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Kac’s Process and some probabilistic aspects of the Boltzmann

Equation

D. Heydecker

Abstract

We consider a family of stochastic interacting particle systems introduced by Kac as a

model for a spatially homogeneous gas undergoing elastic collisions, corresponding to

the spatially homogeneous Boltzmann equation. We consider Kac’s problem of showing

propagation of chaos - that if the velocities of the particles are initially approximately

independent, then the same is true at later times - which is equivalent to the convergence

of the empirical measures, and which derives the spatially homogeneous Boltzmann equa-

tion from the underlying molecular dynamics.

The first two results concern the propagation of chaos for different Kac models. In the

first case, we consider the hard spheres kernel, which is appropriate for modelling inter-

actions arising from localised interactions. For this model, we build on previous analyses

of the same problem to show that the expected deviation between the Kac process and

the Boltzmann equation, measured in expected Wasserstein distance, is of the order N−α.

Particular care is paid to the time-dependence of the estimates, using the stability prop-

erties of the Boltzmann equation: we will show that the expected deviation at a single

fixed time is typically of the order N−α, uniformly in time, while for the largest deviation

on a time interval [0, tfin], there is a prefactor (1 + tfin)
β, where β > 0 can be chosen as

close to 0 as desired. We also show that similar estimates hold, possibly for smaller α, as

soon as the initial data are only assumed to have 2 + ε moments.

We next consider the case of non-cutoff hard potentials, which arise from modelling a

family of long-range interactions. In this case, the collision kernel is doubly-unbounded,

both unbounded as the relative velocity increases, and with a non-integrable angular

singularity, so that every particle undergoes infinitely many collisions on any nontrivial

time-interval. In this context, we introduce a Tanaka-style coupling for a well-chosen

distance function on Rd, which allows us to exploit a negative Povzner-type term. This

leads to a proof of propagation of chaos and a new uniqueness and stability result for the

corresponding Boltzmann equation, assuming only that the initial measure is a proba-

bility measure with finitely many moments, whereas previously established results have

required either some additional regularity or an exponential moment. In the case of the

corresponding hard-potential Landau equation, the same argument can be further refined



to show uniqueness and stability for probability measures with 2 + ε moments. We also

show that energy-conserving solutions to the Landau equation exist, assuming only that

the initial data has finite energy, and we use the new uniqueness result to show that all

solutions to the Landau equation immediately admit analytic densities, aside from the

degenerate cases where the initial data is a point mass. By contrast, previous results have

only shown that such regular solutions exist.

We further study the dynamical large deviations of the N -particle system, either for the

case of a cutoff Maxwell molecules kernel, or a caricature of the hard spheres kernel, for a

range of initial conditions including equilibrium. We seek large deviation estimates jointly

with an auxiliary flux measure which records the collision history. We prove a large devi-

ation upper bound, and a lower bound restricted to classes of sufficiently regular paths,

with a rate function analagous to those found elsewhere in the literature for similar prob-

lems. However, we show by exhibiting a family of counterexamples that this rate function

does not capture all possible large deviation behaviours; although the particle system

almost surely conserves energy, possible large deviation behaviour includes energy non-

conserving solutions to the Boltzmann equation, as found by Lu and Wennberg, but these

occur strictly more rarely than predicted by the rate function.

The final section concerns Smoluchowski and Flory coagulation equations with a particu-

lar bilinear form, which arise when studying the interaction structure of the Kac process

by forming clusters of particles joined by chains of collisions, corresponding to the cumu-

lant expansion. Exploiting the bilinear structure and a coupling to random graphs, we

are able to give a detailed analysis of the coagulation particle system and limiting Flory

equation, including showing the emergence of a unique macroscopic cluster at a finite

time tg ∈ (0,∞), which we characterise exactly in the case of the particle system.
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Chapter 1

Introduction

1.1 The Boltzmann Equation

The mathematical study of a dilute gas dates back to Maxwell, who modelled a monatomic

gas as consisting of a large number N of indistinguishable particles. Each particle has a

position xi and a velocity vi in a phase space (xi, vi) ∈ D×Rd, for some spatial domainD in

d dimensions, and the particles interact with each other via elastic collisions on a spatial

scale εN ≪ 1, chosen so that the binary interactions (involving exactly two particles)

contribute nontrivially to the evolution, but that collisions simultaneously involving three

or more particles contribute only negligibly, which forces the choice εN ∼ N−1/(d−1).

Under these conditions, he proposed to study the evolution of a function F = F (t, x, v) =

Ft(x, v) ≥ 0 on [0,∞)×D ×Rd describing the macroscopic density of particles at time t

with position x and velocity v. Under these hypotheses, Maxwell proposed an evolution

equation, which was subsequently refined by Boltzmann [30, 29] and now bears his name

∂tFt + v ·∇xF = Q(F, F )(t, x, v) (spBE)

where the left-hand side describes the effect of free transport1, and the right-hand side is

the collision operator, acting only on the velocity variables by

Q(F, F )(t, v, x) =

!

Rd

dv∗

!

Sd−1

dσ B(v−v∗, σ)(F (t, x, v′)F (t, x, v′∗)−F (t, x, v)F (t, x, v∗)).

Here, the additional parameter σ ∈ Sd−1 parametrises all possible elastic collisions through

the direction of separation, since the incoming velocities and the conservation of energy

and momentum alone are insufficient to determine the outgoing velocities. With this

additional parameter the post-collisional velocities are

v′ =
v + v∗

2
+ σ

|v − v∗|
2

; v′∗ =
v + v∗

2
− σ

|v − v∗|
2

. (1.1)

1The prefix ‘sp’ refers to spatial inhomogeneity, to distinguish it from the spatially homogeneous

Boltzmann equation (BE), which will be our main object of study.

13



14 1.1. THE BOLTZMANN EQUATION

One can check that such collisions preserve the (microscopic) kinetic energy |v′|2+ |v′∗|2 =
|v|2 + |v∗|2 and momentum v′ + v′∗ = v + v∗, and that all such collisions can be written in

this way. The factor B appearing in Q is the (effective) cross-section, which depends on

the ‘microscopic’ interactions between the particles. From the Gallilean (translational and

rotational) symmetry of the microscopic dynamics, the kernel is usually taken to depend

only on |v−v∗| and the scattering angle θ = cos−1(σ ·(v−v∗)/|v−v∗|). In particular, B(v−
v∗, σ) = B(v′ − v′∗,

v−v∗
|v−v∗|), encoding the time-reversibility of the microscopic dynamics.

Some natural choices for B arise from modelling particles as hard spheres with an exclusion

radius εN , at which the particles deflect each other, or from modelling long-range repulsive

forces on the same microscopic scale εN .

The derivation of (spBE) from the microscopic particle dynamics relies on Boltzmann’s

Stoßzahlansatz, or molecular chaos. For the many-body system, the k-particle marginal

FN,k distribution functions satisfy

∂tF
N,1
t + v ·∇xF

N,1
t = QN

2 (F
N,2
t )

where QN
2 plays the same rôle as Q, but now integrating the two-particle marginal FN,2.

While this equation closely resembles the desired mean-field equation (spBE), it does not

close, since the evolution of FN,1 depends on FN,2. In turn, the evolution of FN,2 depends

on FN,3, and in general the evolution of the k-particle marginal depends on the k + 1-

marginal, leading to an infinite hierarchy (BBGKY hierarchy) of differential equations. If

one imagines that the positions and velocities of the particles are perfectly independent,

then one can eliminate FN,2
t in favour of FN,1

t , in which case the equation closes and we

find the Boltzmann equation. However, particles cannot be perfectly independent: in

the case of hard sphere repulsion, there is the constraint that the positions are separated

by at least εN , and even if particles are initially sampled independently, conditional to

this constraint, the interactions will immediately create dependencies and destroy the

independence. Boltzmann instead proposed the chaoticity property that

FN
2 (t, x, v, x′, v′) ∼ FN

1 (t, x, v)FN
1 (t, x′, v′), N → ∞

for positions and velocities (x, v), (x′, v′) leading to a collision at scale εN ; this is then

a low-correlation assumption on the pre-collisional data. This property certainly holds

for natural choices of initial data - for instance, drawing (xi(0), vi(0)) independently from

F0(x, v)dxdv, conditional on |xi(0) − xj(0)| > εN for all i ∕= j - and the problem is then

to show the propagation of chaos, so that it remains true at future times. More than one

and a half centuries after Boltzmann first proposed his equation (spBE), the propagation

of chaos for the limit N → ∞, εN ∼ N−1/(d−1) → 0 (the Boltzmann-Grad limit) remains

a significant open problem. Lanford [129, 130] proved that the empirical measures µN
t

associated to the many-particle system converge to a solution to the Boltzmann equation,

at least on a very short time interval [0, T ∗] for some T ∗ > 0 depending on F0, typically
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no larger than one fifth of the mean free time [130], which is required to make a certain

‘tree expansion’ obtained from the BBGKY hierarchy converge. More recently, a number

of works by Bodineau, Saint-Raymond et al. [23, 24] have further studied the error

on an even smaller time interval, necessary for a different expansion to converge, and

examined the fluctuations in the sense of the central limit theorem and large deviations,

and a work by Pulvirenti and Simonella [164] shows that groups of up to Nα particles are

asymptotically independent as N → ∞, for t < T ∗ and for some α ∈ (0, 1).

1.1.1 Kac’s Process and the Spatially Homogeneous Boltzmann

Equation

In this thesis, we will not consider the spatially inhomogeneous Boltzmann equation, and

will restrict ourselves to the less ambitious aim of deriving and studying its spatially

inhomogeneous counterpart. As a softer alternative to deriving the Boltzmann equation

from a spatially inhomogeneous particle model, Kac [122] proposed to derive the spatially

homogeneous Boltzmann equation from a Markov jump process, in which the additional

stochasticity of collisions compensates for the lack of a spatial parameter. In this context,

we study N -tuples VN
t = (V 1

t , V
2
t , . . . , V

N
t ) ∈ (Rd)N where, at a rate 2B(V i

t −V j
t , σ)dσ/N ,

the velocities V i
t , V

j
t are updated according to (1.1) to form a new vector VN

i,j,σ, so that

VN
t is a Markov process. In this way, the collisions have a greater degree of independence

from each other and from the current state, and the problem of deriving the propagation

of chaos is easier. In this case, we can define the collision operator Q for probability

measures µ on Rd by specifying the duality f : Rd → R,

〈f,Q(µ, ν)〉 :=
!

Rd×Rd×Sd−1

(f(v′) + f(v′∗)− f(v)− f(v∗))B(v − v∗, σ)µ(dv)ν(dv∗)dσ.

Let us remark that this will make sense throughout either as a signed measure or as a

distribution as soon as both µ, ν have bounded second moments; see Remark 1.1 below.

We will also write Q(µ) := Q(µ, µ) throughout to simplify notation when the two argu-

ments coincide. We thus reach the (spatially homogeneous) Boltzmann equation, given

for measure-valued processes (µt)t≥0 by

∂tµt = Q(µt). (BE)

For the Kac process, there are two possible ways in which we can derive the Boltzmann

equation. As in the discussion of the spatially inhomogeneous case above, one would

like the particles to be independent, in which case one would immediately find that the

one-particle marginal Law(V 1
t ) = Law(V i

t ) = µt solves the Boltzmann equation; but as

in the inhomogeneous case, there is no hope for perfect independence to be propagated

in time. Kac [122] introduces the notion of chaoticity as an asymptotic independence

property in order to play this same role: he defined a sequence of symmetric probability
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measures on (Rd)N to be µ-chaotic if the k-particle marginals converge weakly to µ⊗k as

N → ∞ for any fixed k. He proposed to show that, if this property holds for µ0 at time

0, then it remains true at later times (propagation of chaos). Alternatively, one can prove

convergence to µt of the empirical measures µN
t associated to VN

t by

µN
t = θN(VN

t ) =
1

N

N"

i=1

δV i
t
.

Due to the interchangeability of the particles, the empirical measures µN
t are themselves

a Markov chain, and we call these processes VN
t , µN

t labelled and unlabelled Kac processes

respectively, since the map θN simply forgets the (unphysical) label i = 1, 2, . . . , N on

each particle. Typically, our methods will respect the interchangeability symmetry of the

particles and are therefore naturally phrased at the level of the empirical measures µN
t ,

but it will sometimes be helpful to work instead with the labelled processes instead.

1.1.2 Collision Kernels

The mathematical challenges faced in investigating (BE) depend strongly on the choice

of collision kernel B(v, σ), which encodes the physics of the microscopic interactions.

Typically, we will assume that the kernel is of the factorised form

B(v, σ) = Ψ(|v|)b(cos θ)

for some Ψ : (0,∞) → [0,∞) and a convex function b : (−1, 1) → [0,∞); while this

restriction could perhaps be relaxed, this would lead to significant additional technicality.

We will also often make the transformation b(cos θ) ↔ β(θ) given by

β(θ) := b(cos θ)
(sin θ)d−2

cd
; cd =

! π

0

(sin θ)d−2dθ. (1.2)

In this way, specifying b is completely equivalent to specifying β; the additional factor is a

Jacobian factor (see Section 2.4) which allows us to move easily between integrals against

σ and those against θ via the change of variables
!

Sd−1

h(θ)B(u, σ)dσ = Ψ(|u|)
! π

0

h(θ)β(θ)dθ. (1.3)

We now discuss some possible kernels.

1. Maxwell Molecules The simplest kernel we work with is Grad’s kernel, given by

Ψ = 1, b =
1

2d−2(sin θ/2)d−2
. (GMM)

Although not physically realistic, this kernel is useful as a toy model of (cutoff) Maxwell

molecules, where b(cos θ) is integrable and Ψ = 1, so that the interaction rate is indepen-

dent of the relative velocity but may be singular in θ. In dimension d = 3, the kernel for

‘true’ Maxwell molecules is of the form

Ψ = 1, b(cos θ) ∈ L∞
loc((0, π]), b(cos θ) ∼ θ−3/2 as θ ↓ 0. (tMM)
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2. Hard Spheres When modelling short-range interactions such as the hard-core in-

teraction described in the inhomogeneous case, where spheres reflect when reaching a

distance εN , we work with the so-called hard spheres kernel B(v, σ) = |v|, which fits the

factorisation above with

Ψ(r) = r, b = 1. (HS)

It will sometimes be useful to have a caricature of this kernel which remains bounded

away from 0 when the relative velocity is small:

Ψ(r) = 1 + r, b =
1

2d−2(sin θ/2)d−2
. (rHS)

The ‘r’ here stands for ‘regularised’, since this choice makes the map v /→ logΨ(|v|)
globally Lipschitz continuous. In both this and Grad’s kernel, the angular factor is chosen

so that the kernel is a function only of the relative velocity when rewritten in the ‘ω-

representation’, see Section 2.4.

3. Hard Potentials with a Moderate Angular Singularity A more general class

of kernels, which combine some of the phenomenology of hard spheres and noncutoff

Maxwell molecules, are the noncutoff hard potentials:

#
$

%
Ψ(r) = rγ, γ ∈ (0, 1];

β(θ) ∈ L∞
loc((0, π]); β(θ) ∼ θ−1−ν as θ ↓ 0, ν ∈ (0, 1).

(NCHP)

This then has polynomial growth of Ψ at infinity, similar to (HS), as well as an angular

singularity at θ = 0, similar to (tMM). The second line can be expressed in terms of b

through (1.2). Thanks to the symmetry of collisions, we may assume further that b is

supported on [0, 1) and correspondingly that β is supported on [0, π/2], since collisions

with cos θ < 0 can be achieved from these collisions by relabelling the particles; see the

discussion in Alexandre et al. [8]. As in the case of (tMM) above, let us remark that this

is a moderate angular singularity in the sense that

!

Sd−2

B(v, σ)dσ = ∞;

!

Sd−2

θB(v, σ)dσ < ∞.

4. Soft Potentials Another form of kernel, which has very different phenomenology

from those above, is the case of soft potentials, where the kernel has an angular singularity

and diverges at small relative velocities instead of large:

#
$

%
Ψ(r) = rγ, γ ∈ (−d, 0);

β ∈ L∞
loc((0, π]) β(θ) ∼ θ−1−ν as θ ↓ 0, ν ∈ (0, 2).

(SP)
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5. Quadratic Kernels The final family of kernels with which we work are another car-

icature of cutoff hard spheres, which will be useful when we investigate cluster expansions

in Chapter 7. In this case, only the total rate of collision between each pair of particles

matters, and we require that this total rate is of the form2

!

Sd−1

B(v, σ)dσ = a+ b|v|2, a, b ≥ 0 (Qa,b)

While this has fairly limited physical relevance, this particular form has some nice alge-

braic properties allowing some exact calculations, leading to an interesting class of models

whose properties can be studied exactly. These kernels interpolate between Maxwellian

behaviour when a > 0, b = 0 and a sort of ‘very hard’ behaviour when a = 0, b > 0.

Grad’s Angular Cutoff In three of the cases (tMM, NCHP, SP) above, the angular

part of the kernel is not integrable, reflecting the abundance of grazing collisions, that is,

collisions with very small θ. In either of the cases (tMM, NCHP), we have

!

Sd−1

B(v, σ)dσ = ∞;

!

Sd−1

θB(v, σ)dσ < ∞ (1.4)

and the same for soft potentials (SP) if ν ∈ (0, 1), whereas with ν ∈ [1, 2) we have

!

Sd−1

θB(v, σ)dσ = ∞;

!

Sd−1

θ2B(v, σ)dσ < ∞. (1.5)

In all cases, one possible strategy for dealing with the angular singularity is to trun-

cate the collisions at small scattering angles θ < θ0(K), with θ0(K) chosen so that&
Sd−2 BK(u, σ)dσ = K for any unit vector u, called Grad’s angular cutoff. Since the

additional grazing collisions only make very small differences to the particle velocities,

one might hope that this preserves, in some meaningful sense, the physics of the system

under consideration. Indeed, in the case of (NCHP), we will prove in Chapter 4 that both

the particle system and the limit equation are the limits in the weak topology of their cut-

off counterparts, uniformly in the particle number in the case of the particle system. On

the other hand, other properties which are not continuous for the weak topology behave

differently, for instance, regularity [8] or the appearance of exponential moments [84].

Let us introduce some notation for this cutoff. In the case (NCHP) we obtain a family of

such kernels, depending on the truncation parameter K, which we write as

BK(v, σ) = B(v, σ)1I{θ ≥ θ0(K)} (CHPK)

where as above θ0 is defined implicitly by
&
Sd−1 BK(v, θ)dσ = K|v|γ. We write QK for the

corresponding collision operator. We will write objects in this way for any K ∈ [1,∞],

understanding that K = ∞ is the original, non-cutoff case.

2The meaning of b in this case has nothing to do with the meaning of b(cos θ) in the previous cases.
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Physical Relevance of Kernels Let us remark on the physics of some of the families

of the kernels introduced above. In d = 3, if we start with a spatial model in which

particles interact at a microscopic scale through a repulsive potential V(r) = r−s, s > 0

on a scale εN ∼ N−1/(d−1), then one finds [44, Section II.4], [189, Section 1.4]

γ =
s− 5

s− 1
; ν =

2

s− 1
.

In this way, we obtain cases of soft potentials (SP) for s ∈ (2, 5), the edge case Maxwell

Molecules (tMM) for s = 5, and cases of (noncutoff) hard potentials (NCHP) for s ∈
(5,∞). Taking s → ∞, we recover the parameters γ = 1, ν = 0 corresponding to

(HS), which arises from the spatial model from ‘hard core repulsion’ forbidding particles

from approaching closer than εN . The case of quadratic kernels (Qa,b) is unphysical, but

resembles other toy model with interesting properties [190].

Remark 1.1 (Collision Operator as a Signed Measure or Distribution). Let us remark

on the collision operator Q in light of these kernels. In the cases (GMM, HS, CHPK), the

definition written above makes sense as a convergent integral as soon as f is a bounded

function and µ, ν have finite second moments, so that Q(µ, ν) defines a signed measure.

In the cases (tMM, NCHP), we observe that |v′ − v| ≤ |v − v∗| sin θ to get, for Lipschitz

f ,

|f(v′) + f(v′∗)− f(v)− f(v∗)| ≤ Cf |v − v∗| sin θ

and this is again integrable as soon as µ, ν have second moments; in this case, the

definition above makes Q(µ, ν) into a distribution in (say) the negative Sobolev space

W−1,∞(Rd). In the cases where ν ∈ (1, 2), one has to use a ‘cancellation of order 2’ to

see that

|f(v′) + f(v′∗)− f(v)− f(v∗)| ≤ Cf |v − v∗|2 sin2 θ

so that one is now restricted to f with bounded second derivatives and Q(µ, ν) ∈ W−2,∞(Rd).

Finally, we cannot allow the edge case ν = 2, as in this case even
&
sin2 θB(u, σ)dσ = ∞

diverges; in the physical description above, this corresponds to the case s = 2 of Coulomb

interaction, see Villani [185] and Alexandre [9].

Let us also remark that the divergence of Ψ(r) = rγ, γ < 0 causes further problems in the

definition of solutions in the case of soft potentials, since
&
Rd×Rd |v − v∗|γµ(dv)µ(dv∗) can

diverge if µ contains point masses. One further splits into moderately soft (γ ≥ −2) or

very soft (γ < −2). In this thesis, we will only be interested in the other cases (Maxwell

molecules, hard spheres and cutoff/noncutoff hard potentials, quadratic kernels), and

mention the soft potentials only for contextualisation.
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1.1.3 The Landau Equation

The second kind of equation we will study is the spatially homogeneous Landau equation,

also called the Landau-Fokker-Planck Equation, which writes

∂tft(v) =
1

2
divv

'!

Rd

a(v − v∗)[ft(v∗)∇ft(v)− ft(v)∇ft(v∗)] dv∗

(
(LE)

where a is the nonnegative, symmetric matrix

a(x) = |x|2+γΠx⊥ ; Πx⊥ = I − xx∗

|x|2 .

Again, we think of ft as describing the probability distribution of velocities, which imposes

the conditions ft ≥ 0,
&
Rd ftdv = 1. This equation arises naturally [50] for the Coloumb

interactions as the limit of Boltzmann equations with b replaced by bε = (log ε)−11Iθ≥εb

where b is of the form (SP) with parameter ν = 2 and γ = −3; the divergent factor (log ε)

in the denominator ensures that
&
Sd−1 θ

2Bε(v, σ)dσ is bounded, uniformly in ε, and that

the contributions from any interval [θ0, π), θ0 > 0 vanish in the limit. Moreover, the same

equation makes sense for any parameter value γ ∈ [−3, 1], corresponding to s ∈ [2,∞];

in the cases γ ∈ (−3, 1], this equation is not physically relevant, but shares many of the

same phenomena for the corresponding Boltzmann equation. Indeed, in these cases the

Landau equation is the grazing collision limit of Boltzmann equations, for Bε having the

same exponent γ and bε chosen so that

sup
θ≥θ0

bε → 0 for all θ0 > 0; λε =

!

Sd−1

θ2Bε(u, σ)dσ → λ0 ∈ (0,∞). (1.6)

See, for example, Arsen’ev and Buryak [13], Desvillettes [52] and Villani [186] for a detailed

derivation. We give notice now that, although this equation makes sense in any dimension

d ≥ 2, our main results concerning the Landau equation require d = 3, which is the

physical dimension in any case, and we will restrict to this case throughout. We use

the same terminology as for the Boltzmann equation, and refer to Maxwell Molecules for

γ = 0, hard and soft potentials for γ ∈ (0, 1], γ ∈ (−3, 0) respectively and the Coulomb

potential for γ = −3.

1.1.4 Measure Spaces and Weak Solutions

We next give a definition of weak solutions for the kinetic equations with which we work.

Typically, since we will work with the empirical measures of the particle system, the

sorts of techniques we will use will not use smoothness or any form of regularity at all.

Correspondingly, we do not need any such assumptions on the limiting equation, and so

it is natural to consider weak (measure-valued) solutions to (BE, LE).

We begin with some spaces of measures and notation which are in frequent use. We write
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P(E) throughout for the space of Borel probability measures on a topological space E,

and for E = Rd, Pp(Rd) for those measures where the pth moment is finite. We write

Λp(µ) ∈ [0,∞] for the pth moment of a probability measure µ ∈ P(Rd), whether or not

it is finite, and Λp(µ, ν) := max(Λp(µ),Λp(ν)). With this notation, we say a family of

probability measures (µt)t≥0 on Rd belongs to L∞
loc([0,∞),Pp(R3)) for p > 0 if

sup
t≤tfin

Λp(µt) < ∞ for all tfin > 0

and that it belongs to L1
loc([0,∞),Pp(R3)) if

! tfin

0

Λp(µt)dt < ∞ for all tfin > 0.

We now give the definitions of weak solutions suitable for our purposes.

Definition 1.1.1 (Weak Solution to the Boltzmann Equation). Let us fix one of the

kernels (GMM, tMM,HS, rHS, NCHP, NCHP, Qa,b). We say that a family of probability

measures (µt)t≥0 is a weak solution to (BE) if it belongs to L∞
loc([0,∞),P2(Rd)) and, for

all f : Rd → R bounded and Lipschitz,

〈f, µt〉 = 〈f, µ0〉+
! t

0

〈f,Q(µs)〉ds

for any t > 0.

Let us remark that, following the argument sketched in Remark 1.1, the integrand 〈f,Q(µs)〉
makes sense, since we assume that µs has at least two moments. Further, in any of these

cases, we find a uniform bound on 〈f,Q(µs)〉 depending only on the boundedness or Lip-

schitz constant of f and on the second moment of µs, so the integral is well-defined by

the assumption that µ ∈ L∞
loc([0,∞),P2).

We note that formally, we have the conservation properties

〈(1, v, |v|2), Q(µ)〉 = 0

corresponding to the conservation of energy and momentum at the level of individual

collisions, and so solutions to the Boltzmann equation (at least formally) also conserve

the integrals of these properties. We will therefore usually normalise to 0 momentum and

unit temperature: we define the Boltzmann sphere

S = S(Rd) =
)
µ ∈ P2 : 〈v, µ〉 = 0, 〈|v|2, µ〉 = 1

*
.

We write Sp for S ∩Pp(Rd), and understand L1
loc([0,∞),Sp), L∞

loc([0,∞),Sp) for the same

spaces as above, now additionally requiring that µt ∈ S for all t ≥ 0. By translation and

scaling, all energy-conserving solutions to the Boltzmann equation can be captured in this
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way, aside from the (uninteresting) degenerate case of point masses µt = δv0 , which are

always stationary solutions.

Regarding the Landau equation, we restrict to d = 3 as above, and we use the following

definition of weak solutions, due to Villani [186] and Goudon [101], which makes sense

for the cases at least as hard as Maxwell molecules. For x ∈ R3, we recall the definition

a(x) = |x|2+γΠx⊥ above, and define

b(x) = div a(x) = −2|x|γx. (1.7)

Definition 1.1.2 (Weak Solutions to the Landau Equation). Let γ ∈ [0, 1]. We say that

(µt)t≥0 is a weak solution to (LE) if it belongs to L∞
loc([0,∞),P2(R3))∩L1

loc([0,∞),P2+γ(R3)),

if Λ2(µt) ≤ Λ2(µ0) for all t ≥ 0, and if for all f ∈ C2
b (R3), all t ≥ 0,

〈f, µt〉 = 〈f, µ0〉+
! t

0

〈f,QL(µs)〉 (1.8)

where QL(µ) is the distribution given by

〈f,QL(µ)〉 :=
!

R3

!

R3

LLf(v, v∗)µ(dv∗)µ(dv)ds; (1.9)

LLf(v, v∗) =
1

2

3"

k,ℓ=1

akℓ(v − v∗)∂
2
kℓf(v) +

3"

k=1

bk(v − v∗)∂kf(v). (1.10)

Since |LLf(v, v∗)| ≤ Cf (1 + |v| + |v∗|)2+γ for f ∈ C2
b (R3), every term makes sense in

(1.8) under our assumptions; in the case of Maxwell molecules γ = 0, the assumption

that µ ∈ L1
loc([0,∞),P2+γ(R3)) is superfluous, as this is already implied by the other

condition, while for soft potentials we would require some extra regularity, taking us back

to function-valued solutions. As before, we have the formal conservation properties

〈(1, v, |v|2), QL(µ)〉 = 0

and the additional assumption that the energy Λ2(µt) is at most its initial value Λ2(µ0)

is enough to guarantee that such solutions conserve energy, see [58, Theorem 3]; as in the

Boltzmann case, we will (almost always) normalise so that solutions take values µt ∈ S for

all t, in which case the requirements can be succinctly written µ ∈ L1
loc([0,∞),S2+γ). Let

us remark on the slight difference that we allow solutions to (BE) which increase energy,

whereas this is forbidden for (LE).

1.1.5 Some Formalities of the Kac Process

With the functional spaces introduced above, we can now give a formal definition of the

Kac processes described above. We consider fixed, forever, a complete filtered probability
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space (Ω,F, (Ft)t≥0,P). The same conservation rules as above apply pathwise almost

surely to the Kac dynamics, so that VN
t , µN

t almost surely preserve the momentum and

energy. We can therefore either allow the (labelled) Kac process to take values in

SN =

+
V = (v1, ..., vN) ∈ (Rd)N :

N"

i=1

vi = 0,
N"

i=1

|vi|2 = N

,
(1.11)

which is the preimage of the Boltzmann sphere S under the map θN associating any

N -tuple to its empirical measure, or without normalisation, we allow the state space to

be the whole space (Rd)N . With either state space, and for any choice of the kernels

above aside from (SP), we define the generator of the unlabelled process by specifying,

for bounded and Lipschitz F ,

(GL,NF )(VN) =
1

N

N"

i=1

N"

j=1

!

Sd−1

-
F (VN

i,j,σ)− F (VN)
.
B(V i − V j, σ)dσ. (1.12)

Following Remark 1.1 above, we could allow only bounded F for any of the cutoff cases

(GMM, HS, CHPK), but the restriction to Lipschitz test functions is necessary for the

integral to converge in the cases (tMM, NCHP). In the unlabelled case, we obtain a state

space of P2
N or SN , of empirical measures on N points (respectively: measures in S which

are empirical measures on N points), and define a generator by specifying, for F Lipschitz

with respect to the Wasserstein distance3 W1,1

(GU,NF )(µN) =N

!

Rd×Rd×Sd−1

(F (µN,v,v!,σ)− F (µN))B(v − v*, σ)µ
N(dv)µN(dv*)dσ

(1.13)

where µN,v,v∗,σ is the post-collisional measure resulting from a collision between v, v∗ with

scattering angle σ:

µN,v,v∗,σ = µN +
1

N

-
δv′ + δv′∗ − δv − δv∗

.
. (1.14)

We include the superscripts L,U on the generators for the labelled and unlabelled cases

respectively. We remark that there is a consistency between the generators in the sense

that, for any test function F on empirical measures,

(GL,N(F ◦ θN))(VN) = (GU,NF )(θN(VN))

which implies that, if VN
t is a labelled Kac process, its empirical measure µN

t = θN(VN
t )

is an unlabelled Kac process. The converse is also true, in that for any unlabelled Kac

process (µN
t ) defined through this generator, there is a ‘lift’ VN

t , which is a labelled Kac

process and Law((θN(VN
t )t≥0) = Law((µN

t )t≥0). In all of the cases we consider except for

the noncutoff hard potentials, this is trivially checked using the finiteness of the rates

3see Section 2.1 for a definition.
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on subsets with bounded energy; we check this assertion for noncutoff hard potentials

(NCHP) in the Appendix to Chapter 4. In any case, using this consistency, we can move

between labelled and unlabelled Kac processes with no ambiguity, depending on which is

more convenient for any given application. We will also write (FN
t )t≥0 throughout for the

natural filtration associated to a Kac process (either labelled or unlabelled) for arguments

where this is of interest.

1.2 Topics

With these definitions and notation fixed, we now give an overview of the topics which

we will encounter in this thesis and a survey of the relevant literature.

1.2.1 Propagation of Chaos & The Law of Large Numbers

The first topic which will be a recurring theme in this thesis is Kac’s original problem

[122] of proving the propagation of chaos for the many particle system, which amounts

to deriving the Boltzmann equation (BE) from this model; we recall that it is equivalent

either to prove the convergence of the marginals in the weak topology

Law(V 1,N
t , ..., V l,N

t ) → µ⊗l
t , l ≥ 1, t > 0

or a law of large numbers

µN
t → µt weakly, in probability.

We refer to Section 2.2 for more details; using metrics which induce the weak topology,

either on measures on (Rd)l or on Rd, one can ask not only for the qualitative convergence

but also about the corresponding rate. Kac himself proposed a combinatorial proof for a

one-dimension caricature which preserves energy but not momentum, and required that

the collision kernel be bounded. This proof was then applied by McKean [138] to the

Kac process as we have defined it here, still requiring the boundedness, which only really

allows cutoff Maxwell Molecules (GMM) out of the kernels we have described. Later,

Grünbaum developed a functional framework to prove the propagation of chaos for the

hard spheres kernel, while Tanaka [177, 178] extended the results to Maxwell molecules

without cutoff (tMM). Sznitman [172] also (re)proved the propagation of chaos for the

hard spheres model, based on a probabilistic argument which we will use several times in

the thesis, proving the tightness of the paths (µN
t )t≥0 in a suitable space, showing that any

subsequential limit (µt)t≥0 solves the Boltzmann equation, and appealing to a uniqueness

result. This then shows the weak convergence of (µN
t )t≥0 to the corresponding solution to

the Boltzmann equation, although this method is inherently non-constructive and cannot

be adapted to provide a rate of the convergence. Mischler and Mouhot [142] developed
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a functional framework for the cases of true Maxwell molecules (tMM) and hard spheres

(HS) on which we will build in Chapter 3, and they proved explicit rates for convergence

N−α1 (Maxwell Molecules); (logN)−α2 (Hard Spheres), αi > 0

which are further uniform in time. A different probabilistic proof was given for hard

spheres by Norris [157] which gives a the optimal N -dependence rate N−1/d, uniformly

on short time intervals, and a different proof again for the case of Maxwell molecules was

given by Cortez and Fontbona [48] with a rate N ε−1/3 in d = 3 for any ε > 0, uniformly in

time. As will be discussed in Section 3.1.2, Theorem 1 offers a slight refinement in several

senses over the corresponding theorems in the literature [142, 157], since we require fewer

moments and have a better rate than the corresponding theorems in the work of Mischler

and Mouhot [142].

By comparison, the development of propagation of chaos is significantly less developed for

the other kernels (NCHP, SP) where one must deal with both a non-integrable singularity

in b(cos θ) and the unboundedness of the kinetic factor Ψ at large, respectively small,

relative velocities. Fournier and Mischler [87] proved the propagation of chaos for the

hard potential Boltzmann equation for a related particle system (the Nanbu model) in

which only one particle jumps at a time, so that energy is only conserved on average.

Recent works by Salem [169] and Xu [196] have considered the same Nanbu model in the

case of soft potentials (SP) with various restrictions on the parameters; Salem proved

qualitative convergence of chaos, while Xu found a rate N−α, but neither treated the

(physically more relevant) Kac process. Regarding similar particle models for the Landau

equation in place of the Boltzmann, the propagation of chaos was proven for a particle

system imitating the Kac process by Fournier and Guérin [88] for the hard potential

Landau equation, finding a rate N ε−1/3, ε > 0 in dimension d = 3, and for a particle

system imitating the Nanbu system in the case of the soft potential Landau equation by

Fournier and Hauray [89], finding a qualitative result for γ ∈ (−2,−1] and a rate N−α for

γ ∈ (−1, 0] for some α > 0. In Theorem 2, we will prove a quantitative rate of propagation

of chaos for Kac process in the case (NCHP); to the best of our knowledge, this result

(which first appeared in the work [112] by the author) represents the first time that the

propagation of chaos has been proven for the true, physical Kac process for either of the

cases (NCHP, SP), although our rate is very slow ((logN)−α on short time intervals).

Time-Dependence of Chaoticity Results We highlighted, in several of the results

above, the time-dependence of the rate of convergence of the particle system. This has

a natural physical relevance in the validity of the Boltzmann equation (BE) and in par-

ticular its spatially inhomogeneous counterpart (spBE). One of the early objections to

Boltzmann’s equation by Zermelo [198] was that, when the microscopic dynamics are de-

terministic, Poincaré’s recurrence theorem means that, for almost all initial configuration,
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the particle system will eventually return to a neighbourhood of the initial configuration.

On the other hand, Boltzmann’s celebrated H-Theorem implies that the macroscopic

Boltzmann equation has no such recurrence and converges to equilibrium (see Subsections

1.2.4, 1.2.6 below), and Boltzmann tacitly acknowledged that, for finite N , the spatially

inhomogeneous Boltzmann equation (spBE) will fail at some large (N -dependent time),

see also the comments in [189, Section 2.5]. Indeed, for a physical system, N is large but

finite, and so the limit N → ∞ does not make sense; the problem then becomes asking on

which timescales the Boltzmann equation is a good approximation to the physical particle

system.

Based on this, it is interesting to ask about the time-scales on which the Kac process

converges to the spatially homogeneous Boltzmann equation (BE). In this context, we

must distinguish between convergence pointwise in time (i.e., estimating, for a single

fixed t, W (µN
t , µt) for a suitable metric W ) and local uniform estimates, where we con-

sider sups≤t W (µN
t , µt). Obtaining estimates of the first type for the cases of Maxwell

molecules (tMM) and hard spheres (HS), which are further uniform in the time t, was

the subject of the work of Mischler and Mouhot [142]; later, Cortez and Fontbona [48]

proved a similar result for Maxwell Molecules with a faster rate in N . In these cases, for

fixed N , the Boltzmann equation can be seen as good (pointwise-in-time) approximation

to the Kac process for any fixed N . On the other hand, the result of Norris [157] on hard

spheres, recalled in Proposition 1.2 below, is an estimate of the second type, but shows

only that the Kac process is a good approximation on time scales t < C logN . Even for

the large values of N relevant for physical systems (e.g. N ≃ 1023), this then fails at times

which are small enough to be physically relevant, and it is interesting to try to improve

the time dependency. This will be exactly the subject of Theorem 1, which we prove in

Chapter 3.

A Fluid Limit Approach to Propagation of Chaos As mentioned above, the propa-

gation of chaos is equivalent to a law of large numbers for the array of (dependent) random

variables VN
t = (V 1,N

t , . . . , V N,N
t ). Another approach, which is natural in the probabilis-

tic context is the approach of fluid limits, see [49]; indeed, we can write the empirical

measures µN
t as

µN
t = µN

0 +

! t

0

Q(µN
s )ds+MN

t (1.15)

in the sense that, for any bounded and Lipschitz f ,

〈f, µN
t 〉 = 〈f, µN

0 〉+
! t

0

〈f,Q(µN
s )〉ds+MN,f

t (1.16)

for some martingale MN,f
t . Further, since the process 〈f, µN

t 〉 makes jumps of order

N−1 sin θ at a rate ∼ Nb(cos θ), the quadratic variation of the martingale term MN,f
t is

of the order O(N−1) with a constant depending on f , see [49, 157]. We can therefore
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view (1.15) as saying that the empirical measures satisfy a noisy perturbation of the true

Boltzmann equation (BE), with vanishing noise in the limit N → ∞. This is exactly the

framework of the fluid limit scaling, which has been studied in the probabilistic literature

([49], and references therein [6, 125, 128, 170]), now viewing (BE) as an ODE in the space

of measures. This is the approach of Norris [157], whose result we summarise as follows.

Proposition 1.2. [157, Theorem 10.1] For any µ0 ∈ Sp, p > 2, there is a unique solution

in L∞
loc([0,∞),Sp) to the Boltzmann equation (BE), starting from µ0; we write this solution

as (φt(µ0))t≥0.

Moreover, for any ε > 0, tfin < ∞, λ < ∞, there exist constants C(ε, p) < ∞ and

α(d, p) > 0 such that, whenever (µN
t )t≥0 is a Kac process on N ≥ 1 particles, with

Λp(µ
N
0 ) ≤ λ,Λp(µ0) ≤ λ, we have

P

/
sup
t≤tfin

W (µN
t ,φt(µ0)) > eCλtfin(W (µN

0 , µ0) +N−α)

0
< ε (1.17)

where W is a metric of Wasserstein type which is equivalent to the weak topology on S.
For d ≥ 3 and k > 8, we can take α = 1

d
.

We will take this same approach in Chapters 3 (in particular) and 6. Following this result,

we will often try to obtain local uniform estimates, that is, control on supt≤tfin
W (µN

t , µt)

for any tfin ≥ 0, as in this result.

1.2.2 Tanaka’s Stochastic Interpretation of the Boltzmann Equa-

tion & Tanaka Couplings

Tanaka [177, 178, 176] proposed an entirely different probabilistic approach to the Boltz-

mann equation (BE), which we will also see in the context of the Landau equation (LE).

Tanaka argued, for the special case of Maxwell molecules, that the Boltzmann equation

can be studied as the Kolmogorov equation for a non-linear stochastic jump differential

equation
#
111$

111%

Vt = Vt +
&
(0,t]×Rd×Sd−1×(0,∞)

(v′(Vs−, v∗, σ)− Vs−)1I[z ≤ B(Vs− − v∗, σ)]N (ds, dv∗, dσ, dz)

N is a Poisson random measure on (0,∞)× Rd × Sd−1 × (0,∞) of intensity dtµt(dv∗)dσdz;

µt = Law(Vt).

(stBE)

Note that the third condition introduces the nonlinearity, since the intensity of jumps in

of N depends on the distribution µt = Law(Vt). It follows from the construction that, for

all bounded, Lipschitz f : Rd → R, the process

M f
t = f(Vt)− f(V0)−

! t

0

!

Rd

LBf(Vs, v∗)µs(dv∗)ds (1.18)
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is a martingale, where we define the local generator LB in analogy to the Landau case

LBf(v, v∗) := 2

!

Sd−1

(f(v′)− f(v))B(v − v∗, σ)dσ. (1.19)

If we write the symmetrised version

LB,sf(v, v∗) :=

!

Sd−1

(f(v′)+f(v′∗)−f(v)−f(v∗))B(v−v∗, σ)dσ =
LBf(v, v∗) + LBf(v∗, v)

2
(1.20)

then for both cases we have the dual representation of Q(µ) by

〈f,Q(µ)〉) =
!

Rd×Rd

LB,sf(v, v∗)µ(dv)µ(dv∗) =

!

Rd×Rd

LBf(v, v∗)µ(dv)µ(dv∗)

where the first equality is simply the definition of Q, and the second follows by symmetry,

since the distribution of (v′, v) under µ(dv)µ(dv∗)B(v − v∗, σ)dσ is the same as that of

(v′∗, v∗). In particular, it follows that

E
2!

Rd×Sd−1

LBf(Vt, v∗)µt(dv∗)

3
= 〈f,Q(µ)〉

so that taking expectations of (1.18) shows, provided µ ∈ L∞
loc([0,∞),P2), that µt =

Law(Vt) is a solution to the Boltzmann equation; if we then take V0 distributed according

to any µ0, independently of N , we then obtain the Boltzmann equation with a specified

initial measure. Physically, Tanaka proposed that the process (Vt)t≥0 should represent the

time-dependent behaviour of a ‘typical’ particle out of the many particles in the cloud of

gas. The same idea can be applied to the Landau equation, in which case we write
#
$

%
Vt = Vt +

& t

0

&
R3 b(Vs − v*)µs(dv*)ds+

& t

0

&
R3 σ(Vs − v*)N(dv*, ds);

µt = Law(Vt)
(stLE)

where N is a 3D-white noise on R3 × [0,∞) with covariance measure µs(dv*)ds; see

Walsh [193]. Again, using the framework (1.8) of weak solutions, it is a straightforward

calculation using Itô’s formula to see that, if µt = Law(Vt) has µ ∈ L1
loc([0,∞),S2+γ),

then it is a weak solution to (LE).

In either of these two cases, we will say that a process (Vt)t≥0 is a solution to either such

equation if there exists a choice of N , respectively N , of the correct distribution which

makes the equation true pathwise; we will not insist that V be adapted to the natural

filtration for the noise. We will call any such solutions (Vt)t≥0 to (stBE, stLE) Boltzmann,

respectively Landau, processes.

Let us review a little the literature on this approach. Tanaka also proposed a probabilistic

coupling method for these solutions in the context of the Boltzmann equation, at least in

the case of cutoff Maxwell molecules (GMM). Given two solutions (Vt)t≥0, (Wt)t≥0 driven

by Poisson random measures N 1,N 2 respectively, he built a new solution (4Wt)t≥0 by
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specifying the associated Poisson random measure 5N , with the same law as N 2, in a

particular way so that Vt,4Wt both jump at the same times, and such that E[|Vt − 4Wt|2]
decreases in time. The processes (Wt)t≥0, (4Wt)t≥0 have the same law, because N 2, 5N do,

and Tanaka concluded that, among solutions obtained through (stBE), the Boltzmann

equation is contractive for the Wasserstein2-distance W2. Villani and Toscani [180] later

extended this conclusion to all solutions.

Beyond the case of cutoffMaxwell molecules, Fournier and Méléard [91] extended this idea

to apply to include (NCHP, SP) with −1 < γ < 1 and without the cutoff assumption;

Fournier [83] showed that, if γ ∈ [0, 1), then one can associate such a solution (Vt)t≥0 to

any prescribed solution (µt)t≥0 to the Boltzmann equation, and for the case γ ∈ (−1, 0)

that a solution to (stBE) exists for any given µ0. A deterministic argument in the same

spirit [93] was used to study the stability of the Boltzmann equation in both the cases of

hard and soft potentials (NCHP, SP) and, away from the uniqueness and stability, such

processes have been used to prove the existence of regular solutions [80] or the finiteness of

the entropy4 for all solutions [83] to the Boltzmann equation using the Malliavin calculus of

jump processes. In the Landau case, it was shown in [88, Proposition 10] that all solutions

to (LE) with Λ4(µ0) < ∞ arise as the solution to a stochastic differential equation driven

by a Brownian motion which is equivalent to (stLE).

The same ‘Tanaka coupling’ has also been used in the study of the particle system,

both for particle systems leading to the Boltzmann and Landau equations. Rousset [167]

developed this coupling for Kac’s particle system for Maxwell molecules, showing that the

errors are uniform in N , and Cortez and Fontbona [48] used this to prove the uniform

in time propagation of chaos. Regarding hard and soft potentials, a similar coupling was

used by the works [87, 169, 196] already cited above to prove the convergence of the Nanbu

particle system to the Boltzmann equation, and for the Landau equation in [88, 89].

We will use this style of coupling in Chapters 4 - 5, corresponding to Theorems 2-4 for the

Boltzmann equation and Landau equation respectively, both in the cases of noncutoff hard

potentials. In either case, we present an argument similar to Tanaka’s to couple processes

(Vt)t≥0 given by (stBE, stLE) respectively. In either case, we do not find contractivity, as

Tanaka did, but the novelty of our work is that the solutions grow apart no faster than a

time-dependent multiple of the initial data, measured in a tailor-made cost. In the case of

the Boltzmann equation, we also exhibit a Tanaka-coupling of the particle system, with

an error uniform in N , which we use to prove propagation of chaos.

4see Section 1.2.4 below.
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1.2.3 The Cauchy Problem for the Boltzmann and Landau Equa-

tions

Another, purely analytic problem on which we have already touched is the theory of

well-posedness (existence, uniqueness, continuity in the initial data) of the Boltzmann

equation. In the works in the propagation of chaos, uniqueness is already necessary in

Sznitman’s non-constructive argument; Grünbaum’s argument [104] was incomplete for

the same reason (see the introduction to [142]), as it assumed this uniqueness in cases for

which it is false. Moreover, for the quantitative propagation of chaos, we will typically

wish to prove an estimate of W (µN
t , µt) in terms of some sequence εN → 0 depending

on N , and on W (µN
0 , µ0). If we prove such an estimate, then we could apply the same

thing to W (µN
0 , ν0) for any other ν0 and combine the two to get an estimate on W (µt, νt).

In this way, quantitative estimates for the propagation of chaos are at least as hard as

proving the uniqueness and (quantitative) stability for the Boltzmann equation, so it will

also be necessary to consider the Cauchy problem.

Let us also make a remark on regularity. In the cases without cutoff, µt can never be

more regular than µ0; for instance, it can never be function-valued if the initial data µ0

is not already absolutely continuous with respect to the Lebesgue measure, thanks to the

easy estimate

µt(dv) ≥ exp

6
−2C

! t

0

!

Rd

Ψ(|v − w|)µs(dw)ds

7
µ0(dv), C =

!

Sd−1

B(u, σ)dσ

but, assuming only that µ0 ∈ L2(Rd) ∩ P2(Rd), it holds that µt can be decomposed into

a regular part and a part which decays exponentially in time [150, Theorem 5.5]. On the

other hand, in the cases without cutoff, the (linear) operator Q(·, µ) behaves in a sense

like a fractional diffusion −(−∆)ν/2, ν > 0, see [8], and in particular there is hope for the

regularisation of solutions. We will explore this a little in Chapter 5, where we upgrade

existing regularity results through a new uniqueness result.

We summarise the state-of-the-art for existence, uniqueness and regularity as follows.

1. Maxwell Molecules For Maxwell molecules, with or without cutoff, the theory of

the Cauchy problem is quite advanced. Existence follows from Tanaka’s work [177] in

which he established solutions to the corresponding stochastic form (stBE), and unique-

ness and stability were proven by Toscani and Villani [180]. Regarding regularity in the

case (tMM) without cutoff, Fournier [80] proved the existence of a smooth solution in

d = 2, and more recently Moritmo [146] proved that all solutions immediately admit a

smooth density, assuming only finite energy and entropy on the initial data.
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2. Hard Spheres Similarly, the Cauchy problem for hard spheres is quite advanced.

Arkeryd [12] gave an existence and uniqueness theory for measures with finite entropy;

Lu and Mouhot [132] proved the existence of energy-conserving measure-valued solu-

tions for any µ0 ∈ P2, and that solutions are unique within energy-conserving paths.

Norris [157] re-proved, via a different, probabilistic method, existence and uniqueness of

energy-conserving solutions5 with µ0 ∈ Sp, with a quantitative stability estimate in a

Wasserstein1-type metric6; we will reproduce the proof in Section 3.2 as a stepping stone

to sharper results. Currently, no quantitative stability estimates are known with only

p = 2 moments.

Let us also refer to the work of Mischler and Mouhot [142], who proved a very strong

‘twice-differentiability’ result for this kernel and for Maxwell molecules, with or without

cutoff, in both cases with exponential decay in time. For the case of hard spheres, the

distances are measured in weighted total variation norms; the statements and a sketch

proof for this case are reproduced in Section 3.2.

3. Non-Cutoff Hard Potentials. The Cauchy theory for the case (NCHP) is, in com-

parison to the two cases discussed above, comparatively recent and significantly less com-

plete. Villani [186] developed a theory of function-valued solutions, extended to measure-

valued solutions by Lu and Mouhot [132, Theorem 1.3], assuming only that µ0 ∈ P2.

Regarding uniqueness and stability, two results have been proven by Desvillettes and

Mouhot [56] and by Fournier and Mouhot [93]. For uniqueness among energy conserving

solutions, the result of [93], which is recalled in Proposition 4.18, assumes that µ0 has an

exponential moment 〈eε|v|γ , µ0〉 < ∞ for some ε > 0, and provides a quantitative stability

result for µ0, ν0 both satisfying this condition, while the result of [56] requires µ0 to have a

density f0 lying in a weighted W 1,1 space, and so requires less localisation (by comparison)

but much more regularity. Regarding regularity, Alexandre et al. [8] proved in d = 3 that

if µ0 admits a density, then µt admits a density ft with
√
ft ∈ H

ν/2
loc (R3) for any t > 0,

which Chen and He [47] improved to the global integrability (1 + |v|2)
√
ft ∈ Hν/2(R3).

Fournier [83] used the Tanaka processes described in the previous subsection to show that,

unconditionally, µt has a finite entropy H(µt) < ∞, and that the density belongs to a

certain Besov space. In the case of a regularised hard potentials, where Ψ has the same

asymptotic growth but is now smooth, Desvillettes and Wennberg proved the existence

of solutions such that µt admits a density ft in the Schwarz space7, provided only that µ0

has finite energy and momentum.

5The conditions stated in the cited paper are that µ ∈ L∞
loc([0,∞),Sp) for some p > 2; this is equivalent

to energy conservation plus the finiteness of Λp(µ0) by estimates which we will see in Section 2.5.
6See Section 2.1.
7The Schwarz space is the space of all smooth functions such that supv(1 + |v|s)|Dsf |(v) < ∞ for all

k, s. This is usually denoted S(Rd), but this notation is already taken for the Boltzmann sphere.



32 1.2. TOPICS

4. The Landau Equation for Hard Potentials and Maxwell Molecules The

Landau equation in the cases γ ∈ [0, 1] for hard potentials and Maxwell molecules was

studied in detail by Villani [187] and Desvillettes and Villani [58, 59] respectively. For

Maxwell molecules, Villani proved the existence of a unique classical solution starting

from any µ0 admitting a density f0 ∈ L1(R3), and that ft is smooth and bounded for

t > 0. In the case of hard potentials, Desvillettes and Villani proved existence assuming

that µ0 ∈ P2+ε, ε > 0, and uniqueness assuming that the initial data µ0 has a density

f0 ∈ L1(R3) ∩ L2(R3, (1 + |v|p)dv) for p > 15 + 5γ. Regarding regularity, they studied

the regularising effects of the diffusion operator QL(µ) and showed the existence of a

solution whose density ft belongs to weighted Sobolev spaces of all orders, provided that

µ0 does not concentrate on a line (see Proposition 5.13). Later, Fournier and Guillin [88]

proved a uniqueness and stability result with measure-valued initial data with exponential

moments, which is recalled in Proposition 5.8. The regularity results were later extended

Morimoto, Pravda-Starov and Xu [145], who showed that any solution µt whose density

satisfies the conclusions of Desvillettes and Villani further has an analytic density.

5. Soft Potentials. Finally, let us mention the Cauchy theory for soft potentials, either

for the Boltzmann or Landau equations. For the Boltzmann equation with γ ∈ (−1, 0), ν ∈
(0, 1), γ + ν > 0, Fournier and Mouhot [93, Corollary 2.4] proved existence and and

uniqueness in L∞
loc([0,∞),P2)∩L1

loc([0,∞), Lp(Rd)) for the case where the initial data has

q moments and admits a density f0 ∈ L1(Rd)∩Lp(Rd), for some particular p, q. Xu [196]

added a weak-strong uniqueness and stability result so that, under the same hypotheses,

the solution starting at µ0 is unique among all weak solutions ν ∈ L∞
loc([0,∞),P2), with

a stability estimate depending only on the Lp norms of the densities ft associated to µt.

In the cases γ ∈ (−3, 0], ν ∈ (0, 2) in dimension d = 3, Fournier and Guérin [85] proved

uniqueness and stability for the classes of solution where

Jγ(µ) = sup
v∈R3

!

R3

|v − v∗|γµ(dv∗)

remains bounded along the solution.

For the Landau equation in the cases of soft and Coulomb potentials, the existence goes

back to Villani [187]. For γ > −3, uniqueness and stability were studied by Fournier and

Guérin [86], who found uniqueness and stability, with different hypotheses depending on

the value of γ: for γ ∈ (1−
√
5, 0) finite energy and entropy suffice, for γ ∈ (−2, 1−

√
5]

an additional (sufficiently large) moment is needed, and for γ ∈ (−3,−2] one needs finite

energy, and that µ0 admits a density f ∈ L1(R3) ∩ Lp(R3), p > 3/(3 + γ). For the

most physically relevant (and most difficult) Coulomb case γ = −3, Fournier [82] proved

the uniqueness of solutions admitting a bounded density, based on Tanaka’s stochastic

interpretation, while the only existence result for bounded solutions [14] is for short times,

so solutions may become unbounded at finite times.
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Energy Non-Conserving Solutions

We insist, in the discussion of hard spheres, and hard potentials above, that uniqueness

only holds within the class of energy conserving solutions, even though, as remarked

above,

〈|v|2, Q(µ)〉 = 0

so that one formally expects the energy to be constant. However, Lu and Wennberg [133]

showed that in the cases (HS, NCHP, CHPK), for any initial data µ0, that there exists a

solution with increasing energy, and moreover very many such solutions: the energy can

be prescribed to have finitely many arbitrary jumps, or to increase in a ‘Cantor-like’ way8;

we will see a very similar argument at the level of the Kac process in Chapter 6, where

this ill-posedness causes problems for the study of large deviations. Lu and Wennberg

also showed that the energy can never decrease, so that these increases are the only way

in which the energy fails to be constant.

Let us remark that in the case of the Landau equation, we insist by definition that our

solutions have non-increasing energy, and so we cannot have solutions with increasing

energy as above, and as already remarked above, Desvillettes and Villani [59, Theorem 3]

showed that the energy is constant.

Notation. In each of the cases above, we will often write φt for the semigroup on suit-

able spaces of measures S ′ ⊂ S where the Cauchy problem is well-posed; that is, (φt(µ))t≥0

is the unique solution to the Boltzmann equation starting at µ, and the maps φt take the

set S ′ (to be specified in each case) to itself. This notation will be a helpful clarifica-

tion in Chapter 3, where we follow [142] in using properties not only of the Boltzmann

equation, but also of the maps φt, and again in Section 4.9, where we prove uniqueness

by constructing a solution map φt with a stability property. In the case of the Landau

equation, we write φL
t .

Contributions. Let us briefly discuss the novel contributions of this thesis to the study

of the Cauchy problems to these equations in view of the literature above. For (HS),

we prove in Theorem 1 a uniform-in-time stability estimate for the (energy-conserving)

solution, which is Hölder continuous in a weighted Wasserstein distance and uniform in

time, as soon as the initial data have any pmoments, p > 2. This comes from interpolating

between the techniques of Norris [157], which work well in short-time and with only few

moments, and the exponential stability in total variation in the long time; we introduce

some further ideas to ensure that the dependence on the moments Λp(µ0, ν0) of the initial

data only appears as a multiplicative factor, and does not change the Hölder exponent.

In the case of non-cutoff hard potentials (NCHP) or the corresponding hard potential

8See Theorem 6.5.
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Landau equation, one of the main contributions of Theorems 2 - 3 will be a new uniqueness

result which applies to measure-valued solutions and only requiring a finite number p

moments, which is based on Tanaka’s coupling. In the Boltzmann case (NCHP), the

required number of moments is potentially large but constructable; in the Landau case,

we pay particular attention to this dependence to show that any p > 2 is sufficient.

We also check, in Theorem 3, that solutions to (LE) exist as soon as the initial data

µ0 ∈ S(R3).

1.2.4 Entropy, the H-Theorem and Large Deviations

An important and powerful tool in the study of the Boltzmann equation, both in the

inhomogeneous and homogeneous cases (spBE, BE) has been the entropy and associated

methods, going back as far as Boltzmann himself. Boltzmann proposed the definition

of entropy in terms of the logarithm of the volume of accessible microstates, measuring

how exceptional a given configuration is; for a probability measure9 on Rd one defines the

entropy

H(µ) :=

#
$

%

&
Rd f(v) log f(v) dv if µ has a density f with respect to the Lebesgue measure;

∞ else

(1.21)

and similarly the relative entropy with respect to a fixed ν is

H(µ|ν) :=

#
$

%

&
Rd f(v) log f(v) ν(dv) if µ has a density f with respect to ν;

∞ else.
(1.22)

In the latter case, H(µ|ν) ≥ 0 thanks to Jensen’s inequality, and H(µ|ν) vanishes if and
only if µ = ν. Let us note that, for µ ∈ P2 admitting a density f , if we take γµ to be

the Gaussian with scalar covariance and the same average momentum u =
&
vµ(dv) =&

vγµ(dv) and temperature T = 1
d

&
|v − u|2µ(dv) =

&
|v − u|2γµ(dv), then

dµ

dγµ(v)
= f(v)

e−
|v−u|2

2T

(2πT )d/2

which produces

H(µ|γµ) = H(µ)− d

2
− d

2
log(2πT ) = H(µ)−H(γµ).

For µ ∈ S, we find the standard Gaussian γ(dv) with density

γ(v) =
1

(2πd−1)d/2
e−d|v|2/2. (1.23)

In this context, for solutions (µt)t≥0 normalised to S, Boltzmann’s celebrated H-Theorem

writes as follows.
9or the same on D × Rd in the inhomogeneous case.
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Proposition 1.3 (Boltzmann’s H-Theorem). For a solution (µt)t≥0 ⊂ S to (BE), we

have

H(µt|γ) +
! t

0

D(µs)ds = H(µ0|γ) (H)

where D(µ) is the entropy dissipation

D(µ) =
1

2

!

Rd×Rd×Sd−1

(f(v′)f(v′∗)− f(v)f(v∗)) log
f(v′)f(v′∗)

f(v)f(v∗)
B(v − v∗, σ)dvdv∗dσ

=

!

Rd×Rd×Sd−1

f(v)f(v∗) log
f(v)f(v∗)

f(v′)f(v′∗)
B(v − v∗, σ)dvdv∗dσ

(1.24)

if µ has a density f , in which case we write D(µ) = D(f), and otherwise D(µ) = ∞.

Moreover, D(µ) ≥ 0, so that the entropy t /→ H(µt|γ) is nonincreasing, and D(µ) = 0

if and only if µ is a Maxwellian distribution, so that t /→ H(µt|γ) is strictly decreasing

unless µt = γ.

It follows that γ is the unique fixed point of the Boltzmann equation (BE) normalised to S,
and without the normalisation one finds all Maxwellian distributions µ(dv) ∝ e−|v−u|2/2T ,

u ∈ Rd, T > 0, including point masses as the degenerate case T = 0. A similar argument

holds for the Landau equation [59] for the same entropy, and a suitably defined entropy

dissipation. Let us mention a connection here to the stochastic processes which we study;

Kac [122, Equation 6.39] proposed that a certain property, called entropic chaoticity in

later works [38, 108, 142], is propagated in time, while the relative entropy for the particle

system is monotonically decreasing in time. Together, these would lead to a conclusion

weaker than (H), which is that H(µt|γ) is monotonically decreasing. This is the approach

of [142, Theorem 7.1], which derives (H) from the propagation of entropic chaoticity in

the cases (GMM, tMM, HS).

Although it is not a topic to which we will contribute, let us mention the study of func-

tional inequalities connected to (H), which has been an important topic in kinetic theory.

Boltzmann’s H-Theorem, on its own, proves the convergence to equilibrium, but not a

rate, and functional inequalities connecting D,H allow ‘entropy entropy-dissipation’ ar-

guments to estimate the rate of convergence. Cercignani’s conjecture [43] posited a linear

lower bound on D(µ), with some constant depending on a priori estimtates on µ (en-

tropy, Sobolev norms, moments,...), but successive works of Bobylev [18, 19], Wennberg

[194] and Cercignani [21] showed that this linear relation is false in cases of increasing

generality, while results of Toscani and Villani showed that a super linear lower bound

holds under general conditions [181, 182, 190]

D(µ) ≥ λε(µ)H(µ|γ)1+ε

for a suitable constant λε and any ε > 0, leading to convergence to equilibrium with

arbitrarily large polynomial exponent:

H(µt|γ) ≤ Ct−1/ε.
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Let us refer to the survey work [57] for more details.

A different viewpoint on entropy in the context of the kinetic equations (BE, LE) comes

from the theory of gradient flows for measure spaces; Jordan, Kinderlehrer and Otto [120]

showed that the heat equation is the gradient flow of the functional H with respect to

the Wasserstein2 distance W2, so that the entropy decreases (in a sense) as efficiently as

possible. The same approach was applied to discrete binary reaction networks by Mielke

[140] for a particular choice of geometry adapted to each reaction network, and the Boltz-

mann equation (formally) fits this framework by viewing particle velocities v ∈ Rd as a

continuum of particle species. Erbar [73] proved that (BE) is the gradient flow of entropy

where the kernel is bounded in the ‘ω-representation’ defined in Section 2.4; out of our

kernels, this applies to only (GMM), and where P2 is equipped with a bespoke metric.

The same idea was implemented for the Landau equation in [42].

A probabilistic interpretation, and the one which we will persue in this thesis, of entropy

is the concept of large deviations, which gives a precise mathematical meaning to Boltz-

mann’s original idea of entropy in terms of the volume of accessible microstates, see the

discussion in [192]. For example, if µN
0 is the empirical measure from sampling particles

independently from ν ∈ P2, then Sanov’s Theorem [51] applies to show that the measures

µN
0 satisfy a large deviation principle

P
-
µN
0 ≈ µ

.
≍ e−NH(µ|ν) (1.25)

which formally means that, for all A ⊂ P and U ⊂ P closed, respectively open, for the

weak topology, we have

lim sup
N

1

N
logP

-
µN
0 ∈ A

.
≤ − inf {H(µ|ν) : µ ∈ A} ; (1.26)

lim inf
N

1

N
logP

-
µN
0 ∈ U

.
≥ − inf {H(µ|ν) : µ ∈ U} . (1.27)

Equivalently, for a Wasserstein metric10 inducing the weak topology

H(µ|ν) = lim sup
ε→0

lim sup
N→∞

6
− 1

N
logP

-
W1,1(µ

N
0 , µ0) < ε

.7
(1.28)

which makes the connection to Boltzmann’s notion of ‘logarithm of volume of microstates’

precise. On the probabilistic side, the dynamical large deviations of noisy ODEs have been

extensively studied since the work of Freidlin andWentzell [94], including the seminal work

by Feng and Kurtz [77]. In Chapter 6, we will study the dynamical large deviations of the

empirical measures µN
t on a finite time interval [0, tfin], which is a Freidlin-Wentzell theory

for the Kac process viewed as a stochastic, noisy Boltzmann equation as in (1.15) above.

Writing • for processes11 indexed by t ∈ [0, tfin], we seek estimates which are informally

10See Section 2.1.
11This notation is chosen to try to avoid confusion between functionals of a single measure, for instance

H(µ|γ), and those which depend on the whole process.
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stated as

P
-
µN
• ≈ µ•

.
≍ e−NI(µ•) (1.29)

for some function I(µ•) on a suitable space D of càdlàg paths µ• : [0, tfin] → P2.

Auxilliary Flux Following previous works in large deviations [160, 165], it will be useful

to consider the Kac process together with an auxiliary empirical flux, which records the

collision history of the process, on the space E = (0, tfin]×Rd×Rd×Sd−1 for the parameter

space of collisions12, and form measures wN
t on E by setting wN

0 = 0 and changing, at

collisions,

wN
t = wN

t− +
1

N
δ(t,v,v!,σ) (1.30)

at times t where there is a collision. In this way, the pair (µN
t , w

N
t ) together form a Markov

process, with generator given on bounded functions by

GN,FlF (µN , wN) = N

!

Rd×Rd×Sd−1

(F (µN,v,v!,σ, wN,t,v,v!,σ)− F (µN , wN))

· · ·× B(v − v*, σ)µ
N(dv)µN(dv*)dσ

(1.31)

with

wN,v,v!,σ := wN +
1

N
δ(t,v,v!,σ). (1.32)

We write wN := wN
tfin

for the final measure, containing the entire collisional history of the

process on the finite time-interval. We then investigate estimates

P
-
(µN

• , w
N) ≈ (µ•, w)

.
≍ e−NI(µ•,w). (1.33)

Estimates of the form (1.29) can then be derived from these estimates by the contraction

principle [77, 147], setting I(µ•) = infw I(µ•, w). Formally, (1.33) means that, for Kac

processes µN
• and associated empirical fluxes wN ,

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ A

.
≤ − inf {I(µ•, w) : (µ•, w) ∈ A} ; (1.34)

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ − inf {I(µ•, w) : (µ•, w) ∈ U} (1.35)

for all A closed and U open subsets of a suitable topological space, which we will specify

in detail in Section 6.1.

1.2.5 Tree Expansion & Interaction Clusters

Our next topic is the study of some combinatorial objects which appear related to the

study of the inhomogeneous Boltzmann equation (spBE), both in Lanford’s work [129] and

12although it will be convenient to work with a slightly different parametrisation of collisions with the

same parameter space, see Section 2.4.
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in a series of more recent works by Bodineau, Gallagher, Saint-Raymond, Simonella and

Texier [22, 23, 24, 98]. We probe these objects in the (simpler) case of Kac’s interacting

system, where an exact derivation of the convergence to some limiting kinetic equations

is possible.

We begin with Wild sums [195] and its probabilistic interpretation by McKean [138], see

also [191, Section 4.1]. We start by rewriting, for cutoff kernels B, the collision operator

Q as Q = Q+ − Q−, where the gain and loss terms come from integrating the positive,

respectively negative, terms:

Q+(µ, ν) =

!

Rd×Rd×Sd−1

(δv′ + δv′∗)B(v − v∗, σ)µ(dv)ν(dv∗)dσ;

and the loss term is

Q+(µ, ν) =

!

Rd×Rd×Sd−1

(δv + δv∗)B(v − v∗, σ)µ(dv)ν(dv∗)dσ.

Defining the function A(µ, v) :=
&
Rd×Sd−1 B(v − v∗, σ)µ(dv∗)dσ, we write the loss term as

Q−(µ, ν)(dv) = A(v, ν)µ(dv) + A(v, µ)ν(dv).

We now restrict to the case of quadratic kernels (Qa,b), which contains the special case

of cutoff Maxwell molecules originally considered by Wild. For the case (Qa,b) and any

µ ∈ S, we expand the function A as

A(v, µ) =

!

Rd

(a+ b(|v|2 − 2v · w + |w|2))µ(dw)

= (a+ b) + b|v|2 =: A(v)

(1.36)

which simplifies to a function only of v, thanks to the specified integrals
&
wµ(dw) =

0,
&
|w|2µ(dw) = 1. The Boltzmann equation, for processes (µt)t≥0 ⊂ S, now reads

∂tµt = −2Aµt(dv) +Q+(µt)

where again we supress the repeated argument in Q+(µ) = Q+(µ, µ). We now integrate

via Duhamel’s formula to produce

µt = e−2Atµ0 +

! t

0

e−2(t−s)AQ+(µs)ds

and this process can be repeated, substituting the resulting expression for µs into the

integrand and using the bilinearity of Q+(·, ·). Iterating this produces more complicated

expressions, which fall into a tree structure. Let us write Tn for the set of all rooted,

binary trees Γ with n leaves, which we build recursively from the empty tree ◦, forming

any Γ ∈ Tn by joining left- and right- trees Γ = (Γ(L),Γ(R)) with Γ(L) ∈ Tp,Γ(R) ∈
Tq, p, q ∈ {1, . . . , n − 1}, p + q = n. We then find a recursive expansion of µt in terms of

this tree structure: we set µ◦
t = e−2tAµ0, and for Γ = (Γ(L),Γ(R)(∈ Tn, define

µΓ
t =

! t

0

e−2A(t−t1)Q+(µ
Γ(L)
t1 , µ

Γ(R)
t1 )dt1.
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Overall, the iterations of Duhamel’s formula produce

µt =
"

n≥1

"

Γ∈Tn

µΓ
t . (1.37)

In the Maxwell molecule case b = 0 (in the notation of (Qa,b)), we can simplify this

expression a little. In this case, A = a is simply a scalar, and the factors e−2A(t−t1) can be

moved outside the operator Q+ to find, for Γ ∈ Tn,

µΓ
t = e−2at(1− e−2at)n−1Q+

Γ (µ0)

where Q+
Γ is defined recursively by

Q+
Γ (µ) = Q+

'
Q+

Γ(L)(µ), Q
+
Γ(R)(µ)

(

which exactly reproduces McKean’s interpretation [138] of Wild’s sum [195]. In the gen-

eral case of (Qa,b), one could find a similar (but more complicated) expansion, since now

the weights e−2At have to be kept inside the operator Q+. Such trees have, in either

case, a natural interpretation: for the empty tree ◦, µ◦
t is the contribution from particles

which have undergone no collisions in the time interval [0, t], while µ
(◦,◦)
t represents the

contribution from particles which have undergone exactly one collision, with a particle

which had not collided before, and so in. In general µΓ
t represents the contribution from

particles with a ‘collision history’ Γ, that is, particles which previously had a collision

history Γ(R), and then collided with a particle of collision history Γ(L), with Γ(R),Γ(L)

again the right and left subtrees of Γ. Diagrammatically, these represent particle histories

as follows.

