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Multiple-scale adjoint sensitivity analysis of
hydrodynamic/thermo-acoustic instability in
turbulent combustion chambers

By L. Magrit, Y. C. See, M. Ihme AND M. P. Junipery

In this paper, we define a mathematically consistent set of thermo-acoustic equations
via asymptotic multiple scale methods in the low-Mach number limit. The final thermo-
acoustic equations consist of reacting low-Mach number (LMN) equations for hydrody-
namic phenomena and acoustic (AC) equations. The two sets of equations are two-way
coupled. The coupling terms depend on which multiple scales are used. We derive and
discuss the coupling terms for three distinct limits: double-time-double-space (2T-2S);
double-time-single-space (2T-1S); and single-time-double-space (1T-2S). We linearize the
thermo-acoustic equations around the mean flow, which is obtained by time averaging
Large-Eddy simulations. We show that only 1T-2S provides a two-way coupled linearized
system. In the other limits, the coupling from the AC to the LMN is of higher order.
We perform global direct and adjoint analysis to identify unstable modes and passive-
feedback mechanisms to stabilize/lower the frequency of the oscillation. Preliminary re-
sults are shown for a dual-swirl gas turbine combustor and a simplified dump combustor.

1. Introduction

Thermo-acoustic oscillations occur in gas turbine and rocket engines. They can lead
to catastrophic failure and are one of the most persistent problems in gas turbines and
rocket engines. If acoustic pressure fluctuations occur in phase with heat release fluctua-
tions then thermal energy is converted to mechanical energy over a cycle and the acoustic
amplitude increases. If the fluctuating heat arises from a flame then these fluctuations
depend on coherent periodic structures that convect and grow down the flame. These
structures are driven by shear and centrifugal forces and do not necessarily travel at the
speed of the mean flow. Experiments show that the interaction between the hydrody-
namic and thermo-acoustic mechanisms determines the overall thermo-acoustic behavior
of the flow in configurations in which the flame sits in a region that is strongly hydro-
dynamically unstable (Chakravarthy et al. 2007). The gas turbine model combustor by
Meier and co-workers (Giezendanner et al. 2005; Allison et al. 2013) is an example of
such a configuration. This burner has been designed to model those in gas turbines so it
is likely that the same features will be found in industrial applications. The aim of the
techniques developed in this study is to identify the mechanisms of coupled instability,
the regions of the flow that cause the instability, and strategies for reducing the growth
rates of the instability. This project involves the multiphysical interaction of hydrody-
namic and thermo-acoustic instability mechanisms, modelled in a multiple time/space
scale perturbation framework (Balaji 2012).
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2. Governing equations

The compressible continuity, momentum and energy equations, in which S is the
oxidizer-to-fuel density ratio, are

% + (iM) V- (pu) =0, (2.1)
pgf: + (iM) [pu-Vu+ w@vp— S’llRev-T] =0, (2.2)
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The reference length is the mean flame length, i, upstream of which 90% of the total heat
release occurs. The reference time is L /¢y, where ¢ is the reference speed of sound and L
the combustor’s length (Figure 1). 7 is the dimensionless time. We have neglected body
forces and assumed Stokes’ constitutive law, 7 = Vu+ VZu —2/3 (V - u) I, and Fourier
law for conduction. Thermal conductivity, heat capacities and viscosity are constant. The
gas is perfect. In the energy equation, we assume that variations in the pressure, p, are
negligible from now on. This is a common assumption in subsonic high-Reynolds number
combustion problems. We neglect viscous dissipation and variations in the kinetic energy,
which are ~ o(M) in Eq. (2.3). (The little-o notation is such that limp;_,0 o(M)/M = 0.)

We study diffusion flames with one-step chemistry by defining the mixture fraction,
Z, and using the non-dimensional Arrhenius’ law (Nichols & Schmid 2008)
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where Sc is the Schmidt number; s is the equilibrium constant; s is the heat-release
parameter; « is a negative number depending on the flame temperature; 3 is the Zeldovich
number; and the Lewis number is assumed to be unity. The state equation becomes

pl(S1—=1)Z+1][(S: —1)T+1] —p=0, (2.6)

where S7 is the oxidizer-to-fuel density ratio and Ss is the adiabatic-flame-to-ambient
temperature ratio.

