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ABSTRACT 23 

The pre-supplementary motor area (pre-SMA) is central for the initiation and inhibition 24 

of voluntary action. For the execution of action, the pre-SMA optimises the decision of 25 

which action to choose by adjusting the thresholds for the required evidence for each 26 

choice. However, it remains unclear how the pre-SMA contributes to action inhibition. 27 

Here, we use computational modelling of a stop/no-go task, performed by an adult 28 

with a focal lesion in the pre-SMA, and 52 age-matched controls. We show that the 29 

patient required more time to successfully inhibit an action (longer stop-signal reaction 30 

time) but was faster in terms of go reaction times. Computational modelling revealed 31 

that the patient’s failure to stop was explained by a significantly lower response 32 

threshold for initiating an action, as compared to controls, suggesting that the patient 33 

needed less evidence before committing to an action. A similarly specific impairment 34 

was also observed for the decision of which action to choose. Together, our results 35 

suggest that dynamic threshold modulation may be a general mechanism by which 36 

the pre-SMA exerts its control over voluntary action. 37 

  38 
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INTRODUCTION 39 

The pre-supplementary motor area (pre-SMA) is a cardinal site of voluntary action: 40 

electrical stimulation here famously elicits an urge to move (Fried et al., 1991), while 41 

fMRI meta-analyses show pre-SMA activity across multiple decisions required for 42 

voluntary actions, including which action perform; when to perform an action; and 43 

whether to perform it in the first place (Brass & Haggard, 2008; Zapparoli et al., 2017). 44 

In the decision of whether to perform an action or to withhold it, the pre-SMA has a 45 

critical role in action inhibition. It is consistently identified in fMRI studies of motor 46 

inhibition tasks in young and old adults, such as the stop signal task that requires 47 

action cancellation, and the go/no-go task that requires action prevention (Rae et al., 48 

2014, 2015; Swick et al., 2011). Transcranial magnetic stimulation to the pre-SMA and 49 

focal brain lesion in this area both impair stopping, by lengthening the stop signal 50 

reaction time (SSRT) required to successfully cancel an action (Chen et al., 2009; 51 

Floden & Stuss, 2006). Lastly, altered pre-SMA activity is associated with impulsivity 52 

due to neuropsychiatric (Dickstein et al., 2006) and neurodegenerative (Passamonti 53 

et al., 2018) conditions and results in inappropriately afforded, unwanted actions 54 

(Wolpe et al., 2014). 55 

 56 

Although the critical role for the pre-SMA in stopping is widely established, the latent 57 

cognitive mechanisms by which it exerts its effect is not. Performance on the stop 58 

signal task is commonly conceptualised as a ‘two-horse race’ between ‘go’ and ‘stop’ 59 

processes, such that whichever is completed first determines the outcome (with go 60 

leading to action execution, and stop leading to action cancellation) (Logan & Cowan, 61 
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1984). Several cognitive processes influence whether the go or stop process 62 

completes the race first, such as rate of information processing, motor preparation, 63 

speed-accuracy trade-offs, response bias, and trigger failures. However, it is not clear 64 

which of these processes relate to the pre-SMA (Sebastian et al., 2018). 65 

 66 

One way to operationalise the specific processes performed by the pre-SMA in 67 

stopping is by adopting models used in decision making research. A model-based 68 

approach commonly used to identify the latent mechanisms underlying decision 69 

making is sequential sampling models, such as the drift-diffusion model (DDM) 70 

(Limongi et al., 2018; Ratcliff & Van Dongen, 2011). Such a model represents the 71 

processes of accumulating evidence for making the decision of which option to choose 72 

(e.g., whether to act or to withhold an action), until evidence reaches a certain 73 

threshold. The rate of evidence accumulation and threshold are typically parametrised 74 

in these models, as well as other ‘non-decision’ time. In decision making paradigms, 75 

such as perceptual decision making with speed-accuracy trade-offs, several studies 76 

have shown that the pre-SMA supports the selection of action by adjusting the 77 

thresholds for the amount of evidence required for deciding which action to choose 78 

(Cavanagh et al., 2011; Mulder et al., 2014; Tosun et al., 2017). For example, trial-to-79 

trial changes in pre-SMA fMRI activity correlate with trial-to-trial changes in decision 80 

threshold (van Maanen et al., 2011). However, it is not currently clear whether the pre-81 

SMA exerts inhibitory control by similarly modulating response thresholds for whether 82 

to act. 83 

 84 
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Here, we tested this hypothesis by using computational modelling in a patient with a 85 

precise focal lesion in the pre-SMA. While fMRI studies correlating model parameters 86 

with brain activity have numerous advantages, testing a patient with a focal lesion 87 

limited to the pre-SMA would enable to test for a causal role of pre-SMA in stopping. 88 

We capitalised on recent developments in hierarchical Bayesian model estimation in 89 

order to compare the single patient case to controls, by estimating each model’s 90 

posterior distribution and comparing these distributions between patient and controls. 91 

