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Abstract 14 

A computational recovery of multi-phase intrusion was discussed with the modified multi-relaxation 15 

time Lattice Boltzmann method (MRT-LBM). Originally proposed dual-matrix computation is 16 

developed to address the different phase separation and interface tracking for the multi-phase problem. 17 

A comprehensive validation is performed with the previously theorized observation of the mercury-18 

water system. Results show that the dual-matrix computation is feasible to provide converged output 19 

under narrowed density difference down to 18%. The wetting and non-wetting behaviour resulted 20 

from form solid-fluid interaction is realized with arbitrary boundaries, in which the contact variance 21 

mailto:mwang@hit.edu.cn


                                                                                              

2 

 

is up to 4.14%. The linear relations described by Laplace's law and Washburn's equation were three-22 

dimensionally recovered with determination coefficients of 96.34% and 94.19%, respectively. A third 23 

fluid intrusion status of partial-intrusion is captured in addition to complete-intrusion and non-24 

occupation in porous boundary, demonstrating the advanced function of the phase-separation and 25 

interface tracking in problems with further increased heterogeneity. 26 

Keywords: Porous media; Multi-phase fluid; Surface tension; Molecular density distribution; Lattice 27 

Boltzmann method 28 

1. Introduction   29 

Multi-phase fluid intrusion into porous networks is a phenomenon commonly existing in problems of 30 

lipid transportation (Lacatusu et al., 2019), petroleum extraction (Negahban et al., 2020), organic 31 

matter emulsions (Perazzo et al., 2015) and carbon sequestration (Espinet and Shoemaker, 2013). 32 

Intrusive fluid plays a crucial part in the above natural and engineering processes, where a fluid phase 33 

pushes through a solid medium immersed in another liquid phase (Huppert, 1986). A comprehensive 34 

understanding of the behaviour directs the design and engineering of fluid network and porous media. 35 

Experimentally, the intrusion behaviour was studied with homogeneous properties such as pressure, 36 

turbulence intensity and flow rate (Coasne et al., 2009; Wang et al., 2018). Although experimental 37 

observation contributed to a macroscopic understanding of the multi-phase fluid behaviour, it was 38 

pointed out that the microscopic interphase detection was inadequate with common approaches 39 

(Hudgins, 1981). More specifically, porous media's opacity raises the difficulty to capture the 40 

molecular density distribution within (Thomas et al., 2004). Hence, the essential information of 3-41 

dimensional molecular density distribution is in absence. 42 

Alternatively, computational fluid dynamics (CFD) suggests a computational realization to simulate 43 

the intrusive problem (Thabet and Thabit, 2018). Macroscopically, Navier-Stokes (NS) equations 44 

following incompressible assumption offer a solution for intrusion behaviour in relatively large water 45 
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bodies (Cantero et al., 2007; Ungarish, 2005). Microscopically, molecular dynamics (MD) following 46 

the spherical assumption have been adopted to simulate intrusion in nanoscale and below (Coasne et 47 

al., 2009; Kim et al., 2019).  Lattice Boltzmann method (LBM) is a mesoscale methodology 48 

simultaneously considering the local molecular density and global fluid behaviour (Zhang, 2014), 49 

where both the incompressible assumption and spherical assumption are invalid (Raabe, 2004). In 50 

practice, modelling water transport in systems such as soil particles (Sun, 2018), cement particles 51 

(Zhou et al., 2017), and blood vessels (Tiwari and Chauhan, 2019) requires mesoscale methodology 52 

because of the intermediate Knudsen number (Pourfattah et al., 2020). More specifically, the above 53 

micrometre media's characteristic system length is not large enough to neglect the discontinuity in 54 

the fluid-surface region in NS solution (Basser et al., 2017). The MD solution focusing on molecules 55 

and atoms in media in µm3 requires particles amount to a magnitude order of 1016, overwhelming the 56 

affordable budget (Lane et al., 2010). Additionally, a mathematical description alternative to 57 

analytical geometry must process the heterogeneous boundary of arbitrary media. In previous porous 58 

formation studies, voxel-based algorithms were developed to realize random media processing 59 

(Byholm et al., 2009; Tian et al., 2020; Wang et al., 2019). To sum, the 3D matrix-based LBM for 60 

intermediate Knudsen number (Raabe, 2004) is a feasible CFD solver with adaptability to 61 

computational chemistry to provide 3D molecular density distribution in heterogeneous media. 62 