3. Two-way coupling of hydrodynamic processes with acoustics

In this section, we couple the reacting low-Mach Number (LMN) equations with the
acoustic (AC) equations in a mathematically consistent manner by combining an asymp-
totic approach with a multiple-scale method. This enables us to reduce the complexity of
the full problem governed by Egs. (2.1)-(2.6). The literature about multiple-scale meth-
ods is comprehensive (Zeytounian 2006). In thermo-acoustics, multiple-scale methods
were applied, among others, by Mariappan & Sujith (2011) and Balaji (2012).

Processes governed by the reacting LMN equations will be referred as to hydrodynamic.
In our problems, the two perturbation parameters are the Mach number, M ~ O(e!),



Adjoint sensitivity analysis of hydrodynamic/thermo-acoustic instability 201

and the flame compactness, h/L ~ O(e™), where h is the flame length, L is the longi-
tudinal combustor’s length (Figure 1) and ¢ = o(1). The Mach number is the leading
perturbation parameter, so 0 < n < 1. In the combustion chambers under investigation,
acoustic phenomena evolve at different scales to those of hydrodynamic phenomena. This
is because low-frequency thermo-acoustic instabilities are expected to scale with the lon-
gitudinal length, L, whereas hydrodynamic instabilities are expected to scale with the
flame length or shear-layer thickness, h. We define ¢ as the hydrodynamic time, 7 as the
acoustic time, x; as the hydrodynamic space, and &; as the acoustic space. Observing
that hydrodynamic phenomena scale with the convective time, h/tg, and flame length,
h; and acoustic phenomena scale with the acoustic time, L/éy, and combustor’s length,
L, it follows that

t/T=ML/h=¢e"", (3.1)
xi/fz- = L/h =e " (32)

Physically, we need ¢~ > 1 AC time units, 7, to get one convective time unit, ¢. In
such a case the AC time is faster than the convective time. Likewise, we need €” < 1 AC
spatial units, &;, to get one convective spatial unit, x;. In such a case the AC space is
longer than the convective space. We show and discuss three multiple-scale limits. First,
the double-time-double-space limit (2T-2S), in which the acoustics evolve at shorter
time scales and longer spatial scales than the hydrodynamics. The full description of this
approach is given by Balaji (2012), who carried out nonlinear simulations of diffusion
flames in a backward-facing step dump combustor. In this case 0 < n < 1, i.e., the
perturbation coefficient is strictly positive and smaller than unity. Second, the double-
time-single-space limit (2T-1S), in which the acoustics evolve at shorter time scale but
the same spatial scale as the hydrodynamics (Miiller 1998). In this case n = 0, i.e., there
are no different spatial scales. Third, the single-time-double-space limit (1T-2S), in which
the acoustics evolve at longer spatial scale but same time scale as the hydrodynamics. In
this case n =1, i.e., there are no different time scales.

Klein (2005) used a 1T-2S multiple-scale method in non-reacting atmospheric flows.
Mariappan & Sujith (2011) used a 1T-2S approach to model the Rijke-tube, in which the
heat is released by an electrical wire. In their study, no flame equations were accounted
for and the acoustics were one-dimensional. The effect that the acoustics has on the
hydrodynamics was considered to be uniform in the hydrodynamic domain. We take
these methods further and apply them to three-dimensional problems with flames.

