); no optical spectra
were however published for these stars before.

Finally, 17 stars are good or possible candidates as Herbig
Ae/Be stars with an A/B type and definite (regardless of sky-
subtraction option chosen) wide emission at Hα. We show some
examples of these stars’ spectra in Figure 7-b. Some of the spec-
tra also show absorption or emission in the Fe II lines at 6456.38,
6516.08Å, indicative of hot gas. While many of the spectra of
these stars clearly show wide Hα absorption wings, underly-
ing the circumstellar Hα emission, in some cases the absorption
component is overwhelmed by the wide emission component. In
these cases the HAeBe nature is suggested by either a He I line,
by the Fe II lines, or by the optical photometry when this is more
consistent with an A-B type than with a lower mass CTTS.
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Fig. 6. Top (a): Example spectra of B stars
found among our targets. For each star, five
spectra are overplotted with different colors,
corresponding to five distinct options regarding
nebular subtraction. The vertical dashed black
line indicates the He I 6678Å line, distinctive
of B stars, but also coincident with a strong,
narrow nebular line. Spectra of different stars
are offset by 0.5 for clarity. The narrow ab-
sorption feature near 6613Å is a well-known
DIB, while a weaker DIB is sometimes visi-
ble near 6660Å. Bottom (b): Spectra of sample
B stars (lower three spectra) showing absorp-
tion in the C II doublet near 6580Å (the redder
line in the doublet coincides with the nebular
[N II] 6584Å line), which is typical of known
B bright giants/supergiants (upper two spectra,
from UVES/POP). The vertical dashed lines in-
dicate Hα and He I 6678Å.

Table 3. Identifications of RV10 stars. Columns as in Table 1.

HSB2012 CXOGNC ADM2008 YSO RA Dec V B − V V − I
(J2000) (J2000)

394 104314.98-593341.3 ... ... 10:43:14.99 -59:33:41.3 14.67 0.94 1.09
1262 104348.74-593430.4 ... ... 10:43:48.59 -59:34:31.2 17.72 1.76 2.03
1788 104405.37-593043.5 ... ... 10:44:05.42 -59:30:43.5 14.53 0.90 1.03
2169 ... ... ... 10:44:18.67 -59:48:05.4 16.09 0.96 1.02
2270 ... ... ... 10:44:22.78 -59:38:52.5 18.44 ... 1.75
2296 104423.64-593941.8 146 ... 10:44:23.56 -59:39:41.4 16.34 0.91 1.34
2561 ... ... ... 10:44:32.97 -59:38:05.9 17.38 0.94 1.22
2797 ... ... ... 10:44:42.77 -59:38:01.4 17.03 1.14 1.14
2959 104450.11-593429.3 ... ... 10:44:49.99 -59:34:29.5 16.75 1.32 1.72
3030 104452.43-594130.1 469 ... 10:44:52.40 -59:41:30.1 16.66 0.94 1.15
3167 104457.05-593826.5 534 ... 10:44:57.06 -59:38:26.9 13.70 1.01 1.19
3229 ... ... ... 10:44:58.90 -59:40:08.4 15.66 1.18 1.27
3290 104501.02-594515.5 600 ... 10:45:01.03 -59:45:15.6 14.54 0.91 1.06
3688 ... ... ... 10:45:15.44 -59:35:21.4 17.29 1.48 1.81
3844 104521.23-593258.2 ... ... 10:45:21.20 -59:32:58.4 18.06 1.26 1.63
3926 104524.13-593131.1 ... ... 10:45:24.14 -59:31:31.6 14.20 0.63 0.71
4310 104541.60-593820.2 1014 ... 10:45:41.60 -59:38:20.214.46 0.87 1.00
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Table 4. Parameters of RV10 stars. Columns as in Table 2.

HSB2012 S/N RV v sini Te f f AV Li EW γ log age Hα SB2
(km/s) (km/s) (K) (mÅ) (yr)

394 31.1 10.3±1.1 24.0± 0.5 5189±105 0.39 231.6±7.2 0.984±0.009 ... N N
1262 30.6 13.2±1.6 10.9± 2.5 3830± 17 0.42 ...± ... 0.862±0.008 ... Y N
1788 84.4 23.2±0.4 12.0± 0.5 5082± 38 0.20 172.8±3.1 0.984±0.003 ... N N
2169 40.1 14.2±0.6 13.9± 1.6 5095± 76 0.19 193.7±5.2 0.985±0.007 ... N N
2270 17.4 4.8±2.5 17.9±10.0 3816± 25 0.00 ...± ... 0.847±0.015 ... Y N
2296 59.0 15.4±2.2 18.7± 1.5 5548± 66 1.10 191.1±5.3 1.012±0.004 ... N N
2561 31.7 14.6±0.9 12.0± 0.5 4731± 73 0.21 ...± ... 0.974±0.008 ... Y N
2797 42.1 14.9±1.1 12.3± 2.4 5115± 69 0.45 ...± ... 0.988±0.006 ... Y N
2959 41.4 92.5±2.7 27.0± 0.5 4295± 40 0.64 ...± ... 0.984±0.006 ... Y N
3030 42.5 10.8±1.3 24.0± 2.7 5465± 84 0.67 59.6±5.4 1.001±0.006 ... N N
3167 112.9 10.7±0.7 15.0± 0.5 4842± 26 0.29 25.3±1.6 0.992±0.002 ... N N
3229 68.3 4.1±0.7 12.0± 0.5 5519± 50 0.94 26.6±2.7 0.994±0.004 ... Y N
3290 65.5 8.7±2.0 45.0± 0.5 4959± 44 0.16 202.8±4.4 0.98±0.004 ... N N
3688 30.9 11.3±1.2 10.4± 1.7 4124± 41 0.51 ...± ... 0.85±0.008 ... Y N
3844 16.7 6.7±1.4 12.0± 0.5 3971± 54 0.00 142.0±9.3 0.92±0.016 ... Y N
3926 28.6 8.4±1.0 9.6± 2.6 5981±137 0.00 65.5±6.1 0.978±0.009 ... N N
4310 59.3 10.0±1.0 21.0± 0.5 5221± 56 0.22 249.0±4.0 0.986±0.004 ... N N

Table 5. Identifications of lithium-rich field giants. Columns as in Table 1.

HSB2012 CXOGNC ADM2008 YSO RA Dec V B − V V − I
(J2000) (J2000)

3579 ... ... ... 10:45:11.09 -59:40:07.8 15.85 1.96 5.05
2595 ... ... ... 10:44:34.42 -59:42:57.8 15.87 2.49 3.20
3504 ... ... ... 10:45:08.53 -59:43:30.2 18.10 ... 3.25

Table 6. Parameters of lithium-rich field giants. Columns as in Table2.

HSB2012 S/N RV v sini Te f f AV Li EW γ log age Hα SB2
(km/s) (km/s) (K) (mÅ) (yr)

3579 133.3 22.1±2.3 24.7±4.6 2819± 24 ... 487.5±2.1 1.019±0.002 ... N N
2595 96.9 17.7±1.4 18.9±1.6 3598±150 2.20 231.3±2.1 1.061±0.003 ... N N
3504 32.0 43.1±0.7 7.5±1.7 4424± 69 4.24 167.5±5.9 1.051±0.008 ... N N

All massive stars found in our spectral dataset are listed in
Table 7. The ’SIMBAD Id’ column shows that all of these stars
have also appeared in the SIMBAD database; however, for only
12 of them a B spectral type was already determined. Therefore,
the large majority of our early-type stars are new entries inthe
massive-star population of Carina, including all HAeBe stars. In-
cidentally, our complete spectral sample also includes twostars
for which SIMBAD lists a B spectral type (with no reference
given), while our spectra show definitely later (F and K) spectral
types, as shown in Figure 8.