The intrusion phenomenon study was initiated form the capillary fluid dynamics proposed by 63 

Washburn equations (Edward W. Washburn, 1921). The classic model adopted parallel tubes as the 64 

solid boundary for mercury intrusion (E. W. Washburn, 1921). Governing by the surface tension 65 

described by Laplace's law, the local difference in capillary interconnection was reflected by the 66 

various access of the intruding fluid under the same pressure (Valentinuzzi et al., 2011). Modern fluid 67 

dynamics has been developed into two directions, which are top-down and bottom-up approaches 68 

(Seiffert, 2017). The top-down philosophy on intrusion simulation was demonstrated by the attempts 69 

to solve the partial differential equations integrating NS equations, Washburn equations and Laplace 70 
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equations (Limache et al., 2007; Tarek and Lee, 2018). On the other hand, the bottom-up approaches 71 

such as MD and LBM assembled the small scale mechanism to recover from large scale phenomenon 72 

(Yoshimoto et al., 2013). Classic models function as endpoint validation instead of the starting point 73 

calculation in the latter approach. MD recovery of the surface tension emphasized the Newtonian 74 

interaction among molecules and atoms (Yoshimoto et al., 2013), in which the microscale intrusion 75 

simulation results were compared with the Laplace equation (Park et al., 2001) and Washburn 76 

equation (Dimitrov et al., 2007). However, the abovementioned problem of the computational budget 77 

forced MD solutions to adopt simplified boundary of free volume (Park et al., 2001) and single tube  78 

(Coasne et al., 2009; Dimitrov et al., 2007; Kim et al., 2019), preventing further extension in arbitrary 79 

media. LBM recovery of the multi-phase phenomenon emphasizes the statistical distribution of local 80 

fluid density with the Boltzmann equation (Zhang and Tian, 2008). Previous 2D LBM attempts 81 

(Baakeem et al., 2020; Hyväluoma et al., 2004) on the mesoscale intrusion demonstrated the 82 

feasibility of recovering surface tension with the Shan-Chen model  (Shan and Chen, 1994).  To 83 

further develop the LBM methodology for intrusion problem, the following aspects should be 84 

contributed. Firstly, the single relaxation time (SRT) collision operator (Bhatnagar et al., 1954; Qian 85 

et al., 1992) adopted in previous solutions can be upgraded with the latest multi relaxation time (MRT) 86 

collision operator to improve the computational stability (Coreixas et al., 2020). The streaming 87 

calculation with a single matrix should be modified to provide confirmative phase separation (Lee et 88 

al., 1998) and straightforward data registration (Khare et al., 2019) during the multi-phase interface 89 

detection. More importantly, a 3D realization is needed to prepare the method for realistic problems. 90 

This paper proposed a 3D MRT-LBM scheme to simulate the mesoscale intrusion into arbitrary 91 

porous media. Mercury and water were adopted as comparing phases to dock the previous theory on 92 

capillary fluid dynamics. The scheme integrates the Shan-Chen model to compute the multi-phase 93 

redistribution through the bottom-up approach from surface tension recovery to macroscopic fluid 94 

behaviour. Validation with the Laplace equation and Washburn equations was performed in the 95 
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previously reported cylindrical boundaries. The adaptability to arbitrary media was demonstrated by 96 

direct application in boundary-free volume, solid surface, single tube, parallel tubes and random 97 

porous media. The dual-matrix computation enables the registration of the multi-phase fluid for in-98 

process monitoring. The work demonstrates an LBM solution to simulate molecular density 99 

distribution during the intrusion into heterogeneous media. 100 

2. Methods 101 

2.1. Multi-relaxation time Lattice Boltzmann method (MRT-LBM) 102 

The LBM engine in this study adopted D3Q19 MRT-LBM through independent programming (Wang, 103 

2017). The core equations of the fluid density development were given by Eq. 1 (D'Humières et al., 104 

2002) and Eq. 2 (Raabe, 2004). 105 

f(𝐱 + eiδt, t + δt) − f(𝐱, t) = −M−1 ∙ 𝑆 ∙ [M ∙ f(𝐱, t) − M ∙ f 𝑒𝑞(𝐱, t)]                                             (1) 106 

feq(𝐱, t) = wiρ[1 +
ei∙𝐮

cs
2 +

(ei∙𝐮)2

2cs
4 −

ei∙𝐮

2cs
2]                                                                                            (2)    107 