3.1. Asymptotic expansion and multiple scales

In this section we outline the procedure applied to the original Egs. (2.1)-(2.6) to re-
duce its complexity and separate out hydrodynamic and acoustic processes: (i) Asymp-
totic expansion. We expand the variables assuming a low-Mach number. This yields
¢ = >, €'d;, where the perturbation parameter is € = ’y%M and ¢ denotes a generic
variable. The heat capacity ratio is 7 ~ O(1), from which ¢ ~ O(M). (ii) Differential
operator decomposition. In the double-time-double-space approach (2T-2S), ¢(x,t) —
¢(x, &, t, 7). By applying the chain rule we decompose both the time and spatial deriva-
tives: 0/01 — 0/01 + €!7"0/0t; V — VT + €*V&. In the double-time-single-space ap-
proach (2T-1S), ¢(x,t) — ¢(x,t, 7). Here, we decompose only the time derivative as
/01 — 0/01 + €1 7"0/0t. In the single-time-double-space approach (1T-2S), ¢(x,t) —
#(x,&,t). Here, we decompose only the spatial derivative as V — V% +€"V¢. (iii) Order-
by-order matching. New equations are defined order by order in e. (iv) Average-plus-
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fluctuation decomposition and equation averaging. In 2T-2S, the time decomposition
¢ = (P), + #'™ is substituted into the operator presented in (ii) and the equations are
temporally averaged over the slow LMN time scale ¢. (-,-) represents the time average
of the fast variable 7, the superscript ' represents the fluctuation over the fast time 7.
Then the variables are split up as ¢ = (¢),, +¢'* and the equations are spatially averaged
over the long AC spatial scale &;. (-,-), represents the spatial average of the short spatial
variable z;, the superscript & represents the fluctuation over the short spatial scale x. In
2T-18, only the time decomposition and averaging is applied. In 1T-2S, only the spatial
decomposition and averaging is applied. (v) Physical interpretation of the new equations.

Regardless of the limit used, the above procedure produces a coupled set of LMN and
AC equations, as explained in the following subsections.

3.2. Hydrodynamic processes: acoustically forced LMN equations

Hydrodynamic processes are governed by

% + V. (pu) =0, (3:3)
%tl +u-Viu+ %V"’”p - Sj%epvw T = FacoLmn, (3.4)
V¥.ou— ﬁAwT — pDaQr =0, (3.5)
pl(S1—1)Z+1][(S2 —1)T+1]—1=0, (3.6)
%Jru-vxz—&%eswwzzo, (3.7)

where V” is acting on the hydrodynamic spatial scale, ;. This nonlinear problem can
be conveniently expressed in operator matrix-like form as

Barmy —LMN(qrmn) =Facsimn (Q), (3.8)

where qryn = (p,u, T, Z, p)T is the vector of the LMN variables; .y v = 0/9tqLun;
B the identity matrix with the last row of zeros; q = (qrumw, qAC)T7 with qa¢ being
the vector of the acoustic variables (see Section 3.3); and the forcing term Fac iy =

(0, Fac—rmn,0,1, O)T. The hydrodynamic operator, LIMN, is nonlinear because of the
convective derivatives and reaction term.

3.3. Acoustic processes: hydrodynamically forced AC equations

The AC variables are governed by

op'T '

L+ V- ((0),07) = Franoace. (3.9)
ou'™ 1 /
—+—VpT=F 3.10
7 + o). p LMN—AComom s ( )
ap' :

gT -I—Vé'uT:FLMNﬁACm. (3.11)

where V¢ acts on the acoustic spatial scale, &. This problem can be expressed as

qac — ACqac = Frun—ac(q), (3.12)
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2T-28 | 2T-18 | 1T-28
e N TR CO R CEa ; = ()
FLMN—ACmom 0 0 —1/{p), 0/0t <p,g”ul“”>z
FLMN—ACon - <V§ u) DaQ;{() Da(QRr1),
FacoLuN —1/pV? - <pu'7 ® u'7>7 —1/pV7 - <pu/7 ® u/T>T —1/pVEp'T

TABLE 1. Terms coupling hydrodynamics to acoustics, LM N — AC, and acoustics to hydrody-
namics, AC — LM N. These terms depend on the multiple-scale limit. Double-time-double-space
limit is labeled 2T-2S, double-time-single-space labeled 2T-1S, single-time-double-space limit la-
beled 1T-2S. In 2T-1S z = &, in 1T-2S t = 7. The numeric subscripts of Qro and Qr1 are the
orders of the reaction heat release asymptotic expansion of item (a) in Section 3.1.

where qac = (p/T7 u/T,plT)T is the vector of the AC variables; qac = 0/07qac; and the

forcing term Fryn—sac = (FLun—AC.,, FLMNHACmm,FLMNﬁACW)T. The acoustic
operator, AC, is linear. Continuity, state, and mixture fraction equations (not shown)
are required for calculation of the heat release term in 2T-1S and 1T-2S (Section 3.4).
Physically, the acoustics lose energy by viscous-thermal effects in the boundary layer
and by radiation from open ends of the tube. Boundary layer effects would show up as
higher order terms because they are globally negligible except in the near-wall region.
Ad-hoc damping models need to be implemented. There are two viable routes: modeling
the damping as a forcing term in the acoustic equations, or implementing impedance
boundary conditions at the combutstor open ends. The first route is more empirical.
Route two makes the final eigenvalue problem nonlinear. In this paper, we use the first
route, leaving for future work the implementation of the impedance boundary conditions.