We have also matched our stellar sample with the lists of can-
didate massive stars from Sanchawala et al. (2007) and Povich et
al. (2011a). Of the 7 matches with the Sanchawala et al. (2007)
candidates, we confirm a type earlier than early-A for 4 (at most
5) stars; only 4 of our stars match the Povich et al. (2011a) can-
didates and all of them are confirmed as early-type stars. The
combined list contains 11 massive star candidates, of whichonly
2-3 are not confirmed. Again, these are small numbers with re-
spect to the number of new early-type stars found for the first
time in our Gaia-ESO spectra (110 stars in Table 7) in a spatial
region much smaller than the whole Carina region covered by
the Povich et al. (2011a) study.

4.2. Photometric analysis with CHORIZOS

Some of the massive stars identified in this section are potentially
interesting because their colors suggest large extinctions (AV ∼ 5
or higher), which are rarely found for objects immersed in Hii
regions. For that reason we selected 10 stars from Table 7 that are
potential candidates for being highly extinguished. For 7 of the
starsUBVIJHK photometry is available from Hur et al. (2012)
and 2MASS (Table 8), while for the remaining 3 onlyBVIJHK
photometry exists (Table 9).

We processed the photometry described above using the
CHORIZOS code (Maíz Apellániz 2004) to measure the ex-
tinction experienced by the stars and, to the degree in whichit
is possible, their effective temperatureTeff and logarithmic dis-
tance logd. The procedure followed is similar to that used in
other papers such as Maíz Apellániz et al. (2015). With the
purpose of obtaining independent assessments of the properties
of these stars, the results from the spectroscopic analysisabove
were not used as inputs here. We start by providing details of
theUBVIJHK photometry case as follows:

– We used the Milky Way grid of Maíz Apellániz (2013a), in
which the grid parameters are the effective temperature (Teff)
and photometric luminosity class (LC). The latter quantityis
defined in an analogous way to the spectroscopic equivalent,
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Fig. 7. Top (a): Spectra of a possible O star
(SIMBAD identifier [S87b] IRS 38), a proba-
ble O star ([S87b] IRS 42), and two UVES/POP
spectra of known O stars. The lower two spectra
were slightly smoothed to improve their visibil-
ity. Dashed vertical lines indicate Hα and He I
6678Å, as above, plus the He II lines at 6527
and 6684Å, typical of O stars. Bottom (b): Ex-
ample spectra of new candidate Herbig Ae/Be
stars discovered in this work.

but maps discrete classes I-V to a continuous variable in
the range [0-5.5]. For objects withTeff > 15 kK the spectral
energy distributions (SEDs) are TLUSTY (Lanz and Hubeny
2003).

– The extinction laws were those of Maíz Apellániz et al.
(2014), which are a single-family parameter with the type
of extinction defined byR5495 (monochromatic analogous of
RV , see Maíz Apellániz 2013b). The amount of reddening is
parameterized byE(4405− 5495).

– LC was fixed to 5.0 (main sequence) in all cases except for
[HSB2012] 3994, for which it was fixed to 1.0 (supergiant).
The valuesTeff, R5495, E(4405−5495), and logd were left as
free parameters.

The BVIJHK photometry case was similar but it required
an additional step. The problem with lackingU-band photome-
try is thatTeff and logd become quasi-degenerate (even if LC is
known).R5495 andE(4405− 5495), however, are strongly con-
strained, as the different combinations of validTeff and logd
yield almost identical values of the two extinction parameters.
Therefore, the procedure we followed was to select a reasonable

fixed value of logd and leaveTeff, R5495, andE(4405− 5495) as
free parameters.

The results of the CHORIZOS analysis are presented in Ta-
bles 8 and 9.

– We find values ofR5495 between≈3.6 and≈4.9, which are
higher than the Galactic average but typical for an Hii region.

– E(4405− 5495) ranges between≈1.3 and≈2.8, reflect-
ing the known strong differential extinction. The three stars
with no U-band photometry have the three highest values of
E(4405− 5495), as expected.

– Typically, AV is determined with better precision than either
R5495 or E(4405− 5495) even though, to a first approxima-
tion, AV ≈ R5495 · E(4405− 5495). This is not incorrect be-
cause the likelihood in theR5495-E(4405− 5495) plane is
an elongated quasi-ellipsoid with negative slope, i.e.,R5495
and E(4405− 5495) are anticorrelated. This effect is com-
monly seen in fits to extinguished hot stars with CHORIZOS
or similar codes.

– The most important result regarding the extinction is the
location of four stars ([S87b] IRS 41, [S87b] IRS 42,
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Fig. 8.Spectra of two stars misclassified in the SIMBAD database as B
stars, while they are a K giant (lower spectrum), and a late-Aor F star
(upper spectrum), respectively. Spectra are labeled with their SIMBAD
identifier. Color coding as in Figure 6.

[HSB2012] 1920, and [S87b] IRS 38) in theE(4405−5495)-
R5495 plane. A comparison with Figure 2 of Maíz Apellániz
(2015) reveals that they are in a region where no other known
Galactic OB stars are located. That is because for low val-
ues ofE(4405− 5495), it is possible to find a large range of
R5495 values but for large reddeningsR5495 tends to be close
to the average∼3.1 value. In other words, those four stars
are exceptional in having large values of bothE(4405−5495)
andR5495, and their extinctions laws deserve a more detailed
study.

– We plot in Fig. 9 the dependence ofχ2
red of the CHORIZOS

fit with reddening. ForR5495 < 4.0, the fits are reasonably
good even for values ofE(4405− 5495) ∼ 2.0, indicating
the validity of the extinction laws of Maíz Apellániz et al.
(2014) for lowR5495. ForR5495 > 4.0, there are good fits for
low values of the reddening butχ2

red grows increasingly large
as E(4405− 5495) increases, indicating that the extinction
laws of Maíz Apellániz et al. (2014) need to be modified for
large values ofR5495. This is not surprising, given that those
laws were derived using stars with lower reddenings and here
we are extrapolating to much larger values.

– For two of the B-type stars (as determined from the spec-
troscopy) with UBVIJHK photometry ([HSB2012] 3017
and [HSB2012] 3994), the CHORIZOS-derivedTeff is con-
sistent with their being mid-B stars. For the other five objects
with UBVIJHK photometry (from the spectroscopy, three B
types, one B SG, and one O type), the uncertainties inTeff are
larger and the values lean toward their being O stars. How-
ever, we should be cautious of that result, especially for the
cases with highχ2

red. They could be late-O stars (with weak
Heii 6683 Å) or the fitted values forTeff could be biased by
the extinction law (Maíz Apellániz et al. 2014).

– [HSB2012] 3994 has an exceptionally large fitted distance
(beyond the expected extent of the Galactic disk). One pos-
sible solution is that it is not a supergiant but instead a lower
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Fig. 9. χ2
red vs. E(4405− 5495) for the 10 highly extinguished stars

analyzed with CHORIZOS.

luminosity star. Even then, it is likely to lie beyond the Ca-
rina nebula.

– Three other stars ([HSB2012] 230, [HSB2012] 1395, and
[HSB2012] 2913) are also likely to lie beyond the Carina
nebula. On the other hand, the fitted logd for [HSB2012]
3017, [S87b] IRS 41, and [S87b] IRS 42 are compatible with
them belonging to the Carina nebula association. It should be
pointed out that the latter list includes the two stars with the
highest values ofR5495. That is an expected effect because for
stars beyond the Carina nebula one expects a larger contribu-
tion to extinction from the diffuse ISM and, hence, a lower
R5495.