Specifically, we compared the model-based estimated SSRTs (Matzke et al., 2013) 92 

and response thresholds (Wiecki et al., 2013). We predicted that pre-SMA lesion 93 

would lead to an impairment in normal inhibition, which would be reflected in 94 

abnormally long SSRT, and which will be critically explained by low threshold for 95 

initiating an action.  96 
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METHODS 97 

Participants 98 

A 74-year-old man with a focal brain lesion in the pre-SMA (Fig. 1) was recruited from 99 

the Cambridge Cognitive Neurosciences Research Panel (CCNRP), at the Medical 100 

Research Council Cognition and Brain Sciences Unit. Ten years prior to the 101 

experiment, he was diagnosed with deep vein thrombosis and commenced on 102 

warfarin. Shortly after anticoagulation, he suffered from a small subarachnoid 103 

haemorrhage which was revealed by brain imaging, together with a 6 cm right-sided 104 

meningioma. He underwent a successful surgical resection. The patient was 105 

neurologically asymptomatic before the bleed, and had made an excellent recovery to 106 

normal by 6 month and 18 month post-operative clinical reviews. No sensorimotor or 107 

cognitive impairments were reported, and he was described in post-operative notes 108 

as functionally normal. At the time of testing, he had no symptoms and there was no 109 

symptomatic motor functional impairment. Mini-mental state examination score was 110 

28/30 (Folstein et al., 1975). 111 

 112 

Normative control data were taken from the third stage (“CC280”) of the Cambridge 113 

Centre for Ageing and Neuroscience (Shafto et al., 2014), in which participants 114 

performed the same stop signal task (Tsvetanov et al., 2018). Data from all 115 

participants aged 60 and older were used, which after the exclusion of four participants 116 

who had no button press data, made up a total of 52 healthy controls (26 females; M 117 

= 74 years, SD = 8 years, range = 60-92 years; MMSE mean = 29, SD = 1). The study 118 

was approved by the Cambridgeshire 2 (now East of England—Cambridge Central) 119 



7 

 

Research Ethics Committee. All participants provided a written informed consent prior 120 

to the study.  121 

 122 

 123 

Figure 1. Patient structural T1 MRI scan. Intracranial volume was extracted using 124 

FSL Brain Extraction Tool (Smith, 2002). For orientation, the origin [0, 0, 0] (blue 125 

crosshair) was set to the Anterior Commissure (AC) and the scan was aligned to the 126 

Anterior Commissure – Posterior Commissure (AC-PC) line. The lesion was focal to 127 

the pre-supplementary motor area with minimal extension to the more posterior 128 

supplementary-motor area proper (y coordinates smaller than 0). X coordinates shown 129 

for each slice. 130 

 131 

Stop signal task 132 

The control group and the patient performed a stop signal task (Fig. 2; Logan et al., 133 

1984). The task included pseudo-randomly interleaved action (‘Go’), action 134 

cancellation (‘Stop’) and action prevention (‘No-Go’) trials. All trial types were 135 

preceded by a fixation cross for 500 ms. In Go trials, a left or right black arrow was 136 

displayed for 1000 ms, requiring participants to respond by pressing the correct left or 137 
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right button with their dominant hand (index and middle fingers). In Stop trials, the right 138 

or left black arrow was initially displayed, but after a delay (the stop signal delay; SSD), 139 

the arrow changed its colour to red and a pure tone was played (1000 Hz), requiring 140 

participants to cancel their action and withhold from pressing the button. The length of 141 

the SSD was initially randomly set to either 250 ms or 300 ms, and then determined 142 

for each trial by a staircase algorithm, so as to allow successful inhibition in about 50% 143 

of the stop trials. To reduce the tendency for participants to strategically slow their 144 

responses on stop signal tasks, three parallel algorithms were used (Rae et al., 2014). 145 

In No-Go trials, the SSD was set to 0 ms, such that a red left or right arrow was 146 

displayed for 1000 ms and the simultaneous sound was played from the beginning of 147 

the trial. No-Go trials were included as attentional catch control trials, as No-Go uses 148 

different mechanisms to action cancellation (Swick et al., 2011). The patient performed 149 

360 trials in total, with 270 Go trials, 60 Stop trials and 30 No-Go trials, over two runs 150 

with a short break in between. Controls performed a longer version of the task in the 151 

fMRI scanner, which included 480 trials in total, with 360 Go trials, 80 Stop trials and 152 

40 No-Go trials, again run over two runs with a short break in between. Importantly, 153 

the proportions of each trial type were identical in the patient and controls. 154 