Where f(𝐱, t) is the fluid density distribution, x is the lattice coordinates, t is the fluid progression 108 

time, M is the 19×19 transform matrix for MRT simulation (Premnath and Abraham, 2007) as given 109 

by Appendix A, S is the collision matrix for MRT simulation as provided by Eq. 3 (Premnath and 110 

Abraham, 2007), feq(𝐱, t) is the equilibrium density calculated with Maxwell-Boltzmann equilibrium 111 

distribution (Abdoul-Carime et al., 2015; Qian et al., 1992), ei is the velocity vectors as given by Eq. 112 

4 (Premnath and Abraham, 2007; Zhang et al., 2013), wi is the density weighting factors as provided 113 

by Eq. 5 (Premnath and Abraham, 2007; Zhang et al., 2013), ρ  is the macroscopic density 114 

distribution, cs
2 = 1/3 is the lattice sound speed, 𝐮 is the macroscopic velocity distribution, and i is 115 

an integer between 0 to 18 for the D3Q19 simulation. 116 

S = diag[1, 1.19, 1.4, 1, 1.2, 1, 1.2, 1, 1.2, 1, 1, 1, 1, 1, 1, 1, 1, 1.98, 1.98, 1.98]                                            (3) 117 
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The macroscopic density distribution was calculated with Eq. 6 (Chen and Doolen, 1998).  120 

ρ(𝐱, t) = ∑ f(𝐱, t)18
i=0                                                                                                                              (6) 121 

Where 𝜏 = 1 is a relaxation time related to the kinematic viscosity and F is the force applied to the 122 

lattice's liquid. The dual-matrix computation was further proposed by dividing the fluid matrix into 123 

two matrices representing phase-I and phase-II, respectively. Eq. 7-9 presents the formula to calculate 124 

3D dual-phase fluid motion. 125 

f(𝐱, t) = fI(𝐱, t) + fII(𝐱, t)                                                                                                                     (7) 126 

fI||II(𝐱 + eiδt, t + δt) − fI||II(𝐱, t) = −M−1 ∙ 𝑆 ∙ [M ∙ fI||II(𝐱, t) − M ∙ fI||II
𝑒𝑞(𝐱, t)]                                     (8)              127 

fI||II
𝑒𝑞(𝐱, t) = wiρI||II[1 +

ei∙𝐮I||II

cs
2 +

(ei∙𝐮I||II)
2

2cs
4 −

ei∙𝐮I||II

2cs
2 ]                                                                        (9)                                                                  128 

The macroscopic velocity distribution was calculated with Eq. 10 and 11 (Benzi et al., 2006; Shan 129 

and Chen, 1993; Zhang, 2013).  130 

uI(𝐱, t) =
1

ρI(𝐱,t)
∑ fI(𝐱, t) ∙ ei

18
i=0 +

τFI(𝐱,t)

ρI(𝐱,t)
                                                                                               (10) 131 

uII(𝐱, t) =
1

ρII(𝐱,t)
∑ fII(𝐱, t) ∙ ei

18
i=0 +

τFII(𝐱,t)

ρII(𝐱,t)
                                                                                            (11)                                                                                                                            132 

The interaction between the two phases was accounted for through the computation of the inter-force. 133 

If the force terms take the value of zero, the two phases' motion will independently follow the 134 

Maxwell-Boltzmann equilibrium distribution, and no phase separation will be formed. In the mercury 135 

intrusion phenomenon, the phase separation between phase-I and phase-II is essential to obtain the 136 

phase progression paths. Therefore, the force term calculated with the Shan-Chen model (Shan et al., 137 
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1993) was further introduced. 138 

2.2. Integrating the Shan-Chen model 139 

The fluid phases of the triple-phase simulation were initially registered as phase-I and phase-II. The 140 

solid phase was registered as phase-S. The force term of phase-I was calculated with Eq. 12 141 

FI(x, t) = FI−I(x, t) + FI−II(x, t) + FI−S(x, t)                                                                                         (12) 142 

Where 𝐹𝐼(𝑥, 𝑡) is the force applied on the phase-I in the lattice of x, 𝐹𝐼−𝐼 is the force from the phase-143 

I in the lattice other than x, 𝐹𝐼−𝐼𝐼 is the force form the phase-II in the lattice other than x and 𝐹𝐼−𝑆 is 144 

the force form the solid phase when the lattice x in contact with the tangible interface. 𝐹𝐼−𝐼, 𝐹𝐼−𝐼𝐼 and 145 