The uncertainties derived by CHORIZOS are relatively small
but not unrealistic because for over a decade we have worked to
eliminate the systematic errors that have plagued other works.
That includes recalculating the zero points for different pho-
tometric systems (Maíz Apellániz 2005, 2006, 2007), comple-
menting and testing different atmosphere grids (Maíz Apellániz
2013a), deriving a new family of extinction laws that provides
significant better fits to photometric data than pre-existing ones
(Maíz Apellániz 2013b, Maíz Apellániz et al. 2014a), obtaining
a library of data on reference stars to serve as a test bed for all
of the above (Maíz Apellániz et al. 2004, (Maíz Apellániz and
Sota 2008, Maíz Apellániz et al. 2011), and integrating every-
thing into the code.

5. Spatial groups

The Carina nebula is known to host a morphologically com-
plex stellar population, distributed among approximately20 sub-
clusters and a sparse population, according to Feigelson etal.
(2011), of which Tr 14 and Tr 16 are only the most massive.
Therefore, we define several spatial groupings into which we
conveniently split our sample stars. Among clusters definedin
Feigelson et al. (2011), numbers 1, 3-6, 9-12, 14 fall in the re-
gion studied here. This is however a too detailed subdivision
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Table 8.Results of the CHORIZOS fits for the 7 highly extinguished stars withUBVIJHK photometry.

Star Teff LC R5495 E(4405− 5495) logd AV χ2
red

kK mag pc mag
[HSB2012] 3017 22.2±2.5 5.0 3.62±0.08 1.291±0.039 3.50±0.07 4.688±0.077 1.9
[HSB2012] 230 41.8±5.3 5.0 3.95±0.07 1.393±0.023 3.88±0.11 5.531±0.036 0.8
[HSB2012] 1395 42.3±5.2 5.0 4.20±0.08 1.384±0.022 4.11±0.11 5.831±0.040 0.7
[HSB2012] 2913 40.8±6.0 5.0 3.69±0.05 1.828±0.026 3.85±0.12 6.756±0.040 0.2
[HSB2012] 3994 18.5±3.2 1.0 4.57±0.10 1.290±0.045 4.51±0.05 5.902±0.114 3.7
[S87b] IRS 41 42.4±4.4 5.0 4.92±0.09 1.351±0.020 3.37±0.09 6.669±0.034 6.4
[S87b] IRS 42 42.0±4.2 5.0 4.60±0.06 1.932±0.021 3.22±0.09 8.860±0.033 11.3

Table 9.Results of the CHORIZOS fits for the three highly extinguished stars withBVIJHK photometry.

Star R5495 E(4405− 5495) AV χ2
red

mag mag
[HSB2012] 3880 3.64±0.06 2.106±0.030 7.636±0.040 1.4
[HSB2012] 1920 3.93±0.06 2.238±0.030 8.757±0.026 4.6
[S87b] IRS 38 4.07±0.05 2.825±0.030 11.394±0.034 30.4

161.5 161.4 161.3 161.2 161.1 161.0 160.9 160.8

−
59

.8
0

−
59

.7
5

−
59

.7
0

−
59

.6
5

−
59

.6
0

−
59

.5
5

−
59

.5
0

RA (J2000)

D
ec

 (
J2

00
0)

Trumpler 14

V560 Car

HD93250

WR25

eta Car

Fig. 10.Spatial map of observed stars. The lower right region is empty
because of our sample selection choice. Symbols as in Figure5, with
the addition of big circles to indicate B stars (blue), late-B to early-A
stars (cyan), candidate B supergiants (black), and probable (orange) or
possible (violet) O stars. We also plot O stars from Walborn (1973) as
black crosses. The most massive of these stars (surrounded by big black
circles) are taken as centers of the respective subregions,bounded by red
dashed lines, and labeled in red after the central star names(except for
Trumpler 14, whose central star is HD93129A). Dashed black segments
delimit the dark V-shaped dust lanes in front of the nebula. The solid
gray circle to the NW ofη Car indicates approximate location and size
of the Keyhole nebula (Smith and Brooks 2008).

considering the number of optical spectra available here, so we
prefer a simpler categorization. In Figure 10 we show the spa-
tial distribution of all stars observed in Gaia-ESO and known
massive stars as a reference. The most massive stars are also
coincident with the brightest X-ray sources (see Fig.1 in An-
tokhin et al. 2008) and exert the strongest influence on their
neighborhood. Accordingly, we define five spatial regions, de-
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Fig. 11.(B−V,V− I) color-color diagram of the observed sample. Sym-
bols as in Figs. 5 and 10. The thick red line indicates the unreddened lo-
cus of stars earlier than A0, while the thick gray line indicates the same
for later type stars. The reddening law appropriate for cluster stars is il-
lustrated by the solid arrow on top of the dashed arrow describing fore-
ground absorption (and reddening law). The length of the solid arrow
indicates the reddening of the new candidate O star 2MASS10453674-
5947020 (star [S87b] IRS 42 in SIMBAD).

limited by red dashed segments in the Figure, centered on stars
HD93129A (O2If*+O2If*+O:, central star of Tr 14), V560 Car
(= HD93205, O3.5V((f+))+O8V), HD93250 (O4IIIfc:, central
star of Collinder 232), WR25 (= HD93162, O2.5If*/WN6), and
η Car.

6. Reddening

Determination of optical extinction toward individual stars is
very important to establish how they are distributed along the
line of sight. A number of studies (e.g., Smith 1987, Hur et al.
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Fig. 12.Diagrams of Te f f vs. colorV− I, for four spatial subregions as indicated. The KH95 Te f f -color relation is shown for zero reddening (solid)
and for the cluster foreground reddening (dashed). Symbolsas in Figs. 5 and 10. Big red circles indicate luminous low-gravity giants, probably
located behind the nebula.

2012) have determined that the foreground extinction toward Ca-
rina is relatively low (E(B − V) ∼ 0.36± 0.04, or A fg

V ∼ 1.1),
while higher reddening stars in the same region show an anoma-
lous reddening law withR = 4.4 − 4.8. In the central part of
Carina being studied here, highly obscured member stars have
been found by means of X-ray observations (Albacete-Colombo
et al. 2008; CCCP). Therefore, even considering only Tr 14/16
(and not the embedded clusters of Feigelson et al. 2011), clus-
ter members are found over a large range of extinction values.
The spatially highly nonuniform distribution of extinction is also
made obvious by the two prominent SE and SW dark dust lanes.

Figure 11 shows a (B − V,V − I) color-color diagram (us-
ing photometry from Hur et al. 2012), where in particular the
colors of the early-type stars (large circles) found from our spec-
troscopy are useful to study the intracluster reddening law. The

intrinsic colors of massive stars (down to A0) are describedby
the red line (3-Myr nonrotating solar-metallicity isochrone from
Ekström et al. 2012, henceforth Geneva4), while those of lower
mass stars by the gray line (ZAMS from Kenyon and Hartmann
1995; henceforth KH95). Despite the lack of a detailed classifi-
cation for the massive stars (Sect. 4), it is expected that most of
them are late-B or early-A stars with colorsB − V ∼ V − I ∼ 0.
On this basis, the slope of the dashed arrow in Fig. 11 suggests
that the foreground reddening law isE(V − I)/E(B− V) = 1.53,
which is slightly larger than the value 1.32 in Bessell et al.1998;
inside Carina this ratio becomes 1.95 (slope of the black solid ar-
row), which is slightly larger than the value found by Hur et al.
(2012) of 1.8±0.1 from photometry alone. Figure 11 also shows

4 http://obswww.unige.ch/Recherche/evoldb/index/Isochrone/
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that some of the B-type stars redder thanB − V ∼ 1 appear to
have a lowerE(V − I)/E(B − V) ratio, more like a normal red-
dening law, although their spatial distribution shows no obvious
pattern. Moreover, the two candidate O stars found in Sect. 4are
both found at very large reddenings (orange and violet circles),
corresponding to intracluster extinctionAV > 5.5. Among stars
with B−V ≥ 2, the mentioned O star is the only candidate cluster
member: the handful of other stars found in that color range are
therefore obscured background giants, whose detection permits
us to estimate the total optical extinction of the nebula, and its
spatial variation, as we discuss below and in Section 9.