 155 
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 156 

Figure 2. Illustration of the Stop No-Go Task. Each trial in the Stop No-Go task 157 

began with a fixation cross, followed by the display of an arrow stimulus. The task 158 

included three trial types (indicated by the numbers 1-3): 1) Go trial, in which 159 

participants were asked to press a button with their index or middle finger to indicate 160 

whether the arrow was pointing right or left. 2) Stop trial, which the arrow was similarly 161 

displayed at first, but following a varying stop signal delay (SSD), the arrow changed 162 

its colour from black to red, and a tone was played, requiring participants to withhold 163 

the button press. 3) No-Go trial, in which SSD was set to 0 ms, and hence the arrow 164 

was displayed in red, and a tone was played from the start.  165 
 166 

Estimation of SSRT 167 

As a descriptive measure of response inhibition, we estimated the stop signal reaction 168 

time (SSRT) using a parametric model of the stop signal task (Matzke et al., 2013, 169 

2019). This model assumes a race between three independent processes: one 170 

corresponding to the Stop process, and two corresponding to Go processes that match 171 

or do not match the Go stimulus. Successful inhibition on a Stop trial occurs when the 172 
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Stop process finishes before both Go processes. For a given Go trial, a correct 173 

response occurs when the matching Go process finishes before the mismatching Go 174 

process. The model assumes that the finish times of these processes follow an ex-175 

Gaussian distribution, which is a positively skewed unimodal distribution that is 176 

commonly used to describe reaction time data (Heathcote et al., 1991). For each of 177 

the three processes, the model estimates the three parameters of the ex-Gaussian 178 

distribution: The mean μ and standard deviation σ of the Gaussian component, and 179 

the mean (i.e., inverse rate) τ of the exponential component. The model additionally 180 

estimates two parameters that represent the probability that the Stop and Go 181 

processes failed to start, referred to as “trigger failure” and “go failure”, respectively 182 

(Matzke et al., 2019). Such attentional failures are common in healthy participants 183 

(Matzke, Love, et al., 2017; Skippen et al., 2019) and in clinical cohorts (Matzke, 184 

Hughes, et al., 2017; Weigard et al., 2019), and, if not modelled, can severely bias 185 

estimates of SSRT (Band et al., 2003; Matzke et al., 2019). 186 

 187 

SSRT was the principal parameter of interest and was computed as the mean of the 188 

ex-Gaussian finish time distribution of the Stop process, which is given by μstop + τstop. 189 

We additionally computed go RT as the mean of the matching Go process (μgo-match + 190 

τgo-match). Note that the ex-Gaussian is a purely descriptive model of the Stop process 191 

finish time distribution, and its parameters (μstop, σstop, and τstop) are not necessarily 192 

equivalent to parameters of a drift-diffusion process (Matzke et al., 2020; Matzke & 193 

Wagenmakers, 2009). 194 

 195 
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Drift diffusion model of response times 196 

We used drift diffusion models to decompose the processes underlying the decision 197 

to act or to withhold an action. Considering the current technical challenges of directly 198 

estimating evidence accumulation parameters of the Stop process (Matzke et al., 199 

2020), we opted for a one-choice RT model (Limongi et al., 2018; Ratcliff & Van 200 

Dongen, 2011). On this approach, the decision to respond and press a button can be 201 

conceptualised as a drift process that accumulates evidence over time as to whether 202 

the current trial is a Go or a Stop trial. Evidence is accumulated until a certain boundary 203 

is crossed, when the participant commits to the decision to press the button. Such a 204 

basic ‘drift-diffusion model’ (Ratcliff & McKoon, 2008) includes three free parameters, 205 

namely: the decision threshold (‘a’) which is the distance between boundaries; the 206 

average rate in which the drift process approaches the boundaries (‘v’); and the non-207 

decision time normally described as the sum of stimulus encoding and action 208 

execution times (‘t’). We fit this model to RTs of responses in the stop signal task. As 209 

our main interest was in the mechanism underlying failure to inhibit with a pre-SMA 210 

lesion, our principal model focused on the subset of Stop trials in which participants 211 

failed to inhibit their response (commission errors). In a complementary analysis, we 212 

examined the latent cognitive variables of the decision of which action to choose. To 213 

this end, we fit a two-choice DDM to all Go trials with a response (i.e., excluding 214 

omission errors), using the standard model of accuracy-coded responses (Wiecki et 215 

al., 2013). For both DDMs, we also fit a model that estimated inter-trial variability in 216 

non-decision time ‘st’, as previously discussed (Ratcliff & Tuerlinckx, 2002). The 217 

parameters reported in the main text were from the model with the significantly lowest 218 
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deviance information criterion (Wiecki et al., 2013) (Supplementary Materials; Figures 219 

S4-S5). 220 

 221 

Bayesian hierarchical model fitting 222 

In order to generate a robust estimation of the posterior distributions of each model’s 223 

parameters, we used a Bayesian hierarchical model fitting procedure to fit the data. 224 

For the control group, model fitting was performed hierarchically, such that parameters 225 

for a given participant were sampled from corresponding group-level normal 226 

distributions. This hierarchical approach allows for a reliable group-level inference of 227 

parameter distributions, as it takes into account the data from all participants 228 

simultaneously, while explicitly modelling individual differences (Daw, 2011; Farrell & 229 