𝐹𝐼−𝑆  were calculated with Eq. 13-15, respectively, based on the original Shan-Chen model 146 

(Parmigiani et al., 2016; Shan et al., 1993). 147 

FI−I(x, t) = −GI−IψI(x, t) ∑ wi
18
i=1 ψI(x + ei, t)                                                                                      (13) 148 

FI−II(x, t) = −GI−IIψI(x, t) ∑ wi
18
i=1 ψII(x + ei, t)                                                                                                     (14) 149 

FI−S(x, t) = −GI−SψI(x, t) ∑ wi
18
i=1 ψS(x + ei, t)                                                                                    (15) 150 

G is an interaction coefficient; ψ is the effective mass calculated with Eq. 16 (Shan et al., 1993; Shan 151 

and Chen, 1993). G<0 represents attractive inter forces and G>0 represents repulsive forces. The 152 

density of the solid phase was fixed as ρS = 5.3. 153 

Ψ(x, t) = 1 − e−ρ(x,t)                                                                                                                              (16) 154 

The computation of the force terms FII followed the same approach, and the involved coefficients of 155 

interaction were GII−II, GII−I and GII−S. Table 1 presents the interaction coefficient adopted in this 156 

study. 157 

GI−I GI−II GI−S 

-0.05 2.5 -0.1 
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GII−II GII−I GII−S 

-0.8 2.5 0.1 

Table 1: Coefficient of interaction in the triple-phase Shan-Chen model 158 

In the original Shan-Chen model, the bulk fluid phase's internal pressure was calculated with Eq. 17 159 

(Benzi et al., 2006; He et al., 1999; Qin et al., 2018). 160 

P(x, t) = ρ(x, t)cs
2 +

1

2
cs
2Gψ(x, t)2                                                                                                                          (17） 161 

Where the right-hand consists of the density term and the interaction term. In this study, the density 162 

terms were considered the sum of the two phases, and the interaction term was expanded with the I-163 

I, II-II, I-II interaction. Eq. 18 presents the modified formula for bulk pressure computation. 164 

P = (ρI + ρII)cs
2 +

1

2
cs
2(GI−IψI

2 + GII−IIψII
2 + GI−IIψIψII)                                                                (18)             165 

2.3. Boundary conditions  166 

Multiple simulations were performed with boundary-free volume, solid surface, single tube, parallel 167 

tubes and random porous media. The standard Laplace-Young test (Kuzmin and Mohamad, 2010; 168 

Parmigiani et al., 2016) was conducted within a 50×50×50 cubic volume, and periodic boundary 169 

condition was adopted on the six surfaces of the cube. The bubble formation was performed under 170 

the α group and β group with different density distribution. Surface droplet simulation was completed 171 

within a 20×40×40 volume to determine the contact angle. The volume's bottom surface was defined 172 

as solid-phase with no-slip bounce back condition (D'Humières et al., 2002). Single tube simulation 173 

was performed in a 30×30×100 virtual device as presented in Fig. 1(a), and no-slip bounce back 174 

condition was adopted on the liquid-solid interface. Parallel tubes simulation was performed in a 175 

40×90×80 virtual device as illustrated in Fig. 1(b), and no-slip bounce back condition was adopted 176 

on the liquid-solid interface. The last simulation of intrusion into porous media was performed with 177 

an extracted structure from polydisperse particle packing (Wang et al., 2019), as presented in Fig. 178 

1(c),  whose porosity was 36.09%. The overall volume of the porous medium was 50×50×70. No-179 
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slip bounce back condition was adopted on the liquid-solid interface, top surface and bottom surface. 180 

Periodic boundary condition was assumed on the rest four surfaces of the volume.  181 

  182 

 183 

Fig. 1 (a) Previously reported boundary (Hou et al., 2019; Kim et al., 2019). (b) Classic multi-tube boundary. (c) The porous border 184 

in this work. 185 

2.4. Molecular density 186 

The density distribution ρ(𝐱, t) of the LBM represents the number of molecules in 3D lattices (He 187 

and Luo, 1997). Table 2 presents the conversion from the molar volumes of water and mercury to the 188 

target LBM density. The target density was realized by the calibration of the interaction coefficients, 189 

including GI−I, GI−II, GII−S GII−II, GII−I and GII−S. The simulation was conducted until the steady-190 

state was reached. In this study, the stable-state was defined as the iteration when the overall density 191 

change was within 0.5‰.  192 

 Phase label Phase-I Phase-II 
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A Chemical formula H2O Hg 

