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Abstract

The Taubes equation for Abelian Higgs vortices is generalised to
five distinct U(1) vortex equations. These include the Popov and
Jackiw–Pi vortex equations, and two further equations. The Baptista
metric, a conformal rescaling of the background metric by the squared
Higgs field, gives insight into these vortices, and shows that vortices
can be interpreted as conical singularities superposed on the back-
ground geometry. When the background has a constant curvature
adapted to the vortex type, then the vortex equation is integrable by
a reduction to Liouville’s equation, and the Baptista metric has a con-
stant curvature too, apart from its conical singularities. The conical
geometry is fairly easy to visualise in some cases.
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1 Introduction

There are a number of vortex equations [1, 2, 3], defined on surfaces of
suitable curvature, that can be explicitly solved. We say that these vortex
equations are integrable. The known examples are (i) the Taubes equation of
the Abelian Higgs model, defined on a hyperbolic surface of constant negative
curvature [4, 5, 6], (ii) the Popov vortex equation defined on a sphere of
constant positive curvature [7, 8], and (iii) the Jackiw–Pi vortex equation
defined on a flat plane or torus [9, 10, 11]. In this paper, we investigate
more systematically how these integrable vortex equations arise, and discover
that there are really five examples. The first new example we call (iv) the
Bradlow vortex equation – it is a reinterpretation of the Bradlow limit [12] of
the Taubes equation for vortices on a compact hyperbolic surface, where the
vortex number saturates its upper bound. The second new example is (v)
a vortex equation defined on a hyperbolic surface, generalising an equation
found by Ambjørn and Olesen [13, 14].

Our approach builds on the geometric insights of Baptista [15], who inter-
preted vortices on a smooth surface in terms of a new metric – the Baptista
metric – which is a conformal rescaling of the background metric. If the
background metric is ds2

0 and the vortex Higgs field is φ, then Baptista’s
metric is ds2 = |φ|2ds2

0. This metric is not smooth. It has singularities at the
vortex centres, where φ = 0. For a vortex of unit winding, the metric has a
conical singularity with cone angle 4π. The construction of integrable vor-
tices is then closely related to the purely geometrical problem of constructing
surface metrics with given curvature and conical singularities. This problem
has been studied, in particular, by Troyanov [16].

We do not solve in full generality the five vortex equations, but summarise
solutions that are known, and find some new ones. Solutions are obtained
using local holomorphic mappings between surfaces. Sometimes these maps
are globally defined, and can be given explicitly. This method may generate
all solutions, but not always, and it appears that further solutions must be
constructed by patching local holomorphic maps together, with a twist.

We describe in some detail the intrinsic Baptista geometry of a number
of vortices, in the integrable cases. That is, we describe the geometry of the
Baptista metric ds2, without splitting it into its factors ds2

0 and |φ|2. We also
note that this metric is an Einstein metric with conical singularities, in the
presence of a cosmological constant [17, 18]. From this perspective, vortices
become point particles of negative mass, quite different from the usual insight
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that they are smooth solitons on a smooth background surface.

2 Abelian Higgs Vortices

All the vortex equations considered here are variants of the first-order Bo-
gomolny equations [19] of the Abelian Higgs model, which we review first.
These equations model critically coupled vortices that neither attract nor
repel each other, so the vortices are static, 2-dimensional soliton or multi-
soliton solutions, occupying a flat or curved surface.

More precisely, the equations are defined on a Riemann surface M0 having
a metric compatible with its complex structure. M0 may be compact, or
open with a boundary at infinity. Initially we allow M0 to have an arbitrary
curvature, but later we will specialise to surfaces of constant curvature. In
terms of a local complex coordinate z = x1 + ix2 the metric is

ds2
0 = Ω0(dx2

1 + dx2
2) = Ω0 dzdz̄ , (1)

where Ω0 is a position-dependent conformal factor.
The fields we need are a U(1) gauge potential a and a complex Higgs

field φ. Globally, a is a connection on a U(1) line bundle over M0, and φ is a
section of the bundle. Locally, we represent the connection as a real 1-form
a = a1dx1 + a2dx2 = azdz + az̄dz̄. The connection has 2-form field strength
f = da, and we suppose that the first Chern number of the bundle,

N =
1

2π

∫
M0

f =
1

2π

∫
M0

f12 d
2x , (2)

is a positive integer. In component notation f12 = ∂1a2 − ∂2a1, and the
physical magnetic field strength on M0 is B = 1

Ω0
f12. More invariantly it is

∗f , the Hodge dual of f .
The Bogomolny equations are

D1φ+ iD2φ = 0 , (3)
1

Ω0

f12 = 1− |φ|2 , (4)

where Dj = ∂j − iaj is the gauge covariant derivative. They are also usefully
written in terms of the complex coordinate z as

Dz̄φ = 0 , (5)

− 2i

Ω0

fzz̄ = 1− |φ|2 , (6)
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The pair of Bogomolny equations (5) and (6) can be simplified to a single
scalar equation as follows. Equation (5), expanded out, is

∂z̄φ− iaz̄φ = 0 , (7)

and has the solution az̄ = −i∂z̄ log φ. Since the gauge group is U(1), az is
the complex conjugate of az̄, so az = i∂z log φ̄, and therefore

fzz̄ = ∂zaz̄ − ∂z̄az = −i∂z∂z̄(log φ+ log φ̄) = −i∂z∂z̄ log |φ|2 . (8)

The second Bogomolny equation (6) therefore reduces to

− 2

Ω0

∂z∂z̄ log |φ|2 = 1− |φ|2 . (9)

It is convenient to change notation, by setting |φ|2 = e2u, and to note that
the naive Laplacian is ∇2 = 4∂z∂z̄. Equation (9) then takes the final form

− 1

Ω0

∇2u = 1− e2u , (10)

known as the Taubes equation [1, 3]. The left-hand side is the negative of the
covariant (Beltrami) Laplacian of u, and is still the magnetic field strength.