Lewandowsky, 2018; Gelman et al., 2014). The patient data were fit separately so as 230 

to provide a separate posterior distribution for statistical comparison (see below). We 231 

generally assigned relatively broad (“weakly informative”) prior distributions on the 232 

model parameters; a full list of priors is provided in the Supplementary Materials (Table 233 

S1). Markov Chain Monte Carlo (MCMC) sampling methods were used to estimate 234 

the posterior distributions of the model parameters. Model convergence was assessed 235 

with the potential scale reduction statistic 𝑅" (< 1.1 for all parameters), and with visual 236 

inspection of the time-series plots of the MCMC samples. To assess a model’s 237 

goodness of fit, the observed data was visually compared to simulated data generated 238 

from the model’s posterior predictive distribution (Supplementary Materials). 239 

 240 
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The ex-Gaussian race model of the stop signal task was fit using the Dynamic Models 241 

of Choice (DMC) toolbox version `MBN2019` (Heathcote et al., 2019), implemented in 242 

R, version 3.6.1 (R Core Team, 2016). The model ran with 33 chains (i.e., three times 243 

the number of parameters), using an automated procedure to continue sampling until 244 

convergence was reached (h.run.unstuck.dmc and h.run.converge.dmc 245 

functions in the DMC toolbox). After this, an additional 500 iterations for each chain 246 

were obtained to create a final posterior distribution of each parameter, to be used for 247 

statistical analyses. 248 

 249 

The DDM models were fit using the HDDM toolbox, version 0.8.0 (Wiecki et al., 2013), 250 

implemented in Python 3.8.3. Each model ran with 5 chains, with thinning by a factor 251 

of 5 to reduce autocorrelations. We obtained 10,000 samples per model and discarded 252 

the first 5,000 samples as burn-in, to minimise the effect of initial values on posterior 253 

inference.  254 

 255 

Statistical inference 256 

Hypothesis testing and statistical inference were performed by comparing the 257 

posterior distributions of the patient and control (group node distribution) for each of 258 

the parameters of interest. In brief, posterior distributions for each comparison were 259 

derived by subtracting the set of MCMC samples of patient and controls. That is, for a 260 

given parameter, the difference between the patient and the control group was 261 

computed for each MCMC sample, thereby yielding a posterior distribution of the 262 

difference. For each comparison, we computed the probability of this difference 263 



14 

 

distribution being different from zero (no effect) (Makowski et al., 2019), either greater 264 

than or smaller than zero (whichever has the highest probability). We report this as 265 

the probability of an effect for each comparison, in line with previous research using 266 

our modelling approach (Herz et al., 2016). No part of the study procedures was pre-267 

registered prior to the research being conducted.  268 
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RESULTS 269 

Model-free behaviour 270 

Basic performance in the task is summarised in Table 1 and in Figures 3A and 3C. 271 

The results show that patient accuracy and error rates were similar to the control 272 

group. Looking at the raw Go trials, the patient was on average 190 ms faster than 273 

controls (patient: M = 470 ms, SD = 133 ms; controls: M = 661 ms, SD = 205 ms). On 274 

Stop trials, the tracking algorithm that adapted the SSDs converged well for both 275 

patient and controls, reaching a proportion of 51.6% successful stop trials for the 276 

patient and a mean of 57.8% (SD = 12.4%) successful stop trials for controls in the 277 

final half of the experimental runs (‘final stop accuracy’). By contrast, the patient 278 

required a stop signal delay that was considerably shorter than controls on average 279 

(260 ms vs. 427 ms). We next fit an ex-Gaussian race model to patient and control 280 

behaviour in the task, to estimate and formally compare their SSRT and Go RT. 281 

 282 

Table 1. Summary of raw measures in the Stop No-Go task. 283 

 Control group mean (SD) Patient 

Go RT (ms) 661.10 (148.0) 469.97 

Go overall accuracy (%) 97.31 (4.27) 94.83 

Go omission error (%) 1.53 (3.33) 1.48 

Go choice error (%) 1.15 (2.25) 3.69 

No-Go commission error (%) 1.35 (3.15) 0 

Final stop accuracy (%) 57.8 (12.4) 51.6 

Mean stop signal delay (ms) 427.73 (106.59) 260.17 

 284 

 285 
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Ex-Gaussian model of SSRT and Go RT 286 

The patient had a significantly higher SSRT than controls (Fig. 3B; probability = 287 

96.81%), as the posterior of the patient’s SSRT (median = 203.52 ms, 95% QI = 288 

170.05-235.40 ms) was distributed across higher values than the posterior of the 289 

control group SSRT (median = 165.00 ms, 95% QI = 139.38-188.74 ms). In contrast, 290 

the patient’s model-derived Go RT (median = 475.79 ms, 95% QI = 463.22-489.56 291 

ms) was significantly lower than the control group mean Go RT (median = 643.63 ms, 292 

95% QI = 587.13-686.22 ms), with no overlap between them (Fig. 3D; probability = 293 