1 12 2 3 1 2 3 1

t t

t1

t

t1
t2

t1

t

t2

Figure 1.1: Terms in the tree expansion from the first two iterations of Duhamel’s formula,

from trees ◦, (◦, ◦) and ((◦, ◦), ◦), (◦, (◦, ◦)) respectively, with labelled leaves.

The contributions to the tree expansion measure µt from the first two collision histories

given above are, respectively, e−2tAµ0 and e−2(t−t1)AQ+(e−2t1Aµ0, e
−2t1Aµ0), which we in-

tegrate over t1 ∈ [0, t]. For the trees with three leaves, we find the more complicated

expressions

e−2(t−t1)AQ+(e−2(t1−t2)AQ+(e−2t2Aµ0, e
−2t2Aµ0), e

−2t1Aµ0);

e−2(t−t1)AQ+(e−2t1Aµ0, e
−2(t1−t2)AQ+(e−2t2Aµ0, e

−2t2Aµ0)).

At the level of the particle system, we can similarly think of the (random) interaction

history of individual particles. In this case, it is possible that the diagram is no longer a
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tree; it is possible, for example, that the same two particles collide twice, but these events

should contribute negligibly in the limit N → ∞, since the interaction rate between each

pair scales as N−1. We also remark that two ‘tagged’ particles in the particle system can

become dependent, even if they do not appear in each others collision histories, if some

particle appears in both trees, as in Fig. 1.2 below; in the works [22, 23, 24] investigating

the fluctuations of the spatial particle system around (spBE), these are called recollisions.

1

1

43

2

2
R

Figure 1.2: Two tagged particles in the Kac process which do not appear in each others

collision trees, but whose collision trees overlap, as they both contain the particles labelled

3, 4. In the language of [22, 23, 24], the event labelled R is a recollision.

Interaction Clusters Bogolyubov [25] introduced the notion of an interaction cluster;

at least in short time, the particle system can be partitioned into finite clusters whose

particles evolve independently of other clusters; the clusters at time t are formed by

grouping together any particles which are joined by a chain of collisions. In terms of

the previous observation, this amounts exactly to grouping together all particles whose

collision trees at time N overlap, or which can be joined by a chain of overlapping collision

trees. Following previous works [96, 161], we investigate the statistical properties of these

clusters in the limit N → ∞. Let us first show, for the Kac process with kernels (Qa,b),

that this cluster structure really does capture the structure of dependencies induced by

the collisions. If we fix t > 0 and a nonrandom (V 1
0 , . . . , V

N
0 ), let us condition on the

partition (C1(t), ..., ClN (t)) of the index set {1, ..., N} formed by grouping together indexes

by collisions before time t. For the kernels (Qa,b), we observe that the rate of collisions
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on [0, t] which this conditioning forbids is

"

w,z≤lN (t),w ∕=z

"

i∈Cw(t),j∈Cz(t)

(a+ b|V i
s |2 − 2bV i

s · V j
s + b|V j

s |2)

=
"

w,z≤lN (t),w ∕=z

(a|Cw(t)||Cz(t)|+ b|Cz(t)|

8

9
"

i∈Cw(t)

|V i
0 |2

:

;+ b|Cw(t)|

8

9
"

j∈Cz(t)

|V j
0 |2

:

;

· · ·− 2b

8

9
"

i∈Cw(t)

V i
0

:

; ·

8

9
"

j∈Cz(t)

V j
0

:

;

(1.38)

where we have used the observation that
<

i∈Cw(t)(1, V
i
s , |V i

s |2) is constant over s ∈ [0, t],

since no particles in Cw(t) interact with any outside it on this time interval. We conclude

that the overall rate is constant in time and deterministic (because all V i
0 are), which

ensures that all possible collisions within each part of the partition have the same rates

as without the conditioning. In particular, conditional on the partition, for each i, j

in different Cw(t) ∕= Cz(t), the velocities V i
t , V

j
t are (conditionally) independent, so the

clusters really do capture the dependencies of the particles introduced by collisions.

We can also connect this idea to the works [22, 23, 24], which consider the fluctuations

of the deterministic dynamics (with random initial condition) about the inhomogeneous

Boltzmann equation (spBE) through the cumulant expansion, in our notation

ΛN
t (h) := N−1 log E

=
exp

/
N"

i=1

h((xi(s), vi(s))0≤s≤t)

0>

for functions h on the space of paths on [0, t], which can be expressed [24, Proposition

2.13] by integrating tensor products of (eh − 1) against a sequence gN,k
t of measures

obtained in a one-to-one correspondence with sequence of k-particle marginals 5FN,k =

Law((x1(s), v1(s))0≤s≤t, . . . , (xk(s), vk(s))0≤s≤t). It is shown [23, Equation 4.5] that gN,k

is supported on particle histories of k tagged particles which are completely connected by a

sequence of collision events, which is exactly the requirement that the k tagged particles

belong to the same interaction cluster. Let us show the same connection for the Kac

process; we will show that the cumulant generating function, conditional on the partition

Ct, splits up into a sum of the same function over each cluster. As in the argument (1.38)

above, let us fix a nonrandom VN
0 and condition on the partition C(t) = (C1(t), ..., Cp(t))

and its length p = lN(t). For any bounded f : Rd → R, we now write

E
?
e
!N

i=1 f(V
i
t )
@@C(t)

A
= E

=
"

n≥0

1

n!

N"

i1,..,in=1

f(V i1
t )....f(V in

t )
@@C(t)

>
.
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We now group the sum over i1, ...in depending on how many belong to each cluster of the

partition, to find

· · · = E

B

C
"

n≥0

1

n!

"

k1+..+kp=n

6
n

k1, k2, ..., kp

7 "

i1,..ik1∈C1(t)

· · ·
"

in−kp+1,..in∈Cp(t)

f(V i1
t )....f(V in

t )
@@C(t)

D

E .

We next use the conditional independence above, which generalises to any numbers of

particles; the expectation of each term in the sum factors as

E
?
f(V i1

t )...f(V
ik1
t )

@@C(t)
A
× · · ·× E

?
f(V

in−kp+1

t )...f(V in
t )

@@C(t)
A
.

We then cancel the n! from the multinomial coefficient and reverse the order of summation

to find a sum over k1, ...kp without the constraint, and a factor (k1!)
−1...(kp!)

−1, and the

overall sum is

· · · =
"

k1,...,kp≥0

1

k1!k2! . . . kp!

"

i11,..,i
1
k1

∈C1(t)

E
2
f(V

i11
t )...f(V

i1k1
t )

@@C(t)
3
· · ·

"

ip1,..,i
p
kp

∈Cp(t)

E
2
f(V

ip1
t )...f(V

ipkp
t )

@@C(t)
3
.

Performing the sum inside the expectation with indexes belong to each partition element

recovers the exponential, so we conclude

E
?
e
!N

i=1 f(V
i
t )
@@C(t)

A
=

pF

j=1

E
?
e
!

i∈Cj(t)
f(V i

t )
@@C(t)

A
.

Up to a logarithm, this is exactly the usual cluster expansion of the cumulant [168],

conditioned on the (globally random) partition.

Gelation A particular question of interest is the formation of a macroscopic component

C1(t) of the partition, which we here call gel and represents the case when a positive

fraction of the particles of the collisional dynamics have become correlated by a chain of

interactions. This is already naturally connected to a random graph problem, by placing

an edge between any particles which interact. In the special case a = 1, b = 0 of (Qa,b),

which represents cutoffMaxwell molecules, the associated random graphs are Erdős-Réyni

random graphs with parameters N, 2t/N , which are well-known [75] to undergo a phase

transition at t = 1
2
; for t ≤ 1

2
, there is (with high probability) no macroscopic component,

whereas for t > 1
2
there is (with high probability) a connected component containing a

positive fraction of the vertexes, see also the comments in [97, Section 11.2]. In general,

the rates at which edges appear are inhomogeneous in time and not Markovian, since

they depend on previous collisions; we will see in Chapter 7 how these problems can be

circumvented in the case (Qa,b), and the time of formation of a giant interaction cluster

calculated exactly.
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Stochastic Coagulents & Smoluchowski Equation When studying the random

dynamics at the level of the clusters, the natural object to study will be the empirical

measures λN
t associated to the clusters at time t, on a suitably rich metric space S, to be

specified so that data x ∈ S capture all of the particle histories of all the particles involved,

from which we can recover either the most recent velocities v(x) = (v1(x), ...vm(x)(x)), or

the tree expansion of each particle by ‘pruning’ unnecessary data. The data of a cluster

are roughly defined in Fig. 1.3 below, and defined formally in Section 7.2. Based on

which particles collide in [0, t], we form a partition {Ci(t), i ≤ lN(t)} of {1, ..., N}, and
associate clusters x1

t , ...x
lN (t)
t ∈ S. We study the associated empirical measures λN

t =

N−1
<

i≤lN (t) δxi
t
, which we call stochastic coagulants.

1 2 3 4

t1

t4

t2

t3

v13

v23

v33

Figure 1.3: A prototypical cluster encoding the collision history of four particles, with

the horizontal bars representing collisions at times t1, .., t4. v
i
3 are the velocities taken by

particle 3 before the first collision and after subsequent collisions. The same applies for

other particles, but these are omitted from the representation for legibility.

At the level of these coagulants, there are two possible changes when particles collide,

depending on whether the two colliding particles already belong to the same part of the

partition or not. In the first case, if the ith, jth particles of a cluster x collide and scatter

with angle σ, the cluster of type x will undergo a transformation to a new cluster of type

U(x, i, j, σ), with all the other clusters unchanged; this exactly corresponds to recollisions.

In the latter case, if the ith particle in a cluster of type x collides with the jth particle

of cluster y, both clusters are absorbed into a new cluster of type M(x, y, i, j, σ), which

contains the same collision history as x, y, as well as recording the new collision. These

two types of transitions will be encoded mathematically by transition kernels JN → 0

on JN : S → M(S) and K on S × S → M(S) so that the rate of internal transition

from x to y is JN(x, dy), and clusters of x, y merge to form a cluster of type z a rate
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2K(x, y, dz)/N . We are therefore led to a prototypical equation of Smolochowski type in

the hydrodynamic limit N → ∞, which we express in the weak formulation

〈f,λt〉 = 〈f,λ0〉+
! t

0

〈f, L(λs)〉ds (Sm)

for all compactly supported, continuous f : S → R, where L(λ) is defined by

〈f, L(λ)〉 =
!

S3

(f(z)− f(x)− f(y))K(x, y, dz)λ(dx)λ(dy). (1.39)

We note now that the solutions are now subprobability measures, since every coagulation

event reduces the number of clusters by 1.

Conserved Quantities & The Flory Equation We already used above the observa-

tion that, corresponding to the conservation of particle number, momentum and energy

for the collisional Kac dynamics, the quantities πi given by

(π1(x
i
t), π2(x

i
t), π3(x

i
t), . . . , πd+2(x

i
t)) =

"

j∈Ci(t)

(1, |V j
t |2, V

j
t ) ∈ [0,∞)2 × Rd

define conserved quantities for the coagulation dynamics: whenever a cluster of type x

changes to type y by internal evolution, we have πi(x) = πi(y), and if two clusters x, y

merge to form a cluster of type z, then πi(z) = πi(x) + πi(y), for all i = 1, 2, ..., d+ 2. At

the level of data in x ∈ S encoding a particle history of m particles with the most recent

velocities (v1, ..., vm), π1 extract the particle number m, π2 extracts the total (kinetic)

energy
<

|vi|2 and π3, ..., πd+2 extract the components of the total momentum
<

i vi.

It follows that 〈πi,λ
N
t 〉 are pathwise constant for the stochastic coagulants λN

t and all

i. On the other hand, it does not follow that 〈πi,λt〉 are constant in time; unlike in

the Boltzmann case, where we almost always restrict to solutions where the formally

conserved quantity is genuinely conserved, global solutions to equations of the form (Sm)

typically lose mass to infinity at a finite time, so that 〈πi,λt〉 are decreasing [155, 156].

This corresponds to the formation of a giant cluster at the level of the random coagulation

processes λN
t . This phenomenon depends strongly on the kernel; in cases where the kernel

grows sublinearly in π(x) + π(y) for a conserved quantity π, there is no gelation for a

wide range of initial data [156, Theorem 2.1], while if the coagulation rate K(x, y) is

bounded below by a product form επ(x)π(y), ε > 0, then there is gelation at a finite

time tg ∈ (0,∞) [156, Theorem 2.8]. Indeed, beyond this time, (Sm) is no longer the

relevant equation, since it only captures the interaction between clusters in S and makes

mass at infinity ‘inert’, whereas we must still account for the absorption of mass into

the giant component. The insight [156] to write down an equation which does take

this into account is to return to (1.38) to see that the rate at which two clusters x, y

merge is given by the total mass 2K(x, y) = 2K(x, y, S), which depends only on the
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conserved quantities πi(x), πi(y), 1 ≤ i ≤ d + 2, and indeed as a bilinear form of the

vectors (πi(x))1≤i≤d+2, (πi(y))1≤i≤d+2:

K(x, y) =
"

i,j≤d+2

aijπi(x)πj(y), aij ∈ R. (1.40)

We then identify the mass, energy and momentum of the gel as git = 〈πi,λ0−λt〉, and using

linearity, the rate of absorption of a particle into the gel is
&
S
K(x, y)(λ0−λt)(dy). Taking

this absorption into account, we modify the coagulation operator to the time-dependent

version

〈f, Lg(λt)〉 := 〈f, L(λt)〉 −
!

S

f(x)K(x, y)λt(dx)(λ0 − λt)(dy)

and we find a prototypical equation of the type studied by Flory [199]: for all f ∈ Cc(S),

〈f,λt〉 = 〈f,λ0〉+
! t

0

〈f, Lg(λs)〉ds. (Fl)

We note that the additional terms only make a difference once 〈πi,λt〉 are nonconstant,

which corresponds to the emergence of a gel at the level of the limiting equation. We will

see in Theorem 5, see also Theorems 7.2 - 7.3 that this equation is globally well-posed,

and is the limit of the stochastic coagulants λN
t , globally in time.

Previous Literature We will discuss the literature relevant to the study of coagulation

problems of the form (Sm, Fl) in detail in Chapter 7. The application to interaction was

developped by Patterson, Simonella and Wagner [161, 162] and Gabrielov [96]. In [162],

the cases (HS, Qa,b) for the underlying collision kernel are considered, and a recursive

expansion for the limiting equation is found, as well as upper and lower (not matching)

bounds for the gelation times. This paper also introduces the special kernels (Qa,b) as

a phenomenological proxy to the harder case (HS), and conjectured that gelation occurs

strictly before the mean-free time, which we verify for our kernels. We build particularly

on the work [156] of Norris, which allows coagulation systems where particles can merge

in more than one way, which is relevant for the application to collision clusters.

Characterisation of Gelation Let us remark that we have already encountered two

notions of gel and gelation, which could a priori differ and give rise to different gelation

times. At the level of the particle system, one can study the phase transition where the

size of the largest particle goes from size ≪ N to a size comparable to N [134]. At

the level of the limiting equation, gelation refers to the point where the solution to the

Smoluchowski or Flory equation (λt)t≥0 fails to conserve the total particle mass, which

is known to be related [134, 156] to the divergence of the second moment 〈π2
1 + π2

2,λt〉
of the particle masses and energies at the level of the limit equation. We will see that,

for our model, these three coincide, so that gelation is equivalently characterised by any

of the formation of a giant component in the particle system, the failure of the limiting

equation to conserve 〈πi,λt〉, or the divergence of the second moment.
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Bilinear Coagulation Equations Let us mention our strategy in investigating the

equations (Sm, Fl) obtained above in the case of the interaction clusters. We already

stressed in (1.40) that the rate of merger between two clusters x, y is given by a bilinear

form of the vectors (πi(x))1≤i≤d+2, (πi(y))1≤i≤d+2, thanks to the nice algebraic properties

of the kernels (Qa,b), and the details of x, y only enter into the kernel through chang-

ing the distribution of the new cluster z. This property will allow us to investigate the

stochastic coagulants via (Markovian) random graphs, as already mentioned in the con-

text of gelation, and the random graphs are of a kind studied in detail by Bollobás and

coauthors [28]. We can therefore play ideas at the level of the coagulation equations (Sm,

Fl) from the literature [156] against techniques from random graphs [28]. This connection

generalises the case mentioned above (Maxwell molecules ↔ sparse Erdős-Réyni Graphs

↔ multiplicative coagulation kernel, see the discussion in Chapter 7). When studying this

more general setting in Chapter 7, we will introduce the concept of a bilinear coagulation

system, where this property is made an axiom and sufficient conditions are imposed to

prevent pathologies, and study results in this generality. All the study of the equations

written above can be recovered from this study as a special case.

Recovering the Boltzmann Equation from the Coagulation Equation Having

discussed the processes at the level of the coagulation systems, let us conclude by returning

to the Boltzmann equation. For any measure λ on S integrating π1, we can define a

measure Fλ on Rd by ‘forgetting’ the cluster structure and extracting the most recent

velocities v(x) = (v1(x), ..., vm(x)(x)) from each cluster x. Formally, for a bounded function

f : Rd → R, we set

F*f(x) :=

m(x)"

i=1

f(vi(x))

and define a measure Fλ by specifying, for all bounded f : Rd → R,

〈f,Fλ〉 =
!

S

(F*f)(x)λ(dx)

which produces a finite measure, since |(F*f)(x)| ≤ ‖f‖∞π1(x), which is integrable by

hypothesis. To link the coagulations (Sm, Fl) to (BE), let us observe that whenever x, y

merge to form z via a collision with velocities v, v∗, we have

F*f(z)− F*f(x)− F*f(y) = f(v′) + f(v′∗)− f(v)− f(v∗)

since only the two most recent velocities v, v∗ have been replaced by v′, v′∗. It follows that,

formally,

〈F*f, L(λ)〉 = 〈f,Q(Fλ)〉.

We might therefore hope that, for a solution λt to the coagulation equation, we recover

the corresponding solution µt to (BE) through µt = Fλt. This would then amount to a

much finer sum than (1.37), since we break up the sum, when adding a new branch at
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t1 < t not only over the past history (on [0, t1)) but also over the future collision history

(up to time t) of the new particle. We will see that this indeed recovers the spatially

homogeneous Boltzmann equation (BE), but only up to the gelation time tg.

1.2.6 Relaxation to Equilibrium

Let us finally mention that another topic which we will encounter, but to which this

thesis does not contribute, is the speed of relaxation of the kinetic equations and the

particle systems to their equilibria. Having quantitative, rather than qualitative esti-

mates, is important here; we refer to [191, Section 2.5]. As mentioned concerning the

long-time propagation of chaos, Boltzmann acknowledged that the (spatially inhomoge-

neous) Boltzmann equation fails at very large times, depending on N . In particular, the

behaviour of the Boltzmann equation in the limit t → ∞ is irrelevant for a physical (spa-

tially inhomogeneous) system, and what is interesting is to show the Boltzmann equation

is ‘reasonably close to’ equilibrium on time scales t ≤ tN which are short enough for the

Boltzmann equation to remain a good description of the microscopic dynamics for the

physical system, where N is large and fixed.

Relaxation of the Boltzmann and Landau Equation We already mentioned, in

the context of the H-Theorem (H) above, a long series of works regarding the convergence

to equilibrium via functional inequalities which relate the entropy and the entropy dis-

sipation, with positive results obtained by Toscani and Villani [181, 182, 190]; a similar

programme was carried out for the Landau equation by Desvillettes and Villani [59]. An

entirely different approach is based on finding a spectral gap for the linearised operator

2Q(·, γ), for γ ∈ S the standard Gaussian (1.23). This programme goes back to Carlen

and co-authors in the case of Maxwell molecules, where they showed that the exponen-

tial rate of convergence is determined by the spectral gap in the (much smaller) space

L2(Rd, γ−1(v)dv) in the case of cutoff Maxwell molecules (GMM). For the case of hard

spheres and cutoff hard potentials (HS, CHPK), Grad [102] proved the existence of a

spectral gap, and the same for soft potentials by Caflisch [35] and Golse and Poupaud

[100]. Arkeryd [12] proved exponential convergence with non-constructive constants, and

Mouhot [148] proved a constructive argument, with the rate again determined by the

spectral gap in L2(Rd, γ−1(v)dv). These results were extended for (GMM, tMM, HS) to

a differential stability results by Mischler and Mouhot [142], which (in the case (HS)) lie

at the heart of our long-time propagation of chaos results in Chapter 3 and are recalled

in Section 3.2. In the case of hard potentials, exponential convergence to equilibrium was

proven for the Boltzmann equation (BE) by Tristani [183], adapting the ideas of [148] to

the noncutoff case, and for the Landau equation by Carrapatoso [41].
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Relaxation for the Particle System A different problem related to relaxation is to

ask for the relaxation of the many-particle process in SN to its equilibrium, which is

the uniform distribution (Haussdorf measure) on this space, and further to quantify the

dependence of these relaxation rates on the number of particles N , an idea which goes

back to Kac’s original work [122]. For each fixed N , the chain is dissipative, and Kac

proposed that N -uniform relaxation rates for the Kac process could be propagated to

obtain relaxation rates for the Boltzmann equation in the limit N → ∞. Janvresse [118]

proved the existence of an N -uniform spectral gap in L2(SN) for Kac’s caricature in d = 1,

see also [36, 39, 137] and [40] for the physical (energy and momentum conserving) systems

which we consider here; we will recall this result in Proposition 3.27 when discussing

the long-time behaviour of the Kac process. However, this itself is not sufficient to get

relaxation on N -uniform time scales, since we must start from initial densities FN which

scale like ‖FN‖L2(SN ) ≥ CN for chaotic initial data, and so one would still need t ∼ N

to get good convergence. Carlen and coauthors [38] proposed the use of relative entropy,

and functional inequalities for entropy and entropy dissipation at the level of the Markov

chains, which have better tensorisation properties, and which were explored in [37], but

the best linear inequality between entropy productio and entropy has a constant on the

order O(N−1), [190, 67, 68, 69], which matches the absence of a linear inequality in

Cercignani’s conjecture. Mischler and Mouhot [142] proved the N -uniform relaxation for

the cases (GMM, tMM, HS) measured in Wasserstein distances on P(SN) with the correct

tensorisation properties, with explicit and N -uniform estimates but a very slow rate in t

[142, Theorems 5.2, 6.2], and Rousset [167] proved N -uniform convergence in Wasserstein

distance, with arbitrarily fast polynomial rates in t.

Let us reiterate that this thesis makes no contribution to the study of these problems,

but that we will encounter the problems of relaxation (both for the particle system and

the kinetic equation) in Chapter 3 in deriving the propagation of chaos in large time.

We remarked in Subsection 1.2.1 above that one can seek either pointwise-in-time or

pathwise, locally-uniform in time estimates for chaoticity; finding good time-dependence

for these results will strongly use the differential stability. The proof of the local uniform

estimate in particular uses the full strength of exponential convergence to keep a small

loss when ‘bootstrapping’ to make the time-dependence as slow as one likes (see Theorem

1). However, we will also see that the relaxation of the particle system forbids improving

the local uniform estimate to a uniform estimate, no matter how slow the relaxation.
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1.3 Statements of Results

We now summarise our results.

1. Hard Spheres We recall that it is known that there is a unique energy-conserving

solution to (BE) starting at any µ0 ∈ S in the case of hard spheres (HS), which we write

as (φt(µ0))t≥0. In this case, our result is as follows.

Theorem 1. Let (µN
t )t≥0 ⊂ S be a N-particle Kac process for the hard spheres kernel

(HS) and µ0 ∈ S, with deterministic initial data µN
0 having a pth moment bound, p > 2.

Then, for some metric W1 on S, which is equivalent to weak convergence, we have the

following convergences.

i). We have convergence for fixed times, uniformly in t ≥ 0:

sup
t≥0

E
G
W1(µ

N
t ,φt(µ0))

H
≤ C

-
N−ε1 +W1(µ

N
0 , µ0)

ε2
.

where ε1, ε2 > 0, ε1 <
1
d
depend on p, and C depends on the pth moments of µN

0 , µ0.

By making p large enough, the exponent ε1 can be made arbitrarily close to the

optimal value 1
d
.

ii). We have uniform convergence on compact time intervals in probability: for any

time-horizon tfin ∈ [0,∞), we also have

E
2
sup
t≤tfin

W1(µ
N
t ,φt(µ0))

3
≤ C((1 + tfin)

αN−ε1 +W1(µ
N
0 , µ0)

ε2)

where, again, the exponents α, ε1, ε2 > 0 depend only on p, and C depends on p and

on the pth moments of the initial data µN
0 , µ0. Further, by making p large, α can be

made arbitrarily small, while keeping ε1 bounded away from 0. However, α cannot

be taken to be 0, so the result would be false with tfin = ∞.

iii). We have the uniform-in-time Hölder stability of the solutions φt(µ) in the metric W1:

for any p > 2 there exists ζ > 0 such that, whenever µ, ν have finite pth moments,

we have

sup
t≥0

W1 (φt(µ),φt(ν)) ≤ CW1 (µ, ν)
ζ

for some ζ > 0 depending only on p, with C depending on the pth moments of µ, ν.

2. The Boltzmann Equation with Noncutoff Hard Potentials Our second main

result concerns the Boltzmann equation in the case of noncutoff hard potentials (NCHP).



50 1.3. STATEMENTS OF RESULTS

Theorem 2. Let B be a kernel of the form (NCHP). Then for p < ∞ sufficiently large,

depending only on B, and K ∈ [K0(B, p),∞] sufficiently large, depending only on B, p,

and for a semimetric wp on the space of measures with p + 2 moments, defined as the

optimal transportation cost for a particular function dp : Rd × Rd → R and equivalent to

weak convergence plus convergence of the (p+ 2)th moment, the following holds.

i). The energy-conserving solutions (µt)t≥0 starting at any µ0 ∈ S are exactly µt =

Law(Vt), where (Vt)t≥0 is a Boltzmann process started from V0 with Law(V0) = µ0

and such that Law(Vt) ∈ S for all t ≥ 0.

ii). For any two solutions (µt)t≥0, (νt)t≥0 ⊂ S to (BE, BEK) respectively, such that µ0, ν0

have p+ 2, l = p+ 2 + γ moments, there exists a coupling (Vt, Ṽt)t≥0 of Boltzmann

processes, with Law(Vt) = µt,Law(Ṽt) = νt, such that

E
?
dp(Vt, Ṽt)

A
≤ C1e

C1t
-
wp(µ0, ν0) + C2tK

−α
.

for some C1, depending on B and on the pth moments of µ0, ν0, some C2 depending

on the lth moment of ν0, and some α > 0 depending only on B. In the case K = ∞
of coupling noncutoff solutions, we can relax the requirement on ν0 to allow only

p+ 2 moments.

iii). As a consequence of the previous point, the noncutoff Boltzmann equation has a

unique energy conserving solution (µt)t≥0 as soon as the initial data µ0 has p + 2

moments, which is the limit in wp of the solutions to the cutoff equation (BEK),

with an explicit rate if the initial data have l moments. Moreover, the solution

map φt : Sp+2 → Sp+2 corresponding to the Boltzmann equation (BE) is Lipschitz-

continuous with respect to the semimetric wp on sets with bounded pth moments.

iv). Concerning the Kac process, we have the following convergence of cutoff processes

to a noncutoff process. For some sufficiently large 2 + p < q < ∞ depending on p,

if (µN
t )t≥0 ⊂ S and is a (noncutoff) Kac process on N particles and µN,K

0 ∈ S are

given, with an almost sure moment bound on the qth moments of both µN
0 , µ

N,K
0 , then

(µN
t )t≥0 can be approximated, uniformly in N and pathwise-uniformly on compact

time intervals with respect to the cost wp, by cutoff Kac processes (µN,K
t )t≥0 starting

at µN,K
0 , with an error rate, for any tfin < ∞,

E
2
sup
t≤tfin

wp(µ
N
t , µ

N,K
t )

3
≤ CeCtfin

'
wp(µ

N
0 , µ

N,K
0 ) +K−α +N−1/2

(

where α > 0 is as above, where C depends on the bound for the qth moments of

µN
0 , µ

N,K
0 . The same holds if K = ∞, now omitting the second term, so that

noncutoff Kac processes can be coupled in the same way.
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v). Finally, if (µN
t )t≥0 is above and µ0 ∈ S has p+2 moments, we have the convergence,

pathwise-uniformly on compact time intervals in the cost wp,

E
2
sup
t≤tfin

wp(µ
N
t ,φt(µ0))

3
≤ CeCtfin

-
(logN)−α + E

G
wp(µ

N
0 , µ0)

H.

where φt(µ0) is the unique energy-conserving solution to (BE), as in point ii), for

a new exponent α > 0 depending on B, and where C depends on the qth moment

bound for µN
0 and the pth moment bound for µ0.

3. The Landau Equation with Hard Potentials Our next result adapts points

i-iii). of the previous result to the case of the Landau equation with hard potentials

in dimension d = 3. We recall that a Landau processes is any solution (Vt)t≥0 to the

stochastic differential equation (stLE).

Theorem 3. Fix γ ∈ (0, 1], and consider the corresponding Landau equation (LE) in

dimension d = 3. For all p > 2, there exists a semimetric wp,1 on Sp(R3), defined as the

optimal transport cost for a well-chosen function dp,1 : R3 × R3 → [0,∞), and such that

wp,1 is equivalent to weak convergence plus convergence of the pth moment, such that the

following hold.

i). If µ ∈ L1
loc([0,∞),S2+γ(R3)) is a solution to the Landau equation (LE), then there

exists a Landau process (Vt)t≥0 with µt = Law(Vt) for all t ≥ 0. Conversely, if

(Vt)t≥0 is a Landau process such that µt = Law(Vt) has µ ∈ L1
loc([0,∞),S2+γ(R3)),

then (µt)t≥0 is a solution to the Landau equation (LE).

ii). If (µt)t≥0, (νt)t≥0 are two solutions to (LE) such that µ0, ν0 both have finite pth mo-

ments, p > 2, then there exists a coupling (Vt, Ṽt)t≥0 of Landau processes, with

Law(Vt) = µt,Law(Ṽt) = νt satisfying, for all t ≥ 0,

E
?
dp,1(Vt, Ṽt)

A
≤ eC(1+t)wp,1(µ0, ν0)

for some C depending on the pth moments of µ0, ν0.

iii). As a consequence of the previous point, the Landau equation has a unique solution

(µt)t≥0 as soon as the initial data µ0 has any p > 2 moments, and the solution map

φL
t : Sp(R3) → Sp(R3) corresponding to (LE) is Lipschitz continuous with respect to

the semimetric wp,1 on sets with bounded pth moments.

We also prove the following, which are specific to the Landau case.

iv). For any µ0 ∈ S(R3), there exists a Landau process (Vt)t≥0 with µ0 = Law(V0) such

that µt = Law(Vt) satisfies µ ∈ L1
loc([0,∞),S2+γ(R3)). In particular, (µt)t≥0 is a

weak solution to (LE) starting at µ0.
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v). Let (µt)t≥0 ⊂ S(R3) be any weak solution to (LE). Then, for all t > 0, µt admits an

analytic density ft with finite entropy, and all weighted Sobolev norms are bounded,

uniformly away from t = 0: for any k, s ≥ 0 and t0 > 0,

sup
t≥t0

!

R3

|Dkft|2(v)(1 + |v|s)dv < ∞

which implies that ft belongs to the class of Schwarz functions: the derivatives of

any order decay more quickly than any inverse polynomial.

4. Large Deviations of the Kac Process Chapter 6 is dedicated to the investigation

of dynamical large deviations. We summarise as follows.

Theorem 4. Fix a time horizon tfin ∈ (0,∞), and consider the Kac processes µN
• =

(µN
t )0≤t≤tfin with their associated empirical fluxes wN = wN

tfin
, with kernel either regularised

hard spheres (rHS) or cutoff Maxwell molecules (GMM), where particles are initially sam-

pled independently from µ*
0 ∈ S. Under general hypotheses on µ*

0, which includes the case

where µ*
0 = γ is the equilibrium distribution, we identify a function I, analagous to those

found in the literature and which vanishes if, and only if, µ• is a solution to the Boltzmann

equation, starting at µ*
0, and

w(dt, dv, dv∗, dσ) = B(v − v∗, σ)µt(dv)µt(dv∗)dσ.

For this function I, and for suitable topological spaces D on paths and M(E) on fluxes,

we have the following properties.

i). For any closed set A of D ×M(E), we have

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ A

.
≤ − inf {I(µ•, w) : (µ•, w) ∈ A} .

ii). For any open set U of D ×M(E), we have

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ − inf {I(µ•, w) : (µ•, w) ∈ U ∩R}

where R = {(µ•, w) ∈ D ×M(E) : 〈1 + |v|2 + |v∗|2, w〉 < ∞}.

iii). However, the previous item is false without the restriction to R; energy non-conserving

solutions to the Boltzmann equation appear as large deviations, but strictly more

rarely than predicted by the candidate rate function I.

iv). In the case µ*
0 = γ, the candidate rate function I is symmetric under a time-

reversal on R, from which we recover the first part of the Boltzmann H-Theorem:

if (µt)0≤t≤tfin is a solution to the Boltzmann equation with µ• ∈ L1([0, tfin],S3) such

that each µt has a nonzero density ft > 0, then

H(µtfin |γ) +
! tfin

0

D(µs)ds = H(µ0|γ)

where D(µs) = D(fs) ≥ 0 is the entropy dissipation.
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5. Interaction Clusters Our final result concerns the interaction clusters for the Kac

process and their limiting behaviour.

Theorem 5. Consider the stochastic coagulants λN
t corresponding to Kac process µN

t for

quadratic kernels (Qa,b). Let us suppose that the initial data µN
0 are such that µN

0 → µ0

weakly in probability and 〈|v|4, µN
0 〉 → 〈|v|4, µ0〉 in probability, for some µ0 ∈ S6 which

is symmetric under the pushforward by v /→ −v. We consider (Fl) on a metric space S

to be specified, such that x ∈ S contains all the information of the collision history (see

Fig. 1.3) and form λ0 by pushing µ0 forward by the map taking v to a single particle with

velocity v and no collision history. Then the following hold.

i). The stochastic coagulants λN
t converge to the unique solution (λt)t≥0 to the Flory-type

equation (Fl) in a metric inducing the weak topology, uniformly in time. Moreover, if

we let x1
t be the largest cluster by particle number in λN

t and set gNt = N−1(πi(x
1
t ))

d+2
i=1

then gNt → gt in probability, uniformly in time, where gt = (Mt, Et, 0) is the mass,

energy and momentum of the gel gt = (〈πi,λ0 − λt〉)d+2
i=1 .

ii). The limiting equation undergoes a phase transition at the gelation time

tg =
'
a+ 2b+

I
(a+ 2b)2 + 4b2(Λ4(µ0)− 1)

(−1

.

That is, for t ≤ tg, we have Mt = Et = 0, but Mt > 0, Et > 0. Moreover, except

in the cases where b = 0 (Maxwell molecules) or µ0(|v| = 1) = 1, we have that the

gelation time is strictly smaller than the mean free time, and in the special cases we

have equality.

iii). At the level of the particle system, the previous two points imply that π1(x
1
t ) is o(N)

with high probability if t ≤ tg, and on the order N with high probability if t > tg.

iv). The phase transition is continuous and first order. That is, Mt, Et are continuous at

t = tg, but have a strictly positive right-derivative at the critical time. Furthermore,

except in the same special cases as item ii), we have limt↓tg
Et

Mt
> 1, so that the

formation of a gel is driven by the fast particles.

v). The second moment

E(t) = 〈(π1 + π2)
2,λt〉

is finite and continuous, except for a divergence at the critical time t = tg, and

E(t) → ∞ as t → tg. In particular, the formation of a giant component exactly

coincides with the unique divergence of the second moment.

vi). The limit solution λt is supported on x ∈ S which encode interaction histories

without cycles.
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vii). Define, for t ≥ 0, a measure µt on Rd by removing the structure from each cluster:

µt = Fλt.

Then on [0, tg], µt is an energy-conserving solution to the Boltzmann equation, but

for t > tg, the total mass µt(Rd) < 1 and µt is not even a probability measure.

Moreover, aside from items vi)-vii), the above properties all generalise to coagulation

equations with the bilinear form we derived above.

1.4 Outline of the Thesis

We conclude with an outline of the thesis. We will make the specifications relevant for

the declaration here.

ii). Chapter 2 is a ‘Technical Toolbox’ in which we review some concepts and results of

frequent use. We introduce the definitions of the distances on measures which we

will use in the theorems above and give a careful study of Kac’s notion of chaoticity.

We also state and prove several results on moment estimates for both the Kac

process and the kinetic equations. Since this is a review chapter, almost none of the

content is novel or due to the author (the definitions of some ‘tailor made’ optimal

transport problems wp, wp,ε, and Proposition 2.10 iv).

iii). Chapter 3 is dedicated to the proof of Theorem 1, and corresponds to the paper

[111] by the author. The argument is based on combining some ideas of the work

of Mischler and Mouhot [142] with some pathwise techniques of Norris [157].

The idea of using stability estimates in a pathwise sense to study the Kac process was

first investigated by the author for the Part III Essay submitted to the University of

Cambridge for the Master of Mathematics Degree in 2017, which proved versions of

items i-ii) with worse dependence in N and in the time horizon tfin in item ii), and

requiring µ0 = µN
0 . The work presented in this thesis builds on that previous work

but was all developed subsequently, which required incorporating some more precise

ideas to obtain the (almost sharp) asymptotics in the N, tfin dependencies presented

here, and to include item iii) which allows any µ0. As a result of the incorporation of

these new ideas, there is negligible overlap between the work previously submitted

and this current thesis.

iv). Chapter 4 studies the Boltzmann equation and Kac process in the case of noncutoff

hard potentials (NCHP) to prove Theorem 2. The key point is the application of a

Tanaka coupling in a well-chosen distance produces an advantageous cancellation,

either at the level of Boltzmann processes or at the level of the many-particle system.
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This chapter corresponds to the paper [112] by the author, but has been refined and

extended for this thesis.

v). Chapter 5 continues with the ideas of Chapter 4, now in the context of the hard-

potential Landau equation to prove Theorem 3. The key idea remains the same,

although we now work only with Landau processes, and substantial further refine-

ment is possible, since we work with a differential operator LL rather than the

pseudodifferential operator LB, and we obtain some further applications which are

specific to the Landau equation. This chapter is based on the work [90] of the author

jointly with Prof. Nicolas Fournier, and the parts of this paper corresponding to

this chapter were all the result of collaboration between the authors. Some of the

presentation has been changed, to fit the overall probabilistic theme of the thesis (for

instance, working with stochastic processes, rather than their associated differential

equations).

vi). Chapter 6 considers the dynamical large deviations of the Kac process, leading to

a precise statement and proof of Theorem 4. This chapter corresponds closely to

the paper [113] by the author, although some elements have been added since the

paper appeared.

vii). Chapter 7 is dedicated to the study of bilinear coagulations equations in general,

which generalise the prototype Flory equation (Fl) above. We carefully define bi-

linear coagulation equations and the associated stochastic processes, and state and

prove results which generalise Theorem 5. We also show how Theorem 5 is then

obtained as an application of these results. This work was originally undertaken in

collaboration with Robert Patterson [114], to which both of the authors contributed.

As far as possible, we have tried to keep each of Chapters 3 - 7 self-contained, so that these

chapters may be read largely independently of each other; results which are (heavily) used

in more than one chapter are introduced in sufficient generality in Chapter 2.

1.4.1 Some Approaches of this Thesis

Top-Down vs Bottom Up Let us remark on the two flavours of approaches which

run through the works discussed above, and correspondingly through this thesis. When

considering results on the Kac process and the Boltzmann equation, it is either possible

to start with results on the Boltzmann equation in cases where its properties are well-

understood, and apply them to the Kac process, or to start with properties at the level

of the Kac processes (µN
t )t≥0, and carefully propagate them to the Boltzmann equation,

which is appropriate in cases where the desired property for the Boltzmann equation is not

well-understood and may be much harder to prove than for the Kac process. We borrow

some terminology from the introduction of [142], and call these ‘top down’ or ‘bottom up’
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approaches respectively. The latter was the approach of Kac [122] in proposing to study

relaxation of the Boltzmann equation through the particle system, see the discussion in

Section 1.2.6 above, at a time when it was plausible that the (linear, high-dimensional)

Markov process would be easier to study than the (nonlinear, infinite-dimensional) kinetic

differential equation. To some extent, the opposite has been true; many works were

proven on the relaxation of the Boltzmann equation, in particular, before the N -uniform

relaxation rates were obtained by Mischler and Mouhot [142]. Let us also mention that

the same paper [142] adopted a ‘top-down’ approach to the propagation of chaos, which

used functional properties of the semigroup φt associated to the Boltzmann equation to

obtain propagation of chaos.

We will see both approaches in this thesis. Theorem 1, corresponding to Chapter 3,

explores the ‘top-down’ ideas of [142] in a pathwise framework. However, we will also

see some ‘bottom up’ approaches, notably in Chapter 4 when discussing stability - it is

(much) easier to define a coupling at the level of the Kac process than at the level of

the Boltzmann equation, and this is the original proof given by the author in [112] -

and in Chapter 6, where our analysis of large deviations leads to a rederivation and a

probabilistic meaning of (H). In Chapter 7, when we analyse coagulation equations with

the same bilinear form as derived for the Kac interaction clusters above, it is particularly

profitable to play these two types of idea against each other, which allows us to play ideas

from the literature concerning coagulation equations [156] against ideas from the theory

of random graphs [28].

Pathwise Analysis Let us also remark that the calculations of this thesis are almost

exclusively based on pathwise analysis, working fairly directly with µN
t ,VN

t , rather than

with their laws LN
t = Law(VN

t ) and “analytic co-travellers” (transition probabilities,

entropy and entropy dissipation of LN
t , ....). To some extent, the latter can always be

recovered, since the law Law((VN
t )t≥0) contains each LN

t as its single-time marginals, but

the inverse is definitely false: when we study local uniform estimates

P
6
sup
t≤tfin

W1,1(µ
N
t , µt) < ε

7

in Theorems 1, 2 in the context of propagation of chaos, and in Theorem 4 in the context

of large deviations, we cannot recover the desired estimates (just) from knowing all single-

time marginals (LN
t )t≥0.



Chapter 2

Technical Toolbox

We will now give an introduction to some technical tools, which will be in frequent use

throughout the thesis; except where stated otherwise, none of this is new. Since variants

of many of the same ideas appear repeatedly, we will will introduce all of the concepts

together to avoid repeated and very similar digressions to cover the different cases in each

chapter.

This chapter is structured as follows.

i). First, Section 2.1 introduces some spaces of measures and probability measures,

as well as several families of Wasserstein-type distances on probability measures.

We will discuss the relationships between the distances, and some (quantitative)

equivalences.

ii). In Section 2.2 we carefully formulate Boltzmann’s property of chaoticity described

in the introduction. We will show that chaoticity follows from the convergence of

the empirical measure, which justifies the description of Theorems x, y as proving

the propagation of chaos for the respective Kac models.

iii). Section 2.3 introduces a natural scheme for the initial values of the Kac process with

normalised energy and momentum.

iv). Section 2.4 introduces two equivalent parameterisations of possible jumps (v, v∗) /→
(v′, v′∗).

v). In Section 2.5, we review some moment estimates for both the Boltzmann and

Landau equations, and for Kac’s interacting particle system. These results are

(largely) classical, going back as far as Pozvner [163], Elmroth [72] and Desvillettes

[53].

57
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2.1 Distances on Probability Measures

For the quantitative results throughout this thesis, we rely on good choices of metrics. In

Chapter 3, the choice of metric will be important for the style of proof; in Chapters 4, 5,

we will rely crucially on a ‘tailor-made’ family of optimal transport costs which allow us

to exploit some cancellation.

2.1.1 Spaces of Probability Measures

Let us first recall our spaces of measures and probability measures. We define, for any

topological space E, the space P(E) of Borel probability measures on E, and M(E)

for the space of finite, positive Borel measures. In the case E = Rd and for p > 0, we

introduce the notation

Λp(µ) :=

!

R3

|v|pµ(dv) = 〈|v|p, µ〉 (2.1)

and write

Pp(Rd) =
)
µ ∈ P(Rd) : Λp(µ) < ∞

*
. (2.2)

In Chapters 3, 4, we will work with spaces of probability measures µ ∈ P2(Rd) with

prescribed energy and momentum: we define

S :=
)
µ ∈ P2(Rd) : 〈v, µ〉 = 0, Λ2(µ) = 1

*
(2.3)

and, for p ≥ 2, we define

Sp := S ∩ Pp(Rd). (2.4)

We will frequently encounter expressions with moments of two measures µ, ν ∈ P(Rd). In

this case, we write

Λp(µ, ν) := max (Λp(µ),Λp(ν)) . (2.5)

2.1.2 Metrics Defined by Duality

In Chapter 3, we will work with the following family of metrics defined by duality against

Hölder-continuous test functions of quadratic growth. For f : Rd → R, we define Jf(v) =
f(v)/(1 + |v|2), and the γ-Hölder norm

‖f‖0,γ := max

6
sup
v

|f |(v), sup
v ∕=w

|f(v)− f(w)|
|v − w|γ

7
. (2.6)

We write Aγ for the space of weighted γ-Hölder functions:

Aγ :=
K
f : Rd → R : ‖f̂‖0,γ ≤ 1

L
(2.7)
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and define the weighted Wasserstein metric of type γ by the duality

Wγ(µ, ν) := sup
f∈Aγ

|〈f, µ− ν〉|. (2.8)

In Chapters 6, 7, we will use similarly defined metrics on measures. Given a complete

metric space (S, d), we write ρ1 for the metric on finite measures given by

ρ1(w,w
′) = sup

M
〈g, w − w′〉 : sup

S
|g| ≤ 1, sup

p,q∈S,p ∕=q

|g(p)− g(q)|
d(p, q)

≤ 1

N
. (2.9)

Let us remark that this generates the topology of weak convergence on M(S). Further,

if one restricts to subspaces of the form {µ ∈ M(S) : 〈ϕ, µ〉 ≤ a} for a ≥ 0 and some

ϕ : S → (0,∞) with compact sublevel sets, then the weak topology coincides with the

vague topology induced by convergence against test functions in Cc(S).

2.1.3 Optimal Transport Costs

Another way of measuring the distances between different probability measures is via

optimal transportation problems, which are naturally well-adapted to the coupling ar-

guments we will use in Chapters 4, 5, but are not necessarily metrics. We will use the

following family of transportation costs to measure the distance between two solutions.

For any µ, ν ∈ P(Rd) we write Π(µ, ν) for the set of couplings

Π(µ, ν) =
)
π ∈ P(Rd × Rd) : π has marginals µ and ν

*
.

For p ≥ 0, and ε ≥ 0, we define the functions on Rd × Rd

dp,ε(v, ṽ) := (1 + |v|p + |ṽ|p)ϕε(|v − ṽ|2); ϕε(r) :=
r

1 + εr
. (2.10)

Let us observe that ϕ′
ε(r) = (1 + εr)−2 and ϕ′′

ε(r) = −2ε(1 + εr)−3,

rϕ′
ε(r) ≤ ϕε(r), 0 ≤ ϕ′

ε(r) ≤ 1 and ϕ′′
ε(r) ≤ 0. (2.11)

When ε = 0, we will drop it from the notation and write dp := dp,0. In this case, dp has

the upper bound growth

dp(v, ṽ) ≤ C(1 + |v|p+2 + |ṽ|p+2) (2.12)

and we define the corresponding optimal transport cost, for µ, ν ∈ Pp+2(Rd),

wp(µ, ν) = wp,0(µ, ν) := inf

M!

Rd×Rd

dp(v, ṽ)π(dv, dṽ) : π ∈ Π(µ, ν)

N
. (2.13)

In the cases ε > 0, we have the upper bound

dp,ε(v, ṽ) ≤ Cε(1 + |v|p + |ṽ|p) (2.14)



60 2.1. DISTANCES ON PROBABILITY MEASURES

and so we can define the optimal transport cost for µ, ν ∈ Pp(Rd):

wp,ε(µ, ν) := inf

M!

R3×R3

dp,ε(v, ṽ)π(dv, dṽ) : π ∈ Π(µ, ν)

N
. (2.15)

We will usually work with either wp,0 or wp,1; for other values of ε > 0, we note that

min(1, 1/ε)dp,1 ≤ dp,ε ≤ max(1, 1/ε)dp,1, which gives the bound for the costs

min

6
1,

1

ε

7
wp,1(µ, ν) ≤ wp,ε(µ, ν) ≤ max

6
1,

1

ε

7
wp,1(µ, ν). (2.16)

In either case ε = 0, ε > 0, it is straightforward to see that there exists a coupling attaining

the infimum. Moreover, wp,ε are always nonnegative, symmetric, and using the existence

of a minimiser, wp,ε(µ, ν) = 0 if and only if µ = ν.

However, we remark that the functions dp,ε are not, in general metrics, and so wp,ε do

not have a triangle inequality. Instead, for the case ε = 0, we note that the function

δp(v, w) = |(1 + |v|p)1/2v − (1 + |w|p)1/2w| defines a metric, and that dp/δ
2
p is bounded

above, and away from 0; in particular, there exists a constant C = Cp such that

dp(v, y) ≤ C(dp(v, w) + dp(w, y)) (2.17)

for all v, w, y ∈ Rd. For the case ε > 0, we observe that 1
2
(ε−1 ∧ r) ≤ ϕε(r) ≤ (ε−1 ∧ r),

and one can prove a bound equivalent to (2.17) for (1 + |v|p + |ṽ|p)(|v − ṽ|2 ∧ ε−1) by

considering, case-by-case, which of |v − w|2, |w − y|2, |v − y|2 are less than ε−1. All

together, we find that, for a constant C = Cp,ε,

dp,ε(v, y) ≤ C(dp,ε(v, w) + dp,ε(w, y)) (2.18)

for all v, w, y, and integrating, we find that the optimal transportation costs wp, wp,ε satisfy

relaxed triangle inequalities :

wp,ε(µ, ν) ≤ Cp,e[wp,ε(µ,λ) + wp,ε(λ, ν)] (2.19)

for all µ, ν,λ in Pp+2(Rd) if ε = 0, and for all for all µ, ν,λ in Pp(Rd) if ε > 0. The optimal

transport costs wp,ε are therefore semimetrics ; this failure to be a true metric will not

cause any problems in the sequel.

This form of this optimal transportation cost is key to the arguments of Chapters 4, 5; the

key calculations rely on a Povzner effect of the prefactor (1 + |v|p + |ṽ|p), which is similar

to the one we will see in deriving moment estimates in Section 2.5. In the Landau case

in Chapter 5, we will use the cost functions wp,1 rather than wp to minimise the number

of moments required, since these are defined with only p rather than p+2 moments, and

use wp,ε as an intermediate step.

Let us also mention the Wassersteinp metrics Wp, p ≥ 1, which provide useful benchmarks
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for the strength of our metrics, and which we will also use in discussing explicit chaoticity

estimates. For p ≥ 1 and µ, ν ∈ Pp(Rd), the Wassersteinp-distance is given by

Wp(µ, ν) := inf

M!

Rd×Rd

|v − ṽ|pπ(dv, dṽ) : π ∈ Π(µ, ν)

N1/p

(2.20)

as well as

W1,1(µ, ν) := inf

M!

Rd×Rd

1 ∧ |v − ṽ|π(dv, dṽ) : π ∈ Π(µ, ν)

N
. (2.21)

In the context of chaoticity, we will similarly discuss analogously defined metrics W1,1,El

for a general metric space E and l ∈ N, replacing |v − ṽ| with the metric of El.

2.1.4 Relationships Between Distances

Let us now examine some relationships between the different distances. In what follows,

C will denote a constant, allowed to change from line to line, depending on p.

1. W1 and Wγ: Kantorovich-Wasserstein Duality. In the case p = 1, the met-

rics W1 is known as the Monge-Kantorovich-Wasserstein distance, and the well-known

Kantorovich-Wasserstein duality [191, Example 5.16] gives

W1(µ, ν) = sup {〈f, µ− ν〉 : for all v, w, |f(v)− f(w)| ≤ |v − w|} ; (2.22)

W1,1(µ, ν) = sup {〈f, µ− ν〉 : for all v, w, |f(v)− f(w)| ≤ 1 ∧ |v − w|} (2.23)

which produces

1

2
sup{〈f, µ− ν〉 : ‖f‖0,1 ≤ 1} ≤ W1,1 (µ, ν) ≤ sup{〈f, µ− ν〉 : ‖f‖0,1 ≤ 1}. (2.24)

The supremum occurring here is exactly W1(µ/(1 + |v|2), ν/(1 + |v|2)), and this recovers

the metric ρ1 in the case E = Rd with the Euclidean metric. Without the boundedness

condition, the same duality cited above gives

W1(µ, ν) = sup

M
〈f, µ− ν〉 : sup

v ∕=w

|f(v)− f(w)|
|v − w| ≤ 1

N
. (2.25)

Further, Wγ, 0 < γ ≤ 1 and W1,W2 all generate the topology of weak convergence on S.

Let us mention some quantitative comparisons between and within these classes. For all

f , we have the bound ‖f‖0,γ ≤ 21−γ‖f‖0,1, which leads to the comparison W1 ≤ 21−γWγ,

while approximating f ∈ Aγ by f ε ∈ cεA1 for some cε → ∞ leads to the bound Wγ ≤
CγW

γ
1 .



62 2.1. DISTANCES ON PROBABILITY MEASURES

We now compare W1,1 and W1. On the one hand, if ‖f‖0,1 ≤ 1, then it is straightforward

to see that ‖ Jf‖0,1 ≤ c for some absolute constant c, so the duality (2.23) implies that

W1,1 ≤ cW1. In the other direction, if ‖f‖0,1 ≤ 1 and π ∈ Π(µ, ν), then we write

〈(1 + |v|2)f, µ− ν〉 =
!

Rd×Rd

((1 + |v|2)f(v)− (1 + |w|2)f(w))π(dv, dw).

By writing the difference as (|v|2 − |w|2)f(v) + (1 + |w|2)(f(v)− f(w)), we find

|〈(1 + |v|2)f, µ− ν〉| ≤
!

Rd×Rd

(|v − w|)(|v|+ |w|)π(dv, dw)

+ 2

!

Rd×Rd

(1 ∧ |v − w|)(1 + |w|2)π(dv, dw).
(2.26)

If µ, ν ∈ Sp for some p > 2, then one can interpolate and optimise over f, π to obtain, for

some C = C(p),α = α(p) > 0,

W1(µ, ν) ≤ CΛp(µ, ν)W1,1(µ, ν)
α. (2.27)

2. wp,0 and Wp+2. We first show interpolation between our optimal transportation

costs and the Wassersteinp metrics in the special case ε = 0. For an upper bound, for any

µ, ν ∈ Pp+2(Rd) and π ∈ Π(µ, ν), we have

!

Rd×Rd

dp(v, ṽ)π(dv, dṽ) ≤
6!

Rd×Rd

(1 + |v|p + |ṽ|p)(p+2)/pπ(dv, dṽ)

7p/p+2

· · ·×
6!

Rd×Rd

|v − ṽ|p+2π(dv, dw)

72/p+2

≤ CΛp+2(µ, ν)

6!

Rd×Rd

|v − ṽ|p+2π(dv, dw)

72/p+2

.

If we now take π to be a minimiser for the right-hand side, attaining the infimum in the

optimal transport problem for Wp+2(µ, ν), we conclude that

wp(µ, ν) ≤ CΛp+2(µ, ν)Wp+2(µ, ν)
2/p+2.

On the other hand, the easy inequality |v − ṽ|p+2 ≤ Cdp(v, ṽ) produces Wp+2(µ, ν)
p+2 ≤

wp(µ, ν), and together we conclude

C−1Wp+2(µ, ν)
(p+2) ≤ wp(µ, ν) ≤ CW2

p+2(µ, ν)Λp+2(µ, ν). (2.28)

Further, for any sequence µn, µ ∈ Sp+2, the convergence Wp+2(µ
n, µ) → 0 implies conver-

gence of the moments Λp+2(µ
n) → Λp+2(µ), and so wp,Wp+2 have the same convergent

sequences and generate the same topology on Sp+2.

Let us also record the elementary interpolation estimate, for any p′ > p + 2 and any

µ, ν ∈ Sp′ ,

W2
1 (µ, ν) ≤ wp(µ, ν) ≤ W1(µ, ν)

αΛp′(µ, ν) (2.29)

for some α = α(p, p′) > 0. Indeed, the first inequality follows from wp ≥ W2
2 and the

monotonicity of Wp, and the second follows from an application of the Hölder inequality.
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3. wp and Wγ. Combining the estimates above, if p ≥ 0, p′ > p+ 2 and 0 < γ ≤ 1, we

have the equivalence

Wγ(µ, ν) ≤ CΛp′(µ, ν)wp(µ, ν)
γ/2; wp(µ, ν) ≤ CΛp′(µ, ν)Wγ(µ, ν)

α (2.30)

for some C = C(p, p′),α = α(p, p′).

4. wp,1 and Wp. Let us now repeat these calculations for ε > 0; thanks to (2.16), it is

sufficient to consider the case ε = 1. In this case, we start by noticing that

|v − ṽ|p ≤ C(1 + |v|p + |ṽ|p) |v − ṽ|2
1 + |v − ṽ|2

so that Wp
p ≤ Cwp,1. Moreover, it can be checked that if µn, µ ∈ Pp(Rd) are such that

µn → µ in the weak topology, and in addition Λp(µ
n) → Λp(µ), then wp,1(µ

n, µ) → 0;

see Lemma 5.11 for a very similar proof. It follows that wp,1 and Wp induce the same

topology on Pp(Rd)

2.2 Chaoticity

We next formulate the concept of chaoticity described in the introduction. As well as im-

portant context and a rigorous introduction to this background, this justifies our labelling

of Theorems 1, 2 as chaoticity estimates. We follow [142, Section 1.3].

Let us fix a separable and complete metric space (E, d) and, for N ≥ 2, a probability

measure LN on EN . For each such N , the symmetric group Sym(N) acts on the product

space EN by permuting the indexes

σ(x) := (xσ(1), xσ(2), ..., xσ(N)); σ ∈ Sym(N), x = (x1, . . . , xN) ∈ EN

and we say that LN ∈ P(EN) is symmetric if it is invariant under the action of all such

maps: σ#LN = LN for all σ ∈ Sym(N). We will write θN : EN → P(E) the map

associating to any N -tuple its normalised empirical measure

(x1, . . . , xN) →
1

N

N"

i=1

δxi

and we observe that this is preserved by the action of Sym(N) in the sense that θN ◦σ = θN

for all σ ∈ Sym(N).

For any l ∈ N and N ≥ l, we write Ml : P(EN) → P(El) for the marginal distribution

on the first l factors; that is, Ml(µ) is the pushforward of µ by the natural projection

EN → El, (x1, . . . , xN) → (x1, . . . , xl). We equip El with the metric

dl((v1, . . . , vl), (ṽ1, . . . , ṽl)) :=
l"

i=1

1 ∧ d(vi, ṽi)
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and write W1,1,El for the metric on P(El) defined analagously to (2.21) with this cost

function:

W1,1,El(L,L′) = inf

M!

El×El

dl(v, ṽ)π(dv, dṽ) : π ∈ Π(L,L′)

N
.

As in the previous section, these are metrics, which are equivalent to the weak convergence

of measures on P(El), with the dual formulation

W1,1,El(L,L′) = sup

M!

El

f(V )(L(V )− L′(V ))

N

over all those f : El → R with |f(V ) − f(V ′)| ≤ dl(V, V
′) for all V, V ′. With these

definitions, we make precise the definition of chaoticity. We begin with the following

definition by Kac [122].

Definition 2.2.1 (Finite Dimensional Chaos). Let LN , N ≥ 2 be symmetric laws on E,

and µ ∈ P(E). We say that LN are µ-chaotic if, for all l ≥ 1,

W1,1,El

-
Ml[LN ], µ⊗l

.
→ 0 (2.31)

or equivalently if Ml[LN ] → µ⊗l in the weak topology of P(El).

In this context, one can naturally give a quantitative formulation by giving an upper bound

δN,l for the left-hand side of (2.31). A stronger notion is that of infinite dimensional chaos,

which allows us to take N, l → ∞ simultaneously.

Definition 2.2.2 (Infinite Dimensional Chaos). In the setting of the previous definition,

we say LN are infinite-dimensionally µ-chaotic if

sup
l≤N

2
1

l
W1,1,l

-
Ml[LN ], µ⊗l

.3
→ 0. (2.32)

As in the previous case, one can make this quantitative by finding an upper bound for

the left-hand side. The general result we will use is the following, which is a quantita-

tive version of the well-known equivalence between chaoticity and the convergence of the

empirical measure [104, Section 4], [122, 178], [173, Proposition 2.2].

Proposition 2.1. In the general framework above, suppose that LN are symmetric laws

such that

εN := EVN∼LN

G
W1,1,E(θN(VN), µ)

H
→ 0.

Then LN are chaotic, with an explicit rate

sup
l≤N

2
1

l
W1,1,El

-
Ml[LN ], µ⊗l

.3
≤ 2(εN + δN(µ)) → 0 (2.33)

where δN(µ) is the error with independent samples:

δN(µ) := E
?
W1,1,E

'
µ, θN(5VN)

(A
; 5VN ∼ µ⊗N
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which converges to 0 by the law of large numbers. Conversely, if LN are infinite-dimensionally

µ-chaotic, then

EVN∼LN [W1,1,E(θN(VN), µ)] ≤ δN(µ) +
1

N
W1,1,EN (LN , µ⊗N) → 0.

Remark 2.2 (Rate of convergence of the empirical measures). In the cases where E is

a subset of Rd equipped with the Euclidean distance, one can quantify the rate δN(µ) for

independent sampling, see works by Talagrand [174, 175], Fournier [87] and Norris [157,

Propositions 9.2]. In general, the rate of convergence δN ∼ N−α,α > 0. The best possible

rate of converge in this context for general measures is N−1/d, and it is known that this

rate is achieved as soon as µ has slightly more than d
d−1

moments [87, Theorem 1]. We

will not sketch these arguments, since we will see arguments very similar to those of [157,

Proposition 9.2] in the course of Proposition 3.11 and Theorems 3.1 - 3.2 in Chapter 3.

Application to the Kac Process Before giving the proof of Proposition 2.1, we briefly

remark on how this general framework applies in the case of the Kac process. In this case,

we take E = Rd and are interested in LN
t := Law(VN

t ) for either t = 0, in which case

these requirements give a hypothesis on the initial conditions, or t > 0, and this will be

the conclusion of proving propagation of chaos. Regarding symmetry, this property is

propagated by the dynamics; if the law of the initial data is symmetric, so is the law of

VN
t for all t ≥ 0, reflecting the indistinguishability of the particles. Furthermore, this can

always be imposed with no loss of generality; if the law of VN
0 is not symmetric, form 5VN

0

by randomly permuting the indexes, which does not affect the empirical measure.

Let us also compare the chaoticity results one finds by applying this proposition to The-

orems 3.1, 4.5 to the literature, and our techniques to those of [142], on whose work

we build in Chapter 3. Applying Proposition 2.1 to Theorem 3.1, we find a uniform-in

time chaoticity estimate for (HS) as in [142, Theorem 6.1], but we improve the rate from

(logN)−r to a polynomial estimate N−α, mostly thanks to the estimates of the continuity

of the Boltzmann flow in W1 in Theorem 3.6. Let us mention that, although we use many

of the same ideas, the method of proof is slightly different, see [142, Theorem 3.1]. In

this work, the authors first derive rates for finite-dimensional chaos, and deduce rates for

infinite dimensional chaos via a general result [141, Théorème 2.1]. Following the proof

of this general result, as we did in the proposition above, one uses the finite-dimensional

chaos to deduce the convergence of the empirical measure µN , and that this implies in-

finite dimensional chaos as in the proposition above. Since we prove convergence of the

empirical measure directly, this latter part is subsumed into Theorem 3.1, and we can

proceed directly to infinite-dimensional chaos. In the case (NCHP) in Chapter 4, we find

a rate eCt(logN)−r, r > 0, which is roughly analagous to the rate of the obtained for the

Maxwell Molecule case by Desvillettes and Méléard [55], via a similar method.

We now give the proof of the proposition.
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Proof of Proposition 2.1. For the first implication, we follow [141, Théorème 2.1, Steps

3-4]; the proof is simplified since we already start from the convergence of the empiri-

cal measure. Let us start from a coupling (UN , 5UN) of LN and µ⊗N which minimises

E[W1,1,E(θN(UN), θN( 5UN))] over all such couplings, recalling that θN is the map taking

an N -tuple to its empirical measure. We now define a coupling (VN , 5VN) by sampling uni-

formly from the finite set of 2N -tuples (vN , 5vN) with θN(v
N) = θN(UN), θN(5vN) = θN( 5UN)

and which attain

1

N
dN(v

N , ṽN) = W1,1,E(θN(UN), θN( 5UN)) = W1,1,E(θN(v
N), θN(5vN))

which amounts to choosing reorderings of the indexes of UN , 5UN , uniformly among pairs

attaining the minimum. Since LN is already symmetric, it follows that Law(VN) = LN ,

and similarly Law(5VN) = µ⊗N . We now write

W1,1,E(θN(VN), µ) ≥ W1,1,E(θN(VN), θN(5VN))−W1,1,E(θN(5VN), µ)

by the reverse triangle inequality, so that, taking expectations,

E[W1,1,E(θN(VN), θN(5VN))] ≤ E
G
W1,1,E(θN(VN), µ)

H
+ E

?
W1,1,E(θN(5VN), µ)

A

=: εN + δN(µ).
(2.34)

On the other hand, by construction of (VN , 5VN), the left-hand side is equal to

E[W1,1,E(θN(VN), θN(5VN))] = E
2
1

N
dN(VN , 5VN)

3
≥ 1

N
W1,1,EN (LN , µ⊗N)

where the final bound follows from recalling that Law(VN , 5VN) ∈ Π(LN , µ⊗N). The claim

is now proven in the special case l = N .

To obtain the general case with a maximum over l ≤ N , we fix l ≤ N and write N = ql+r

with 0 ≤ r < l, and observe that q ≥ 1 since N ≥ l. We write

EN = El × ....× El × Er.

Let us now choose a coupling (VN , 5V) attaining the minimum of the optimal transportation

problem for W1,1,EN (LN , µ⊗N), and write VN = (V1, ..., Vq, V0) with V0 ∈ Er and each

Vi ∈ El, and similarly for the blocks of 5V . Since each pair (Vi, Ṽi) gives a coupling of

(Ml[LN ], µ⊗l) and using the decomposition

dN(VN , ṼN) =

q"

i=1

dl(Vi, Ṽi) + dr(V0, Ṽ0)

from which it follows that

1

N
W1,1,EN (LN , µ⊗N) = E

2
1

N
dN(VN , 5VN)

3

=
1

N

q"

i=1

E [dl(Vj, Vj))] +
1

N
E
?
dr(V0, Ṽ0)

A

≥ q

N
W1,1,El(Ml[LN ], µ⊗l).

(2.35)
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Now, we note that the prefactor is q
N

= 1
l
( ql
ql+r

) ≥ 1
2l
since ql ≥ l > r, so we conclude that

1

l
W1,1,El(Mi[LN ], µ⊗l) ≤ 2

N
W1,1,EN (LN , µ⊗N)

uniformly in l ≤ N , and the first implication is proven, to control the difference between

Ll and µ⊗l in terms of εN , δN .

On the other hand, for any coupling (VN , 5VN) of LN and µ⊗N , we have

W1,1,E(θN(VN), µ) ≤ W1,1,E(θN(VN), θN(5VN)) +W1,1,E(θN(5VN), µ)

≤ 1

N
dN(VN , 5VN) +W1,1,E(θN(5VN), µ).

(2.36)

The second term always has expectation δN(µ), for any coupling (VN , 5VN), and taking

the infimum, the first term produces N−1W1,1,EN (LN , µ⊗N). We can therefore control the

convergence of the empirical measures in terms of N−1W1,1,EN (LN , µ⊗N) and δN , so we

are done.

2.3 Initial Data with prescribed Energy and Momen-

tum

In Chapters 3 - 4, we will typically work with Kac processes with a prescribed energy

and momentum, so that the empirical measures take values in the Boltzmann sphere S.
However, in general, empirical measures of independent draws from a base distribution

µ0 do not take values in S, and this can even be an event of probability 0 in the case

when µ0 has a density. We will use the following construction, which produces normalised

initial data with a natural modification of the initial values [157, Proposition 9.3].

Let us fix a µ0 ∈ S, and a probability space (Ω,F,P) on which are defined an infinite

sequence U1, ..UN , . . . from µ0. For each N , we define

UN =
1

N

N"

i=1

Ui; sN :=
1

N

N"

i=1

|Ui − UN |2 (2.37)

and construct VN by setting, if sN > 0

V N
i =

Ui − UN√
sN

; 1 ≤ i ≤ N (2.38)

or choose VN ∈ SN arbitrarily if sN = 0. It follows that VN ∈ SN , or equivalently the

empirical measure µN
0 := N−1

<
i δV N

i
∈ S almost surely. The result we will use is as

follows.

Proposition 2.3. Let µ0 ∈ S and let µN
0 be given by the construction above. If µ0 ∈ Sp

for some p > 2, we have the convergence E[W1(µ
N
0 , µ0)] → 0 with a rate N−α for some

α = α(p, d) > 0, and Λq(µ
N
0 ) → Λq(µ0) for all q ∈ [2, p], almost surely.
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The following holds as a corollary, which will be helpful for constructing approximations

in the context of the Boltzmann equation in Chapter 4.

Corollary 2.4. Fix p ≥ 0, and let µ ∈ Sq for q > p + 2. Then there exists a sequence

µN ∈ SN of discrete approximations to µ such that

wp(µ
N , µ) → 0; Λp′(µ

N) → Λp′(µ) for all p′ ≤ q. (2.39)

This follows immediately using the interpolation from W1 to wp in (2.29); indeed, in the

context of the previous proposition, the set of ω ∈ Ω where µN(ω) satisfies the desired

condition (2.39) has probability 1, and in particular is nonempty.

2.4 Parametrisation of Jumps

We next introduce several possible parametrisations of the changes (v, v∗) /→ (v′, v′*) which

will be useful at various points.

We start with a parametrisation of Sd−2. We choose a measurable map ι : Rd → (Rd)d−1

such that, for all j, k and all v, we have

ιj(v) · ιk(v) = |v|21Ij=k

and such that ι(−v) = −ι(v). It follows that, for all v ∕= 0, the set

M
v

|v| ,
ι1(v)

|v| , ...,
ιd−1(v)

|v|

N
(2.40)

is an orthonormal basis of Rd. With this choice of ι, define Γ : Rd × Sd−2 → Rd by

Γ(v,ϕ) =
d−1"

j=1

ϕjιj(v). (2.41)

With these fixed, for any unit vector u we can write down a parametrisation of Sd−1\{±u}
in terms of θ ∈ (0, π),ϕ ∈ Sd−2 by

F (θ,ϕ) = u(cos θ) + (sin θ)Γ(u,ϕ).