B Mass density 103 kg/m3 13.6×103 kg/m3 

C Relative molecular mass 18 200 

D Mass of 
Carbon−12

12
  1.66 × 10−27 kg 

E Converted mass (C ∙ D) 2.99 × 10−26 kg 3.32 × 10−25 kg 

F Avogadro constant 6.022 × 1023 mol−1 

G Molecule number density (
B

E∙F
) 5.56 × 104 mol/m3 6.80 × 104 mol/m3 

H Target LBM density (GI: GII) 1 1.22 

Table 2 Conversion from molecular properties to LBM density  193 

3. Result and discussion 194 

3.1. Laplace-Young test and fundamental performance 195 

Fig. 2(a) presents the 3D visualized result of the bubble formation and the cross-sectional area for the 196 

2D illustration. Fig. 2(b) shows the correlation between internal pressure difference and the radius of 197 

the bubble. The resulted pressure difference is inversely proportional to the radius of the bubble. The 198 

linear relationship of the Laplace testing equation, as given by Eq. 19, was recovered with a 199 

coefficient of determination of 96.34%. 200 

𝑃 =
𝜎

𝑅
                                                                                                                                                     (19) 201 

Where ∆𝑃 is the pressure difference between the internal region and the outer region of the bubble, 202 

𝜎  is the surface tension term, and R is the radius of the bow. Previous Shan-Chen models also 203 

demonstrated Laplace's law's recovery with a single matrix computation (Shan and Chen, 1993). 204 

However, the origin point (0,0) was not always passed due to the multi-phase registration difficulty 205 

(Dauyeshova et al., 2018; Kuzmin and Mohamad, 2010; Qin et al., 2018). In this study, the proposed 206 

method makes the multi-phase registration, as presented in Fig. 3, a straightforward step without the 207 
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extra step of phase identification. 208 

 209 

Fig. 2 Validation with Laplace-Young test 210 

The application of the dual matrix computation further enabled the realization of narrowed density 211 

difference. Previously (Shan and Chen, 1993), the density inside the bubble was inevitably higher 212 

than the external pressure to an order of magnitude of 10, based on which the matrix was identified 213 

as high-density fluid and low-density fluid. Consequently, the separation of phases with similar 214 

densities became highly challenging since the minor gradual change can hardly support the interface 215 

distinguishment. In comparison, the dual-matrix computation in this study performs the collision 216 

computation for phase-I and phase-II, respectively. As a result, a solution to obtain separated phases 217 

from the beginning (registration) is provided from the program architecture. The 3D phases 218 

distribution of phases with relative densities was then tracked throughout the computation. Fig. 3(a) 219 

presents the cross-sectional density distribution results of phase-I, and Fig. 3(b) shows the density 220 

distribution results of phase-II in the same multi-phase system. Macroscopically, Fig. 3(c) presents 221 

the density profile along the measurement area. The stabilized density of phase-I and phase-II was 222 

1.025 and 1.213, respectively. Through adopting the reported coefficients of interaction, the 223 

macroscopic densities of water and mercury were realized from a microscopic basis. Fig. 3(d) 224 

presents the density gradient profile along the measurement area. The measurement of the bubble 225 

radius (R) took the distance between the midpoint of peaks and the whole volume centre. The 226 
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thickness of the interface region was within 8lu, where lu is the LBM system's unit length (Zhang et 227 

al., 2013). Compared with previous single matrix Shan-Chen models, the density difference of the 228 

stable phases was reduced from 33% (Parmigiani et al., 2016; Shan and Chen, 1993) to 18%. 229 

 230 

 231 

Fig. 3 (a) Cross-sectional of phase-I in the bubble formation simulation. (b) Cross-sectional of phase-I in the bubble formation 232 

simulation. (c) LBM Density profile along the measurement area. (d) Density gradient profile along the measurement area. 233 