100%). Together, these results suggest that although the basic performance of the 294 

patient in the task was comparable to controls, he had a deficit in the SSRT, such that 295 

he required more time in order to achieve successful stopping in the task. Furthermore, 296 

the patient’s Go responses in the task were significantly faster than controls. We next 297 

examined whether these changes could be explained by changes in the decision 298 

threshold, first by fitting a DDM to reaction times in stop trials in which participants 299 

failed to inhibit their response. 300 
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 301 

Figure 3. Ex-Gaussian model derived SSRT and Go RT. A) Standard box plot 302 

showing the distribution of stop accuracy (probability of successfully stopped 303 

responses) in controls (blue box plot and data points) and patient (red line). This shows 304 

that across all trials, the algorithm was successful at keeping stop accuracy just above 305 

50%. B) Model derived distributions of the stop signal reaction time (SSRT) parameter 306 

for controls (blue) and patient (red), with the distribution of parameter difference (grey) 307 

on top. The probability for a group difference in SSRT being different from zero was 308 

96.81%. C) Same as (A) but for Go accuracy, which was the proportion of Go trials in 309 

which a response matched the displayed stimulus (right versus left arrow). D) Same 310 

as (B) but for the distributions of model derived Go reaction times. The probability for 311 

a group difference in Go reacting time being different from zero was 100%. 312 

 313 

Drift diffusion modelling of responses 314 

The patient threshold parameter ‘a’ (median = 2.00, 95% QI = 1.27-3.37) was 315 

significantly lower than controls (median = 3.59, 95% QI = 3.13-4.24; Fig. 4A; 316 
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probability = 98.62%). In contrast, there were no differences between the patient and 317 

controls in the posterior estimates of both drift rate ‘v’ (Fig. 4B; probability = 55.72%; 318 

patient: median = 4.64, 95% QI = 3.02-6.44; controls: median = 4.52, 95% QI = 4.21-319 

4.87) and non-decision time ‘t’ (Fig. 4C; probability = 73.9%; patient: median = 197.66 320 

ms, 95% QI = 123.47-239.19 ms; controls: median = 174.42 ms, 95% QI = 133.74-321 

203.63 ms). These results suggest that the patient required less evidence in order to 322 

decide whether to initiate an action (Fig. 4D) due to an abnormally reduced decision 323 

threshold.  324 

 325 

This deficit in threshold was for the decision of whether to respond. However, it is not 326 

clear whether the patient also demonstrated such a deficit in threshold for the decision 327 

of which action to choose, as suggested by previous neuroimaging research of the 328 

pre-SMA (Cavanagh et al., 2011; Mulder et al., 2014; Tosun et al., 2017). Such a 329 

deficit would also explain why the patient had significantly faster responses in Go trials 330 

(Figure 3D). To test this, we fit a DDM to the RTs and choice data in Go trials. We 331 

note, however, that there only a few “incorrect” responses in terms of choice response 332 

in the task (see Table 1), which is likely to influence the precision and robustness of 333 

parameter estimates. 334 

 335 
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 336 

Figure 4. Drift diffusion model parameters for failed Stop trials. Drift diffusion 337 

model derived posterior estimates of the decision threshold ‘a’ (A), drift rate ‘v’ (B) and 338 

non-decision time ‘t’ (C) parameters, for both controls (blue) and patient (red), for the 339 

decision to respond in failed Stop trials. Group difference distribution is displayed on 340 

top for each of the parameters, with only difference in ‘a’ being significantly different 341 

from zero indicating a significant group difference. D) Simulation of the drift diffusion 342 

process for the decision of whether to Stop in failed inhibition trials, based on the 343 

control (blue) and patient (red) parameters from A-C. Ten trials were simulated for 344 

illustration. Raw (histograms) and fitted (lines) data are plotted on top. 345 

 346 

In the context of deciding which button to press, the patient again had a significantly 347 

lower threshold (Fig. 5A; probability = 100%), with the patient posterior (median = 1.11, 348 

95% QI = 0.95-1.31) distributed across lower values compared to controls (median = 349 

2.00, 95% QI = 1.92-2.13). There was no difference between the patient and controls 350 

in the drift rate ‘v’ (Fig. 5B; probability = 89%; patient: median = 3.12, 95% QI = 2.71-351 

3.56; controls: median = 2.86, 95% QI = 2.79-2.93). Lastly, there was no difference 352 
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between the patient and controls in non-decision time ‘t’ (Fig. 5C, probability = 65.04%; 353 

patient: median = 305.56 ms, 95% QI = 275.03-332.49 ms; controls: median = 311.06 354 

ms, 95% QI = 297.04-322.08 ms). The abnormality in decision threshold for action 355 

choice in the patient is consistent with previous studies showing the involvement of 356 

pre-SMA in modulating choice decision threshold (Cavanagh et al., 2011; Mulder et 357 

al., 2014; Tosun et al., 2017).  358 

 359 

Figure 5. Drift diffusion model parameters for choice accuracy in Go trials. Drift 360 

diffusion model derived posterior estimates of the decision threshold ‘a’ (A), drift rate 361 