To compute the Jacobian at any (θ,ϕ), pick an orthonormal basis ψ1, ...,ψd−2 of the

tangent space to Sd−2 at ϕ, and observe that DϕF [ψi] = (sin θ)Γ(u,ψi) produces d − 2

orthogonal vectors of norm sin θ, and which are all orthogonal to the tangent vector

∂θF = (− sin θ)u+ (cos θ)Γ(u,ϕ). The Jacobian is therefore

@@@@
dF

d(θ,ϕ)

@@@@ = (sin θ)d−2.
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Recalling also that we work with the uniform (probability) measure dσ on Sd−1, and

similarly equipping Sd−2 with the uniform measure dϕ, we normalise to write the uniform

measure as the pushforward by F of

dσ = F*

6
(sin θ)d−2

cd

7
dθdϕ (2.42)

where cd =
& π

0
(sin θ)d−2dθ is the corresponding normalisation constant as in (1.2), and

we have proven (1.3). With this parametrisation of σ, the corresponding post-collisional

velocities are given by

v′ = v

6
1 + cos θ

2

7
+ v∗

6
1− cos θ

2

7
+ sin θΓ(v − v∗,ϕ); (2.43)

v∗ = v

6
1− cos θ

2

7
+ v∗

6
1 + cos θ

2

7
− sin θΓ(v − v∗,ϕ). (2.44)

This change of variables is valid for any of the cases of the kernel, as we have made no

mention of the kernel in this derivation. In the non-cutoff case1 (NCHP), we make a

further change of variables which is natural for coupling arguments [85, 92]. Recalling the

definition of β in (1.2), we define

H(θ) =

! π/2

θ

β(x)dx, θ ∈
'
0,

π

2

(
. (2.45)

Under the assumption (NCHP), H is now a bijection from (0, π/2) to the ray (0,∞); let

us write G for its inverse. We finally define, for distinct v, v* ∈ Rd and ϕ ∈ Sd−2 and

z > 0,

θ(v, v*, z) = G

6
z

|v − v*|γ

7
(2.46)

and

a(v, v*, z,ϕ) = −1− cos(θ(v, v*, z))

2
(v − v*) +

sin(θ(v, v*, z))

2
Γ(v − v*,ϕ). (2.47)

In the case v = v*, we set a = 0; we note that, by construction, a is antisymmetric in

v, v*. Some estimates for the function G are established in Section 4.10.1.

Let us now check that this gives a successful parametrisation.

Lemma 2.5. For any v, v∗ and any Lipschitz function f : Rd → R, we have

2

!

Sd−2×(0,∞)

(f(v + a(v, v∗, z,ϕ))− f(v))dzdϕ

= LBf(v, v∗) := 2

!

Sd−1

(f(v′)− f(v))B(v − v∗, σ)dσ.

(2.48)

1Or indeed for (tMM, SP), although we will not use these cases.
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Proof. We fix v, v∗, f . If v = v∗, there is nothing to prove, as v′ = v for all σ and a is

identically 0. Otherwise, we start by observing that

v + a(v, v∗, z,ϕ) =
v + v∗

2
+

|v − v∗|
2

((cos θ)(v, v∗, z)u+ sin θ(v, v∗, z)Γ(u,ϕ)) (2.49)

with u = (v−v∗)/|v−v∗| the unit vector parallel to v−v∗. The combination in parentheses

is a unit vector σ(z,ϕ) ∈ Sd−1 and it is straightforward to see that (z,ϕ) → σ defines a

bijection from (0,∞)× Sd−2 → {σ ∈ Sd−1 : u · σ ≥ 0, σ ∕= u}. Thanks to (2.42) and using

the chain rule on the composition (z,ϕ) /→ (θ(v, v∗, z),ϕ) /→ σ, the pushforward of the

measure dzdϕ by this map has a density with respect to the uniform measure dσ given

by

cd
(sin θ(v, v∗, z))d−2

@@@@
d

dz
θ(v, v∗, z)

@@@@
−1

=
cd|v − v∗|γ

(sin θ(v, v∗, z))d−2

@@@@G
′
6

z

|v − v∗|γ

7@@@@
−1

.

Using the construction of G, it follows that G′(x) = 1/H ′(G(x)) = −1/β(G(x)), so all

together the density is

cd|v − v∗|γ
(sin θ(v, v∗, z))d−2

β(cos θ(v, v∗, z))|v − v∗|γ.

We observe that this is precisely B(v − v∗, σ) given by the hypothesis (NCHP), since the

θ appearing in the rate is exactly θ(v, v∗, z) and recalling the definition (1.2) of β(θ). We

therefore write

2

!

Sd−2×(0,∞)

f(v + a(v, v∗, z,ϕ)− f(v))dϕdz

= 2

!

{u·σ≥0}
(f(v′)− f(v))B(v − v∗, σ)dσ.

(2.50)

Meanwhile, the hypothesis in (NCHP) that b is supported on [0, 1) means that B = 0

when u · σ < 0, and we conclude that

2

!

Sd−2×(0,∞)

f(v+a(v, v∗, z,ϕ)− f(v))dϕdz = 2

!

Sd−1

(f(v′)− f(v))B(v− v∗, σ)dσ (2.51)

as desired.

Let us briefly observe that, under the hypothesis (NCHP), we find H(θ) ∼ θ−ν as θ → 0,

and correspondingly G(z) ∼ (1+z)−1/ν . In particular, it follows that
&∞
0

sinG(z)dz < ∞.

We will analyse G more closely in Section 4.10.1. Finally, in the cases (GMM, rHS), we

will rewrite the post-collisional velocities in the ‘ω-representation’2

v′ = v − ((v − v∗) · τ)τ ; v′∗ = v∗ − ((v∗ − v) · τ)τ (2.52)

2This representation is usually written with ω, but we wish to reserve this for elements of the proba-

bility space (Ω,F,P).
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for τ running over the unit sphere Sd−1. This is equivalent to the usual σ-parametrisation,

by taking

σ =
v − v∗ − 2((v − v∗) · τ)τ

|v − v∗|
.

Viewed as a function σ = σ(τ), the Jacobean is

@@@@
dσ

dτ

@@@@ = 2d−1 sin

6
θ

2

7d−2

which gives the change of kernel

5B(v, τ) = 2d−2 sin

6
θ

2

7d−2

B(v, σ(τ))

with an extra factor of 1
2
accounts for the fact that τ → σ is two-to-one. In particular,

the kernels (rHS, GMM) simplify to

5B(v, τ) = 1 + |v|; 5B(v, τ) = 1

respectively.

2.5 Moment Estimates

We next turn to some moment estimates, which will be in frequent use throughout this

thesis. Indeed, due to the unboundedness of the kinetic factor Ψ(|v|) in the three cases

(HS, rHS, NCHP) in the Boltzmann equation (BE), or γ ∈ (0, 1] in the case of (LE),

one cannot even make sense of the formal identity 〈|v|2, Q(µ)〉 = 0 unless the measure µ

already makes |v|2Ψ(|v|) integrable. Frequently, in our calculations, we will find additional

multiplicative factors, due to the unboundedness of these kernels, which depend on the

moments of a solution to (BE, LE) at some future time t ≥ 0, or the same for a particle

system. We synthesise results from the literature as follows.

We will mostly be concerned with polynomial moments Λp(·), p ∈ [2,∞). Such moment

estimates for the spatially homogeneous Boltzmann and Landau equations are now fairly

classical. For the Boltzmann equation, the proof centres on an inequality due to Povzner

[163]. Elmroth [72] used this to prove that, for kernels with Ψ(r) ∼ rγ, that all moments

which are initially finite remain finite, globally in time. This result was strengthened to

moment production by Desvillettes [53], provided that some moment Λp(µ0) is initially

finite; this additional requirement was relaxed by Wennberg [194], requiring only finite

initial energy 〈|v|2, µ0〉; see also the work of Lu and Mouhot [133] regarding measure-

valued solutions. Very similar arguments hold for the Kac process, which goes back to

the works of Mischler and Mouhot [142] and Norris [157]. In this case, an additional

martingale term appears, which vanishes again when one considers E[Λp(µ
N
t )]; in this
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context, we also need to argue maximal inequalities for pathwise maxima sups≤t Λp(µ
N
t )

separately. We also contribute a novel ‘concentration of moments’ result (Proposition

2.10), which allows a different kind of control of the moments of the Kac process; we

show that for p > 2 and sufficiently large b, if the initial data have enough moments,

then P(Λp(µ
N
t ) > b) → 0 at a rate O(N−1), which cannot be argued solely by bounding

E[Λq(µ
N
t )]. This will be useful for applications throughout the thesis where we split into

events in this way and wish to bound the probability of the ‘bad’ event where Λp(µ
N
t ) is

large.

We will also use some results on the appearance of exponential moments 〈ea|v|ρ , µt〉 for

both the Boltzmann and Landau equations (BE, LE). The study of such moments goes

back to Bobylev [20] who proved that, if a moment 〈ea|v|2 , µ0〉 is initially finite, then it is

propagated in time, at least in the case of cutoff hard potentials (CHPK). The work of Lu

and Mouhot [133] proved that exponential moments 〈eε|v|γ , µt〉 instantaneously become

finite even if they are not initially so, in the cases of cutoff or noncutoff hard potentials, and

this has also been investigated by Tasković, Alonso, Gamba and Palović [179], Fournier

and Mouhot [93], and Alsono, Cañizo, Gamba and Mouhot [11].

2.5.1 Polynomial Moment Estimates for the Boltzmann Equa-

tions

We begin with moment inequalities for the Boltzmann equation. To avoid proving multiple

similar propositions for the three kernels (HS, rHS, NCHP) and variants of them, we will

prove the moment estimates under the following general assumption.

Proposition 2.6 (Moment Inequalities for the Boltzmann Equation). Let B be any kernel

of the form B(v, θ) = Ψ(|v|)b(cos θ) satisfying, for some a > 0,

a−1|v|γ ≤ Ψ(|v|) ≤ a(1 + |v|γ)

and !

Sd−1

θb(cos θ)dσ ∈ (0,∞);

!

Sd−1

1I

M
π

3
< θ <

2π

3

N
b(cos θ)dσ > 0.

Let (µt)t≥0 be any solution to (BE) whose energy Λ2(µt) = 〈|v|2, µt〉 is finite and constant

(not necessarily normalised to 1). Then the following holds.

i). For all q ≥ p ≥ 2 and t > 0, we have

Λq(µt) ≤ Cp,q(1 + t(p−q)/γ)Λp(µ0). (2.53)

Here, Cp,q is a constant, depending only on p, q as well as γ,Λ2(µ0), an upper bound

for a, and upper and lower bounds for
&
Sd−1 θb(cos θ)dσ. In particular, all moments

Λp(µt) are finite, uniformly away from t = 0, and if Λp(µ0) is finite, then Λp(µt) is

bounded, uniformly in time.
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ii). For any p > 2, if Λp(µ0) is finite, then for some constant Cp with the same depen-

dence as above, for any t ≥ 0,

! t

0

Λp+γ(µu)du ≤ C(1 + t)Λp(µ0). (2.54)

In particular, µ ∈ L1
loc([0,∞),Pp+γ(Rd)).

Remark 2.7. We make the following remarks.

i) The range θ ∈ (π
3
, 2π

3
) in the second item is not essential, and one could equally

well replace it with any interval bounded away from {0, π}. The hypothesis as it is

written is certainly satisfied in all of the cases of interest.

ii) The second item has to be included separately and cannot be deduced from the first,

since we would find a logarithmically diverging integral
&
0
s−1ds.

iii) This choice of kernels includes the cases of interest (HS, rHS, NCHP). This general

form is also useful when we replace (rHS) with a mild variant (rHSδ) given by

Ψ(r) = 1 + rδ in Chapter 6.

iv) In the case of Grad’s angular cutoff BK in the case (CHPK), this statement ensures

not only that the same estimates apply, but are also uniform as soon as K is bounded

away from 0.

v) The following argument follows the approaches of the works [53, 132], incorporating

also some elements of [157] to allow any p ∈ [2, q] in i). In the case of Maxwell

Molecules (GMM), Truesdell [115, 184] proved that no moment creation occurs;

moments which are initially infinite remain so for all time.

We will use the following as a first step, which gives a qualitative statement of the moment

production property and justifies the manipulations.

Proposition 2.8. Continue in the notation of Proposition 2.6 above. Then for all t > 0

and all p ≥ 2, we have µ ∈ L∞
loc((0,∞),Pp(Rd)). Moreover, if Λp(µ0) < ∞, then in fact

µ ∈ L∞
loc([0,∞),Pp(Rd)) and Λp(µt) → Λp(µ0) as t ↓ 0.

For this, we will follow the arguments of Mischler and Wennberg [144, Theorem 1.1’, Steps

1-2]; although the uniqueness results of this paper concern only cutoff hard potentials, we

will check that the argument holds under our hypotheses, whether the kernel is cutoff or

not. Since the argument is a more careful and precise version of the same sort of Povzner

inequality we use in the proof of Proposition 2.6, it is more enlightening to first give the

proof of Proposition 2.6 taking this for granted, and return to give the justification for

this later.
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Proof of Proposition 2.6 from Proposition 2.8. Fix, throughout, an energy-conserving so-

lution (µt)t≥0 to the Boltzmann equation for the kernel B described. If the kinetic energy

Λ2(µt) = 0, then µt is always a point mass, and all the conclusions are trivial; otherwise,

by rescaling, we assume that Λ2(µt) = 1 for all t ≥ 0.

Step 1. Povzner Inequality Let us begin with the Povzner inequality; fix p ≥ 2 and

apply LB,s to f(v) = |v|p. For given given v, v*, we use the parametrisation of jumps in

terms of θ,ϕ given in Section 2.4 and write

v′ = v

6
1 + cos θ

2

7
+ v∗

6
1− cos θ

2

7
+

sin θ

2
Γ(v − v∗,ϕ) (2.55)

recalling that |Γ(v− v∗,ϕ)| = |v− v∗| and Γ(v− v∗,ϕ) · (v− v∗) = 0. From orthogonality,

it follows that v · Γ(v − v∗,ϕ) = v∗ · Γ(v − v∗,ϕ), so

|v ·Γ(v− v∗,ϕ)| ≤ min(|v|, |v∗|)|Γ(v− v∗,ϕ)| ≤ min(|v|, |v∗|)(|v|+ |v∗|) ≤ 2|v||v∗|. (2.56)

We now return to (2.55) and take the norm of both sides to see that

|v′|2 =
6
1 + cos θ

2

7
|v|2 +

6
1− cos θ

2

7
|v*|2 + sin θ v · Γ(v − v∗,ϕ)

:= h1 + h2 + h3.

(2.57)

We now raise both sides to the (p/2)th power, recalling the inequality (x+ y)p/2 ≤ xp/2 +

yp/2 + C(xyp/2−1 + xp/2−1y), valid for all x, y > 0. It is straightforward to see that the

cross terms are dominated by

h
p/2−1
1 (h2 + h3) + h1(h2 + h3)

p/2−1 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sin θ; (2.58)

h
p/2−1
2 h3 + h2h

p/2−1
3 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sin θ; (2.59)

h
p/2
3 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sin θ. (2.60)

We thus obtain

|v′|p ≤ h
p/2
1 + h

p/2
2 + C(|v|p−1|v*|+ |v||v*|p−1) sin θ

≤
6
1 + cos θ

2

7p/2

|v|p +
6
1− cos θ

2

7p/2

|v∗|p + C(|v|p−1|v∗|+ |v||v∗|p−1) sin θ.

(2.61)

From this, and a similar inequality for |v′∗|p, we obtain

|v′|p + |v′∗|p − |v|p − |v∗|p ≤ −λ(p, θ) (|v|p + |v*|p) + Cp(|v|p−1|v*|+ |v*|p−1|v|) sin θ
(2.62)
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with

λ(p, θ) =

/
1−

6
1 + cos θ

2

7p/2

−
6
1− cos θ

2

7p/2
0

≥ 0 (2.63)

which is nonnegative for all p ≥ 2, θ ∈ (0, π), with strict positivity unless p = 2 or

θ ∈ {0, π}. Integrating against the angular directions and using the hypothesis that&
θb(cos θ)dσ < ∞, we find that the function f(v) = |v|p has

LB,sf(v, v∗) ≤ −λpΨ(|v − v∗|)(|v|p + |v∗|p) + CΨ(|v − v∗|)(|v|p−1|v∗|+ |v||v∗|p−1) (2.64)

with

λp = λp(B) =

!

Sd−1

/
1−

6
1 + cos θ

2

7p/2

−
6
1− cos θ

2

7p/2
0
b(cos θ)dσ > 0 (2.65)

and, observing that λ(p, θ)/θ is bounded and bounded away from 0, we find that λp is

bounded away from 0, depending only on a lower bound for the mass between θ = π
3
, θ =

2π
3
, and similarly C is bounded above depending only on an upper bound for

&
θB(u, σ)dσ.

We next expand the kinetic factors in (2.64). Using the lower bound on Ψ and that

|v − v∗|γ ≥ |v|γ − |v∗|γ, we bound the first term above by

−λpa
−1|v − v∗|γ(|v|p + |v∗|p) ≤ −λpa

−1(|v|γ − |v∗|γ)|v|p − λpa
−1(|v∗|γ − |v|γ)|v∗|p.

Similarly, for the positive term, we use the upper bound to see that Ψ(|v − v∗|) ≤ a(1 +

|v|γ + |v∗|γ). All together, for some λ, C depending now also on a,

LB,sf(v, v∗) ≤ −λ(|v|p+γ + |v∗|p+γ) + Cg(v, v∗) (2.66)

where g contains the collected lower order terms

g(v, v∗) = |v|p|v∗|γ + |v|γ|v∗|p + |v|p−1|v∗|+ |v||v∗|p−1

+ |v|p−1+γ|v∗|+ |v|1+γ|v∗|p−1 + |v|p−1|v∗|1+γ + |v||v∗|p−1+γ
(2.67)

which is the (basic) Povzner inequality for the class of kernels in this Proposition.

Step 2. Truncation Argument We next integrate the bound on LB,sf found in the

previous step, from which we find a bound on 〈f,Q(µt)〉. We now carefully show that we

have d
dt
Λp(µt) =

d
dt
〈f, µt〉 = 〈f,Q(µt)〉 for t ∈ (0,∞), which amounts to taking our choice

f = |v|p in (BE); however, since f does not belong to the class of test functions in the

definition of weak solutions (see Definition 1.1.1), this must be shown separately.

We use a trunctation argument, see also [132, Theorem 1.3, Step 1] for a very similar

argument. Let us fix f(v) = |v|p as in the previous step, and a smooth, compactly
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supported function χ : Rd → [0, 1] with χ(v) = 1 when |v| ≤ 1, and χ(v) = 0 when

|v| ≥ 2. We now set, for R ≥ 1, fR(v) := f(v)χ(v/R), so that fR are Lipschitz and

compactly supported, so that we can apply (BE) directly to these functions to find that,

for any 0 < s < t,

〈fR, µt〉 − 〈fR, µs〉 =
! t

s

!

Rd×Rd

LB,sfR(v, v∗)µu(dv)µu(dv∗)du. (2.68)

We now take the limit R → ∞. For any fixed v, v∗, we have that LB,sfR(v, v∗) =

LB,sf(v, v∗) as soon as R ≥ |v|+ |v∗|, so we have pointwise convergence of LB,sfR → LB,sf

in the limit R → ∞. Next, we prove that we can bound LB,sfR above, uniformly in R,

by a function of polynomial growth. To see this, note that |v|∇χ(v/R)/R is bounded,

uniformly in R, leading to the bound

|∇fR(v)| =
@@@@p|v|

p−1

6
v

|v|

7
χ(v/R) +

|v|p
R

∇χ(v/R)

@@@@ ≤ C|v|p−1

for some C independent of R. Next, we observe that the line segment [v, v′] lies inside

the ball of radius |v|+ |v∗| and that |v − v′| = |v − v∗| sin θ to obtain

|fR(v′)− fR(v)| ≤ |v − v∗| sin θ sup
|w|≤|v|+|v∗|

|∇fR(w)| ≤ C(|v|p + |v∗|p) sin θ

with C again independent of R. Using the same inequality for v∗, v
′
∗ we integrate, recalling

that
&
θB(u, σ)dσ =

&
θb(cos θ)dσ < ∞ to find that

|LB,sfR(v, v∗)| ≤ CΨ(|v − v∗|)(|v|p + |v∗|p) ≤ C(1 + |v|p+γ + |v∗|p+γ)

which is a polynomial upper bound as desired. Since we assume validity of Proposition

2.8, for the same choices of s, t in (2.68), the (p + γ)th moment Λp+γ(µu) is bounded on

u ∈ [s, t], and we can use dominated convergence to see that

! t

s

!

Rd×Rd

LB,sfR(v, v∗)µu(dv)µu(dv∗)du →
! t

s

!

Rd×Rd

LB,sf(v, v∗)µu(dv)µu(dv∗)du.

On the other hand, 〈fR, µt〉 → 〈f, µt〉 ∈ (0,∞), and similarly for s. We therefore take the

limit of (2.68) to obtain

〈f, µt〉 − 〈f, µs〉 =
! t

s

!

Rd×Rd

LBf(v, v∗)µu(dv)µu(dv∗) (2.69)

and it follows that 〈f, µt〉 = Λp(µt) is weakly differentiable, with derivative

d

dt
Λp(µt) =

!

Rd×Rd

LB,sf(v, v∗)µt(dv)µt(dv∗). (2.70)

Using a similar truncation argument, using the local boundedness of moments of order

strictly higher than p + γ and the continuity of t /→ µt for the weak topology, it follows

that t /→
&
Rd×Rd LB,sf(v, v∗)µt(dv)µt(dv∗) is continuous on (0,∞), and so (2.70) holds as
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a classical derivative, and Λp(µt) ∈ C1(0,∞).

Finally, we integrate the upper bound for LB,sf obtained from the Povzner inequality in

(2.66). From the normalisation that Λ2(µt) = 1 it follows that q /→ Λq(µt) is increasing

on q ∈ [2,∞), and since p+ γ − 1 ≤ p, the integral of the lower order terms g(v, v∗) is at

most !

Rd×Rd

g(v, v∗)µt(dv)µt(dv∗) ≤ CΛp(µt)

and we finally obtain
d

dt
Λp(µt) ≤ −λΛp+γ(µt) + CΛp(µt). (2.71)

Step 3. Derivation of Moment Inequalities We now derive the moment inequalities

in the Proposition from (2.71), following [157, Proposition 3.1]. For item i), we deal first

with the case q = p, supposing that Λp(µ0) < ∞ and write, for t ≥ 0 define

Fp(t) := Λp(µt).

First, for the case q = p, we estimate Fp+γ(t) ≥ Fp(t)
1+γ/p by Hölder’s inequality, and

return to (2.71) to find

d

dt
Fp(t) ≤ −λFp(t)

1+γ/p + CFp(t). (2.72)

We now note that this is a differential inequality valid with Fp ∈ C1((0,∞)) ∩ C([0,∞))

thanks to Proposition 2.8 again, and that the right-hand side is negative as soon as

Fp ≥ (C/λ)p/γ, whence we have the global bound

Fp(t) ≤ max

/
Fp(0),

6
C

λ

7p/γ
0

≤ max

/
1,

6
C

λ

7p/γ
0
Fp(0)

which proves item i) in the case q = p. For q > p, we define similarly to Fp the function

Fp,q(t) :=
Λq(µt)

sups≥0 Λp(µs)

where the denominator is finite by the case q = p above. Using Hölder’s inequality on the

probability measure |v|pµt(dv)/Fp(t), we find

Fq(t)

Fp(t)
=

O
|v|q−p,

|v|pµt

Fp(t)

P
≤

O
|v|q−p+γ,

|v|pµt

Fp(t)

P(q−p)/(q−p+γ)

=

6
Fq+γ(t)

Fp(t)

7(q−p)/(q−p+γ)

(2.73)

which rearranges to

Fq+γ(t) ≥ Fp(t)
−γ/(q−p)Fq(t)

1+ γ
q−p .

Returning to (2.71), we find in this case the differential inequality on (0,∞)

d

dt
Fp,q(t) ≤ −λFp,q(t)

1+ γ
q−p + CFp,q(t) =: h(Fp,q(t)). (2.74)



78 2.5. MOMENT ESTIMATES

Set u* = (C/λ)(q−p)/γ, so that h(r) ≤ 0 for r ∈ [u*,∞) and h(u*) = 0.

We now fix t ≥ 0 and let t0 ∈ (0, t), and consider the cases Fp,q(t0) ≤ u*, Fp,q(t0) > u*

separately. In the first case Fp,q(t0) ≤ u*, it follows that Fp,q(s) ≤ u* for all s ≥ u*, and

in particular Fp,q(t) ≤ u*. Otherwise, in the case Fp,q(t0) > u*, we observe that the C1

function g : (u*,∞) → R given by

g(u) = −q − p

γC
log

6
1− Cu−γ/(q−p)

λ

7

satisfies
d

du
g(u) =

1

Cu− λu1+ γ
q−p

= − 1

h(u)
.

Now, set t1 = inf{s > t0 : Fp,q(s) = u*}. On the interval (t0, t1), the right-hand side of

(2.74) is negative, and we integrate to find d
ds
g(Fp,q(s)) ≥ 1 and hence

g(Fp,q(s)) ≥ g(Fp,q(t0)) + (s− t0) ≥ (s− t0)

on (t0, t1), which rearranges to

Fp,q(s) ≤
6
λ

C

-
1− e−Cγ(s−t0)/(q−p)

.7(p−q)/γ

.

On the other hand, in the case where t1 < ∞, it holds that Fp,q(s) ≤ u* for s ≥ t1 for the

same reasons as above, so we conclude that for any s ≥ t0,

Fp,q(s) ≤ max

/
u*,

6
λ

C

-
1− e−Cγ(s−t0)/(q−p)

.7(p−q)/γ
0

≤ u* +

6
λ

C

-
1− e−Cγ(s−t0)/(q−p)

.7(p−q)/γ

and in particular, this applies at s = t. Recalling the definition of Fp,q, we absorb u* into

a constant C depending only on the quantities in the statement of the Proposition, and

take t0 ↓ 0 to find that

Λq(µt) ≤ C

/
1 +

6
λ

C

-
1− e−Cγt/(q−p)

.7(p−q)/γ
0

sup
s≥0

Λp(µs)

≤ C

6
λ

C

-
1− e−Cγt/(q−p)

.7(p−q)/γ

Λp(µ0)

(2.75)

using, in the final inequality, the bound supu≥0 Λp(µu) ≤ CΛp(µ0), for some new choice

of C. The general case of point i) now follows by observing that

(1− e−Cγt/(q−p))(p−q)/γ ∼ t(p−q)/γ

as t ↓ 0, so

(1− e−Cγ(t−s)/(q−p))(p−q)/γ ≤ C(1 + t(p−q)/γ).
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For item ii), again assuming that Λp(µ0) < ∞, we return to (2.71) and integrate over a

time interval [s, t] with s > 0; this is licit because, thanks to Proposition 2.8, all moments

are finite on this time interval. We find

! t

s

Λp+γ(µu)du ≤ λ−1

6
Λp(µt) + C

! t

s

Λp(µu)du

7
.

Thanks to item i), we can replace Λp(µt),Λp(µu) ≤ CΛp(µ0) to replace the upper bound

by C(1 + t)Λp(µ0), uniformly in s, and taking s ↓ 0 gives the result.

It remains to prove Proposition 2.8, which we used above to justifying the formal manip-

ulations.

Proof. We follow [144, Theorem 1.1’, Steps 1-2], which modifies with little alteration to

the kernels with which we work, and to allow dimension d ≥ 3.

Step 1. General Povzner Inequality We start with a general inequality, which

generalises the calculations for the functions fp(v) = |v|p we found earlier. We fix a

convex, Lipschitz function h : [0,∞) → [0,∞) such that h′ is Lipschitz continuous; it

follows that h′ is weakly differentiable, and the (weak) second derivative h′′ is nonnegative

almost everywhere, and apply LB,s to fh(v) := h(|v|2).

Let us fix v, v∗, and assume that v is not parallel to v− v∗. In this case, we reparametrise

the sphere Sd−2 by an isometry R, preserving the uniform measure, so that Γ(v − v∗, e1)

is parallel to the projection of v onto v − v∗. We now recall (2.57) to see that

|v′|2 =
6
1 + cos θ

2

7
|v|2 +

6
1− cos θ

2

7
|v′|2 + (sin θ)(v · Γ(v − v∗, e1))ϕ1

= Y (θ) + Z(θ)ϕ1

(2.76)

where this defines Y (θ), Z(θ), and similarly |v′∗|2 = Y (π − θ)− Z(θ)ϕ1. The same is true

in the case where v is parallel to v − v∗, since in this case the last term is identically

0 in both cases. We also observe, recalling (2.56), that Z(θ) ≤ |v||v∗| sin θ and, since

Y (θ) + Z(θ)ϕ1 ≥ 0 for all ϕ, we must have |Z(θ)| ≤ Y (θ).

We next fix θ and consider
&
Sd−2 fh(|v′|2)dϕ =

&
Sd−2 h(Y + Zϕ1)dϕ, surpressing the θ-

dependence of Y (θ), Z(θ). Away from the poles, we parametrise ϕ ∈ Sd−2 by ψ ∈ (0, π)

and w ∈ Sd−3, and recall (2.42) to write

!

Sd−2

h(Y + Zϕ1)dϕ = h(Y ) +

! π

0

(h(Y + Z cosψ)− h(Y ))c−1
d−1(sinψ)

d−3dψ.

= h(Y ) +

! π/2

0

(h(Y + Z cosψ)− 2h(Y ) + h(Y − Z cosψ))c−1
d−1(sinψ)

d−3dψ

(2.77)
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where again cd−1 =
& π

0
(sinψ)d−3 is the respective normalising constant3. We integrate

twice by parts to find
!

Sd−2

(h(Y + Zϕ1)− h(Y ))dϕ

=
G
ψ(sinψ)d−3(h(Y + Z cosψ)− 2h(Y ) + h(Y − Z cosψ))

Hπ/2
ψ=0

+ Z

! π/2

0

ψ(sinψ)d−2(h′(Y + Z cosψ)− h′(Y − Z cosψ))dψ

=
G
ψ(sinψ)d−2(h′(Y + Z cosψ)− h′(Y − Z cosψ)

Hπ/2
ψ=0

+ Z2

! π/2

0

g(ψ) sinψ(h′′(Y + Z cosψ) + h′′(Y − Z cosψ))dψ

= Z2

! π

0

g(ψ) sinψh′′(Y + Z cosψ)dψ

(2.78)

where we define a bounded function g by g(ψ) :=
& ψ

0
u(sin u)d−2du on [0, π

2
] and g(ψ) :=

g(π − ψ) on (π
2
, π]. From this, and the same calculation for h(|v′∗|2), we find that

!

Sd−2

(h(|v′|2) + h(|v′∗|2)− h(|v|2)− h(|v∗|2))dϕ

= h(Y (θ)) + h(Y (π − θ))− h(|v|2)− h(|v∗|2)

+ Z(θ)2
! π

0

g(ψ) sinψh′′(Y (θ) + Z(θ) cosψ)dψ

+ Z(θ)2
! π

0

g(ψ) sinψh′′(Y (π − θ) + Z(θ) cosψ)dψ.

(2.79)

If we now integrate over the θ direction, we find overall that

LB,sfh(v, v∗)

Ψ(|v − v∗|)
= Ph(v, v∗)−Kh(v, v∗) (2.80)

where Ph ≥ 0 comes from integrating the last two lines of (2.79), or equivalently the

left-hand side of (2.78) with respect to β(θ)dθ, and Kh is given by

Kh(v, v∗) =

! π

0

(h(|v|2) + h(|v∗|2)− h(Y (θ))− h(Y (π − θ)))β(θ)dθ. (2.81)

Recalling the definition of Y (θ) and that Z(θ) ≤ |v||v∗| sin θ, both integrals converge.

Recalling also that h is convex, we have

h(Y (θ)) ≤
6
1 + cos θ

2

7
h(|v|2) +

6
1− cos θ

2

7
h(|v∗|2)

so that Kh ≥ 0. Moreover, h /→ Ph, Kh are linear in h, so that if h′, h are two such

functions, such that h′ − h is nonnegative and convex, we have that

Ph′ = Ph + Ph′−h ≥ Ph; Kh′ = Kh +Kh′−h ≥ Kh. (2.82)

3To see this, set h = 1; the left-hand side is 1, since dϕ is a probability measure.
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2. Application with Approximated Convex Functions We now carefully show,

without any integrability hypotheses beyond the conservation of energy, how we find

an integral equality for the evolution of 〈h(|v|2), µt〉, for any function h satisfying the

hypotheses of the previous part. For any n, we let pn(x) = h(n) + (x − n)h′(n) be the

affine function tangent to h at n, and define hn by

hn(x) =

#
$

%
h(x) x ≤ n

pn(x) x > n

Q
R

S = 5hn(x) + pn(x).

The function fn(v) = 5hn(|v|2) = hn(|v|2) − pn(|v|2) is compactly supported, and satisfies

all of the conditions of the first step, so we can write, for all t > 0,

〈fn, µt〉+
! t

0

!

Rd×Rd

Kh̃n
(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

= 〈fn, µ0〉+
! t

0

!

Rd×Rd

Ph̃n
(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds.

(2.83)

Using the definitions it is immediate to see that the addition of the linear term pn does

not change G,K, so we can replace the integrands with Phn , Khn . On ther other hand,

〈|v|2, µ0〉 = 〈|v|2, µt〉, so the same is true for the linear combination 〈pn(|v|2), µt〉 =

〈pn(|v|2), µ0〉. Adding this term to both sides, we can replace fn with hn(|v|2) to ob-

tain

〈hn(|v|2), µt〉+
! t

0

!

Rd×Rd

Khn(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

= 〈hn(|v|2), µ0〉+
! t

0

!

Rd×Rd

Phn(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds.

(2.84)

We now carefully take the limit n → ∞. We note that hn+1 − hn ≥ 0 is convex, so by the

remark at the end of step 1, Phn+1 ≥ Phn ≥ 0, Khn+1 ≥ Khn ≥ 0, which increase upwards

to Ph, Kh ≥ 0 respectively, while hn(|v|2) ↑ h(|v|2) =: fh(v). We therefore use monotone

convergence on both sides to obtain, for all t > 0,

〈fh, µt〉+
! t

0

!

Rd×Rd

Kh(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

= 〈fh, µ0〉+
! t

0

!

Rd×Rd

Ph(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

(2.85)

possibly understanding this as an equality ∞ = ∞ if either (and therefore both) side fails

to converge.

Step 3. Application with slowly-growing h. We now apply the previous step with a

well-chosen h. With a modification of de La Vallée Poussin theorem, we can find a strictly

convex, C2 function h : [0,∞) → [0,∞) with h′(∞) = ∞ such that 〈h(|v|2), µ0〉 < ∞,

and by replacing h by a more slowly growing function if necessary, write h in the form
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h(r) = rj(r) for a concave, increasing function j with j(∞) = ∞, but increasing slowly

enough that j′(r) ≤ (1 + r)−1 and, for all ε > 0,α ∈ (0, 1), there exists some constant

C = C(α, ε) such that

j(r)− j(αr) ≥ C(1 + r)−ε for all r > 1. (2.86)

In this case, we bound Ph from the first expression
&
Sd−2(h(Y (θ) + ϕ1Z(θ))− h(Y (θ))dϕ

appearing in (2.78); since j is concave, we have

j(Y (θ) + Z(θ)ϕ1) ≤ j(Y ) + Zϕ1j
′(Y )

and so we bound the integrand, suppressing the θ-argument

h(Y + Zϕ1)− h(Y ) ≤ Y j(Y ) + Zϕ1(j(Y ) + Y j′(Y )) + Z2ϕ2
1j

′(Y )− Y j(Y )

= Zϕ1(j(Y ) + Y j′(Y )) + Z2ϕ2
1j

′(Y ).

When we integrate over ϕ ∈ Sd−2, the first term on the second line integrates to 0, and

the second produces Z2(θ)j′(Y (θ))/(d − 1). Recalling that Z(θ) ≤ Y (θ), the hypothesis

that j′ ≤ (1+r)−1 implies that we can absorb one factor of Z into Zj′(Y ) ≤ 1 and obtain,

for some constant c,

Ph(v, v∗) ≤ c

! π

0

Z(θ)β(θ)dθ ≤ c|v||v∗|.

Now using the upper bound on Ψ, we can bound Ψ(|v − v∗|)Ph(v, v∗) by

Ψ(|v − v∗|)Ph(v, v∗) ≤ C(1 + |v|1+γ)(1 + |v∗|1+γ) ≤ C(1 + |v|2)(1 + |v∗|2)

since γ ≤ 1, and integrating this in time produces

! t

0

!

Rd×Rd

Ph(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗) ≤ Ct(1 + Λ2(µ0))
2 < ∞.

Returning to (2.85), the right-hand side is now finite for all t ≥ 0, and indeed bounded on

compact time intervals, from which it follows that 〈fh, µt〉 ∈ L∞
loc([0,∞)), that 〈fh, µt〉 →

〈fh, µ0〉 as t ↓ 0, and that, for all t > 0,

! t

0

!

Rd×Rd

Kh(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗) < ∞. (2.87)

We next bound Kh below, hence finding a lower bound for the left-hand side of (2.87). A

simple calculation shows that

d

dθ
(h(Y (θ))− h(Y (π − θ))) = −sin θ

2
(|v|2 − |v∗|2)(h′(Y (θ))− h′(Y (π − θ)))

and recalling that h′ is strictly increasing, this vanishes uniquely at θ = π/2, which is

therefore the unique maximum of h(|v|2)+h(|v∗|2)−h(Y (θ))−h(Y (π−θ)). We bound the
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integral below by integrating only over θ ∈ (π/3, 2π/3); over this interval, the integrand

is minimised at the endpoints θ ∈ {π
3
, 2π

3
}, which is the value

|v|2j(|v|2)+|v∗|2j(|v∗|2)−
6
3|v|2 + |v∗|2

4

7
j

6
3|v|2 + |v∗|2

4

7
−
6
3|v∗|2 + |v|2

4

7
j

6
3|v∗|2 + |v|2

4

7
.

If we assume that |v| ≥ 3|v∗|, we have that 3|v|2
4

≥ |v|2
4

≥ 3|v∗|2
4

, and we bound the

arguments of j in the last two terms above by 7
9
|v|2 to get an overall lower bound, for the

same range of θ,

|v|2
6
(j(|v|2)− j

6
7|v|2
9

77
− |v∗|2j

6
7|v|2
9

7
. (2.88)

We now integrate over θ ∈ (π/3, 2π/3) to find a bound for Kh, for the same condition

|v∗| ≤ 3|v|. On the first term, we use (2.86) with α = 7
9
, while in the second term we

replace |v∗|2 ≤ |v||v∗| to find, for any ε > 0, there exists C < ∞ such that, whenever

|v| > 3|v∗| and |v| > 1,

Kh(v, v∗) ≥ C|v|2−ε − |v||v∗|j(|v|2). (2.89)

If instead we have |v∗| ≥ 3|v|, |v∗| ≥ 1, we replace v ↔ v∗, and otherwise Kh ≥ 0. Overall,

up to a new choice of C,

Kh(v, v∗) ≥ C(|v|2−ε+|v∗|2−ε)(1−1I(|v|/3 ≤ |v∗| ≤ 3|v|))−|v||v∗|j(|v|2)−|v||v∗|j(|v∗|2)−C

(2.90)

and so

Kh(v, v∗)Ψ(|v − v∗|) ≥ C(|v|2+γ−ε + |v∗|2+γ−ε)(1− 1I(|v|/3 ≤ |v∗| ≤ 3|v|))
− C(1 + |v|2j(|v|2))(1 + |v∗|2j(|v∗|2).

(2.91)

We now return to (2.87). Thanks to the estimate 〈fh, µt〉 ∈ L∞
loc we found earlier, the

negative terms are integrable, locally uniformly in time, while

C(|v|2+γ−ε + |v∗|2+γ−ε)(1− 1I(|v|/3 ≤ |v∗| ≤ 3|v|))
≥ C(|v|2+γ−ε + |v∗|2+γ−ε)− c|v|1+(γ−ε)/2|v∗|1+(γ−ε)/2.

(2.92)

The second term is integrable, because 1 + (γ − ε)/2 ≤ 2 and the second moments of µt

are integrable, so we finally conclude that, for all ε > 0 and all t < ∞,

! t

0

!

Rd

|v|2+γ−εµs(dv)ds < ∞. (2.93)

In particular, µ ∈ L1
loc([0,∞),P2+γ−ε(Rd)), and Λ2+γ−ε(µt) < ∞ for almost all t.

Step 4. Inductive Argument on (0,∞). We now prove the local boundedness of

all moments on (0,∞) by applying the general formulation in step 2 with h(r) = rp/2

inductively.
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Let us suppose, as our inductive assumption, that µ ∈ L1
loc((0,∞),Pp(Rd)); the previous

step provides a base case p = 2 + (γ/2). It follows that, for any t2 > t1 > 0, we can find

t0 ∈ [0, t1) with Λp(µt1) < ∞, and we then apply (2.85) on (µt+t0)t≥0 with h(r) = rp/2 to

get, for all t ≥ t0,

Λp(µt) +

! t

t0

Kh(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

= Λp(µt0) +

! t

t0

Ph(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

(2.94)

as an equality of nonnegative, possibly infinite integrals. We now bound Ph, Kh as we did

in the previous step. In this case, we get

h′ =
p

2
r(p−2)/2; h′′ =

p(p− 2)

4
r(p−4)/2 > 0.

We now bound Ph, separating the cases p ∈ (2, 4], p > 4, which correspond to the cases

where h′′ is decreasing or increasing.

4i. Case i p ∈ (2, 4]. In this case, we return to (2.79) to write

Ph(v, v∗) ≤
! π

0

β(θ)Z(θ)2Y (θ)(p−4)/2

! π

0

g(ψ) sinψ

6
1− Z(θ) cosψ

Y (θ)

7 p−4
2

dψdθ.

Since |Z(θ)| ≤ Y (θ) and g(ψ) sinψ is bounded, we use the fact that p−4
2

> −1 to see the

integral converges uniformly in θ, and we conclude that

Ph(v, v∗) ≤ C

! π

0

Z(θ)2Y (θ)(p−4)/2 ≤ C|Z(θ)|p/2β(θ)dθ

where in the final bound, we use again that |Z| ≤ Y and that r(p−4)/2 is noninceasing,

thanks to the range of p. Recalling from the definition of Z(θ) that |Z(θ)| ≤ |v||v∗| sin θ,
as remarked below (2.76), we have

Ph(v, v∗) ≤ C|v|p/2|v∗|p/2
! π

0

sin θβ(θ)dθ ≤ C|v|p/2|v∗|p/2

and finally, using Young’s inequality,

Ph(v, v∗) ≤ C(|v|p−γ|v∗|γ + |v∗|p−γ|v|γ). (2.95)

4ii. Case ii. p > 4 In this case, we return to (2.78), and recall that Z(θ) ≤ sin θ|v||v∗|,
while h′′(Y (θ) + Z(cos θ)) ≤ C(|v|p−4 + |v∗|p−4) for some C depending on p. It follows

that

Ph(v, v∗) ≤ C(|v|p−2|v∗|2 + |v∗|p−2) ≤ C(|v|p−1|v∗|+ |v∗|p−1|v|) (2.96)

for some C depending on B through
&
Sd−1 θb(cos θ)dσ.
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In either case, we use (2.95, 2.96) respectively and the growth of Ψ, recalling that γ ≤ 1.

Overall, we get

Ph(v, v∗)Ψ(|v − v∗|) ≤ C
-
(1 + |v∗|2)(1 + |v|p) + (1 + |v|2)(1 + |v∗|p)

.

so that, using the finiteness of the energy, the corresponding integral is bounded by
!

Rd×Rd

Ph(v, v∗)Ψ(|v − v∗|)µt(dv)µt(dv∗) ≤ C(1 + Λp(µt)).

The upper bound is locally integrable on [t0,∞) by the induction hypothesis, and return-

ing to (2.94), we find that

Λp(µt) ≤ Λp(µt0) +

! t

t0

C(1 + Λp(µs))ds. (2.97)

It follows that Λp(µt) is locally bounded on [t0,∞) and, using dominated convergence for

an upper bound and lower-semicontinuity for a lower bound, Λp(µt) → Λp(µt0) as t ↓ t0.

On the other hand, the same argument as leading to (2.62, 2.64) produces

Kh ≥ λp(|v|p+γ + |v∗|p+γ)− C(|v|p−1|v∗|+ |v∗|p−1|v|)

which implies that

Kh(v, v∗)Ψ(|v − v∗|) ≥ λp(|v|p+γ + |v∗|p+γ)− C(1 + |v|p−1+γ + |v∗|p−1+γ).

The integrals of the negative terms are locally integrable on [t0,∞) by the induction

hypothesis, since p− 1 + γ ≤ p, so we conclude from (2.94) that, for any t2 > t1 > t0, we

have ! t2

t1

Λp+γ(µs)ds ≤
! t2

t0

Λp+γ(µs)ds < ∞.

Since t2 > t1 > 0 were chosen arbitrarily, we conclude that µ ∈ L1
loc((0,∞),Pp+γ(Rd)),

and the induction step is complete, allowing us to increase the moment index by γ, so

that µ ∈ L1
loc((0,∞),Pp(Rd)) for p = 2 + (2n + 1)γ/2, n ∈ N. On the other hand, one

trivially has L1
loc((0,∞),Pq(Rd)) ⊂ L1

loc((0,∞),Pp(Rd)) for any q ≤ p, so we conclude

that µ ∈ L1
loc((0,∞),Pp(Rd)) for all p. This proves the first assertion of Proposition

2.8, since we showed in the course of the induction that if the pth moments are locally

integrable on (0,∞), then they are locally bounded on (0,∞).

Step 5. Local boundedness near 0 with additional hypotheses. To check the

second assertion, we will sketch how to modify the previous proof if the initial data µ0

has Λp(µ0) < ∞. In this case, we choose ε > 0 and n ≥ 1 such that p ∈ [2− ε + nγ, 2−
ε + (n + 1)γ), and set qm = 2 − ε + mγ,m = 1, ..., n + 1, so p ∈ [qn, qn+1). Using Step

3, we find that µ ∈ L1
loc([0,∞),Pq1(Rd)); we then follow step 4 inductively, with indexes

q1, q2, . . . qn; since µ0 has p ≥ qm moments we can choose t0 = 0 each time, to see that
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Λqn(µt) is locally bounded, and Λqn+1(µt) is locally integrable near 0. Since qn+1 ≥ p, it

follows that Λp(µt) is locally integrable near 0, so we can apply the inductive step of Step

4, again with t0 = 0, to obtain that Λp(µt) is locally bounded near 0, and as remarked

below (2.97), that Λp(µt) → Λ0(µ0) as t ↓ 0. The Proposition is complete.

As a result of the more general formulation, we also obtain the following, see also [142,

Lemma 6.3]

Proposition 2.9. Let (µt)t≥0 ⊂ S be a weak solution to (BE), for a kernel as in Propo-

sitions 2.6-2.8 and µ0 ∈ S6. Then for all t ≥ 0 we have the bound

! t

0

Λ2+γ(µs)ds ≤ C(1 + t) + C logΛ6(µ0). (2.98)

In particular, for any w, there exists C, p such that

exp

6
w

! t

0

Λ2+γ(µs)ds

7
≤ eC(1+t)Λp(µ0).

Proof. We follow Steps 1-3 of the previous proposition for the convex function h(r) =

r log(1 + r) with j = log(1 + r) concave. Steps 1-2 still apply, as does the upper bound

on Ph in step 3, so that Ψ(|v− v∗|)Ph(v, v∗) ≤ C(1+ |v|2)(1+ |v∗|2). For the lower bound
of Kh, we follow the arguments; in the case |v| ≥ 3|v∗| we find the same bound (2.88) on

the integrand of Kh for θ ∈ (π/3, π), which now simplifies to

|v|2 log
6

1 + |v|2
1 + 7|v|2/9

7
− |v||v∗| log

6
1 +

7|v|2
9

7
.

We conclude that, for |v| ≥ max(3|v∗|, 1/2), we have

Kh(v, v∗) ≥ c|v|2 − C|v||v∗| log(1 + |v|2)

for some c, C, and hence, for the same v, v∗,

Kh(v, v∗)Ψ(|v − v∗|) ≥ c|v|2+γ − C(1 + |v|1+γ) log(1 + |v|2)(1 + |v∗|1+γ).

Up to a new choice of C, we consider the cases |v∗| ≤ |v| ≤ 3|v∗| and |v∗| ≤ |v| ≤ 1
2
to

find, for all v, v∗ with |v| ≥ |v∗|,

Kh(v, v∗)Ψ(|v−v∗|) ≥ c|v|2+γ−C|v|1+(γ/2)|v∗|1+(γ/2)−C−C(1+|v|1+γ)(1+log(1+|v|2))(1+|v∗|1+γ)

and a symmetric expression holds if |v| ≤ |v∗|. Grouping everything, we can absorb all

lower-order terms into 1 + |v|2, so, for some new c, C,

Kh(v, v∗)Ψ(|v − v∗|) ≥ c(|v|2+γ + |v∗|2+γ)− C(1 + |v|2)(1 + |v∗|2).
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Integrating, it follows that

2c

! t

0

Λ2+γ(µs)ds ≤
! t

0

!

Rd×Rd

(Kh(v, v∗)Ψ(|v − v∗|) + C(1 + |v|2)(1 + |v∗|2))µs(dv)µs(dv∗)ds

≤ 〈fh, µ0〉+ 4Ct+

! t

0

!

Rd×Rd

Ph(v, v∗)Ψ(|v − v∗|)µs(dv)µs(dv∗)ds

≤ 〈|v|2 log(1 + |v|2), µ0〉+ Ct

(2.99)

where we changed the value of C in the last line, and changing the value of C again,

! t

0

Λ2+γ(µt)dt ≤ Ct+ C〈|v|2 log(1 + |v|2), µ0〉.

To find the upper bound stated in the proposition, we split the integral on the right-hand

side into the regions 1+ |v|2 ≤ r, 1+ |v|2 > r for some r ≥ 1 to be chosen. The first region

contributes at most (log r)〈|v|2, µ0〉 = log r, and the contribution from the second region

is bounded by

1

r

!

Rd

(1 + |v|2)2 log(1 + |v|2)µ0(dv) ≤
1

r

!

Rd

(1 + |v|2)3µ0(dv) ≤
16

r
Λ6(µ0).

If we now choose r = Λ6(µ0), we find the overall integral

〈|v|2 log(1 + |v|2), µ0〉 ≤ 2 logΛ6(µ0) + 16

and the first part of the proposition is proven. The second part follows, changing the value

of C and using that Cw logΛ6 ≤ logΛ6cW by Jensen’s inequality, as soon as Cw ≥ 1.

2.5.2 Polynomial Moment Estimates for the Kac Process

We next consider equivalent polynomial moment estimates for the Kac process. In this

case, we must also (separately) prove some maximal inequalities, as well as our novel

‘concentration of moments’ result.

Proposition 2.10. Let B be a kernel as in Proposition 2.6, and let (µN
t )t≥0 be a Kac

process for this kernel, and a0 ≥ 1 such that Λ2(µ
N
0 ) ≤ a0 almost surely. Then for all

q ≥ p ≥ 2, we have the following bounds.

i). There exists a constant Cp,q < ∞ such that, for all t ≥ 0,

E
G
Λq(µ

N
t )

H
≤ Cp,q(1 + t(p−q)/γ)E

G
Λp(µ

N
0 )

H
. (2.100)

ii). For some constant Cq, for all tfin ≥ 0,

E
6
sup
t≤tfin

Λq(µ
N
t )

7
≤ (1 + Ctfin)E

G
Λq(µ

N
0 )

H
. (2.101)
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iii). For all p ≥ 2,

P
6
sup
t≥0

Λp(µ
N
t )

Λp(µN
t−)

≤ 21+(p/2)

7
= 1. (2.102)

iv). There exist C1, C2 > 0 such that, for all ε > 0 and tfin ≥ 0,

P
6
sup
t≤tfin

Λp(µ
N
t ) ≥ max(Λp(µ

N
0 ), C1) + ε

7
≤ C2tfin E

G
Λ2p+γ(µ

N
0 )

H
N−1 ε−2. (2.103)

Define, for b ≥ 1,

TN
b = inf

M
t ≥ 0 : Λp(µ

N
t ) >

b

2
p
2
+1

N
. (2.104)

As a consequence of the estimate above, there exists C = C(p) such that, if the

initial data has the moment estimates Λp(µ
N
0 ) ≤ a almost surely, then

P(TN
Ca ≤ tfin) ≤ CtfinE

G
Λ2p+γ(µ

N
0 )

H
N−1. (2.105)

Throughout, the constants C are allowed to depend on p, q and the same bounds as in

Proposition 2.6, and on the almost sure bound a0 for Λ2(µ
N
0 ) = Λ2(µ

N
t ).

Remark 2.11. i). As in Proposition 2.6, this formulation is general enough to allow

the regularised hard spheres kernel (rHS), or to show that the constants are uniform

in both K,N in the case of cutoff hard potentials (CHPK).

ii). To the best of our knowledge, point iv) is new, and we call this phenomenon concen-

tration of moments. In some applications we will need a bound with high probability

of the form

P(Λp(µ
N
t ) ≤ bN) → 1

or the same thing with sups≤t Λp(µ
N
s ). If we wished to deduce such a bound from

item i), we would need to take some sequence bN → ∞, and the error probability

would be on the order b−α
N , for some α depending on how many moments we assume

on the initial data. However, item iv). instead allows us to achieve this with b = bN

independent of N . The first statement here is somewhat sharper, and may be of

independent interest; however, for applications in this thesis, we will mostly use the

second form, which absorbs some constants.

Proof. By the conservation of energy, we have Λ2(µ
N
t ) = Λ2(µ

N
0 ) ≤ a0 for all t ≥ 0, almost

surely, which implies the uniform bound Supp(µN
t ) ⊂ {|v| ≤

√
Na0} for all t ≥ 0, on the

same almost sure event.

Step 1. Moment Propagation and Creation For the first point of item i), we argue

as in Proposition 2.6. In the case of the Kac process, we write

〈|v|p, µN
t 〉 = Λp(µ

N
t ) = Λp(µ

N
0 ) +

! t

0

〈|v|p, Q(µN
s )〉ds+MN

t (2.106)
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where MN
t is a total variation martingale; this is a noisy version of (2.69). The manipula-

tions here are licit thanks to the time-uniform bound on Supp(µN
t ), for instance replacing

|v|p by a Lipschitz, compactly supported function which agrees with |v|p on the ball of

radius 2
I

NΛ2(µN
0 ), which contains supp(µN

t ), supp(Q(µN
t )) for all t ≥ 0, and all expres-

sions are finite by the support bound. We already established in Step 1 of Proposition

2.6 that, for some λ, and allowing C to depend on a0,

〈|v|p, Q(µN
t )〉 ≤ −λΛp+γ(µ

N
t ) + CΛp(µ

N
t )

≤ −λΛp(µ
N
t )

1+γ/p + CΛp(µ
N
t ).

(2.107)

Taking expectations of (2.106), we find that FN
p (t) := E[Λp(µ

N
t )] solves a differential

inequality
d

dt
FN
p (t) ≤ −λFN

p+γ(t) + CFN
p (t)

analagous to (2.71). The desired bound (2.100) now follows by following the arguments

of Step 3 of Proposition 2.6.

Step 2. Maximal Inequality We next prove the maximal inequality. In this case, we

return to (2.62) to bound the jumps of Λq(µ
N
t ) at collisions by

Λq(µ
N
t )− Λq(µ

N
t−) ≤

C

N
(|v|q−1|v∗|+ |v∗|q−1|v|) sin θ (2.108)

when v, v∗ are the precollisional velocities, and the deflection angle is θ, since the first

term of (2.62) is nonpositive for any value of θ. We now consider the process At whose

jumps are exactly the right-hand side, so that At is increasing and

sup
s≤t

Λq(µ
N
s ) ≤ Λq(µ

N
0 ) + At. (2.109)

We now estimate

E[At] ≤ CE
2! t

0

!

Rd×Rd×Sd−1

(|v|q−1|v*|+ |v*|q−1|v|) sin θB(v − v*, σ)µ
N
s (dv)µ

N
s (dv*)dσ

3

≤ CE
2! t

0

!

Rd×Rd

(|v|q−1|v*|+ |v*|q−1|v|)|v − v∗|γµN
s (dv)µ

N
s (dv*)dσ

3

(2.110)

thanks to the factor of sin θ. Simplifying, we see that

EAt ≤ CE
! t

0

Λq+γ−1(µ
N
s )ds ≤ CE

! t

0

Λq(µ
N
s )ds (2.111)

and the conclusion now follows, using the previous point to bound EΛq(µ
N
t ).

Step 3. Instantaneous Increase of Moments Almost surely, for any t with µN
t ∕=

µN
t−, it follows that µN

t is formed by changing velocities v, v* in µN
t− to post-collision

velocities v′, v′*. We have the bound

|v′|p ≤ (|v′|2 + |v′∗|2)
p
2 = (|v|2 + |v∗|2)p/2 ≤ 2p/2(|v|p + |v∗|p). (2.112)

Using the same bound for v′* leads to the claimed result.
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Step 4. Concentration of Moments To prove item iii), we start by analysing the

martingale MN in the noisy differential inequality (2.106) which plays the same role for

the Kac process that (2.69) does for the Boltzmann equation. From the analysis in [49],

we have

[MN ]t = N−1

! t

0

Hp(µ
N
s )ds; (2.113)

where

Hp(µ
N
t ) :=

!

Rd×Rd×Sd−1

(|v′|p + |v′∗|p − |v|p − |v∗|p)2 B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv∗)dσ.

(2.114)

To bound the integrand Hp(µ
N
t ), we recall that |v′ − v| ≤ |v − v∗| sin θ to obtain

(|v′|p − |v|p)2 ≤ C(p)(1 + |v|p−1 + |v∗|p−1)2|v − v∗|2 sin2 θ

≤ C(p)(1 + |v|2p−2 + |v∗|2p−2)|v − v∗|2θ
≤ C(p)(1 + |v|2p + |v∗|2p)θ.

(2.115)

By assumption,
&
Sd−1 θb(cos θ)dσ =

& π

0
θβ(θ)dθ < ∞, and we will have a finite integral

when integrating the right-hand side. Using a similar computation for (|v′∗|p − |v∗|p)2, we
obtain

Hp(µ
N
t ) ≤ C

!

Rd×Rd×Sd−1

(1 + |v|2p+γ + |v∗|2p+γ)θb(cos θ)µN
t (dv)µ

N
t (dv∗)dσ

≤ C(1 + Λ2p+γ(µ
N
t )).

(2.116)

Returning to (2.113), we conclude that for some C2 = C2(p),

E
G
|MN

t |2
H
≤ C2

16N
E
2! t

0

(1 + Λ2p+γ(µ
N
s ))ds

3
. (2.117)

By the choice of µN
0 and moment propagation results above, the right-hand side is at most

C2tfin(1+Λ2p+γ(µ
N
0 ))/16N , up to a new choice of C2. We now return to (2.107) Set C1 =

(C/λ)p/γ, so that the right-hand side of (2.107) is nonpositive as soon as 〈|v|p, µ〉 ≥ C1.

Define T to be the stopping time

T = inf
)
t ≥ 0 : Λp(µ

N
t ) > max(C1,Λp(µ

N
0 )) + ε

*
(2.118)

and on the event T ≤ tfin, define

T ′ = sup
)
t < T : Λp(µ

N
t ) ≤ max(C1,Λp(µ

N
0 ))

*
. (2.119)

This set is always nonempty, as it includes 0, and we have

lim sup
t↑T ′

〈|v|p, µN
t 〉 ≤ max(C1,Λp(µ

N
0 )); (2.120)

〈|v|p, µN
t 〉 > max(C1,Λp(µ

N
0 )) for all t ∈ (T ′, T ]. (2.121)
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By the choice of C1, it follows that
!

(T ′,T ]

〈|v|p, Q(µN
s )〉ds ≤ 0 (2.122)

and so, from (2.106), we must have MN
T −MN

T ′− ≥ ε. Therefore, on the event {T ≤ tfin},
we have the lower bound supt≤tfin

|MN
t | ≥ ε

2
. We now use Doob’s L2 inequality to bound

E[supt≤tfin
|MN

t |2], and Chebychev’s inequality to bound the probability

P
6
sup
t≤tfin

|MN
t | ≥ ε

2

7
≤ 16ε−2E

G
|MN

tfin
|2
H
. (2.123)

The second item follows immediately from the first.

2.5.3 Polynomial Moment Estimates for the Landau Equation

We next turn to the polynomial moment estimates in the case of the Landau equation

(LE). In this case, the result analagous to Proposition 2.6 is as follows.

Proposition 2.12. Let γ ∈ (0, 1] and let (µt)t≥0 ∈ L∞
loc([0,∞),P2(R3))∩L1

loc([0,∞),P2+γ(R3))

be a weak solution to (LE). Then the following hold.

i). For all q ≥ p ≥ 2 and t > 0, we have

Λq(µt) ≤ Cp,q(1 + t(p−q)/γ)Λp(µ0)

where Cp,q depends (only) on p, q, γ and Λ2(µ0). In particular, all moments Λp(µt)

are finite, uniformly away from t = 0, and if Λp(µ0) is finite, then Λp(µt) is bounded,

uniformly in time. Moreover, if Λp(µ0) < ∞, then the map t → Λp(µt) is continuous

on t ∈ [0,∞).

ii). For any p > 2, if Λp(µ0) < ∞, then for any t ≥ 0,

! t

0

Λp+γ(µu)du ≤ C(1 + t)Λp(µ0) (2.124)

and hence µ ∈ L1
loc([0,∞),Pp+γ(R3)).

The proof of this is very similar to that of Propositions 2.6 - 2.8 above, and so we will

omit it. We will see an analogue of (2.71) in the proof of exponential moment creation

below (equation (2.128); see also [58, Equations 34-35]) and, having obtained this, the

quantitative form given follows by repeating the arguments of Step 3 of Proposition 2.6

verbatim. We remark that in this case, the induction corresponding to Proposition 2.8 is

easier to start, since µt ∈ P2+γ(R3) for almost all t ≥ 0; we refer also to the proof of [58,

Theorem 3] for a precise justification of the finiteness of moments. We also did not need

to include the conservation of energy as a hypothesis, as the statement that energy does

not increase is already part of the definition of weak solutions.
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2.5.4 Exponential Moment Estimates for the Boltzmann and

Landau Equations

We will also use the some results about the appearance of exponential moments for both

the Boltzmann equation for the case of noncutoff hard potentials (NCHP) and the Landau

equation in Chapters 4, 5, which give us access to previous uniqueness results if we start at

any µs, s > 0. The application will be to show, together with a previous uniqueness result,

that if (µt)t≥0, (νt)t≥0 are energy conserving solutions to either (BE, LE) with µs = νs for

s ∈ [0, δ), for some δ > 0, then we have the global uniqueness µt = νt for all t ≥ 0. .

We will use a pair of recent results by Fournier4 [84, 90] concerning exponential moments

in the cases of the Landau equation (LE) and the Boltzmann equation in the case of

non-cutoff hard potentials (NCHP). In the case of non-cutoff hard potentials, exponential

moments 〈ea|v|ρ , µt〉, ρ ∈ (γ, 2] are instantaneously created, which is strictly stronger than

the cutoff case, where only exponential moments of order ρ = γ are created, see the work

of Alonso, Gamba and Taskovic [11]. The result is as follows.

Proposition 2.13. Fix γ ∈ (0, 1] and a kernel B satisfying (NCHP). Then the following

hold.

i). For the Boltzmann case, let (µt)t≥0 ⊂ S be an (energy-conserving) solution to (BE),

and let ρ = min(2γ/(2 − ν), 2). Then there exists a universal a = a(B) < ∞ such

that

sup
t≥0

T
eamin(1,tρ/γ)|v|ρ , µt

U
< ∞.

ii). For the Landau case, there are some constants a > 0 and C > 0, both depending

only on γ, such that all weak solutions (µt)t≥0 ⊂ S to (LE) satisfy

T
ea|v|

2

, µt

U
< ∞

for all t > 0.

We will give a detailed proof of the Landau case, which is more straightforward than the

Boltzmann case, having access to Itô calculus thanks to the locality of LL in v. When

investigating LLf, f(v) = |v|p, one finds terms of order p, p−2, p−4 in v, while by contrast

in the Boltzmann case, even when an exact expansion is possible, one finds terms of all

orders. A full proof of the Boltzmann case is given in [84].

Proof of Proposition 2.13ii). We follow the argument of Fournier [90]. During the proof,

C will denote a constant which may only depend on γ, but may vary from line to line.

4The result on Gaussian moments of the Landau equation appeared in a joint work [90] with the

author, but was contributed entirely by Prof. Fournier.
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Step 1. Povzner Inequality for the Landau Equation We first follow the same

calculations as in Step 1 of Proposition 2.6. Let us fix p > 2; thanks to Proposition 2.12,

we know that for all q > 0, all t0 > 0, supt≥t0 Λq(µt) < ∞, and using a similar truncation

argument to that of Proposition 2.6, we can apply the weak formulation of the Landau

equation with f(v) = |v|p on [t0,∞); as in the Boltzmann case (2.69) we find that Λp(µt)

is of class C1 on (0,∞) and get

d

dt
Λp(µt) =

!

R3

!

R3

LLf(v, v∗)µt(dv∗)µt(dv) for all t > 0. (2.125)

Elementary calculations from the definition of f show that

∂kf(v) = p|v|p−2vk and ∂2
kℓf(v) = p|v|p−21I{k=ℓ} + p(p− 2)|v|p−4vkvℓ

which give

LLf(v, v∗) =
1

2

3"

k,ℓ=1

akl(v−v∗)(p|v|p−21I{k=ℓ}+p(p−2)|v|p−4vkvℓ)+
3"

k=1

p|v|p−2bk(v−v∗)vk.

Let us now examine these terms; to shorten notation, write x = v − v∗. First, using

symmetry and recalling that σ(x)2 = a(x),

3"

k,ℓ,j=1

σk,j(x)σl,j(x)1I{k=ℓ} =
3"

k,ℓ=1

akℓ(x)1I{k=ℓ} = Tr a(x)

and
3"

k,ℓ=1

akℓ(x)vkvℓ =
3"

k,ℓ,j=1

σkj(x)σℓj(x)vkvℓ = |σ(x)v|2.

We can therefore write the expression above concisely as

LLf(v, v∗) = p|v|p−2v · b(x) + p

2
|v|p−2Tr a(x) +

p(p− 2)

2
|v|p−4|σ(x)v|2. (2.126)

Recalling the definition b(x) = −2|x|γx and observing that Tr a(x) = 2|x|γ+2, we have

v · b(x)+ 1

2
Tr a(x)2 = −2|x|γ(v− v∗) · v+ |x|γ(|v|2 + |v∗|2 − 2v · v∗) = −|x|γ|v|2 + |x|γ|v∗|2.

By definition, we have σ(x)x = σ(x)v− σ(x)v∗ = 0, so we repeat the arguments of (2.56)

that

|σ(x)v| = |σ(x)v∗| ≤ min(|v|, |v∗|)||σ(x)|| ≤ C|x|γ/2|v||v∗|.

We therefore find that

LLf(v, v∗) ≤ −p|x|γ|v|p + Cp2|x|γ|v|p−2|v∗|2.

In the kinetic factor |x|γ = |v− v∗|γ, we use as usual the inequalities |x|γ ≥ |v|γ − |v∗|γ in

the negative term, and |x|γ ≤ |v|γ + |v∗|γ in the positive term, to get overall
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LLf(v, v∗) ≤− p|v|p+γ + p|v|p|v∗|γ + Cp2(|v|p−2+γ|v∗|2 + |v|p−2|v∗|2+γ). (2.127)

Integrating with respect to µt in both variables, we obtain from (2.125) that

d

dt
Λp(µt) ≤− pΛp+γ(µt) + pΛp(µt)Λγ(µt) + Cp2(Λp−2+γ(µt)Λ2(µt) + Λp−2(µt)Λ2+γ(µt)).

Using that Λγ(µt) ≤ [Λ2(µt)]
γ/2 = 1, we finally find that, for t ∈ (0,∞),

d

dt
Λp(µt) ≤ −pΛp+γ(µt) + pΛp(µt) + Cp2[Λp−2+γ(µt) + Λp−2(µt)Λ2+γ(µt)]. (2.128)

Step 2. A Differential Inequality We now manipulate (2.128) into a closed differential

inequality for Λp(µt) as we did in the Boltzmann case leading to (2.71), but keeping track

of lower-order terms, and the dependence of the coefficients on p. First, for any α ≥ β ≥ 2,

we use the same argument as in (2.73) that, since |v|2µt(dv) is a probability measure,

Λα(µt) =

!

R3

|v|α−2|v|2µt(dv) ≤
'!

R3

|v|β−2|v|2µt(dv)
((α−2)/(β−2)

= [Λβ(µt)]
(α−2)/(β−2).

We deduce that Λp(µt) ≤ [Λp+γ(µt)]
(p−2)/(p+γ−2), whence

Λp+γ(µt) ≥ [Λp(µt)]
(p+γ−2)/(p−2) = [Λp(µt)]

1+γ/(p−2),

that

Λp−2+γ(µt) ≤ [Λp(µt)]
(p−4+γ)/(p−2),

and that

Λp−2(µt)Λ2+γ(µt) ≤ [Λp(µt)]
(p−4)/(p−2)+γ/(p−2) = [Λp(µt)]

(p−4+γ)/(p−2).

Observing that (p− 4 + γ)/(p− 2) = 1− (2− γ)/(p− 2), we find that, for all p ≥ 4, we

have the differential inequality

d

dt
Λp(µt) ≤ −p[Λp(µt)]

1+γ/(p−2) + pΛp(µt) + Cp2[Λp(µt)]
1−(2−γ)/(p−2). (2.129)

Step 3. We next analyse general differential inequalities of this form, in the same way

we did in the Boltzmann case but again keeping track of lower-order terms. We study

general u : (0,∞) → (0,∞) of class C1 satisfying, for some a, b, c,α, β > 0, for all t > 0,

u′(t) ≤ −a[u(t)]1+α + bu(t) + c[u(t)]1−β.

Let us set h(r) = −ar1+α + br + cr1−β and we observe that

h(r) ≤ −a

2
r1+α for all r ≥ u∗ = max{(4b/a)1/α, (4c/a)1/(α+β)}.
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We now fix t0 > 0. As before, if u(t0) ≤ u∗, we have u(t) ≤ u∗ for all t ≥ t0, because

h(u∗) ≤ 0 and u′(t) ≤ h(u(t)).

On the other hand, if we assume instead u(t0) > u∗, set t1 = inf{t > t0 : u(t) ≤ u∗} and

observe that for t ∈ [t0, t1),

u′(t) ≤ h(u(t)) ≤ −a

2
[u(t)]1+α.

Integrating this inequality, we conclude that, for all t ∈ [t0, t1),

u(t) ≤
?
u−α(t0) +

aα(t− t0)

2

A−1/α

≤
? 2

aα(t− t0)

A1/α
.

This implies that t1 is finite. Since now u(t1) = u∗ by definition and, as before, it follows

that u(t) ≤ u∗ for all t ≥ t1.

Hence in any case, for any t0 > 0, any t > t0, u(t) ≤ max{u∗, [2/(aα(t− t0))]
1/α}. Letting

t0 → 0, we deduce that u(t) ≤ max{u∗, [2/(aαt)]
1/α} for all t > 0, and using the definitions

we conclude that

∀ t > 0, u(t) ≤
' 2

aαt

(1/α

+
'4b
a

(1/α

+
'4c
a

(1/(α+β)

.