The first Bogomolny equation (5) implies that φ is gauge-covariantly holo-
morphic. φ can therefore have zeros, but only of positive multiplicity. These
are interpreted as the centres of vortices with positive integer winding. It
can be shown that the sum of the windings around all the vortex centres is
the Chern number N . As φ is zero at each vortex centre, u has a logarithmic
singularity there, and approaches −∞. The Taubes equation (10) is there-
fore incomplete, and should be supplemented by delta functions [1]. We will
not include these. Instead, we regard the Taubes equation as only valid away
from the vortex centres, and require that if there is a vortex centre at Z with
winding n, then u has the asymptotic behaviour

u ∼ n log |z − Z|+ constant (11)

as z approaches Z.
Vortex solutions of the Taubes equation should have no further singular-

ities, so if M0 is compact then u will have a global maximum value, and it
is interesting to consider the maximum principle in this context. The Lapla-
cian of u is non-positive at the location of the global maximum of u, so the
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left-hand side of equation (10) and hence the right-hand side is non-negative.
Therefore u ≤ 0 at the maximum, and hence u ≤ 0 everywhere. In known
examples, the maximum value of u is negative. u can have more than one
local maximum (typically, between the vortex centres), and at all of these, u
is negative.

If M0 is non-compact, for example the flat plane or the hyperbolic plane,
then we impose the condition |φ| = 1 or equivalently u = 0 on the boundary.
Again, u is assumed to have no singularities apart from those at the vortex
centres. In this situation, we also have u ≤ 0 everywhere. If not, then u
would have a maximum positive value at some point of M0 interior to the
boundary. But this would again contradict the Taubes equation. Therefore
u has supremum 0, attained on the boundary at infinity.

Note that if u is everywhere negative, then the right-hand side of (10)
is everywhere positive, so the magnetic field B is everywhere positive. The
magnetic field has its maximum value 1 at the vortex centres, where |φ|2 = 0.
Physically, the Taubes equation describes the Meissner effect in a supercon-
ductor, where in the absence of vortices there is no magnetic flux penetration,
and |φ| = 1 everywhere. The vortices introduce magnetic flux defects into
the superconductor, accompanying the zeros of φ.

3 More Vortex Equations

Further vortex equations on M0 arise by changing the coefficients in equations
(4) and (6). The general vortex equations we consider are

D1φ+ iD2φ = 0 , (12)
1

Ω0

f12 = −C0 + C|φ|2 , (13)

or equivalently

Dz̄φ = 0 , (14)

− 2i

Ω0

fzz̄ = −C0 + C|φ|2 , (15)

with C0 and C taking any real, constant values.
As before, we can use the first equation to eliminate the gauge potential,

and by setting |φ|2 = e2u, the second equation becomes

− 1

Ω0

∇2u = −C0 + Ce2u . (16)
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Now, we can simultaneously rescale C0 and C by a positive real factor, and
absorb this into the metric. We can also rescale C alone by a positive real
factor, and absorb this into a constant shift of u (a rescaling of |φ|). There-
fore, without loss of generality, we may fix C0 and C to each take one of the
three standard values −1, 0 or 1. There are therefore nine distinct equations
of type (16).

Vortex solutions have the property that φ has zeros, but no singularities,
and equation (14) implies that the Chern number N is positive, because the
vortex windings are positive. Of the nine equations, only five can have such
vortex solutions. The left-hand side of equation (16) is the magnetic field,
and for its integral to be positive, the right-hand side must admit positive
values. This excludes the four cases C0 = 0 or C0 = 1, combined with
C = −1 or C = 0.

The remaining cases are the Taubes equation (10), with C0 = C = −1,
the Jackiw–Pi vortex equation [9, 10] with C0 = 0, C = 1,

− 1

Ω0

∇2u = e2u , (17)

and the Popov vortex equation [7] with C0 = C = 1,

− 1

Ω0

∇2u = −1 + e2u . (18)

A further case is the equation with C0 = −1, C = 0,

− 1

Ω0

∇2u = 1 , (19)

that we shall call the Bradlow vortex equation. Notice that the magnetic
field has constant strength 1 here. More usually, one refers to the Bradlow
limit of the Taubes equation for vortices [12]. This is where N attains its
maximum allowed value on a compact surface, and the Higgs field vanishes
everywhere. The second Bogomolny equation then says that the magnetic
field is 1, as in equation (19). Our Bradlow vortex equation is different in that
it allows a non-vanishing Higgs field φ satisfying Dz̄φ = 0 in the background
of the constant magnetic field. Its solutions are therefore similar to what
were considered previously as vortex solutions close to the Bradlow limit [20]
or as dissolving vortices [21], where the magnetic field was almost constant
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and the Higgs field small. The final case is the vortex equation with C0 = −1,
C = 1,

− 1

Ω0

∇2u = 1 + e2u . (20)

This equation, in its flat space version, appeared in Ambjørn and Olesen’s
study of the instability of strong magnetic fields in electroweak gauge theory
[13, 14]. Notice that the magnetic field has strength 1 at the vortex centres,
as for Taubes vortices, but the strength is enhanced away from these centres.
This is an anti-Meissner effect.