The surface droplet test was performed with a solid surface, phase-I and phase-II. Fig. 4(a) presents 234 

the realized 3D droplet formation of phase-I surrounded by phase-II. Fig. 4(b) illustrates the 235 

crossectional result of the visualized data. The contact angle was measured at the intersection of the 236 

three phases. The test with phase-I resulted in a contact angle of 38.12°. Fig. 4(c) presents simulation 237 

with phase-II surrounded by phase-I, where the non-wetting interaction was realized with 3D density 238 

distribution. Fig. 4(d) shows the cross-sectional result of the visualized molecular diffusion, and the 239 
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resulted contact angle was macroscopically obtained as 142.82°. Consequently, the sum of the two 240 

contact angles resulted in 180.94°. Therefore, the wetting (<90°) and non-wetting (>90°)  behaviour 241 

caused by surface tension was realized. The presented solution for multi-phase separation is essential 242 

to obtain the interface between phases with similar density. Hence, securing contact angles becomes 243 

consequently possible. 244 

 245 

 246 

Fig. 4 (a) A wetting surface droplet of phase-I surround by phase-II. (b) The cross-sectional view of (a). (c) A non-wetting surface 247 

droplet of phase-II surround by phase-I. (d) The cross-sectional view of (c).  248 

3.2. Application in single-tube scenario   249 

Fig. 5(a). presents the application of the proposed method in a single-tube scenario. The molecular 250 

density of phase-II in the top pore initially adopted a uniform distribution with a constant value of 251 
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1.5618, which is higher than the target mercury density to initiate intrusion. Fig. 5(b) presents the 252 

dynamics process of phase-II from initiation to final stabilization. It was found that the contact angle 253 

in the progression stage was higher than in the stabilization stage, which was resulted from the non-254 

equilibrium of the fluid interactions and motion. 255 

Measurement of contact angle resulted in a value of 137.13°, which was 4.14% higher than that of 256 

the droplet test. The contact angle difference was caused by the discrete solution to the Boltzmann 257 

equation for the arbitrary problem instead of the continuous solution for a particular problem 258 

(Gressman and Strain, 2011). The demonstrated application suggests a digital means to control the 259 

simulated intrusion behaviour with user-specified densities. The progression of phase-II in the pore-260 

neck is a density increasing process, causing the extension of progression length. The final 261 

stabilization indicates a certain progression length within the pore neck under a fixed density 262 

difference in the numerical environment. 263 

Consequently, access to the bottom pore of phase-II can be granted when the pore neck is shorter than 264 

the progression length. The single-tube intrusion and surface droplet demonstrate the 3D realization 265 

of surface tension with the proposed model in fundamental boundaries. The following study presents 266 

the performance of the computational framework in more complex scenarios. 267 

 268 
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Fig. 5 (a) The virtual device of the pore-neck simulation. (b) Progression process of phase-II. 269 

3.3. Validation with Washburn equation 270 

The multi-tube simulations were performed with a division of isolated tubes, as presented by Fig. 271 

6(a), and a division of connected lines, as shown by Fig. 6(d). Fig. 6(c) demonstrates the virtual device 272 

in which the connected tubes simulation was performed. In both divisions, phase-II's initial molecular 273 

density in the top volume initially adopted a uniform distribution with a constant value of 1.5618. It 274 

was found in the isolated tubes simulation that increased tube radius led to an increment of the 275 

progression length. Without 3D distribution, the diffusive Washburn equation previously provided a 276 

general description of the relationship between progression depth and tube radius given by Eq.20 277 

(Guancheng and Guancheng, 2018). 278 

L = √
γr𝑐tcosθ

2η
                                                                                                                                          (20) 279 

Where L is the progression depth, γ is the surface tension, r𝑐 is the tube's radius, t is the progression 280 

time, θ is the contact angle, and η is the dynamic viscosity. Under the same Shan-Chen coefficient of 281 

interaction and lattice speed of sound, the above parameters were the same controlled variables except 282 

for r𝑐. Eq. 20 indicated that the progression depth L should be in a first-order linear relationship with 283 

the square root of the tube radius √r𝑐. In comparison, Fig. 6(b) presents a successful recovery of the 284 

linear relationship from the 3D data independently obtained from the isolated tubes division with a 285 