We determined individual extinction values for our stars
from their photometricV − I colors, Te f f derived from our
spectroscopy, and the Te f f -color relation from KH95 for ZAMS
stars5; theE(V − I) colors were converted toAV using the above
reddening laws as appropriate, i.e., differently for foreground ex-
tinction only (AV < 1.1) and foreground+intra-cluster extinc-
tion, each with its reddening law. Because of our inability to as-
sign a detailed spectral type and photometric color to the early-
type stars, their extinction was computed by dereddening their
photometry to match the 3-Myr isochrone from Ekström et al.
(2012). Figure 12 shows Te f f versusV− I diagrams for all of our
stars separately for the different spatial groups (defined in Sec-
tion 5). The solid line is the KH95 calibration at zero reddening,
while the dashed line is the same curve atAV = A fg

V = 1.1; it is
clear that most low-mass cluster members fall a little to theright
of the latter curve. In this Figure we also show the placement
of giant stars (defined from theγ index in Damiani et al. 2014)
as red circles: as anticipated above, most of these giants lie at
large reddening values6 and likely beyond the Carina nebula. In
the Trumpler 14 region virtually no background stars are seen:
this might be related to a relatively higher extinction compared
to other sightlines, and also to our incomplete target sampling
combined with a locally enhanced member-to-field star density
ratio.

7. Color-magnitude diagram

We show the dereddened CMD of our sample stars in Figure 13.
We find probable cluster members of masses down to one so-
lar mass (or slightly below). The nonuniform reddening however
prevents us from establishing a mass completeness limit; wecan-
not be sure of detecting even O stars (our candidate O star [S87b]
IRS 38 hasV = 17.64) in places where the reddening is largest.
Nonuniform reddening causes bright stars to be over-represented
among optically selected samples such as this one, hence we find
a relatively large number of B stars relative to solar-mass stars
in our sample. This dataset is therefore unsuitable for studies
(e.g., of the IMF) requiring statistically representativesamples.
The scarcity of cluster members in the (V − I)0 range 0.2-0.5,
corresponding to late-A and F stars, is also apparent from the
figure. The same lack of members can be observed in Fig. 12
at Te f f near 7000 K. Since lower mass stars are found in larger
numbers, this cannot be due to excessive reddening toward the F
stars. One possible explanation for the small number of F-type
members is the relatively fast traversal time across their radia-
tive tracks in the CMD. In addition, we might lack the ability

5 Although the KH95 relation may be superseded by more recent cal-
ibrations, its usage here for derivingAV is appropriate for best consis-
tency with the Te f f calibration in Damiani et al. (2014).
6 The employed KH95 calibration is appropriate to ZAMS stars,and
therefore the reddening values derived by applying it to giants are only
approximate, but sufficient for our classification as background stars.
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Fig. 13. Dereddened (V,V − I) color-magnitude diagram. Symbols as
in Figs. 5 and 10. Also shown are the ZAMS for lower MS stars
(blue), a Geneva 3-Myr isochrone for massive stars (red), and selected
isochrones (dashed black) and evolutionary tracks (solid black) for
lower mass stars from Siess et al. (2000); these latter are labeled with
stellar mass in solar units. The A0 and earlier type stars have been pro-
jected to the MS (along the combined foreground+cluster reddening
vector, as shown), since they lack a detailed classification.

to assess their membership, as mentioned already in Sect. 3 for
the A-type stars. Since F-type stars are generally found to be as
strong X-ray emitters as G-type stars, we consider them again in
the context of the Carina X-ray data below.

Ages for the low-mass stars estimated from the isochrones
in Fig. 13 are distributed mostly in the range 1-5 Myr, in agree-
ment with previous studies (e.g., Tapia et al. 2003, Carraroet
al. 2004, Hur et al. 2012). As noted by, for example Smith and
Brooks (2008) or Wolk et al. (2011), not all clusters in Carina
are the same age (Tr 14, in particular, is more compact and prob-
ably younger than Tr 16). The problem of establishing their age
relationship is discussed in Section 10.

8. X-ray data

In the subregion comprising Tr 16 and WR25 we find approx-
imately 180 low-mass candidate Carina members. Considering
that our target selection involved a∼ 50% down-sampling of all
candidate members from optical photometry down toV = 18.5,
we can extrapolate to∼ 360 members down to that magnitude
limit; this is much smaller than the number of X-ray sources
(1035) found in the same region by Albacete-Colombo et al.
(2008). An even larger number was found in the CCCP X-ray
survey, even though this survey was based on the same Chandra
observation in the field of Tr 16, because of the less conservative
choices adopted in detecting point sources. Spurious detections
in Albacete-Colombo et al. (2008) are predicted not to exceed
∼ 10 sources and the number of unrelated field X-ray sources is
∼ 100, so that the number of X-ray members in this subregion
remains> 900. Therefore, a significant excess of≥ 500 X-ray
sources remain, above the number of members inferred from our
spectroscopic data. These must be stars fainter than ourV = 18.5
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Fig. 14. Radial velocity vs. Te f f for stars not classified as members.
Symbols as in Figure 5, with the addition of red crosses representing X-
ray detected stars, unconfirmed by other membership indicators. Bars
indicate statistical errors only. The RV10 stars are indicated with black
circles. The horizontal lines indicate the cluster RV range.

selection limit, either because of their low mass or becauseof
large extinction (or both). Since their number is not small with
respect to the spectroscopically studied sample, we cannotover-
look them for a proper understanding of the properties of the
SFR. Here we try to investigate their nature.

Forty X-ray detected late-type stars (21 from Albacete-
Colombo et al. 2008) were observed spectroscopically, but not
classified here as members; of these stars, 11 are RV10 stars and
6 are near-ZAMS rejected members discussed in Section 3. We
first examine whether this can reveal a failure of our member-
ship criteria. These stars do not cluster at any particular place in
the CMD diagram and there is no reason to conclude that as a
group they should be included among members. The same con-
clusion is reached from Figure 14, showing RV versus Te f f ex-
clusively for nonmember stars: the X-ray emitting nonmembers
are randomly scattered, and in particular their membershipsta-
tus would not change by any small adjustment of the nominal
RV range for members (horizontal lines). We recall that, if these
X-ray sources had lithium EW above 150 mA, they would have
been accepted as members even in the presence of discrepant RV
(in order not to lose binaries)7. Thus, the red crosses in Fig. 14
not only have discrepant RV but also no lithium. As discussed
above, in the Te f f range 9000-7000 K our membership criteria
may be weakest; yet, even in this range the number of potential
candidates from X-rays is very small and they all appear to have
significantly discrepant RV. Therefore, these X-ray detected stars
with no lithium and discrepant RV are unlikely members and are
not considered further8. We also conclude that the lack of mem-

7 The few red crosses inside the nominal RV range were rejectedas
members because of their proximity to the ZAMS, as explainedabove.
8 Of these 40 stars, 37 are classified by Broos et al. (2011b) within the
CCCP project, on the basis of X-ray properties and optical-NIR pho-
tometry alone: all but four (unclassified) objects were assigned to the
“Carina young star” group including, thus, the majority of near-ZAMS

ber stars in the temperature range 9000-7000 K is real and nota
byproduct of our membership criteria. This is probably related
to the R-C gap found in the photometric CMD of several clus-
ters by Mayne et al. (2007); the same effect is not recognizable
in the CMD of Carina clusters because of strong differential ex-
tinction.