Applying the maximum principle to the Popov equation (18), we see that
u ≥ 0 at its maximum, and as u approaches −∞ at the vortex centres, u
takes all negative values. For the remaining equations other than the Taubes
equation, the right-hand side is positive for all u, so there is no further
constraint on the value of u at its maximum.

4 Energy and Stability

The five vortex equations can all be derived using a Bogomolny rearrange-
ment of a suitable energy functional [19]. The energy is not positive definite
in all cases. The equations guarantee that the energy is stationary, though
not always minimal. The vortices are therefore not necessarily stable.

The energy expression is of the type familiar in the Abelian Higgs model,
but with non-standard coefficients. For general values of C0 and C, consider
the (potential) energy

E =

∫
M0

{
1

Ω2
0

f 2
12 −

2C

Ω0

(
D1φD1φ+D2φD2φ

)
+
(
−C0 + C|φ|2

)2
}

Ω0 d
2x .

(21)
This is positive definite if C ≤ 0, but not otherwise. We rewrite the energy
as

E =

∫
M0

{(
1

Ω0

f12 + C0 − C|φ|2
)2

−2C

Ω0

(
D1φ− iD2φ

)(
D1φ+ iD2φ

)}
Ω0 d

2x

+

∫
M0

(
−2C0f12 + 2Cf12|φ|2 + 2Ci

(
D1φD2φ−D2φD1φ

))
d2x ,(22)
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where the terms in the second integral (which has no Ω0 factors) compensate
for completing the squares. Next we use the identity

D1φD2φ−D2φD1φ = ∂1(φ̄D2φ)− ∂2(φ̄D1φ) + if12|φ|2 , (23)

which combines the covariant Leibniz rule with the commutator [D1, D2] = −if12,
to obtain

E =

∫
M0

{(
1

Ω0

f12 + C0 − C|φ|2
)2

−2C

Ω0

(
D1φ− iD2φ

)(
D1φ+ iD2φ

)}
Ω0 d

2x

+

∫
M0

(
−2C0f12 + 2Ci(∂1(φ̄D2φ)− ∂2(φ̄D1φ))

)
d2x . (24)

The final two terms are total derivatives and integrate to zero. More invari-
antly, their integral is that of the globally-defined, exact 2-form 2Ci d(φ̄Dφ).
f12 integrates to 2π times the Chern number N . Therefore

E =

∫
M0

{(
1

Ω0

f12 + C0 − C|φ|2
)2

−2C

Ω0

(
D1φ− iD2φ

)(
D1φ+ iD2φ

)}
Ω0 d

2x

−4πC0N . (25)

The energy E is stationary and has the value −4πC0N , provided the Bo-
gomolny equations (12) and (13) are satisfied. E is minimised if C ≤ 0.
The vortices are then stable, but we are also interested in cases where C is
positive. Taubes and Bradlow vortices are stable (although the Higgs field
does not contribute to the energy in the Bradlow case, and the equation
D1φ+ iD2φ = 0 has to be imposed separately). Popov vortices are unstable,
as are the vortices satisfying equation (20). The Jackiw–Pi vortices are also
unstable by this criterion, but this is not of much significance, as these vor-
tices arise most naturally in Chern–Simons field theory, where the dynamics
is different [10, 22].

Euler–Lagrange equations can be derived from the energy E; these are
the second-order, static field equations for vortices. They are satisfied for all
types of vortices satisfying the appropriate first-order Bogomolny equations,
because E is stationary. This can be checked by differentiation.
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5 Vortices as Conical Geometry

The original metric ds2
0 on M0 is smooth, but it was suggested some time

ago [23] that it is useful to consider for a vortex solution the metric

ds2 = e2u ds2
0 , (26)

the original metric conformally rescaled by the squared Higgs field |φ|2 = e2u.
This modified metric has been studied in depth for Abelian Higgs vortices by
Baptista [15], so we refer to it as the Baptista metric. ds2 defines an intrinsic
geometry of a vortex solution, and it is sometimes easier to describe and
visualise this intrinsic geometry, rather than separate ds2 into ds2

0 and e2u.
The Baptista metric is useful for all five of our vortex equations, although it
has different properties in the various cases. Notice that it tends to reduce
lengths and areas near vortex centres, because e2u is close to zero.