3.4. Coupling terms

The terms coupling the hydrodynamics to the acoustics depend on the multiple-scale limit
considered (Table 1). In the double-time-double-space approach (2T-2S in Table 1), the
hydrodynamics feeds into the acoustic energy via the (spatial average of) divergence of
the hydrodynamic velocity, which is linear. The acoustic velocity feeds into the hydrody-
namics via the nonlinear term —1/pV?® - <pu/7 ® u/T>T. If the acoustic time scale is larger
than the Kolmogorov scale and smaller than the integral scale, this term contains inter-
actions between fluctuations at sub- and resolved scales (Balaji 2012, pp. 45-47). This is
seen from u'” = (u'7), +u'*'7, where u" is at unresolved scales. The resolved forcing
term, which does not require any closure model, is the acoustic Reynolds stress (ARS)
—1/pV* - (p(u'), @ (u'7),), (Lighthill 1978). We neglect sub-grid scale interactions in
the acoustics. Also, the acoustic continuity equation is fed by the hydrodynamics.

In the double-time-single-space approach (column 2T-1S of Table 1), the hydrodynam-
ics feeds into the acoustics via the heat release, which is calculated by using the acoustic
density, temperature and mixture-fraction equations. As in the 2T-2S limit, the acoustic
velocity feeds back into the hydrodynamic momentum via the ARS.

In the single-time-double-space approach (column 1T-2S of Table 1), the hydrodynam-
ics feeds into the acoustics via the fluctuating heat release, as in the 2T-1S limit. The
acoustic pressure gradient, which is linear, feeds back into the hydrodynamic momen-
tum. Also, the acoustic continuity and momentum equations are fed by the coupling terms
~ (p'zu/ﬂm which are the spatial average of the hydrodynamic-spatial (time-averaged)
fluctuations, which can be linearized around the mean flow.
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FIGURE 1. Coupling between combusting hydrodynamic (LMN) and acoustic phenomena (AC)
via the method of asymptotic multiple scales. Regardless of the multiple-scale limit used, the
hydrodynamics feeds into the acoustics, which feed back creating a closed loop. This schematic
coupling holds when the Mach number, M, is small and the flame length, h, is much shorter than
the longitudinal hydrodynamic/combustion length, L. (As a guide: M < 0.1 and h/L < 0.1).
Depending on the multiple-scale limit, the coupling terms, Fac—rmn and FLyN—Ac, assume
different expressions (see Table 1). The image shows the time-averaged temperature of a diffu-
sion-flame dump combustor. The time-average flame front is drawn with a dashed line.

The ARS scales with the acoustic velocity squared, while the acoustic pressure gradient
scales with the pressure. Both are linearized around zero, which means that the ARS will
play a negligible role in the linear dynamics. Balaji (2012) contains a good summary of
these limits.

The coupled thermo-acoustic problem, governed by Egs. (3.8) and (3.12), is (Figure 1)

Mg — TA (q) = F, (3.13)

where TA (q) is the nonlinear thermo-acoustic operator; M is the concatenation of B
and identity matrices; and F = (FAC—>LMNa FLMN%Ac)T