94.19% coefficient of determination. 286 

The progression depth was governed by both the permeative flow and the diffusive flow in the 287 

connected tubes division. Results in Fig. 6(d) shows that the pressure rebalancing caused by the tube 288 

interconnection further amended the morphology of the stabilized density distribution. The diameter 289 

threshold of the complete intrusion for each tube was previously given by the permeative Washburn 290 

equation as given by Eq.21 (Diamond, 2000). 291 

dc =
−4γcosθ

P
                                                                                                                                            (21) 292 
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Where dc is the diameter of the cylinder being intruded, and P is the pressure. Eq. 21 indicated that a 293 

wider tube radius tended to have less difficulty performing intrusion into the opposite volume under 294 

the same path length. As a result, intrusion behaviour into porous media naturally processes the 295 

function of radius selection. In this study, the radius selection feature was further realized with 3D 296 

data of each cross-section, as presented in Fig. 6(d). Results show that the neck radius's increment led 297 

to an extended progression length of the digital fluid, and the bottom-up approach has successfully 298 

recovered the radius-depth relationship in the classic model. Although Washburn's work has been 299 

acknowledged for reflecting the two-phase interaction under his traditional model, it has been an 300 

argument that the derivative pore size evaluation method is inappropriate for practical media with 301 

increased boundary complexity (Diamond, 2000). The problem raised is that the pore size, pore-neck 302 

length and pore morphology cannot be as adequately defined with overly simplified properties, 303 

including pore size, porosity and neck length. In the state-of-the-art solution of the multi-phase fluid 304 

problem in the heterogeneous boundary, the pore-structure were digitally described with phase 305 

information in each 3D coordinate (Shimizu and Tanaka, 2017). After testing the simulated fluid 306 

behaviour with limits adopted in previous theories, the feasibility to apply the proposed LBM in the 307 

complex boundary is further performed with a porous-medium case in the following section. 308 

 309 



                                                                                              

17 

 

  310 

Fig. 6 (a) Simulation with the isolated group. (b) Validation with the Washburn equation Eq. 16. (c) The virtual device of the 311 

connected tubes simulation. (c) Simulation with the corresponding group.  312 

3.4. Intrusion into media with increased heterogeneity 313 

Fig. 7 presents the visualized result of phase-II intrusion into a random porous-medium, in which Fig. 314 

7(a) shows the early stage of the intrusion and Fig. 7(b) shows the stabilized phase-II. The cross-315 

sectional results of the simulation are demonstrated by Fig. 7(c) and Fig. 7(d). It was found in the 316 

reported realization that phase-II intruded into the porous medium through a path formed by the large 317 

pores. Residual phase-I was primarily detected in tiny pores and necks. The decreased intrusion into 318 

smaller pores agrees with the practical observation (E. W. Washburn, 1921). Furthermore, results 319 

show that the intrusion status into pores with similar sizes was not always identical, which was caused 320 

by varying pore-necks. The 3D monitoring of the process suggests that the pores' geometrical 321 

influences and pore-necks with irregular shapes can introduce a local variation of phase distribution. 322 

Hence, one single parameter of pore size (dc) is inadequate to reflect the pore space's morphology 323 

microscopically. However, the permeative Washburn equation can provide a rough estimation of the 324 

pore sizes. Modern computational chemistry has pointed out a solution to the solid-phase 325 

representation with a 3D description of each coordinate's information. The work presented in this 326 

paper further extend such philosophy towards the fluid phase within. 327 
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 328 

 329 

Fig. 7 (a) Visualized results of early-stage phase-II intrusion. (b Visualized results of late-stage phase-II intrusion. (c) 2D cross-330 

sectional view of early-stage phase-II intrusion. (d) 2D cross-sectional view of late-stage phase-II intrusion. 331 

Further investigation was performed with varied phase-II molecular densities upon initialization. Fig. 332 

8(a) presents the 2D cross-sectional results from a uniform density distribution of 4.2, in which the 333 

circled area highlight the complete intrusion upon stabilization. In comparison, Fig. 8(b) presents the 334 

results from an initial density distribution with 3.2, in which the decreased phase-II pressure resulted 335 

in residual phase-I in the circled area. Hence, varied access to irregular-shaped pore driven by 336 

different pressure differences was realized with a full map description of molecular density 337 

distribution. It is further argued here that fluid-phase intrusion into porous media possesses the third 338 
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status in addition to complete-intrusion and non-occupation. The squared area in Fig. 8(b) presents a 339 

partial intrusion in one of the pore space, whereas the same zone in Fig. 8(a) is of complete-intrusion 340 

status. In a non-simplified pore network presented by the adopted porous-medium, the pore 341 

morphology's spherical assumption is further invalid since the actual pore is connected with a pore-342 

neck of a non-solid phase. Fig. 8(c) presents the visualized results from applying an intermediate 343 

density of 3.8, and the above-discussed pore space shows a noticeable migration of the fluid interface. 344 