The Baptista metric is not a regular Riemannian metric, because it van-
ishes at the vortex centres. Taubes showed that the asymptotic form of u
near a vortex centre is as in equation (11). For a vortex with unit winding
(n = 1), centred at the origin Z = 0 for convenience, e2u ∼ µ|z|2 with µ a
positive constant. The background metric is locally Ω0(0)dzdz̄ with Ω0(0)
positive, so the Baptista metric is locally µΩ0(0)|z|2dzdz̄. In polar coordi-
nates, this is a multiple of r2(dr2 + r2dθ2). Using the change of variables
ρ = 1

2
r2 and χ = 2θ, the metric becomes dρ2 +ρ2dχ2, a flat metric whose po-

lar angle χ runs from 0 to 4π. The metric is therefore conical, with cone angle
4π. The conical excess is 2π. For a vortex centre of multiplicity n, the cone
angle would be 2(n+ 1)π, with excess 2nπ. The Baptista metric is not truly
a flat cone, because there are higher-order metric corrections, and generally
there is a non-zero curvature as the conical singularity is approached.

Baptista derived a simple relation between the curvature of the back-
ground metric and the curvature of the new (Baptista) metric. We present
this for the general vortex equation − 1

Ω0
∇2u = −C0 + Ce2u. We start with

the formula for the Gaussian curvature of the background,

K0 = − 1

2Ω0

∇2 log Ω0 . (27)

The Baptista metric, with conformal factor Ω = e2uΩ0, has Gaussian curva-
ture

K = − 1

2e2uΩ0

∇2(2u+ log Ω0) , (28)

9



so the curvatures are related by

− 1

Ω0

∇2u = −K0 +Ke2u . (29)

This is a well known, purely geometrical identity [24, 25], discussed in the
context of metrics with conical singularities by Troyanov [16]. In addition, u
satisfies the vortex equation, so

− C0 + Ce2u = − 1

Ω0

∇2u = −K0 +Ke2u . (30)

Baptista’s version of this equation, obtained by multiplying by Ω0, is

(K0 − C0)Ω0 = (K − C)Ω . (31)

Intrinsically, this relates linear combinations of the curvature 2-form and
Kähler 2-form of the background metric and Baptista metric. From it, Bap-
tista derived a superposition principle for Taubes vortices [15]. Equation
(31) is not algebraic, despite its appearance, because the curvature formulae
involve the Laplacian.

A basic property of the Baptista metric is the relation between its area

A =

∫
M0

Ω d2x (32)

and the background area of M0,

A0 =

∫
M0

Ω0 d
2x . (33)

If M0 is smooth and compact, and of genus g0, then by the Gauss–Bonnet
theorem,

1

2π

∫
M0

K0 Ω0 d
2x = 2− 2g0 . (34)

For an N -vortex solution, the curvature of the Baptista metric on M0 satisfies

1

2π

∫
M0

K Ω d2x −N = 2− 2g0 , (35)

because each conical singularity with conical excess 2π contributes −1 to the
Gauss–Bonnet integral, and the topology of M0 is unchanged. Integrating
the equation (31), and using these formulae, we find

CA = C0A0 + 2πN . (36)
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This has the following consequences for the five vortex equations in stan-
dard form. For the Taubes equation with C0 = C = −1, A = A0 − 2πN .
The Baptista area A is smaller than the original area A0, implying Brad-
low’s upper bound on the vortex number 2πN ≤ A0, because A has to be
non-negative. It is not possible to have more vortices than this satisfying
the Bogomolny equations. If A0 = 2πN0 for some integer N0, and N = N0,
then we are at the Bradlow limit of the Taubes equation. Here A = 0, so the
Higgs field and the Baptista metric are both zero. Genuine Taubes vortices
require N < N0.

Our Bradlow vortex equation (19), with C0 = −1 and C = 0, allows for
vortices in this limit. Solutions only exist if A0 = 2πN (as the magnetic field
strength is 1, so its integral is A0). The Higgs field satisfies Dz̄φ = 0 in the
background of the constant magnetic field, which is the equation for Lowest
Landau Level states. φ can be non-zero, and its magnitude can be rescaled
by an arbitrary constant, so the area A is arbitrary.

For the Popov vortices with C0 = C = 1, A is larger than A0 and there is
no constraint on N (although we shall see later that N must be even). This
implies that the average of e2u over M0 is greater than 1, so u must be strictly
positive at its maximum, and take all values between this maximum and −∞,
a stronger result than what we obtained using the maximum principle. For
the Jackiw–Pi vortices with C0 = 0 and C = 1, the Baptista metric has area
A = 2πN .

For the vortices satisfying equation (20), with C0 = −1 and C = 1, the
vortex number has to satisfy 2πN > A0 for A to be positive. This is a novel
lower bound on the vortex number. If 2πN = A0 we again have a Bradlow
limit, with degenerating vortices.

6 Integrable Vortices

When the curvature K0 of the background surface M0 is constant, with a
special value adapted to the vortex equation, we call the vortex equation
integrable. The special curvature values are those that make each side of the
Baptista equation (31) vanish. The vortex equation is therefore integrable
if K0 = C0. So for the Taubes, Bradlow and final type of vortices, with
standard coefficients, M0 needs to be hyperbolic, with curvature K0 = −1.
For the Jackiw–Pi vortices the background needs to be flat, with K0 = 0, and
for the Popov vortices the background needs to be spherical, with K0 = 1.
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The Baptista metric then has constant curvature K = C, except at the
conical singularities, so in these five cases it is respectively hyperbolic, flat,
spherical, spherical and spherical.