Next, we examine the X-ray properties of X-ray detected
sources that have not been observed spectroscopically. We take
the list of sources and their properties from Albacete-Colombo
et al. (2008). Figure 15-a compares cumulative distributions of
extinction AV (as derived from the near-IR colors for X-ray
sources with a 2MASS counterpart), for the X-ray sources in
the spectroscopic sample and in the no-spectroscopy sample. A
Kolmogorov-Smirnov (KS) statistical test gives a probability P
that the two distributions are drawn from the same parent sample
of only P = 4.9 · 10−5, confirming the significance of their visu-
ally apparent difference. Similar results are obtained from con-
sideration of the absorbing column densityNH , as derived from
model best fits to the Chandra ACIS X-ray spectra (Albacete-
Colombo et al. 2008), whose distributions for the spectroscop-
ically observed and unobserved samples of X-ray sources are
also shown in Figure 15-a: here a KS test gives a probability of
P = 1.83·10−6 that the two distributions are drawn from the same
parent sample. The two tests just made do not refer to the exact
same subsamples of X-ray sources, since only two-thirds of the
X-ray sources in Albacete-Colombo et al. (2008) have a 2MASS
counterpart and only those detected with more than 20 X-ray
counts had a spectral fit performed. Nevertheless, there is defi-
nite evidence that the optically missed, X-ray detected members
are more obscured than the stars in our spectroscopic sample.

This finding does not rule out that the X-ray detected sample
may also contain a number of low-extinction members at fainter
optical magnitudes than our limit. To test this, we considered
the distributions of X-ray luminositiesLX , derived from X-ray
spectral fits and therefore corrected for absorption, for the spec-
troscopic and no-spectroscopy samples, as shown in Figure 15-b:
the KS test gives a probability of no difference ofP = 2.2·10−16.
Young PMS low-mass stars are known to be in an X-ray satu-
rated regime, where the X-ray luminosityLX is on average pro-
portional to stellar bolometric luminosity,LX ∼ 10−3Lbol (Flac-
comio et al. 2003, Preibisch et al. 2005, Damiani et al. 2006a);
therefore, the lower (unabsorbed) X-ray luminosities of stars
without spectroscopy implies that these stars have on average
lower luminosities (and mass) than our spectroscopic sample.
The X-ray detected member sample is therefore more complete
than the spectroscopic sample both toward lower masses and to-
ward more obscured stars.

9. Cluster structure

We attempt here to combine all data discussed above in a single
coherent picture of the structure of central Carina. We firsttest
the meaningfulness of the derived extinction valuesAV , by com-
paring them with the spectroscopic gravity indexγ defined in
Damiani et al. (2014). The prediction that we test here is that all
main-sequence stars later than mid-G, and only observable in the
foreground of the nebula, must haveAV ≤ A fg

V , while most giants
appear in the background with a much lower space density but
higher luminosity. Figure 16 shows that this is exactly the case:
high-gravity, main-sequence GKM stars haveγ < 0.97 and the

and RV10 stars, which we instead excluded on the basis of the Hur et
al. (2012) photometry and our RVs, respectively.
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Fig. 15. (a): Cumulative distributions ofAV (derived from NIR colors) for Tr 16 X-ray sources observed here spectroscopically (black solid line)
and unobserved (red solid line). Blue and orange dashed lines indicate the cumulative distributions of gas column density NH (scale on top axis)
for the same subsamples, respectively. (b): As in panel (a), for the X-ray luminosityLX.
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Fig. 16.Optical extinctionAV vs. spectral indexγ. Symbols as in Figs. 5
and 10. For GKM stars,γ is an effective gravity diagnostic, where high-
gravity stars haveγ < 0.97 and giants haveγ > 1.02. The horizontal
dashed line indicates the foreground extinction value.

vast majority of them are found atAV ≤ A fg
V , while giants (hav-

ing γ > 1.02) are almost all found in theAV range between 2-5
mag, typically larger than the extinction toward cluster members.

Having better established our confidence in the determined
extinction values, we next consider the spatial distributions of
stars in several ranges ofAV , as shown in Figure 17. The up-
per left panel shows all stars withAV < 0.8; no clustering is
detectable, in agreement with these being foreground stars, un-

related to Carina and its obscuring material. Tens of stars are
found projected against the dark V-shaped dust lanes. The num-
ber of low-gravity stars (red circles) is very low. In the upper
right panel, the low-extinction cluster members appear in dense
groups with close spatial association with the most massivestars;
the dust lanes are almost devoid of stars except for a dozen (prob-
ably background) stars near WR25, where the total absorption
is lower than elsewhere in the lane (see, e.g., Fig.1 in Albacete-
Colombo et al. 2008). Most of the B-type stars have not yet made
their appearance in thisAV range. This probably makes the num-
ber ratio between early-type and solar-type stars more represen-
tative of its real value. In the next extinction range, shownin the
lower left panel, the stellar distribution has changed consider-
ably. Low-mass members are more widely dispersed away from
the most massive stars, while their density generally increases
toward places of higher obscuration. This is seen in the vicin-
ity of η Car, which now has many more neighbors toward SE
(where they eventually meet the dark lane) than toward NW, and
also in the Trumpler 14 region, where again member stars are
found exclusively on the side of the cluster nearest the darklane.
Taking the dashed black lines in the Figure as a reference, we
may observe that the number of stars in their immediate vicin-
ity, in both the Tr 14 andη Car subregions, increases dramati-
cally from the low-extinction layer to the higher extinction layer.
This is also true for the B and early-A stars, most of which are
found on the high-extinction sides of Tr 14 andη Car, respec-
tively. The southwest and northeast regions around WR25 and
HD93250-Collinder 232, respectively, show several low-gravity
background giants, indicating that the total nebula extinction in
those regions does not exceedAV ∼ 2 − 3. No background gi-
ants are instead found on the high-extinction sides of Tr 14 and
η Car, nor in the dark lanes (except for the vicinity of WR25
as already remarked). Finally, the lower right panel shows the
most reddened stars found in our dataset. Only early-type clus-
ter members are found here, including the two candidate O stars
(both under the SE obscuring lane) and three candidate B super-
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Fig. 17.Spatial maps of observed stars, split in four ranges ofAV as labeled. Star symbols as in Fig. 10 with the addition of redcircles indicating
low-gravity giants as in Fig. 12. Dashed black lines indicate the dark dust lanes as in Fig. 10. Dashed red segments indicate the boundaries of large
gas shells studied in Paper I. The big gray circle indicates the position and approximate size of the Keyhole nebula.

giants; at these extinction values, background giants maketheir
appearance even close to the SE dark lane, but not in the region
surrounding Tr 14. This extinction pattern agrees qualitatively
with that in Smith and Brook (2007; their Fig.5a).