We now apply this to (2.129) with a = p, b = p, c = Cp2, α = γ/(p − 2) and β =

(2− γ)/(p− 2), we find that for all p ≥ 4, all t > 0,

Λp(µt) ≤
'2(p− 2)

pγt

((p−2)/γ

+ 4(p−2)/γ +
'
4Cp

((p−2)/2

.

Let us remark that this is the same behaviour as in Proposition 2.12 for the exponents p, 2,

but we have now quantified exactly the coefficient and the lower-order terms. Changing

again the value of C, we conclude that for all p ≥ 4, all t > 0,

Λp(µt) ≤
'
1 +

2

γt

(p/γ

+ (Cp)p/2.

Step 4. Conclusion We now conclude. For a > 0 and t > 0, we write, using that

Λ0(µt) = Λ2(µt) = 1,
!

R3

ea|v|
2

µt(dv) =
"

k≥0

akΛ2k(µt)

k!
= 1 + a+

"

k≥2

akΛ2k(µt)

k!
.

By Step 4,
!

R3

ea|v|
2

µt(dv) ≤ 1 + a+
"

k≥2

1

k!

?
ak
'
1 +

2

γt

(2k/γ

+ ak(2Ck)k
A
.

But
<

k≥2(k!)
−1(xk)k < ∞ if x < 1/e by the Stirling formula. Hence if a < 1/(2Ce),

!

R3

ea|v|
2

µt(dv) ≤ 1 + a+ exp
?
a
'
1 +

2

γt

(2/γA
+ C.

The conclusion follows.
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We also sketch the (much longer) proof of the Boltzmann case.

Sketch Proof of Proposition 2.13i). We sketch the argument of Fournier [84]. First, we

return to (2.57), still using the parametrisation of collisions in terms of (θ,ϕ). In the

special case where p = 2n is an even integer, one can find an exact expansion of |v′|2n using

Newton’s trinomial expansion to find an expansion of |v′|2n in powers of the trigonometric

functions (1 ± cos θ)/2, sin θ and v · Γ(v − v∗,ϕ). The integral over ϕ produces a Wallis

integral, leading to

!

Sd−2

(v · Γ(v − v∗,ϕ))
kdϕ = 1Ik∈2N

k!

2k[(k/2)!]2
(|v|2|v∗|2 − (v · v∗)2)

to find an exact expression for the average
&
|v′|2ndϕ integrated over ϕ, in the form

!
|v′|2ndϕ =

"

(i,j,k)∈An

n!

i!j!((k/2)!)2

6
1 + cos θ

2

7i 6
1− cos θ

2

7j 6
sin θ

2

7k/2

|v|2i|v∗|2j

· · ·×
-
|v|2|v∗|2 − (v · v∗)2

.k/2

with

An :=
)
(i, j, k) ∈ N3 : i+ j + k = n, k even

*
.

Of this sum, the extreme terms (i, j, k) = (n, 0, 0), (0, n, 0) produce the same terms of

order |v|2n, |v∗|2n as we found in the more crude expansion (2.62). If one subtracts |v|2n

and argues similarly for |v′∗|2n, we find the same factor as above reinforcing the negative

term

λ2n :=

!

Sd−1

6
1−

6
1 + cos θ

2

7n

−
6
1− cos θ

2

7n7
b(cos θ)dσ. (2.130)

At this point, one crucially uses the non-cutoff assumption to see that the effect of the

Povzner term is stronger for large n. A simple argument shows that, for the case (NCHP),

that λ2n → ∞; see also Lemma 4.21, whereas in the cutoff case one finds an upper bound

in terms of
&
b(cos θ)dσ, which is finite in these cases. Fournier [84, Lemma 5] found the

lower bound λ2n ≥ cnν/2, and with an an analysis of the θ-integrals in the remaining

terms, one finds

!

Sd−1

(|v′|2n + |v′∗|2n − |v|2n − |v∗|2n)b(cos θ)dσ

≤ −c1n
ν/2(|v|2n + |v∗|2n)

+ c2

n−1"

a=1

6
n

a

76
nν/2

(n− a)ν/2+1
+

1

a

7
(|v|2a|v∗|2(n−a) + |v|2(n−a)|v∗|2a).

(2.131)

If we multiply by the kinetic factor |v− v∗|γ and integrate to find a differential inequality

for Λ2n as before, the negative term produces−nν/2Λ2n+γ(µt)+2nν/222n/γ, and the positive
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term leads to the sum

Sn(µt) =

⌊n/2⌋"

a=1

6
n

a

7
nν/2

aν/2 + 1
Λ2a(µt)Λ2(n−a)+γ(µt)

and we end up with a differential inequality

d

dt
Λ2n(µt) ≤ −c1n

ν/2Λ2n+γ(µt) + 2c1n
ν/222n/γ + c2Sn(µt). (2.132)

We then sum these for the partial sums

EN(t) :=
N"

n=0

(at)2n/γΛ2n(µt)

(n!)β

for some a > 0, β ≥ 1 to be chosen. We note that these are continuous at 0, thanks to the

asymptotic Λ2n(µt) ≤ Cnt
−(2n−2)/γ from Proposition 2.6, and EN(0) = 1. Using (2.132)

to differentiate, one finds three terms

d

dt
EN(t) ≤ −c1FN(t) + c2GN(t) +

2a

γ
HN(t) + C (2.133)

where FN gathers the negative terms for n ≥ 2:

FN(t) :=
N"

n=2

nν/2 (at)
2n/γΛ2n+γ(µt)

(n!)β

and where GN comes from summing the positive terms Sn. Finally HN comes from

differentiating the time-dependent coefficient (at)2n/γ:

HN(t) =
N"

n=1

n(at)2n/γ−1Λ2n(µt)

(n!)β

and C is a constant, uniform in N , coming the final term in (2.132). For any ε > 0, the

term GN is controlled by

GN(t) ≤ εEN(t)FN(t) + a2/γAε(1 + FN(t))

for some A = Aε which does not depend on N . For the term HN(t), for κ > 0 to be

chosen, we bound

nΛ2n(µt)

at
≤ κnν/2 (Λ2n(µt))

1+γ/(2n−2) +
n

at

6
n1−ν/2

κat

7(2n−2)/γ

≤ κnν/2Λ2n+γ(µt) +
n

at

6
n1−ν/2

κat

7(2n−2)/γ

which leads to

HN(t) ≤ κFN(t) + κ(at)2/γΛ2+γ(µt) + (at)2/γ−1

N"

n=1

n(2−ν)/γ−(2−ν)/γ+1

(n!)βκ(2n−2)/γ
.
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Using Stirling’s formula in the final summand,

n1+(1−ν/2)(2n−2)/γ

κ(2n−2)/γ(n!)β
∼ n1−(2−ν)/γnn((2−ν)/γ)−β)

(2π)β/2enβκ(2n−2)/γ

is summable, provided that we choose β = max(1, 2−ν
γ
) so that the exponent 2−ν

γ
− β of

nn is nonpositive, and if we choose κ = 2eβγ/2. We now return to (2.133); provided that

we choose a small enough that 2a/γ ≤ c1
2κ
, we can absorb the multiple of FN coming from

HN into the negative term −c1FN to conclude that, for some finite constants c, C,

d

dt
EN(t) ≤ −cFN(t) +

c

2
EN(t)FN(t) + C.

If we then set TN = inf{t : EN(t) > 2}, then TN > 0 by the continuity of EN , and since

EN = 0, and for t ≤ TN we have d
dt
EN ≤ C. It follows that EN ≥ C−1, uniformly in N ,

and for t ≤ C−1 we conclude that

"

n≥0

Λ2n(µt)(at)
2n/γ

(n!)β
≤ 2.

Using Hölder’s inequality, for all n it follows that, still for t ≤ C−1,

Λ2n/β(µt)(at)
2n/γβ

n!
≤

6
Λ2n(µt)(at)

2n/γ

(n!)β

71/β

≤ 21/β

and so !

Rd

(|v|2/β(at/2)2/γβ)n
n!

µt(dv) =
Λ2n/β(µt)(at/2)

2n/γβ

n!
≤ 2(

1
β
− 2n

γβ
).

The right-hand side is now summable in n, and we observe that 2/β is the exponent ρ in

the theorem, and that the factor t2/γβ = tρ/γ. Summing the last display, we conclude that

V
exp

/6
at

2

7ρ/γ

|v|ρ
0
, µt

W
≤ 2ρ/2

1− 2−ρ/γ

for all t ≤ C−1, which proves the instantaneous appearance of such moments. For t > C−1,

we repeat the same argument on the solution (µs+t0)s≥0 to (BE) with t0 = t − C−1 to

conclude that V
exp

/6
aC−1

2

72/ρ

|v|ρ
0
, µt

W
≤ 2ρ/2

1− 2−ρ/γ
.

The conclusion now follows, with the coefficient a in the statement replaced by

(
a

2
)ρ/γ min(1, C−1).
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2.5.5 Some Further Properties Related to Moments

We conclude with some other properties which will be useful, and which follow in the

spirit of the results before. First, we have made reference throughout to solutions to

the Boltzmann equation for which the energy 〈|v|2, µt〉 is constant. Even relaxing this

restriction, the energy cannot decrease; this is the content of the following result of Lu

and Wennberg [133, Section 3]. This property will be important in Chapter 6, where we

are naturally led to consider solutions to (BE) which do not conserve energy.

Proposition 2.14. Let B be any kernel satisfying the hypotheses of Propositions 2.6-2.8,

and (µt)t≥0 a weak solution to the corresponding Boltzmann equation. Then Λ2(µt) =

〈|v|2, µt〉 is nondecreasing.

We will also make some use of the following ‘uniform integrability’ property for solutions.

Proposition 2.15. Let (µt)t≥0 be a weak, energy-conserving solution to either the Boltz-

mann equation (BE), for a kernel B as in Proposition 2.6, or (LE) for some 0 < γ ≤ 1

with d = 3. Let p ≥ 2 and ε > 0. Then there exists R < ∞ such that

sup
t≥0

!

Rd

(1 + |v|p)1I{|v|>R}µt(dv) < ε.

Proof. This was argued by the author [90, Lemma 9] with a proof based on the local

integrability of the (p+ γ)th moment. We will here argue instead using the continuity of

the pth moment at 0, which was established in Proposition 2.8, 2.12 for the Boltzmann

and Landau cases respectively. Indeed, this absorbs most of the cited proof. Throughout,

we work on Rd, understanding d = 3 in the Landau case.

In either case, we fix ε > 0, and let R1 > 0 be such that
&
Rd(1+ |v|p)1I{|v| ≥ R1}µ0(dv) <

ε. We now set χR1 : Rd → [0, 1] to be a smooth function with 1I{|v|≤R1} ≤ χR1(v) ≤
1I{|v|≤R1+1}, so that

!

Rd

(1− χR1(v))(1 + |v|p)µ0(dv) = 1 + Λp(µ0)− 〈χR1(v)(1 + |v|p), µ0〉 < ε.

Thanks to (BE, LE) and the compact support of χR1(v)(1+|v|p), the map t /→ 〈χR1(v)(1+

|v|p), µt〉 is continuous, and the map t /→ 1 + Λp(µt) is continuous at 0, by Proposition

2.8, 2.12 respectively, and all together the map

t /→
!

Rd

(1− χR1(v))(1 + |v|p)µt(dv)

is continuous at t = 0. It follows that we can find t0 > 0 such that, uniformly in t ∈ [0, t0],

!

Rd

(1 + |v|p)1I{|v| ≥ R1 + 1}µt(dv) ≤
!

Rd

(1 + |v|p)(1− χR1(v))µt(dv) < ε.
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On the other hand, supt≥t0 Λ2p(µt) < ∞ by the moment creation property, and for all

R > 0 a simple Chebychev estimate gives

!

Rd

(1 + |v|p)1I{|v| ≥ R}µt(dv) ≤
1 +Rp

R2p
Λ2p(µt).

It follows that we can find R2 < ∞ such that the right-hand side is at most ε, uniformly

in t ≥ t0. The conclusion follows by taking R := max(R1 + 1, R2).



Chapter 3

Long-Time Propagation of Chaos for

Hard Spheres

3.1 Introduction & Main Results

This chapter is dedicated to Theorem 1, concerning the long-time propagation of chaos

for the Kac process in the case of the hard spheres kernel (HS). Throughout this chapter,

B will be the hard-spheres kernel, except for some preliminary calculations in Section

3.2.1 where we also allow cutoff hard potentials (CHPK). Throughout, we will work with

the weighted Wasserstein metric W1 introduced in Section 2.1, which we generalise to Wγ

when discussing (CHPK). In any case, (µN
t )t≥0 will be a (labelled) Kac process on the

relevant kernel, normalised to the state space S.

We now precisely state the main results of this chapter. Our first theorem controls the

deviation from the Boltzmann flow at a single, deterministic time t ≥ 0, which we refer

to as a pointwise estimate. Moreover, this estimate is uniform in time.

Theorem 3.1. Let 0 < ε < 1
d
and let a ≥ 1. For sufficiently large p, depending on ε, d,

let (µN
t )t≥0 be a Kac process in dimension d ≥ 3, and let µ0 ∈ Sp, satisfying the moment

bounds

Λp(µ
N
0 ) ≤ a; Λp(µ0) ≤ a. (3.1)

Then for some C = C(ε, d, p) < ∞ and ζ = ζ(d) > 0, we have the uniform bound

sup
t≥0

XXW1

-
µN
t ,φt (µ0)

.XX
L2(P) ≤ Ca

'
N ε−1/d +W1

-
µN
0 , µ0

.ζ(
. (3.2)

This generalises, by conditioning, to the case where the initial data µN
0 is random, provided

that EΛp(µ
N
0 ) ≤ a.

This result is, to the best of our knowledge, new, although an equivalent result is known

for Maxwell molecules [48]. Thanks to Proposition 2.1, we can understand this result as a

101
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uniform-in-time-chaoticity result, which gives a power-law rate N−ζ/d, improving on the

rates of Mischler and Mouhot [142] for the hard spheres process.

Our second main theorem controls, in Lq(P), the maximum deviation from the Boltzmann

flow up to a time tfin, in analogy with Proposition 1.2. We refer to this as a pathwise,

local uniform in time estimate.

Theorem 3.2. Let 0 < ε < 1
2d
, a ≥ 1 and q ≥ 2. For sufficiently large p ≥ 0, depending

on ε, d, let (µN
t )t≥0 be a Kac process on N ≥ 2 particles and let µ0 ∈ Sp, with initial

moments

Λpq(µ
N
0 ) ≤ aq; Λp(µ0) ≤ a. (3.3)

For some α = α(ε, d, q) > 0 and C = C(ε, d, q, p) < ∞ and ζ = ζ(d) > 0, we can estimate,

for all tfin ≥ 0,

XXXXX sup
t≤tfin

W1

-
µN
t ,φt(µ0)

.
XXXXX
Lq(P)

≤ Ca
-
(1 + tfin)

1/q N−α +W1(µ
N
0 , µ0)

ζ)
.
. (3.4)

The exponent α is given explicitly by

α =
q′

2d
− ε (3.5)

where 1 < q′ ≤ 2 is the Hölder conjugate to p.

At the end of this section, we will discuss related results, and how they may be compared

to this estimate.

An unfortunate feature of these approximation theorems is the dependence on the un-

known, and potentially large, moment index p. We will also prove the following variant

of the theorems above which allows us to use any moment estimate higher than second.

Theorem 3.3. [Convergence with few moment estimates] Let p > 2 and a ≥ 1. Let (µN
t )

be an N-particle Kac process, and µ0 in S with initial moment estimates

Λp(µ
N
0 ) ≤ a; Λp(µ0) ≤ a. (3.6)

There exists ε = ε(d, p) > 0 and a constant C = C(d, p) such that

sup
t≥0

XXW1

-
µN
t ,φt(µ0)

.XX
L1(P) ≤ Ca(N−ε +W1(µ

N
0 , µ0)

ε). (3.7)

For a local uniform estimate, if q ≥ 2, then there exists a constant C = C(d, p, q) and

ε = ε(d, p, q) > 0 such that, for all tfin < ∞,

XXXX sup
t≤tfin

W1

-
µN
t ,φt(µ0)

.XXXX
L1(P)

≤ Ca((1 + tfin)
1/qN−ε +W (µN

0 , µ0)
ε). (3.8)
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In the course of proving this result, we will see that the higher moment conditions are

only required to obtain the optimal rates on a very short time interval [0, uN ] and, in

particular, we can obtain very good time-dependence without higher moment estimates.

We also study the long-time behaviour of the Kac Process. We cannot extend Theorem

3.2 to control the maximum deviations over all times t ≥ 0, due to the following recurrence

features of the Kac process.

Theorem 3.4. There exists a universal constant C > 0 such that, for every N , for every

p > 2 and a > 1, there exists a Kac process (µN
t )t≥0 ⊂ S with initial moment Λp(µ

N
0 ) ≤ a

but, almost surely,

lim sup
t→∞

W1

-
µN
t ,φt(µ

N
0 )

.
≥ 1− C√

N
. (3.9)

Hence we cannot omit the factor of (1 + tfin)
1/q in Theorem 3.2.

In keeping with the terminology of the theorems above, we say that there is no pathwise,

uniform in time estimate. In the course of proving Theorem 3.4, we will show that the

long-time deviation (3.9) is typical for the Kac process. We will show that the Kac process

returns, infinitely often, to subsets of SN which are far from the Boltzmann flow. However,

we make the following remark on the times necessary for such deviations to occur.

Corollary 3.5. Let (µN
t )t≥0,N≥2 be a family of Kac processes with an initial exponen-

tial moment bound E〈ez|v|, µN
0 〉 ≤ b, for some z > 0 and b > 0 and suppose that

E[W1(µ
N
0 , µ0)] ≤ CN−α, for some α > 0 and some nonrandom µ0. Define

TN,ε = inf
)
t ≥ 0 : W1(µ

N
t ,φt(µ0)) > ε

*
(3.10)

and let tN,ε,δ be the quantile constants of TN,ε; that is,

tN,ε,δ = inf {t ≥ 0 : P(TN,ε ≤ t) ≥ δ} . (3.11)

Then, for fixed ε, δ > 0, tN,ε,δ → ∞, faster than any power of N .

This follows as an immediate consequence of Theorem 3.2. Taken together with Theorem

3.4, we see that macroscopic deviations occur, but typically at times growing faster than

any power of N .

In the course of proving Theorems 3.1, 3.2, we will establish the following continuity

estimate for the Boltzmann flow φt measured in the Wasserstein distance W1, which may

be of independent interest.

Theorem 3.6. There exist constants p, C, w depending only on d such that, whenever

a ≥ 1 and µ, ν ∈ S have Λp(µ, ν) ≤ a, we have the estimate

W1 (φt(µ),φt(ν)) ≤ CewtaW1(µ, ν). (3.12)
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Moreover, for all p > 2, there exist constants C = C(p, d) and ζ = ζ(p, d) > 0 such that,

whenever µ, ν ∈ S with Λp(µ, ν) ≤ a, we have the estimate

sup
t≥0

W1 (φt(µ),φt(ν)) ≤ CaW1(µ, ν)
ζ . (3.13)

In the second part of the theorem, and in Theorems 3.1, 3.2 above, the exponent ζ can be

taken to be λ0/(λ0 + 2w) by making p large enough, where w is as in the first part of the

theorem, and λ0 = λ0(d) > 0 is the spectral gap of the linearised Boltzmann operator,

see Section 3.2. While it may be possible to obtain better continuity results, with ζ close

to 1, we will not explore this here.

Remark 3.7. Let us remark that all of the analysis in this chapter would apply equally

well to the case of cutoff hard potentials (CHPK). However, carefully following the proofs

shows that the number of required moments p would diverge as K → ∞. This would be

catastrophic for our programme in Chapter 4, where we take K → ∞, uniformly in N

and with only finitely many moments, as a step towards the propagation of chaos for the

noncutoff case (NCHP).

3.1.1 Plan of the Chapter

Our programme will be as follows:

i. In the remainder of this section, we will then discuss several aspects of our results

in view of the literature.

ii. Section 3.2 reviews some elements of the previous works of Mischler and Mouhot

[142] and Norris [157] which we will use in this chapter. We cite the analytical

regularity and stability estimates from [142], and a representation formula in terms

of branching processes from [157] with associated estimates. Together, these allow

us to prove Theorem 3.6.

iii. In Section 3.3, we use ideas of infinite-dimensional differential calculus, developed

by [142] and recalled in Section 3.2, to prove an interpolation decomposition of the

difference µN
t −φt(µ

N
0 ). This is the key identity used for the proofs of Theorems 3.1,

3.2, as all of the terms appearing in our formula can be controlled by the stability

estimates.

iv. We then turn to the proof of Theorem 3.1. The main technical aspect is the control

of a family of martingales (MN,f
t )f∈A1 , uniformly in f . This is obtained using a

quantitative compactness argument similar to that in [157].

v. For a local uniform analysis, we first adopt the ideas of Theorem 3.1 to a local uni-

form setting, with suitable adaptations, to state a local uniform martingale estimate,
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and deduce a preliminary, weak version of Theorem 3.2 with worse dependence in

tfin. We then use the stability estimates to ‘bootstrap’ to the improved estimate

Theorem 3.2, and finally return to prove the local martingale estimate.

vi. We next prove Theorem 3.3. The strategy here is to use the branching process

representation from [157], recalled in Section 3.2, to control behaviour on a very

short time interval [0, uN ], and use the previous results, together with the moment

production property from Propositions 2.8-2.10, to control behaviour at times larger

than uN .

vii. We prove Theorem 3.4, based on relaxation to equilibrium.

3.1.2 Discussion of Our Results

In this subsection, we will discuss the interpretation of our results, especially in view of

the framework of chaoticity set in Chapter 2.

1. Theorems 3.1, 3.2 as a pathwise interpretation of the Boltzmann Equation

In this chapter in particular, our approach is driven by viewing µN
t as a noisy perturbation

of the Boltzmann equation (BE). This follows the same approach as Norris [157], see also

the works [49, 158] on general approximations of ordinary differential equations by Markov

processes. The approach of Theorem 3.2 of seeking pathwise local uniform estimates is

particularly natural in this context, as this corresponds to typical estimates from the

theory of fluid limits, for example [49, Theorem 4.2]. We also write everything in terms

of the maps φt : S → S, as the analysis is based on exploiting properties of these maps,

as in [142, 158].

Another example from kinetic theory in which this philosophy is natural is the case of

Vlasov dynamics. In this case, we write µN,Vl
t for the N -particle empirical measure,

evolving under (nonrandom) Hamiltonian dynamics; Dobrushin [63] showed that µN,Vl
t is

a weak measure solution to the associated mean field Vlasov equation. For the case of

Kac dynamics, we may interpret Theorems 3.1, 3.2 as saying that

∀t ≥ 0 µN
t = φt(µ

N
0 ) +NN

t (3.14)

where NN
t is a stochastic noise term, which is small in an appropriate sense; compare also

to (1.15) in the introduction. This is a general phenomenon in the ‘fluid limit’ scaling of

Markov processes [49, 157, 158]. In this sense, we may interpret the Boltzmann equation

in a pathwise sense, which is valid for any individual N , and without chaoticity assump-

tions on the initial data. In estimating W1(φt(µ0), µ
N
0 ) using either of the theorems, the

assumption of chaoticity of the initial data will enter via the requirement that W1(µ0, µ
N
0 )

is small, which is equivalent to chaoticity in the N → ∞ limit by Proposition 2.1.
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2. Comparison of Results and Techniques to the literature. The analysis of this

chapter follows leading to Theorems 3.1 - 3.2 the ideas of a Mischler and Mouhot [142]

in a pathwise framework and incorporating suitable probabilistic ideas from the work of

Norris [157], as discussed above, and it is instructive to compare our results to those on

which we build.

A first significant difference between Theorems 3.1 - 3.3 to those of Mischler and Mouhot

[142, Theorems 6.1-6.2] is that we work pathwise, in the spirit of the fluid limits [49]

mentioned above. Results similar to the pointwise estimates (Theorem 3.1 and the first

item of Theorem 3.3) could be derived from the estimates on finite marginals similar to

[142, Theorems 6.1-6.2], as in Proposition 2.1, but this is now subsumed into our proof,

following the techniques of [157]. In the case of the local uniform estimates (Theorem 3.2

and the second item of Theorem 3.3), such estimates cannot even be expressed in terms

of the single-time marginals (Law(µN
t ))t≥0.

Secondly, we obtain a stronger rate of convergence than the results of Mischler and

Mouhot, still uniformly in time, and under weaker moment conditions. The conclusions

of [142, Theorems 6.1-6.2] have a final rate going as a negative power of (logN), which

is weaker than our rate N−α. This is mainly a result of Theorem 3.6, which improves

over the analagous estimate in [142, Section 6.8]. Moreover, we achieve these rates with

only finitely many moments, allowing a pth moment control, any p > 2, in Theorem 3.3 or

(constructible, finite) p in Theorems 3.1-3.2, whereas the corresponding theorem in [142]

required exponential moments or the compact support of µ0. Let us also remark that all

of the conditions (A1-5) from [142] are used our analysis:

i). Assumption (A1) corresponds to the moment bounds, which follow from the dis-

cussion of moment bounds in Propositions 2.6, 2.10.

ii). Assumption (A2i) and (A5) concern the continuity of the Boltzmann flow φt, which

is the conclusion of Theorem 3.6, which we prove along the way. Assumption (A2ii)

concerns the continuity of the collision operator Q, which is discussed in Section

3.2.3.

iii). Assumption (A3) is the convergence of the generators. A special case of this is the

content of Lemma 3.19, which is used to prove our ‘interpolation decomposition’

Formula 3.3.1.

iv). Assumption (A4) is the differential stability of the Boltzmann flow φt, recalled

in Proposition 3.15, which is crucial to obtaining estimates with good long-time

properties.

By comparison to the work of Norris [157], which was the other main inspiration for

the content of this chapter, the main novelty is the good behaviour of our estimates
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in long-time, compared to Proposition 1.2). When using the same branching process

representation from [157] recalled in Section 3.2, which is helpful in short-time when only

few moments are assumed in Theorem 3.3, or for the Boltzmann equation in Theorem

3.6, we introduce a new ‘localisation’ idea to control certain bad events on (very) short

times before using the moment creation property from Proposition 2.10. This allows us

to improve slightly over Proposition 1.2 and have a control in L1(P) rather than with high

probability, see the proof of Theorem 3.3 in Section 3.6.

4. Sharpness of our Results We will now discuss how sharp the main results (The-

orems 3.1, 3.2) are, with regards to dependencies in N , and the terminal time tfin in the

case of Theorem 3.2.

4a. N-dependence It is instructive to first consider the ‘optimal’ case of independent

particles, for which the empirical measure converges in Wasserstein distance at rate N−1/d.

More precisely, for d ≥ 3, let µ ∈ Sp with an estimate Λp(µ) ≤ a for p ≥ 3d
d−1

, and let µN

be an empirical measure for N independent draws from µ. Then, for some C = C(a, k, d),

we have XXW1(µ
N , µ)

XX
L2(P) ≤ CN−1/d. (3.15)

This is shown in [157, Proposition 9.3]. Moreover, this rate is optimal: if µ is absolutely

continuous with respect to the underlying Lebesgue measure, then the optimal approxi-

mation in W1 metric is of the order N−1/d, for d ≥ 3. Results of Talagrand ([174, 175],

and discussion in [87]) suggest that this may also be true for higher Lp norms, at least

for the simple case of the uniform distribution on (−1, 1]d.

In view of this, we see that the exponent for the pointwise bound is almost sharp, in the

sense that we obtain exponents ε− 1
d
which are arbitrarily close to the optimal exponent

−1
d
, but cannot obtain the optimal exponent itself. This appears to be a consequence

of using a particular estimate (3.85) from [142], which is ‘almost Lipschitz’ in a similar

sense. For the local uniform estimate Theorem 3.2, we obtain exponent −α, where α is

given by

α = −ε+
q′

2d
;

1

q
+

1

q′
= 1 (3.16)

when considering estimates in Lq(P). In the special case q = 2, this produces the almost

sharp exponent as discussed above. However, for q > 2, the exponents are bounded away

from −1
d
, and so do not appear to be sharp.

We believe that our techniques could be modified to prove an estimate for Theorem 3.1,

and Theorem 3.2 in the case q = 2, in order to obtain the optimal rate N−1/d discussed

above, for instance by using the short-time (Lipschitz) first-order stability estimate found

in the proof of Proposition 3.15. However, this would likely come at the cost of poor
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dependence in time. Since a similar result (Proposition 1.2) is already known, and since

this is not the spirit of this work in seeking to optimise time dependence, we will not

consider this further.

4b. Time Dependence In light of Theorem 3.4, we see that we cannot exclude the

factor (1+tfin)
1/q in Theorem 3.2. Hence, this time dependence is sharp among power laws.

However, we do not know what the true sharpest time-dependence is. Similar techniques

to those of Graversen and Peskir [103] may be able to provide a sharper bound; we do

not explore this here.

We remark that Theorem 3.2 interpolates between almost optimal N dependence at q = 2,

and almost optimal tfin dependence as q → ∞. Moreover, by taking q → ∞, we sacrifice

optimal dependence in N , but the exponent α(d, q) is bounded away from 0, and so we

have good convergence, on any polynomial time scale. This is the content of Corollary

3.5.

5. Other Models Since this chapter is based on a pathwise modification of the tech-

niques of Mischler and Mouhot [142], models which satisfy the conditions discussed there

may also be amenable to our techniques, see also the work [143].

a). Other Kac Processes In the work [142], Mischler and Mouhot show how the as-

sumptions (A1-5.) also hold for the Kac process in the case of Maxwell molecules

with or without cutoff (GMM, tMM), including the stability estimates analagous to

Proposition 3.15 in some different functional spaces. For this case, a result similar

to Theorem 3.1 is already known by a different method by Cortez and Fontbona

[48, Theorem 2], using the Tanaka coupling discussed in the introduction; see also

Chapter 4.

As already commented in Remark 3.7, the same techniques of this chapter would

also apply in the case of cutoff hard potentials (CHPK), although the number of

moments p required would also depend on the cutoff K, which is not helpful for

our purposes in Chapter 4, see also Remark 3.18. In the case of noncutoff hard

potentials (NCHP), the study of the Boltzmann equation is significantly less ad-

vanced, since one must account for the double-unboundedness (unboundedness in

the velocity variable as well as the angular singularity). Indeed, one of the main

contributions we make in Chapter 4 is a new uniqueness and stability result (The-

orem 4.1 and Corollary 4.2) which applies naturally to the empirical measures µN
t

of the Kac process, in that it requires neither regularity nor exponential moments.

Even with this result in hand, it is not obvious how to apply the techniques of

this chapter, since we cannot prove the existence of a functional derivative, nor the

‘second-order’ estimate in the sense of Proposition 3.15.
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b). McKean-Vlasov Dynamics, and Inelastic Collisions. Let us also mention the exam-

ples of McKean-Vlasov dynamics, and Inelastic Collisions, coupled to a heat bath,

which have been studied in the functional framework of [142] by Mischler, Mouhot

and Wennberg in the paper [143]. In these cases, the analagous estimates for sta-

bility and differentiability, computed in [143], in this case with exponential growth

in time (analagous to Step 2 in the proof of Proposition 3.15). As a result, our

methods would still apply, but with correspondingly poor time dependence.

For the case of McKean-Vlasov dynamics without confinement potential, this is a

fundamental limitation; Malrieu [135] showed that the propagation of chaos is not

uniform in time. Instead, he proposed to study a projected particle system, which

satisfies uniform propagation of chaos, and whose limiting flow has exponential con-

vergence to equilibrium [135, Theorem 6.2]. This suggests that it may be possible to

use our bootstrap method, used in the proof of Theorem 3.2, to obtain a pathwise

estimates with good long-time properties, analagous to Theorem 3.2.

We remark that, in the case of McKean-Vlasov dynamics, the presence of Brownian

noise may complicate the derivation of the interpolation decomposition (Formula

3.3.1), which is the key identity required for our argument.
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3.2 A review of Previous Analyses

In this section, we will recall in detail some previous analyses of the Kac process and the

Boltzmann equation in the cutoff cases (HS, CHPK) by Norris [157] and Mischler and

Mouhot [142]. We will build on these results in this chapter, and we will also use the

results in the case of cutoff hard potentials (CHPK) as a stepping stone when we deal

with the noncutoff hard potentials (NCHP) in Chapter 4. The results of Subsections

3.2.1 - 3.2.3 are not novel, and consist of either reproductions or slight modifications of

the results of the cited works.

i). Subsection 3.2.1 is dedicated to a branching process representation of either the

difference of a Kac process and the Boltzmann Equation, or two solutions to the

Boltzmann equation, and some estimates for the objects appearing in this repre-

sentation. We reproduce the main steps in the proof of [157, Theorem 1.1], which

produces estimates in the weighted Wasserstein1-type metrics Wγ assuming only

p > 2 moments on the initial data. We give as a series of propositions, with the

necessary modifications to cover (CHPK) and to track, in this case, the dependence

of the final result on K.

ii). Subsection 3.2.2 gives some consequences of the branching process formula, including

a first step towards Theorem 3.6 and a convergence estimate for the Kac process in

the case of cutoff hard potentials (CHPK).

iii). Subsection 3.2.3 reviews the differential stability of the Boltzmann semigroup φt in

the case of hard spheres (HS), closely following [142]. We will also review some

continuity estimates for the collision operator Q in this case, and prove a technical

boundedness property for the functional derivative Dφt.

iv). In Subsection 3.2.4, we prove Theorem 3.6, based on comparing the short-time

continuity from the branching process representation, and the long-time stability in

the differential stability estimates. This contains the only (essential) novel content

of this section.

Since we will use the result on the convergence of the Kac process in the case (CHPK) as

a step towards the noncutoff case in Chapter 4, we will present the arguments of Subsec-

tions 3.2.1 - 3.2.2 for both cases, understanding BK = B, K = 1, γ = 1 in the case (HS).

We first note a definition of some spaces of signed measures, which will be useful through-

out this section.

Definition 3.2.1. Consider the space Y of signed measures, given by

Y = {ξ : ‖ξ‖TV < ∞; 〈1, ξ〉 = 0} . (3.17)
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We equip Y with the total variation norm ‖ · ‖TV. For real q ≥ 0, we define the subspace

Yq of measures with finite qth moments:

Yq = {ξ ∈ Y : 〈1 + |v|q, |ξ|〉 < ∞} . (3.18)

We define the norm with q-weighting on Yq by

‖ξ‖TV+q = 〈1 + |v|q, |ξ|〉. (3.19)

The notation ‖ · ‖TV+q is chosen to emphasise that this is a total variation norm, with

additional polynomial weighting of order q, while avoiding potential ambiguity with the Lq

norms of random variables.

Remark 3.8. The total variation norms ‖ · ‖TV+q appearing in the following analysis are

much stronger than the Wasserstein distance W1 appearing in Theorems 3.1, 3.2, 3.3.

We can understand this as follows. Recalling the definitions of Aγ in (2.7), we note that

the TV + 2 distance is given by a duality

‖µ− ν‖TV+2 = sup
f∈A0

|〈f, µ− ν〉| (3.20)

and, if we write Aγ|r for the restriction of functions to [−r, r]d, then the inclusion

Aγ|r ⊂ A0|r (3.21)

is compact in the norm of A0|r for any γ ∈ (0, 1], by the classical theorem of Arzelá-

Ascoli. This is at the heart of a quantitative compactness argument in Proposition 3.11

and Lemmas 3.21, 3.22, which allows us to take the supremum over f ∈ Aγ inside an

expectation.



112 3.2. A REVIEW OF PREVIOUS ANALYSES

3.2.1 Branching Process Representation

We begin by developing a representation formula for both the Kac process and the Boltz-

mann equation in the cases (HS) and cutoff hard potentials (CHPK), first developed by

Norris [157], which leads to the stability of the Boltzmann flow and the convergence of

the Kac process in both cases, albeit not uniformly in time. This framework is particu-

larly useful as a step towards Theorems 3.3 - 3.6, and in the case (CHPK), because the

estimates behave well with any p > 2 moments, uniformly in K.

Random Measures Associated to the Kac Process We first introduce the jump

measure and compensator associated to the cutoff Kac process (µN,K
t )t≥0. These defini-

tions are general for Markov processes of finite rate, see [49]. We recall that SN is the

state space of the unlabelled Kac process normalised to S, given by the set of all measures

µN ∈ S which are the normalised empirical measure of N points.

Definition 3.2.2. [Jump Measure and Compensator] Let (µN,K
t )t≥0 be a Kac process for

the kernel BK on N particles, either in the case (HS, CHPK).

(i.) The jump measure mN,K is the unnormalised empirical measure on (0,∞)×SN on

all pairs (t, µN,K
t ) such that µN,K

t ∕= µN,K
t− .

(ii.) Let QN,K be the kernel on SN given by

QN,K(µ
N , A) = N

!

Rd×Rd×Sd−1

1I(µN,v,v!,σ ∈ A)BK(v − v*, dσ)µ
N(dv)µN(dv*).

(3.22)

The compensator mN,K of the jump measure is the measure on (0,∞) × SN given

by

mN,K(dt, A) = QN,K(A, dµ
N)dt. (3.23)

Since we are working with the cutoff process, both of these measures are almost surely

finite on compact subsets (0, t] × SN , for any t < ∞. In the case of hard spheres, we

omit the sub/superscripts ·K , ·K . A calculus of martingales for such processes is recalled

in Appendix 3.A.

A Branching Process We next introduce branching processes, which gives a proba-

bilistic representation of the difference between two solutions to (BE) or such a solution

and a Kac process.

Definition 3.2.3 (Linearised Kac Process). Write V = Rd and V ∗ for the signed space

V ∗ = V × {±1} = V + ⊔V −. We write π : V ∗ → V as the projection onto the first factor,



CHAPTER 3. LONG-TIME PROPAGATION OF CHAOS FOR HARD SPHERES113

and π± : V ± → V for the obvious bijections.

Let (ρt)t≥0 be family of measures on V = Rd such that1

〈1, ρt〉 = 〈|v|2, ρt〉 ≤ 1 for all t ≥ 0; Λ2+γ(ρt) ∈ L1
loc([0,∞)). (3.24)

The Linearised Kac Process in environment (ρt)t≥0 is the branching process on V ∗ where

each particle of type (v, 1), at rate 2BK(v − v∗, σ)ρ(dv*)dσ, dies, and is replaced by three

particles, of types

(v′(v, v*, σ), 1); (v′*(v, v*, σ), 1); (v*,−1) (3.25)

where v′, v′* are the post-collisional velocities given by (6.1). The dynamics are identical

for particles of type (v,−1), with the signs exchanged.

We write Ξ∗
t for the associated process of unnormalised empirical measures on V ∗, and

define a signed measure Ξt on V by including the sign at each particle:

Ξt = Ξ+
t − Ξ−

t ; Ξ±
t = Ξ*

t ◦ π−1
± . (3.26)

We can also consider the same branching process, started from a time s ≥ 0 instead. We

write E for the expectation over the branching process, which is not the full expectation in

the case where ρ is itself random. When we wish to emphasise the initial velocity v and

starting time s, we will write E(s,v) when the process is started from Ξ∗
0 = δ(v,1) at time s,

and Ev in the case s = 0.

Throughout, we write |·| for the total variation measure associated to the signed measures

Ξt on V = Rd. Provided that the initial data Ξ0 has a finite second moment 〈1+|v|2, |Ξ0|〉,
this bound is propagated, and in particular the branching process is almost surely non-

explosive:

E〈1 + |v|2, |Ξt|〉 ≤ 〈1 + |v|2, |Ξ0|〉 exp
2
CK

! t

0

Λ2+γ(ρs)ds

3
(3.27)

or more generally, if ρ ∈ L1
loc([0,∞),Sp+γ) for p ≥ 2, there is a constant C, now also

depending on p, such that

E〈1 + |v|p, |Ξt|〉 ≤ 〈1 + |v|p, |Ξ0|〉 exp
2
CK

! t

0

Λp+γ(ρs)ds

3
. (3.28)

In the case where we start from Ξ0 = δ(v,1), the first term on the right-hand side is

(1 + |v|2). Recall from Chapter 2 that Aγ is the set of all functions f on Rd, such that
Jf(v) = (1 + |v|2)−1f(v) satisfies

| Jf(v)| ≤ 1;
| Jf(v)− Jf(w)|

|v − w|γ ≤ 1 for all v ∕= w. (3.29)

1This is a mild generalisation of the definition in [157, Section 4], but the proofs work in exactly the

same way.
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From the bound (3.27), we can now define, for functions of quadratic growth,

fst(v0) = E(s,v0) [〈f,Ξt〉] . (3.30)

When we wish to emphasise the environment, we will write fst[ρ](v0). We now recall the

following estimates from [157]:

Proposition 3.9 (Continuity Estimates for fst). Fix t ≥ 0, and for β ∈ (0, 1), let yβ(t), zt

be given by

yβ(t) = zt sup
0≤s<s′≤t

=
(s′ − s)−β

! s′

s

Λ2+γ(ρu)du

>
; (3.31)

zt = exp

2
CK

! t

0

Λ2+γ(ρu)du

3
. (3.32)

Then the constant C in the definition of zt can be chosen, depending only on d, such that,

for f ∈ Aγ and s ≤ t, we have fst ∈ zt Aγ. Moreover, for the same Cf , for all v and all

0 ≤ s ≤ s′ ≤ t,

|fst(v)− fs′t(v)| ≤ C(1 + |v|2+γ)yβ(t)(s
′ − s)β.

This is, in our notation, a reformulation of [157, Propositions 4.3]. We apply this to the

Kac process and the Boltzmann equation via the following representation formula, which

extends [157, Proposition 4.2].

Proposition 3.10. [Representation formula for Cutoff Cases] Let us fix µ0, ν0 ∈ S2+ε

for some ε > 0, and corresponding solutions (µK
t )t≥0, (ν

K
t )t≥0 to the Boltzmann equation

(BE), and let µN,K
t ∈ SN be a N-paraticle Kac process. Let mN,K ,mN,K be the jump

measure and compensator for the Kac process given by Definition 3.2.2.

i). (Kac Case) Consider the branching processes defined above and write fst = fst[ρ
N ]

with the random environment

ρNt =
µN,K
t + µK

t

2
. (3.33)

Then, for all t ≥ 0, and all functions f of quadratic growth, we have

〈f, µN,K
t − µK

t 〉 = 〈f0t[ρN ], µN,K
t − µ0〉+MN,K,f

t (3.34)

where

MN,K,f
t =

!

(0,t]×SN

〈fst[ρN ], µN − µN,K
s− 〉(mN,K −mN,K)(ds, dµN). (3.35)

ii). (Boltzmann Case) Consider the deterministic environment

ρt =
µK
t + νK

t

2
. (3.36)

Then, for all t ≥ 0 and all f of quadratic growth,

〈f, µK
t − νK

t 〉 = 〈f0t, µ0 − ν0〉. (3.37)
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Our last proposition for both cases is the following, which controls a suprema of the

stochastic integrals similar to those on the right-hand side of (3.34). The following propo-

sition will give such a control for a related family of martingales, again with a potentially

random environment, assuming an almost sure bound on the (2 + γ)th moment Λ2+γ(ρt),

which diverges no faster than t−1+ε as t ↓ 0 for some ε > 0.

Proposition 3.11. Let ρt be a potentially random environment such that, for some β ∈
(0, 1),

w =

XXXX sup
t≥0

6
Λ2+γ(ρt)

βtβ−1 + 1

7 XXXX
L∞(P)

< ∞. (3.38)

For f ∈ Aγ and 0 ≤ s ≤ t, let fst = fst[ρ] denote the propagation in this environment, as

described above.

Let p > 2 and a ≥ 1, and let µN,K
t ∈ SN be a Kac process with initial moment E[Λp(µ

N
0 )] ≤

a, and let mN,K ,mN,K be the random measures given by Definition 3.2.2. We write

4MN,K,f
t [ρ] =

!

(0,t]×SN

〈fst[ρ], µN − µN,K
s− 〉(mN,K −mN,K)(ds, dµN). (3.39)

In this notation, for any tfin ≥ 0, we have the bound
XXXXX sup

t≤tfin

sup
f∈Aγ

4MN,K,f
t

XXXXX
L1(P)

≤ aeCKw(1+tfin)N−η (3.40)

for some C = C(d, p, β, γ) and η = η(d, p, β, γ) > 0. Here, we emphasise that ‖ · ‖L1(P)

refers to the L1 norm with simultaneous expectation over µN
t and the environment ρ.

Proof of Propositions

We start with the following lemma.

Lemma 3.12. In either case (HS, CHPK), there exists C < ∞,α > 0, depending only

on b such that, for all v, v′ ∈ Rd, we have the estimate

sup
v!∈Rd

‖BK(v − v*, ·)− BK(v
′ − v*, ·)‖L1(dσ) ≤ CKα|v − v′|γ. (3.41)

Proof. The case for (HS) is immediate; we check the case (CHPK). Using the convexity of

b, it follows that b is differentiable almost everywhere on (0, 1), and from the asymptotic

of b, one can check the bound

b′(x) ≤ C(1− x)−2−ν/2 (3.42)

for some constant C, which depends only on the singularity of b in (NCHP). From (NCHP),

we calculate that the cutoff is at θ0(K) = G(K) ≤ CK1−1/ν in the notation of Section

2.4, and so there exists α > 0, C such that

sup
x≤cos θ0(K)

(|b(x) + |b′(x)|) ≤ CKα. (3.43)
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Let us fix u, u′ ∈ Sd−1. By splitting the integral into three regions, we find

!

Sd−1

|BK(u, σ)− BK(u
′, σ)|dσ ≤ |u′ − u| sup

θ≥θ0(K)

(|b′(cos θ)|+ |b(cos θ)|)

≤ C|u′ − u|Kα.

(3.44)

Accounting for the change in the kinetic factor, the function Ψ(r) = rγ is Lipschitz

continuous on [1,∞), and so this extends to general v, w of norm at least 1:

‖BK(v, ·)− BK(w, ·)‖L1(dσ) ≤ C|v − w|Kα ∀v, w : |v|, |w| ≥ 1. (3.45)

We now consider the function

F (v*) = ‖BK(e1 − v*, ·)− BK(−e1 − v*, ·)‖L1(dσ). (3.46)

If |v*| ≤ 2, then we use the bound ‖BK(±e1−v*, ·)‖L1(dσ) ≤ CK to see that F (v∗) ≤ CK.

On the other hand, in the region |v*| ≥ 2, it follows from (3.45) that F ≤ CKα and,

combining, we conclude that

sup
v!∈Rd

‖BK(e1 − v*, ·)− BK(−e1 − v*, ·)‖L1(dσ) ≤ CKα. (3.47)

For general v ∕= v′, there exists a rotation and scaling of Rd taking 2e1 to v − v′. Using

the invariance under rotation and the scaling property of BK , we conclude that

sup
v!∈Rd

‖BK(v − v*, ·)− BK(v
′ − v*, ·)‖L1(dσ) ≤ CKα|v − v′|γ (3.48)

as desired.

We now turn to Proposition 3.9.

Proof. We mimic the arguments [157, Propositions 4.3, 4.5] with the necessary adapta-

tions for our case.

Step 1. Growth Bound Firstly, the estimate (3.27) already cited above proves the

claimed growth condition.

Step 2. Velocity Dependence In order to estimate the difference f0t(v0)− f0t(w0),

we introduce a coupling of the processes Ξ*
t started at the initial data (v0, 1), (w0, 1). We

consider a branching process on W = (Rd × Rd) ⊔ Rd ⊔ Rd = W0 ⊔ W1 ⊔ W2, where

particles can either be coupled pairs (v, w) ∈ (Rd × Rd), or uncoupled particles in one of

two disjoint copies of Rd, and where each particle is assigned a sign ±1. The branching

rules for uncoupled particles are the same as in Definition 3.2.3, while coupled particles of
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type (v, w) scatter to remain coupled as far as possible, but undergo decoupling transitions

at rate

‖BK(v − v*, ·)− BK(w − v*, ·)‖L1(dσ) ρt(dv*). (3.49)

Let Γ0*,Γ1*,Γ2* be the empirical measures on Wi × {±1}, i = 0, 1, 2, and consider the

projection maps pi : W0 × {±1} → Rd ×±1 by projecting onto the ith marginal, i = 1, 2.

The empirical measures

Ξi*
t = Γ0*

t ◦ p−1
i + Γi*

t , i = 1, 2 (3.50)

are now a coupling of Linearised Kac processes. Using the bound (3.27) on each marginal,

we have estimates starting from a coupled pair

E(0,(v0,w0)∈V0)〈1 + |v|2 + |w|2,Γ0*
t 〉 ≤ zt (1 + |v0|2 + |w0|2) (3.51)

or from decoupled particles, for all 0 ≤ s ≤ t,

E(s,v0∈V1)〈1 + |v|2,Γ1*
t 〉 ≤ zt (1 + |v0|2) (3.52)

and similarly for V2. Let us now run this process starting from a particle of type (v0, w0) ∈
V0. Using the triangle inequality inductively, Γ0* is supported only on coupled pairs

(u, u′) ∈ V0 with |u−u′| ≤ |v0−w0|, and thanks to Lemma 3.12, the rate of decoupling of

such a pair is at most CKα|v0 − w0|γ. With this modification, the proof of [157, Lemma

4.5] now gives the estimate

E(0,(v0,w0)∈V0)〈1 + |v|2,Γ1,*
t + Γ2,*

t 〉 ≤ CKα|v0 − w0|γ(1 + |v0|2 + |w0|2) zt. (3.53)

Let us fix f ∈ Aγ. Since the processes Ξ
i,*
t give a coupling of the linearised Kac processes

started at (v0, 1), (w0, 1) respectively, we have

f0t(v0)− f0t(w0) = E(0,(v0,w0)∈V0)

)
〈f ◦ p1 − f ◦ p2,Γ0

t 〉+ 〈f,Γ1
t 〉 − 〈f,Γ2

t 〉
*
. (3.54)

On the support of Γ0
t , the difference f ◦ p1 − f ◦ p2 is at most 3(1 + |v|2 + |w|2)|v0 −w0|γ,

and we can estimate the integral using (3.51). The other terms only gain contributions

from decoupled particles, and we can estimate both such terms using (3.53) and recalling

that |f | ≤ 1 + |v|2. We therefore put everything together to conclude that

|f0t(v0)− f0t(w0)| ≤ CKα|v0 − w0|γ(1 + |v0|2 + |w0|2) zt. (3.55)

which is the regularity desired. Finally, since Kα ≤ exp(CK) only appears in the decou-

pling rate and appears only as a multiplicative factor, rather than in the exponent, it can

be absorbed into zt, by changing the value of C if necessary.
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Step 3. Time Dependence We finally deal with the time dependence, as in [157,

Proposition 4.4]. To shorten notation, let us fix t and write fs := fst for 0 ≤ s ≤ t, and

let (Ξu)u≥s, (Ξ
′
u)u≥s be independent copies of the branching process, both starting from a

single particle of type (v, 1), at times s, s′ respectively.

Let us set T to be the time of the first branching event in (Ξu)u≥s, and V*, V
′, V ′

* the

resulting post-collision velocities. We consider separately the cases T ∈ (s, s′) and T ≥ s′.

In the first case, the Markov property gives

E(〈f,Ξt − Ξ′
t〉|T, V*, V

′, V ′
*) = fT (V

′) + fT (V
′
*)− fT (V*)− fs′(v)

which is at most, in absolute value, zt(4+ |v|2+ |V*|2+ |V ′|2+ |V ′
* |2) = zt(4+2|v|2+2|V*|2),

using the growth bound in Step 1 and the conservation of energy |v|2+|V*|2 = |V ′|2+|V*|2.
On the other hand, conditional on T > s′, the law of (Ξu)u≥s′ is exactly that of (Ξ′

u)u≥s′

by the Markov property, so E(〈f,Ξt − Ξ′
t〉|T > s′) = 0. We conclude that

|fs(v)− fs′(v)| = |E〈f,Ξt − Ξ′
t〉| = |E〈f,Ξt − Ξ′

t〉1I{T∈(s,s′)}|

≤
! s′

s

!

Rd×Sd−1

(4 + 2|v|2 + 2|v*|2)ztBK(v − v*, σ)ρu(dv*)dσdu

≤ Kzt

! s′

s

(4 + 2|v|2 + 2|v∗|2)|v − v∗|γρu(dv∗)du

≤ CK(1 + |v|2+γ)zt

! s′

s

Λ2+γ(ρu)du.

The final factor is, by definition of yβ, at most (s′− s)βyβ(t), and the prefactor (CK) can

be absorbed into zt, up to a new choice of the constant C in the exponent.

We next sketch the proof of the representation formula.

Sketch Proof of Proposition 3.10. We follow the argument of [157, Proposition 4.2], and

sketch the argument in the Kac case; we discuss the modifications for the Boltzmann case

at the end. First, we introduce a signed, random measure M on [0,∞)×Rd by specifying,

for compactly supported f : [0,∞)× Rd → R,
!

(0,∞)×Rd

f(s, v)M(ds, dv) :=

!

(0,∞)×SN

〈fs, µN − µN,K
s− 〉(mN,K −mN,K)(ds, dµN)

where mN,K ,mN,K are the jump measure and compensator in Definition 3.2.2. Let us

also remark that M has compact support in the velocity variable, thanks to the energy

bound of µN , and so all moments are finite. We now consider the branching process Ξt as

above, but where particles are intiated randomly according to a Poisson random measure

on [0,∞)× V * of intensity

Θ(dt, dv) =

#
$

%
µN,K
0 (dv)δ0(dt) +M+(dt, dv) on V +;

µ0(dv)δ0(dt) +M−(dt, dv) on V −
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and, writing E for the expectation over both the branching process and the initialisation,

define a measure ξt by ξt := EΞt, which we understand as a Bochner integral in the space

Y2 of signed measured with second moments.

We now derive an evolution equation for ξt. For any given (s, v0), by considering the

jumps in both the positive and negative parts, for any bounded, measureable f ,

〈f,Ξt〉 −
! t

0

〈f, 2QK(ρu,Ξu)〉du

is a martingale for the expectation E(s,v0). Taking expectations gives

E(s,v0)〈f,Ξt〉 = f(v0) + 2

! t

s

E〈f,QK(Ξu, ρu)〉du = f(v0) +

! t

s

〈f,QK(E(s,v0)Ξu, ρu)〉du

where, in the second equality we use the fact that, in the cutoff cases, QK(·, ρu) : (Y2, ‖ ·
‖TV+2) → (Y0, ‖ · ‖TV) is a bounded linear map; since the left-hand side is exactly the

definition of fst(v0), we can write

fst(v0) = f(v0) +

! t

s

〈f,QK(E(s,v0)Ξu, ρu)〉du. (3.56)

We now integrate over (s, v0) with respect to Θ. On the one hand, we have

〈f, ξt〉 =
!

[0,T ]×V

E(s,v)〈f,Ξt〉Θ(ds, dv) =

!

[0,T ]×V

fst(v)Θ(ds, dv)

= 〈f0t, µN,K
0 − µ0〉+

!

(0,t]×Rd

fst(v)M(ds, dv)

(3.57)

and the second term here is exactlyMN,K,f
t . On the other hand, integrating the right-hand

side of (3.56) produces

〈f, ξt〉 = 〈f, µN,K
0 − µ0〉+

!

(0,t]×Rd

f(v)M(ds, dv) + 2

! t

0

〈f,QK(ξu, ρu)〉du

using Fubini’s theorem and the boundedness of the linear map QK(·, ρu) again, and that

ξt =
&
[0,t]×V ! E(s,v0)[Ξt]Θ(ds, dv0). Since f was an arbitrary bounded, measurable function,

it follows from the previous display that ξt satisfies a noisy linear Boltzmann equation

ξt = µN,K
0 − µ0 +M((0, t]× ·) + 2

! t

0

QK(ξu, ρu)du (3.58)

which we understand as an equality of signed measures. We now use this evolution formula

to show that ξt = µN,K
t − µK

t , and the conclusion of the proposition then follows from

(3.57). We first show that µN,K
t − µK

t also solves (3.58). For any f as above, we observe

that

〈f, µN,K
t 〉 = 〈f, µN,K

0 〉+
! t

0

〈f,QK(µ
N,K
u )〉du+

!

(0,t]×Rd

f(v)M(du, dv);
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〈f, µK
t 〉 = 〈f, µ0〉+

! t

0

〈f,QK(µ
K
u )〉du

where the first equality follows from the definition of mN,K and mN,K , and where the

second equation is simply the (cutoff) Boltzmann equation. Subtracting, 5ξt = µN,K
t − µK

t

satisfies

5ξt = 5ξ0 +M((0, t]× ·) +
! t

0

(QK(µ
N,K
u )−QK(µ

K
u ))du.

Using the bilinearity and symmetry of QK , and recalling that QK(µ) is shorthand for

QK(µ, µ), we have

QK(µ
N,K
u )−QK(µ

K
u ) = QK

-
µN,K
u + µK

u , µ
N,K
u − µK

u

.

= 2QK

'
ρu, 5ξu

(

where, in the final line, we use the definition of ρ in the statement and 5ξu := µN,K
u − µK

u ,

so that 5ξt also satisfies (3.58). To conclude the claimed equality, the difference δt := ξt− 5ξt
satisfies the equation

δt =

! t

0

2QK(δu, ρu)du

so it remains to prove that the only solution to this in C([0,∞), Y2) is the the trivial

0 solution. We follow Norris [157, p. 18] using a measure formulation of Di Blasio’s

L1 argument [61], see also [142, Lemma 6.3], [76, Lemma 3.2]. For such a solution,

there exists a measurable function f : [0,∞) × V → {±1, 0} such that δt = ft|δt| and
|δt| =

& t

0
fsνsds, νs = 2QK(δs, ρs). We now define f̌s(v) := (1 + |v|2)fs(v) and consider

〈f̌s, νs〉 = 2

!

Rd×Rd×Sd−1

2(f̌s(v
′) + f̌s(v

′
∗)− f̌(v)− f̌(v∗))B(v − v∗, σ)δs(dv)ρs(dv∗)dσ.

(3.59)

In the terms involving v′, v′∗, v∗, we have

f̌(v′) + f̌(v′∗) + f̌(v∗) ≤ 3 + |v′|2 + |v′∗|2 + |v∗|2 = 3 + |v|2 + 2|v∗|2

using the conservation of energy, and we majorise the integrals by replacing δs by |δs|,
while in the term involving f̌(v), we keep the negative sign −f̌(v)B(v − v∗, σ)δs(dv) =

−(1 + |v|2)B(v − v∗, σ)|δs|(dv). Together,

〈f̌s, νs〉 ≤ 2

!

Rd×Rd×Sd−1

2(3 + |v|2 + |v∗|2 + |v∗|2 − (1 + |v|2))B(v − v∗, σ)|δs|(dv)ρs(dv∗)dσ

= 2

!

Rd×Rd×Sd−1

4(1 + |v∗|2)B(v − v∗, σ)|δs|(dv)ρs(dv∗)dσ

≤ 4KΛ2+γ(ρs)〈1 + |v|2, |δs|〉.
(3.60)

Now, we use the properties of f again to write

〈1 + |v|2, |δt|〉 = 〈f̌ , δt〉 =
! t

0

〈f̌ , νs〉ds ≤ 4K

! t

0

〈1 + |v|2, |δs|〉Λ2+γ(ρs)ds.
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Since Λ2+γ(ρt) ∈ L1
loc([0,∞)), we conclude from Grönwall’s lemma that δt ≡ 0 and the

proof of the Kac case is complete. The Boltzmann case is identical, dropping the terms

involving M, in which case we find the linearised Boltzmann equation in place of (3.58):

ξt = µ0 − ν0 + 2

! t

0

QK(ξs, ρs)ds; ρt =
µK
t + νK

t

2
.

We finally deal with Proposition 3.11, which essentially follows the proof of [157, Theorem

1.1]. Since we will use very similar proofs later in the chapter (Lemma 3.21 and 3.22),

we will only sketch the main points of the argument. Thanks to a stochastic calculus

for processes of the form
&
(0,t]×SN

〈f, µN −µN,K
s− 〉(mN,K −mN,K)(ds, dµN), see Darling and

Norris [49], such processes are martingales if f is fixed, with a quadratic variation on the

order N−1, and so are small as a function of N . However, unlike in the finite dimensional

cases in [49], the problem remains in taking a supremum over f inside the expectation,

which corresponds to the estimates degrading as the dimension increases. Instead, we will

use the relative compactness discussed in Remark 3.8 to argue that this is an effectively

finite dimensional problem. More precisely, we show that it can be approximated by a

discretised, finite dimensional martingale approximation problem, with the following trade

off: that making the truncation error small requires taking a large (finite) dimensional

martingale. As in [49, 157], the martingale term is ‘small’, as a function of N , but will

increase as a function of the dimension of the approximation. By optimising over the

discretisation, we will be able to balance the two terms to find a useful estimate on the

family of processes. This is the same approach as used for an equivalent problem in [157,

Theorem 1.1]. We will use variants of this argument repeatedly in similar problems, and

this proof may be read as a warm-up for the rather more delicate proofs of Lemmas 3.21,

3.22. In this proposition, we must also deal with the fact that fst may not be adapted if

the environment ρt is random, since fst also depends on (ρu)
t
u=s.

Sketch Proof of Proposition 3.11. We follow [157], and start with some non-random bounds

on the quantities yβ(t), zt as in Proposition 3.9 for this choice of environment. From the

definition of zt we find the almost sure bound, for all t ≤ tfin,

zt ≤ exp

6
CKw

! t

0

(βsβ−1 + 1)ds

7
≤ exp (CKw(1 + tfin))

up to a new choice of C in the final bound. For yβ(t), we bound, almost surely, for all

0 ≤ s ≤ s′ ≤ tfin,
! s′

s

Λ2+γ(ρu)du ≤ w

! s′

s

(βuβ−1 + 1)du = w
-
(s′)β − sβ + (s′ − s)

.

≤ w
-
(s′ − s)β + (s′ − s)

.

≤ w(1 + tfin
1−β)(s′ − s)β

≤ 2w(1 + tfin)(s
′ − s)β.
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It follows that, again changing C if necessary, we have the almost sure bounds

yβ(t), zt ≤ exp (CKw(1 + tfin)) for all t ≤ tfin. (3.61)

We now fix R ≥ 1 and r ∈ (0, 1] such that tfin/r, R/r are integers. We now set A =

(−R,R]d, and let P be a partition of (0, tfin] × A into n = (R/r)d(tfin/r) translates P of

(0, r]× (−r, r]d, and for any f ∈ Aγ, we write

f(s∧t)t(v) =
"

P∈P

aP (f, t)1IP (s, v)(1 + |v|2) + ε(f, t)(s, v) (3.62)

where aP (f, t) is the average value of f(s∧t)t(v)/(1 + |v|2) over (s, v) ∈ P , and where this

defines the remainder function ε(f, t), and we write

4MN,K,f
t =

"

P∈P

aP (f, t)M
N,K;P
t + ZN,K,f

t (3.63)

where

MN,K;P
t :=

!

(0,t]×SN

〈(1 + |v|2)1IP (s, v), µN − µN,K
s− 〉(mN,K −mN,K)(ds, dµN);

ZN,K,f
t =

!

(0,t]×SN

〈ε(f, t), µN − µN,K
s− 〉(mN,K −mN,K)(ds, dµN).

This is the key decomposition in the proof. Roughly speaking:

• The processesMN,K;P are martingales, which can be controlled by the general theory

of Markov chains, independently of f.

• The coefficients aP depend on f and t, but are bounded, uniformly over f ∈ Aγ.

• On A, ε(f, t) will be small, uniformly in f, t, due to the continuity estimates of fst.

This may be viewed as a relative compactness argument, as discussed in Remark

3.8: given δ > 0, one could use this construction to produce a finite δ-net for the

restriction of functions Aγ|A in the norm of A0|A.

• |ε(f, t)| is bounded by zt(1 + |v|2) on Rd \ A, and the contribution from this region

will be controlled by the moment bounds.

Step 1. Control on the martingale sum We start by considering MN,K;P
t . The

quadratic variation is

G
MN,K;P

H
t
=

!

(0,t]×SN

〈(1 + |v|2)1IP (s, v), µN − µN,K
s− 〉2mN,K(ds, dµN)
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and by Doob’s L2 inequality,

E

=
sup
t≤tfin

"

P∈P

|MN,K;P
t |2

>

≤ 4E

=
"

P∈P

!

(0,tfin]×SN

〈(1 + |v|2)1IP (s, v), µN − µN,K
s− 〉2mN,K(ds, dµN)

>
.

(3.64)

To bound the integrand, if µN is obtained from µN,K
s− by a collision with incoming velocities

v, v∗, we note that 〈(1 + |v|2)1IP (s, v), µN − µN,K
s− 〉2 is at most

N−2((1 + |v|2)1IP (s, v) + (1 + |v∗|2)1IP (s, v∗) + (1 + |v′|2)1IP (s, v′) + (1 + |v′∗|2)1IP (s, v′∗))2

≤ 8N−2((1 + |v|4)1IP (s, v) + (1 + |v∗|4)1IP (s, v∗) + (1 + |v′|4)1IP (s, v′) + (1 + |v′∗|4)1IP (s, v′∗))

and when we sum over P ∈ P we obtain

"

P∈P

〈(1 + |v|2)1IP (s, v), µN − µN,K
s− 〉2

≤ 8N−2((1 + |v|4)1IA(v) + (1 + |v∗|4)1IA(v∗) + (1 + |v′|4)1IA(v′) + (1 + |v′∗|4)1IA(v′∗))
≤ CN−2R(4+γ−p)+((1 + |v|p−γ) + (1 + |v∗|p−γ) + (1 + |v′|p−γ) + (1 + |v′∗|p−γ))

≤ CN−2R(4+γ−p)+(1 + |v|p−γ + |v∗|p−γ).

We therefore return to (3.64) to find

E

=
sup
t≤tfin

"

P∈P

|MN,K;P
t |2

>

≤ CN−1R(4+γ−p)+E
2! tfin

0

!

Rd×Rd×Sd−1

(1 + |v|p−γ + |v∗|p−γ)B(v − v∗, σ)µ
N,K
s (dv)µN,K

s (dv∗)dσ

3

≤ CN−1R(4+γ−p)+KE
2! tfin

0

〈1 + |v|p, µN,K
s 〉ds

3

≤ CN−1R(4+γ−p)+Ktfina

where we use Proposition 2.10, recalling that E[Λp(µ
N,K
0 )] ≤ a was the moment hypothesis

on the initial data, and with C allowed to depend on p, d but not on K, tfin or N or the

discretisation parameters R, r.

Step 2. Control of the coefficients & Martingale Sum We next observe that,

thanks to the growth bound for f(s∧t)t by Proposition 3.9, we have the bound aP (f, t) ≤
zt ≤ ztfin , uniformly in f ∈ Aγ and t ≤ tfin. It follows that we have the pathwise inequality

"

P∈P

aP (f, t)M
N,K;P
t ≤ zt

I
#P

Y
sup
s≤tfin

"
|MN,K;P

t |2
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valid simultaneously for all f ∈ Aγ, t ≤ tfin, which implies the same bound when we replace

the left-hand side by its supremum. Using the previous step to take the expectation, we

conclude that

E

=
sup

f∈Aγ ,t≤tfin

"

P∈P

aP (f, t)M
N,K;P
t

>
≤ CN−1/2R(4+γ−p)+aKtfinztfin

I
#P

≤ R(4+γ−p)+N−1/2a exp (CKw(1 + tfin))

6
Rdtfin
r1+d

71/2

(3.65)

using the bound (3.61) and absorbingKtfin into the exponent, at the cost of a new constant

C.

Step 3. Control of the Remainder Term We next bound ε(f, t), uniformly in

f ∈ Aγ. Using Proposition 3.9 and the bounds on zt, yβ, we find, for any P ∈ P,

uniformly in f ∈ Aγ, t ≤ tfin,

|f(s∧t)t(v)− aP (f, t)(1 + |v|2)| ≤ exp (CK(1 + tfin))
-
rβ(1 + |v|2+γ) + rγ(1 + |v|2)

.

on P , and these together cover A. Meanwhile |ε(f, t)(v, s)| = |f(s∧t)t(v)| ≤ zt(1 + |v|2)
outside of A, so we have the overall bound

|ε(f, t)(s, v)| ≤ (rβ(1 + |v|2+γ)1IA + rγ(1 + |v|2)1IA + (1 + |v|2)1IAc)eCKw(1+tfin)

≤ ((rβR(2+2γ−p)+ + rγR(2+γ−p)+)(1 + |v|p−γ) +R(2−p)/2(1 + |v|(p+2)/2))eCKw(1+tfin)

≤ (rβR(2+2γ−p)+ + rγR(2+γ−p)+ +R(2−p)/2)(1 + |v|(p+2)/2)eCKw(1+tfin).

Step 4. Control over Remainder Integrals From the previous step, it follows that

sup
f∈Aγ ,t≤tfin

|ZN,K,f
t | ≤ (rβR(2+2γ−p)+ + rγR(2+γ−p)+ +R(2−p)/2)eCKw(1+tfin)

· · ·×
!

(0,tfin]×SN

|〈(1 + |v|(p+2)/2, µN − µN,K
s− 〉|(mN,K +mN,K)(ds, dµN).

(3.66)

Taking expectations, the contributions from the jump measure and compensator con-

tribute equally, since the difference of the two integrals is again a martingale, and we

get

E

=
sup

f∈Aγ ,t≤tfin

|ZN,K,f
t |

>
≤eCKw(1+tfin)(rβR(2+2γ−p)+ + rγR(2+γ−p)+ +R(2−p)/2)

· · ·× E
2!

(0,tfin]×SN

|〈1 + |v|(p+2)/2, µN − µN,K
s 〉|mN,K(ds, dµN)

3
.
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When µN is obtained from µN,K
s by a collision in v, v∗, the integrand is at most C(1 +

|v|(p+2)/2 + |v∗|(p+2)/2), so we integrate to find

!

(0,tfin]×SN

|〈1 + |v|(p+2)/2, µN − µN,K
s 〉|mN,K(ds, dµN)

≤ C

!

(0,tfin]×Rd×Rd×Sd−1

(1 + |v|(p+2)/2 + |v∗|(p+2)/2)B(v − v∗, σ)µ
N,K
s (dv)µN,K

s (dv∗)ds

≤ CK

! tfin

0

Λ p+2
2

+γ(µ
N,K
s )ds.

(3.67)

Writing q for the moment index in the final line, we have that q < p + γ because p > 2,

so p−q
γ

> −1. In particular, using the moment creation property in Proposition 2.10, we

find an integrable time-dependent factor, and

E
2! tfin

0

Λ(p+2)/2+γ(µ
N,K
s )ds

3
≤ C(1 + tfin)E

?
Λp(µ

N,K
0 )

A
= C(1 + tfin)a.

All together, we conclude that

E

=
sup

f∈Aγ ,t≤tfin

|ZN,K,f
t |

>
≤ eCKw(1+tfin)(rβR(2+2γ−p)+ + rγR(2+γ−p)+ +R(2−p)/2)(1 + tfin)a

≤ eCKw(1+tfin)(rβR(2+2γ−p)+ + rγR(2+γ−p)+ +R(2−p)/2)a

(3.68)

where again we absorbed the time-growing factor into the exponential, at the cost of a

new constant C.