‘v’ (B) and non-decision time ‘t’ (C) parameters, for both controls (blue) and patient 362 

(red), for the decision which button to press in Go trials. Group difference distribution 363 

is displayed on top for each of the parameters, with ‘a’ and ‘t’ being significantly 364 

different from zero indicating a significant group difference. D) Simulation of the drift 365 

diffusion process for the decision of which button to press in the Go trials, based on 366 

the control (blue) and patient (red) parameters from A-C. Ten trials were simulated for 367 

illustration. 368 
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DISCUSSION 370 

The main result of this study is that a focal lesion to the pre-SMA lengthened the time 371 

required to stop an action due to an abnormally low response threshold. This was 372 

accompanied by a significant increase in response speed due to a similarly reduced 373 

threshold for deciding which action to choose. The pre-SMA is known as a key hub for 374 

voluntary (Brass & Haggard, 2008) as well as involuntary action (Flamez et al., 2021; 375 

Herz et al., 2015; Wolpe et al., 2014). Our results show that dynamic threshold 376 

modulation may be a general mechanism by which the pre-SMA exerts its control over 377 

actions. 378 

 379 

Focal deficits in action threshold setting 380 

Our patient displayed a selective pattern of deficits: lengthened SSRT, with faster Go 381 

RT, which were explained by altered thresholds for responding and choosing. This 382 

suggests the patient was in fact faster than controls in the tasks, but which rendered 383 

him more prone to commission errors in Stop trials – that is, performing an action when 384 

asked to withhold. Importantly, the patient made not a single No-Go commission error, 385 

indicating a specific difficulty with stopping, rather than a broader multidimensional 386 

motor inhibition impairment also encompassing the prevention of prepotent action that 387 

is typified by No-Go trials (Chambers et al., 2009; Swick et al., 2011).  388 

 389 

The reason why the patient encountered difficulty in stopping is because there is 390 

insufficient dynamic shaping of response threshold, such that the response threshold 391 

is not dynamically increased in the context of a possible stop cue. Consistent with 392 
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previous research into the role of the pre-SMA in decision making for voluntary action 393 

(Cavanagh et al., 2011; Mulder et al., 2014; Tosun et al., 2017), we found that the 394 

patient showed a similar deficit in threshold setting in the context of deciding which 395 

button to choose. Taken together, these results suggest the pre-SMA exert its control 396 

over voluntary action by modulating decision thresholds. Such a mechanism may 397 

allow the pre-SMA to exert its control over whether to perform an action, when to 398 

perform it and which action to perform (Zapparoli et al., 2017). 399 

 400 

We note that our study reports the results from one specific case study, rather than a 401 

cohort of patients. We further note that the surgical resection was the result of 402 

meningioma which is a slow-growing tumour, and plasticity-related brain changes may 403 

have influenced his behaviour. The very focal nature of our patient’s lesion may 404 

arguably have higher validity than a larger cohort of patients with less focal lesions or 405 

only limited overlap (Floden & Stuss, 2006). Nevertheless, the obvious extension to 406 

this study is to broaden the sample size, while retaining specificity over the anatomical 407 

location of the damage. Moreover, the fact that the patient responded more quickly in 408 

Go trials may suggest an alternative but related explanation, whereby the patient was 409 

unable to choose the appropriate response strategy itself, rather than unable to stop 410 

efficiently. Previous studies have indeed shown that response strategies, such as the 411 

speed-accuracy trade-off, can affect the response thresholds, for example by 412 

increasing response thresholds when accuracy is emphasised (Bogacz et al., 2010; 413 

Mansfield et al., 2011). Interestingly, these effects can be experimentally manipulated 414 

through instructions, and follow-up research could investigate whether pre-SMA 415 
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impairment in decision thresholds can be recoverable by instructing an appropriate 416 

response strategy. 417 

 418 

Modulation of response threshold by the pre-SMA and its brain interactions 419 

Previous research has suggested that the pre-SMA determines the appropriate 420 

threshold when choosing an action, for example to control a speed-accuracy trade-off 421 

(Bogacz et al., 2010; Cavanagh et al., 2011; Forstmann et al., 2008; Mulder et al., 422 

2014). In the context of stopping, normal response threshold setting would allow an 423 

individual to dynamically shape their behaviour, such that increased response 424 

threshold would enable a more cautious strategy of waiting for more evidence to 425 

accumulate before responding. By contrast, lower response thresholds would allow 426 

for fast responses at the expense of erroneous action initiation (Bogacz et al., 2010).  427 

 428 

The pre-SMA exerts its inhibition of unwanted action through its connections with 429 

widespread cortical and subcortical brain circuits (Wolpe et al., 2014). Functional 430 