Figure 18 shows all stars withAV > 1.8 together with X-ray
detected sources in Tr 16 (most of which are members as dis-
cussed above) with X-ray hardness indexHS > 0.5,9 which
indicates moderate to high absorption; in addition, these X-ray
sources were not observed spectroscopically. Most moderately
obscured X-ray sources (orange triangles) lie south ofη Car
and between it and WR25, while the heavily obscured X-ray
sources (brown triangles) lie behind the sourthern dark lane with

9 HS is defined as the count ratio between bands [2-8] keV and [0.5-
2] keV.

the largest source density found between the two new candi-
date O stars. This subcluster of highly absorbed X-ray sources
is named CCCP-Cl 14 in Feigelson et al. (2011) and Tr 16 SE
in Sanchawala et al. (2007). The dominant star of this subclus-
ter, according to Feigelson et al. (2011), is the O eclipsingbinary
FO 15 (= V662 Car, O5.5Vz+O9.5 V,v), which however we did
not observe spectroscopically. The optical extinction of this star
is AV ∼ 5 (Niemela et al. 2006), thus lower than that we find for
our candidate O stars [S87b] IRS 42 and IRS 38 (AV = 6.6 and
9.1, respectively) in the same region. At the same location,an
obscured cluster of massive stars was found from Spitzer images
by Smith et al. (2010; called ’cluster G’ in their Table 4), who
argued that this is not an embedded, extremely young cluster, but
more likely a cluster of age 1-2 Myr behind and not inside the
foreground dark lane.
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Fig. 18. Spatial map of reddened sample stars withAV > 1.8 (shown
by same symbols as in Fig. 17) and of obscured X-ray sources (orange
triangles: 0.5 < HS < 1.0; brown triangles:HS > 1).

Figure 18 shows no clear separation between subclusters in
proceeding fromη Car to its SE, but only a gradually increas-
ing proportion of highly absorbed Carina members, both massive
and of low mass (the latter only from X-rays). Instead, the low-
extinction members (in Figure 17, upper right panel) are much
more clustered in tight groups centered on the respective mas-
sive stars. It is interesting to compare the distribution ofstars
with that of the ionized gas from Paper I, consisting of several
large shells, almost devoid of dust, centered onη Car, WR25,
and Tr 14. The observed gradual increase in extinction toward
the SE, if most stars are enclosed in such dust-free shells, im-
plies that the obscuring material must lie in front of the star
clusters (and gas) and is not generally mixed with them. At its
SE border, theη Car gas shell does not seem to interact with
matter in the dark lane, but instead fades behind it. This agrees
with the conclusion by Smith et al. (2010) that the obscured SE
subcluster (their "cluster G") lies behind the lane and doesnot
interact with it. This is probably also true of the newly found
massive OB stars in the direction of the dark lanes, so that their
UV radiation would illuminate most cluster stars with little at-
tenuation, despite the very large extinction found toward us. Of
course, circumstellar dust may still exist around individual stars,
which contributes to theAV scatter in Fig. 17 and shields the
massive star UV flux; however, since we do observe a regular
spatial extinction pattern in Fig. 17, local extinction is probably
a minor contributor to the total observedAV .

Behind the high-reddening members of Tr 14, withAV ≤ 3,
we do not find virtually any background star. Except for the Tr14
region and the dark lanes, we have instead found background gi-
ants throughout most of the surveyed part of Carina and, there-
fore, we have been observing the brightest members through the
entire thickness of the nebula to its far side.
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Fig. 19. Cumulative distributions of photometric ages for all members
in the Te f f range 4300-6500 K. The black lines represent stars with
AV < 1.6; the red lines represent stars withAV > 1.8.

10. Stellar ages

We investigate whether there are measurable age differences be-
tween the Carina subclusters. A useful age diagnostic for young
low-mass stars is the lithium resonance line at 6707Å, whose
EW as a function of Te f f was shown in Fig. 5. In the temperature
range of the Carina members studied here, however, lithium EW
is insensitive to age if a cluster is younger than several tens Myr
(Jeffries 2014), as is the case for Carina clusters. Accordingly,
the scatter of data points in the above figure may be entirely ac-
counted for by errors on Te f f (∼ 5%) and lithium EW and is
not related to real age differences among the observed Carina
members.

We examine the relative ages of the different Carina sub-
groups as derived from the star location in the CMD, compared
to Siess et al. (2000) isochrones. This methods still benefits from
our spectroscopic data since apparent star colors and magnitudes
are individually dereddened using the extinction valuesAV de-
rived above. In addition, there remain a series of caveats related
to nonphotospheric contributions, such as veiling in accreting
PMS members, uncertainties in the reddening law, or unrecog-
nized binaries.

The distributions of photometric ages for low- and high-
extinction subsamples are shown in Figure 19; both distributions
are rather wide, over more than one dex in age. This agrees with
the earlier result of DeGioia-Eastwood et al. (2001) that star for-
mation in these clusters was active over the last 10 Myr, which
should be taken as an upper limit to the true age spread con-
sidering, for example uncertainties in extinction and reddening
law, binarity, or variability. The difference between the two dis-
tributions in the Figure points to the obscured Carina population
being slightly younger than the unobscured one, however with a
modest statistical significance of 93.9%.

To corroborate this result, we show in Figure 20 the cumula-
tive distributions ofAV for Carina members with and without a
YSO counterpart in the Zeidler et al. (2016) catalog: (younger)
members associated with a YSO have a larger extinction than
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Fig. 20.CumulativeAV distribution for members identified with a YSO
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Fig. 21. Cumulative distributions of stellar ages as derived from pho-
tometry and isochrones, as in Fig. 13, for cluster members from differ-
ent subgroups.

(older) members with no YSO association, with a confidence
level of 99.6%.

The cumulative distributions of photometric ages of Carina
member stars in the subclusters are shown in Figure 21. Stars
in Tr 14 are significantly younger (at 99.1% level) than those
of all other subgroup (cumulatively), while the age distributions
of η Car, HD93250, and WR25 subgroups are indistinguishable
from one another. This agrees with the already mentioned sug-
gestion that Tr 14 is younger than Tr 16.
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Fig. 22. v sini distribution for Carina members with 4500< Te f f <
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Fig. 23.Cumulativev sini distributions for low-mass member stars from
all groups, split by photometric age. The black line indicates log age
> 6.5; the red line indicates log age< 6.5 (yr).

11. Rotation

The HR15n spectra of Carina members show that a large per-
centage of these stars, including lower mass ones, are fast rota-
tors, with a medianv sini ∼ 40 km/s for 4500< Te f f < 6500 K
(Figure 22). To our knowledge, these are the first measurements
of rotation rates for Carina PMS stars. Since average stellar
rotation rates are strongly mass dependent, we have chosen a
restricted Te f f range for the above figure. Moreover, the Fig-
ure suggests a bimodal distribution with a higher peak near
v sini ∼ 22 km/s, and a secondary one atv sini ∼ 75 km/s, qual-
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itatively similar to that in the ONC (Stassun et al. 1999, Herbst
et al. 2002) for masses larger than 0.25M⊙. Assuming a typical
radius for our Carina PMS stars of 2R⊙, thev sini peaks would
transform into rotational-period peaks around 1.1 and 3.6 days,
respectively, which is not significantly different from those found
in the ONC. We do not find a significant difference between the
rotational velocity distributions of CTTS and WTTS either glob-
ally or considering each subgroup separately; however, as we
discussed in section 3, an accurate assessment of CTTS status is
difficult using our spectra. We therefore examined thev sini dis-
tributions for stars with and without NIR excesses, as measured
using the 2MASS (H−K, J−H) color-color diagram (as, e.g., in
Damiani et al. 2006b) or the Spitzer IRAC ([3.6−4.5], [5.8−8.0])
diagram (as in Povich et al. 2011b). In our Carina sample only
very few stars are found with significant excesses in these NIR
or MIR colors, and their rotational-velocity distributionis not
significantly different from that of stars with no excesses. Last
we have considered our Carina members with a counterpart in
the YSO catalog of Zeidler et al. (2016): thev sini distributions
for stars associated and unassociated with a YSO are different at
the 92.5% significance level. This is marginal, probably because
of the limited member sample size. The sense of the difference,
nevertheless, seems to indicate that stars surrounded by a mas-
sive dust disk spin slower than stars with no disk, which offers
some support to the disk-locking paradigm (e.g., Mathieu 2004,
Rebull et al. 2006).