Step 5. Conclusion Gathering (3.65, 3.68) and returning to (3.63), we have shown

that

E

=
sup
t≤tfin

sup
f∈Aγ

|4MN,K,f
t |

>
≤ eCKw(1+tfin)a

6
N−1/2R(4+γ−p)+

6
Rdtfin
r1+d

71/2

+ rβR(2+2γ−p)+

+ rγR(2+γ−p)+ +R(2−p)/2

7

(3.69)

with C independent of N,R,K,w, tfin. We now choose R, r depending on N ; in any

case, depending on which of the exponents (4 + γ − p)+, (2 + 2γ − p)+, (2 + γ − p)+ are

positive, one can choose R = O(N δ1), r = O(N−δ2), still satisfying the conditions above,

with δ1, δ2 > 0 small enough that the term in paranetheses has the overall asymptotic

N−η, η = η(p, d, β, γ) > 0, as desired.
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3.2.2 Applications of the Branching Process Representation

We now record, for future use, some immediate consequences of the branching process

representation developed above. First, we show how these results imply uniqueness and

stability for the Boltzmann Equation (BE) in either case (HS, CHPK).

Corollary 3.13. Continue in the notation above. Let (µK
t )t≥0, (ν

K
t )t≥0 ⊂ S be (energy-

conserving) solutions to (BE) with the moment bound Λ2+ε(µ
K
0 , ν

K
0 ) < ∞ for some ε > 0.

Then we have

Wγ

-
µK
t , ν

K
t

.
≤ exp

6
CK

! t

0

Λ2+γ(µ
K
s , ν

K
s )ds

7
Wγ

-
µK
0 , ν

K
0

.

≤ exp
-
CεK(1 + t)Λ2+ε(µ

K
0 , ν

K
0 )

.
Wγ

-
µK
0 , ν

K
0

. (3.70)

for some constant C = C(B, d) and Cε = C(B, d, ε). In particular, energy-conserving

solutions are unique as soon as the initial data have 2 + ε moments, and we write φK
t :

S2+ε → S2+ε for the corresponding solution maps, i.e. φK
t (µ

K
0 ) = µK

t .

Moreover, there exists a finite p > 2, depending on K, such that, whenever µK
0 , ν

K
0 ∈ Sp,

we have the estimate

Wγ

-
µK
t , ν

K
t

.
≤ eCK(1+t)Λp(µ

K
0 , ν

K
0 )Wγ

-
µK
0 , ν

K
0

.
. (3.71)

Proof. For (3.70), we use Proposition 3.10 to write, for any f ∈ Aγ,

〈f, µK
t − νK

t 〉 = 〈f0t[ρ], µK
0 − νK

0 〉

where ρt = (µK
t + νK

t )/2 is as in Proposition 3.10. Since f0t[ρ] ∈ ztAγ by Proposition 3.9,

we bound the right-hand side to get

〈f, µK
t − νK

t 〉 ≤ ztWγ

-
µK
0 , ν

K
0

.

and, recalling the definition of Wγ, we optimise over f ∈ Aγ to find

Wγ

-
µK
t , ν

K
t

.
≤ ztWγ

-
µK
0 , ν

K
0

.
.

This is exactly the first bound of (3.70), using the definition of zt, and the second line

follows using the moment creation and propagation bounds in Proposition 2.6. The second

assertion (3.71) follows immediately from the first bound of (3.70) using Proposition

2.9.

Our second corollary is a convergence result in the transport costs wp introduced in

Section 2.1 for the Kac process in the cases of cutoff hard potentials (CHPK), analagous

to Proposition 1.2. Since this will be of use in Chapter 4, where we must already play

with a large (finite) number of moments, we will not try to optimise moment dependence.
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Corollary 3.14. Let p ≥ 0 and q > max(4 + 3γ, p + 2). Then there exists C =

C(G, q, d),α = α(d, p, q) ≥ 0 such that, whenever a ≥ 1, µ0 ∈ S and µN,K
t is a K-cutoff

Kac with K ≥ 1 and initial moment estimates

Λq(µ0) ≤ a, P
'
Λq(µ

N,K
0 ) ≤ a

(
= 1 (3.72)

then we have the convergence estimate, for all tfin ≥ 0,

E
2
sup
t≤tfin

wp

'
µN,K
t ,φK

t (µ0)
(3

≤
'
N−α + E

?
wp

'
µN,K
0 , µ0

(Aα(
eCaK(1+tfin). (3.73)

Sketch Proof of Corollary 3.14. Let us first prove the same result with µ0 = µN,K
0 . As in

Proposition 3.10, we consider the linearised Kac process in the random environment

ρNt =
µN,K
t + φK

t (µ
N,K
0 )

2
(3.74)

and for b ≥ 1, consider the stopping times TN
b defined in Proposition 2.10iv). (equation

(2.104)) for the (2 + γ)th moment. Let us write 4MN,K,f,b
t for the stochastic integrals in

(3.39) in the environment

ρ
TN
b

t : f = ρt1I
)
t < TN

b

*
.

We consider the events {TN
b ≤ tfin}, {TN

b > tfin} separately. On the event {TN
b > tfin}, we

have the equalities

MN,K,f
t = 4MN,K,f,b

t for all f ∈ Aγ and all t ≤ tfin (3.75)

while on {TN
b ≤ tfin} we have the trivial bound

sup
t≤tfin

Wγ(µ
N,K
t ,φK

t (µ)) ≤ 4 (3.76)

since Wγ ≤ 4 on S × S. Combining, we have the bound

sup
t≤tfin

Wγ

'
µN,K
t ,φK

t (µ
N,K
0 )

(
≤ sup

f∈Aγ ,t≤tfin

K
4MN,K,f,b

t

L
+ 4 · 1I(TN

b ≤ tfin). (3.77)

Since q > 2 + γ, the moment hypothesis on µN,K
0 implies Λ2+γ(µ

N,K
0 ) ≤ a almost surely,

which is propagated to φK
t (µ0) by Proposition 2.6. The first term is therefore controlled

by Proposition 3.11, with w ≤ b + Ca for some constant C. We now take b = Ca, for

some large C, depending only on p; by Proposition 2.10iv), C can be chosen so that

P(TN
b ≤ tfin) ≤ CaN−1tfin. Combining, we obtain

E
2
sup
t≤tfin

Wγ

'
µN,K
t ,φK

t (µ
N,K
0 )

( 3
≤ CaN−η exp(CaK(1 + tfin)) + CatfinN

−1 (3.78)

and keeping the worse term

E
2
sup
t≤tfin

Wγ

'
µN,K
t ,φK

t (µ
N,K
0 )

( 3
≤ CaN−η exp(CaK(1 + tfin)). (3.79)
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We now convert this approximation into wp. Fix p′ ∈ (p+2, q); thanks to the comparisons

(2.30) in Section 2.1, for some α > 0,

sup
t≤tfin

wp

'
µN,K
t ,φK

t (µ
N,K
0 )

(

≤
6
sup
t≤tfin

Wγ

'
µN,K
t ,φK

t (µ
N,K
0 )

(7α 6
sup
t≤tfin

Λp′

'
µN,K
t ,φt(µ

N,K
0 )

(7
.

(3.80)

We now use Hölder’s inequality with indexes q
q−p′ ,

q
p′ and control the moment term with

Propositions 2.6, 2.10 to find that, for some new α > 0,

E
2
sup
t≤tfin

wp

'
µN,K
t ,φK

t (µ)
(3

≤ C E
2
sup
t≤tfin

Wγ

'
µN,K
t ,φK

t (µ
N,K
0 )

(3α
E
2
sup
t≤tfin

Λq(µ
N,K
t ,φK

t (µ
N,K
0 ))

3

≤ CaN−αη exp(CaK(1 + tfin)) · Ca(1 + tfin).

(3.81)

Absorbing constants and the moment factors into the exponent, we have shown that, for

some α = α(p, q, d) > 0,

E
2
sup
t≤tfin

wp

'
µN,K
t ,φK

t (µ
N,K
0 )

(3
≤ N−α exp(CaK(1 + tfin)). (3.82)

The conclusion now follows by comparing φK
t (µ

N,K
0 ) and φK

t (µ0) using Corollary 3.13 and

converting the stability into wp in the same way, using the other direction of (2.30).
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3.2.3 Stability Estimates

We now turn to some differentiability and stability results for the nonlinear semigroup

(φt)t≥0, which plays a crucial rôle in the time-dependence of Theorems 3.1, 3.2, as in the

work of Mischler and Mouhot [142]. We will also use a regularity result for the collision

operator Q, which appears in the proof of Lemma 3.22, and differentiability and stability

results for the flow maps (φt)t≥0. As in Remark 3.7, from now on we work exclusively

with the case of hard spheres in this subsection, so that K = 1, γ = 1.

Stability Estimates

The key component to our analysis of the Kac process is the stability of the limiting

Boltzmann equation - that is, that the limit flow suppresses errors, rather than allowing

exponential amplification.

We can now state the precise results as they appear in [142, Lemma 6.6]:

Proposition 3.15. Let µ ∈ Sp for some p > 2. Then, for any ξ ∈ Yp, there exists a

unique solution (ξt)t≥0 ⊂ Yp to

∂tξt = 2Q(φt(µ), ξt); ξ0 = ξ (3.83)

with the bound

‖ξt‖TV+p ≤ exp

6
C

! t

0

Λp+1(φs(µ))ds

7
‖ξ‖TV+p. (3.84)

Let now η ∈ (0, 1). Then there are absolute constants C ∈ (0,∞) and λ0 > 0 such that,

for p large enough (depending only on η), and all µ, ν ∈ Sp, that, if we take ξ := ν − µ,

we have

‖φt(ν)− φt(µ)‖TV+2 ≤ Ce−λ0t/2Λp(µ, ν)
1
2‖µ− ν‖ηTV; (3.85)

‖ξt‖TV+2 ≤ Ce−λ0t/2Λp(µ, ν)
1
2‖µ− ν‖ηTV; (3.86)

‖φt(ν)− φt(µ)− ξt‖TV+2 ≤ Ce−λ0t/2Λp(µ, ν)
1
2‖µ− ν‖1+η

TV . (3.87)

This allows us to define a bounded linear map Dφt(µ) : Yp → Yp by Dφt(µ)[ξ0] := ξt given

by the first assertion, which we understand as a functional derivative thanks to (3.87).

This linear map will play the rôle of a functional derivative for the Boltzmann flow φt in

the calculus developed by [142].

In this case, constant λ0 is given explicitly by the spectral gap of the linearised Boltzmann

operator 2Q(·, γ) at the equilibrium γ, see [142, Theorems 6.5-6.6]. To obtain estimates

with the weighted metric W1, we will use a version of Proposition 3.15 with the difference

φt(µ) − φt(ν) measured in stronger norms ‖ · ‖TV+q. The following estimate may be

obtained by a simple interpolation between Propositions 2.6, 3.15.
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Corollary 3.16. Let q ≥ 2, η ∈ (0, 1) and λ < λ0. Then for all p large enough, depending

on η,λ and q, there exists a constant C such that

∀µ, ν ∈ Sp, ‖φt(µ)− φt(ν)‖TV+q ≤ Ce−λt/2Λp(µ, ν)
1
2‖µ− ν‖ηTV. (3.88)

We emphasise that the rapid decay is the key property that allows us to obtain good long-

time behaviour for our estimates. The pointwise estimate Theorem 3.1 and the initial

estimate for pathwise local uniform convergence Lemma 3.23 would hold for estimates

‖φt(ν)− φt(µ)‖TV+5 ≤ F (t)Λp(µ, ν)
1
2‖µ− ν‖ηTV; (3.89)

‖φt(ν)− φt(µ)− ξt‖TV+2 ≤ G(t)Λp(µ, ν)
1
2‖µ− ν‖1+η

TV (3.90)

for functions F,G such that

6! ∞

0

F 2dt

71/2

< ∞;

! ∞

0

Gdt < ∞. (3.91)

The full strength of exponential decay is used to ‘bootstrap’ to the pathwise local uniform

estimate Theorem 3.2, which provides better behaviour in the time horizon tfin, with only

a logarithmic loss in the number of particles N . Provided that F → 0 as t → ∞, we

could use the same ‘bootstrap’, but with a potentially much larger loss in N .

We now turn to the proof of Proposition 3.15, which is exactly [142, Lemma 6.4]. We will

not reproduce all details, but will sketch the most important points for contextualisation

and discussion.

Sketch Proof of Proposition 3.15. We reproduce the arguments of [142, Lemmas 6.3-6.4].

Step 1. Existence & Uniqueness, Boundedness Property To start with, we ob-

tain existence for the linearised Boltzmann equation (3.83) using the framework of the

previous subsection; as in Proposition 3.10, we run the branching process Ξt in the envi-

ronment ρt = φt(µ), and from initial data Ξ0 by sampling particles as a Poisson random

measure according to (ξ0)± on V ±, where ± denotes the Hahn-Jordan decomposition of

the signed measure. Setting ξt := E[Ξt], we argued in the proof of Proposition 3.10

that ξt solves (3.83), and that this solution is unique by the same proof. Moreover, the

claimed estimate (3.84) follows from (3.28), recalling that ρt = φt(µ0) ∈ L1
loc([0,∞),Sp+1)

by Proposition 2.6. Let us remark that we could also allow p = 2 here, at the cost of

insisting separately that φt(µ) ∈ L1
loc([0,∞),S3).
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Step 2. Short Time Bounds We next move to the main case with ξ0 := ν − µ, and

seek estimates which behave well only on short times. For the difference φt(µ)−φt(ν), we

use the representation formula again to write, for any continuous f satisfying |f | ≤ 1+|v|2

〈f,φt(ν)− φt(µ)〉 = 〈f0t[ρ′], ν − µ〉

for the environment ρ′ = (φt(µ) + φt(ν))/2. The right-hand side is at most zt[ρ
′]‖ν −

µ‖TV+2, and optimising over f produces the ‖ ·‖TV+2 on the left-hand side, so we conclude

that

‖φt(ν)− φt(µ)‖TV+2 ≤ exp

6
C

! t

0

Λ3(φs(µ),φs(ν))ds

7
‖ν − µ‖TV+2 (3.92)

and from the argument above

‖ξt‖TV+2 ≤ exp

6
C

! t

0

Λ3(φs(µ))ds

7
‖ν − µ‖TV+2. (3.93)

We next estimate ‖δt‖TV+2 where δt is the signed measure δt := φt(ν)−φt(µ)−ξt. Recalling

the notation ρt = φt(µ), ρ
′
t = (φt(µ) + φt(ν))/2 and repeatedly using bilinearity, we have

∂tδt = Q(φt(ν))−Q(φt(µ))− 2Q(ξt,φt(µ))

= 2Q (φt(ν)− φt(µ), ρ
′
t)− 2Q(ξt, ρ

′
t)− 2Q(ξt, ρt − ρ′t)

= 2Q(δt, ρ
′
t) +Q(ξt,φt(ν)− φt(µ)).

(3.94)

By definition, δ0 = 0, and using the same argument as for uniqueness in Proposition 3.10,

we get

‖δt‖TV+2 ≤
! t

0

(C‖δs‖TV+2‖φs(µ) + φs(ν)‖TV+3 + ‖Q(ξs,φs(ν)− φs(ν))‖TV+2)ds

leading to, by Grönwall’s Lemma,

‖δt‖TV+2 ≤
6! t

0

‖Q(ξs,φs(ν)− φs(ν))‖TV+2ds

7
exp

6
C

! t

0

Λ3(φt(µ),φt(ν))ds

7
. (3.95)

In the first term, we bound

‖Q(ξt,φt(ν)−φt(ν))‖TV+2 ≤ ‖ξt‖TV+3‖φt(ν)−φt(µ)‖TV+2+‖ξt‖TV+2‖φt(ν)−φt(µ)‖TV+3.

The terms in TV + 2 are already controlled, and it remains to estimate the terms in

TV + 3 in L1
loc([0,∞)). For ξt, similar arguments to those of Proposition 2.9, using the

same argument as for uniqueness above shows that

〈(1+|v|2) log(1+|v|2), |ξt|−|ξ0|〉 ≤
! t

0

(C‖ξs‖TV+2〈(1+|v|3) log(1+|v|2),φs(µ)〉−C−1‖ξs‖TV+3)ds

which implies that
! t

0

‖ξs‖TV+3ds ≤C〈(1 + |v|2) log(1 + |v|2), |ξ0|〉

+ C

6
sup
s≤t

‖ξs‖TV+2

76! t

0

〈(1 + |v|3) log(1 + |v|2),φs(µ)〉ds
7
.
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The factor ‖ξs‖TV+2 is bounded by the estimates above, and the same argument again as

in Proposition 2.9 gives

! t

0

〈(1 + |v|3) log(1 + |v|2),φs(µ)〉ds ≤ C(t+ 〈(1 + |v|2) log2(1 + |v|2), µ〉).

Absorbing all factors, we find

! t

0

‖ξs‖TV+3ds ≤ exp

6
C

! t

0

Λ3(φs(µ))ds

7
(1 + 〈(1 + |v|2) log2(1 + |v|2), µ〉)

· · ·× 〈(1 + |v|2) log(1 + |v|2), |ν − µ|〉.
(3.96)

A similar argument holds for φt(ν)− φt(µ), and returning to (3.95), we get

‖δt‖TV+2 ≤ exp

6
C

! t

0

Λ3(φs(µ),φs(ν))ds

7
(1 + 〈(1 + |v|2) log2(1 + |v|2), µ〉)

· · ·× 〈(1 + |v|2) log(1 + |v|2), |ν − µ|〉‖ν − µ‖TV+2.

(3.97)

We now convert everything to a version of what is in the statement, now with time-growing

bounds. First, in (3.92, 3.93, 3.97), we use Proposition 2.9 to replace

exp

6
C

! t

0

Λ3(φs(µ),φs(ν))ds

7
≤ eCtΛp1(µ, ν)

for some finite p1. For the weighted total variation norm, we use the interpolation

‖ξ0‖TV+2 ≤ ‖ξ0‖ηTV〈(1 + |v|2)1/1−η, |ξ0|〉1−η ≤ 2Λ2/(1−η)(µ, ν)‖µ− ν‖ηTV.

For (3.97), we use the same argument on the last two factors with 1+η
2
, to get

‖ν − µ‖TV+2 ≤ 2Λ4/(1−η)(µ, ν)〉‖µ− ν‖
1+η
2

TV ;

〈(1 + |v|2) log2(1 + |v|2), |ν − µ|〉 ≤
Z
((1 + |v|2) log2(1 + |v|2))2/(1−η), ν + µ

[
‖ν − µ‖

1+η
2

≤ CΛ5/(1−η)(µ, ν)‖ν − µ‖
1+η
2

TV .

All together, for some choice of p depending on η, we have

‖φt(µ)− φt(ν)‖TV+2 ≤ eCtΛp(µ, ν)‖µ− ν‖ηTV; (3.98)

‖ξt‖TV+2 ≤ eCtΛp(µ, ν)‖µ− ν‖ηTV; (3.99)

‖φt(µ)− φt(ν)− ξt‖TV+2 ≤ eCtΛp(µ, ν)‖µ− ν‖1+η
TV . (3.100)

Together, these are the conclusions of [142, Lemma 6.3] in our notation.
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Step 2. Long-Time Exponential Stability We now show how the previous estimates

(3.98 - 3.100) can be extended to the results in the statement, which decay exponentially

as t → ∞. Our starting point is the following exponential convergence from [149, Theorem

1.2]. Recalling that γ ∈ S is the Gaussian equilibrium, we write Lγ(µ) = 2Q(µ, γ) for the

linearised collision operator around γ. Then, for any z > 0 and some universal λ > 0, we

can write an equation similar to (3.28) with exponential decay: if ξ0 ∈ Y2 and ξγt is the

unique solution to ∂tξ
γ
t = Lγ(ξ

γ
t ), ξ

γ
0 = ξ0, which is (3.83) with ρt = γ, then we have the

bound, for some C depending only on z,

〈ez|v|, |ξγt |〉 ≤ Ce−λt〈ez|v|, |ξ0|〉. (3.101)

Moreover, for any µ ∈ S with the exponential moment estimate 〈ez|v|, µ〉 ≤ a < ∞, there

exists a constant C = C(B, d, a), which depends on µ only through the upper bound a,

such that the nonlinear semigroup φt satisfies

〈ez|v|, |φt(µ)− γ|〉 ≤ Ce−λt (3.102)

for the same λ > 0 as above.

Remark 3.17. Let us remark that the statement, as written in [149], applies only to

ξγt ,φt(µ) admitting a density with respect to the Lebesgue measure, but that this can be

relaxed to cover all (signed) measures. For instance, the previous points also establish

the stability of the Boltzmann flow and linearised Boltzmann flow in Y2 with respect to

the negative Sobolev-type norm ‖ξ‖A!
1
:= supf∈A1

|〈f, ξ〉|. For the Boltzmann case, this

stability already follows from Corollary 3.13, and for the linearised Boltzmann case, we

write 〈f, ξt〉 = 〈f0t[γ], ξ0〉, where f0t are the functions defined by the branching process for

the environment ρt = γ or by an equivalent PDE. In any case, once the claimed results

(3.101, 3.102) are established with bounds independent of the density, we can approximate

µ, ξ in (Y2, ‖ · ‖A!
1
) by measures µn (resp. signed measures ξn) admitting a density. The

result then holds for µn, ξn, uniformly in n, and the measure-valued result holds on taking

n → ∞ to revover ξγt ,φt(µ).

We will also use the appearance of exponential moments for hard spheres, in a similar

vein to Proposition 2.13, see [132, Theorem 1.3d)]: there exist some z > 0, A < ∞ such

that 〈ez|v|,φt(µ)〉 ≤ A for all µ ∈ S and all t ≥ 1
2
. For the linear term ξt, we use the same

argument as in (3.59) to keep a negeative term so that, for any p and any t ≥ 1
2
,

〈|v|p, |ξt|− |ξ1/2|〉 ≤
! t

1/2

!

Rd×Rd×Sd−1

(|v′|p + |v′∗|p + |v∗|p − |v|p)B(v − v∗, σ)|ξs|(dv)φs(µ)(dv∗)ds

≤
! t

1/2

-
〈|v|p, Q(|ξs|,φs(µ))〉+ C〈1 + |v|2, |ξs|〉〈1 + |v|p,φs(µ)〉

.
ds.

(3.103)

Following the arguments of [132, Theorem 1.3d)], the first term produces a sum of weighted

total variation norms of ‖ξs‖TV+k, k ≤ p + 1 with a negative term in the highest order
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term, and the same for φs(µ), while the second term can be treated as a source term, using

the boundedness of ‖ξs‖TV+2 and the exponential moment of φs(µ) on s ≥ 1
2
. Following

the same arguments as the cited result, one finds that the linearised Boltzmann equation

also creates exponential moments away from so that overall, for some z > 0 and A < ∞,

sup
t≥1

Z
e2z|v|,φt(µ) + φt(ν) + |ξt|

[
≤ A (3.104)

and, up to choosing a different A,

〈ez|v|, |φt(µ)− γ|+ |φt(ν)− γ|〉 ≤ 2Ae−λt. (3.105)

With this starting point, we will argue the assertion (3.85) regarding εt = φt(µ)− φt(ν);

the other cases are similar. We write

∂tεt = Q(φt(ν)− φt(µ),φt(µ) + φt(µ))

= Lγεt +Q(εt,φt(ν)− γ) +Q(εt,φt(µ)− γ).
(3.106)

For any t ≥ t0 ≥ 1, we use Duhamel’s formula to write

εt = e(t−t0)Lγεt0 +

! t

t0

e(t−s)Lγ (Q(εs,φs(µ)− γ) +Q(εs,φs(ν)− γ))ds

and taking the norm gives

〈ez|v|, |εt|〉 ≤ Ce−λ(t−t0)〈ez|v|, |εt0 |〉

+ C

! t

t0

e−λ(t−s)〈(1 + |v|)ez|v|, |φs(µ)− γ|+ |φs(ν)− γ|〉

· · ·× 〈(1 + |v|)ez|v|, |εs|〉ds.

Since we have control over the same thing with the weighting e2z|v| ≥ C(1 + |v|)ez|v|, we
get, for u(t) := 〈ez|v|, |εt|〉,

u(t) ≤ Ce−λ(t−t0)u(t0) + Ce−λt/2

! t

t0

e−λs/2〈(1 + |v|)ez|v|, |εs|〉ds.

The integrand is at most

〈(1 + |v|)ez|v|, |εs|〉 ≤ Cu(s) (1 + (ln u(s))−)

for some C depending on A, z, and where − denotes the negative part. Let us fix δ ∈ (0, 1)

and choose t0 = max(1, 4
λ
log δ) so that e−λt/2 ≤ δe−λt/4 for all t ≥ t0. With this choice of

t0, for all t ≥ t0, we get

u(t) ≤ Ce−λ(t−t0)u(t0) + δe−λt/4

! t

t0

e−λs/2u(s) (1 + (log u(s))−) ds

and this integral inequality implies that, for t ≥ t0,

u(t) ≤ Ce−λt/4u(t0)
1−δ.
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Recalling that z does not depend on µ, ν ∈ S, we dominate ‖φt(ν)−φt(µ)‖TV+2 ≤ Cu(t),

and we combine this with the previous step up to time t0 to get, globally in time,

‖φt(ν)− φt(µ)‖TV+2 ≤ Ce−λ(t−t0)/4Λp(µ, ν)‖ν − µ‖η(1−δ)
TV

by absorbing a factor eλt0/4 into C, and where C, p, t0 depending on the exponents δ, η.

If we choose a new value of η′ and δ > 0 so that the exponent η′(1 − δ) gives the target

exponent η, these values now depend only on η, and using that Λp(µ, ν) ≤ Λ2p(µ, ν)
1/2

and we conclude (3.85) for the moment index 2p. The other cases are similar.

Remark 3.18. We can now justify the comment in Remark 3.7 regarding the applicability

of these estimates and the resulting proofs of Theorems 3.1, 3.2 in the cases (CHPK)

where we obtain cutoff hard potentials by truncation of a noncutoff kernel. In this case,

one can follow the argument of [149] to show that the exponential rate λK is positive,

uniformly in K, but the problem in obtaining the result lies in the short-time bounds (Step

2). In the short-time bounds (3.92, 3.93, 3.97), we would find an exponent of the form

CK
& t

0
Λ2+γ(φ

K
s (µ))ds and, since the coefficient is proportional to K, the moment index

p one would find by applying Proposition 2.9 also depends on K. Even modifying the

technique (for instance, keeping a factor eCKΛ2+γ(µ0) and arguing using the concentration

of moments Proposition 2.10iv) when applying to the Kac process, as in Corollary 3.14),

we still have a factor of the form eCKt0 which would then appear in our final result, and

we would not find a final result for the noncutoff case (NCHP) any stronger than we do

in Theorem 4.5 in any case.

Regularity Estimates

For the proof of the local uniform estimate Lemma 3.22, it will be important to control

the continuity of Q after application of the flow maps φt; for brevity, we will write the

composition as Qt = Q ◦ φt. We can exploit the use of the stronger ‖ · ‖TV+2− norm

in the stability estimates Proposition 3.15, to prove a strong notion of continuity for Qt,

including the dependence on t.

It is well known that, for q ≥ 1, and µ, ν ∈ Sq+1, we have the bilinear estimate

‖Q(µ)−Q(ν)‖TV+q ≤ CΛq+1(µ, ν)
1
2‖µ− ν‖TV+(q+1) (3.107)

and, by interpolating, this leads to

‖Q(µ)−Q(ν)‖TV+q ≤ CΛ3(q+1)(µ, ν)
1
2‖µ− ν‖

1
2
TV. (3.108)

Combining this the stability estimate in Corollary 3.16, we deduce the following. For

q ≥ 1, η ∈ (0, 1) and λ < λ0, then there exists p such that, for µ, ν ∈ Sp, we have the

estimate

‖Qt(µ)−Qt(ν)‖TV+q ≤ Ce−λtΛp(µ, ν)
1
2‖µ− ν‖ηTV. (3.109)
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Exchange Lemma

We remark, for future reference, the following technical ‘Chapman-Kolmogorov’ property

for the functional derivatives Dφt, which we will use in writing a decomposition of µN
t −

φt(µ
N
0 ) later (Formula 3.3.1). Since the proof relies on the boundedness of the map Dφt :

Yp → Yp, which we proved via the connection to the branching process, we include the

proof here. This property roughly corresponds to (A3. - Convergence of the Generators)

in the work [142].

Lemma 3.19 (Exchange Lemma). Let µN ∈ SN and f ∈ A1. Then for all times t ≥ 0,

we have the equalities

d

dt
〈f,φt(µ

N)〉 = 〈f,Dφt(µ
N)

G
Q(µN)

H
〉

=

!

Rd×Rd×Sd−1

〈f,Dφt(µ
N)[µN,v,v!,σ − µN ]〉NB(v − v∗, σ)dσµ

N(dv)µN(dv*)

(3.110)

where µN,v,v!,σ is the post-collision measure given by (1.14), QN is the transition kernel of

the Kac process, as in Definition 3.2.2, and where Dφt is the functional derivative given

by Proposition 3.15.

The first equality is familiar from semigroup theory, but is complicated by the non-linearity

of the flow maps; we resolve this by using ideas of the infinite dimensional differential

calculus developed in [142], and the second equality follows using the boundedness of

Dφt(µ
N) : Yp → Yp for all p. The first step in the following proof corresponds to [142,

Lemma 2.11], and the second to [142, Sections 5.5, 6.5].

Proof. Throughout, fix µN ∈ SN and f ∈ A1. Recall, for clarity, the notation Qt(µ) =

Q(φt(µ)).

Step 1. Differentiation in Time Using the boundedness of appropriate moments of

µN ∈ SN , together with the continuity estimate (3.108), it is straightforward to see that

the map t /→ Qt(µ
N) is Hölder continuous in time, with respect to the weighted norm

‖ · ‖TV+2: for some constant C1 = C1(N), we have the estimate

‖Qt(µ
N)−Qs(µ

N)‖TV+2 ≤ C1|t− s| 12 . (3.111)

From the definition (BE) of the Boltzmann dynamics, together with a truncation argument

(as in Step 2 of Proposition 2.6), we have that

〈f,φt(µ
N
0 )〉 = 〈f, µN〉+

! t

0

〈f,Qs(µ
N)〉ds. (3.112)
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Therefore, the map t /→ 〈f,φt(µ
N)〉 is continuously differentiable in time, with derivative

d

dt
〈f,φt(µ

N)〉 = 〈f,Qt(µ
N)〉 (3.113)

where, at t = 0, this is a one-sided, right derivative. It therefore suffices to show that the

first equality of (3.110) holds as a right derivative.

Fix t ≥ 0, and observe that, for s > 0 small enough, νN
s = µN +sQ(µN) defines a measure

νN
s ∈ S. From the semigroup property, it follows that φt(φs(µ

N)) = φt+s(µ
N), and we

can therefore expand

Z
f,φt+s(µ

N)− φt(µ
N)− sDφt(µ

N)[Q(µN)]
[

= 〈f,φt(φs(µ
N))− φt(ν

N
s )〉\ ]^ _

:=T1(s)

+ 〈f,φt(ν
N
s )− φt(µ

N)− sDφt(µ)[Q(µN)]〉\ ]^ _
:=T2(s)

. (3.114)

We will now show that each of the two terms T1, T2 are of the order o(s), which implies

the first equality.

Step 1a. Estimate on T1(s) Let η ∈ (2
3
, 1), and choose p large enough that the

stability estimates (3.85, 3.87) hold with exponent η. As s ↓ 0, the probability measures

νN
s = µN + sQ(µN) and φs(µ

N) are bounded in Sp. Therefore, from (3.85), there exists a

constant C2 = C2(N) < ∞ such that, for all s > 0 small enough,

‖φt(φs(µ))− φt(νs)‖TV+2 ≤ C2‖φs(µ)− νs‖ηTV+2. (3.115)

The left-hand side is a bound for T1(s). Using the estimate (3.111) above, we estimate

the right-hand side, following [142, Lemma 2.11]:

‖φs(µ
N)− νN

s ‖TV+2 =

XXXX
! s

0

(Qu(µ
N)−Q0(µ

N))du

XXXX
TV+2

≤
! s

0

‖Qu(µ
N)−Q0(µ

N)‖TV+2 du

≤ C1(N)

! s

0

u
1
2du =

2

3
C1(N)s

3
2 .

(3.116)

Combining the estimates (3.115, 3.116), we see that

T1(s) ≤ C2

6
2

3
C1

7η

s
3η
2 . (3.117)

Since we chose η > 2
3
, this shows that T1 is o(s) as s ↓ 0.

Step 1b. Estimate on T2 Let η and p be as above, and recall that in (3.87), ξt is

the definition of Dφt(µ)[ν − µ]. We now apply this estimate to µN and νN
s , noting that
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νN
s = µN + sQ(µN) and φs(µ

N) are bounded in Sp as s ↓ 0, and that νN
s −µN = sQ(µN).

The bound (3.87) now shows that, for some constants C3, C4 < ∞,

‖φt(ν
N
s )− φt(µ

N)− sDφt(µ
N)[Q(µN)]‖TV+2 ≤ C3‖νN

s − µN‖1+η
TV

= C3‖sQ(µN)‖1+η
TV

≤ C4s
1+η.

(3.118)

The left-hand side is a bound for T2, which implies that T2 is o(s), as desired. Together

with the previous estimate on T1, this concludes the proof of the first equality.

Step 2. Exchanging Integration and the Linear Map We now turn to the proof

of the second equality in (3.110). Since the fourth moment of µN is finite, we have the

equality as a Bochner integral in Y3

Q(µN) =

!

Rd×Rd×Sd−1

N(µN,v,v∗,σ − µN)B(v − v∗, σ)dσµ
N(dv)µN(dv∗). (3.119)

Now, from (3.84) and using that the third moments of φt(µ
N) are bounded by Proposition

2.6, the map Dφt(µ
N) : Y3 → Y3 is a continuous linear map, and using the quadratic

growth of f , so is the composition ξ /→ 〈f,Dφt(µ
N)[ξ]〉. Since (3.119) is a Bochner

integral in Y3, we apply this bounded linear map to both sides to obtain

〈f,Dφt(µ
N)

G
Q(µN)

H
〉

=

!

Rd×Rd×Sd−1

〈f,Dφt(µ
N)[µN,v,v!,σ − µN ]〉NB(v − v∗, σ)dσµ

N(dv)µN(dv*)
(3.120)

which is the second equality in (3.110) as desired. The Lemma is complete.
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3.2.4 Proof of Theorem 3.6

As a first application of the stability estimates, we will now prove Theorem 3.6, which

extends Corollary 3.13 to a gloabl-in-time continuity result for the Boltzmann flow (φt)t≥0

with respect to our weighted Wasserstein metric W1.

Proof of Theorem 3.6. We already established the first claim of the theorem in Corollary

3.13, which we write as, for some p0, C, w, and all µ0, ν0 ∈ Sp0 with a moment estimate

Λp0(µ0, ν0) ≤ a, we have

W1 (φt(µ),φt(ν)) ≤ CewtaW1(µ, ν). (3.121)

We show the second statement, with uniform-in-time Hölder controls, splitting into the

cases first where p is sufficiently large, and then dealing separately with any p > 2.

Step 1. Uniform-in-Time control with large p. We first deal with the case where

p1 ≥ p0 is large enough that the above holds, and such that the stability estimate Propo-

sition 3.15 holds with Hölder exponent η = 1
2
. Fix µ, ν ∈ Sp1 with Λp1(µ, ν) ≤ a, and

assume without loss of generality that 0 < W1(µ, ν) < 1. From the stability estimate

(3.85) we have

‖φt(µ)− φt(ν)‖TV+2 ≤ Ca
1
2 e−λ0t/2 (3.122)

for some constants C,λ0 > 0. It is immediate from the definitions that W1(µ, ν) ≤
‖µ− ν‖TV+2 and so combining with (3.121), we have

W1 (φt(µ),φt(ν)) ≤ Camin
-
e−λ0t/2,W1(µ, ν)e

wt
.
. (3.123)

The right hand side is maximised when e−λ0t/2 = W1(µ, ν)e
wt, which occurs when

t = − 2

λ0 + 2w
log W1(µ, ν). (3.124)

Therefore, the maximum value of the right-hand side is

sup
t≥0

W1 (φt(µ),φt(ν)) ≤ Ca exp

6
λ0

λ0 + 2w
logW1(µ, ν)

7

= CaW1(µ, ν)
ζ1

(3.125)

with

ζ1 =
λ0

λ0 + 2w
(3.126)

which is the claimed Hölder continuity, for p = p1. Of course, this also holds for any

p ≥ p1 with the same hypothesis that Λp(µ, ν) ≤ a.
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Step 2. Hölder-Continuity with p > 2 Moments. Finally, we deal with the second

point for arbitrary p > 2. This argument uses a localisation principle to control the

moments on a very short initial interval [0, u], and may be read as a warm-up to the more

involved arguments in the proof of Theorem 3.3.

As above, let p1 be the moment index required for the previous step to hold, and let ζ1

be the resulting exponent. Without loss of generality, let us assume that p ∈ (2, 3), which

is the hardest case; if instead we have an estimate on the (p′)th moments, p′ ≥ 3, then

this implies the same estimate holds for the pth = (5
2
)th moments. Let β = p−2

2
∈ (0, 1),

let µ, ν ∈ S have moments Λp(µ, ν) ≤ a, and let u ∈ (0, 1] to be chosen later. Set

ρt = (φt(µ) + φt(ν))/2 as in Proposition 3.10, and let zt be the resulting coefficients from

Proposition 3.9. Define

T = inf

M
t ≥ 0 : Λ3(ρt) ≥

βtβ−1 + 1

2

N
. (3.127)

We now deal with the two cases T > u, T ≤ u separately.

Case 2i. T > u. If T > u, then we have the estimate

zu = exp

6
C

! u

0

Λ3(ρs)ds

7
≤ exp

6
C

! 1

0

βsβ−1 + 1

2
ds

7
≤ C (3.128)

for some new absolute constant C. Using the representation formula Proposition 3.10 as

in Corollary 3.13, we therefore obtain

sup
t≤u

W1(φt(µ),φt(ν)) ≤ CW1(µ, ν). (3.129)

Using the previous step on φu(µ),φu(ν), and using the moment production property

recalled in Proposition 2.6, we have the estimate

sup
t≥u

W1(φt(µ),φt(ν)) ≤ CΛp1(φu(µ),φu(ν))W1(φu(µ),φu(ν))
ζ1 ≤ Cu2−p1W1(µ, ν)

ζ1 .

(3.130)

Case 2ii. T ≤ u. We next deal with the case T ≤ u. In this case, we first note

that the moment production property shows that Λ3(φt(µ)) ≤ Catp−3 for small t, and

since β − 1 < p − 3 by the choice of β = p−2
2
, it follows that T > 0, while we assume

that T ≤ u ≤ 1. Using the moment production property again, Λ3(φT (µ)) ≤ CaT p−3,

absorbing the constant term into the (negative) power of T ∈ (0, 1], and similarly for

φT (ν). Comparing to the definition of T shows that

βT β−1 ≤ Λ3(φT (µ)) + Λ3(φT (ν)) ≤ CaT p−3; T ≤ u (3.131)

for some new C, and recalling the definition of β, this rearranges to produce the bound

1 ≤ Caup/2−1. In particular, in this case, we have

sup
t≥0

W1(φt(µ),φt(ν)) ≤ 4 ≤ Caup/2−1. (3.132)
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Combining estimates (3.129, 3.130, 3.132) and keeping the worst terms, we see that in

either case,

sup
t≥0

W1 (φt(µ),φt(ν)) ≤ Ca
'
u2−p1W1 (µ, ν)

ζ1 + up/2−1
(
. (3.133)

We now optimise by taking u = min(1,W1(µ, ν)
δ) for δ = 2ζ1

p+2p1−6
to obtain

sup
t≥0

W1 (φt(µ),φt(ν)) ≤ CaW1(µ, ν)
ζ (3.134)

for a new exponent ζ = ζ(d, p) = ζ1(p−2)
(p−2)+2(p1−2)

> 0.
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3.3 The Interpolation Decomposition

The goal of this section is to prove the following ‘interpolation decomposition’ for the

difference between Kac’s process and the Boltzmann flow, which is the key identity re-

quired for the proofs of Theorems 3.1, 3.2. This is based on an idea of Norris [158], which

was inspired by [142, Section 3.3]. We recall the definitions of the jump measure mN ,

compensator mN and transition kernel QN from Definition 3.2.2.

Formula 3.3.1. Let µN
t be a Kac process on N ≥ 2 particles, and fix a test function

f ∈ A0. To ease notation, we write

∆(s, t, µN) = φt−s(µ
N)− φt−s(µ

N
s−); 0 ≤ s ≤ t, µN ∈ SN ; (3.135)

ψ(u, µ, ν) = φu(ν)− φu(µ)−Dφu(µ)[ν − µ]; u ≥ 0, µ, ν ∈
`

k>2

Sk (3.136)

where Dφt is the derivative of the Boltzmann flow φt, defined in Proposition 3.15; this

makes sense, provided that all moments of µ, ν are finite. Then we can decompose

〈f, µN
t − φt(µ

N
0 )〉 = MN,f

t +

! t

0

〈f, ρN(t− s, µN
s )〉ds (3.137)

where

MN,f
t =

!

(0,t]×SN

〈f,∆(s, t, µN)〉(mN −mN)(ds, dµN
s ) (3.138)

and where ρN is given in terms of the transition kernel QN (3.22) by

〈f, ρN(u, µN)〉 =
!

SN

〈f,ψ(u, µN , ν)〉QN(µ
N , dν). (3.139)

Remark 3.20. i). This is the key identity needed for Theorems 3.1, 3.2; the remainder

of the proofs are to establish suitable controls over each of the two terms.

ii). This representation formula offers two major advantages over the equivalent repre-

sentation formula Proposition 3.10 from [157, Proposition 4.2].

• Firstly, all the quantities appearing in our formula are adapted to the natural

filtration FN
t of (µN

t )t≥0, and so we can use martingale estimates directly. By

contrast, Proposition 3.10 contains anticipating terms, as remarked above. This

makes it much easier to obtain estimates in Lp(P), p ≥ 1, while we had to use

different techniques in the case with anticipating terms (for instance, using

concentration of moments in Lemma 3.14).

• Secondly, all terms appearing in our formula may be controlled by the stabil-

ity estimates (3.85, 3.87). This allows us to exploit the stability of the limit

equation, at the level of individual realisations of the empirical particle system

µN
0 .
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Proof of Formula 3.3.1. To begin with, we restrict to bounded, measurable f . Fix t ≥ 0,

and consider the process ΓN,f,t
s = 〈f,φt−s(µ

N
s )〉, for 0 ≤ s ≤ t. Then ΓN,f,t is càdlàg, and

is differentiable on intervals where µN
s is constant. On such intervals, Lemma 3.19 tells

us that

d

ds
〈f,φt−s(µ

N
s )〉 = − d

du

@@@@
u=t−s

〈f,φu(µ
N
s )〉

= −
!

Rd×Rd×Sd−1

〈f,Dφt−s(µ
N
s )[µ

N,v,v!,σ − µN
s ]〉B(v − v∗, σ)N µN

s (dv)µ
N
s (dv*)dσ

= −
!

SN

〈f,Dφt−s(µ
N
s )[µ

N − µN
s ]〉QN(µ

N
s , dµ

N)

(3.140)

where the final equality is to rewrite integral in terms of the transition kernel QN of the

Kac process, defined in (3.22). Writing It for the (finite) set of jumps It = {s ≤ t : µN
s ∕=

µN
s−}, the contribution to ΓN,f,t

t − ΓN,f,t
0 from drift between jumps is

!

(0,t]\It

d

ds
〈φt−s(µ

N
s )〉 ds

= −
!

((0,t]\It)×SN

〈f,Dφt−s(µ
N
s )[µ

N − µN
s ]〉QN(µ

N
s , dµ

N)ds.

(3.141)

Using the definitions (3.135, 3.136) of ψ and ∆, the integrand can be expressed as

〈f,Dφt−s(µ
N
s )[µ

N − µN
s ]〉 = 〈f,∆(s, t, µN)− ψ(t− s, µN

s , µ
N)〉 (3.142)

for any s ∕∈ It. Since the set It has 0 Lebesgue measure, the set It×SN has 0 measure with

respect to QN(µ
N
s , dµ

N)ds, and so the inclusion of this set does not change the integral.

Using the definitions (3.23, 3.139) of mN and ρN , we can rewrite the integral as

!

(0,t]×SN

〈f,ψ(t− s, µN
s , µ

N)−∆(s, t, µN)〉QN(µ
N
s , dµ

N)ds

=

! t

0

〈f, ρN(t− s, µN
s )〉ds−

!

(0,t]×SN

〈f,∆(s, t, µN)〉mN(ds, dµN).

(3.143)

On the other hand, at the times when µN
s jumps, we have

ΓN,f,t
s − ΓN,f,t

s− = 〈f,φt−s(µ
N
s )− φt−s(µ

N
s−)〉 = 〈f,∆(s, t, µN

s )〉. (3.144)

Therefore, the contribution to ΓN,f,t
t − ΓN,f,t

0 from jumps is

"

s∈It

ΓN,f,t
s − ΓN,f,t

s− =

!

(0,t]×SN

〈f,∆(s, t, µN)〉mN(ds, dµN)

= MN,f
t +

!

(0,t]×SN

〈f,∆(s, t, µN)〉mN(ds, dµN)

(3.145)
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Combining the contributions (3.143, 3.145), we see that

〈f, µN
t − φt(µ

N
0 )〉 = ΓN,f,t

t − ΓN,f,t
0

=

!

(0,t]\It

d

ds
〈f,φt−s(µ

N
s )〉ds+

"

s∈It

ΓN,f,t
s − ΓN,f,t

s−

= MN,f
t +

! t

0

〈f, ρN(t− s, µN
s )ds

(3.146)

as desired.
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3.4 Proof of Theorem 3.1

We now give the proof of Theorem 3.1 from the representation formula. The main diffi-

culty in obtaining a pathwise statement is taking the supremum of the martingale terms

MN,f
t in Formula 3.3.1 inside the expectation, similar to Proposition 3.11, where now

MN,f
t =

!

(0,t]×SN

O
f,φt−s(µ

N)− φt−s(µ
N
s−)

P
(mN −mN)(ds, dµN). (3.147)

We now take the supremum, inside the expectation, over all those functions f ∈ A1, i.e.

∀ v, v′ ∈ Rd, |f̂(v)| ≤ 1; |f̂(v)− f̂(v′)| ≤ |v − v′|. (3.148)

We follow the same sort of overall strategy as for the same problem in Proposition 3.11.

Finding the best exponents of N we have been able to obtain uses a ‘hierarchical decom-

position’. This approach was inspired by an equivalent technique used in [157, Proposition

7.1].

Lemma 3.21. Let ε > 0, a ≥ 1 and 0 < λ < λ0. Let p be large enough that Corollary

3.16 holds with TV + 4, exponent λ and Hölder exponent 1− ε.

Let (µN
t )t≥0 be a Kac process in dimension d ≥ 3, with initial moment Λp(µ

N
0 ) ≤ a. Let

MN,f
t be the processes given by (3.138). Then we have, uniformly in t ≥ 0,

XXXX sup
f∈A1

@@@MN,f
t

@@@
XXXX
L2(P)

≤ Ca1/2 N ε−1/d (3.149)

for some C depending on ε,λ, d.

Once we have obtained the control of the martingale term, the remaining proof of Theorem

3.1 is straightforward.

Proof of Theorem 3.1. Take p = p(ε) as in Lemma 3.21, and such that Proposition 3.15

holds with exponent max(1− ε, 1
2
).

We first note that it is sufficient to prove the case µ0 = µN
0 . Given this case, we use the

continuity established in Theorem 3.6 to estimate the difference

W1

-
φt(µ

N
0 ),φt(µ0)

.
≤ Ca1/2W1(µ

N
0 , µ0)

ζ (3.150)

for some ζ = ζ(d, p), which implies the claimed result.

From now on, we assume that µ0 = µN
0 . From the interpolation decomposition Formula

3.3.1, we majorise

W1

-
µN
t ,φt

-
µN
0

..
≤ sup

f∈A1

@@@MN,f
t

@@@+
! t

0

sup
f∈A1

〈f, ρN(t− s, µN
s )〉 ds (3.151)
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where, as in (3.136, 3.139), the integrand is given by

〈f, ρN(t− s, µN
s )〉 =

!

SN

〈f,ψ(t− s, µN
s , ν)〉QN(µ

N , dν); (3.152)

ψ(u, µ, ν) = φu(ν)− φu(µ)−Dφu(µ)[ν − µ] (3.153)

and QN is the transition kernel (3.22) of the Kac process.

The first term of (3.151) is controlled in L2(P) by Lemma 3.21, and so it remains to bound

the second term in L2(P). Let s ≥ 0, and let µN be a measure obtained from µN
s by a

collision, as in (1.14). Then, using the estimate (3.87), we bound

‖ψ(t− s, µN
s , µ

N)‖TV+2 = ‖φt−s(µ
N)− φt−s(µ

N
s )−Dφt−s(µ

N
s )‖TV+2

≤ Ce−λ0(t−s)/2‖µN − µN
2 ‖2−ε

TV Λp(µ
N , µN

s )
1
2 .

(3.154)

By Proposition 2.10iii), we know that Λp(µ
N) ≤ CΛp(µ

N
s ). Moreover, from the form

(1.14) of possible µN , we know that

‖µN − µN
s ‖TV ≤ 4

N
for QN(µ

N
s , ·)-almost all µN . (3.155)

Therefore, almost surely, for all s and QN(µ
N
s , ·)-almost all µN , we have the bound

‖ψ(t− s, µN
s , µ

N)‖TV+2 ≤ Ce−λ0(t−s)/2N ε−2 Λp(µ
N
s )

1
2 (3.156)

where the implied constants are independent of s, µN
s . Integrating with respect toQN(µ

N
s , dµ

N),

we obtain an upper bound for 〈f, ρN(t− s, µN
s )〉:

sup
f∈A1

〈f, ρN(t− s, µN
s )〉 ≤

!

SN

XXψ(t− s, µN
s , µ

N)
XX
TV+2

QN(µ
N
s , dµ

N)

≤ Ce−λ0(t−s)/2 N ε−1 Λp(µ
N
s )

1
2 .

(3.157)

We now take the L2(P) norm of the second term in (3.151). Using Proposition 2.10 to

control the moment appearing in the integral, we obtain

XXXX
! t

0

sup
f∈A1

〈f, ρN(t− s, µN
s )〉 ds

XXXX
L2(P)

≤

! t

0

XXXX sup
f∈A1

〈f, ρN(t− s, µN
s )〉

XXXX
L2(P)

ds

≤ C

! t

0

e−λ(t−s)/2 N ε−1
XXXΛp(µ

N
s )

1
2

XXX
L2(P)

ds

≤ CN ε−1 a1/2.

(3.158)

Noting that the exponent ε− 1 < ε− 1
d
, we combine this with Lemma 3.21, and keep the

worse asymptotics.
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Proof of Lemma 3.21. We begin by reviewing the following estimates for 1−Lipschitz

functions from [157]. Following [157], we use angle brackets 〈f〉P to denote the average

of a bounded function f over a Borel set P of finite, nonzero measure.

Let f be 1− Lipschitz, and consider P = [0, 2−j]d. Then, for some numerical constant Cd,

we have

∀v ∈ P, |f(v)− 〈f〉P | ≤ Cd2
−j; |〈f〉P − 〈f〉2P | ≤ Cd2

−j. (3.159)

We note that both of these bounds are linear in the length scale 2−j of the box. We deal

with the case N ≥ 22d.

The proof is based on the following ‘hierarchical’ partition of Rd, given in the proof [157,

Proposition 7.1]. For j ∈ Z, we take Pj = (−2j, 2j].

Set A0 = P0 and, for j ≥ 1, Aj = Pj \ Pj−1. For j ≥ 1 and l ≥ 2, there is a unique

partition Pj,l of Aj by 2ld − 2(l−1)d translates of Pj−l. Similarly, write P0,l for the unique

partition of A0 by 2dl translates of P−l. For l ≥ 3 and k ∈ Z, let P ∈ Pj,l. We write π(P )

for the unique element of of Pj,l−1 such that P ⊂ π(P ).

We deal first with the case d ≥ 3. Fix discretisation parameters L, J ≥ 1. Given a test

function f ∈ A1, we can decompose

f =
J"

j=0

L"

l=2

"

P∈Pj,l

aP (f)(1 + |v|2)1IP + β(f) (3.160)

where we define

aP (f) =

#
$

%
〈f̂〉P if P ∈ Pj,2, for some j ≥ 0

〈f̂〉P − 〈f̂〉π(P ) if P ∈ Pj,l, for some j ≥ 0, l ≥ 3
(3.161)

and the equation serves to define the remainder2 term β(f). Write hP = 22j(1 + |v|2)1IP ,
for P ∈ Pj,l, and write MN ;P

t = MN,hP
t . We can now write

MN,f
t =

J"

j=0

L"

l=2

"

P∈Pj,l

2−2jaP (f)M
N ;P
t +RN,f

t ; (3.162)

RN,f
t =

!

(0,t]×SN

〈β(f),∆(s, t, µN)〉(mN −mN)(ds, dµN) (3.163)

and where ∆, mN and mN are defined in Section 3.3. As in Proposition 3.11, this is the

key decomposition in the proof. The strategy is very similar:

• The martingales MN ;P are controlled by a bound (3.289) from the general theory

of Markov chains, independently of f.

2We called this remainder ε(f) earlier, but ε is already taken here, as the loss in the exponent.
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• The coefficients aP depend on f , but are bounded, uniformly over f ∈ A1.

• On PJ , β(f) will be small, uniformly in f ∈ A1, due to the Lipschitz bound on f and

the estimate (3.159), which is again a sort of quantitative compactness argument,

see Remark 3.8.

• The contribution of |β(f)| from outside PJ will be controlled by the moment bounds.

Step 1. Control of Martingale Sum We begin by controlling MN ;P
t appearing in

the decomposition. Let (MN ;P ;t
s )s≤t be the martingale

MN ;P ;t
s =

!

(0,s]×SN

〈hP ,∆(u, t, µN)〉(mN −mN)(du, dµN). (3.164)

We can control the martingale term pointwise in L2(P) by applying the martingale bound

(3.289) at the terminal time t, with MN ;P
t = MN ;P ;t

t :
XXXMN ;P

t

XXX
2

L2(P)
= E

!

(0,t]×SN

〈(1 + |v|2)22j1IP ,∆(s, t, µN)〉2mN(ds, dµN)

≤ CE
2!

(0,t]×SN

〈(1 + |v|4)1IP , |∆(s, t, µN)|〉2mN(ds, dµN)

3
.

(3.165)

Summing over P ∈ Pj,l and j = 0, .., J , we Minkowski’s inequality to move the sum inside

the integral against ∆, and note that,
<

j

<
P∈Pj,l

hP ≤ C(1 + |v|4) uniformly in l. This

produces the bound

J"

j=0

"

P∈Pj,l

XXXMN ;P
t

XXX
2

L2(P)
≤ CE

2!

(0,t]×SN

〈(1 + |v|4), |∆(s, t, µN)|〉2mN(ds, dµN)

3

= E
2!

(0,t]×SN

‖φt−s(µ
N)− φt−s(µ

N
s−)‖2TV+4 m

N(ds, dµN)

3 (3.166)

where the second line follows by the definition of∆ in (3.135). Using the stability estimates

in Corollary 3.16 with TV + 4, which is licit thanks to the choice of p in the lemma, we

find
J"

j=0

"

P∈Pj,l

XXXMN ;P
t

XXX
2

L2(P)
≤ CE

2!

(0,t]×SN

e−λ(t−s)Λp(µ
N
s , µ

N)N2(ε−1) mN(ds, dµN)

3
.

(3.167)

For mN -almost all (s, µN), we bound Λp(µ
N
s , µ

N) ≤ CΛp(µ
N
s ) by Proposition 2.10iii), and

mN(ds,SN) ≤ 2Nds, to bound the right hand side by

J"

j=0

"

P∈Pj,l

XXXMN ;P
t

XXX
2

L2(P)
≤ C

! t

0

e−λ(t−s)N2ε−1 E[Λp(µ
N
s )] ds

≤ CN2ε−1a
1
2

(3.168)

where the second line follows using the moment estimates for the Kac process, established

in Proposition 2.10.
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Step 2. Control of Coefficients & Martingale Sum We next control the coefficients

aP (f), and hence the sum
<

aP (f)M
N ;P
t , uniformly in f ∈ A1. Observe that for P ∈ Pj,l,

the bound (3.159) gives 2−2j|aP (f)| ≤ C2−j−l, and #Pj,l ≤ 2dl. Hence, independently of

f ∈ A1, 8

9
J"

j=0

"

P∈Pj,l

(aP (f)2
−2j)2

:

; ≤ C2(d−2)l. (3.169)

Now, by Cauchy-Schwarz,

sup
f∈A1

@@@@@@

J"

j=0

L"

l=2

"

P∈Pj,l

2−2jaP (f)M
N ;P
t

@@@@@@
≤ C

L"

l=2

8

9
J"

j=0

"

P∈Pj,l

K
MN ;P

t

L2

:

;
1/2

2(d/2−1)l. (3.170)

Therefore, (3.168) gives
XXXXXX
sup
f∈A1

@@@@@@

J"

j=0

L"

l=2

"

P∈Pj,l

aP (f)M
N ;P
t

@@@@@@

XXXXXX
L2(P)

≤ CN ε−1/2a1/2
L"

l=2

2(d/2−1)l

≤ CN ε−1/2 2(d/2−1)L a1/2.

(3.171)

Step 3. Control of error term β(f). The remaining points are a control on β(f),

uniformly in f ∈ A1, dealing with PJ and Rd\PJ separately. Fix f ∈ A1 and let P ∈ Pj,L

with j ≤ J . The definition gives β̂(f) = f̂ − 〈f̂〉P on any P , and so

On P, |β(f)| = (1 + |v|2)|f̂ − 〈f̂〉P | ≤ C (1 + |v|2)2j−L. (3.172)

Since |v| ≥ 2j−1 on P , and P ∈ Pj,L is arbitrary, we see that

On PJ , |β(f)| ≤ C2−L(1 + |v|4). (3.173)

On the other hand, the uniform bound ‖f̂‖∞ ≤ 1 implies that

On P c
J , |β(f)| ≤ (1 + |v|2) ≤ 2−2J(1 + |v|4). (3.174)

Combining, we have the global bound for all f ∈ A1:

∀v ∈ Rd, |β(f)| ≤ C(2−2J + 2−L)(1 + |v|4). (3.175)

Recalling the definition (3.135) of ∆, we use the stability estimate in Corollary 3.16, with

TV+4, and the moment increase bound Proposition 2.10iii), as above to see that almost

surely, for mN +mN -almost all (s, µN), we have the bound

sup
f∈A1

@@〈β(f), |∆(s, t, µN)|〉
@@ ≤ C(2−2J + 2−L) ‖∆(s, t, µN)‖TV+4

≤ C(2−2J + 2−L) e−λ(t−s)/2 N ε−1 Λp(µ
N
s−)

1
2

=: Hs

(3.176)

where we introduced the shorthand Hs for the final expression, for simplicity.
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Step 4. Control over Remainder Terms We now integrate the bound found in the

previous step. We now start from the trivial observation that

sup
f∈A1

@@@RN,f
t

@@@ ≤
!

(0,t]×SN

M
sup
f∈A1

Z
|β(f)|, |∆(s, t, µN)|

[N
(mN +mN)(ds, dµN). (3.177)

We split the measure mN +mN = (mN −mN) + 2mN to obtain a uniform bound for the

error terms RN,f
t defined in (3.163):

XXXX sup
f∈A1

RN,f
t

XXXX
L2(P)

≤ C

XXXX
! t

0

Hs(m
N +mN)(ds,SN)

XXXX
L2(P)

≤ C(2−2J + 2−L)N ε−1 [T1 + T2]

(3.178)

where we have written

T1 =

XXXX
! t

0

e−λ(t−s)/2Λp(µ
N
s−)

1
2mN(ds,SN)

XXXX
L2(P)

(3.179)

T2 =

XXXX
! t

0

e−λ(t−s)/2Λp(µ
N
s−)

1
2 (mN −mN)(ds,SN)

XXXX
L2(P)

. (3.180)

T1 is controlled by dominating mN(ds,SN) ≤ 2Nds to obtain

T1 ≤ CN

XXXX
! t

0

e−λ(t−s)/2Λp(µ
N
s )

1
2ds

XXXX
L2(P)

≤ CN

! t

0

e−λ(t−s)/2‖Λp(µ
N
s )

1
2‖L2(P) ds

≤ CNa1/2.

(3.181)

We control T2 by Itô’s isometry for mN −mN , which is reviewed in (3.290):

T 2
2 = E

M! t

0

e−λ(t−s)Λk(µ
N
s−)m

N(ds,SN)

N
≤ CN

! t

0

e−λ(t−s)E
)
Λp(µ

N
s−)

*
ds

≤ CN a.

(3.182)

Combining (3.178, 3.181, 3.182), we obtain
XXXX sup

f∈A1

RN,f
t

XXXX
L2(P)

≤ C(2−2J + 2−L) N ε−1 a1/2. (3.183)

Step 5. Conclusion. We now conclude. Gathering (3.162, 3.171, 3.183) we have

proven that
XXXX sup

f∈A1

@@@MN,f
t

@@@
XXXX
L2(P)

≤ C N ε a1/2(N−1/2 2(d/2−1)L + 2−L + 2−2J). (3.184)

Taking L = ⌊log2(N)/d⌋ and J ↑ ∞ produces the claimed result. For d = 2, we replace

2(d/2−1)L by L in (3.171), and optimise as before, absorbing the factors of (logN) to make

the exponent of N slightly larger.
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3.5 Proof of Theorem 3.2

We now adapt the ideas of Lemma 3.21 to a local uniform setting, and working in Lp, to

prove the local uniform approximation result Theorem 3.2. As in the proof above, most

of the work is in controlling the martingale term (MN,f
t )f∈A1 defined in (3.138), uniformly

in f ; for a pathwise local uniform estimate, we wish to control an expression of the form
XXXX sup

f∈A1

sup
t≤tfin

@@@MN,f
t

@@@
XXXX
Lp(P)

. (3.185)

Since we will frequently encounter suprema of processes on compact time intervals, we

introduce notation. For any stochastic process M , we write

M*,t = sup
s≤t

|Mt| (3.186)

Proving the sharpest asymptotics in the time horizon tfin requires working in Lq(P) in-

stead of L2(P), for large exponents q. This leads to a weaker exponent in N : we obtain

only N ε−q′/2d instead of N ε−1/d, where q′ ≤ 2 is the Hölder conjugate to p. However, by

making q large, we are able to obtain estimates which degrade slowly in the time horizon

tfin, with only a factor of (1 + tfin)
1/q. The exponent for tfin can thus be made arbitrarily

small, while the resulting exponent for N is bounded away from 0 as we make q large.

The key result required for the local uniform estimate is the following control of the

expression (3.185), in analogy to Lemma 3.21.

Lemma 3.22. Let ε > 0, a ≥ 1 and q ≥ 2, and let 1 < q′ ≤ 2 be the Hölder conjugate

to p. Let p be large enough that Corollary 3.16 holds for TV + 5, with Hölder exponent

1− ε, and with some 0 < λ < λ0.

Let (µN
t )t≥0 be a Kac process on N ≥ 2 particles, with initial moment Λpq(µ

N
0 ) ≤ aq.

Let MN,f
t be the processes given by (3.138), and MN,f

*,t their local suprema, as in (3.186).

Then, for any time horizon tfin ∈ [0,∞), we have the control
XXXX sup

f∈A1

MN,f
*,tfin

XXXX
Lq(P)

≤ Ca1/2 N−α (logN)1/q
′
(1 + tfin)

3q+1
2q (3.187)

where α = q′

2d
− ε.

The proof of this Lemma follows the same ideas as the proof of the equivalent result,

Lemma 3.21, for the pointwise bound. However, in this case, we must modify the argument

to work in Lq(P) rather than L2(P), and also to control all terms uniformly on the compact

time interval [0, tfin]. This will be deferred until the end of this section.

Following the argument of the pointwise bound in Theorem 3.1, we can now produce

an initial pathwise, local uniform estimate for the case µ0 = µN
0 , with worse long-time

behaviour. From this, we will ‘bootstrap’ to the desired long-time behaviour in Theorem

3.2.
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Lemma 3.23. Let ε > 0, a ≥ 1 and q ≥ 2, with Hölder conjugate q′ ≤ 2. Choose p large

enough that Proposition 3.15 holds with exponent 1−ε, and that Corollary 3.16 holds with

exponent 1 − ε and the norm TV + 5. Let (µN
t )t≥0 be a Kac process on N ≥ 2 particles,

with initial moment Λpq(µ
N
0 ) ≤ aq. Then, for any time horizon tfin ≥ 0, we have the

control
XXXXX sup

t≤tfin

W1

-
µN
t ,φt

-
µN
0

..
XXXXX
Lq(P)

≤ Ca1/2 N ε− q′
2d (logN)1/q

′
(1 + tfin)

3q+1
2q . (3.188)

Proof of Lemma 3.23. As in Theorem 3.1, it remains to control the supremum of the

integral term in Formula 3.3.1

sup
t≤tfin

! t

0

sup
f∈A1

〈f, ρN(t− s, µN
s )〉ds (3.189)

where ρN is given by (3.139). Following the previous calculation (3.157), we majorise, for

s ≤ t ≤ tfin,

sup
f∈A1

〈f, ρN(t− s, µN
s )〉 ≤ CN ε−1 sup

u≤tfin

K
Λp(µ

N
u )

1
2

L
(3.190)

from which it follows that

sup
t≤tfin

! t

0

sup
f∈A1

〈f, ρN(t− s, µN
s )〉ds ≤ CN ε−1 tfin sup

u≤tfin

K
Λp(µ

N
u )

1
2

L
. (3.191)

From the local uniform moment bound established in Proposition 2.10ii), and the initial

moment bound on µN
0 ,

XXXX sup
u≤tfin

K
Λp(µ

N
u )

1
2

LXXXX
Lq(P)

≤
XXXX sup

u≤tfin

K
Λp(µ

N
u )

1
2

LXXXX
L2q(P)

≤ E
2
sup
u≤tfin

Λpq(µ
N
u )

1
2

31/2q

≤ Ca1/2 (1 + tfin)
1/2q.

(3.192)

Combining the estimates (3.191, 3.192), we see that
XXXX sup
t≤tfin

! t

0

sup
f∈A1

〈f, ρN(t− s, µN
s )〉ds

XXXX
Lq(P)

≤ CN ε−1 a1/2 (1 + tfin)
2q+1
2q . (3.193)

We combine this with Lemma 3.22 and keep the worse asymptotics.

We will now show how to ‘bootstrap’ to better dependence of the time horizon tfin. Heuris-

tically, the proof allows us to replace powers of tfin in the initial bound with the same

power of logN , and introduce an additional factor of (1 + tfin)
1/p. As was remarked be-

low Proposition 3.15, we could derive Theorem 3.1 and Lemma 3.23 under the milder

assumptions

‖φt(ν)− φt(µ)‖TV+5 ≤ F (t)Λp(µ, ν)
1
2‖µ− ν‖ηTV; (3.194)

‖φt(ν)− φt(µ)− ξt‖TV+2 ≤ G(t)Λp(µ, ν)
1
2‖µ− ν‖1+η

TV (3.195)
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for functions F,G such that

6! ∞

0

F 2dt

71/2

< ∞;

! ∞

0

Gdt < ∞. (3.196)

If we also assume that F → 0 as t → ∞, we can use an identical bootstrap argument,

with logN replaced by a power of

τN := sup{t : F (t) > N−α} (3.197)

which produces a potentially larger loss. Hence, the the full strength of exponential decay

in Proposition 3.15 is used to control the asymptotic loss due to the bootstrap.

Proof of Theorem 3.2. As in the proof of Theorem 3.1, it is sufficient to prove the case

µN
0 = µ0. Then, making p larger if necessary, we may use Theorem 3.6 to control

supt≥0 W1(φt(µ
N
0 ),φt(µ0)), which proves the general result.

Let 0 < ε′ < ε, and choose p such that Lemma 3.23 holds for ε′. Let α′ > α be the

exponent of N obtained with ε′ in place of ε. From the stability estimate Proposition

3.15, we have

∀µ, ν ∈ Sp, ‖φt(µ)− φt(ν)‖TV+2 ≤ CΛp(µ, ν)
1
2 e−λ0t/2. (3.198)

Define τ = τN = −2λ−1
0 log(N−α′

) and consider tfin > τ + 1. Fix a positive integer n, and

partition the interval [0, tfin] as I1 ∪ I1 ∪ ... ∪ In:

I0 = [0, τ ]; Ir =

2
τ + (r − 1)

tfin − τ

n
, τ + r

tfin − τ

n

3
=: [sr + τ, tr]. (3.199)

Write also Hr = [sr, tr] ⊃ Ir. Since the norm ‖ ·‖TV+2 dominates the Wasserstein distance

W1, we apply (3.198) to bound W1(φt−sr(µ
N
sr),φt−sr(φsr(µ

N
0 ))) to get bound

sup
t∈Ir

W1(µ
N
t ,φt(µ

N
0 )) ≤ C sup

t∈Hr

W1(µ
N
t ,φt−sr(µ

N
sr)) + e−λτΛp(µ

N
sr ,φsr(µ

N
0 ))

1
2 . (3.200)

We bound the two terms in (3.200) separately. Recalling the notation (FN
t )t≥0 for the

natural filtration of (µN
t )t≥0, we control the first term by Lemma 3.23, applied to the

restarted process (µN
t )t≥sr : recalling that tr − sr = (1 + τ + (t− τ)/n), we get

XXXX sup
t∈Hr

W1(µ
N
t ,φt−sr(µ

N
sr))

XXXX
q

Lq(P)
= E

M
E
62

sup
sr≤t≤tr

W1(µ
N
t ,φt−sr(µ

N
sr))

3q@@@@F
N
sr

7N

≤ CE
)
Λpq(µ

N
sr)

1/q
*6

1 + τ +
t− τ

n

7 3q+1
2

N−qα′
(logN)

q
q′ .

(3.201)

We control the moment in the usual way, using Proposition 2.10, to obtain

XXXX sup
t∈Hr

W1(µ
N
t ,φt−sr(µ

N
sr))

XXXX
q

Lq(P)
≤ Caq

6
1 + τ +

t− τ

n

7 3q+1
2

N−qα′
(logN)

q
q′ . (3.202)
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We now turn to the second term in (3.200). Using the definition of τ and the moment

estimates in Propositions 2.6, 2.10,

‖e−λτ/2Λp(µ
N
sr ,φsr(µ

N
0 ))

1
2‖Lq(P) ≤ CN−α′

a1/2. (3.203)

Combining the estimates (3.202, 3.203), and absorbing powers of τ into the powers of

(logN), we obtain

XXXX sup
t∈Ir

W1(µ
N
t ,φt(µ

N
0 ))

XXXX
Lq(P)

≤ Ca1/2
6
1 +

tfin − τ

n

7 3q+1
2q '

N−α′
(logN)

3q+1
2q

+ 1
q′
(
. (3.204)

To get the supremum over the interval [τ, tfin], observe that

M
sup

τ≤t≤tfin

W1

-
µN
t ,φt(µ

N
0 )

.Nq

≤

n"

r=1

M
sup
t∈Ir

W1

-
µN
t ,φt(µ

N
0 )

.Nq

. (3.205)

Taking expectations and qth root, we find that
XXXX sup

τ≤t≤tfin

W1

-
µN
t ,φt(µ

N
0 )

.XXXX
Lq(P)

≤ Cn
1
q a1/2

6
1 +

tfin − τ

n

7 3q+1
2q '

N−α′
(logN)

3q+1
2q

+ 1
q′
(
.

(3.206)

We now take n = ⌈tfin − τ⌉, and we obtain the estimate
XXXX sup

τ≤t≤tfin

W1

-
µN
t ,φt(µ

N
0 )

.XXXX
Lq(P)

≤ Ca1/2(tfin − τ)
1
q

'
N−α′

(logN)
3q+1
2q

+ 1
q′
(

≤ a1/2 t
1
q

fin

'
N−α′

(logN)
3q+1
2q

+ 1
p′
(
.