(Mansfield et al., 2011) and structural (Forstmann et al., 2012) MRI studies, as well as 431 

an interventional stimulation study (Cavanagh et al., 2011), have all pointed to a critical 432 

role of the pre-SMA interactions with the striatum in inhibitory control. For example, 433 

diffusion MRI-based tractography studies have shown correlations between white 434 

matter connections of pre-SMA and striatum with SSRTs in healthy individuals 435 

(Forstmann et al., 2012; Rae et al., 2015) and response choice thresholds in older 436 

adults (Forstmann et al., 2011). Our findings are consistent with the suggestion that 437 
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the pre-SMA exerts inhibition by biasing the striatum to reduce response threshold 438 

under more liberal response policy (Cavanagh et al., 2011; Mansfield et al., 2011).  439 

 440 

To halt motor activity via the STN, the pre-SMA works in concert with the right inferior 441 

frontal gyrus (rIFG) (Aron et al., 2016). A functional connectivity study has shown that 442 

the rIFG augments excitatory projections from pre-SMA to STN, thereby amplifying 443 

the activation of the STN to “brake” a voluntary action (Rae et al., 2015). A next step 444 

would be to extend our approach to also study patients with circumscribed damage to 445 

the rIFG. For example, it has been proposed that the rIFG may amplify connectivity in 446 

a widely distributed cortical-subcortical network (Aron et al., 2004) to accelerate the 447 

evidence accumulation or drift rate (Mulder et al., 2014; White et al., 2014). Testing a 448 

patient with rIFG lesion would enable us to examine whether individual differences in 449 

the strength of rIFG-STN connectivity during stopping correlates with drift rate. Such 450 

a mechanistic dissociation would provide further evidence for a specific role of the 451 

rIFG in hastening the implementation of a fast, global, abortive stop process via the 452 

STN (Aron et al., 2016; Wessel & Aron, 2013). 453 

 454 

The pre-SMA in disorders of voluntary action 455 

The pre-SMA and its connections in a fronto-basal ganglia network are impaired in a 456 

number of psychiatric and neurodegenerative conditions. For example, in obsessive-457 

compulsive disorder, abnormally high activity of the pre-SMA (Yücel et al., 2007) 458 

accounts for abnormal inhibitory control in patients (de Wit et al., 2012), which is 459 

related to patient deficits in the modulation of response thresholds (Banca et al., 2015). 460 
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Moreover, patients with the neurodegenerative corticobasal syndrome show a 461 

structural impairment in the pre-SMA that correlate with the severity of deficits in 462 

voluntary action, such as alien limb (Wolpe et al., 2014). Pre-SMA damage and 463 

inability to dynamically adjust response thresholds may lead to the observed 464 

disinhibition of action affordance leading to alien limb (McBride et al., 2013). The 465 

combination of imaging with models of latent cognitive variables in patient groups 466 

could give more concrete insights as to the neurophysiological mechanisms that 467 

underlie pathological behaviours. For the estimation of model parameters, Bayesian 468 

hierarchical modelling allows robust group-level estimates even in the face of smaller 469 

datasets (Ratcliff & Childers, 2015). Such a combined approach will inform future 470 

interventional studies to improve clinical outcome in patients.  471 

 472 

Conclusions 473 

Damage to the pre-SMA impairs action inhibition by altering response thresholds. A 474 

similar deficit was observed for the decision of which action to choose, suggesting that 475 

threshold modulation can be a general mechanism by which the pre-SMA exerts its 476 

control over voluntary action. Our study illustrates that Bayesian hierarchical model 477 

estimation can be used for specific hypothesis testing in single case studies.  478 



26 

 

DATA & CODE AVAILABILITY 479 

The patient data as well as the analysis and figure plotting code are available on [link 480 

to be inserted upon publication]. Control data are available upon signing a data sharing 481 
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SUPPLEMENTARY MATERIALS 712 

Table S1. Priors for the ex-Gaussian race model 713 

Parameter Group-level prior distributions 

Mean of Gaussian component of matching go 

process (𝜇!"#$%&'() 

𝜇)!"#$%&'( ~ 𝒩*(1.5, 1) 

𝜎)!"#$%&'( ~ exp(1) 

Mean of Gaussian component of mismatching go 
process (𝜇!"#$+,$%&'() 

𝜇)!"#$)*$%&'( ~ 𝒩*(1.5, 1) 

𝜎)!"#$)*$%&'( ~ exp(1) 

Mean of Gaussian component of stop process 

(𝜇,&"-) 

𝜇)*&"+ ~ 𝒩*(1, 1) 

𝜎)*&"+ ~ exp(1) 

Standard deviation of Gaussian component of 

matching go process (𝜎!"#$%&'() 

𝜇.!"#$%&'( ~ 𝒩*(0.2, 1) 

𝜎.!"#$%&'( ~ exp(1) 

Standard deviation of Gaussian component of 
mismatching go process (𝜎!"#$+,$%&'() 

𝜇.!"#$)*$%&'( ~ 𝒩*(0.2, 1) 