Fig. 8(d) presents the pore volume's dynamic occupation by phase-II alone with the computational 345 

time, whose measurement was three-dimensionally obtained in the zone marked in Fig. 8(c). The 346 

results show that the stabilized occupation of phase-II over the volume increased with the raised 347 

pressure difference. The in-progress monitoring of the process also describes a rarely discussed 348 

behaviour that a retreat of phase-II from the bottom volume occurred before the final stabilization 349 

(Fig. 8(d)-ii). In a complex pore network, multiple paths were formed by the solid phase for the fluid 350 

intrusion, and the effective length of each path is not necessarily the same. However, the percolation 351 

of the global network is simultaneously influenced when a local pore-neck is broken through. 352 

Representing the systematic behaviour with final stage outcome and macroscopic properties 353 

assembled from the volume is insufficient when a more comprehensive understanding of the system 354 

is desired. The clear phase separation provided by the proposed dual-matrix computation enables the 355 

above capturing of the fluid interface and the multi-phase 4D molecular density distribution. Through 356 

a thorough representation of the molecular map over time and space, computational chemistry 357 

predicting detailed information in each coordinate is prepared to investigate beyond the boundary of 358 

previous assumptions. 359 
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  361 

Fig. 8 (a) Local interaction under initial LBM density of  4.2. (b) Local interaction under initial LBM density of  3.2. (c) In-progress 362 

monitoring under initial LBM density of  3.8. (d) Macroscopic monitoring of phase-II intrusion. 363 

4. Conclusion 364 

Fluid intrusion into 3D media is a complex process of heterogeneous transport, in which the molecular 365 

density distribution is of great significance for chemical engineering. One major challenge to model 366 
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the process is the different phase separation and interface tracking during the multi-phase evolution 367 

within 3D solid boundaries. This work presented a solution to the problem with the proposed dual-368 

matrix computation MRT-LBM initially, enabling in-progress monitoring of separated phases and 369 

initialization to stabilization. Application of the kinetics model in the mercury-water system was 370 

demonstrated to compare the work with previously theorized observation of capillary dynamics. 371 

Results show that narrowed density difference down to 18% was realized with separately tracked 3D 372 

fluid distribution in each computational iteration for the first time. Performance of the Laplace-Young 373 

test model presented a well-recovered linear relation between pressure difference and the reciprocal 374 

of the bubble radius. The droplet test demonstrated a successful integration with the Shan-Chen model 375 

to three-dimensionally realize the wetting and non-wetting solid-fluid contact with stabilized contact 376 

angles. A further comparison was performed with classic boundaries previously assumed by capillary 377 

dynamics after presenting the bottom-up solution's actual performance. Realization in single-tube 378 

boundary demonstrates a minor variance of the contact angle result up to only 4.14%. The Washburn 379 

equation was recovered under parallel-cylinder limits with a 94.19% coefficient of determination. 380 

The sensitivity to cylinder radiused intrusion behaviour was three-dimensionally achieved from the 381 

bottom of local surface tension. The spherical assumption in previous capillary dynamics is 382 

inadequate to reflect the pore space's morphology in media with increased heterogeneity.  383 

Based on the philosophy of representing heterogeneous media with labelled 3D matrix, this work and 384 

its kind extend the systematic description from solid-phase to fluid-phase. Results show that the 385 

pressure-dependent access to pores with various sizes was still functional after applying the MRT-386 

LBM in media with increased heterogeneity. However, it was found that phase-II's volumetric 387 

occupation was not solely contributed by the difference in access to the pores. The stabilized intrusion 388 

processes a status of partial-intrusion in addition to complete-intrusion and non-occupation. The 389 

interface migration resulting from varied initial pressure indicates that the local fluid's actual 390 

morphology in intruded pores is dynamically modified instead of being constant. The computational 391 
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realization of intrusion behaviour also presents a time-dependent vision of the simultaneous fluid 392 

progression in multiple paths formed by pores. A local breakthrough of the narrow pore-neck in one 393 

path resulted in a global retreat of the fluid phase assembled in the other paths. Starting from the 394 

current knowledge, the modelling of the 4D behaviour of multi-phase fluid intrusion in realistic media 395 

is a challenging task still requiring more specific investigation. The addressed phase-separation and 396 

interface-tracking are essential for a comprehensive establishment of the molecular density map's 397 

computational description for a broader range of problems in chemical engineering science. 398 

Appendix A. MRT transform matrix 399 
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