(3.207)

From Lemma 3.23 applied up to time τ = τN , we have

XXXX sup
0≤t≤τN

W1

-
µN
t ,φt(µ

N
0 )

.XXXX
Lq(P)

≤ Ca1/2 N−α′
6
1 +

2α

λ
log(N)

7 3q+1
2q

(logN)
1
q′

≤ Ca1/2
'
N−α(logN)

3q+1
2q

+ 1
q′
(
.

(3.208)

Combining (3.207, 3.208), and absorbing the powers of (logN) into N ε−ε′ , we have
XXXX sup

0≤t≤tfin

W1

-
µN
t ,φt(µ

N
0 )

.XXXX
Lq(P)

≤ Ca1/2 (1 + tfin)
1
q N−α. (3.209)

The case where tfin ≤ τ + 1 is essentially identical to (3.208).

Remark 3.24. We note that this ‘bootstrap’ argument would produce the same result with

any polynomial time dependence in Lemma 3.23. As a result, the precise time dependence

of Lemmas 3.22, 3.23 is uninteresting, and we do not attempt to optimise it. We also

remark that this method produces the same long-time behaviour even starting from an

exponential estimate, at the cost of a fractional power of N .
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It remains to prove Lemma 3.22. We draw attention to the fact that M f,N are not them-

selves martingales, despite the general construction (see eq. 3.288), since the integrand

φt−s(µ
N)− φt−s(µ

N
s−) depends on the terminal time t. We address this by computing an

associated family of martingales:

Lemma 3.25. Let (MN,f
t )t≥0 be the processes defined in Formula 3.3.1. Recalling the

notation Qt = Q ◦ φt, define

χ(s, t, µN) = Qt−s(µ
N)−Qt−s(µ

N
s−). (3.210)

Suppose f satisfies a growth condition |f(v)| ≤ (1 + |v|q), for some q ≥ 0. Consider the

martingales ZN,f
t given by

ZN,f
t =

!

(0,t]×SN

〈f, µN − µN
s−〉(mN −mN)(ds, dµN)〉. (3.211)

Then we have the equality

ZN,f
t = MN,f

t − CN,f
t

= MN,f
t −

! t

0

ds

!

(0,s]×SN

〈f,χ(u, s, µN)〉(mN −mN)(du, dµN).
(3.212)

Proof. Firstly, we note that ZN,f
t are martingales by standard results from Markov chains,

(3.288). Observe that the integrand in the definition of CN,f
t is bounded, since whenever

0 ≤ u ≤ s, and µN is obtain from µN
u− by collision, we use the estimate (3.109) with η = 1

2
,

to obtain for some p

|〈f,χ(u, s, µN)〉| ≤ ‖Qs−u(µ
N)−Qs−u(µ

N
u−)‖TV+q

≤ CΛp(µ
N , µN

u−)
1
2N− 1

2 ≤ CN
p−2
4 < ∞.

(3.213)

Moreover, for initial data µN ∈ SN , the Boltzmann flow (φs(µ
N))ts=0 has uniformly

bounded (q + 1)th moments and so, by approximation, the Boltzmann dynamics (BE)

extend to f . Now, we apply Fubini to the integral:

CN,f
t

=

!

(0,t]×SN

! t

0

ds 〈f,Qs−u(µ
N)−Qs−u(µ

N
u−)〉 1I[u ≤ s ≤ t] (mN −mN)(du, dµN)

=

!

(0,t]×SN

M! t

u

-
〈f,Qs−u(µ

N)〉 − 〈f,Qs−u(µ
N
u−)〉

.
ds

N
(mN −mN)(du, dµN)

=

!

(0,t]×SN

)
〈f,φt−u(µ

N)− φt−u(µ
N
u−)〉 − 〈f, µN − µN

u−〉
*
(mN −mN)(du, dµN)

=: MN,f
t − ZN,f

t

(3.214)

where the third equality is precisely the Boltzmann equation (BE) in the variable s ∈ [u, t],

extended to f as in Proposition 2.6 Step 2.
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To prove Lemma 3.22, we return to the decomposition ((3.160, 3.162) used in the proof

of Lemma 3.21. We will assume, from now on, the same notation aP (f), β(f), J, L. As in

the previous proof, our first step is to establish a control on the local uniform sum

E

B

C
J"

j=0

"

P∈Pj,l

K
MN ;P

*,tfin

Lq

D

E (3.215)

where 9 denotes the local supremum (3.186). We will control the local uniform sum so

by breaking the supremum into two parts, each of which can be controlled by elementary

martingale estimates. Let (JN ;P ;t
s )0≤s≤t be the process

JN ;P ;t
s =

!

(0,s]×SN

〈hP , Qt−u(µ
N)−Qt−u(µ

N
u−)〉(mN −mN)(du, dµN) (3.216)

where, as in the proof of Theorem 3.1,

hP = 22j(1 + |v|2)1IP ; P ∈ Pj,l. (3.217)

Each process (JN ;P :t
s )0≤s≤t is a martingale, by standard results for Markov chains (3.288).

Writing ZN ;P = ZN,hP , Lemma 3.25 gives

ZN ;P
t = MN ;P

t +

! t

0

JN ;P ;s
s ds. (3.218)

We achieve the comparison through the following lemma

Lemma 3.26. Let q ≥ 2, and let q′ be the Hölder conjugate to q. In the notation above,

we have the comparison

E

B

C
J"

j=0

"

P∈Pj,l

K@@@MN ;P
*,tfin

@@@
Lq

D

E ≤ CE

B

C
J"

j=0

"

P∈Pj,l

M @@@MN ;P
tfin

@@@
q

+ t
q/q′

fin

! tfin

0

@@@JN ;P ;t
t

@@@
q

dt

ND

E .

(3.219)

for some constant C depending only on q.

Proof. For each partition element P , we observe that

sup
t≤tfin

@@@MN ;P
t − ZN ;P

t

@@@ ≤
! tfin

0

@@JN ;P ;s
s

@@ ds (3.220)

which implies the two bounds

MN ;P
*,tfin

≤ ZN ;P
*,tfin

+

! tfin

0

@@JN ;P ;s
s

@@ ds; ZN ;P
tfin

≤ MN ;P
tfin

+

! tfin

0

@@JN ;P ;s
s

@@ ds. (3.221)

By Doob’s Lq(P) inequality, we have

XXX ZN ;P
*,tfin

XXX
Lq(P)

≤ q′
XXX ZN ;P

tfin

XXX
Lq(P)

. (3.222)
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Combining (3.221, 3.222), we obtain

XXXMN ;P
*,tfin

XXX
Lq(P)

≤ C
XXXMN ;P

tfin

XXX
Lq(P)

+ C

XXXX
! tfin

0

@@JN ;P ;s
s

@@ ds
XXXX
Lq(P)

. (3.223)

Using Hölder’s inequality on the integral,

E
?K

MN ;P
*,tfin

LqA
≤ CE

? @@@MN ;P
tfin

@@@
q A

+ CE
2 M! tfin

0

@@JN ;P ;s
s

@@ ds
Nq 3

≤ CE
? @@@MN ;P

tfin

@@@
q A

+ Ct
q/q′

fin

! tfin

0

E
? @@@JN ;P ;t

t

@@@
q A

ds.

(3.224)

Summing over P ∈ Pj,l and j = 0, 1, . . . , J , we obtain the desired comparison.

Proof of Lemma 3.22. We follow the same steps as in Lemma 3.21 for the same decom-

position (3.162).

Step 1. Control of the Local Uniform Martingale Sum We first control the

local uniform sum as in in Lemma 3.26. The quadratic variation of the processes JN ;P ;t

appearing in the upper bound is given by

G
JN ;P ;t

H
s
=

!

(0,s]×SN

〈hP ,χ(u, t, µ
N)〉2mN(du, dµN)

≤
!

(0,s]×SN

〈hP , |χ(u, t, µN)|〉2mN(du, dµN)

(3.225)

where hP is as in (3.217) and χ is as in (3.210). Hence, using Burkholder’s inequality (See

Lemma 3.32) we see that, for all t ≤ tfin,

E

B

C
J"

j=0

"

P∈Pj,l

K @@@JN ;P ;t
t

@@@
Lq

D

E

≤ CE

B

C
J"

j=0

"

P∈Pj,l

M!

(0,t]×SN

〈hP , |χ(u, t, µN)|〉2mN(du, dµN)

Nq/2
D

E .

(3.226)

We move the double sum inside the parentheses and then inside the integral against

|χ(u, t, µN)|, recalling that
<

j

<
P∈Pj,l

hP ≤ C(1 + |v|4) uniformly in l, we obtain the

bound

E

B

C
J"

j=0

"

P∈Pj,l

K @@@JN ;P ;t
t

@@@
Lq

D

E

≤ CE

=M!

(0,t]×SN

〈1 + |v|4, |χ(u, t, µN)|〉2mN(du, dµN)

Nq/2
>

≤ CE

=M!

(0,t]×SN

‖Qt−u(µ
N)−Qt−u(µ

N
u−)‖2TV+4 m

N(du, dµN)

Nq/2
>

(3.227)



158 3.5. PROOF OF THEOREM 3.2

where the second equality is the definition of χ given in (3.210).

We now note that with the hypothesis of the lemma, we can use (3.109) with the norm

‖ · ‖TV+4, since we have control over φt in the norm ‖ · ‖TV+5, and arguing as in the proof

of Lemma 3.21, we see that almost surely, for mN -almost all (u, µN), we have

‖Qt−u(µ
N)−Qt−u(µ

N
u−)‖TV+4 ≤ CN ε−1Λp(µ

N
u−). (3.228)

Therefore, using Cauchy-Schwarz, (3.227) gives the bound

E

B

C
J"

j=0

"

P∈Pj,l

K@@@JN ;P ;t
t

@@@
Lq

D

E

≤ CN q(ε−1) E
2
sup
t≤tfin

Λpq(µ
N
t )

31/2 XXmN ((0, tfin]× SN)
XXq/2

Lq(P) .

(3.229)

The moment term is controlled by the initial moment bound and Proposition 2.10ii):

E
2
sup
t≤tfin

Λpq(µ
N
t )

3
≤ C(1 + tfin)Λpq(µ

N
0 ) ≤ C(1 + tfin)a

q. (3.230)

For the second factor, the rates of the Kac process are bounded by 2N , and so we can

stochastically dominate mN(dt × SN) by a Poisson random measure mN(dt) of rate 2N .

By the additive property of Poisson processes, it follows that

‖mN((0, tfin]× SN)‖Lq(P) ≤ ‖mN(0, tfin]‖Lq(P) ≤ CN(1 + tfin). (3.231)

Combining (3.229, 3.230, 3.231), we have the control of the integrand:

sup
t≤tfin

E

B

C
J"

j=0

"

P∈Pj,l

K@@@JN ;P ;t
t

@@@
Lq

D

E ≤ CN q(ε−1/2) aq/2(1 + tfin)
q+1
2 . (3.232)

This gives the following control of the integral term in Lemma 3.26:

t
q/q′

fin E

B

C
J"

j=0

"

P∈Pj,l

! tfin

0

K@@@JN ;P ;t
t

@@@
Lq

dt

D

E ≤ CN q(ε−1/2) aq/2(1 + tfin)
q+3
2

+ q
q′ . (3.233)

Using the definition of q′ as the Hölder conjugate to q, it is straightforward to see that

the exponent of (1 + tfin) is
3q+1
2

.

We now perform a similar analysis for the terms MN ;P
tfin

in Lemma 3.26. Let (MN ;P ;t
s )s≤t

be the martingale defined in (3.164). The quadratic variation is

G
MN ;P ;t

H
s
=

!

(0,s]×SN

〈hP ,φt−u(µ
N)− φt−u(µ

N
u−)〉2 mN(du, dµN)

≤
!

(0,s]×SN

〈hP , |φt−u(µ
N)− φt−u(µ

N
u−)|〉2 mN(du, dµN).

(3.234)
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Arguing using Burkholder and the stability estimate Corollary 3.16, an identical calcula-

tion to the above shows that

J"

j=0

"

P∈Pj,l

XXXMN ;P
tfin

XXX
q

Lq(P)
≤ CN q(ε−1/2) aq/2 (1 + tfin)

p+1
2 . (3.235)

Hence, by Lemma 3.26, we obtain

E

B

C
J"

j=0

"

P∈Pj,l

K@@@MN ;P
*,tfin

@@@
Lq

D

E ≤ CN q(ε−1/2)aq/2(1 + tfin)
3q+1

2 . (3.236)

Step 2. Control of Coefficients & Martingale Sum We control the coefficients

2−2jaP (f) as in the argument of Lemma 3.21. Repeating the arguments of (3.170) with

Hölder’s inequality, we obtain

XXXXXX
sup
f∈A1

sup
t≤tfin

@@@@@@

J"

j=0

L"

l=2

"

P∈Pj,l

2−2jaP (f)M
N ;P
t

@@@@@@

XXXXXX
Lq(P)

≤ C
L"

l=2

B

CE
J"

j=0

"

P∈Pj,l

K
MN ;P

*,tfin

Lq

D

E
1/q

2(d/q
′−1)l

≤ C
L"

l=2

N ε− 1
2 a1/2 (1 + tfin)

3p+1
2p 2(d/q

′−1)l

≤ CN ε− 1
2 a1/2 (1 + tfin)

3q+1
2q 2(d/q

′−1)L.

(3.237)

Step 3. Control of the Remainder Integrals Following the argument of Lemma

3.21, we wish to control the error terms RN,f
t given by (3.163), locally uniformly in time.

The same bound (3.175) we found for β(f) still applies, and we argue as in (3.176),

now dropping the time-dependent factor e−λ(t−s)/2 ≤ 1 in the bound for ‖φt−s(µ
N) −

φt−s(µ
N
s−)‖TV+2. We thus end up with, for mN +mN -almost all (s, µN),

sup
f∈A1

@@〈β(f),φt−s(µ
N)− φt−s(µ

N
s−)〉

@@ ≤ C(2−2J + 2−L) N ε−1 Λp(µ
N
s−)

1
2

=: H ′
s.

(3.238)

As in (3.177), we may bound everything by considering the two (positive) measures sep-

arately, and taking t = tfin:

XXXX sup
f∈A1

sup
t≤tfin

@@@RN,f
t

@@@
XXXX
Lq(P)

≤
XXXX
! tfin

0

H ′
s(m

N +mN)(ds,SN)

XXXX
Lq(P)

≤ T1 + T2 (3.239)

where the two error terms are

T1 =

XXXX
! tfin

0

H ′
s m

N(ds,SN)

XXXX
Lq(P)

(3.240)
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and

T2 =

XXXX
! tfin

0

H ′
s m

N(ds,SN)

XXXX
Lq(P)

. (3.241)

We now deal with the two terms separately. For T1, we dominate mN(ds,SN) ≤ 2Nds to

see that
! tfin

0

H ′
s m

N(ds,SN) ≤ C(2−2J + 2−L) N ε tfin

6
sup
s≤tfin

Λp(µ
N
s )

1
2

7
. (3.242)

Using the monotonicity of Lq(P) norms, and using the moment control in the usual way,

T1 ≤ C(2−2J + 2−L) N ε tfin E
2
sup
s≤tfin

Λpq(µ
N
s )

3 1
2q

≤ C(2−2J + 2−L) N ε a1/2 (1 + tfin)
2q+1
2q .

(3.243)

For T2, we dominate mN(ds,SN) by a Poisson random measure mN(ds) of rate 2N , as

above. Controlling mN as in (3.231), we obtain

T2 ≤ C(2−2J + 2−L)N ε−1

XXXX
! tfin

0

Λp(µ
N
s−)

1
2mN(ds)

XXXX
Lq(P)

≤ C(2−2J + 2−L)N ε−1

XXXX

6
sup
s≤tfin

Λp(µ
N
s )

1
2

7XXXX
L2q(P)

XXmN ((0, tfin])
XX
L2q(P)

≤ C(2−2J + 2−L)N εa1/2(1 + tfin)
2q+1
2q .

(3.244)

Gathering (3.239, 3.243, 3.244), we have proven that

XXXX sup
f∈A1

sup
t≤tfin

@@@RN,f
t

@@@
XXXX
Lq(P)

≤ C(2−2J + 2−L)N εa1/2(1 + tfin)
2q+1
2q . (3.245)

Step 5. Conclusion Combining the local uniform estimates (3.237, 3.245) of the terms

in the decomposition (3.162), we find that

XXXX sup
f∈A1

MN,f
*,tfin

XXXX
Lp(P)

≤ CN εa1/2 (1 + tfin)
3q+1
2q

'
N−1/2 2(d/q

′−1)L + 2−2J + 2−L
(
.

Taking J → ∞ and L = ⌊ q′

2d
log2(N)⌋ proves the result claimed.
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3.6 Proof of Theorem 3.3

We now turn to the proof of Theorem 3.3, which establishes a convergence estimate in the

presence of a pth moment bound, for any p > 2. We use the ideas the branching process

representation from Section 3.2.1 on a short initial time-interval [0, uN ], for some uN to

be chosen later, and then apply Theorems 3.1, 3.2 on [uN ,∞) to control the behaviour

at times t ≥ uN and the moment production property in Proposition 2.10 to control the

moments at time uN . The argument is similar to the final argument in the proof of the

second item of Theorem 3.6 given in Section 3.2, which may be read as a warm-up to this

proof.

Throughout, let p, a, (µN
t ), µ0 be as in the statement of the Theorem, and assume without

loss of generality that p ∈ (2, 3), and let p1 be large enough that Theorem 3.1 holds with

ε = 1
2d
.

Proof of Theorem 3.3. As in Proposition 3.10i), set ρt = (µN
t + φt(µ0))/2, and write

fst = fst[ρ] for the functions obtained from the branching process with this environment.

We first introduce a localisation argument, as in the proof of Theorem 3.6, which allows us

to guarantee that the conditions (3.38) holds for the environment. Let β = p−2
2

∈ (0, 1),

and let uN ≤ 1 be chosen later. Now, define a new environment

ρTt = ρt1I
)
Λ3(ρt) ≤ βtβ−1 + 1

*
(3.246)

and write

TN = inf
)
t ≥ 0 : Λ3(ρt) > βtβ−1 + 1

*
= inf

)
t ≥ 0 : ρTt ∕= ρt

*
. (3.247)

We write fT
st = fst[ρ

T ] for the functions defined in Section 3.2.1 for this environment,

and MN,f
t , 4MN,f

t = 4MN,f
t [ρT ] for the stochastic integrals controlled by Proposition 3.11 in

the environments ρ, ρT respectively, according to (3.35, 3.39). We also remark that, by

construction, Proposition 3.11 applies to the modified environment ρT with w = 1. We

will show that a good bound applies on the event {T > uN}, and show that uN may be

chosen so that the event {T ≤ uN} has a low probability.

Step 1. Control on {TN > uN}. We first control the event with {TN > u}. On

this event we have the equality fT
st = fst for all f ∈ A1, s ≤ t ≤ uN , which implies that

MN,f
t = 4MN,f

t for all t ≤ uN . Since the quantities zt[ρ
T ] are bounded in L∞(P) on compact

time regions, there exists an absolute constant C such that, by the representation formula

in Proposition 3.10i), for all t ≤ uN ,

W1

-
µN
t ,φt(µ0)

.
1I[TN > uN ] ≤ C

6
W1(µ

N
0 , µ0) + sup

f∈A1

4MN,f
t

7
(3.248)
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and we apply Proposition 3.11 to take the expectation of the right-hand side. We thus

obtain the estimate
XXXX sup
t≤uN

W1

-
µN
t ,φt(µ0)

.
1I[TN > uN ]

XXXX
L1(P)

≤ C
-
W1(µ

N
0 , µ0) + aN−η

.
(3.249)

where η > 0 is as in Proposition 3.11 for our choice of β. Still on the event {TN > uN},
the stability estimate Theorem 3.6 gives, for some ζ1 > 0,

sup
t≥uN

W1

-
φt−uN

(µN
uN

),φt(µ0)
.
1I[TN > uN ] ≤ C

-
W1

-
µN
uN

,φuN
(µ0)

.
1I[TN > uN ]

.ζ

· · ·× Λp1

-
µN
uN

,φuN
(µ0)

.
.

(3.250)

Step 2. Control on the event {TN ≤ uN}. Using the uniform bound W1 ≤ 4 on

S × S, we always have the bound

sup
t≤uN

W1

-
µN
t ,φt(µ0)

.
1I[TN ≤ uN ] ≤ 4 · 1I[TN ≤ uN ] (3.251)

and similarly

sup
t≥uN

W1

-
φt−uN

(µN
uN

,φt(µ0)
.
1I[T ≤ uN ] ≤ 4 · 1I[T ≤ uN ] (3.252)

Step 3. Uniform-in-Time Control We recall that we defined p1 to be large enough

that Theorem 3.1 applies with the exponent −1/2d. Applying this at time uN , and using

the moment production property, we obtain

sup
t≥uN

XXW1(µ
N
t ,φt−uN

(µN
uN

))
XX
L2(P) ≤ CN−1/2d E

G
Λp1(µ

N
uN

)
H1/2

≤ CN−1/2du
1−p1/2
N .

(3.253)

Together with (3.249, 3.251) on the initial interval [0, uN ] and using (3.250, 3.252) to

control the difference between φt−uN
(µN

uN
) and φt(µ0), we have the overall bound

sup
t≥0

XXW1

-
µN
t ,φt(µ0)

.XX
L1(P) ≤ C

6
W1(µ

N
0 , µ0) + aN−η +N−1/2du

1−p1/2
N + P (TN ≤ uN)

+ E
G
(W1(µ

N
uN

,φuN
(µ0))1I[TN > uN ])

ζΛp1(µ
N
uN

,φuN
(µ0))

H7
.

(3.254)

To bound the term in the second line, we use Hölder’s inequality and (3.249) again to get

E
G
(W1(µ

N
uN

,φuN
(µ0))1I[TN > uN ])

ζΛp1(µ
N
uN

,φuN
(µ0))

H

≤ CE
-
W1(µ

N
uN

,φuN
(µ0))1I[TN ≥ uN ]

.ζ E
-
Λp2(µ

N
uN

,φuN
(µ0))

.

≤ C(N−η +W1(µ
N
0 , µ0))

ζ u2−p2
N

(3.255)
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where p2 = p1/(1− ζ). Returning to (3.254) and keeping the worst asymptotics, we find

that, up to a new choice of η > 0, we have

sup
t≥0

XXW1

-
µN
t ,φt(µ0)

.XX
L1(P) ≤ Ca

--
W1(µ

N
0 , µ0)

ζ +N−η
.
u2−p2
N + P (TN ≤ uN)

.
. (3.256)

Step 4. Estimate of P(TN ≤ uN) & Choice of uN . We now show how uN may be

chosen so that all the terms in (3.256) go to 0 at a rate N−ε,W1(µ
N
0 , µ0)

ε, and start by

bounding P(TN ≤ uN). Recalling the definition β = p−2
2

and that p ∈ (2, 3), let ZN be

given by

ZN =
"

l:2−l≤uN

2(β−1)l+1−ββ−1 sup
t∈[2−l,21−l]

Λ3(ρt) (3.257)

and observe that, for all t ≤ uN , we have the bound

Λ3(ρt) ≤ (βtβ−1 + 1)ZN . (3.258)

Therefore, recalling the definition of TN , we have that

P(TN ≤ uN) ≤ P(ZN > 1) ≤ E[ZN ]. (3.259)

Using the moment production property of the Kac process and Boltzmann equation in

Proposition 2.10i-ii), we find, for some C,

E

=
sup

t∈[2−l,21−l]

Λ3(µ
N
t )

>
≤ CE

G
Λ3(µ

N
2−l)

H
≤ C2l(3−p)a (3.260)

and hence, using the same for the Boltzmann equation from Proposition 2.6,

E(ZN) ≤ C
"

l:2−l≤uN

2(β−1)l2−l(p−3)a = C
"

l:2−l≤uN

2−(p−2−β)la. (3.261)

The last sum converges, since p − 2 − β = β > 0. Indeed, since the sum ranges over

l ≥ ⌈− log2 uN⌉, we find, for a new C,

P(TN ≤ uN) ≤ E[ZN ] ≤ C

∞"

l=⌈− log2 uN ⌉

2−βla = C2−β⌈− log2 uN ⌉a ≤ Cauβ
N . (3.262)

Returning to (3.256), we have proven that

sup
t≥0

XXW1(µ
N
t ,φt(µ0)

XX
L1(P) ≤ Ca

'
(N−η +W1(µ

N
0 , µ0)

ζ)u2−p2
N + uβ

N

(
. (3.263)

If we now choose

uN = (N−η +W1(µ
N
0 , µ0)

ζ)1/(p2+β−2) (3.264)

then both terms are of the same order, and we get

sup
t≥0

XXW1(µ
N
t ,φt(µ0))

XX
L1(P) ≤ Ca(N−η +W1(µ

N
0 , µ0)

ζ)β/(p2+β−2)

≤ Ca
-
N−ηβ/(p2+β−2) +W1(µ

N
0 , µ0)

ζβ/(p2+β−2)
. (3.265)

which proves the desired result. The case for the local uniform estimate is similar, using

Theorem 3.2 in place of Theorem 3.1.
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3.7 Proof of Theorem 3.4

The proof of Theorem 3.4 is based on the following heuristic argument. Fix N , and

consider a Kac process (µN
t ) on N particles. As t → ∞, its law relaxes to the equilibrium

distribution πN , which is known to be the uniform distribution σN on SN . Since this

measure assigns non-zero probability to regions RN at macroscopic distance from the

fixed point γ, given by

γ(dv) =
e−

d
2
|v|2

(2πd−1)d/2
dv, (3.266)

the process will almost surely hit RN on an unbounded set of times. Meanwhile, the

Boltzmann flow φt(µ0) will converge to γ. Therefore, at some large time, the particle

system µN
t will have macroscopic distance from the Boltzmann flow φt(µ

N
0 ).

It will be slightly more convenient here to work with labelled processes in order to make

contact with the literature on the relaxation of the particle system. We recall that a

labelled Kac process is the Markov process of velocities VN
t = (V 1

t , ...., V
N
t ) corresponding

to the particle dynamics, in labelled Boltzmann sphere

SN =

+
(v1, ..., vN) ∈ (Rd)N :

N"

i=1

vi = 0,
N"

i=1

|vi|2 = N

,

and that we recover the unlabelled Kac process and unlabelled Boltzmann sphere via the

map θN taking an N -tuple to its normalised empirical measure in SN .

Considered as a ((N−1)d−1)-dimensional sphere in (Rd)N , SN has a uniform (Hausdorff)

distribution γN , which we push forward to a measure σN on SN :

σN(A) := γN
)
(v1, ...vN) ∈ Sd : θN(v1, ..., vN) ∈ A

*
. (3.267)

We will use this definition to transfer the positivity of the measure γN forward to σN .

We also note that, since γN is the equilbrium distribution for the (labelled) Kac process,

it follows that σN is the equilibrium measure for the (unlabelled) Kac process.

As discussed in the literature review, the problem of relaxation to equilibrium for the

Kac process is a subtle problem, and has been extensively studied. For our purposes, the

following L2(dσN)-convergence is sufficient:

Proposition 3.27. Suppose that (µN
t )t≥0 is a hard-spheres Kac process, where the law

of the initial data Law(µN
0 ) has a density hN

0 ∈ L2(σN) with respect to σN . Then at all

positive times t ≥ 0, the law Law(µN
t ) has a density hN

t ∈ L2(σN) with respect to σN , and

for some universal constant λ0 > 0, we have
XXhN

t − 1
XX
L2(σN )

≤ e−λ0t
XXhN

0 − 1
XX
L2(σN )

. (3.268)

A version of this, for the labelled Kac process, appears as [142, Theorem 6.8 and corollary];

the result stated above follows by a pushforward argument. This is sufficient to prove the

following weak ergodic theorem:
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Lemma 3.28. Let (µN
t )t≥0 be a hard-spheres Kac process on N particles, started from

µN
0 ∼ σN . Let RN ⊂ SN be such that p = σN(RN) > 0. Then

1

t

! t

0

1I(µN
s ∈ RN)ds → p (3.269)

in L2(P). In particular, almost surely, µN
t visits RN on an unbounded set of times.

Proof. Observe that, since the process is in equilibrium, the law of µN
t is σN for all t ≥ 0,

and so

EσN

2
1

t

! t

0

1I(µN
s ∈ RN)ds

3
=

1

t

! t

0

PσN (µN
s ∈ RN)ds = p (3.270)

so our claim reduces to bounding the variance.

For times t ≥ 0, write A(t) as the event A(t) = {µN
t ∈ RN}; we will compute the

covariance of the random variables 1IA(s1) and 1IA(s2), for 0 ≤ s1 ≤ s2. Observe that

EσN

G
1IA(s1)(1IA(s2) − p)

H
= p (P (A(s2)|A(s1))− p) . (3.271)

Conditional on A(s1), the law of µN
s1

has a conditional density hN
s1
∝ 1IRN

with respect to

σN . By Proposition 3.27, conditional on A(s1), the law of µN
s2

has a density hN
s2
, and we

can bound

|PσN (A(s2)|A(s1))− p| ≤
!

SN

|hN
s2
− 1|1IRN

(µN)σN(dµN)

≤
XXhN

s2
− 1

XX
L2(σN )

≤ 2p−1/2e−λ0(s2−s1)

(3.272)

since we note ‖hN
s1
‖L2(σN ) ≤ p−1/2. Hence

EσN

G
(1IA(s1) − p)(1IA(s2) − p)

H
= p(P(A(s2)|A(s1))− p) ≤ 2p1/2e−λ0(s2−s1). (3.273)

We can now integrate to bound the variance:

VarσN

6
1

t

! t

0

1I(µN
s ∈ RN)ds

7
=

2

t2

! t

0

ds1

! t

s1

ds2 E
G
(1IA(s1) − p)(1IA(s2) − p)

H

≤ 4p1/2

t2

! t

0

ds1

! ∞

s1

ds2 e−λ0(s2−s1)

≤ 4p1/2

λ0t
→ 0.

(3.274)

For the second assertion, the L2(P) convergence implies P-almost sure convergence along

some subsequence tn → ∞, and on this event it holds that µN
t visits RN on an unbounded

set of times, as claimed.

An immediate corollary is that the long-run deviation must be bounded below by the

essential supremum of the deviation under the invariant measure:
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Corollary 3.29. Let (µN
t )t≥0 be a N- particle Kac process in equilibrium. Then, almost

surely,

lim sup
t→∞

W1(µ
N
t , γ) ≥‖W1(·, γ)‖L∞(σN ) = ess sup

σN (dµ)

W1(µ, γ). (3.275)

Proof. For ease of notation, write W ∗ as the essential supremum appearing on the right

hand side. For any ε > 0, let RN,ε = {µ ∈ SN : W1(µ, γ) > W ∗ − ε}; it is immediate

that σN(RN,ε) > 0. By the remark in Lemma 3.28, almost surely, µN
t visits RN,ε on an

unbounded set of times, and so

lim sup
t→∞

W1(µ
N
t , γ) ≥ W ∗ − ε. (3.276)

The conclusion now follows on taking an intersection over some sequence εn ↓ 0.

To prove Theorem 3.4, it now only remains to show a lower bound on the essential

supremum.

Lemma 3.30. Let f be given by

f(v) = (1 + |v|2)min

/
|v|I
N/2

, 1

0
. (3.277)

Then f ∈ A, and

‖〈f, µ− γ〉‖L∞(σN ) ≥ 1− C√
N

(3.278)

for some constant C = C(d). In particular, this is a lower bound for the essential supre-

mum W ∗, and so for the long-run deviation.

Proof. It is easy to see that f ∈ A1. Moreover, the region

5RN =
)
(v1, ...vN) ∈ SN : 〈f, θN(v1, ..., vN)〉 > 1

*
= θ−1

N

)
µ ∈ SN : 〈f, µ〉 > 1

*
(3.279)

is an open subset of SN , which contains
I

N/2 (e1,−e1, 0, .., 0) and is therefore nonempty.

By positivity of the uniform measure γN on SN , it follows that γN( 5RN) > 0. The corre-

sponding region in SN is

RN = {µN ∈ SN : 〈f, µN〉 > 1}. (3.280)

By definition (3.267) of σN , we have

σN(RN) = γN( 5RN) > 0. (3.281)

For all µN ∈ RN , we have

W1(µ
N , γ) ≥ 〈f, µN − γ〉 ≥ 1−

I
2/N〈(1 + |v|2)|v|, γ〉. (3.282)

Since RN has positive measure, taking C =
√
2〈(1 + |v|2)|v|, γ〉, we can conclude that

W ∗ ≥ 1− C√
N

(3.283)

and we are done.
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Proof of Theorem 3.4. From the previous two lemmas, we know that for all N ≥ 2, and

for σN - almost all µN ,

PµN

6
lim sup
t→∞

W1(µ
N
t , γ) ≥ 1− C√

N

7
= 1 (3.284)

where PµN denotes the law of a Kac process started at µN .

Let N ≥ 2, p > 2 and a > 1. The region R*,N of the labelled sphere such that

Λp(θN(V)) < a is an open set; to conclude that it has positive σN -measure, which is

readily seen to be nonempty by constructing (V 1, .., V N) ∈ SN where each |V i| = 1,

and by the positivity of γN , we have γN(R*,N) > 0. The positivity transfers to the

corresponding region of SN :

σN
)
µN ∈ SN : Λp(µ

N) < a
*
= γN(RN,*) > 0. (3.285)

Hence, for any N ≥ 2, we can choose an initial datum µN
0 = µN , with Λp(µ

N
0 ) < a, such

that (3.284) holds. Observing that

W1(φt(µ
N
0 ), γ) ≤ ‖φt(µ

N
0 )− φt(γ)‖TV+2 → 0 (3.286)

it follows that, PµN - almost surely

lim sup
t→∞

W1(µ
N
t , γ) = lim sup

t→∞
W1(µ

N
t ,φt(µ

N
0 )) ≥ 1− C√

N
. (3.287)

Remark 3.31. i). The proof of Lemma 3.28 leaves open the possibility that there is

a non-empty ‘exceptional set’ of initial data µN where (3.284) does not hold. A

stronger assertion would be positive Harris recurrence, as defined in [110], which

allows a similar ergodic theorem for any initial data µN . This is not necessary for

our purposes.

ii). Such ‘highly unlikley’ events, where the Boltzmann equation fails by a macroscopic

margin, are the purview of Large Deviation theory, which we explore in Chapter 6.

Instead of the ‘bad sets’ above, we could have considered regions RN,ε given by

RN,e = {V ∈ SN : W1(θN(V), ν) < ε}

for any ν ∈ S and ε > 0; using the same ideas as Proposition 2.4, these are

nonempty for N sufficiently large. In this case, we get the asymptotic

pN = γN(RN,ε) ≥ e−N(H(ν|γ)+ε)

for N large enough, depending on ε > 0, where H(·|γ) is the relative entropy by

Sanov’s Theorem (see Section 1.2.4). In particular, the same proof as above shows
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that, starting from equilibrium, we reach these regions on time-scales at most of the

order e3N(H(ν|γ)+δ)/2 for any δ > 0, provided that H(ν|γ) < ∞.

In Chapter 6, we will also see behaviour where macroscopic proportion of the energy

concentrates in o(N) particles, with probability ∼ e−cN under γ⊗N . Pushing forward

by θN produces regions

RN,ε =
)
VN ∈ SN : W1,1(θN(VN), γ−) < ε

*

for γ− a Maxwellian of average energy 〈|v|2, γ−〉 < 1 and some ε > 0, with γN(RN,ε) ∼
e−cN for some c < ∞, which is the same kind of behaviour we saw in the proof above.

It follows that this kind of behaviour also occurs on scales at most exponentially long

in N .



Appendix

3.A Calculus of Martingales

We also review some basic facts and inequalities for martingales associated to the Kac

process. All of these facts are true for general Markov chains, see [49].

Let µN
t be a Kac process, and write mN , mN for the jump measure and compensator in

Definition 3.2.2. Then, for any bounded and measurable FN : [0, tfin] × SN → R, the
process

MN
t =

!

(0,t]×SN

)
FN
s (µN)− FN

s (µN
s−)

*
(mN −mN)(ds, dµN), 0 ≤ t ≤ tfin (3.288)

is a martingale for the natural filtration (FN
t )t≥0 of the process. We have the L2(P) control

XXMN
t

XX2

2
= E

M!

(0,t]×SN

)
FN
s (µN)− FN

s (µN
s−)

*2
mN(ds, dµN)

N
. (3.289)

We will also use another special case of Itô’s isometry for the measure mN − mN for a

similar form of martingale. If FN is bounded and measurable on [0, T ] × SN , then for

t ≤ tfin,
XXXX
! t

0

FN
s (µN

s−)(m
N −mN)(ds,SN)

XXXX
2

2

= E
M! t

0

FN
s (µN

s )
2 mN(ds,SN)

N
. (3.290)

For the local uniform case, Theorem 3.2, it will be necessary to control martingales of the

form (3.288) in general Lq(P) spaces, rather than simply L2(P). Since MN of this form

are finite variation martingales, the quadratic variation is given by

G
MN

H
t
=

!

(0,t]×SN

)
FN
s (µN)− FN

s (µN
s−)

*2
mN(ds, dµN), 0 ≤ t ≤ tfin. (3.291)

Our analysis in Lq(P) is based on Burkholder’s inequality for càdlàg martingales, which

we state here for the class of martingales constructed above:

Lemma 3.32. Suppose that (MN
t )

tfin
t=0 is the process given by (3.288), and let q ≥ 2. Then

there exists a constant C = C(p) < ∞ such that for all t ≤ tfin, we have the Lq(P) control

XXXX sup
s≤t

@@MN
s

@@
XXXX
q

Lq(P)
≤ C(q)E

=6! t

0

)
FN
s (µN)− FN

s (µN
s−)

*2
mN(ds, dµN)

7q/2
>
. (3.292)
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Chapter 4

Non-Cutoff Hard Potentials with a

Moderate Angular Singularity

4.1 Main Results

In this chapter, we consider the case of the Boltzmann equation and Kac process in the

case of a noncutoff hard potential kernel B of the form (NCHP), and will prove the asser-

tions of Theorem 2. Throughout, we assume the notation of (NCHP) and work in the ϕ, z

parametrisation (see Lemma 2.5); objects defined for kernels with Grad’s angular cutoff

will be denoted with a subscript or superscript ·K , ·K .

The central approach of this chapter, summarised in Theorems 4.1, 4.4, is a coupling

argument, which allows us to couple either Boltzmann processes (stBE) in the spirit of

Tanaka’s stochastic interpretation of the Boltzmann equation [177], which we rewrite

(stBEa) in Section 4.2 using the parametrisation in terms of z,ϕ given in Section 2.4.

The same coupling also allows us to obtain any noncutoff Kac process µN
t on N as the

limit of cutoff process µN,K
t of cutoff processes as K → ∞, with a rate uniform in N .

The coupling of Boltzmann processes will imply a similar result for the cutoff and non-

cutoff Boltzmann equations described below, and the coupling of Kac processes implies

the well-posedness of the martingale problem for the generator GN given by (1.31) for the

unlabelled Kac process and the convergence of the Kac process.

In this chapter in particular, we will also work with labelled Kac processes VN
t ,VN,K

t , as

this is natural for the coupling: we pair the ith particle in each of the two systems. Since

all of our results are naturally phrased at the level of the empirical measures, we will move

between labelled and unlabelled processes VN
t , µN

t , which is justified by Proposition 4.7.

As remarked below (stBE), for Boltzmann processes and for all f : Rd → R Lipschitz,

the process f(Vt) − f(V0) −
& t

0

&
Rd LBf(v, v∗)µs(dv∗)ds is a martingale, where LB is the

171
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non-local generator given by (1.19); we will make frequent use of the fact that this char-

acterises solutions to (stBE), see [70]. To avoid repeatedly writing subscripts, as there is

no possibility of confusion, we write L = LB throughout this chapter.

We now give precise formulations of our main results, which correspond to Theorem 2.

Our first result gives a coupling of solutions to Tanaka’s SDE (stBE) or its equivalent form

(stBEa), which gives a quantitative stability result for solutions to the Boltzmann equa-

tion. We work throughout with the optimal transportation costs wp defined in Section

2.1, which are equivalent to Wp+2 or to weak convergence, plus convergence of moments

of orders up to p+2, and which are defined as the optimal transport cost for the function

dp : Rd × Rd → [0,∞).

Theorem 4.1. Let B be a kernel of the form (NCHP). There exists p0 = p0(B, d) and,

for p > p0, K0 = K0(B, p, d) such that, whenever p > p0 and K ≥ K0, there exists

C = C(B, p, d) such that the following holds.

Let (µt)t≥0, (νt)t≥0 be weak solutions to (BE, BEK) respectively, with K ∈ [K0,∞], starting

at µ0, ν0 ∈ Sp+2, and for some a1 ≥ 1, we have Λp+γ(µ0, ν0) ≤ a1. If K < ∞, let us assume

further that, for some a2 ≥ 1, we have the moment estimate Λl(ν0) ≤ a2. Then there exists

a stochastic process (Vt, Ṽt)t≥0 such that πt = Law(Vt, Ṽt) is a coupling πt ∈ Π(µt, νt) for

all t ≥ 0, and such that Vt, Ṽt solve (stBEa, stBEa
K) respectively. Furthermore, for some

constant C = C(B, p, d), we have the estimates, for K ∈ [K0,∞),

E[dp(Vt, Ṽt)] ≤ eCa1(1+t)
-
wp(µ0, ν0) + a2tK

1−1/ν
.

(4.1)

or, if K = ∞, then

E[dp(Vt, Ṽt)] ≤ eCa1(1+t)wp(µ0, ν0). (4.2)

Since (Vt, Ṽt) produces a coupling of µt, νt for all t ≥ 0, it follows that E[dp(Vt, Ṽt)] ≥
wp(µt, νt), and we obtain the following as a corollary.

Corollary 4.2 (Wasserstein Stability of the Boltzmann Flow). Let B be a kernel of the

form (NCHP), and let p > p0 K0 = K0(B, p, d), l = p+ 2 + γ be as in Theorem 4.4. For

any µ0 ∈ Sp+2, there exists a unique energy-conserving solution (µt)t≥0 to the Boltzmann

equation starting at µ0, which we write as µt = φt(µ0). Moreover, for some constant

C = C(B, p, d),

i). Whenever µ0, ν0 ∈ Sp+2 satisfy the moment bound Λp+γ(µ0, ν0) ≤ a, we have the

continuity estimate

wp (φt(µ0),φt(ν0)) ≤ eCa(1+t)wp(µ0, ν0). (4.3)

ii). Whenever µ0 ∈ S l, the solution φt(µ) is the wp-limit of the solutions φK
t (µ0) to

the K-cutoff Boltzmann Equations (BEK) starting at µ0, as the cutoff parameter
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K → ∞. More precisely, if Λp+γ(µ0) ≤ a1,Λl(µ0) ≤ a2, for some a1, a2 ≥ 1, then

for K ≥ K0 we have

wp(φ
K
t (µ0),φt(µ0)) ≤ eCa1(1+t)a2tK

1−1/ν . (4.4)

As well as a direct deduction from Theorem 4.1, we will also offer a different proof in

Section 4.9, which uses the coupling of Kac processes in Theorem 4.4 below as an inter-

mediate step. We will discuss the two possible approaches below. We also note that this

is a much stronger well-posedness estimate than exists in the literature; see the discussion

in the literature review below. Using the machinery developed in the proof of Theorem

4.1, we also rederive the following result of Fournier [88], which shows that Tanaka’s SDE

(stBE, stBEa) is equivalent to (BE). Although it is not our main result, it is satisfying to

know that the two are (unconditionally) equivalent.

Theorem 4.3. Let B be a kernel of the form (NCHP). Let (Vt)t≥0 be a solution to (stBEa)

or (stBEa
K) with µt = Law(Vt) ∈ S for all t ≥ 0. Then (µt)t≥0 is a solution to (BE)

or (BEK) respectively. Conversely, if (µt)t≥0 ⊂ S is a solution to (BE, BEK), then there

exists a solution (Vt)t≥0 to (stBEa, stBEa
K) respectively with Law(Vt) = µt for all t ≥ 0.

In the same spirit as Theorem 4.1, we will exhibit a coupling of the many-particle Kac

process, uniformly in N .

Theorem 4.4 (Tanaka Coupling of Kac Processes). Let B be a kernel of the form (NCHP)

and let p ≥ p0, K ∈ [K0,∞], l = p+2+γ be as in Theorem 4.1. Fix a1, a2, a3 ≥ 1, N ≥ 2,

and let µN
0 , 5µ

N,K
0 ∈ SN be empirical measures satisfying

Λp+γ

'
µN
0 , 5µ

N,K
0

(
≤ a1; Λl

'
µN
0 , 5µ

N,K
0

(
≤ a2; Λq

'
µN
0 , 5µ

N,K
0

(
≤ a3 (4.5)

where l = p+2+γ, q = 2p+4+2γ. If K < ∞, there exists a coupling of a noncutoff Kac

process µN
t starting at µN

0 and a K-cutoff Kac process 5µN,K
t starting at 5µN,K

0 such that,

for all t ≥ 0,

E
?
wp

'
µN
t , 5µ

N,K
t

(A
≤ eCa1(1+t)

'
wp

'
µN
0 , 5µ

N,K
0

(
+ a2K

1−1/ν
(

+ Ca23tN
−1/2

(4.6)

and, for all tfin ≥ 0,

E
2
sup
t≤tfin

wp

'
µN
t , 5µ

N,K
t

(3
≤ eCa1(1+tfin)

6
wp

'
µN
0 , 5µ

N,K
0

(
+ a2tK

1−1/ν

· · ·+ Ca23(1 + tfin)
2

N1/2

7
.

(4.7)

The same is true with a coupling of noncutoff Kac processes if K = ∞, omitting the terms

proportional to K1−1/ν.
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Our final result is to study the convergence of the noncutoff Kac process in the large

number limit N → ∞.

Theorem 4.5. Let B be a kernel of the form (NCHP). For all N , the N-particle Kac

process defined by the generator (1.31) has uniqueness in law. Moreover, if p, q are as in

Theorem 4.4, a ≥ 1 and tfin ≥ 0, then whenever µ0 ∈ Sq has a moment Λq(µ0) ≤ a and

µN
t is a N-particle Kac process with initial data satisfying Λq(µ

N
0 ) ≤ a almost surely then

we have the estimate

E
2
sup
t≤tfin

wp

-
φt(µ0), µ

N
t

.3
≤ eCa(1+tfin)

-
(logN)1−1/ν + E

G
wp(µ

N
0 , µ0)

H.
. (4.8)

Thanks to the general considerations in Chapter 2, this proves propagation of chaos on

compact time intervals, with an explicitable rate.

4.1.1 Plan of the Chapter

Our programme will be as follows.

i). The remainder of this section is a discussion, comparing the results of this chapter

to the existing results and techniques from the literature and to the other chapters.

ii). In Section 4.2, we re-write the definition (stBE) of Boltzmann processes in terms

of the coefficients a(v, v∗, z,ϕ) introduced in Section 2.4, which is natural for our

coupling arguments. We similarly formulate (labelled) Kac processes as solutions

to stochastic differential equation in (Rd)N driven by Poisson random measures,

and state results on the well-posedness of the resulting stochastic differential equa-

tion and its relationship to the unlabelled Kac process; the proofs are deferred to

Appendix 4.A for ease of readability.

iii). Section 4.3 introduces the key ‘Tanaka trick’ (Lemma 4.8), which compensates for

the fact that the coefficients a parametrising the jumps are not continuous. We

present the key ‘Tanaka-Povzner’ calculation (Lemma 4.10), which will be used in

both the coupling of Boltzmann processes and the Kac process. The proof is deferred

until Section 4.10 for ease of readability.

iv). In Section 4.4, we will check some properties of Boltzmann processes given by the

stochastic differential equations (stBE, stBEa) for later use.

v). Section 4.5 is dedicated to the construction of the processes (Vt, Ṽt)t≥0, which we

characterise by a nonlinear jump SDE (4.50).

vi). Section 4.6 gives the proof of Theorem 4.1, applying the Tanaka-Povzner estimate

to the coupling produced in Section 4.5.
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vii). Section 4.7 gives the proof of Theorem 4.3, based on tools which have already been

developed in the proof of Theorem 4.1.

viii). In Section 4.8, we apply the Tanaka coupling to the many-particle Kac process. We

prove Theorem 4.4 and, by comparing with the convergence of cutoff Kac processes

in Chapter 3, we deduce Theorem 4.5.

ix). In Section 4.9, we offer an alternative proof of Corollary 4.2 which does not use

Theorem 4.1, based on the Tanaka coupling of the Kac processes.

x). Section 4.10 presents the main calculations on our Tanaka coupling, deferred from

Section 4.3.

xi). Finally, Appendices 4.A, 4.B deal with some technical issues concerning the well-

posedness for unlabelled Kac processes deferred from Section 4.2, and a variant

on the construction of the coefficients, which we use in constructing the couplings

(Vt, Ṽt).

4.1.2 Literature Review

We will now briefly discuss related works and their relationship to our work.

1. Tanaka’s Coupling. The key idea in this chapter and the next is a coupling pio-

neered by Tanaka [177] in the case of Maxwell Molecules (GMM) in terms of the stochas-

tic differential equation (stBE). This was generalised by Fournier and Méléard [91, 79]

to include the cases without cutoff, and for non-Maxwellian molecules and used to show

uniqueness for the Boltzmann equation with Maxwell molecules [176].

Even without cutoff, this case is significantly easier, because the same arguments as in

Section 4.3 give a ‘compensated Lipschitz property’ for the maps (v, v∗) → a(v, v∗, z,ϕ),

uniformly in z,ϕ, see [79, Lemma 2.6]. In terms of the parametrisation in Section 2.4,

this is because the deflection angle θ(v, v∗, z) is now a function only of z. The classical

result of Tanaka [177] is equivalent to Theorem 4.1 above, now omitting the exponential

factor and with p = 0, w0 = W2. In general, as soon as γ > 0, this additional dependence

introduces further error terms into the coupling estimates, which cannot be estimates

using the Grönwall lemma; in our calculation, these are the terms T2, T3 in Section 4.10,

and see also the proof of Proposition 4.18. In this case, we need p > 2 potentially large

to cancel these terms with our ‘Tanaka-Pozvner calculation’.

Let us mention two particular works to which our approach can be compared. The main

calculations in Sections 4.3, 4.10 were inspired by Fournier and Mischler [92] on the Nanbu

particle system, in which only one particle jumps at a time. In our notation, the cited
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paper produces estimates in w0; the major novelty of this work is that, by working in

wp for p large enough, and exploiting symmetries of the Tanaka or Kac processes, we are

able to obtain a desirable cancellation of ‘bad’ terms. Let us also remark that that the

main result of Rousset [167] is very similar to Theorem 4.4 in obtaining a coupling of

Kac processes with error uniform in N in the case of Maxwell molecules. In this case,

one can find an additional negative term, even without the weighting we use here, which

corresponds to refining the estimate we use on T2. For our cases, this is not helpful,

because the additional negative term is already weaker than −E[w0(µ
N
t , µ

N,K
t )], see the

remark above [167, Equation 0.11], which are themselves weaker than the terms in our

expansion for γ > 0. Rousset uses this coupling to investigate relaxation to equilibrium

for the Maxwell Molecules system in the limit t → ∞, uniformly in N . In our case, we

are unable to make the coupling uniform in time to investigate relaxation to equilibrium,

but use a similar coupling to prove propagation of chaos.

2. Well-Posedness of the Boltzmann Equation. As mentioned in the introduction,

the Cauchy theory for the case of noncutoff hard potentials (NCHP) is substantially

less complete than in the case of Maxwell Molecules (GMM) or hard spheres and cutoff

hard potentials (HS, CHPK), see also Proposition 3.15. Fournier [81] examined the case

where |v − v*|γ is replaced by a bounded function Φ, and results for the case of full

hard potentials have been found by Desvillettes and Mouhot [56] and in the case of

measure solutions by Fournier and Mouhot [93]. Let us note that the uniqueness and

stability statement in Theorem 4.1 assumes only a finite number of moments, rather than

a finite exponential moment 〈eε|v|γ , µ0〉 < ∞ as does the result of [93], which is recalled in

Proposition 4.18 below; correspondingly, our quantitative stability result is stronger, as

we can use Grönwall’s lemma rather than the Yudovich lemma [121]. The result of [56]

requires the initial data µ0 to have a density f0 ∈ W 1,1(Rd, (1 + |v|2)dv), and so requires

fewer moments than our results but much more regularity.

3. Propagation of Chaos for the Kac Process. Thanks to the general considera-

tions in Chapter 2, we can understand the conclusion of Theorem 4.5 as proving propa-

gation of chaos for the case of non-cutoff hard potentials (NCHP), with an explicit rate.

Although the rate is fairly slow, we believe that this is the first such result for these ker-

nels; let us also mention some works on related models. Fournier and Guilin [88] consider

a related particle system which approximates the Landau equation for hard potentials,

and Fournier [89] deals with this model for soft potentials. The work [92] which we have

already mentioned considers the asymmetric Nanbu process in which only one particle

jumps at a time, and shows propagation of chaos for this system for Maxwell molecules

and hard potentials; a recent work of Salem [169] extends this to the case of soft potentials

with a moderate angular singularity.
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The ideas of this chapter draw primarily from the literature on the Tanaka coupling, in-

cluding Fournier and Mischler [92], and the proof of Theorem 4.5 combines the N -uniform

approximation in Theorem 4.4 with the convergence for the Kac process in the cutoff cases

(CHPK) proven in Lemma 3.14, which comes from Norris [157].

We also remark that the rate obtained in Theorem 4.5 is equivalent to that of [55], and

is likely very far from optimal. It may be possible to improve on this by using the reg-

ularising effect of grazing collisions [7, 8, 60] to improve the estimates in terms of the

branching process representation or linearised Boltzmann equation described in Section

3.2, but we will not explore this here.

Let us remark that the original proof of Corollary 4.2, given in [112] and reproduced in Sec-

tion 4.9 offers an entirely probabilistic ‘bottom-up’ proof of the stability of the Boltzmann

equation by propagating the coupling of Kac process in Theorem 4.4 to the Boltzmann

equation. Since the argument uses the same fundamental ingredients but combined in

a different way, and introduces a different argument (the existence of a stable solution

map implies uniqueness), it is included here for completeness. Let us remark that, while

the uniqueness of the Boltzmann equation does not require coupling the many-particle

systems and the coupling of the Boltzmann processes is, in a sense, more fundamental, it

is much easier to set up a coupling for Kac processes than the equivalent coupling for the

Boltzmann processes, and the symmetry arguments are more manifest.

Significant parts of the argument leading to Corollary 4.2 can be replaced by a deter-

ministic (i.e., without using probability theory) argument, once one has established the

existence of solutions to a certain coupled Boltzmann equation (4.54). In this case, the

proof can be shortened significantly, completely bypassing the analysis of the stochastic

Boltzmann processes in Section 4.4 and bypassing some of the steps in Lemmas 4.16 and

the final proof; the argument for the Landau case in the joint work by the author [90]

follows exactly this argument. In this case, we would only find a coupling πt ∈ Π(µt, νt)

for each t, without finding or describing a stochastic process (Vt, Ṽt)t≥0 whose marginals

are πt; in keeping with the overall stochastic theme of this thesis, it is interesting to keep

take this more probabilistic approach.
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4.2. JUMP STOCHASTIC DIFFERENTIAL EQUATIONS ASSOCIATED TO

BOLTZMANN PROCESSES

4.2 Jump Stochastic Differential Equations Associ-

ated to Boltzmann Processes

We begin by formulating both Boltzmann processes and (labelled) Kac process as a

stochastic differential equation in Rd, (Rd)N respectively driven by Poisson random mea-

sures, using the coefficients a(v, v∗, z,ϕ) described in Section 2.4 for the case (NCHP).

For the Boltzmann processes, we rewrite the stochastic differential equation (stBE) using

the parametrisation of Section 2.4 as

Vt = V0 +

!

(0,t]×Rd×Sd−2×(0,∞)

a(Vs−, v∗, z,ϕ)N (ds, dv∗, dϕ, dz) (stBEa)

for a Poisson random measureN on (0,∞)×Rd×Sd−2×(0,∞) of intensity 2dtµt(dv*)dϕdz,

and with nonlinear dependence through µt = Law(Vt); using the representation Theorem

of El Karoui [70] and Lemma 2.5, this can be seen to be equivalent to the original formu-

lation (stBE). In the case with cutoff, we will write aK ,LK for the corresponding objects,

and (stBEa
K) for the corresponding equation.

We also construct a labelled Kac process to be the solution to an SDE with Poisson noise.

For unordered pairs {ij} = {ji} of distinct indexes i, j = 1, ..., N , let N {ij} be indepen-

dent Poisson random measures on (0,∞)×Sd−2×(0,∞), with intensity 2N−1dsdϕdz, and

consider solutions VN
t = (V 1

t , ..., V
N
t ) to the system of stochastic differential equations

V i
t = V i

0 +
"

j ∕=i

!

(0,t]×Sd−2×(0,∞)

a(V i
s−, V

j
s−, z,ϕ)N {ij}(ds, dϕ, dz) (LK)

where the index i runs over 1, ..., N . The factor of 2 in the rate corresponds to working with

unlabelled, rather than labelled, pairs of particles. Moreover, thanks to the antisymmetry

of a in the first two arguments, and recalling that N {ij} = N {ji}, we see that a jump in

the ith particle V i
t ∕= V i

t− matches a jump in some jth particle, j ∕= i. Clasically [127],

weak solutions to the stochastic differential equation (LK) are Markov processes with the

generator

(GL JF )(VN)

=
2

N

"

{ij}

! ∞

0

dz

!

Sd−2

dϕ
'
JF
-
VN + a(V i, V j, z,ϕ)(ei − ej)

.
− JF (VN)

(
(4.9)

where hei = (0, . . . 0, h, 0 . . . 0) ∈ (Rd)N has h in the ith place. Using the same com-

putations as in Section 2.4, the integral can be rewritten to be exactly (1.12) in the

introduction, so that (LK) corresponds exactly the labelled Kac processes.

We will use the following result.

Proposition 4.6. For all VN
0 ∈ SN , there exists a unique-in-law labelled Kac process

VN
t , t ≥ 0, that is, a weak solution to (LK), starting at VN

0 .
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This proposition is largely standard, see for instance the proof of a very similar proposi-

tion [92, Proposition 1.2ii)]; for existence, one proves a tightness property for the cutoff

equivalent (cLK) below, and identifies subsequential limits as solutions to (LK). While

the coefficients a are not Lipschitz, one can use a coupling argument to show that every

solution (VN
t )t≥0 to the associated martingale problem is the limit of solutions (VN,K

t )t≥0

to the cutoff martingale problems, with some N -dependent rate; since the law of VN,K
t is

unique, by finiteness of the rates, it follows that the same is true of VN
t . Since the coupling

argument is similar to one we develop anyway (with N -uniform rates) for Theorem 4.4 in

Section 4.8, we will defer the proof until then, and remark that no intermediate steps use

existence so there is no circularity.

We justify moving between the labelled and unlabelled dynamics, with the following

proposition.

Proposition 4.7. i). Suppose VN
t is a solution to to the stochastic differential equation

(LK). Then the empirical measures µN
t = θN(VN

t ) are unlabelled Kac process.

ii). Every Kac process arises in this way: if (5µN
t , t ≥ 0) is a Kac process starting at

µN
0 , pick VN

0 ∈ θ−1
N (µN

0 ) uniformly at random. Then there exists a weak solution to

the stochastic differential equation (LK), starting at VN
0 , such that (µN

t , t ≥ 0) =

(θN(VN
t ), t ≥ 0) has the same law as (5µN

t , t ≥ 0).

iii). For any µN
0 ∈ SN , then there exists a unique-in-law, N-particle (unlabelled) Kac

process starting at µN
0 .

For ease of readability, the proof is deferred to Appendix 4.A. The first item is elementary,

and uses the Sym(N)-symmetry of the labelled dynamics; the second item amounts to

the careful application of a theorem due to Kurtz [126, 127], and we conclude item iii)

using Proposition 4.6. Again, there is no circularity.

We also construct a cutoff version VN,K
t = (V 1,K

t , ...V N,K
t ) of these processes as follows.

In analogy to the definition above, set

aK(v, v*, z,ϕ) = a(v, v*, z,ϕ)1I (z ≤ K|v − v*|γ) . (4.10)

The K-cutoff version of (LK), corresponding to the kernel BK with Grad’s angular cutoff

defined in (CHPK) is now

V i,K
t = V i,K

0 +
"

j ∕=i

!

(0,t]×Sd−2×(0,∞)

aK(V
i,K
s− , V j,K

s− , z,ϕ)N {ij}(ds, dϕ, dz). (cLK)

In the notation of Section 2.4, θ0(K) = G(K) → 0 as K → ∞. Let us remark that the

statements equivalent to Propositions 4.6, 4.7, for the cutoff differential equation (cLK)

and the corresponding cutoff Kac process µN,K
t are elementary, as in both cases the overall

jump rates are uniformly bounded.
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4.3 Accurate Tanaka Trick and Tanaka-Povzner Lemma

In this section, we will exhibit the key coupling, which will be applied to both Boltzmann

processes and the Kac process, and a family of lemmas which will describe, in either case,

how fast the coupled processes tend to move away from each other.

4.3.1 Accurate Tanaka’s Trick

We begin with the following ‘accurate Tanaka Lemma’, which generalises that of [85].

Our result is slightly more general, in that we allow any d ≥ 3, while the result cited

applies for only d = 3.

Lemma 4.8. [Accurate Tanaka’s Trick] There exists a measurable function R : Rd×Rd →
Isom(Sd−2) such that, for all X, Y ∈ Rd and ϕ ∈ Sd−2, we have

Γ(X,ϕ) · Γ(Y,R(X, Y )ϕ) ≥ X · Y. (4.11)

Proof. The cases where either X = 0, Y = 0 are vacuous; for the remainder of the proof,

let us assume that both X, Y are nonzero. Let us write, throughout, SX for the set

SX = {u ∈ Rd : |u| = |X|, u ·X = 0}. (4.12)

By considering separately the cases where X, Y are and are not colinear, we observe that

we may choose j1X , j
1
Y such that

dim Span(X, Y, j1X , j
1
Y ) = 2, j1X ∈ SX , j

1
Y ∈ SY ; j1X · j1Y = X · Y. (4.13)

With some care, the map (X, Y ) /→ (j1X , j
1
Y ) can further be constructed to be measur-

able. We now construct, in a measurable way, u2, ...ud−1 as an orthonormal basis for

Span(X, j1X)
⊥ = Span(Y, j1Y )

⊥, and set

j2X = |X|u2, j
3
X = |X|u3, ...., j

d−1
X = |X|ud−1; (4.14)

j2Y = |Y |u2, j
3
Y = |Y |u3, ...., j

d−1
Y = |Y |ud−1. (4.15)

Now, {j1X , ...jd−1
X } are orthonogal, and lie in SX , so there is a unique isometry PX ∈

Isom(Sd−2) such that

Γ(X,PXek) = jkX , k = 1, ..., d− 1 (4.16)

and similarly for PY . We now observe, for all ϕ ∈ Sd−2,

Γ(X,PXϕ) · Γ(Y, PY ϕ) =
d−1"

k=1

φ2
k jX · jY = φ2

1 (X · Y ) + (1− ϕ2
1)|X||Y |

≥ φ2
1 (X · Y ) + (1− ϕ2

1)(X · Y )

= X · Y

(4.17)

which implies the result when we define R(X, Y ) = PY P
−1
X .
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We will use a version of this in which the maps ι,Γ defined in Section 2.4 are given an

additional parameter α ∈ (0, 1), and the maps R now also depend on α accordingly.

Lemma 4.9. There exists a map ι : Rd × (0, 1) → (Rd)d−1 such that, for all α ∈ (0, 1),

j, k ∈ {1, ..., d− 1}, such that ια(−X) = −ια(X) and X ∈ Rd,

ια,j(X) · ια,k(X) = |X|2 · 1Ij=k. (4.18)

There also exists a map R : Rd × Rd × (0, 1) → Isom(Sd−2) such that, for all α, X, Y ,

Rα(X, Y ) satisfies the conclusion (4.11) of Lemma 4.8 for the maps Γα defined with ια in

place of ι. Finally, ια, Rα can be chosen such that, for all X, Y ∈ Rd \ {0}, the sets

{α : ια or Γα is discontinuous at X}; (4.19)

{α : Rα is discontinuous at (X, Y )} (4.20)

have dα-measure 0.

Since the specific construction is not important for the arguments of this chapter, it is

deffered to Appendix 4.B. The averaging over α will be important in Section 4.5, in order

to ensure that the generator of a nonlinear Markov process is continuous.

4.3.2 Tanaka-Povzner Lemmata

The key tool at the heart of our results is the following variant of some calculations in

[92, Lemmas 3.1, 3.3]. The key point is the appearance of a large negative term, similar

to that arising in the Povzner inequalities, which ensures the cancellation of ‘bad’ terms

and leads to a Grönwall inequality.

Lemma 4.10. For all X, Y ∈ Rd, let R(X, Y ) ∈ Isom(Sd−2) be an isometry satisfying

the conclusion of Lemma 4.8. Let us write, for v, 5v, v*, 5v* ∈ Rd, z ∈ (0,∞),ϕ ∈ Sd−2 and

K < ∞,

a = a(v, v*, z,ϕ); v′ = v + a; v′K = v + aK(v, v*, z,ϕ); (4.21)

5aK = aK(5v, 5v*, z, R(v − v*, 5v − 5v*)ϕ); 5v′K = 5v + 5aK . (4.22)

Define

Ep,K(v, 5v, v*, 5v*) =
! ∞

0

dz

!

Sd−2

dϕ (dp(v
′, 5v′K)− dp(v, 5v)) (4.23)

and, for p ≥ 2,

λp =

! π/2

0

/
1−

6
1 + cos θ

2

7p/2
0
β(θ)dθ. (4.24)
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Then there exists K0(p), constants c = c(G, d) and C = C(G, d, p), such that, whenever

K ≥ K0(p), we have

Ep,K(v, 5v, v*, 5v*) ≤
6
c− λp

2

7
dp+γ(v, ṽ) + cdp+γ(v∗, ṽ∗)

+ C
-
|v*|p+γ + |5v*|p+γ

.
dp (v, 5v)

+ C
-
|v|p+γ + |5v|p+γ

.
dp (v*, 5v*)

+ CK1−1/ν(1 + |v|l + |v*|l + |5v|l + |5v*|l)

(4.25)

where l = p+2+γ. In the case where a, aK have the additional parameter α as in Lemma

4.9, the same holds for Ep,K(v, ṽ, v∗, ṽ∗,α) for the corresponding maps Rα, with constants

independent of α.

Remark 4.11. Let us motivate this lemma, which is not necessarily transparent. We

obtain, in expanding Ep,K, the noise term in the final line, and terms proportional to

|v − 5v|2, |v* − 5v*|2 with all possible polynomial weightings of order p + γ. The difficult

terms are those like dp+γ(v, ṽ), which prevent a Grönwall estimate (see also the sketch

proof of Proposition 4.18 below). However, we ensure that the coefficients of such terms

are independent of p, which allows us to cancel all such terms by the negative ‘Povzner

term’ appearing in the first line by making p large.

We will also use the following variant, which will be used to prove a local uniform estimate

on our coupling.

Lemma 4.12. In the notation of the previous lemma, define also

QK(v, 5v, v*, 5v*) =
! ∞

0

dz

!

Sd−2

dϕ (dp(v
′, 5v′K) + dp(v

′
*, 5v′*K)− dp(v, 5v)− dp(v*, 5v*))2 .

(4.26)

Then, for some C=C(G,d,p), we have

QK(v, 5v, v*, 5v*) ≤ C(1 + |v|2l + |v*|2l + |5v|2l + |5v*|2l). (4.27)

where l = p+ 2 + γ is as in Lemma 4.10.
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4.4 Some Properties of Boltzmann Processes

Before giving the proof of Theorem 4.1 based on Tanaka’s stochastic interpretation (stBEa)

of the Boltzmann equation, we will first some properties which we will use later. Our first

property is a tightness property, together with an identification of limits.

Lemma 4.13. For n ≥ 1, let (V n
t )t≥0 be a solution to (stBEa) with law Law(Xn

t ) = µn
t ∈ S

the corresponding solution to (BE). Then the processes V n are tight in the Skorokhod

topology of D([0,∞),Rd). Moreover, if any Vt is any subsequential limit point such that

µt = Law(Vt) ∈ S for all t, then it is again a solution to (stBEa).

We will use the following simple fact in the proof.

Lemma 4.14. Let (E, d) be a metric space, µn ∈ P(E) converging to µ ∈ P(E) in the

weak topology, and f : E ×E → R a continuously supported function such that, for some

K1 ⊂ E compact, f(x, y) = 0 whenever y ∕∈ K1. Then, for any K ⊂ E compact, we have

sup
x∈K

@@@@
!

E

f(x, y)µn(dy)−
!

E

f(x, y)µ(dy)

@@@@ → 0. (4.28)

Proof of Lemma 4.13. Using the criterion of Aldous [4], to prove tightness it is sufficient

to show that, for all tfin ≥ 0,

sup
n

E
2
sup
t≤tfin

|V n
t |
3
< ∞; (4.29)

lim
δ→0

sup
n

sup
(T,T ′)∈S(δ,tfin)

|V n
T ′ − V n

T | → 0 (4.30)

where S(δ, tfin) is the set of pairs of stopping times (T, T ′) with 0 ≤ T ≤ T ′ ≤ T + δ ≤ T .

Step 1. Local Uniform Moment Estimate For the local supremum supt≤tfin
|V n

t |,
we observe that, at jumps,

|V n
t |− |V n

t−| ≤ |V n
t− − v| sinG

6
z

|V n
t− − v|γ

7

≤ (|V n
t−|+ |v|) sinG

6
z

|V n
t− − v|γ

7 (4.31)

where (t, v,ϕ, z) is the corresponding point of the Poisson random measure N driving V n
t .

Integrating,

sup
s≤t

|V n
s | ≤ |V n

0 |+
!

(0,t]×Rd×Sd−2×(0,∞)

(|V n
s−|+ |v|) sinG

6
z

|V n
s− − v|γ

7
N n(ds, dv, dϕ, dz).

(4.32)
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Therefore

sup
s≤t

|V n
s |−

!

(0,t]×Rd×(0,∞)

(|V n
s |+ |v|) sinG

6
z

|V n
s − v|γ

7
dsµn

s (dv)dz (4.33)

is a supermartingale. When we integrate over z, we obtain an extra factor |V n
s −

v|γ
&∞
0

sinG(z)dz and recall that
&∞
0

sinG(z)dz < ∞, so for some C,

sup
s≤t

|V n
s |− C

!

(0,t]×Rd

(1 + |V n
s |1+γ + |v|1+γ)µn

s (dv)ds (4.34)

is also a supermartingale. Taking expectations and recalling that 1 + γ ≤ 2, the second

term is controlled by the hypothesised second moment estimate E[|V n
t |2] = Λ2(µt) = 1

and we conclude that E[sups≤t |V n
s |] < ∞ is bounded, uniformly in n and locally uniformly

in t.

We further remark that a similar argument holds for the local suprema supt∈(δ,tfin] |V
n
t |2.