4. Linearization

Different multiple-scale limits cause different linear behaviors. In linearization, the
LMN variables are split as LMN = LMNy + eLMN;+ oLMNp; LMNg ~ O(1) is the
steady base flow or time-averaged mean flow; eLMN; is the low-frequency large-scale or-
ganized wave with € ~ o(1); and aLMN7 the turbulent fluctuation (Reynolds & Hussain
1972). Following Mettot et al. (2014), we assume that o ~ o(e) and neglect the turbulent
fluctuations in the linearized problem. Here, € ~ o(1) denotes the generic amplitude or-
der in linearization, not the perturbation parameter of Section 3. Ideally, LMN, should
be calculated from DNS or experiments. The linear analysis on time-averaged LES flows
works well for predicting low-frequency instabilities, as explained by Mettot et al. (2014),
on the basis of the theoretical foundations of Reynolds & Hussain (1972). The AC vari-
ables are split as AC = ACy + ¢ACy, ACy = 0 is the steady acoustic flow. Therefore,
the LMN; and AC; perturbations fields are of the same order € but acting at different
scales.

When linearized, the thermo-acoustic problem can be expressed in matrix-like form as

Mg = Jq, (4.1)
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OLMN OFacLuN OFacoLuN
J = OTA _ (BCILIWN + darmn ) dqac
0q |(LMNg,ACy) OFLMN—AC AC + Frun—ac
ddrLmnN ddrLmnN (LMNg,ACo)

(4.2)

The Jacobian operator, J, should be viewed as a tensor derivative.

When linearizing the double-time limits 2T-2S and 2T-1S, the ARS, which is the
term coupling the acoustics to the LMN, vanishes. The linear dynamics is only one-
way coupled because 0F ac_, N = o(€) in Eq. (4.2). We may as well solve the LMN
linear problem and then feed this into the AC. So, when two time scales are considered,
the stability of the one-way coupled problem is governed by the stability of the LMN
field. Physically, when there are two time scales (the acoustic time being faster than the
convective time), the acoustics are driven by the hydrodynamics but do not affect it.
Intuitively, this is because the influence of the acoustics averages out over the long time
scale of the hydrodynamics. In a flame transfer function, we see this as a drop in gain
at high frequencies (i.e., flames are low-pass filters). Physically, and from this two-scale
argument, a thermo-acoustic oscillation requires the time scales to be the same. In a
classic picture of a thermo-acoustic instability, the two time scales are indeed the same.
On the other hand, when only one time scale is modelled as in 1T-2S, the thermo-acoustic
system is two-way coupled because 0F ac—,pn = O(e€). Because most thermo-acoustic
problems evolve at different spatial scales and, in good approximation, at the same time
scale (Mariappan & Sujith 2011), we infer that there could be a non-trivial interaction
between hydrodynamic, acoustic and thermo-acoustic instabilities. The ultimate purpose
is to shed light on these interactions by applying sensitivity methods to combustors.

5. Sensitivity analysis of the linearized problem

Using the multiple-scale limit 1T-2S, we can set up the eigenproblem of Eq. (4.1), which
is cMq = Jq, where o is the complex eigenvalue and q the eigenfunction representing
the wavy coherent motion.

The sensitivity of the eigenvalue to mean-flow modifications, V4,0, is such that the
first-order eigenvalue drift is do = (Vq,,0q0), where (-,-) is a non-degenerate bilinear
form. The adjoint operators J* and M are defined such that, for any arbitrary suitable
eigenfunctions ¢ and q, the duality pairing (q*, (cM —J)q) = (™M™ —J")q", q)
holds. The adjoint modes T are the eigenfunctions of the adjoint eigenproblem o ™M+ g™
=J*Tq". Note that 0T =c*, M+ = M”*, and J* = J7*, * being the complex conjugation,
when the bilinear form is a Hermitian inner product. The eigenvalue sensitivity is conve-
niently calculated with a combination of the direct and adjoint modes, V4,0 = HTq™,
where H = 0 (Jq) /0qo is the Hessian applied to the global mode . We assume that the
linearized eddy-viscosity is zero (quasi-laminar assumption), i.e., the linearized operator,
J, has only molecular viscosity. The eigenvalue drift owing to a steady passive forcing
is 00 = (V¢o,of) with Vio = (JJF)_1 Vg,0. The imaginary part of Veo provides the
spatial sensitivity map for a feedback device to change the large-scale wave frequency.
For more details, the reader may refer to Mettot et al. (2014).