𝜎.!"#$)*$%&'( ~ exp(1) 

Standard deviation of Gaussian component of stop 

process (𝜎,&"-) 

𝜇.*&"+ ~ 𝒩*(0.2, 1) 

𝜎.*&"+ ~ exp(1) 

Mean of exponential component of matching go 

process (𝜏!"#$%&'() 

𝜇/!"#$%&'( ~ 𝒩*(0.2, 1) 

𝜎/!"#$%&'( ~ exp(1) 

Mean of exponential component of mismatching go 
process (𝜏!"#$+,$%&'() 

𝜇/!"#$)*$%&'( ~ 𝒩*(0.2, 1) 

𝜎/!"#$)*$%&'( ~ exp(1) 

Mean of exponential component of stop process 

(𝜏,&"-) 

𝜇/*&"+ ~ 𝒩*(0.2, 1) 

𝜎/*&"+ ~ exp(1) 

Probit transformed trigger failure probability 
[Φ#0(𝑃12)] 

𝜇3#,(5-.) ~ 𝒩(Φ#0(0.1), 1) 

𝜎3#,(5-.) ~ exp(1) 

Probit transformed go failure probability [Φ#0(𝑃72)] 
𝜇3#,(5/.) ~ 𝒩(Φ#0(0.1), 1) 

𝜎3#,(5/.) ~ exp(1) 

 714 
𝒩(𝜇, 𝜎) denotes a normal distribution with mean 𝜇 and standard deviation 𝜎; 𝒩!(𝜇, 𝜎) 715 

denotes a positive normal distribution truncated at zero; exp	(𝜆) denotes an 716 

exponential distribution with a rate parameter 𝜆; Φ"#(𝑝) denotes the probit function 717 
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(i.e., the inverse cumulative distribution function of the standard normal distribution) 718 

evaluated at probability 𝑝. All parameters are on the scale of seconds, except for the 719 

trigger and go failure probabilities. For the patient non-hierarchical model fit, the priors 720 

were identical to the priors on the control group-level.  721 
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722 
Figure S1. Posterior predictive checks of stopping performance. Inhibition 723 

function plots (top row) showing the mean probability of responding as a function of 724 

SSD for controls (left column) and patient (right column). The bottom row plots the 725 

median RTs of failed stop trials (i.e., signal respond RT) as a function of SSD. For the 726 

control group plots, the SSD’s have been grouped into percentile bins of approximately 727 

equal size. For the patient plots, we excluded SSD bins with less than 5 trials for the 728 

inhibition function, and less than 3 trials for the signal respond RTs. Grey violin plots 729 

show the posterior predictive distributions. Data shown as black dots and connecting 730 

lines.  731 
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732 
Figure S2. Posterior predictive checks of response proportions. Response 733 

proportions for Go (top row) and Stop (bottom row) trials for both controls (blue) and 734 

patient (red). Response proportions are shown separately for each stimulus (left 735 

versus right arrow) and are plotted as a function of response type (no response; left 736 

and right response). Empty dots indicate data (mean). Filled dots ± error bars indicate 737 

posterior predictive distributions.  738 
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739 
Figure S3. Posterior predictive checks of reaction times. Reaction times for Go 740 

(top row) and Stop (bottom row) trials for both controls (blue) and patient (red). 741 

Response times are shown separately for each stimulus (left versus right arrow. Empty 742 

dots indicate data (mean). Filled dots ± error bars indicate posterior predictive 743 

distributions. The three dots indicate the 10th, 50th, and 90th quantiles of the RT 744 

distributions.  745 
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 746 

Figure S4. Posterior predictive checks of reaction time distributions for 747 

response in failed Stop trials. The plots show the reaction time distributions for 748 

controls (left panel) and for the patient (right panel) for unsuccessful Stop trials, in 749 

which participants failed to inhibit their response. There were no meaningful 750 

differences in deviance information criterion between the model with or without ‘st’        751 

(-1843.79 versus -1842.31 for controls and -53.17 versus -50.22 for the patient, 752 

respectively). The simpler model without ‘st’ was therefore used when reporting the 753 

parameters. Data are shown in red histograms, and model predictions are overlaid in 754 

blue, generated by drawing 1000 samples from the posterior parameter estimates.  755 
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 756 

Figure S5. Posterior predictive checks of reaction time distributions for 757 

response choice accuracy in Go trials. The plots show the reaction time 758 

distributions for controls (left panel) and for the patient (right panel) for Go trials. 759 

Correct choices are plotted as positive reaction times and incorrect choices are plotted 760 

as negative reaction times. There were meaningful differences in deviance information 761 

criterion between the model with and without ‘st’ (-6803.63 versus -6771.10 for 762 

controls and -286.16 versus -268.10 for the patient, respectively). The model that 763 

included ‘st’ was therefore used when reporting the parameters. Data are shown in 764 

red histograms, and model predictions are overlaid in blue, generated by drawing 1000 765 

samples from the posterior parameter estimates. 766 