Finding the geometry of these integrable vortices is closely related to the
problem of starting with a smooth, constant curvature Riemann surface M0

and constructing on it another constant curvature metric (possibly with dif-
ferent curvature) that additionally has a number of conical singularities, each
with conical excess 2π. This requires solving Liouville’s equation. Solutions
of Liouville’s equation can locally be expressed in terms of a holomorphic
function f , and the conical singularities correspond to ramification points of
f , where the derivative of f vanishes.

For some of the equations we are discussing, this construction of vortex
solutions is well known. We briefly review these cases. Then we discuss cases
that have not been considered before, and find a few novel solutions.

The reduction to Liouville’s equation is simple. Let us write the Baptista
conformal factor as Ω = e2v. Then the curvature formula K = − 1

2Ω
∇2 log Ω

becomes ∇2v = −Ke2v, and therefore

∇2v = −Ce2v (37)

when K = C. This is Liouville’s equation when C is non-zero, but the
Bradlow case C = 0 can be included too.

The general solution of equation (37) in a simply connected region of the
z-plane is

Ω = e2v =
4

(1 + C|f(z)|2)2

∣∣∣∣dfdz
∣∣∣∣2 , (38)

where f is a holomorphic function. This formula is also valid if C = 0, as
v is then the sum of the holomorphic function 1

2
log
(
2 df
dz

)
and its complex

conjugate, and therefore satisfies Laplace’s equation. Locally we also have
an explicit expression for the background conformal factor Ω0. In suitably
chosen local coordinates,

Ω0 =
4

(1 + C0|z|2)2
. (39)

The solution of all the integrable vortex equations is therefore locally

|φ|2 = e2u =
Ω

Ω0

=
(1 + C0|z|2)2

(1 + C|f(z)|2)2

∣∣∣∣dfdz
∣∣∣∣2 , (40)
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with the values of C0 and C as in the vortex equation.
One may fix the gauge by choosing the Higgs field itself to be

φ =
1 + C0|z|2

1 + C|f(z)|2
df

dz
. (41)

The vortex centres are the ramification points of f , where its derivative
vanishes. Here, φ is zero. If f near Z0 has the expansion

f(z) ∼ f0 + ν(z − Z0)n+1 (42)

then the ramification number is n, and there are n coincident vortices at Z0.
The original application of these formulae was Witten’s construction of

Taubes vortices on the hyperbolic plane [4]. Here, C0 = C = −1 and f is
a holomophic map from the hyperbolic plane to itself, mapping boundary
to boundary. In the Poincaré disc model, f needs to be a Blaschke rational
function

f(z) =
N+1∏
m=1

z − am
1− amz

(43)

with |am| < 1. Inside the disc, df
dz

has N zeros, so there are N vortices,
and the Higgs field satisfies the boundary condition |φ| = 1. The simplest
example is where f(z) = zN+1, and the expression (41) for the Higgs field is

φ =
1− |z|2

1− |z|2(N+1)
(N + 1)zN =

(N + 1)zN

1 + |z|2 + · · ·+ |z|2N
. (44)

Here, there are N coincident vortices at the origin.
Similar formulae have been used to construct solutions of the Popov vor-

tex equation [8], with C0 = C = 1. These are vortices on a unit sphere, and
are constructed using a meromorphic function f , a map from the Riemann
sphere to itself. To obtain a finite vortex number, the map must again be
rational, of the form

f(z) =
p(z)

q(z)
, (45)

where p and q are any polynomials with no common root. If p and q (and
hence f) have degree n, then df

dz
has 2n − 2 zeros. The vortex number for

Popov vortices is therefore an even number, N = 2n− 2. It has been shown
by Chen et al. [26] that this construction of integrable Popov vortices, using
global rational functions, gives all solutions.
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The Riemann–Hurwitz formula states that if f is a globally-defined holo-
morphic map of degree n from a compact surface of genus g0 to a compact
surface of genus g, then the ramification number (vortex number) N is given
by

2− 2g0 +N = n(2− 2g) . (46)

If the map is from a sphere to a sphere then g0 = g = 0, so N = 2n − 2,
confirming the vortex number given above.

Also known are solutions of the Jackiw–Pi vortex equation, both on the
flat plane, and on a torus. Let us focus on solutions on a torus [11], which
have the form (40) with C0 = 0 and C = 1,

|φ|2 =
1

(1 + |f(z)|2)2

∣∣∣∣dfdz
∣∣∣∣2 . (47)

The simplest solutions are where f is a globally-defined holomorphic map
from the torus to a sphere, i.e. a meromorphic function on the torus. f is
then an elliptic function, with the double periodicity of the torus. For an
elliptic function, g0 = 1 and g = 0, and the degree n is the number of poles
(counted with multiplicity). The vortex number is then N = 2n according to
the Riemann–Hurwitz formula. The simplest elliptic functions have degree
2 and give solutions with four vortices.

f may not be globally defined, and there is a Jackiw–Pi vortex solution
where f is elliptic but the periods of f are twice the periods of the torus itself.
This solution is due to Olesen [27], and has vortex number N = 1. It has been
presented in slightly simpler form, and given a braneworld interpretation, in
[28]. When the torus is glued together, f transforms, but in such a way that
|φ|2 is smooth. It would be useful to more systematically investigate vortices
constructed from local holomorphic maps f , suitably glued together.