In this case, we observe that E[|V n
δ |2] = Λ2(µ

n
δ ) = 1, and for some C, supδ≤s≤t |V n

s |2 −
C
&
(δ,t]×Rd(1 + |V n

s |2+γ + |v|2+γ)µn
s (dv)ds is a supermartingale. Using the moment bounds

in Proposition 2.6i), there exists C, independently of n, δ, tfin, such that Λ2+γ(µ
n
s ) ≤

C(1 + s−1), and hence
& tfin
δ

Λ2+γ(µ
n
s )ds ≤ C(tfin + log tfin − log δ), and we find that

E
2

sup
δ≤t≤tfin

|V n
t |2

3
≤ 1 + C(tfin + log tfin − log δ). (4.35)

Step 2. Equicontinuity Property We next check (4.30). Fixing tfin, δ, n and such

T, T ′, we argue as in the previous step that

|V n
T ′ − V n

T | ≤
!

(0,tfin]×Rd×Sd−2×(0,∞)

(|V n
s−|+ |v|) sinG

6
z

|V n
s− − v|γ

7
1IT<s≤T ′N n(ds, dv, dϕ, dz).

(4.36)

Now, we observe that the process

Zn
t =

!

(0,t]×Rd×Sd−2×(0,∞)

(|V n
s−|+ |v|) sinG

6
z

|V n
s− − v|γ

7

· · ·× (N n(ds, dv, dϕ, dz)− dsµn
s (dv)dϕdz)

(4.37)

is a martingale, and we write

|V n
T ′ − V n

T | ≤ ZN
T ′ − ZN

T +

!

(0,tfin]×Rd×Sd−2×(0,∞)

(|V n
s−|+ |v|) sinG

6
z

|V n
s− − v|γ

7
1IT<s≤T+δ

· · ·× dsµn
s (dv)dϕdzdα.

(4.38)
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Taking expectations, the first two terms cancel by the optional stopping theorem. Carry-

ing out the integral over z and using again that
&∞
0

sinGdz is finite, we find that

E[|V n
T ′ − V n

T |] ≤ CE

=! T ′

T

!

Rd

(|V n
s |1+γ + |v|1+γ)µn

s (dv)ds

>

≤ CE

=! T ′

T

!

Rd

(|V n
s |2 + |v|2)µn

s (dv)ds

> (4.39)

where, in the final line, we recall that 1+ γ ≤ 2. For the integral in v, we recall that that

Λ2(µ
n
t ) = 1 to find a contribution Cδ, while the term in V n

s is bounded by recalling that

T ′ − T ≤ δ, so that

! T ′

T

|V n
s |2ds ≤

! δ

0

|V n
s |2ds+ δ sup

δ≤t≤tfin

|V n
s |2. (4.40)

Taking expectations, the first term gives E[|V n
s |2] = 1 inside the integral and we control

the second term using (4.35) to obtain

E

=! T ′

T

|V n
s |2ds

>
≤ δ + Cδ(tfin + log tfin − log δ). (4.41)

Putting everything together, we have

E[|V n
T ′ − V n

T |] ≤ Cδ(tfin + 1 + log tfin − log δ). (4.42)

The right-hand side is now independent of n and (T, T ′) ∈ S(tfin, δ), and converges to 0

as δ → 0, so the claim (4.30) is proven.

Step 3. Characterisation of Limits We finally check that any subsequential limit is

also a solution to (stBEa) for some choice of Poisson random measure N . Let us suppose

that (Vt)t≥0 is any process extracted from (V n
t )t≥0, n ≥ 1 as the limit in distribution,

for the Skorokhod topology, along some subsequence. Using Skorokhod’s representation

theorem, we can replace V n
t , Vt by processes with the same law with almost sure Skorokhod

convergence; further, Step 2 shows that, for all t, P(Vt ∕= Vt−) = 0, so V n
t → Vt almost

surely for any fixed t. Thanks to the representation theorem of El Karoui and Lepeltier

[70] it is sufficient to show that, for any f ∈ C1
b (Rd), the process

M f
t = f(Vt)− f(V0)−

! t

0

!

Rd

Lf(Vs, v)µs(dv)ds (4.43)

is a martingale. For each n, the corresponding processes Mn,f
t , defined with V n

t , µ
n
t in

place of Vt, µt, is a martingale.

Let us fix f ∈ C1
b (Rd) and observe first some properties of Lf . It is straightforward to
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see that each LKf is continuous on Rd ×Rd, and the straightforward estimate |v′ − v| ≤
|v − v*| sinG(z/|v − v∗|γ) implies the growth bound

|Lf(v, v*)| ≤ C(f)|v − v*|
!

(0,∞)

sinG

6
z

|v − v∗|γ

7
dz ≤ C(f)|v − v*|1+γ (4.44)

for some constant C = C(f), depending only on the Lipschitz constant of f , and similarly

for LK . The same argument also shows that

|(Lf)(v, v*)− (LKf)(v, v*)| ≤ C(f)εK |v − v*|1+γ; (4.45)

εK =

! ∞

K

sinG(z)dz → 0 (4.46)

so that LKf → Lf , uniformly on compact subsets of Rd×Rd; it therefore follows that Lf
is continuous. Recalling that 1+γ ≤ 2, it holds that |Lf(v, v∗)| ≤ C(1+ |v|1+γ)(1+ |v∗|2),
and using the moment estimates Proposition 2.6i) on µn

t , there exists some C such that

Λ2+γ/2(µ
n
t ) ≤ C(1 + t−1/2) for all n, and by lower semicontinuity the same is true for µt.

We now use a Chebychev estimate to see that
!

Rd

|Lf(v, v∗)|1I|v∗|≥Rµ
n
t (dv∗) ≤ C(1 + |v|1+γ)R−γ/2Λ2+γ/2(µ

n
t )

≤ C(1 + |v|1+γ)R−γ/2(1 + t−1/2)

(4.47)

and similarly for µt. We now choose a continuous, compactly supported function ψ :

Rd → [0, 1], which is 1 when |v∗| ≤ R. Since Lf(v, v∗)ψ(v∗) is continuous and compactly

supported in v∗, it follows from Lemma 4.14 that, for any given t,
!

Rd

Lf(v, v∗)ψ(v∗)µn
t (dv∗) →

!

Rd

Lf(v, v∗)ψ(v∗)µt(dv∗)

uniformly on compact sets in v. In particular, on compact time intervals, we can choose

a compact set containing the image of V n
t , Vt, t ≤ tfin for all n to see that

!

Rd

Lf(V n
t , v∗)ψ(v∗)(µ

n
t − µt)(dv∗) → 0.

Meanwhile, Lf(v, v∗)ψ(v∗) is uniformly continuous on compact regions in v, so for all t

such that V n
t → Vt, it follows that

!

Rd

Lf(V n
t , v∗)ψ(v∗)µt(dv∗) →

!

Rd

Lf(Vt, v∗)ψ(v∗)µt(dv∗)

and we conclude that, for such t,
!

Rd

Lf(V n
t , v∗)ψ(v∗)µt(dv∗) →

!

Rd

Lf(Vt, v∗)ψ(v∗)µt(dv∗).

Almost surely, this convergence holds for all t at which Vt is continuous, which excludes

only a dt-measure 0 set. It then follows from bounded convergence that the same holds
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when we replace each side by its integral from 0 to t by bounded convergence. Recalling

(4.47), we find that, for all t ≥ 0, almost surely

lim sup
n

@@@@
! t

0

!

Rd

Lf(V n
s , v∗)µ

n
s (dv∗)ds−

! t

0

!

Rd

Lf(Vs, v∗)µs(dv∗)ds

@@@@

≤ CR−γ/2 sup
n

sup
s≤t

(1 + |V n
s |1+γ + |Vs|1+γ)(t+ t1/2).

(4.48)

We observe that Skorokhod convergence implies that the local supremum supn sups≤t |V n
s |

is almost surely finite, so we can take R → ∞ in the right-hand side to conclude that,

almost surely ! t

0

!

Rd

Lf(V n
s , v∗)µ

n
s (dv∗) →

!

Rd

Lf(Vs, v∗)µs(dv∗)

uniformly on compact time intervals. Similarly, since f is continuous, f(V n
t )− f(V n

0 ) →
f(Vt)−f(V0) almost surely in the Skorokhod topology, and almost surely for each fixed t.

To upgrade from almost sure convergence to L1(P) convergence, observe that f(V n
t ), f(V

n
0 )

are uniformly bounded, and so uniformly integrable random variables. For the integral

term, we note that 2+(γ/2)
1+γ

= 4+γ
2+2γ

> 1 for any γ ∈ (0, 1], and we estimate

E

=@@@@
! t

0

!

Rd

Lf(V n
s , v)µ

n
s (dv)ds

@@@@
(4+γ)/(2+2γ)

>

≤ t(2−γ)/(2+2γ)

! t

0

E
G
|Lf(V n

s , v)|(4+γ)/(2+2γ)
H
µn
s (ds)

≤ Ct(2−γ)/(2+2γ)

! t

0

!

Rd

(1 + E[|V n
s |2+(γ/2)] + |v|2+(γ/2))µn

s (ds)

≤ Ct(2−γ)/(2+2γ)

! t

0

Λ2+(γ/2)(µ
n
s )ds

≤ Ct(2−γ)/(2+2γ)

! t

0

(1 + s−1/2)ds.

(4.49)

The final integral is bounded, uniformly in n, and it follows that Mn,f
t are bounded, uni-

formly in L(4+γ)/(2+2γ)(P) and locally uniformly in time. For fixed t, f , Mn,f
t are uniformy

integrable, and so converge to M f
t in L1(P). The limit M f

t is therefore a martingale, and

the step is complete.

The other property we will use is the following uniqueness result.

Lemma 4.15. Suppose that (Vt)t≥0, (Ṽt)t≥0 be two solutions to (stBEa) with Law(Vt) =

µt = Law(Ṽt) for all t ≥ 0. Then Law((Vt)t≥0) = Law((Ṽt)t≥0).

Sketch Proof. Let us remark that this result can be found in the literature; we sketch the

argument of [81, Proposition 3.4]. By a disintegration argument, it is enough to know

that, for all v ∈ Rd, there is a unique-in-law process Vt such that V0 = v and, for all

f ∈ C1
c (Rd), f(Vt)− f(v)−

& t

0
Asf(Vs)ds is a martingale, where

Asf(v) :=

!

Rd

Lf(v, v∗)µs(dv∗).



188 4.5. TANAKA COUPLING OF BOLTZMANN PROCESSES

Let us call this martingale problem (MP). If one replaces the jumps a with the truncation

a(Hn(v), v∗,ϕ, z), Hn(v) = (n∧|v|/|v|)v, then any solution to the corresponding, truncated

martingale problem (MPn) can be approximated by solutions to the martingale problem

with truncation and angular cutoff (MPn,K), using the same Tanaka-style coupling as we

develop in Section 4.5; see [81, Proposition 3.4, Step 6]. Uniqueness certainly holds for

(MPn,K), since the rates are finite, and so by taking limits it holds that uniqueness holds

for (MPn), see [83, Remark 9.7]. Finally, let Tn be the first time that |Vt| ≥ n; since V is

càdlàg, Tn → ∞ almost surely. On the other hand, V Tn
t has the same law as a solution V n

t

to (MPn), stopped at the respective time, and we conclude that the original martingale

problem (MP) has uniqueness in law, as desired.

4.5 Tanaka Coupling of Boltzmann Processes

In this section, we will set up a Tanaka coupling of Boltzmann processes (Vt, Ṽt)t≥0 in

such a way as to be able to apply Lemma 4.10. We write C1
p(Rd × Rd) for continuously

differentiable functions on Rd×Rd whose first derivative is of at most polynomial growth.

The main step is the following.

Lemma 4.16. Assume the notation of Lemma 4.9. Let (µt)t≥0, (νt)t≥0 ⊂ S solutions

of the noncutoff and cutoff Boltzmann equations (BE, BEK) respectively, for some K ∈
[1,∞]. Suppose that µ0 satisfies an exponential initial moment condition

&
Rd e

ε|v|γµ0 < ∞
for some ε > 0, and that all moments of ν0 are finite (if K < ∞), or that

&
Rd e

ε|v|γν0 < ∞
for some ε > 0 if K = ∞.

Fix π0 ∈ Π(µ0, ν0). Then there exists a stochastic process (Vt, Ṽt)t≥0 such that, for all

t ≥ 0, πt = Law(Vt, Ṽt) ∈ Π(µt, νt), and (Vt, Ṽt)t≥0 solves the nonlinear jump SDE
#
111$

111%

Vt = V0 +
&
E
a(Vs−, v∗, z,ϕ,α) 1Is≤t N (ds, dv∗, dṽ∗, dϕ, dz, dα);

Ṽt = Ṽ0 +
&
E
aK(Ṽs−, ṽ∗, z, Rα(Vs− − v∗, Ṽs− − ṽ∗)ϕ,α)1Is≤t

· · ·×N (ds, dv∗, dṽ∗, dϕ, dz, dα)

(4.50)

where N is a Poisson random measure on E = (0,∞)× (Rd)2 × Sd−2 × (0,∞)× (0, 1) of

intensity 2dt πt(dv∗, dṽ∗) dϕ dz dα. In particular, for any f ∈ C1
p(Rd × Rd) the process

M f
t = f(Vt, Ṽt)−

! t

0

!

Rd×Rd

AKf(Vs, Ṽs, v∗, ṽ∗)πs(dv∗, dṽ∗)ds (4.51)

is a martingale, where we define

AKf(v, ṽ, v∗, ṽ∗) = 2

!

Sd−2

dϕ

!

(0,∞)

dz

!

(0,1)

dα
-
f((v, ṽ) + A)− f(v, ṽ)

.
; (4.52)

with the shorthand

A =

/
a(v, v∗,ϕ, z,α)

aK(ṽ, ṽ∗, Rα(v − v∗, ṽ − ṽ∗)ϕ, z,α)

0
(4.53)
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Remark 4.17. We make the following remarks.

i) We will check, in 4.20 below, that Vt solves (stBE
a) and that Ṽt solves (stBE

a
K). It

therefore follows that this produces the coupling claimed in Theorem 4.1 in the case

where µ0, ν0 have the necessary exponential moments.

ii) The randomisation over α ∈ (0, 1) will be important at this stage, to ensure that

the generator AKf given by (4.52) is continuous for f ∈ C1
p(Rd × Rd), in order to

apply a weak compactness argument. This is why we had to introduce the additional

dependence in the coefficients a(·,α), Rα in Lemma 4.9; if we attempted to repeat

the same arguments with the ‘non-randomised’ a,R, we would find that AKf could

fail to be continuous on a set of a set of 0 Lebesgue measure in Rd × Rd, which is

however not obviously of 0 measure with respect to πt.

iii) To rederive the stability results at the level of the solutions (µt)t≥0, (νt)t≥0, we could

work at the level of the coupled Boltzmann equation for πt, given by specifying, for

f ∈ C1
p(Rd × Rd),

〈f, πt〉 = 〈f, π0〉+
! t

0

!

(Rd)2×(Rd)2
AKf(x, y)πs(dx)πs(dy). (4.54)

It is interesting to give a stochastic statement of the theorem, where we prove the a

coupling of the processes and not just of the marginals.

iv) The form of the coupling is essential in order for the estimates obtained from Lemma

4.10 to close; for instance, if we fixed a coupling πt ∈ Π(µt, νt) attaining the mini-

mum of the optimal transport problem for wp(µt, νt) and treated (4.50) as a linear

jump SDE, the estimates would not close: we would find additional terms

!

Rd×Rd

dp+γ(v, ṽ)πt(dv, dṽ)

which we cannot cancel against the Povzner term −λpE[dp+γ(Vt, Ṽt)]. With this

bilinear form, so that πt = Law(Vt, Ṽt), the two terms can be absorbed provided that

λp is large enough.

v) We will not need uniqueness of solutions to (4.54), or uniqueness in law for (4.50):

existence is sufficient for our proof.

We will use in the proof the following weaker fact on well-posedness of (BE), from [93,

Corollary 2.3iii)].

Proposition 4.18. Suppose µ0 ∈ S satisfies, for some ε > 0, 〈eε|v|γ , µ0〉 < ∞. Then

there exists at most one solution to either the noncutoff the Boltzmann Equation (BE)

taking values in S and starting at at µ0.
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For completeness, and since it is in a similar spirit to the argument we will present later,

we outline the important steps of the proof, following [93, Theorem 2.2].

Sketch proof of Proposition 4.18. Let us fix two solutions (µt)t≥0, (νt)t≥0 to (BE), and

consider, for f : Rd → R with Lipschitz constant at most 1, hf
t = 〈f, µt − νt〉. By duality

(2.22), we can choose a coupling πt ∈ Π(µt, νt) such that, for all t ≥ 0,

ut := W1(µt, νt) = sup
K
hf
t : for all v, w, |h(v)− h(w)| ≤ |v − w|

L
=

!

Rd×Rd

|v−ṽ|πt(dv, dṽ).

(4.55)

It follows from (BE) that, using the same map R as in Lemma 4.8 but now working with

the (θ,ϕ)-parametrisation, we have

d

dt
hf
t =2

!

(Rd×Rd)2
πt(dv, dṽ)πt(dv∗, dṽ∗)

! π

0

β(θ)dθ

!

Sd−2

dϕ

. . .

6
|v − v∗|γ|(f(v′(v, v∗, θ,ϕ))− f(v))

· · ·− |ṽ − ṽ∗|γ|(f(v′(ṽ, ṽ∗, θ, R(v − v∗, ṽ − ṽ∗)ϕ))− f(ṽ))

7
.

(4.56)

By breaking up the integral and using the properties of the map R, one finds, for any

δ > 0, A < ∞, [93, Equation 3.5]

d

dt
hf
t ≤ Ht + Γδ,A(t) + ASδ

'
ut − hf

t

(
(4.57)

where

Ht = C

!

(Rd×Rd)2
πt(dv, dṽ)πt(dv∗, dṽ∗)

6
min(|v − v∗|γ, |ṽ − ṽ∗|γ)|v − ṽ|

+ (|v − v∗|γ − |ṽ − ṽ∗|γ)+|v − v∗|

+ (|ṽ − ṽ∗|γ − |v − v∗|γ)+|ṽ − ṽ∗|
7

and where, in our notation, Γδ,A(s) ≤ 2
& δ

0
θβ(θ)dθ + CASδ, Sδ =

& π

δ
β(θ)dθ and finally

CA = sup
t≥0

!

|v|>A

|v|2(µt(dv) + νt(dv)) → 0

using Proposition 2.15. From (4.57), one obtains first a bound for hf
t in terms of dt; taking

the supremum, and recalling (4.55), we get

ute
ASδt ≤ u0e

ASδt + eASδt

! t

0

(Hs + Γδ,A(s))ds.

Cancelling the exponential, one now takes first A → ∞ and then δ → 0; uniformly in s,

one has limδ→0 limA→∞ Γδ,A(s) = 0, and we conclude

ut ≤ u0 +

! t

0

Hsds. (4.58)
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Bounding all the terms appearing in the integrand of Hs in the spirit of Lemma 4.10, one

gets

Ht ≤ C

!

(Rd×Rd)2
πt(dv, dṽ)πt(dv∗, dṽ∗)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)|v − ṽ|.

The second and fourth terms integrate to produce ut again, recalling again (4.55) while,

for any a > 0, we split the other terms into the region where both |v|, |ṽ| ≤ a, or where

one exceeds a:
!

Rd×Rd

(|v|γ + |ṽ|γ)|v − ṽ| ≤ 2aγut +

!

Rd×Rd

πt(dv, dṽ)(|v|1+γ + |ṽ|1+γ)1I(|v| > a or |ṽ| > a)

≤ 2aγut + Lεe
−εaγ/2

!

Rd

eε|v|
γ

(µt + νt)(dv)

(4.59)

where ε > 0 is as in the statement, and Lε depends only on ε > 0. The exponential

moment appearing in the final line is finite at 0 by hypothesis, and is propagated to be

finite at future times [93, Lemma 4.1], so can be absorbed into C; we now set a so that

aγ = |2(log ut)/ε|. We finally find, for some C depending on ε and on the exponential

moments of (µt)t≥0, (νt)t≥0,

ut ≤ u0 + C

! t

0

us(1 + | log us|).

If we now start from ν0 = µ0, then u0 = 0. Since finally
& 1

0
1

x(1+| log x|)dx = ∞, we apply

the Yudovitch lemma [121] to conclude that ut = W1(µt, νt) = 0 for all t ≥ 0, which

concludes the proof.

Remark 4.19. We make the following remarks.

i). The point of the Tanaka-Povzner coupling and the optimal transport function dp

which we use is to cancel the terms like |v|γ|v − ṽ|, which prevented us from using

Grönwall’s lemma on (4.58) in the previous proof.

ii). The key difference between this and our proof is that this proof applies the Tanaka

estimate to any two solutions (µt)t≥0, (νt)t≥0. In our proof, on the other hand, we

construct a coupling πt of two (potentially new) solutions (5µt)t≥0, (5νt)t≥0 to which

we can apply our estimates; we will apply this proposition at the end of the proof to

show that we recover the prescribed solutions 5µt = µt, 5νt = νt.

With this uniqueness in hand, we can now give the proof of Lemma 4.16.

Proof of Lemma 4.16. We follow the argument of [83, Lemma 9.4], which generalises well

to our case. We will write, throughout, x = (v, ṽ) for variables in Rd × Rd to shorten

notation.
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Step 1. Approximate Problem Let us define, for n ≥ 1, the truncated jumps

a(n)(v, v∗, z,ϕ,α) :=

6
− 1

2

6
1− cosG

6
z

n ∧ |v − v*|γ

77
(v − v∗)

+
1

2
sinG

6
z

n ∧ |v − v*|γ

7
Γα(v − v∗,ϕ)

7
1Iz≤n(n∧|v−v∗|γ)

and similarly a(n,K), where the final indicator is replaced by 1Iz≤(n∧K)(n∧|v−v∗|γ). We now

define the two-level truncated jumps

An(x, x*,ϕ, z,α) :=

/
a(n)(v, v∗, z,ϕ,α)

a(n,K)(ṽ, ṽ∗, z, Rα(v − v∗, ṽ − ṽ∗)ϕ,α)

0

and similarly A(x, x*,ϕ, z,α) with the truncation removed. If we now define An,K as in

(4.52) with these truncations, then equation corresponding to (4.54) is

〈f, πn
t 〉 = 〈f, πn

0 〉+
! t

0

!

(Rd×Rd)2
An,Kf(x, x*)π

n
s (dx)π

n
s (dx*)ds

=: 〈f, πn
0 〉+

! t

0

〈f,Q(2)
n,K(π

n
s , π

n
s )〉ds

(4.60)

where the last equality defines the two-level truncated collision operator Q
(2)
n,K . Since the

rates are bounded, the map π /→ Q
(2)
n,K(π, π) is continuous in the total variation norm

of P(Rd × Rd), and in particular, this equation is readily seen to have a unique solution

πn
t , t ≥ 0 starting at π0.

To construct the stochastic processes Xn
t = (V n

t , Ṽ
n
t ) associated to πn

t , let N n be a Poisson

random measure on E of intensity dtπn
t (dx)dϕdzdα, and independently letXn

0 be a sample

from π0. We define

Xn
t := Xn

0 +

!

E

An(X
n
s−, x,ϕ, z,α) 1Is≤t N n(ds, dx, dϕ, dz, dα)

and note that this is well-defined: indeed, since An is supported on {z ≤ n2}, this is

simply a finite recurrence relation. Moreover, for any bounded, Lipschitz f : (Rd)2 → R,
it is readily seen that

M f,n
t = f(Xn

t )− f(Xn
0 )−

! t

0

!

(Rd)2
An,Kf(X

n
s , x)π

n
s (dx)ds (4.61)

is a martingale. Writing 5πn
t := Law(Xn

t ) and taking expectations, we have that 5πn
0 = π0

and solves the linear equivalent of (4.60)

〈f, 5πn
t 〉 = 〈f, π0〉+

! t

0

〈f,Q(2)
n,K(5πn

s , π
n
s )〉ds. (4.62)

Again using the finiteness of the rate, the linear operatorQ
(2)
n,K(·, πn

s ) on the right-hand side

is a continuous linear map for the total variation norm, and so this equation has unique

solutions. Since πn
t solves this equation, we conclude that 5πn

t = πn
t , so that Xn

t solves the

nonlinear jump SDE equivalent to (4.50) with the truncated coefficients a(n), a(n,K).
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2. Moment Estimates As a first step towards proving a tightness property, we will

develop some moment estimates for Xn
t and its law πn

t . Let us write µ
n
t = Law(V n

t ), ν
n
t =

Law(Ṽ n
t ) for the marginals of πn

t ; we claim that µn
t satisfies a Boltzmann-type equation.

Indeed, for any f : Rd → R bounded, we apply (4.60) with g(x) = f(v) and observe that

An,Kg(x, x*) = 2

!

Sd−2

dϕ

!

(0,∞)

dz

!

(0,1)

dα(f(v + a(n)(v, v∗, z,ϕ,α))− f(v)).

For any fixed α ∈ (0, 1), we repeat the calculations of Section 4.2 to rewrite the integrals

over z and Sd−2 as an integral over Sd−1:

An,Kg(x, x*) = 2

!

(0,1)

dα

!

Sd−1

(f(v′)− f(v))1Iθ≥θ0(n)(n ∧ |v − v∗|γ)b(cos θ)dσ

= 2

!

Sd−1

(f(v′)− f(v))1Iθ≥θ0(n)(n ∧ |v − v∗|γ)b(cos θ)dσ.

By symmetry, when we integrate, we find

〈g,Q(2)
n,K(π

n
t , π

n
t )〉 = 〈f,Q(n)(µ

n
t )〉

where Q(n) is the usual Boltzmann collision operator in one variable for the kernel Bn

with cutoff at n and the kinetic factor replaced by n ∧ |v − v∗|γ. It follows that µn
t solves

a Boltzmann-type equation and preserves energy, using the boundedness of the kinetic

factor. Following the same calculations leading to (2.62) we see that, for any p ≥ 4 and

some C = C(p) depending only on p and varying line to line,

d

dt
Λp(µ

n
t ) ≤ C

!

Rd×Rd

(|v|p−1|v∗|+ |v∗|p−1|v|)(n ∧ |v − v∗|γ)µn
t (dv)µ

n
t (dv∗)

≤ CΛp(µ
n
t ).

(4.63)

Using the initial exponential moment condition, it follows that all moments of V n
t are

bounded, uniformly in n,K and locally uniformly in time. Identical arguments hold for
5V n
t .

Step 3. Tightness We claim that the processes Xn
t = (V n

t , Ṽ
n
t ) are tight in the Sko-

rokhod topology of D([0,∞), (Rd)2). Indeed, it is sufficient to check that each component

V n
t , Ṽ

n
t are tight in the Skorokhod topology of D([0,∞),Rd). For these components, we

can repeat the arguments of Lemma 4.13, replacing the moment creation property where

necessary by the control over moments of all orders, to conclude that both coordinates

V n
t , Ṽ

n
t are tight. Thanks to Prohorov’s theorem, we may pass to a subsequence under

which (Xn
t )t≥0 converge in distribution for the Skorokhod topology to a limiting process

(Xt)t≥0, and using a bound analagous to (4.30) again, it follows that for any fixed t ≥ 0,

P(Xt ∕= Xt−) = 0, so X has no fixed discontinuities. Further applying Skorokhod’s rep-

resentation theorem, we can find Xn′
, X ′ with the same laws as Xn, X with almost sure

convergence in the Skorokhod topology. We will work with these new processes and, by

an abuse of notation, we omit the ′ to ease notation.
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Step 4: Identification of the Limit We now show that any limiting process Xt =

(Vt, Ṽt) constructed in the previous step is a solution to (4.50), for some choice of Poisson

random measure N on E of the correct intensity. First of all, taking the limits of the

conclusion of Step 2, it follows that E[sups≤t |Xs|p] < ∞ for all t ≥ 0, p ≥ 0, and since X

has no fixed discontinuities, it follows that Xn
t → Xt almost surely, for any fixed t ≥ 0,

and in paritcular πn
t = Law(Xn

t ) → πt = Law(Xt) weakly.

In the rest of the step, we show that the process X solves the nonlinear stochastic dif-

ferential equation (4.50) for some choice of Poisson random measure N . Thanks to

the representation theorem [70], it is sufficient to show that the processes M f
t given

by (4.51) are martingales for all f ∈ C1
p(Rd × Rd); let us fix such f , and q such that

|∇f(x)| ≤ Cf (1+ |x|q). We start by an analysis of AKf , in the same way we did for L in

(4.44) in the previous section. We observe that, for any x = (v, ṽ), x* = (v∗, ṽ∗), letting

x′
n = x+ An(x, x*,ϕ, z,α) = (v′n, ṽ

′
n), we have,

|v − v′n| ≤ |v − v*| sinG
6

z

|v − v∗|γ

7
;

|ṽ − ṽ′n| ≤ |ṽ − ṽ∗| sinG
6

z

|ṽ − ṽ∗|γ

7
.

It follows that |x′
n| ≤ |x|+ |x*|, and we bound

|f(x′
n)− f(x)| ≤ C(1 + |x|q + |x*|q)|x− x′|

≤ C(1 + |x|q + |x*|q)
6
|v − v*| sinG

6
z

|v − v∗|γ

7
+ |ṽ − ṽ*| sinG

6
z

|ṽ − ṽ∗|γ

77

(4.64)

again uniformly in n. Integrating with respect to α, z,ϕ and using again that
&∞
0

sinGdz =&
Sd−1 sin θb(cos θ)dσ < ∞ then produces

An,Kf(x, x*) ≤ C(1 + |x|q + |x*|q)(|v − v*|1+γ + |ṽ − ṽ∗|1+γ)

≤ C(1 + |x|q + |x*|q)|x− x*|1+γ
(4.65)

for some C depending only on f , and the same argument applies forAKf . For convergence

of An,K to AK , we fix R < ∞, and consider the compact region |x|, |x*| ≤ R. For all

such x, x* and n ≥ (2R)γ, we continue in the notation above, writing x′ = (v′, ṽ′) =

x + A(x, x*,ϕ, z,α). We now observe that, for such n, v′n = v′ whenever z ≤ n|v − v∗|γ,
and otherwise |v′ − v′n| = |v′ − v| which we bound as above. An identical argument holds

for ṽ′n, ṽ, checking the cases z ≤ K|ṽ − ṽ∗|γ, z > K|ṽ − ṽ∗|γ separately, and together we

find that

|x′ − x′
n| ≤ |v − v∗| sinG

6
z

|v − v∗|γ

7
1Iz≥n|v−v∗|γ + |ṽ − ṽ∗| sinG

6
z

|ṽ − ṽ∗|γ

7
1Iz≥n|ṽ−ṽ∗|γ .

(4.66)
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Arguing as in (4.64), we conclude that

|f(x′)− f(x′
n)| ≤ CRq

6
|v − v∗| sinG

6
z

|v − v∗|γ

7
1Iz≥n|v−v∗|γ

+ |ṽ − ṽ∗| sinG
6

z

|ṽ − ṽ∗|γ

7
1Iz≥n|ṽ−ṽ∗|γ

7
.

(4.67)

If we now integrate over z,α,ϕ, we find that, for all such x, x* and n ≥ 2R,

|AKf −An,Kf |(x, x*) ≤ CRq
-
|v − v∗|1+γ + |ṽ − ṽ∗|1+γ

. ! ∞

n

sinGdz

≤ CR1+q+γ

! ∞

n

sinGdz

(4.68)

for some C = C(f), and the right-hand side converges to 0. We thus conclude that

An,Kf → AKf , uniformly on compact sets of Rd × Rd.

We next check continuity. For any given n, let (xm, xm
* ) = ((vm, ṽm), (vm∗ , ṽ

m
∗ )) → (x, x*) =

((v, ṽ), (v∗, ṽ∗)) be any convergent sequence in Rd × Rd, and suppose that neither com-

ponent of x − x* = (v − v∗, ṽ − ṽ∗) is 0. In this case, we use Lemma 4.9 to see that,

for dϕ dz dα-almost all (ϕ, z,α), it holds that An(x
m, xm

* ,ϕ, z,α) → An(x, x*,ϕ, z,α),

and hence f(xm + An(x
m, xm

* ,ϕ, z,α)) → f(x + An(x, x*,ϕ, z,α)). Further, since |xm +

An(x
m, xm

* ,ϕ, z,α)| is bounded, uniformly in m,α, z,ϕ, so is f(xm +An(x
m, xm

* ,ϕ, z,α)),

and we can apply bounded convergence on the region {z ≤ n2} to conclude that

An,Kf(x
m, xm

* ) = 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(xm + An(x
m, xm

* ,ϕ, z,α)− f(xm))

→ 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(xm + An(x, x*,ϕ, z,α)− f(x))

=: An,Kf(x, x*)

(4.69)

so that An,K is continuous at such points. The same argument applies in the case where

ṽ − ṽ∗ = 0: even though we may not have convergence of Rα(v
m − vm∗ , ṽ

m − ṽm∗ ), it still

holds that

|a(n,K)(ṽ
m, ṽm∗ , Rα(v

m − vm∗ , ṽ
m − ṽm∗ )ϕ, z)| ≤ |ṽm − ṽm∗ | → 0

and so

a(n,K)(ṽ
m, ṽm∗ , Rα(v

m − vm∗ , ṽ
m − ṽm∗ )ϕ, z) → 0 = a(n,K)(ṽ, ṽ∗, Rα(v − v∗, ṽ − ṽ∗)ϕ, z).

In the case where v − v∗ = 0, we observe that (vm, ṽm + a(n,K)(ṽ
m, ṽm∗ , z, Rα(v − v∗, ṽ −

ṽ∗)ϕ,α)) differs from xm + An(x
m, xm

* ,ϕ, z,α) by at most |vm − vm∗ | → 0 in the first

component, and it follows, using the Lipschitz property and dominated convergence in
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{z ≤ n2} that

An,Kf(x
m, xm

* )

− 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(vm, ṽm + a(n,K)(ṽ
m, ṽm∗ , z, Rα(v − v∗, ṽ − ṽ∗)ϕ,α))

− f(xm))

→ 0.

(4.70)

Using the fact that each Rα preserves the uniform measure dϕ, we rewrite the integral as

2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(vm, ṽm + an,K(ṽ
m, ṽm∗ , z, Rα(v − v∗, ṽ − ṽ∗)ϕ,α))− f(xm))

= 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(vm, ṽm + an,K(ṽ
m, ṽm∗ , z,ϕ,α))− f(xm)).

(4.71)

Arguing using the continuity of a(n,K) at (ṽ, ṽ∗) for dϕdzdα-lamost all ϕ, z,α as above, it

follows that we have the convergence

An,Kf(x
m, xm

* ) → 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(v, ṽ + an,K(ṽ, ṽ∗,ϕ, z,α))− f(x))

= 2

!

Sd−2×(0,∞)×(0,1)

dϕdzdα(f(v, ṽ + an,K(ṽ, ṽ∗, Rα(0, ṽ − ṽ∗)ϕ, z,α))− f(x))

= An,Kf(x, x*).

(4.72)

Since we have checked all possible cases, it follows that An,kf is continuous everywhere.

Together with the local uniform convergence, it also follows that AKf is also continuous.

We now check convergence of the martingales Mn,f
t to the martingales identified by

(4.51). By a truncation argument using (4.65) and using Lemma 4.14, it follows that&
Rd×Rd An,Kf(x, y)π

n
t (dy) →

&
Rd×Rd AKf(x, y)πt(dy), uniformly on compact sets in x.

Further using that AKf(x, y) is continuous and a further truncation argument, at all

points of continuity t of the limit processX, we have thatXn
t → Xt and so

&
Rd×Rd AKf(X

n
t , y)πt(dy) →&

Rd×Rd AKf(Xt, y)πt(dy). Combining everything, almost surely, for dt-almost all t,

!

Rd×Rd

An,Kf(X
n
t , y)π

n
t (dy) →

!

Rd×Rd

AKf(X
n
t , y)πt(dy) (4.73)

and so
! t

0

!

Rd×Rd

An,Kf(X
n
s , y)π

n
s (dy)ds →

! t

0

!

Rd×Rd

AKf(X
n
s , y)πs(dy)ds (4.74)
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almost surely, uniforly on compact time intervals. Meanwhile, since f is continuous, it

follows that f(Xn
t ) − f(Xn

0 ) → f(Xt) − f(X0) almost surely in the Skorokhod topology,

and together we conclude that the martingales M f,n
t identified in Step 1 converge almost

surely in the Skorokhod topology to

M f
t = f(Xt)− f(X0)−

! t

0

!

Rd×Rd

AKf(Xs, y)πs(dy)ds (4.75)

as desired. Further, recalling again that for each t ≥ 0, X is almost surely continuous at

t, it follows that M f is almost surely continuous at t, and the convergence of M f,n
t to M f

t

is almost sure. It is straightforward to check, using the moment estimates of all orders

obtained in Step 2, that for fixed f, t, M f,n
t are bouded in L2(P), and hence converge in

L1(P) to M f
t . We finally conclude that (M f

t )t≥0 is a martingale, and the step is complete.

The conclusion that πt solves (4.54) follows by taking expectations.

Step 5: The Limit Process couples the given solutions We finally check that

πt = Law(Vt, Ṽt) is a coupling of the prescribed solutions µt, νt. Let us write 5µt, 5νt for the
two marginals of πt. For a fixed f ∈ C1

b (Rd), we set g(v, ṽ) := f(v) and remark as in Step

2 that !

Rd×Rd

AKg(x, y)πt(dx)πt(dy) = 〈f,Q(5µt)〉 (4.76)

for the usual (noncutoff) Boltzmann collision operator Q, and we obtain from (4.54) that

〈f, 5µt〉 = 〈f, µ0〉+
& t

0
〈f,Q(5µs)〉ds and (5µt)t≥0 is a solution to (BE) starting at µ0. Further,

each µn
t = Law(V n

t ) conserves energy, and we can take limits using the boundedness of

higher moments to conclude that µt conserves energy and, in particular, takes values in

S. Since µ0 is assumed to have an exponential moment
&
Rd e

ε|v|γµ0(dv) < ∞, Proposition

4.18 applies, and we conclude that 5µt = µt as desired. Similarly, 5νt solves (BEK), using

Corollary 3.13 if K < ∞ or arguing as above if K = ∞, and the conclusion that 5νt = νt

is identical.

We next check that this produces a coupling of Boltzmann processes. This is the content

of the following lemma, which is adapted from a similar claim [92, Proposition 4.4].

Lemma 4.20. Continue in the notation of Lemma 4.16, and let (Vt, Ṽt)t≥0 be a solution

to (4.50). Then (Vt)t≥0 is a solution to (stBEa), and (Ṽt)t≥0 is a solution to (stBEa
K).

Proof. Let us argue for (Ṽt)t≥0; the case for (Vt)t≥0 is strictly simpler. For (Ṽt)t≥0, let N
be the Poisson random measure of intensity 2dtπt(dx)dϕdzdα driving the given solution

(Vt, Ṽt), and define random measures JN on (0,∞)×Rd × Sd−2 × (0,∞) by specifying, for
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bounded and compactly supported f : (0,∞)× Rd × Sd−2 × (0,∞) → R,
!

(0,∞)×Rd×Sd−2×(0,∞)

f(t, v,ϕ, z) JN (dt, dv, dϕ, dz)

=

!

(0,∞)×(Rd)2×Sd−2×(0,∞)×(0,1)

f(t, v, Rα,s−(v, ṽ)ϕ, z)N (dt, dv, dṽ, dϕ, dz, dα)

(4.77)

where

Rα,t(v, ṽ) := Rα(Vt − v, Ṽt − ṽ).

It follows immediately that Ṽt solves (stBE
a) for this measure, so we must now show that

it is a Poisson random measure of the correct intensity. If H is a bounded and compactly

supported previsible function on (0,∞)× Rd × Sd−2 × (0,∞), then the function

JH(s, v, ṽ,ϕ, z) := H(s, v, Rα,s−(v, ṽ), z)

is bounded and previsible on (0,∞) × Rd × Rd × Sd−2 × (0,∞). Recalling that the first

marginal of πt is µt and noting that Rα,t(v, ṽ) preserves the uniform measure dϕ, we obtain

!

(0,t]×Rd×Sd−2×(0,∞)

H(s, v,ϕ, z)( JN (dt, dv, dϕ, dz)− 2dsµs(dv)dϕdz)

=

!

(0,t]×Rd×Sd−2×(0,∞)×(0,1)

JH(s, v, ṽ,ϕ, z)(N (ds, dv, dṽ, dϕ, dz, dα)− 2dsπs(dv, dṽ)dϕdzdα).

(4.78)

The latter process is a martingale by the stochastic calculus of Poisson processes, which

implies that JN is a Poisson random measure on (0,∞) × Rd × Sd−2 × (0,∞) of rate

2dtµt(dv)dϕdz, as desired.

4.6 Proof of Theorem 4.1

We now prove Theorem 4.1. We begin with the case where both µ0, ν0 have an exponential

moment, and then carefully remove this hypothesis.

Lemma 4.21. There exists p0 = p0(B, d) such that, whenever p ≥ p0 and K ∈ [K0(B, p, d),∞],

for K0 found in Lemma 4.10, the following holds. For all weak solutions (µt)t≥0, (νt)t≥0 ⊂
S to (BE, BEK) respectively and with exponential moments

&
Rd e

ε|v|γ (µ0 + ν0)(dv) < ∞
for some ε > 0, there exists (Vt)t≥0, (Ṽt)t≥0 solving (stBE

a, stBEa
K) respectively, such that

πt = Law(Vt, Ṽt) is a coupling of πt ∈ Π(µt, νt). Furthermore, this coupling achieves

E[dp(Vt, Ṽt)] ≤ eC(1+t)Λp+γ(µ0,ν0))
-
wp(µ0, ν0) + tK1−1/νΛl(µ0, ν0)

.
(4.79)

where l = p+2+ γ, understanding the second term to be 0 in the noncutoff case K = ∞.
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Proof. As remarked in Section 2.1, we can find π0 ∈ Π(µ0, ν0) attaining the minimum

wp(µ0, ν0) =

!

Rd×Rd

dp(v, ṽ)π0(dv, dṽ).

We can now apply Lemma 4.16 to construct the pair (Vt, Ṽt)t≥0, and the statement that

each component (Vt)t≥0, (Ṽt)t≥0 solves (stBE
a, stBEa

K) is exactly Lemma 4.20, and it only

remains to prove (4.79). We will write expressions as though K < ∞, understanding that

negative powers of K are 0 if K = ∞.

We write

up(t) = E[dp(Vt, Ṽt)] =

!

Rd×Rd

dp(v, ṽ)πt(dv, dṽ). (4.80)

By (4.54), it follows that

up(t) = up(0) +

! t

0

!

(Rd×Rd)2
AKdp(v, ṽ, v∗, ṽ∗)πs(dv, dṽ)πs(dv∗, dṽ∗)ds.

With the definitions in 4.10, we have

AKdp(v, ṽ, v∗, ṽ∗) =

!

(0,1)

Ep,K(v, ṽ, v∗, ṽ∗,α)dα

and the integrand is bounded, uniformly in α, by (4.25). Integrating and grouping similar

terms, we find, up to new choices of c, C,

up(t) ≤wp(µ0, ν0) +

! t

0

!

Rd×Rd

6
c− λp

2

7
dp+γ(v, ṽ)πs(dv, dṽ)ds

+ C

!

Rd×Rd

!

Rd×Rd

(|v∗|p+γ + |ṽ∗|p+γ)dp(v, ṽ)πs(dv, dṽ)πs(dv∗, dṽ∗)ds

+ CK1−1/ν

! t

0

!

(Rd×Rd)2
(1 + |v|l + |ṽ|l + |v∗|l + |ṽ∗|l)πs(dv, dṽ)πs(dv∗, dṽ∗)ds

=: wp(µ0, ν0) +

! t

0

(I1(s) + I2(s) + I3(s))ds

(4.81)

where

I1(s) =

6
c− λp

2

7!

Rd×Rd

dp+γ(v, ṽ)πs(dv, dṽ); (4.82)

I2(s) = C

!

(Rd×Rd)2
(|v∗|p+γ + |ṽ∗|p+γ)dp(v, ṽ)πs(dv, dṽ)πs(dv∗, dṽ∗); (4.83)

I3(s) = CK1−1/ν

!

(Rd×Rd)2
(1 + |v|l + |ṽ|l + |v∗|l + |ṽ∗|l)πs(dv, dṽ)πs(dv∗, dṽ∗). (4.84)

Let us now choose p. We recall that c does not depend on p, and return to the definition

λp :=

! π/2

0

/
1−

6
1 + cos θ

2

7p/2
0
β(θ)dθ. (4.85)
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As p → ∞, the term in parentheses converges up to 1 for any θ ∕= 0, and so λp converges to& π/2

0
β(θ)dθ = ∞ by monotone convergence. In particular, there exists some p0, depending

only on B, d such that, for all p > p0, λp ≥ c, and for such p, I1(s) ≤ 0 for all s, so that

up(t) ≤ up(0) +
& t

0
(I2(s) + I3(s))ds. Meanwhile, recalling that πt ∈ Π(µt, νt), we control

I2(s) ≤ CΛp+γ(µs, νs)

!

Rd×Rd

dp(v, ṽ)πs(dv, dṽ) = CΛp+γ(µs, νs)up(s) (4.86)

and

I3(s) = CK1−1/νΛl(µs, νs). (4.87)

We thus find that

up(t) ≤ wp(µ0, ν0) + C

! t

0

((1 + Λp+γ(µs, νs))up(s) +K1−1/νΛl(µs, νs))ds

and by the Grönwall lemma,

up(t) ≤ exp

6
C

! t

0

(1 + Λp+γ(µs, νs))ds

76
wp(µ0, ν0) + CK1−1/ν

! t

0

(1 + Λl(µs, νs))ds

7
.

Finally, using the moment propagation properties for either (BE, BEK) in Section 2.5,

we can replace Λp+γ(µs, νs) ≤ CΛp+γ(µ0, ν0) and Λl(µs, νs) ≤ CΛl(µ0, ν0). Absorbing all

constants C into the exponent, we finally find (4.79) as desired.

It finally remains to relax the assumption that µ0, ν0 have exponential moments, which

we used in the construction of the coupling. In order to do so, we will use the exponential

moment creation property in Proposition 2.13 to apply the previous result at time s, and

carefully take a limit along some sequence s ↓ 0. We will use the following intermediate

lemma.

Lemma 4.22. Let (µt)t≥0 ⊂ S be a weak solution to the Boltzmann equation (BE) or

(BEK), suppose that Λp+2(µ0) < ∞ for some p > 0. Then wp(µt, µ0) → 0.

Proof. Let us fix ε > 0. Using (BE) and the duality (2.25) and the estimate 〈f,Q(µs)〉 ≤
C(f), for all Lipschitz f and s ≥ 0, it follows that W1(µt, µ0) → 0 as t ↓ 0, so we can

find a coupling ρt ∈ Π(µt, µ0) attaining the infimum W1(µt, µ0) =
&
Rd×Rd |v− ṽ|ρt(dv, dṽ).

Now, we apply Proposition 2.15 on the moments of order p+ 2 to find R > 0 and t0 > 0

such that, for all t ∈ [0, t0),

!

Rd

(1 + |v|p+2)µt(dv) < ε. (4.88)

Next, by considering cases separately where |v|, |w| ≤ R or where one or both exceed R,

we observe that, for some absolute constant C,

dp(v, w) ≤ C(1 +Rp+1)|v − w|+ C(1 + |v|p+2)1I|v|≥R + C(1 + |w|p+2)1I|w|≥R. (4.89)
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Integrating with respect to ρt(dv, dw), we find that

wp(µt, µ0) ≤
!

Rd×Rd

dp(v, w)ρt(dv, dw)

≤ C(1 +Rp+1)W1(µt, µ0) + C

!

Rd×Rd

(1 + |v|p+2)1I|v|>Rρt(dv, dw)

+ C

!

Rd×Rd

(1 + |w|p+2)1I|w|>Rρt(dv, dw)

≤ C(1 +Rp+1)W1(µt, µ0) + C

!

Rd

(1 + |v|p+2)1I|v|>Rµ0(dv)

+ C

!

Rd×Rd

(1 + |w|p+2)1I|w|>Rµt(dw)

(4.90)

using, in the last equality, that the marginals of ρt are µ0, µt respectively. We conclude

that, for t ≤ t0,

wp(µ0, µt) ≤ C(1 +Rp+1)W1(µt, µ0) + 2Cε

and hence lim supt→0 wp(µt, µ0) ≤ 2Cε. Since ε > 0 was arbitrary, we are done.

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let us fix p0 = p0(B, d) as in Lemma 4.21 and choose p > p0, K ≥
K0(B, p, d). Let (µt)t≥0, (νt)t≥0 be two solutions such that the initial data µ0, ν0 have p+2

moments. Let us first consider the case K = ∞ where we couple noncutoff solutions;

the case where K < ∞ will be discussed at the end. As in the theorem, let us write

a1 ≥ Λp+γ(µ0, ν0) for an upper bound on the initial (p+ γ)th moments.

Fix t > 0 and 0 < s < 1. Thanks to the exponential moment creation Proposition

2.13, we have
&
Rd e

ε|v|γ (µs + νs)(dv) < ∞ for some ε = ε(s) > 0, and we can apply

Lemma 4.16 starting at µs, νs, to find (V s
t , Ṽ

s
t ), where each coordinate solves (stBEa) and

πs
t = Law(V s

t , Ṽ
s
t ) ∈ Π(µs+t, νs+t), and by Lemma 4.21, we have

E[dp(V s
t , Ṽ

s
t )] ≤ eC(1+t)Λp+γ(µs,νs)wp(µs, νs) ≤ eC(1+t)a1wp(µs, νs) (4.91)

by using the moment propagation property and modifying C if necessary. Now, Lemma

4.13 applies to each process (V s
t )t≥0, (Ṽ

s
t )t≥0, so we can find a sequence sn → 0 such that

(V sn
t )t≥0 converge in distribution in the Skorokhod topology of D([0,∞),Rd) to a limit

(Vt)t≥0, and similarly (Ṽ sn
t )t≥0 → (Ṽt)t≥0; using Lemma 4.13 again, both are solutions

to (stBEa). Further, since (Vt, Ṽt) has no fixed discontinuities, for each t it holds that

(V sn
t , Ṽ sn

t ) → (Vt, Ṽt) in distribution, so the laws πsn
t → πt = Law(Vt, Ṽt). We deduce that

µsn+t = Law(V sn
t ) → Law(Vt) in the weak topology, and since u /→ µu is continuous for

the weak topology, Law(Vt) = µt. Similarly, Law(Ṽt) = νt, so πt = Law(Vt, Ṽt) ∈ Π(µt, νt).
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We now take the limit of (4.91). Recalling the relaxed triangle inequality (2.19), we have

for some C = C(p)

wp(µs, νs) ≤ C(wp(µs, µ0) + wp(µ0, ν0) + wp(ν0, νs)) (4.92)

and by Lemma 4.22, the first and third terms converge to 0, and so

lim sup
s→0

wp(µs, νs) ≤ Cwp(µ0, ν0).

Meanwhile, for t > 0, we can use the boundedness of moments of all orders of Law(V sn
t ) =

µt+sn and Law(Ṽ sn
t ) = νt+sn to see that E[dp(V sn

t , Ṽ sn
t )] → E[dp(Vt, Ṽt)], and take the limit

of (4.91) to conclude that

E[dp(Vt, Ṽt)] ≤ eCa1(1+t)wp(µ0, ν0)

which is exactly (4.2) as desired.

Let us now deal with the case K < ∞, so that νt solves a cutoff Boltzmann equation

(BEK); in this case, let l = p+2+ γ as in Lemma 4.21 and let a2 ≥ 1 be an upper bound

for Λl(ν0). We could apply the previous argument wholesale, using Proposition 2.6 to

verify the integrability condition on νs, which would produce a final bound depending on

the lth moments of both µ0, ν0; instead, we will go via an intermediate solution 5νt, which
has the same initial data as νt but no cutoff.

As remarked in the introduction, existence of solutions to (BE) for kernels (NCHP) is

known, so we can let (5νt)t≥0 be a solution to the full, non-cutoff Boltzmann equation with

the same initial data 5ν0 = ν0. We then repeat the arguments above on (5νt, νt), using
Proposition 2.6 to verify the integrability condition on νs; in place of (4.91) we find

E[dp(U s
t , Ũ

s
t )] ≤ eCa1(1+t)(wp(5νs, νs) + a2tK

1−1/ν) (4.93)

where again we have replaced the moments of 5νs, νs by those of 5ν0 = ν0, up to a new choice

of C, and we extract a convergent subsequence sn → 0 exactly as before to find (Ut, Ũt)t≥0,

whose components solve (stBEa, stBEa
K) respectively, such that Law(Ut, Ũt) ∈ Π(5νt, νt),

and taking the limit of (4.93) gives

E[dp(Ut, Ũt)] ≤ eC(1+t)a1tK1−1/ν .

Using the case without cutoff as we did previously, we find (Wt, W̃t)t≥0 for (µt)t≥0, (5νt)t≥0,

and with the same conclusion

E[dp(Wt, W̃t)] ≤ eC(1+t)a1wp(µ0, ν0).

Now, by Lemma 4.15, since Ut and W̃t both solve (stBEa) with Law(Ut) = Law(W̃t) = 5νt,
it follows that Law((Ut)t≥0) = Law((W̃t)t≥0). Using the gluing lemma [191, Lemma 7.6],
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there exists a triple of stochastic processes (Vt), (JVt), (Ṽt), such that the law of (Vt, JVt)t≥0

is the same as that of (Wt, W̃t)t≥0 and the law of (JVt, Ṽt)t≥0 is the same as that of (Ut, Ũt).

The coupling (Vt, Ṽt)t≥0 therefore has πt = Law(Vt, Ṽt) ∈ Π(µt, νt), and the components

solve (stBEa, stBEa
K) respectively. Recalling again the relaxed triangle inequality (2.17)

for dp, we combine the previous two displays and absorb the additional factor into the

exponent to find

E[dp(Vt, Ṽt)] ≤ eCa1(1+t)(wp(µ0, ν0) + a2tK
1−1/ν)

as desired.

4.7 Equivalence of the Boltzmann Equation and Bolz-

mann Processes

We now give the proof of Theorem 4.3, as we have already developed the tools to do so

in the course of proving Theorem 4.1. As already remarked, it is straightforward to see

that, if (Vt) is a solution to (stBEa) with µt = Law(Vt) ∈ S for all t, then µt satisfies

(BE), for instance by taking expectations of the martingales M f
t = f(Vt) − f(V0) −& t

0
Lf(Vs, v∗)µs(dv∗)ds and recalling that

&
Rd×Rd Lf(v, v∗)µs(dv)µs(dv∗) = 〈f,Q(µs)〉. We

now prove the other implication.

Proof of Theorem 4.3. Let (µt)t≥0 be a weak solution to (BE), taking values in S. For

all s > 0, µs has an exponential moment
&
Rd e

ε|v|γµs(dv) < ∞, for some ε > 0, by

Proposition 2.13, and so we can find a solution (V s
t )t≥0 to (stBEa) with Law(V s

t ) = µs+t,

either repeating the arguments of Lemma 4.16 or by applying the cited result with νt ∈
S an arbitrary solution to (BE). Thanks to Lemma 4.13, we can find sn → 0 and a

process (Vt)t≥0 which is the limit in distribution of (V sn
t )t≥0 in the Skrokhod topology of

D([0,∞),Rd). By Lemma 4.13 again, (Vt)t≥0 is a solution to (stBEa), and we can take

weak limits of Law(V sn
t ) = µt+sn to obtain Law(Vt) = µt as in the proof of Theorem 4.1

above.



204 4.8. TANAKA COUPLING OF THE KAC PROCESS

4.8 Tanaka Coupling of the Kac Process

We now apply the Tanaka coupling we have developed to the Kac process, which will

prove the two main Theorems 4.4, 4.5.

4.8.1 Coupling of the Kac Process

We first give a Tanaka-coupling of the Kac processes, in the same spirit as Lemma 4.16 for

Boltzmann processes. Let VN
t = (V 1

t , ..., V
N
t ) be a noncutoff Kac process, and let N {ij},

1 ≤ i ∕= j ≤ N , be the Poisson random measures of intensity 2N−1dtdϕdz driving VN
t , so

that

V i
t = V i

0 +
"

j ∕=i

!

(0,t]×Sd−2×(0,∞)

a(V i
s−, V

j
s−, z,ϕ)N {ij}(ds, dϕ, dz), i = 1, ..., N. (4.94)

Let us fix 5VN,K
0 = (5V 1,K

0 , ...., 5V N,K
0 ) and define 5VN,K

t = (5V 1,K
t , ...5V N,K

t ) by

5V i,K
t = 5V i,K

0 +
"

j ∕=i

!

(0,t]×Sd−2×(0,∞)

aK(5V i,K
s− , 5V j,K

s− , z, Ri,j
s−ϕ)N {ij}(ds, dϕ, dz); (4.95)

Ri,j
t := R(V i

t − V j
t , 5V

i,K
t − 5V j,K

t ) (4.96)

where R : Rd × Rd → Isom(Sd−2) is the isometry on Sd−2 constructed in Lemma 4.8. We

remark first that the rates ofN {ij} are all finite on the support of aK , so that the stochastic

differential equation (4.95, 4.96) is really a recurrence relation; in particular, 5VN,K
t is

uniquely defined by the above equations. Next, we claim that 5VN,K
t is a K-cutoff Kac

process on N particles. It certainly holds that 5VN,K
t satisfies (cLK) for the measures 5N {ij}

given by specifying, for bounded and compactly supported f : (0,∞)×Sd−2×(0,∞) → R,

!

(0,∞)×Sd−2×(0,∞)

f(s,ϕ, z) 5N {ij}(ds, dϕ, dz)

:=

!

(0,∞)×Sd−2×(0,∞)

f(s, Rij
s−ϕ, z)N {ij}(ds, dϕ, dz).

(4.97)

Repeating the arguments of Lemma 4.20 and using the fact that Ri,j
s− are previsible, we see

that 5N {ij} are Poisson random measures on (0,∞)×Sd−2× (0,∞) of the correct intensity

2dtdϕdz, so that 5VN,K
t is a cutoff Kac process as desired.

Our first result on the coupling is the following, which proves Theorem 4.4.

Lemma 4.23 (Convergence of the Tanaka Coupling). For the same p0 = p0(B, d) found

in Lemma 4.21 and, for p > p0, K ∈ [K0(B, p, d),∞), for K0 as in Lemma 4.10 such

that, whenever p > p0 and K > K0, we have the following estimates.
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Let VN
t be a noncutoff labelled Kac process and 5VN,K

0 ∈ SN . Let 5VN,K
t be the cutoff Kac

process constructed in (4.95), and define

dp(t) :=
1

N

N"

i=1

dp

'
V i
t , 5V

i,K
t

(
. (4.98)

Suppose the initial data VN
0 , 5VN,K

0 are such that the associated empirical measures µN
0 , 5µ

N,K
0

satisfy moment bounds

max
'
Λl(µ

N
0 ),Λl(5µN,K

0 )
(
≤ a2; (4.99)

max
'
Λq(µ

N
0 ),Λq(5µN,K

0 )
(
≤ a3; (4.100)

with l as in Lemma 4.10 and q = 2l, and for some a2, a3 > 1. Fix b > 1, and let TN
b be

the stopping time (2.104) for the empirical measures µN
t of VN

t , with p+ γ in place of p,

and similarly TN,K
b for VN,K

t . Then there exists C = C(p,G, d) such that, for all t ≥ 0,

E
G
dp(t)

H
≤ eCb(1+t)

-
dp(0) + a2tK

1−1/ν
.
+ a3CP(TN,K

b ∧ TN
b ≤ t)1/2 (4.101)

and, for all tfin ≥ 0,

E
2
sup
t≤tfin

dp(t)

3
≤ eCb(1+tfin)

/
dp(0) + a2tK

1−1/ν +
Ca3t

1/2
fin

N1/2

0

+ a3C(1 + tfin)P(TN,K
b ∧ TN

b ≤ t)1/2.

(4.102)

This is the key result from which Theorems 4.4, 4.5 follow. Let us make the following

remarks.

Remark 4.24. i). We will show below that this essentially establishes Theorem 4.4.

The form presented here, where we are free to choose b, is useful for dealing with

the well-posedness issues deferred from Proposition 4.7.

ii). In principle, one could perform a finer analysis for QK in Lemma 4.12, to replace

the third term in (4.102) with an error in terms of dp(0), K
−α, for some α > 0. In

this way, we would obtain an estimate for the uniform convergence on compacts in

probability of 5VN,K, as K → ∞ with N fixed, and which is uniform in N . Since

we are mostly interested in a limit where N,K → ∞ simultaneously, we will not

explore this.

Proof. Let p ≥ 0 to be decided later, and consider the processes

M i
t = dp(V

i
t , V

i,K
t )− dp(V

i
0 , 5V

i,K
0 )− 2

N

! t

0

N"

j=1

Ep,K(V i
s , V

i,K
s , V j

s , V
j,K
s )ds (4.103)
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for 1 ≤ i ≤ N , and their average

M t =
1

N

N"

i=1

M i
t = dp(t)−

! t

0

Ep,K(s)ds (4.104)

where we define

Ep,K(t) :=
2

N2

N"

i,j=1

Ep,K(V i
t , 5V

i,K
t , V j

t , 5V
j,K
t ). (4.105)

By classical results in the theory of Markov chains [49], each M i
t is a martingale, and

hence so is M . By Lemma 4.10, provided K is large enough, depending on G, p, d, we

have, for some c = c(G, d), C = C(G, d, p),

Ep,K(V i
t , 5V

i,K
t , V j

t , 5V
j,K
t ) ≤

6
c− λp

2

7
dp+γ

'
V i
t , 5V

i,K
t

(
+ c dp+γ

'
V j
t , 5V

j,K
t

(

+ C
'
|V j

t |p+γ + |5V j,K
t |p+γ

(
dp

'
V i
t , 5V

i,K
t

(

+ C
'
|V i

t |p+γ + |5V i,K
t |p+γ

(
dp

'
V j
t , 5V

j,K
t

(

+ CK1−1/ν(1 + |V i
t |l + |V j

t |l + |5V j,K
t |l + |5V i,K

t |l).

(4.106)

Let us now take the average over all i, j, which repeats in the context of the Kac process

the same calculations in Lemma 4.21. The two terms on the first line can be absorbed

together, as can the the terms on the second and third lines; for the same constants c, C

as appearing in (4.81), we have

Ep,K(t) ≤
1

N

N"

i=1

6
c− λp

2

7
dp+γ

'
V i
t , 5V

i,K
t

(
+ C

'
Λp+γ(µ

N
t ) + Λp+γ(5µN,K

t )
(
dp(t)

+ CK1−1/ν
'
Λl(µ

N
t ) + Λl(5µN,K

t )
(
.

(4.107)

In particular, for the same choice of p0 = p0(B, d) as in Lemma 4.21, for all p > p0,

λp ≥ 2c, and for such p, the first line of (4.107) is nonpositive, so the same argument as

in Lemma 4.21 produces

Ep,K(t) ≤ C
'
Λp+γ(µ

N
t ) + Λp+γ(5µN,K

t )
(
dp(t) + CK1−1/ν

'
Λl(µ

N
t ) + Λl(5µN,K

t )
(

(4.108)

whence

dp(t) ≤ dp(0) + C

! t

0

-
Λp+γ(µ

N
s ) + Λp+γ(5µN,K

s )
.
dp(s)ds

+ CK1−1/ν

! t

0

-
Λl(µ

N
s ) + Λl(5µN,K

s )
.
ds+M t.

(4.109)

Let us now write T := TN
b ∧TN,K

b for the stopping times TN
b , TN,K

b defined in the statement,

and consider the moment prefactor in (4.108, 4.109). We recall from Proposition 2.10iii)

that, almost surely, for all t ≥ 0,

Λp+γ(µ
N
t ) ≤ 2

p+γ
2

+1Λp+γ(µ
N
t−) (4.110)
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and similarly for 5µN,K
t . The moment factor is therefore at most 2b for all s ≤ T , and so

we obtain, for all t ≥ 0,
! t∧T

0

-
Λp+γ(µ

N
s ) + Λp+γ(5µN,K

s )
.
dp(s)ds ≤ 2b

! t

0

dp(s ∧ T )ds. (4.111)

Stopping (4.109) at T , we therefore obtain, for all t ≥ 0,

dp(t ∧ T ) ≤ dp(0) + Cb

! t

0

dp(s ∧ T )ds

+ CK1−1/ν

! t

0

-
Λl(µ

N
s ) + Λl(5µN,K

s )
.
ds+M t∧T .

(4.112)

For the first item, we fix t ≥ 0, and take expectations of (4.112). By optional stopping,

E[M t∧T ] = 0, and we use the moment estimates in Propositions 2.10 to control the first

term on the second line:

E
2! t

0

(Λl(µ
N
s ) + Λl(5µN,K

s ))ds

3
≤ Cta2. (4.113)

We therefore use Grönwall’s Lemma to obtain

E
G
dp(t ∧ T )

H
≤ eCbt

-
dp(0) + Cta2K

1−1/ν
.
. (4.114)

Next, we observe that

dp(t) ≤ dp(t ∧ T ) + dp(t)1IT≤t. (4.115)

We now estimate the second term. From the bound dp(v, w) ≤ c(1 + |v|p+2 + |w|p+2) we

see that

dp(t) ≤ c
'
Λp+2(µ

N
t ) + Λp+2(5µN,K

t )
(

(4.116)

We use Hölder’s inequality with indexes q
p+2

and q
p+2+γ

≤ 2, to obtain

E
G
dp(t)1IT≤t

H
≤ c P(T ≤ t)(p+2+γ)/q E

?
Λq(µ

N
t ) + Λq(5µN,K

t )
A(p+2)/q

≤ C P(T ≤ t)1/2a3

(4.117)

thanks to the moment bounds in Proposition 2.10 and the choice of initial data. Com-

bining with the previous term (4.114) now proves the first claim.

For the second item, we return to the martingaleM t constructed above. From [49, Lemma

8.7], the process

Lt = M
2

t −
2

N3

"

{ij}

! t

0

QK(V
i
s , 5V i,K

s , V j
s , 5V j,K

s )ds (4.118)

is also a martingale, where the sum now runs over unordered pairs {ij} of indexes. Thanks
to the bound computed in Lemma 4.12, we find

E
?
M

2

tfin

A
≤ C

N3
E

B

C
"

{ij}

! tfin

0

(1 + |V i
s |q + |V j

s |q + |5V i,K
s |q + |5V j,K

s |q)ds

D

E

≤ C

N

! tfin

0

E(Λq(µ
N
s ) + Λq(5µN,K

s ))ds.

(4.119)
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Using the moment propagation estimate in Proposition 2.10 and Doob’s L2 inequality, we

conclude that

E
2
sup
s≤tfin

|M t|
3
≤ Ca3t

1/2
fin

N1/2
. (4.120)

With this estimate, we return to the argument above. Applying Grönwall to (4.112), we

obtain a pathwise estimate

sup
t≤tfin

dp(t ∧ T ) ≤ eCbt

6
dp(0) +K1−1/ν

! tfin

0

-
Λl(µ

N
s ) + Λl(5µN,K

s )
.
ds+ sup

t≤tfin

|M t|
7
.

(4.121)

Taking expectations, we conclude that

E
2
sup
t≤tfin

dp(t ∧ T )

3
≤ eCbt

/
dp(0) +K1−1/νCtfina2 +

Ca3t
1/2
fin

N1/2

0
. (4.122)

Following the same argument as in (4.117) we also bound

E
26

sup
t≤tfin

dp(t)

7
1I[T ≤ tfin]

3
≤ CP (T ≤ tfin)

1/2 E
2
sup
t≤tfin

(Λq(µ
N
t ) + Λq(5µN,K

t ))

3

≤ CP(T ≤ tfin)
1/2tfina3.

(4.123)

Combining (4.122, 4.123), we obtain the desired result.

We now prove Proposition 4.6, as the uniqueness-in-law uses the coupling we have built.

We remark that we have not used existence and uniqueness at any point, so there is no

circularity. We do not seek any estimates uniformly in N , and we can replace moment

estimates with the trivial bound |V i
t | ≤

√
N . For ease of presentation, we will use the

estimates we have already developed in this chapter, although those from the literature

[92] would work equally well.

Proof of Proposition 4.6. Let us fix VN
0 ; for each K, let VN,K

t be a solution to (cLK),

starting at VN
0 , with cutoff parameter K. Since the rates are finite, such processes can

be constructed elementarily, and have uniqueness in law. We check tightness via Aldous’

criterion; thanks to the energy constraint, each VN,K
t takes values in [−N1/2, N1/2]Nd, and

for equicontinuity, we use the same argument as in Lemma 4.13. Similar arguments to

those that show that Lf is continuous show that, for all Lipschitz F : SN → R, GLF is

continuous, and is the uniform limit of the cutoff generators GL
KF , recalling that GL is the

generator of the labelled dynamics given by (4.9) and writing GL
K for the cutoff analogue.

We can therefore take a limit to see that any subsequential limit point of VN,K
t as K → ∞

is a solution to the martingale problem for GL, and hence is a weak solution to (LK) by

the representation theorem again [70].

For uniqueness in law, let VN
t be any solution to (LK) starting at VN

0 . We now apply
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Lemma 4.23; fix p > p0(G, d), K > K0(G, p, d) as in the statement, and 0 ≤ t1 < ... < tm,

we take b = N (p+γ)/2, so that TN
b = TN,K

b = ∞. The cited lemma now shows that (VN
ti
)i≤m

is the limit in probability, of (VN,K
ti )i≤m, for cutoff labelled Kac processes VN,K

t starting at

VN
0 , asK → ∞. Since the law of each VN,K

t is uniquely determined, the same is true of the

m-tuple (VN
ti
)i≤m. Since ti were arbitrary and finite marginal distributions characterise

the laws of càdlàg processes, we conclude that the law of VN
t is unique, as claimed.

4.8.2 Proof of Theorem 4.4

We will now deduce Theorem 4.4. Roughly speaking, it is sufficient to take b = Ca1 in

the previous lemma, using the concentration of moments in Proposition 2.10iv).

Proof of Theorem 4.4. Let p0(G, d), K0(B, p, d) be as above, and fix p > p0, K > K0. We

deal first with the case K < ∞, and will consider K = ∞ at the end.

Let us fix µN
0 , 5µN,K

0 , a1, a2, a3 as in the statement of the Theorem, and choose VN
0 ∈

θ−1
N (µN

0 ), 5V
N,K′

0 ∈ θ−1
N (5µN,K

0 ) corresponding to µN,K
0 , 5µN,K′

0 which achieve the optimal cou-

pling

wp(µ
N,K
0 , 5µN,K′

0 ) =
1

N

N"

i=1

dp(V
i
0 ,

5V i,K′

0 ). (4.124)

Now, let VN
t be a noncutoff labelled Kac process starting at VN

0 , and write µN
t = θN(VN

t )

for the process of empirical measures. Let VN,K
t be the Kac processes constructed by

Lemma 4.23 for the initial data VN
0 respectively with cutoff parameter K, and let µN,K

t

be the associated empirical measures. We observe that

wp

'
µN
t , 5µ

N,K
t

(
≤ 1

N

N"

i=1

dp

'
V i
t , 5V

i,K
t

(
= dp(t) (4.125)

which we control by the previous lemma to obtain, for some C and all t ≥ 0, b > 1

E
?
wp

'
µN
t , 5µ

N,K
0

(A
≤ eCb(1+t)

'
wp

'
µN
0 , 5µ

N,K
0

(
+ a2K

1−1/ν
(

+ Ca3P
'
TN
b ∧ TN,K

b ≤ t
(1/2

.
(4.126)

where TN
b , TN,K

b are as above. Now, taking b = Ca1 for some large C = C(p), we use

Proposition 2.10iv) to control the final term and obtain, for some C,

P
'
TN
Ca1

∧ TN,K
Ca1

≤ t
(
≤ P

-
TN
Ca1

≤ t
.
+ P

'
TN,K
Ca1

≤ t
(

≤ Cta3N
−1

(4.127)

as desired. We obtain (4.7) from (4.102) for the same processes µN
t , 5µ

N,K
t in exactly the

same way.
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We finally deal with the case K = ∞. In this case, we build the couplings 5VN,K
t as above

for all K ≥ K0; arguing as in Proposition 4.6 above, these processes are tight, and hence

so are (VN
t , 5VN,K

t )t≥0. If we pass to a subsequential limit (VN
t , 5VN

t )t≥0, the same proof as in

Proposition 4.6 above shows that 5VN
t is a labelled Kac process, and the desired estimates

hold by taking limits of the cutoff case.