We find a more significant difference (at 98.55% level) be-
tween sample stars younger and older than 3 Myr (Figure 23),
respectively. The older stars rotate more slowly than younger
ones. This result is similar to that found by Littlefair et al. (2011)
for several other young clusters. This is surprising for mostly
diskless PMS stars, which should spin up as their moment of
inertia decreases during contraction. However, stars in this Ca-
rina PMS sample belong mostly to the mass range 1− 4M⊙, and
nearly half of them lie along radiative tracks, where contraction
is much slower than along the Hayashi track; according to the
Siess et al. 2000 models, the radius even increases along part of
the radiative track for some masses in this range. The richness of
Carina, coupled with our limiting magnitude, renders the stellar
mass composition of our sample very much complementary to
that of most existing studies of rotation in young clusters.We
are unable to study the rotation of stars below∼ 1M⊙, but have
a sample of PMS stars in the∼ 1− 4M⊙ range of a size hardly
found in any other studied cluster. Therefore, the Carina rotation
data can be very important to study the rotational evolutionof
PMS stars along their radiative track. Similar datasets arestill
lacking for SFRs in the same richness class as Carina, like those
mentioned in Sect. 1.

Besides the difference between younger and older Carina
members, Fig. 23 shows that the bimodalv sini distribution is
only found in the younger subsample. The older subsample
does not show two bumps in the cumulative distribution; the his-
togram peaks correspond to the steepest derivatives in the cumu-
lative distribution. This may be related to the developmentof the
radiative stellar core, which has a profound influence on theob-
served surface rotation (see, e.g., Spada et al. 2011). Again, the
Carina rotation data may be crucial for testing theoreticalmodels
of rotational evolution along the radiative track.

12. Discussion and conclusions

Our study of the Gaia-ESO dataset on Tr 14-16, the richest clus-
ters in the Carina complex, is to our knowledge the first exten-
sive spectroscopic exploration of a sizable sample of starsin a

giant SFR, with a mass in excess of 104M⊙, of which Carina
is a rare example. Out of 1085 stars observed, more than 100
turned out to be early-type stars, mostly lacking a spectroscopic
classification; among these stars are two new candidate O stars
at high extinction, already known as bright IR sources, 17 candi-
date Herbig Ae/Be stars, and 9 candidate B supergiants, although
the limited wavelength range of the studied data prevented a
more detailed classification. Based on RV, lithium, and X-ray
data, we find 286 Carina low-mass members. Their number ra-
tio with respect to the massive stars is not representative because
the wide range in extinction encountered favors observation of
bright member stars at high reddening.

We have confirmed the anomalous reddening law already
reported and placed new constraints on the three-dimensional
space distributions of Carina members. In central Carina, there
is a relatively small percentage of embedded YSOs (Povich etal.
2011); this and other constraints posed by our previous study of
the ionized gas distribution (Paper I) suggest a picture where the
extinction toward Carina young stars in theη Car-Tr 16 region is
mostly caused by dust at some distance from the stars themselves
that is not mixed with them. This has impact on the amount of
UV flux they receive from the most massive cluster stars and
on the consequences that this is likely to have on the evolution
of the circumstellar disks (photoevaporation). It is worthnoting
that some information on the local level of UV irradiation may
also come from a detailed analysis of some of the DIBs found in
the red spectra of these stars (Kos and Zwitter 2013).

The geometry of the studied region in Carina is not sim-
ple. We observed background giants through several sightlines
across the studied region, behind a few magnitudes of optical
extinction. The dust lane to SE, close toη Car, produces enough
obscuration to drive a candidate O star close to our limitingmag-
nitude; of course, still more deeply obscured massive starsmay
exist in the same direction. If a blister geometry applies tothis
part of the cloud, this must be seen sideways from our sightline.
In the Tr 14 region close to the western dark lane, instead, the
foreground obscuration is a little more uniform, but rises more
sharply toward the dust lane. The two dust lanes have therefore a
different placement in space with respect to their nearest cluster.

The data suggest a complex history of star formation, with
a significantly younger age for Trumpler 14 with respect to
all other Carina subgroups. The high-extinction stars are only
slightly younger than the low-extinction ones, and more fre-
quently associated with a YSO.

Because of its richness, Carina also provides us with a sam-
ple of PMS stars in the 1− 4M⊙ range of a size hardly found
in other young clusters. We have presentedv sini distributions
for this unique sample of stars; our sample is significantly larger
than, for example, the sample found in the study of intermediate-
mass star rotation by Wolff et al. 2004, in the ONC. About one-
half of these stars are evolving along radiative tracks. We find ev-
idence of a bimodalv sini distribution, analogous to that found
in the ONC for lower mass stars. Stars older than 3 Myr, and
mostly on their radiative PMS track, are found to rotate more
slowly than younger stars, which puts constraints on the rota-
tional evolution of intermediate-mass PMS stars.
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Table 1. Identifications for late-type Carina members. Column HSB2012 reports the identifier in Hur et al. (2012); column CXOGNC is the
identifier in Broos et al. (2011a); column ADM2008 is the identifier in Albacete-Colombo et al. (2008); column YSO is the identifier in Zeidler et
al. (2016).V magnitudes,B − V andV − I colors are from Hur et al. (2012). Full table in electronic format only.

HSB2012 CXOGNC ADM2008 YSO RA Dec V B − V V − I
(J2000) (J2000)

796 ... ... ... 10:43:31.96 -59:33:56.4 16.36 0.93 1.15
800 104332.23-593511.3 ... ... 10:43:32.25 -59:35:11.5 16.20 0.80 1.11
908 104336.77-593315.2 ... ... 10:43:36.77 -59:33:15.2 14.72 0.68 1.17
907 ... ... ... 10:43:36.77 -59:36:48.2 17.12 1.10 1.19
954 104338.76-593301.9 ... ... 10:43:38.80 -59:33:01.8 16.21 1.08 1.50
953 104338.81-593423.7 ... ... 10:43:38.80 -59:34:23.8 18.19 ... 2.33
995 104340.13-593356.0 ... 104340.14-593356.3 10:43:40.13 -59:33:56.1 18.32 ... 2.09
998 104340.19-593449.5 ... ... 10:43:40.18 -59:34:49.6 17.04 1.55 2.13
1035 104341.45-593352.7 ... ... 10:43:41.45 -59:33:52.8 13.33 0.73 1.14
1051 104341.97-593352.6 ... ... 10:43:41.90 -59:33:53.0 17.86 ... 1.86
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Table 2. Parameters of late-type Carina members. Column HSB2012 reports the identifier in Hur et al. (2012). S/N is the spectrum median
signal/noise ratio. RV is the heliocentric radial velocity. Errorson Te f f are statistical only. The gravity indexγ is defined in Damiani et al.
(2014). Column “log age” is the photometric age. Column Hα reports “Y” if an excess Hα emission is detected, either from accretion (CTTS) or
chromospheric, distinct from the nebular Hα emission. Column “SB2” is “Y” for SB2 binaries. Full table inelectronic format only.