A few Taubes vortex solutions are known on hyperbolic surfaces other
than the hyperbolic plane [5], and in particular on the Bolza surface [6], the
most symmetric genus 2 surface. The Bolza surface is a double covering of
the Riemann sphere, branched over the six vertices of a regular octahedron.
Algebraically, it is defined as the complex curve

y2 = (x4 − 1)x (x, y ∈ C) , (48)

with branch points at 0, 1, i,−1,−i supplemented by a branch point at in-
finity. The Bolza surface has a hyperbolic metric in which the octants of the
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Riemann sphere are covered by 16 equilateral, hyperbolic triangles with ver-
tex angles π

4
. At each branch point, eight of these triangles meet smoothly.

The Bolza surface can also be modelled as a regular hyperbolic octagon with
vertex angles π

4
and opposite sides identified, and all eight vertices identified

to one point. This octagon is one cell of the {8, 8} tesselation of the Poincaré
disc by octagons.

A compact hyperbolic surface of curvature −1 has area A0 = 2π(2g0−2),
by the Gauss–Bonnet theorem. Therefore, for the (integrable) Taubes vortex
equation, N < 2g0 − 2, and there can be no more than one vortex on the
g0 = 2 Bolza surface. An explicit solution has been found for a vortex
located at a branch point (by symmetry, all branch points are equivalent)
[6]. In the octagon model, two of the branch points correspond to the centre
of the octagon and the vertex of the octagon, and the solution with a vortex
at either point is available. The formulae depend on a compound Schwarz
triangle map f , which is locally a map from the hyperbolic plane to itself,
mapping a triangle to a triangle. One triangle angle is doubled by the map,
and this produces the ramification of f required at the vortex centre.

The solutions considered so far were all previously known. Let us briefly
mention a class of solutions of the vortex equation (20), with C0 = −1, C = 1.
This equation is integrable on a hyperbolic surface M0 with K0 = −1, and
requires f to be locally a map from M0 to a sphere. If f is globally defined,
then it is a meromorphic function on M0. Meromorphic functions on compact
surfaces are plentiful, although not generally easy to write down explicitly.
For the Bolza surface defined by equation (48), the simplest meromorphic
function is x. The map f is then the canonical covering map from the Bolza
surface to the Riemann sphere, of degree 2. f has six ramification points,
according to the Riemann–Hurwitz formula (46), and they are the lifts of the
six branch points on the sphere. For example, in the neighbourhood of x = 0,
y is a good local coordinate and x = y2 + · · · . So f(y) = y2 + · · · and df

dy
= 0

at y = 0. The function x therefore gives a 6-vortex solution of equation
(20) on the Bolza surface, a vortex number consistent with the inequality
N > 2g0 − 2. The Baptista metric is simply the sphere metric 4

(1+|x|2)2
dxdx̄

lifted to the double cover. One would need to express x in terms of y to make
this lift explicit, which requires solving a quintic.

Integrable Bradlow vortices on a hyperbolic surface M0 locally involve
maps from M0 to a flat surface. The Baptista metric is then flat, apart from
its conical singularities. Such metrics arise from Abelian differentials of the
first kind (holomorphic 1-forms), as follows. Given any such differential form
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ω on M0, there is the beautifully simple metric

ds2 = |ω|2 . (49)

Because ω is closed it can be expressed locally as ω = df
dz
dz, so the metric is

ds2 =

∣∣∣∣dfdz
∣∣∣∣2 dzdz̄ , (50)

which is flat, being the pullback of the flat metric dwdw̄ using the map w =
f(z). The metric also has conical singularities where ω = 0, or equivalently
at the ramification points of f .

Globally, an Abelian differential of the first kind is a section of the canon-
ical bundle, and has 2g0 − 2 zeros, where g0 is the genus of M0. The vortex
number is therefore N = 2g0 − 2, as expected for Bradlow vortices. We
will describe more explicitly a Bradlow vortex solution on the g0 = 2 Bolza
surface in the next section.

7 Geometric Interpretation of Vortices

Associated to a vortex solution, there is the conformal modification of the
background metric, which we are calling the Baptista metric. Its curvature
satisfies equation (31), but note that this is not easy to solve on a general
surface, and is not equivalent to the problem of constructing a metric with
given curvature. The exceptions are the cases where the vortex equation is
integrable. Here, finding a vortex solution is equivalent to finding a metric
of constant curvature, with conical singularities of cone angle 4π at specified
vortex locations. For some purposes, one may regard the Baptista metric as
an intrinsic geometry of a vortex, and in this section, we shall explore this
intrinsic geometry further.

Recall that the definition of the Baptista metric (26) implies that the
squared Higgs field of a vortex solution on M0 is the ratio of two conformally
equivalent metrics,

|φ|2 = e2u =
ds2

ds2
0

=
Ω

Ω0

. (51)

For integrable vortices, this is the ratio of a constant curvature metric on
M0 with conical singularities at the vortex locations (the Baptista metric
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with curvature C) to the smooth, constant curvature metric on M0 (the
background metric with curvature C0).