6. Preliminary results

The space is discretised using finite bubble elements (www.freefem.org/ff4++/) which
are more stable than Taylor-Hood elements in combusting problems. Matrix inversions
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FIGURE 2. Base flow and first global modes in the dual-swirl combustor. The bottom horizontal
line denotes the centerline. First row: velocity; second row: mixture fraction; third row: tem-
perature. The dashed box marks the border of the displayed global mode results. Fourth row:
m=0 direct eigenfunction, which is convectively unstable; fifth row: m=-1 direct eigenfunction,
which is absolutely unstable; sixth row: m=-1 adjoint eigenfunction, showing the area of high-
est receptivity to open loop forcing. Positive values in light color, negative values in dark. The
eigenfunctions are non-dimensional.
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FIGURE 3. Imaginary part of the sensitivity to mean-flow modifications to (a) radial velocity,
(b) axial velocity in non-dimensional units.

are performed with MUMPS, a highly parallel algorithm (mumps.enseeiht.fr/). The
eigenproblem is solved by a shift-invert method with ARPACK (www.caam.rice.edu/
software/ARPACK/). The problem is solved in cylindrical coordinates and the variables
are Fourier-transformed in the azimuthal direction as ¢(r,z,0) — ¢(r,z)exp(mb), in
which ¢ is a generic variable.
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FIGURE 4. Simplified dump combustor geometry. The bottom horizontal line denotes the cen-
terline. The fields are (a) mean-flow temperature (light color=min=0; dark color=max=s 0.8);
(b) mean-flow axial velocity (light color=min=0; dark color=max~ 3); (c) absolute value of the
highest eigenvalue sensitivity component (radial).

6.1. Hydrodynamic analysis of the dual-swirl combustor

The case presented has Re = 47000 (turbulent flow) and standard air properties. Results
of the hydrodynamic analysis are reported in Figures 2 and 3. Acoustic analysis and
thermo-acoustic coupling is underway.

The mean flow is obtained by time averaging the LES simulation obtained with
CharLES (See & Thme 2014) (top three panels in Figure 2). Although the flow is not
completely axisymmetric, we assume axisymmetry and study a slice, which has been
symmetrized and smoothed. The flow is partially premixed, meaning that both mixture
fraction and progress variables are in the state vector of the LES simulation. In the
linearized analysis, we model the mixture fraction only, leaving the consideration of the
progress variable for future work. The axisymmetric mode m = 0 is convectively unstable
but globally stable (Figure 2(a-c)). The flow is globally unstable to the m = —1 helical
mode (Figure 2(d-f)). The angular frequency of this mode is ~ 5000 rad/s. The greatest
receptivity is localized along the flame (Figure 2(g-1)). Open loop forcing is most efficient
there but this could be an impractical control strategy. The highest sensitivity to feed-
back mechanisms is where the flow impinges on the wall. The most efficient mechanism
should react to the radial velocity and act on the radial momentum equation (Figure
3(a)). The maps in Figure 3 also suggest how to modify the inlet velocity profile to re-
duce the frequency of the coherent large-scale motion. For example, decreasing the radial
component at the flame base would lower the coherent-motion frequency (Figure 3(b)).

6.2. Combusting hydrodynamic analysis of a dump combustor

The case presented has the following parameters: Re = 100 (laminar flow); Pr = Sc =
0.7,k =001;5=2; 3=3; S, =T7; Sy = 6; Da = 10%. Results are reported in Figure 4.
The flow is globally stable. The mean flow is obtained by time averaging the simulation
obtained with a structured finite-volume based LES solver. The flow is governed by the
equations reported in this paper. The highest sensitivity to feedback mechanisms straddle
the recirculation bubble. This means that the active feedback mechanism is mostly the
result of non-reacting hydrodynamic phenomena. Thermo-acoustic coupling is underway.

7. Discussion and outlook

In summary, we have derived general equations for 3D thermo-acoustic systems in low-
Mach number combustors. We used an asymptotic method and discussed three multiple
scale limits. Only the single-time-double-space limit allows the linearized dynamics to be
two-way coupled. Using this limit, we defined an eigenproblem and showed how to study
the sensitivity conveniently with adjoint eigenfunctions. We showed preliminary results
on two combustors. The full numerical thermo-acoustic coupling is underway.
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