HSB2012 S/N RV v sini Te f f AV Li EW γ log age Hα SB2
(km/s) (km/s) (K) (mÅ) (yr)

796 17.0 2.5± 2.5 20.3± 3.3 5694±218 0.75 137.8±12.0 1.01±0.015 ... Y N
800 43.1 -0.7± 6.2 74.2± 8.1 5978± 95 0.81 105.3± 6.4 1.009±0.006 ... Y N
908 62.5 -11.5± 7.4 30.0±12.7 7541± 92 1.77 89.7± 3.9 0.999±0.004 ... N N
907 28.5 -4.9± 0.6 13.6± 1.7 4869± 95 0.31 202.0± 6.6 0.969±0.009 6.98 N N
954 49.6 -6.5± 8.0 69.0± 2.7 5727± 67 1.52 160.3± 6.3 1.01±0.005 ... N N
953 25.9 -3.6± 1.4 24.8± 1.5 4865±104 2.78 371.0± 8.3 1.022± 0.01 6.30 N N
995 16.6 -6.8± 2.0 13.0± 1.6 5019±172 2.44 373.8±11.0 0.999±0.016 ... Y N
998 47.0 -9.3± 7.0 92.4± 1.4 4942± 60 2.44 349.6± 7.4 1.011±0.006 6.12 Y N
1035 130.4 -0.7±15.1 99.4± 9.6 7498± 43 1.67 38.6± 2.3 0.998±0.002 ... N N
1051 18.2 -5.2± 2.0 15.0± 0.5 5177±159 2.04 371.1± 7.9 1.028±0.015 6.89 Y N
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Table 7.Early-type stars. Column “SpT” reports the spectral type listed in SIMBAD. Column “Notes” reports our classification, in particular: “B SG" indicates candidate B supergiants; “HAeBe”
indicates Herbig Ae/Be stars; “near A0” indicates stars of late-B/early-A type. Full table in electronic format only.

2MASS Id SIMBAD Id RA Dec V B − V V − I SpT Notes
10430716-5931209 [HSB2012] 230 10:43:07.16 -59:31:20.9 15.06 1.08 1.76 ... B type
10432086-5929595 [HSB2012] 538 10:43:20.86 -59:29:59.6 14.43 0.39 0.72 ... B type
10433865-5934444 Cl Trumpler 14 43 10:43:38.66 -59:34:44.5 12.17 0.42 0.71 ... B type
10434798-5933590 Cl Trumpler 14 45 10:43:47.98 -59:33:59.1 13.2 0.44 0.73 ... B type
10435224-5936585 [HSB2012] 1385 10:43:52.24 -59:36:58.512.24 0.4 0.7 ... B type
10435250-5942503 [HSB2012] 1395 10:43:52.50 -59:42:50.416.47 1.1 1.8 ... B type
10435723-5932411 Cl* Trumpler 14 VBF 65 10:43:57.24 -59:32:41.2 12.85 0.31 0.55 ... B type
... [HSB2012] 1618 10:43:59.20 -59:33:21.5 13.44 0.39 0.67... B type
10440320-5937380 Cl* Trumpler 14 Y 461 10:44:03.20 -59:37:38.1 12.67 0.3 0.54 ... B type
10440384-5933099 Cl Trumpler 14 38 10:44:03.84 -59:33:10.0 13.23 0.34 0.55 ... B type
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Appendix A: Sky-subtraction procedure

The Gaia-ESO HR15n dataset on Tr 14-16 contains 185 pure-
sky spectra from 137 distinct sky positions, taken simultaneously
with the stellar spectra. We have identified the following compo-
nents in these sky spectra:

1. Sky-glow emission lines from Earth atmosphere: nearly
identical within spectra from the same Observing Block,
variable with time (from an Observing Block to the next),
narrow within instrumental resolution, at fixed wavelength
in Earth frame.

2. Scattered solar light (typically moonlight): continuumwith
absorption lines, being essentially a solar spectrum at very
low levels. Constant within the same Observing Block, but
changing from one Observing Block to the next.

3. Nebular Hα, He I, [N II], and [S II] lines: they originate
from physically large regions near the target stars and do not
vary with time, but have a strong spatial dependence in their
strengths, line shapes, widths, and velocities (see Paper I).

4. Nebular continuum emission, from reflection nebulosity:a
non-negligible component in Tr 14-16, free of solar-like
spectral features but with a rather flat spectrum (like mas-
sive stars in the nebula), time constant but space variable
(Paper I).

The standard Gaia-ESO pipeline is able to remove components
1-2 (constant within the same Observing Block, variable in
time), but is not able to deal with components 3-4. Conversely,
an attempt to correct a star spectrum using only the sky spectrum
nearest on the sky would have more success in dealing with com-
ponents 3-4, but would perform badly on components 1-2, when
these are significant. Clearly, in the complex case of Tr 14-16 a
combined approach is needed.

Stellar parameter evaluation relies on the depth of stellarab-
sorption lines or bands, so that an accurately determined stellar
continuum is of the greatest importance. Contamination by sky
glow or nebular lines is in this context a minor problem, affect-
ing very localized wavelength regions or lines, which may be
usually ignored in deriving star parameters (except for thecase
of Hα). We therefore focus first on sky continuum determination
and correction.

In the Tr 14-16 dataset we find, using two methods, that the
sky continuum does not contain traces of scattered sunlight. We
computed the cross-correlation function (CCF) of the sky spec-
tra (nebular lines excluded) with a solar spectrum, lookingfor
any peak near RV=0, but no such peak was found for any Ob-
serving Block. A second method was to fit the sky spectrum with
a constant, flat spectrum plus a scaled solar spectrum: again, the
scaling factor for the solar spectrum was negligibly small with
respect to the other, flat, component, for all Observing Blocks.
Instead, within the same Observing Block the median sky con-
tinuum level is found to vary significantly, and with a clear spa-
tial pattern, which is a clear indication of a nebular (reflection)
origin for this sky spectrum component.

In Tr 14-16, the absence of scattered solar continuum en-
ables us to eliminate all time-variable sky signatures by just
subtracting out the sky-glow lines. This leaves a purely "star
plus nebular" spectrum, and the nebular part is later estimated
from the whole set of (nonsimultaneous) sky spectra in the same
dataset. Sky-glow lines in the HR15n range, of sufficient inten-
sity as to merit consideration in this context, are no more than
20 narrow lines. In principle, also some geocoronal Hα emission
is expected, but in practice it is not detected against the enor-
mously brighter Hα emission from the nebula. For each Observ-

ing Block, the sky-glow line spectrum, net of the adjacent con-
tinuum intensity and averaged within the same Observing Block,
was computed and subtracted out from all spectra in the same
Observing Block to obtain "star plus nebular" or "nebular-only"
spectra for stellar and sky spectra, respectively.

Having eliminated terrestrial sky features in this way, the
problem now reduces to estimate the most appropriate nebu-
lar spectrum to be used for correcting a given stellar spectrum.
Since the spatial density of sky fibers (considering all Observing
Blocks together) is much less than that of target star fibers,the
correspondence between the nebular (and sky-continuum) emis-
sion in a stellar spectrum and in its nearest-neighbor sky spec-
trum is never found to be perfect. Distances between a given star
and its nearest sky fiber are of order of 30" or more: the nebular
morphology is here so complex that there is no guarantee that
even the nearest sky is a good approximation to the sought neb-
ular spectrum at the star position; one gets an idea of the range
of variation of nebular spectrum in the vicinity of a given star
by looking at more (say five) sky positions nearby. Therefore,
we subtracted the nebular spectra from stellar spectra five times
per star using its nearest five sky positions. Since the properties
of nebular emission sometimes vary sharply and definitely non-
linearly in space, this is considered a robust method (within the
limitations of the available data) to understand the uncertainties
involved in the procedure.
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