We can verify directly that |φ|2 satisfies the vortex equation (16). Let us
write Ω0 = e2t and Ω = e2v, so that

e2u = e2(v−t) (52)

and therefore u = v − t. The general formula (27) for the curvature implies
that ∇2t = −C0e

2t, and similarly ∇2v = −Ce2v. Therefore,

∇2u = −Ce2v + C0e
2t , (53)

and dividing by e2t we obtain e−2t∇2u = −Ce2u +C0, which is equivalent to
(16).

This geometric description of a vortex solution matches the formula (40)
as follows. The background metric on M0 has constant curvature C0, so is
locally

ds2
0 =

4

(1 + C0|z|2)2
dzdz̄ . (54)

f is a holomorphic map (at least locally) from M0 to a second constant
curvature Riemann surface M with curvature C. Let this surface have local
complex coordinate w and metric

d̃s2 =
4

(1 + C|w|2)2
dwdw̄ . (55)

The map has the local expression w = f(z), so dw = df
dz
dz. The metric d̃s2,

pulled back to M0 using the map f , is therefore

ds2 =
4

(1 + C|f(z)|2)2

∣∣∣∣dfdz
∣∣∣∣2 dzdz̄ , (56)

and this is the Baptista metric. It still has curvature C, but also has conical
singularities at the ramification points of f , the locations of the vortices. The
ratio of the metrics (56) and (54) then gives the formula (40).

The Baptista metric, being the pullback of a constant curvature metric,
can sometimes be described explicitly. For example, it was shown in [6]
that an N = 1 Taubes vortex on the Bolza surface, located at the centre of
the hyperbolic Bolza octagon, is obtained using a map f from the octagon
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to a hyperbolic square with the same vertex angles, π
4
. The map double

covers the square, with a branch point at the centre of the square. The
full image winds round the square twice and is therefore itself an octagon
with a conical singularity at the centre. Its hyperbolic metric, including the
singularity, is the Baptista metric. The pullback by f places this metric
on the original octagon. Opposite sides are identified in the same way for
both octagons. The octagon with the Baptista metric has half the area
of the original Bolza octagon. (Note that f is not a globally-defined map
between compact surfaces, because the hyperbolic square by itself does not
have opposite sides identified. The appropriate modification of equation (46)
is discussed in [6].)

It is rather easier to visualise this geometry if we consider the vortex to
be at the vertex of the Bolza octagon, which is equivalent by symmetry to
being at the centre. In this case the appropriate map f is from the Bolza
octagon with vertex angles π

4
to a smaller hyperbolic octagon with vertex

angles π
2
. Gluing opposite sides of the smaller octagon together creates a

cone of angle 4π at the vertex, as required. This glued-together octagon is
the intrinsic geometry of the vortex with its Baptista metric, and some of
its geometric properties are easy to calculate. This is despite the fact that
the map f involves Schwarz triangle functions (and hence hypergeometric
functions), so is not very explicit.

These two octagons are shown in Figure 1. The intrinsic, Baptista oc-
tagon has half the area of the Bolza octagon. Using hyperbolic trigonome-
try, one can compare the lengths of their closed geodesics, for example, the
geodesics along the boundary connecting vertex to vertex. Assuming the cur-
vature is K0 = −1, the boundary geodesic of the Bolza octagon has length
a, where cosh a = 5 + 4

√
2. The analogous geodesic on the octagon with

its Baptista metric and conical singularity has the shorter length ã, where
cosh ã = 1 +

√
2.

An N = 2 Taubes vortex on the Bolza octagon would saturate the Brad-
low limit, and the Baptista metric would degenerate and have zero area.
We have evaded this degeneracy by introducing the Bradlow vortex equation
(19). For this equation on the Bolza surface, the vortex number N must be
2. The solution for the squared Higgs field is given by equation (40) with
C = 0. The Baptista metric is therefore the pullback of a flat metric to the
Bolza surface

ds2 =

∣∣∣∣dfdz
∣∣∣∣2 dzdz̄ . (57)
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Figure 1: Three octagons: The outer is the Bolza octagon with vertex angle
π
4

superimposed on the Poincaré disc; the middle is the Baptista
octagon with vertex angle π

2
– the intrinsic (hyperbolic) geometry

of an N = 1 Taubes vortex located at the Bolza octagon vertex; the
inner is a flat octagon with vertex angle 3π

4
– the intrinsic geometry

of an N = 2 Bradlow vortex located at the Bolza octagon vertex.
In all cases, opposite edges are identified.
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For a vortex of multiplicity 2 at the Bolza octagon vertex, the intrinsic ge-
ometry is now a flat, regular octagon of arbitrary scale size, with its straight,
opposite sides identified. This octagon is also shown in Figure 1. The vertex
angle is 3π

4
, so after gluing, there is a single conical singularity of cone an-

gle 6π. The conical excess is 4π, as expected for a vortex of multiplicity 2.
The map f is from the hyperbolic Bolza octagon to the flat octagon, which
again involves nontrivial Schwarz triangle maps. The intrinsic geometry of
the vortex is fairly easy to visualise, even though the squared Higgs field is
not an elementary function.

The intrinsic geometry of Popov vortices is a spherical metric on a unit-
sphere background, incorporating conical singularities. For example, the
2-vortex intrinsic geometry is a double covering of the unit sphere branched
over a pair of points, with the unit-sphere metric lifted to both sheets. The
total area is therefore 8π, twice the original area. On the background sphere,
the vortex locations can be at any pair of distinct points. Coincident vortices
are not allowed, because a rational map of degree 2 cannot have a single ram-
ification point. It is also known that in the intrinsic spherical geometry with
two conical singularities, the cone angles must be equal, and the singularities
are at antipodal points [29]. This is intuitively fairly clear. A conical singu-
larity (with an angular deficit or angular excess) at the north pole opens up
a wedge bounded by meridians (geodesics), and these meet at the south pole
at the same angle. Then these meridians are glued together. The Baptista
metric for two Popov vortices must therefore have this geometry with cone
angles 4π, for any rational map of degree 2.

It is also easy to describe examples of the intrinsic geometry of the Jackiw–
Pi vortices, and of the vortex solutions of equation (20). The background
surface should be a flat torus of genus g0 = 1 in the Jackiw–Pi case, and
a hyperbolic surface of higher genus g0 in the second case. Suppose the
background surface is hyperelliptic, a double cover of a sphere with 2g0 + 2
branch points. (This always holds for surfaces of genus 1 or 2, but only for
selected surfaces of higher genus.) A special vortex solution is then obtained
by choosing f to be the covering map. The vortex number is N = 2g0 + 2
and the vortices are located at the ramification points (the points covering
the branch points). The Baptista metric is the underlying spherical metric
pulled back to the double cover, and it has conical singularities with cone
angle 4π over each branch point. |φ|2 is the ratio of this lifted spherical
metric to the smooth, background flat or hyperbolic metric, but is not an
elementary function.
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We can go beyond double covers. Suppose f : M0 → M̃ is any globally-
defined, branched covering map between compact Riemann surfaces. Both
M0 and M̃ have unique constant curvature metrics. The pullback by f of the
metric on M̃ to M0 is a Baptista metric ds2 of vortices on M0, with vortices
located at the ramification points of f , and its ratio to the smooth metric
ds2

0 on M0 is the squared Higgs field. The relevant vortex equation that is
satisfied depends on the two curvatures.

8 Conclusions

We have considered the generalised Taubes equation for vortices on a curved
background surface, − 1

Ω0
∇2u = −C0 + Ce2u. By rescaling, both C0 and C

take standard values −1, 0 or 1, but only five combinations of these val-
ues allow vortex solutions without singularities. After reviewing Baptista’s
metric ds2 = |φ|2ds2

0, where ds2
0 is the background metric and φ the Higgs

field, we have seen that the vortex equation is integrable provided the back-
ground curvature is constant and equals C0. Baptista’s metric is then of
constant curvature C, but additionally, for an N -vortex solution, it has N
conical singularities with cone angles 4π. Solutions of Liouville’s equation,
locally involving a holomorphic function f , give constant curvature metrics,
and the conical singularities arise from ramification points of f . This allows
a unified treatment of known solutions for Taubes, Jackiw–Pi and Popov vor-
tices, and also for the two further types of vortex presented here, in all the
integrable cases. The squared Higgs field on a compact Riemann surface M0

is simply the ratio of a constant curvature metric with conical singularities
to the unique, smooth constant curvature metric.

For some vortex solutions, including 1- and 2-vortex solutions on the
genus-2 Bolza surface, we have described the intrinsic Baptista geometry,
bypassing the need for finding the Higgs field explicitly. It would be desirable
to extend this intrinsic geometrical picture of vortices to further examples.

For integrable vortices, the Baptista metric with its constant curvature
and conical singularities is the spatial part of an Einstein metric in 2+1 di-
mensions with cosmological constant [17, 18]. The singularities have a 2π
conical excess, and therefore correspond to point-particle sources of negative
mass. It is a surprise that vortices, which are normally regarded as smooth
field configurations on a smooth surface, have such a point-particle inter-
pretation, and it would be interesting if the dynamics of vortices could be
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related to the dynamics of gravitating point particles.
The integrable cases of the Taubes and Popov vortex equations, where

the background geometry is respectively hyperbolic and spherical, are known
to arise from a dimensional reduction of the self-dual Yang–Mills equations
in IR4 [4, 7]. Vortex solutions can therefore be interpreted as instantons with
symmetry. A more systematic treatment of the dimensional reduction, al-
lowing for a wider range of symmetry groups and gauge groups, can probably
account for all the vortex equations considered here. This is under investi-
gation by Contatto and Dunajski [30].

Acknowledgements

I am grateful to the organisers of the LMS/EPSRC Durham symposium on
Geometric and Algebraic Aspects of Integrability (August 2016). This work
was partially completed during the symposium, and I thank Robert Bryant
in particular for helpful remarks. I also warmly thank Rafael Maldonado for
comments, and for producing Figure 1.

References

[1] A. Jaffe and C. Taubes, Vortices and Monopoles, Boston, Birkhäuser,
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