4.8.3 Proof of Theorem 4.5

We now prove the Theorem 4.5 concerning the convergence of the full, non-cutoff Kac

process to the solution to the Boltzmann equation in the many-particle limit N → ∞.

We will interpolate between the coupling given by the coupling in Theorem 4.4 and the

K-dependent convergence of the cutoff Kac process in Lemma 3.14.

Proof of Theorem 4.5. The uniqueness in law follows from Proposition 4.7, which is dis-

cussed in Appendix 4.A.

For the convergence estimate, let µN
t , t ≥ 0 be any unlabelled Kac process, and consider

the case µ0 = µN
0 . Fix tfin and let K ∈ [K0,∞) to be chosen later; for this K, let 5µN

t , 5µ
N,K
t

be the coupling of noncutoff and cutoff Kac processes, both starting at µN
0 given Theorem

4.4. By uniqueness in law, it is sufficient to prove the estimate with 5µN
t in place of µN

t . For

some constants C = C(p, q),α = α(p, q), we have the following estimates. By Theorem

4.4,

E
2
sup
t≤tfin

wp

'
5µN
t , 5µ

N,K
t

(3
≤ eCa(1+tfin)(K1−1/ν +N−1/2); (4.128)

while we recall from lemma 3.14

E
2
sup
t≤tfin

wp

'
5µN,K
t ,φK

t (µ
N
0 )

(3
≤ exp (CaK(1 + tfin)) N−α (4.129)

and by Corollary 4.2,

sup
t≤tfin

wp

-
φK
t (µ

N
0 ),φt(µ

N
0 )

.
≤ eCa(1+tfin)K1−1/ν . (4.130)

Combining, and keeping the worst terms, we have the estimate

E
2
sup
t≤tfin

wp

-
5µN
t ,φt(µ

N
0 )

.3
≤ eCa(1+tfin)K1−1/ν + eCaK(1+tfin) N−α. (4.131)

We now choose

K = max

6
K0,

1

2Ca(1 + tfin)
log(Nα)

7
(4.132)

to conclude that

E
2
sup
t≤tfin

wp

-
5µN
t ,φt(µ

N
0 )

.3
≤ eCa(1+tfin) (logN)1−1/ν . (4.133)
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Finally, by Corollary 4.2 again, we have

E
2
sup
t≤tfin

wp

-
φt(µ

N
0 ),φt(µ0)

.3
≤ eCa(1+tfin) E

G
wp(µ

N
0 , µ0)

H
(4.134)

and combining gives the claimed bound.
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4.9 Alternative Proof of Corollary 4.2

We will now give the alternative proof of Corollary 4.2, based on the Tanaka coupling

of Kac processes presented in Lemma 4.23. The proof is broken down into a series of

lemmas; in order to give an overview of the strategy, we will state all the intermediate

steps before turning to the proofs. Our first step is to use Theorem 4.4 to compare two

cutoff Kac processes, with different values of the cutoff and different initial data.

Lemma 4.25. [Coupling of Cutoff Kac Processes] Let p, q, l,K0, C be as in Lemma 4.23,

and let K ′ ≥ K > K0(G, p, d). Let µN,K
0 , 5µN,K′

0 ∈ SN , with moments

Λp+γ

'
µN
0 , 5µ

N,K
0

(
≤ a1; Λl

'
µN
0 , 5µ

N,K
0

(
≤ a2; Λq

'
µN
0 , 5µ

N,K
0

(
≤ a3. (4.135)

Then there exists a coupling of cutoff Kac processes µN,K
t , 5µN,K′

t with cutoff parameters

K,K ′ respectively, such that

E
?
wp(µ

N,K
t , 5µN,K′

t )
A
≤ eCa1(1+t)(wp(µ

N,K
0 , 5µN,K

0 ) + a2tK
1−1/ν) + a23CN−1/2t. (4.136)

We next transfer this coupling to solutions to the cutoff Boltzmann equation, potentially

with different cutoff parameters and different initial data.

Lemma 4.26. Let p > p0(G, d) and l = p + 2 + γ. Then there exist a constant C =

C(G, p, d) such that, whenever K ′ ≥ K > K0(G, p, d), a1, a2 ≥ 1 and µ0, ν0 ∈ S satisfy

moment bounds

Λp+γ(µ0, ν0) ≤ a1; Λl(µ0, ν0) ≤ a2 (4.137)

then the solution maps φK
t to the cutoff Boltzmann equation (BEK) satisfy, for all t ≥ 0,

wp

'
φK
t (µ0),φ

K′

t (ν0)
(
≤ eCa1(1+t)

-
wp (µ0, ν0) + a2tK

1−1/ν
.
. (4.138)

As a next step, we show that the solutions φK
t (µ0) to the cutoff Boltzmann equations

converge, as K → ∞, to a solution of the noncutoff equation (BE).

Lemma 4.27. Let p, l be as above, and let µ0 ∈ S satisfy moment assumptions

Λp+γ(µ0) ≤ a1, Λl(µ0) ≤ a2 (4.139)

for some a1, a2 ≥ 1. Then, for some (φt(µ))t≥0 ⊂ S and some C = C(G, p, d),

wp(φ
K
t (µ),φt(µ)) ≤ eCa1(1+t)ta2K

1−1/ν (4.140)

for all K > K0(G, p, d). Moreover, if ν0 ∈ S is another measure with the same moment

estimates, we have the continuity

wp (φt(µ0),φt(ν0)) ≤ eCa1(1+t)wp(µ0, ν0). (4.141)

Finally, (φt(µ0) : t ≥ 0) is a solution to the noncutoff Boltzmann equation (BE), and

satisfies the moment estimates in Proposition 2.6.
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We next extend the maps φt defined above to all of Sp+2, and obtain the claimed continuity

estimate in this context

Lemma 4.28. Let p, l be as above. The solution maps φt : S l → S defined above can

be extended to Sp+2, such that, for all µ0 ∈ Sp+2, (φt(µ0) : t ≥ 0) is a solution to the

Boltzmann Equation (BE), and so that (4.141) holds whenever µ0, ν0 ∈ Sp+2 satisfy a

moment estimate Λp+γ(µ0, ν0) ≤ a, for some a ≥ 1.

To conclude Corollary 4.2, we must show that the solutions obtained in this way are the

unique solutions to (BE) as soon as µ0 ∈ Sp+2. Let us now show how these results imply

the claimed result.

Proof of Theorem 4.1. In light of Lemma 4.28 above, it remains only to prove that the

solutions constructed above are unique. Let us fix µ0 ∈ Sp and such that Λp+2(µ0) ≤ a

for some a ≥ 1. Let (µt)t≥0 ⊂ S be any solution to (BE) starting at µ0; we will now show

that µt = φt(µ0) for all t ≥ 0.

Fix s > 0, t ≥ 0. Thanks to the appearance of exponential moments in Proposition 2.13,

there exists ε = εs > 0 such that 〈eε|v|γ , µs〉 < ∞, and by Proposition 4.18, there exists at

most one energy-conserving solution starting at µs. Since both (φu(µs))u≥0 and (µu+s)u≥0

are such solutions, we conclude that φt(µs) = µt+s for all such t, s.

Let us now take the limit s ↓ 0. As in Lemma 4.22, wp(µs, µ0) → 0 as s ↓ 0. Lemma 4.28

now shows that, up to a new choice of C,

wp(φt(µs),φt(µ0)) ≤ eCa(1+t)wp(µs, µ0) → 0. (4.142)

Using the same argument again, wp(µt+s, µt) → 0, and we conclude that

wp (µt,φt(µ0)) ≤ lim sup
s↓0

[Cwp (φt(µs),φt(µ0)) + Cwp (µt+s, µt)] = 0 (4.143)

and so we have the desired uniqueness.

4.9.1 Proof of Lemmas

Sketch Proof of Lemma 4.25. The proof is very similar to the proof of Theorem 4.4, and

we will sketch the main points. Let us construct VN
0 ∈ θ−1

N (µN
0 ) and 5VN,K′

0 ∈ θ−1
N (5µN,K′

0 )

as in the proof of Theorem 4.4, and following the previous proof, construct a noncutoff

labelled process VN
t starting at VN

0 and a K ′-cutoff 5VN,K′

t starting at 5VN,K′

0 , with a control

over N−1
<

i dp(V
i
t , 5V

i,K
t ). We take µN

t , 5µ
N,K′

t to be the associated empirical measures,

which are (unlabelled) Kac processes, and which inherit the control from wp(µ
N
t , 5µ

N,K′

t ) ≤
N−1

<
i dp(V

i
t , 5V

i,K
t ).
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We now repeat this argument to construct a K-cutoff process VN,K
t starting at the same

point VN
0 = VN,K

0 , and let µN,K
t be the associated empirical measures. The same argument

as the proof of Theorem 4.4 establishes controls on

E
?
wp

'
µN
t , 5µ

N,K′

t

(A
; E

?
wp

'
µN
t , µ

N,K
t

(A
. (4.144)

Recalling the relaxed triangle inequality (2.17), we combine these to find the desired

estimate.

Proof of Lemma 4.26. Let us consider the case first where the initial data µ0, ν0 have a

finite qth moment Λq(µ0, ν0) ≤ a3 for some a3 ≥ 1. Applying Proposition 2.4, we can

choose N -particle empirical measures µN
0 ∈ SN such that wp(µ

N
0 , µ0) → 0 and such that

the lth, qth moments converge: Λl(µ
N
0 ) → Λl(µ0),Λq(µ

N
0 ) → Λq(µ0); construct ν

N
0 similarly

for ν0. Using the relaxed triangle inequality (2.17), it follows that, for some C = C(p),

lim sup
N→∞

wp(µ
N
0 , ν

N
0 ) ≤ C wp(µ0, ν0). (4.145)

Let us now take µN,K
t , νN,K′

t be the cutoff Kac processes constructed in Corollary 4.25

started at these initial data; fix t ≥ 0, and consider

wp

'
φK
t (µ0),φ

K′

t (ν0)
(
≤ C E

2
wp

'
φK
t (µ0), µ

N,K
t

(
+ wp

'
µN,K
t , νN,K′

t

(
+ wp

'
νN,K′

t ,φK′

t (ν0)
(3

.

(4.146)

Using Corollary 4.25 to bound the middle term, we have

wp

'
φK
t (µ0),φ

K′

t (ν0)
(
≤ C E

?
wp

'
φK
t (µ0), µ

N,K
t

(
+ wp

'
νN,K′

t ,φK′

t (ν0)
(A

+ eCa1(1+t)
-
wp

-
µN
0 , ν

N
0

.
+ a2K

1−1/ν
.

+ a23CN−1/2.

(4.147)

Let us now take N → ∞. Thanks to Lemma 3.14, both terms on the first line converge

to 0, as does the final term. Using (4.145), we conclude that

wp

'
φK
t (µ0),φ

K′

t (ν0)
(
≤ eCa1(1+t)

-
wp

-
µN
0 , ν

N
0

.
+ a2K

1−1/ν
.

(4.148)

as desired.

Let us now show how this extends to initial data µ0, ν0 with only l = p+ γ + 2 moments

as in the statement. In this case, we use Proposition 2.4 again, with l in place of q, to

construct µN
0 ∈ SN such that

wp(µ
N
0 , µ0) → 0, Λl(µ

N
0 ) → Λl(µ0) (4.149)

and similarly νN
0 for ν0. Since µN

0 , ν
N
0 are compactly supported, the previous estimate

applies so that

wp

'
φK
t (µ

N
0 ),φ

K′

t (νN
0 )

(
≤ eCa1(1+t)

-
wp

-
µN
0 , ν

N
0

.
+ a2K

1−1/ν
.
. (4.150)
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Using Lemma 3.13,

wp

-
φK
t (µ

N
0 ),φ

K
t (µ0)

.
→ 0; wp

'
φK′

t (νN
0 ),φK′

t (ν0)
(
→ 0. (4.151)

The same argument as above therefore allows us to take N → ∞ in (4.150), noting that

no moments higher than lth appear, to conclude that

wp

'
φK
t (µ0),φ

K′

t (ν0)
(
≤ CeCa1(1+t)

-
wp (µ0, ν0) + a2K

1−1/ν
.

(4.152)

and we absorb the prefactor C into the exponent.

Proof of Lemma 4.27. Let us fix µ0 ∈ S l and consider the space

C = C([0,∞), ({µ ∈ P2 : Λ2(µ) ≤ 1},W1))

equipped with a metric inducing uniform convergence on compact time intervals. Since

({µ ∈ P2 : Λ2(µ) ≤ 1},W1) is complete, so is C. Recalling that W1 ≤ wp, the previous

observation shows that (φK(µ0), t ≥ 0)K≥1 are Cauchy in C, and hence converge to some

process (φt(µ0), t ≥ 0). Moreover, thanks to Proposition 2.6, the lth moments of φK
t (µ0)

are bounded, uniformly in K, and since l > 2, we conclude that 1 = Λ2(φ
K
t (µ0)) →

Λ2(φt(µ0)), and similarly for 0 = 〈v,φK
t (µ0)〉 → 〈v,φt(µ0)〉, to get that (φt(µ0))t≥0 ⊂ S.

Next, let us show that φK
t (µ0) → φt(µ0) in wp. For t = 0, φK

0 (µ0) = µ0, and so there

is nothing to prove. If t > 0 then, by point iii) of Proposition 2.6, there exists λp+3 =

λp+3(t) < ∞ such that, for all K ≥ 1,

Λp+3

-
φK
t (µ0)

.
≤ λp+3(t). (4.153)

By lower semicontinuity of µ /→ Λp+3(µ) in W1, the same is true for the limit φt(µ0), and

using the estimates in Section 2.1,

wp

-
φK
t (µ0),φt(µ0)

.
≤ Λp+3

-
φK
t (µ0),φt(µ0)

.
W1

-
φK
t (µ0),φt(µ0)

.α
(4.154)

for some α > 0. By construction, the second term on the right-hand side converges to 0,

and the first term is bounded, so the left-hand side converges to 0 as desired. We now

conclude the bound (4.140): if K > K0(G, p, d), then for all K ′ ≥ K,

wp

-
φK
t (µ0),φt(µ0)

.
≤ C

'
wp

'
φK
t (µ0),φ

K′

t (µ0)
(
+ wp

'
φK′

t (µ0),φt(µ0)
((

≤ C
'
eCa1(1+t)a2tK

1−1/ν + wp

'
φK′

t (µ0),φt(µ0)
((

.

(4.155)

Taking K ′ → ∞, the second term on the final line converges to 0, and the desired bound

follows, absorbing the prefactor C = C(p) into the exponent. The bound (4.141) is similar:

if µ0, ν0 in S l satisfy

Λp+γ(µ0, ν0) ≤ a1; Λl(µ0, ν0) ≤ a2 (4.156)



216 4.9. ALTERNATIVE PROOF OF COROLLARY 4.2

then we bound, for any K,

wp (φt(µ0),φt(ν0)) ≤ C
-
wp

-
φK
t (µ0),φt(µ0)

.
+ wp

-
φK
t (µ0),φ

K
t (ν0)

.

+ wp

-
φK
t (ν0),φt(ν0)

..

≤ CeCa1(1+t)
-
3a2tK

1−1/ν + wp(µ0, ν0)
.

(4.157)

where, in the second line, we have used Lemma 4.26 to compare φK
t (µ0),φ

K
t (ν0) and used

the previous part to estimate the other two terms. Taking K → ∞, we conclude the

desired bound, again up to a new choice of C.

It remains to show that φt(µ0), t ≥ 0 solves the full, noncutoff Boltzmann equation (BE).

To shorten notation, write µK
t := φK

t (µ0), µt = φt(µ0). We fix a bounded, Lipschitz

function f : Rd → R and recall, from Lemma 4.13, the growth bound

|Lf(v, v*)| ≤ C(f)|v − v*|
!

Sd−1

sin θB(v − v*, σ)dσ ≤ C(f)|v − v*|1+γ

for some constant C = C(f), depending only on the Lipschitz constant of f , and similarly

for BK ; recall also that Lf is continuous, and that |LKf −Lf | ≤ εK |v− v∗|1+γ, for some

εK ↓ 0. We now claim that, for all t ≥ 0,

〈f,QK(µ
K
t )〉 → 〈f,Q(µ0)〉. (4.158)

Fix t ≥ 0. For all R ≥ 0, let ψR : Rd × Rd → [0, 1] be a smooth, compactly supported

cutoff function, such that ψR(v, v*) = 1 on the ball {|v|2 + |v*|2 ≤ R}. We estimate,

uniformly in K,
!

Rd×Rd

|Lf(v, v*)(1− ψR(v, v*))|µK
t (dv)µ

K
t (dv*)

≤ C(f)

!

Rd×Rd

(1 + |v|2 + |v*|2)1I|v|2+|v!|2≥Rµ
K
t (dv)µ

K
t (dv*)

≤ C(f)R−pa2 Λl (µ0)

(4.159)

where, in the final line, we used the moment hypothesis on µ0, with l > p + 2, and the

moment propagation result in Proposition 2.6; the same argument holds for the limit µt.

It is elementary to show that the Wasserstein convergence W1(µ
K
t , µt) → 0 implies that,

for all compactly supported, continuous g : Rd × Rd → R, we have
!

Rd×Rd

g(v, v*)
-
µK
t (dv)µ

K
t (dv*)− µt(dv)µt(dv*)

.
→ 0 (4.160)

and, in particular, this holds with g = (Lf)(v, v*)ψR. We now write
@@Zf,Q(µt)−Q(µK

t )
[@@

≤
!

Rd×Rd

|(Lf)|(1− ψR)(v, v*)(µ
K
t (dv)µ

K
t (dv*) + µt(dv)µt(dv*))

+

@@@@
!

Rd×Rd

(Lf)ψR(v, v*)(µ
K
t (dv)µ

K
t (dv*)− µt(dv)µt(dv*))

@@@@ .

(4.161)
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The second term converges to 0 by (4.160), so using (4.159) twice on the first term,

lim sup
K→∞

@@Zf,Q(µt)−Q(µK
t )

[@@ ≤ CR−pa2Λl(µ0) (4.162)

and, since R was arbitrary, we have shown that

Z
f,Q(µK

t )
[
→ 〈f,Q(µt)〉 . (4.163)

Finally, integrating the bound on |Lf − LKf |, we find

@@〈f,Q(µK
t )−QK(µ

K
t )〉

@@ ≤
!

Rd×Rd

|Lf − LKf |(v, v*)µK
t (dv)µ

K
t (dv*)

≤ C(f)εK

!

Rd×Rd

(1 + |v|2 + |v*|2)µK
t (dv)µ

K
t (dv*)

≤ C(f)εK → 0

(4.164)

and, combining with (4.163), we see that 〈f,Q(µK
t )〉 → 〈f,Q(µt)〉 for all t ≥ 0 as claimed.

We now conclude. For any t ≥ 0 and any bounded, Lipschitz f , we have

〈f, µK
t 〉 = 〈f, µ0〉+

! t

0

〈f,QK(µ
K
s )〉ds. (4.165)

The integrand 〈f,QK(µ
K
s )〉 is bounded, uniformly in s ≤ t and K ≥ 1, and converges to

〈f,Q(µs)〉 for all s, while the left-hand side converges to 〈f, µt〉. We therefore take the

limit K → ∞ to conclude that, for all bounded, Lipschitz f and all t ≥ 0

〈f, µt〉 = 〈f, µ0〉+
! t

0

〈f,Q(µs)〉ds (4.166)

as desired.

Finally, Lemma 4.28 follows much the same pattern as above.

Proof of Lemma 4.28. To extend the maps φt, fix µ0 ∈ Sp+2. Using Proposition 2.4

again, let µN
0 ∈ SN be a sequence of discrete measures such that wp(µ

N
0 , µ0) → 0 and

Λp+γ(µ
N
0 ) → Λp+γ(µ0),Λp+2(µ

N
0 ) → Λp+2(µ0); in particular, Λp+γ(µ

N
0 ) ≤ 2a for all N

large enough. The bound (4.141) obtained in the previous lemma applies to show that,

for all such N and all t ≥ 0,

W1(φt(µ
N
0 ),φt(µ

N ′

0 )) ≤ wp

'
φt(µ

N
0 ),φt(µ

N ′

0 )
(
≤ eCa(1+t)wp(µ

N
0 , µ

N ′

0 ). (4.167)

The same argument as in Lemma 4.22 shows that right-hand side converges to 0 as

N,N ′ → ∞, which implies that φt(µ
N
0 ) converges, uniformly in W1 on compact time

intervals, to some limit. If we now define φt(µ0) to be this limit, a similar calculation

shows that the limit φt(µ0) takes values in S and is independent of the choice of limiting
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sequence, and the same argument as in Lemma 4.27 above shows that (φt(µ0), t ≥ 0)

is again a solution to the noncutoff Boltzmann equation (BE). Finally, if µ0, ν0 are two

such measures, one applies the conclusion (4.141) of the previous lemma to approximating

sequences µN
0 , ν

N
0 and passes to the limit N → ∞ to obtain the same result for µ0, ν0,

again up to a new constant C in the exponent.
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4.10 Main Calculations on the Tanaka Coupling

We now give the proof of Lemmas 4.10, 4.12, which we deferred earlier.

4.10.1 Some Estimates for G

In preparation for the proofs of Lemma 4.10, we will first record some basic estimates

concerning the regularity and integrability of G.

Lemma 4.29. i.) Let G be as above. Then, for some constants 0 < c1 ≤ c2 < ∞, we

have

c1(1 + z)−1/ν ≤ G(z) ≤ c2(1 + z)−1/ν . (4.168)

Moreover, G is continuously differentiable, and c1, c2 above can be chosen such that

c1(1 + z)−1−1/ν ≤ |G′(z)| ≤ c2(1 + z)−1−1/ν . (4.169)

ii.) We have ! ∞

0

z

@@@@
d

dz
(1− cosG(z)))

@@@@ dz < ∞. (4.170)

iii.) There exists a constant c < ∞ such that, for all x, y > 0,
! ∞

0

6
G
'z
x

(
−G

6
z

y

772

dz ≤ c
|x− y|2
x+ y

. (4.171)

Proof. i). For the first claim, we use the definition of H and the asymptotics of b in

(NCHP) to see that, for some constants c1, c2 ∈ (0,∞) and all θ ∈ (0, π/2),

c1

! π/2

θ

x−1−νdx ≤ H(θ) ≤ c2

! π/2

θ

x−1−νdx (4.172)

so that
c1
ν

6
θ−ν −

'π
2

(−ν
7

≤ H(θ) ≤ c2
ν

6
θ−ν −

'π
2

(−ν
7
. (4.173)

The first claim now follows, potentially for a new choice of c1, c2. The differentiability

is an immediate consequence of the inverse function theorem. Indeed, we have

G′(z) =
1

H ′(G(z))
= − 1

β(G(z))
(4.174)

and so the second claim follows from the first, using (NCHP) again.

ii). We have

z
d

dz
((1− cosG(z))) = z (sinG(z)) G′(z) (4.175)

and so @@@@z
d

dz
(1− cosG(z))

@@@@ ≤ zG(z)|G′(z)|. (4.176)

Using the bounds from the previous part, it follows that the right-hand side is

bounded by c2(1 + z)−2/ν for some c2 < ∞, which is integrable because ν ∈ (0, 1).
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iii). We follow [85, Lemma 1.1]. Recalling that G is decreasing, and integrating the

bound on G′ found in part i)., we see that, for all 0 ≤ z ≤ w and some c < ∞, we

have

0 ≤ G(z)−G(w) ≤ c
-
(1 + z)−1/ν − (1 + w)−1/ν

.
. (4.177)

We also recall that, for all a > b > 0, we have

a1/ν − b1/ν ≤ c
a− b

a1−1/ν + b1−1/ν
. (4.178)

For any z > 0, 0 < y < x, we apply this bound with a = (1+z/x)−1, b = (1+z/y)−1

to obtain

0 ≤ G
'z
x

(
−G

6
z

y

7
≤ c

-
(1 + z/x)−1/ν − (1 + z/y)−1/ν)

.

≤ c

@@@@
x

x+ z
− y

y + z

@@@@
'
1 +

z

x

(1−1/ν

≤ c|x− y|(x+ z)−1/νx−1+1/ν .

(4.179)

We square and integrate over z, to obtain for all x > y > 0,

! ∞

0

6
G
'z
x

(
−G

6
z

y

772

dz ≤ c|x− y|2x1−2/νx−2+2/ν

= c
|x− y|2

x
≤ c

|x− y|2
x+ y

(4.180)

where in the final equality we recall that y < x so 1
x
≤ 2

x+y
. This concludes the

proof of both claimed bounds in the case x > y > 0; for y > x, we reverse the roles

of x ↔ y.

4.10.2 Proof of Lemma 4.10

We now turn to the proof of Lemma 4.10, which was deferred earlier. In order to avoid

unnecessarily unwieldy expressions, we introduce some notation. We work with fixed α,

and omit this from all notation; no calculations will depend on this choice, so all bounds

are independent of α. We define x = |v − v*|, 5x = |5v − 5v*|, and write L for the cuttoff

L = K5xγ. We will also write R for Rα(v − v*, 5v − 5v*), and suppress the dependence

of a,5aK , Ep,K on v, 5v, v*, 5v*,α. Throughout, c will denote a constant which is allowed to

depend only on B through G and on d, and C will denote a constant which is also allowed

to depend on p; both are understood to vary from line to line as necessary. We will also

write expressions as though K < ∞, understanding that negative powers of K or integrals&∞
L

...dz are 0 if K = ∞.

Our first lemma is the following, which gives us control over the ‘Povzner’ term, similar
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to the estimates in Section 2.5. Since this estimate produces the key negative term in

Lemma 4.10 and is essential for subsequent calculations, it is presented as a separate

lemma.

Lemma 4.30. For all v, v*, z, we have the bound

|v + a|p ≤ |v|p
6
1 + cosG(z/xγ)

2

7p/2

+ |v*|p
6
sinG(z/xγ)

2

7p/2

+ C
-
|v|p−1|v*|+ |v||v*|p−1

.
sinG(z/xγ)

=: fp(|v|, |v*|, z, x).

(4.181)

Proof. Let us start from

v+a = v

6
1 + cosG(z/xγ)

2

7
+v*

6
1− cosG(z/xγ)

2

7
+
sinG(z/xγ)

2
Γ(v−v*,ϕ). (4.182)

We now take the norm of both sides, recalling that |Γ(v − v*,ϕ)| = |v − v*|:

|v + a|2 =
6
1 + cosG(z/xγ)

2

72

|v|2 +
6
1− cosG(z/xγ)

2

72

|v*|2

+

6
sinG(z/xγ)

2

72

(|v|2 + |v*|2 + 2|v||v*|)

+

6
sinG(z/xγ)

2

76
1 + cosG(z/xγ)

2

7
v · Γ(v − v*,ϕ)

+

6
sinG(z/xγ)

2

76
1− cosG(z/xγ)

2

7
v* · Γ(v − v*,ϕ)

+

6
1− cosG(z/xγ)

2

76
1 + cosG(z/xγ)

2

7
v · v*.

(4.183)

For the third and fourth lines, we use orthogonality to see that v ·Γ(v−v*,ϕ) = v* ·Γ(v−
v*,ϕ). It follows that

|v · Γ(v − v*,ϕ)| ≤ min(|v|, |v*|)(|v|+ |v*|) ≤ 2|v||v*|. (4.184)

Using the inequality 1− cosG(z) ≤ sinG(z), we now group similar terms to obtain

|v + a|2 ≤
6
1 + cosG(z/xγ)

2

7
|v|2 +

6
1− cosG(z/xγ)

2

7
|v*|2 + C sinG(z/xγ)|v||v*|

:= h1 + h2 + h3.

(4.185)

We now raise both sides to the (p/2)th power, recalling the inequality (x+ y)p/2 ≤ xp/2 +

yp/2 + C(xyp/2−1 + xp/2−1y), valid for all x, y > 0. It is straightforward to see that the

cross terms are dominated by the final term in (4.181):

h
p/2−1
1 (h2 + h3) + h1(h2 + h3)

p/2−1 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ); (4.186)
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h
p/2−1
2 h3 + h2h

p/2−1
3 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ); (4.187)

h
p/2
3 ≤ C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ). (4.188)

Using the inequality twice, we thus obtain

|v + a|p ≤ h
p/2
1 + (h2 + h3)

p/2 + C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ)

≤ h
p/2
1 + h

p/2
2 + h

p/2
3 + C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ)

≤ h
p/2
1 + h

p/2
2 + C(|v|p−1|v*|+ |v||v*|p−1) sinG(z/xγ)

(4.189)

which gives the desired bound on substituting the definitions of h1, h2.

We now break up Ep,K as follows. We define

E1
p,K =

! ∞

0

dz

!

Sd−2

dϕ
-
|v′|p|v′ − 5v′K |2 − |v|p|v − 5v|2

.
; (4.190)

E2
p,K(v, 5v, v*, 5v*) =

! ∞

0

dz

!

Sd−2

dϕ
-
|5v′K |p|v′ − 5v′K |2 − |5v|p|v − 5v|2

.
; (4.191)

E3
p,K(v, 5v, v*, 5v*) =

! ∞

0

dz

!

Sd−2

dϕ (|v′ − 5v′K |2 − |v − 5v|2). (4.192)

In this way, using the definition of dp, it follows that Ep,K = E1
p,K+E2

p,K+E3
p,K . It therefore

suffices to prove the following estimates.

Lemma 4.31. For some constants K0 = K0(p), c = c(G, d) and C = C(G, d, p), and

q = p+ 2 + γ, whenever K ≥ K0(p), we have

E1
p,K(v, 5v, v*, 5v*) ≤

6
c+

6
c− λp

2

7
|v|p+γ + c|5v|p+γ

7
|v − 5v|2

+
-
c|v*|p+γ + c|5v*|p+γ

.
|v* − 5v*|2

+ C
-
|v*|p+γ + |5v*|p+γ

.
(1 + |v|p + |5v|p) |v − 5v|2

+ C
-
|v|p+γ + |5v|p+γ

.
(1 + |v*|p + |5v*|p) |v* − 5v*|2

+ CK1−1/ν(1 + |v|l + |v*|l + |5v|l + |5v*|l);

(4.193)

E2
p,K(v, 5v, v*, 5v*) ≤

6
c+

6
c− λp

2

7
|5v|p+γ + c|v|p+γ

7
|v − 5v|2

+
-
c|v*|p+γ + c|5v*|p+γ

.
|v* − 5v*|2

+ C
-
|v*|p+γ + |5v*|p+γ

.
(1 + |v|p + |5v|p) |v − 5v|2

+ C
-
|v|p+γ + |5v|p+γ

.
(1 + |v*|p + |5v*|p) |v* − 5v*|2

+ CK1−1/ν(1 + |v|l + |v*|l + |5v|l + |5v*|l)

(4.194)
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and

E3
p,K(v, 5v, v*, 5v*) ≤ c(1 + |v|γ + |5v|γ + |v*|γ + |5v*|γ)(|v − 5v|2 + |v* − 5v*|2)

+ CK1−1/ν(1 + |v|l + |5v|l + |v*|l + |5v*|l).
(4.195)

Proof of Lemmas 4.10, 4.31. Let us begin from the bound (4.181), and define also

f *
p (|v|, |v*|) = |v|p + C(|v||v*|p−1 + |v|p−1|v*|) + |v*|p (4.196)

which is an upper bound for fp, uniformly in z, x. We therefore find

E1
p,K ≤

! ∞

0

dz

!

Sd−2

dϕ (fp(|v|, |v*|, z, x)|v − 5v + a− 5a|2 − |v|p|v − 5v|2). (4.197)

Let us also introduce

Ja = a(5v, 5v*, z, R(v − v*, 5v − 5v*)ϕ) (4.198)

so that 5a = Ja1I(z ≤ L). We can therefore replace 5a by Ja, introducing a further error:

E1
p,K ≤

! ∞

0

dz

!

Sd−2

dϕ (fp(|v|, |v*|, z, x)|v − 5v + a− Ja|2 − |v|p|v − 5v|2)

+

! ∞

L

dz

!

Sd−2

dϕ fp(|v|, |v*|, z, x)
-
|v − 5v + a|2 − |v − 5v + a− Ja|2

.
.

(4.199)

Finally, we expand the squared norm |v − 5v + a − Ja|2 in the first line to obtain the

decomposition

E1
p,K ≤ T1 + T2 + T3 + T4 (4.200)

where we define

T1 :=

! ∞

0

dz

!

Sd−2

dϕ (fp(|v|, |v*|, z, x)− |v|p) |v − 5v|2; (4.201)

T2 := 2

! ∞

0

dz

!

Sd−2

dϕ fp(|v|, |v*|, z, x)(v − 5v) · (a− Ja); (4.202)

T3 :=

! ∞

0

dz

!

Sd−2

dϕ f *
p (|v|, |v*|)|a− Ja|2; (4.203)

T4 :=

! ∞

L

dz

!

Sd−2

dϕ fp(|v|, |v*|, z, x)
-
|v + a− 5v|2 − |v + a− 5v − Ja|2

.
. (4.204)

We will now analyse this bound for E1
p,K in detail, and an equivalent analysis of E2

p,K , E3
p,K

will be discussed at the end of the proof. Let us now deal with these terms one by one.
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1. Analysis of T1. Recalling the construction of G, the moment integral in T1 can be

reparametrised in terms of θ:
! ∞

0

(fp(|v|, |v*|, z, x)− |v|p)dz

= −|v − v*|γ|v|p
! π/2

0

β(θ)

/
1−

6
1 + cos θ

2

7p/2
0
dθ

+ |v − v*|γ(|v*|p + C(|v||v*|p−1 + |v|p−1|v*|))
! π/2

0

β(θ) sin(θ)dθ

≤ −λp|v − v*|γ|v|p + C|v − v*|γ(|v*|p + |v||v*|p−1 + |v|p−1|v*|).

(4.205)

On the negative term, we use the bound |v|γ − |v*|γ ≤ |v − v*|γ and Young’s inequality

to see that

−|v − v*|γ|v|p ≤ −|v|p+γ + |v*|γ|v|p

≤ −|v|p+γ +
1

4
|v|p+γ + 4p/γ|v*|p+γ.

(4.206)

For the positive term in (4.205), we use |v − v*|γ ≤ |v|γ + |v*|γ to obtain

|v − v*|γ(|v*|p + |v||v*|p−1 + |v|p−1|v*|) ≤ |v|γ|v*|p + |v|γ+1|v*|p−1 + |v|p+γ−1|v|
+ |v*|γ+p + |v||v*|p+γ−1 + |v|p−1|v*|p+γ + |v|p−1|v*|1+γ.

(4.207)

We now use Young’s inequality on each term to obtain

C|v − v*|γ(|v*|p + |v||v*|p−1 + |v|p−1|v*|) ≤
λp

4
|v|p+γ + C|v*|p+γ (4.208)

Combining, we have shown that
! ∞

0

(fp(|v|, |v*|, z, x)− |v|p)dz ≤ −λp

2
|v|p+γ + C|v*|p+γ (4.209)

and so

T1 ≤ −λp

2
|v|p+γ|v − 5v|2 + C|v*|p+γ|v − 5v|2. (4.210)

2. Analysis of T2. We first observe that
!

Sd−2

dϕ (a− Ja) = −1

2
(1− cosG(z/xγ))(v − v*) +

1

2
(1− cosG(z/5xγ))(5v − 5v*). (4.211)

It therefore follows that

T2 = (v − 5v) · {Φ(5x, |v|, |v*|, x)(5v − 5v*)− Φ(x, |v|, |v*|, x)(v − v*)} (4.212)

where we define, for any y, u, v, w > 0,

Φ(y, u, v, w) =

! ∞

0

dz fp(u, v, z, w)(1− cosG(z/yγ))dz

:= Ψ(yγ, u, v, w).

(4.213)
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We differentiate the function thus defined to obtain

∂

∂y
Ψ(y, u, v, w) =

! ∞

0

fp(u, v, z, w)

6
−z

y

7
d

dz

6
1− cosG

6
z

y

77
dz

=

! ∞

0

fp(u, v, yz, w)

6
z
d

dz
(1− cosG(z))

7
dz

(4.214)

where the final line follows by an integration by substitution z /→ yz. From the calcula-

tions in Lemma 4.29, we therefore conclude that
@@@@
∂

∂y
Ψ(y, u, v, w)

@@@@ ≤ cf *
p (u, v). (4.215)

Now, using the bound |xγ − yγ| ≤ 2|x− y|/(x1−γ + y1−γ), we obtain

|Φ(x, |v|, |v*|, x)− Φ(5x, |v|, |v*|, x)| ≤
c|x− 5x|

x1−γ + 5x1−γ
f *
p (|v|, |v*|) (4.216)

and, for all y > 0,

|Φ(x, |v|, |v*|, y)| ≤ cyγf *
p (|v|, |v*|). (4.217)

We therefore obtain the bound

|T2| ≤ |v − 5v|
M
|v − v* − 5v + 5v*||Φ(x, |v|, |v*|, x) + Φ(5x, |v|, |v*|, x)|

+ (|v − v*|+ |5v − 5v*|) |Φ(x, |v|, |v*|, x)− Φ(5x, |v|, |v*|, x)|
N

≤ c
-
|v − 5v|2 + |v* − 5v*|2

.
(|v|γ + |v*|γ + |5v|γ + |5v*|γ)f *

p (|v|, |v*).

(4.218)

3. Analysis of T3. We now turn to the term T3, and begin by noting that

a · Ja =
1

4
(1− cosG(z/xγ)) (1− cosG(z/5xγ)) (v − v*) · (5v − 5v*)

− 1

4
(1− cosG(z/xγ)) sinG(z/5xγ)(v − v*) · Γ(5v − 5v*, Rϕ)

− 1

4
(1− cosG(z/5xγ)) sinG(z/xγ)Γ(v − v*,ϕ) · (5v − 5v*)

+
1

4
sinG(z/xγ) sinG(z/5xγ)Γ(v − v*,ϕ) · Γ(5v − 5v*, Rϕ).

(4.219)

We now integrate over ϕ ∈ Sd−2. Since
&
Sd−2 Γ(u,ϕ)dϕ = 0 and R preserves the uniform

measure dϕ, the middle two lines integrate to 0. We also recall, from the construction of

R = R(v− v*, 5v− 5v*) in Lemma 4.8, that Γ(v− v*,ϕ) ·Γ(5v− 5v*, Rϕ) ≥ (v− v*) · (5v− 5v*),
and so integrating (4.219) gives
!

Sd−2

a · Ja dϕ ≥ 1

4

2
(1− cosG(z/xγ)) (1− cosG(z/5xγ))

+ sinG(z/xγ) sinG(z/5xγ)

3
(v − v*) · (5v − 5v*)

=
1

4

2
(1− cosG(z/xγ)) + (1− cosG(z/5xγ))

−
6
1− cos

-
G(z/xγ)−G(z/5xγ)

.73
(v − v*) · (5v − 5v*).

(4.220)
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Similar, elementary calculations show that

|a|2 = 1

2
(1− cosG(z/xγ))|v − v*|2; |Ja|2 = 1

2
(1− cosG(z/5xγ))|5v − 5v*|2. (4.221)

We now observe that ! ∞

0

(1− cosG(z/xγ))dz = cxγ (4.222)

and so, from (4.220, 4.221), we obtain

! ∞

0

dz

!

Sd−2

dϕ |a− Ja|2 ≤ c

2

-
x2+γ + 5x2+γ − (v − v*) · (5v − 5v*)(xγ + 5xγ)

.

+
x5x
4

! ∞

0

(G(z/xγ)−G(z/5xγ))2 dz.

(4.223)

Recalling that x2 = (v− v*) · (v− v*) and 5x2 = (5v− 5v*) · (5v− 5v*), the term in parentheses

on the first line rearranges to

x2+γ + 5x2+γ − (v − v*) · (5v − 5v*)(xγ + 5xγ)

= (v − v*) · [(v − v*)− (5v − 5v*)] xγ

+ (5v − 5v*) · [(5v − 5v*)− (v − v*)] 5xγ

= ((v − 5v)− (v* − 5v*)) · [(v − v*)x
γ − (5v − 5v*)5xγ] .

(4.224)

We argue similarly to (4.218), now with Φ replaced by xγ, 5xγ, and controlling |xγ − 5xγ| as
in (4.216). We thus obtain

x2+γ + 5x2+γ − (v − v*) · (5v − 5v*)(xγ + 5xγ)

≤ c
-
|v − 5v|2 + |v* − 5v*|2

.
(|v|γ + |v*|γ + |5v|γ + |5v*|γ).

(4.225)

Let us now consider the final line of (4.223). By Lemma 4.29, we have the bound

! ∞

0

(G(z/xγ)−G(z/5xγ))2 dz ≤ c
|xγ − 5xγ|2
xγ + 5xγ

. (4.226)

We therefore obtain

x5x
! ∞

0

(G(z/xγ)−G(z/5xγ))2 dz ≤ c
min(x, 5x)

max(x, 5x)1−γ
|x− 5x|2

≤ c(|v|γ + |v*|γ + |5v|γ + |5v*|γ)(|v − 5v|2 + |v* − 5v*|2).
(4.227)

Combining (4.223, 4.225, 4.227), we have shown that

T3 ≤ c(|v|γ + |v*|γ + |5v|γ + |5v*|γ)(|v − 5v|2 + |v* − 5v*|2)f *
p (|v|, |v*). (4.228)
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4. Analysis of T4. The final error term is the term T4, which corresponds to collisions

in the noncutoff system with no corresponding event in the cutoff system. As a result,

we anticipate that T4 will not be bounded in terms of v − 5v, v* − 5v*, but will be small in

the limit K → ∞. Let us recall that the integration limit L is defined as L := K5xγ. By

expanding out the norms, we bound the integrand, for z ≥ L,

@@fp(|v|, |v*|, z, x)(|v + a− 5v|2 − |v + a− 5v − Ja|2)
@@ ≤ cf *

p (|v|, |v*|)|Ja|(|v|+ |5v|+ |v*|+ |5v*|).
(4.229)

As above, we have

|Ja| =
Y

1

2

'
1− cosG

' z

5xγ

((
|5v − 5v*| ≤

1

2
G
' z

5xγ

(
|5v − 5v*|. (4.230)

We therefore obtain the bound

T4 ≤ cf *
p (|v|, |v*|)(|v|2 + |v*|2 + |5v|2 + |5v*|2)

! ∞

L

G
' z

5xγ

(
dz. (4.231)

Recalling the definition of L = K5xγ, the integral evalues to
! ∞

L

G
' z

5xγ

(
dz = 5xγ

! ∞

K

G(z)dz ≤ c5xγK1−1/ν . (4.232)

We therefore find

T4 ≤ CK1−1/ν(|v|p+2+γ + |5v|p+2+γ + |v*|p+2+γ + |5v*|p+2+γ) (4.233)

Recalling that l := p+ 2 + γ, this is exactly the error claimed.

5. Converting into the form desired. Combining (4.210, 4.218, 4.228, 4.233), we

see that

E1
p,K ≤

6
(c− λp

2
)|v|p+γ + C|v*|p+γ

7
|v − 5v|2

+ c(|v|γ + |5v|γ + |v*|γ + |5v*|γ)f *
p (|v|, |v*|)(|v − 5v|2 + |v* − 5v*|2)

+ C(|v|l + |5v|l + |v*|l + |5v*|l)K1−1/ν .

(4.234)

The first and last lines are already in the form desired in the statement of the lemma.

Let us now examine the middle term. Using Young on the cross-terms in f *
p , we see that

f *
p (|v|, |v*|) ≤ 2|v|p + C|v*|p (4.235)

and so

(|v|γ + |v*|γ + |5v|γ + |5v*|γ)f *
p (|v|, |v*|)

≤ c(|v|p+γ + |v|p|v*|γ + |v|p|5v|γ + |v|p|5v*|γ)
+ C(|v*|p+γ + |v*|p|v|γ + |v*|p|5v|γ + |v*|p|5v*|γ)

(4.236)
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We now use Young’s inequality on all terms appearing in this expression; for the second

term, we use Peter-Paul to find

C(|v*|p+γ + |v*|p|v|γ + |v*|p|5v|γ + |v*|p|5v*|γ) ≤ c|v|p+γ + c|v*|p+γ + C(|v*|p+γ + |5v*|p+γ).

(4.237)

Therefore,

(|v|γ + |v*|γ + |5v|γ + |5v*|γ)f *
p (|v|, |v*|)

≤ c|v|p+γ + c|5v|p+γ + C(1 + |v*|p+γ + |5v*|p+γ)(1 + |v|p + |5v|p).
(4.238)

We use this inequality for the term multiplying |v− 5v|2 in the second line of (4.234), and

reverse the roles of v ↔ v*, 5v ↔ 5v* for the term involving |v*−5v*|2. Together, we see that

(|v|γ + |5v|γ + |v*|γ + |5v*|γ)f *
p (|v|, |v*|)(|v − 5v|2 + |v* − 5v*|2)

≤ c(|v|p+γ + |5v|p+γ)|v − 5v|2 + c(|v*|p+γ + |5v*|p+γ)|v* − 5v*|2

+ C(1 + |v*|p+γ + |5v*|p+γ)(1 + |v|p + |5v|p)|v − 5v|2

+ C(1 + |v|p+γ + |5v|p+γ)(1 + |v*|p + |5v*|p)|v* − 5v*|2

(4.239)

which gives the bound desired for E1
p,K .

6. Estimate on E2
p,K. We now turn to the analysis of E2

p,K , which follows a similar

pattern to E1
p,K above. In this case, we use the bound

|5v + 5aK |p ≤ fp,L(|5v|, |5v*|, z, 5x) =

#
$

%
fp(|5v|, |5v*|, z, 5x), z ≤ L;

|5v|p, z > L
(4.240)

which has the same upper bound f *
p . We therefore obtain a decomposition equivalent to

(4.200):

E2
p,K ≤ 5T1 + 5T2 + 5T3 + 5T4 (4.241)

where
5T1 :=

! ∞

0

dz (fp,L(|5v|, |5v*|, z, x)− |5v|p)|v − 5v|2; (4.242)

5T2 := 2

! L

0

dz

!

Sd−2

dϕ fp,L(|5v|, |5v*|, z, x)(v − 5v) · (a− Ja); (4.243)

5T3 :=

! ∞

0

dz

!

Sd−2

dϕ f *
p (|5v|, |5v*|)|a− Ja|2; (4.244)

5T4 :=

! ∞

L

dz

!

Sd−2

dϕ fp,L(|5v|, |5v*|, z, 5x)
@@2(v − 5v) · Ja+ |Ja|2

@@ (4.245)

The analyses of 5T3, 5T4 are identical to the arguments above, and we will now discuss the

necessary modifications for 5T1, 5T2.
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6a. Analysis of 5T1. Let us begin with 5T1. The same reparametrisation gives

! ∞

0

(fp,L(|5v|, |5v*|z, 5x)− |5v|p)dz ≤ −|5v − 5v*|γ|5v|p
! π/2

θ0(K)

/
1−

6
1 + cos θ

2

7p/2
0
β(θ)dθ

+ C|5v − 5v*|γ(|5v*|p + |5v|p−1|5v*|+ |5v||5v*|p−1).

(4.246)

We therefore obtain
! ∞

0

(fp,L(|5v|, |5v*|z, 5x)− |5v|p)dz

≤ −|5v − 5v*|γ|5v|pλp,K + |5v − 5v*|γ(|5v*|p + C(|5v|p−1|5v*|+ |5v||5v*|p−1))

≤ −λp,K |5v|p+γ + λp|5v*|γ|5v|p + C|5v − 5v*|γ(|5v*|p + |5v|p−1|5v*|+ |5v||5v*|p−1)

(4.247)

where

λp,K :=

! π/2

θ0(K)

/
1−

6
1 + cos θ

2

7p/2
0
β(θ)dθ ≤ λp. (4.248)

We now use Peter-Paul on the positive terms, independently of K, to obtain

λp|5v*|γ|5v|p + C|5v − 5v*|γ(|5v*|p + |5v|p−1|5v*|+ |5v||5v*|p−1) ≤ λp

3
|5v|p+γ + C|5v*|p+γ. (4.249)

By monotone convergence, λp,K → λp as K → ∞ with p fixed; in particular, for some

K0 = K0(G, p, d) and all K ≥ K0(G, p, d), λp,K ≥ 5
6
λp. For such K, we have shown that

5T1 ≤ −λp

2
|5v|p+γ|v − 5v|2 + C|5v*|p+γ|v − 5v|2. (4.250)

6b. Analysis of 5T2. Following the same manipulations as (4.212), we obtain

5T2 = (v−5v) ·{(Ψ0L +ΨL∞)(5xγ, |5v|, |5v*|, 5x)(5v − 5v*)− (Ψ0L +ΨL∞)(5xγ, |5v|, |5v*|, 5x)(v − v*)}
(4.251)

where we define

Ψ0L(y, u, v, w) =

! L

0

fp(u, v, z, w)(1− cosG(z/y))dz (4.252)

and

ΨL∞(y, u, v, w) =

! ∞

L

vp(1− cosG(z/y))dz. (4.253)

One then repeats the differentiation (4.214) for each part separately, to obtain a bound

@@@@
∂

∂y
Ψ0L(y, u, v, w)

@@@@+
@@@@
∂

∂y
ΨL∞(y, u, v, w)

@@@@ ≤ cf *
p (u, v) (4.254)

and the rest of the argument follows as for T2.
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7. Bound on E3
p,K. Finally, let us mention E3

p,K . This term is strictly easier than the

two above: there is no term analagous to T1, and one can omit the moment prefactors in

the remaining terms. Alternatively, one may note that E3
p,K is exactly that analysed in

[92, Lemma 3.1], and the claimed bound is exactly the content of [92, Lemma 5.1].

4.10.3 Proof of Lemma 4.12

We now turn to the proof of the quadratic bound Lemma 4.12, where we replace the

integrand of Ep,K with its square. In this case, the integrand is nonnegative, and there

is no hope of exploiting cancellations in the way we did above. On the other hand, the

statement we seek to prove is much weaker; we ask only for local boundedness of QK ,

rather than being small in a suitable sense when |v − 5v|, |v* − 5v*| are small. It will be

sufficient to prove the following slightly simpler lemma, which breaks up QK in a similar

way to the decomposition Ep,K = E1
p,K + E2

p,K + E3
p,K above.

Lemma 4.32. Define

Q1
K =

! ∞

0

dz

!

Sd−2

dϕ
'
dp(v

′, 5v′K)− dp(v, 5v)
(2

; (4.255)

Q2
K =

! ∞

0

dz

!

Sd−2

dϕ
'
dp(v

′
*, 5v′*K)− dp(v*, 5v*)

(2

. (4.256)

Then the estimate (4.27) holds with either Q1
K or Q2

K in place of QK.

Once we have established these estimates, the second point of Lemma 4.12 follows from

the easy comparison QK ≤ 2Q1
K + 2Q2

K .

Proof of Lemmas 4.12. We use the same notation as above, and start from a decomposi-

tion similar to (4.200):

dp(v
′, 5v′K)2 − dp(v, 5v) = (|v′|p + |5v′K |p − |v|p − |5v|p)|v − 5v|2

+ (1 + |v′|p + |5v′K |p)(2(a− Ja) · (v − 5v) + |a− Ja|2)
+ (1 + |v′|p + |5v′K |p)(2Ja · (v + a− 5v) + |Ja|2)1I(z ≥ L).

(4.257)

We now square each term, and use the crude bounds |a| ≤ |v|+ |v*|, |Ja| ≤ |5v|+ |5v*| to see

that

(dp(v
′, 5v′K)2 − dp(v, 5v))2 ≤ c(|v′|p + |5v′K |p − |v|p − |5v|p)2|v − 5v|4

+ c(1 + |v′|p + |5v′K |p)2(|v|2 + |5v|2 + |v*|2 + |5v|2)|a− Ja|2

+ c(1 + |v′|p + |5v′K |p)2(|v|2 + |5v|2 + |v*|2 + |5v|2)|Ja|21I(z ≥ L)).

(4.258)

We can now replace every instance of |v′|p ≤ C(|v|p + |v*|p), and similarly for 5v′K , and
drop the factor 1I(z ≥ L) in the final term. In this way, we obtain

Q1
K ≤ C (T5 + T6 + T7) ; (4.259)
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where the three terms are

T5 :=

! ∞

0

dz

!

Sd−2

dϕ ||v′|p − |v|p + |5v′K |p − |5v|p|

· · ·× (1 + |v|p+4 + |v*|p+4 + |5v|p+4 + |5v*|p+4);

(4.260)

T6 :=

! ∞

0

dz

!

Sd−2

dϕ(1 + |v|2p+2 + |v*|2p+2 + |5vp+2|+ |5v*|2p+2)|a− Ja|2; (4.261)

T7 :=

! ∞

0

dz

!

Sd−2

dϕ(1 + |v|2p+2 + |v*|2p+2 + |5v|p+2 + |5v*|2p+2)|Ja|2. (4.262)

Let us now analyse these integrals one by one. The analysis of T5 is similar to that of T1,

although with an absolute value, and the integrals appearing in T6, T7 can be reduced to

the calculations for T3, T4 in the previous proof.

1. Analysis of T5. We start from the observation that, for all v, w ∈ Rd, we have

||v|p − |w|p| ≤ C(1 + |v|p−1 + |w|p−1)|v − w|. (4.263)

It follows that

||v′|p − |v|p| ≤ C(1 + |v|p−1 + |v + a|p−1)|a|

≤ C(1 + |v|p−1|+ |v*|p−1)(|v|+ |v*|)G
' z

xγ

(
.

(4.264)

Integrating, we find that

! ∞

0

dz

!

Sd−2

dϕ ||v′|p − |v|p| ≤ C(1 + |v|p + |v*|p)
! ∞

0

G(z/xγ)dz

≤ C(1 + |v|p+γ + |v*|p+γ).

(4.265)

A similar argument applies for ||5v′K |p− |5v|p|. Including the moment prefactors, we obtain

T5 ≤ C(1 + |v|2p+4+γ + |v*|2p+4+γ + |5v|2p+4+γ + |5v*|2p+4+γ). (4.266)

2. Analysis of T6. For T6, we note that the moment prefactor is constant over the

integral, and that we already analysed
&∞
0

dz
&
Sd−2 |a − Ja|2 when analysing T3 in the

previous proof. Absorbing the terms |v − 5v|2 and |v* − 5v*|2, the same calculations as

above therefore give

Q2 ≤ C(1 + |v|2p+4+γ + |v*|2p+4+γ + |5v|2p+4+γ + |5v*|2p+4+γ). (4.267)
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3. Analysis of T7. As above, the moment prefactor is independent of the integration

variables z,ϕ, and the problem reduces to estimating
&∞
L

&
Sd−2 |Ja|2, which is analagous to

T4. We recall that

|Ja|2 = 1

2
|5v − 5v*|2

'
1− cosG

'z
5x

((
≤ 1

4
|v − 5v|2G

' z

5xγ

(2

. (4.268)

Therefore, ! ∞

0

dz

!

Sd−2

dϕ|Ja|2 ≤ C|v − 5v|2|v − 5v|γ
! ∞

0

G(z)2dz. (4.269)

The final integral is finite, thanks to the estimates established in Subsection 4.10.1, so we

conclude

T7 ≤ C(1 + |v|2p+4+γ + |v*|2p+4+γ + |5v|2p+4+γ + |5v*|2p+4+γ). (4.270)

Combining (4.266, 4.267, 4.270) gives the claimed result.



Appendix

4.A Proof of Proposition 4.7

We now address the proof of Proposition 4.7, which was deferred earlier. The first item

is elementary, and relies on a consistency between the unlabelled and labelled generators

G,GL; for the second item, we carefully state a result of Kurtz [126, 127] and show how

it applies in our case.

Let us recall some notation which will be needed. We will frequently move between objects

defined on the labelled Kac sphere

SN =

+
VN = (V 1, ...V N) ∈ (Rd)N ,

N"

i=1

V i = 0,
N"

i=1

|V i|2 = N

,
(4.271)

and the unlabelled state space SN ; we recall that θN : SN → SN is the map

VN = (V 1, ..., V N) /→ 1

N

N"

i=1

δV i . (4.272)

For clarity, we will indicate functions on SN with a J· to distinguish them from those on

SN . We will equip SN with the distance

|VN −WN | :=
N"

i=1

|V i −W i| (4.273)

where the right-hand side is the Euclidean norm on Rd. We will write W 1,∞(SN) for the

Sobolev space of functions JF : SN → R which are Lipschitz with respect to this distance,

equipped with the norm

‖ JF‖W 1,∞(SN ) := max

/
sup
VN

| JF (VN)|, sup
VN ∕=WN

| JF (VN)− JF (VN)|
|VN −WN |

0
(4.274)

and define W 1,∞(SN) similarly, equipping SN with the Wasserstein1 distance W1. It is

elementary to show that these spaces are separable. Let us also recall, for convenience,

the generators of the labelled and unlabelled dynamics, given respectively by

(GNF )(µN) = N

!

Rd×Rd×Sd−1

(F (µN,v,v!,σ)−F (µN))B(v−v*, σ)µ
N(dv)µN(dv*)dσ; (4.275)

233
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(GL JF )(VN) =
1

N

N"

i=1

N"

j=1

!

Sd−1

'
JF (VN

i,j,σ)− JF (VN)
(
dσ (4.276)

for Lipschitz functions F ∈ W 1,∞(SN), JF ∈ W 1,∞(SN) respectively. With this notation

fixed, we turn to the proof of the two propositions.

Proof of Proposition 4.7. For item i)., observe the following consistency between the un-

labelled generator (4.275) and labelled generator (4.276), which follows from the Sym(N)

symmetry of the labelled dynamics: if F ∈ W 1,∞(SN), then JF := F ◦ θN ∈ W 1,∞(SN),

and

GL (F ◦ θN) = (GF ) ◦ θN . (4.277)

Now, let VN
t be a labelled Kac process, for some filtration (Ft)t≥0; it follows that VN

t

solves the martingale problem for (4.276) for the same filtration. Now, let µN
t = θN(VN

t )

be the associated empirical measures, and fix F ∈ W 1,∞(SN). For JF = F ◦ θN as above,

the consistency (4.277) gives

F (µN
t )− F (µN

0 )−
! t

0

(GF )(µN
s )ds = JF (VN

t )− JF (VN
0 )−

! t

0

(GL JF )(VN
s )ds. (4.278)

The right-hand side is a martingale by assumption, and hence µN
t solves the martingale

problem for (4.275) in the filtration (Ft)t≥0, as desired; in particular, µN
t is a Markov

process with generator (4.275).

For item ii), we will use the following result, which generalises the implication needed,

due to Kurtz [126, 127]. Let us first fix some terminology. For a topological space E,

let us write C(E) for the space of bounded, continuous functions on E, B(E) for the

space of bounded, Borel-measurable functions on E, and P(E) for the space of Borel

probability measures. Given another such space E0, a transition function α from E0 to E

is a mapping from E0 → P(E) such that, for all Borel sets A ⊂ E, the map y /→ α(y, A)

is a Borel function on E0; for such α and f ∈ B(E), define αf ∈ B(E0) by

(αf)(y) :=

!

E

f(z)α(y, dz). (4.279)

We will write ME[0,∞), DE[0,∞) for the measurable, respectively càdàg functions from

[0,∞) to E.

Let us say that a linear operator A ⊂ B(E)×B(E) is seperable if there exists a countable

subset {fβ, β ≥ 1} ⊂ D(A) such that, for all (f, g) ∈ A, there exists a subsequence

βi → ∞ such that (fi,Afi) are bounded uniformly in i, and converge pointwise to (f, g).

We say that a linear operator A is a pregenerator if it is dissipative, and there exists a

sequence of functions qn : E → P(E), rn : E → [0,∞) such that, for all f ∈ D(A), we

have the pointwise convergence

rn(x)

!

E

(f(y)− f(x))qn(x, dy) → (Af)(x) for all x ∈ E. (4.280)
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With these definitions, we can state the following result, which appears as part of [127,

Theorem 1.4]

Proposition 4.33. Let (E, r), (E0, r0) be complete, separable metric spaces. Let A ⊂
C(E) × C(E) be a linear operator which is seperable and a pre-generator, and whose

domain D(A) separates points in E. Suppose that θ : E → E0 is Borel measureable, and α

is a transition function from E0 to E satisfying the compatibility condition α(y, θ−1(y)) = 1

for all y ∈ E0. Let Aθ be the linear operator

Aθ = {(αf,α(Af)) : f ∈ D(A)} ⊂ B(E0)× B(E0). (4.281)

Let L0 ∈ P(E0), and let 5L0 = α#L0 ∈ P(E) be given by

5L0(A) =

!

E0

α(y, A)L0(dy). (4.282)

If 5µ = (5µt)t≥0 is a solution of the martingale problem for (Aθ,L0), then there exists

a solution V of the martingale problem for (A, 5L0) such that 5µ has the same law on

ME0 [0,∞) as µ = θ ◦V. Further, if 5µ, and hence µ, has a modification with sample paths

in DE0 [0,∞), then the modified 5µ, µ have the same law on DE0 [0,∞).

Let us now show how this applies in our case. We will take E,E0 to be the labelled and

unlabelled Kac spheres E = SN , E0 = SN respectively, equipped with the metrics as above.

We take A to be the labelled generator GL given by (4.9), defined on F ∈ W 1,∞(SN), and

let θ = θN be given by (4.272). We define α as the average over the preimage

α(µN) =
1

#θ−1
N (µN)

"

VN∈θ−1
N (µN )

δVN . (4.283)

We remark that, if µN ∈ SN and VN ∈ θ−1
N (µN), then α(µN) can be rewritten

α(µN) =
1

N !

"

π∈Sym(N)

δVN,π (4.284)

where VN,π denotes the action of π ∈ Sym(N) permuting the N components V 1, .., V N ∈
Rd of VN . It is elementary, if somewhat tedious, to check that with these choices, the

linear operator Aθ is exactly the unlabelled generator G, defined on W 1,∞(SN); the in-

clusion G ⊂ Aθ is exactly the statement (4.277), and for the other inclusion Aθ ⊂ G, we
use (4.284) to check that, for JF : SN → R Lipschitz, α JF : SN → R is Lipschitz, and

straightforward calculations show that G(α JF ) = α(GL JF ) as desired.

To see thatA = GL is separable, we note thatW 1,∞(SN) is separable, and GL : W 1,∞(SN) →
L∞(SN) is a bounded linear map. Its graph is therefore separable in the stronger topology

induced by GL ⊂ W 1,∞(SN) × L∞(SN), and so is separable in the topology of bounded

pointwise convergence in the definition above.
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To see that GL is a pregenerator, let us define GL
K to be the cutoff equivalent, replacing

B by the cutoff kernel BK given by (CHPK). It is straightforward to write GL
K in the

form desired, and GL
K → GK in the space of bounded linear maps B(W 1,∞(SN), L

∞(SN)).

Elementarily, each GL
K is the generator of a cutoff, labelled Kac process, and so generates

a semigroup of contraction mappings; by the Lumer-Phillips Theorem, they are therefore

dissipative; we can then take a limit to conclude that GL is dissipative, and so is a a

pregenerator.

We can now apply the conclusion of Proposition 4.33 above. Let us fix µN
0 ∈ SN , and

let (5µN
t )t≥0 be a solution to the martingale problem for the unlabelled generator (1.31)

starting at µN
0 . The law 5L0 given by Proposition 4.33 exactly corresponds to picking

VN
0 ∈ θ−1

N (µN
0 ) uniformly at random, as in the statement of the proposition, and by the

result quoted above, there exists a solution to the martingale problem for (4.9), starting

at VN
0 such that 5µN

t has the same law as θN(VN
t ). VN

t is therefore a weak solution to the

stochastic differential equation (LK), and so we have proven the claim of item ii).

4.B Proof of Lemma 4.9

We now sketch the proof of Lemma 4.9, which were deferred from earlier. We will demon-

strate a single construction which provides both ια, Rα with the desired properties.

Sketch Proof. Let us view (0, 1) as an auxiliary probability space, equipped with the

Borel σ-algebra B(0, 1) and Lebesgue measure dα. Let us write λ for the Haar measure

on the group Isom(Sd−2), and construct random variables Z1(α), ....Zd(α), independently

distributed uniformly over the sphere Sd−1, ζ(α) distributed uniformly on (0, π/3) and

Sn(α) samples from λ, all independently of each other.

With these variables given, we construct the maps as follows. If {Z1(α), Z2(α), ..., Zd(α)}
is a basis of Rd, then let χi(α) : Rd → R be the dual basis, so any X can be written as X =
<d

i=1 Zi(α)χi(α, X). Now, if χ1(α, X) > 0, we can find an orthogonal basis by applying

Gram-Schmidt to {X,Z2(α), ..., Zd(α)}, and produce ια(X) by scaling so that elements

have norm |X|. If χ1(α, X) < 0, we define ια(−X) by the previous construction and define

ια(X) := −ια(−X). We construct ια on the remaining hyperplane {X : χ1(α, X) = 0}
by setting ια(0) = 0 and otherwise, picking the first coordinate j with χj(α, X) ∕= 0; if

χj(α, X) > 0, apply Gram-Schmidt to {X,Z2(α), ..., Zj−1(α), Zj+1(α), ...Zd(α)}, and if

χj(α, X) < 0, define ια(X) := −ια(−X), which is defined by the previous case. Finally,

if {Zi(α)} do not form a basis, repeat the same construction with the canonical basis

{e1, ..., ed} of Rd.

Let us check the claimed continuity property. Any ια with the desired properties is

immediately continuous at 0, thanks to the normalisation |ια,j(X)| = |X|. For any X ∕= 0,
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it holds dα-almost surely that {Zi(α)} form a basis and that X ∕∈ Span(Z2(α), ...Zd−1(α)),

so χ1(α, X) ∕= 0. The Gram-Schmidt construction on

{±X,Z2(α), ..., Zd(α)}

is continuous in X by explicit construction away from {χ1(α, X) = 0}, so we conclude

that

{α : ιαdiscontinuous at X} ⊂
)
α : {Zi(α)} not a basis

*

∪
)
α : X ∈ Span(Z2(α), ..., Zd(α))

* (4.285)

which has dα-measure 0. The same immediately applies to Γα, a(·,α).

For Rα(X, Y ), we construct R separately depending on whether X · Y is greater than

or less than −|X||Y | cos ζ(α). If X · Y = |X||Y |, so X, Y are colinear, then the unique

possible choice of R is to be the identity on Sd−2. Otherwise, if X ·Y ≥ −|X||Y | cos ζ, we
obtain j1X(α) by applying Gram-Schmidt orthogonalisation to {X, Y }, and similarly for

Y . We now find u2(α), ...ud−1(α) by applying Gram-Schmidt to {X, j1X , Z2(α), ...., Zd(α)}
whenever this is a spanning set for Rd, and arbitrarily otherwise. We now let Rα(X, Y )

be the isometry constructed in the proof Lemma 4.8, and observe that, for any given X, Y

which are not colinear,

{α : Rα discontinuous at (X, Y )} ∩ {α : X · Y ≥ −|X||Y | cos ζ(α)}
⊂ {α : {X, Y, Z3(α), ..., Zd(α)} not spanning}

(4.286)

which has dα-measure 0. In the case where X, Y are colinear and have the same sense, if α

is such that ι is continuous at X, Y and (Xn, Y n) → (X, Y ) and if ι is continuous at both

X, Y , then for any subsequence we can find a further subsequence with Rα(X
n, Y n) → r,

for some r ∈ Isom(Sd−2) by compactness, then we can take limits to check that this r

also satisfies the requirement(4.11), and so is the identity r = IdSd−2 = Rα(X, Y ), and we

conclude that Rα is continuous at colinear (X, Y ) with the same sense.

We finally deal with the case X · Y < −|X||Y | cos ζ(α) For any X, Y,α, let us write

Rα(X, Y ) for the set of all isometries R ∈ Isom(Sd−2) satisfying the conclusion (4.11) for

the maps Γα; thanks to Lemma 4.8, this is always a nonempty set. Further, if X · Y < 0,

then we can examine the proof of Lemma 4.8 to see that Rα(X, Y ) contains an open

neighbourhood of the isometry constructed in the cited proof, so that Rα(X, Y ) has

nontrivial interior and hence λ(Rα(X, Y )) > 0, while the boundary ∂Rα(X, Y ) is a union

of codimension 1 submanifolds of Isom(Sd−2), and in particular has λ-measure 0. Now,

in the case where X · Y < −|X||Y | cos ζ(α) < 0, we set N(α, X, Y ) = min(n : Sn(α) ∈
Rα(X, Y )} ∈ N ∪ {∞}, and Rα(X, Y ) = SN(α,X,Y )(α) whenever N(α, X, Y ) is finite, and

construct Rα(X, Y ) with the desired properties arbitrarily otherwise. In this way, for any

fixed X, Y , let α be such that X · Y < −|X||Y | cos ζ(α) and such that ια is continuous

at X, Y . The set of such α where N(α, X, Y ) is infinite or SN(α,X,Y ) ∈ ∂Rα(X, Y ) has



238 4.B. PROOF OF LEMMA 4.9

dα-measure 0, and for all other α, some thought shows Rα is locally constant at X, Y and

in particular continuous. Summing up, we have shown that

{α : Rα discontinuous at (X, Y )} ∩ {α : X · Y < −|X||Y | cos ζ(α)}
⊂ {α : (α, X, Y ) = ∞ or SN(α,X,Y ) ∈ ∂Rα(X, Y )}

∪ {α : ια discontinuous at X or Y }

(4.287)

which has dα-measure 0. Finally, for givenX, Y , the edge case {α : X·Y = −|X||Y | cos ζ(α)}
has dα-measure 0, because ζ has a density, and we are done.



Chapter 5

The Hard Potential Landau Equation

5.1 Introduction & Main Results

In this chapter, we study the spatially homogeneous Landau equation (LE) in dimension

d = 3, with hard potentials (0 < γ ≤ 1), proving all the assertions of Theorem 3. This

chapter is based on the work [90], jointly with Prof. Nicolas Fournier.

In this context, we continue with the ideas of Chapter 4. The central result is a new

stability and well-posedness result (Theorem 3ii-iii).), analagous to Theorem 4.1. In case

of the Landau equation, we can significantly refine the estimates in Sections 4.3,4.10 to

show that any p > 2 suffices for the well-posedness of the Landau equation, whereas

previous results have required either exponential moments [88] or additional regularity

[58], and where we needed a (large, but finite) p in Chapter 4. As a result of the new

uniqueness theorem, we extend previous regularity results, to show that they apply to

all weak solutions to (LE), aside from the degenerate case of point masses, whereas

the corresponding result of Desvillettes and Villani [58] only shows that such solutions

exist, and later results require strong a priori regularity conditions. Finally, we give an

existence result for µ ∈ P2(R3), which is the most general possible for the definition of

weak solutions.

5.1.1 Notation

Let us briefly introduce some notation which is specific to this chapter. First, we introduce

some notation regarding the regularity theory of solutions. For k, s ≥ 0, we define the

weighted Sobolev norm

‖f‖2Hk
s (R3) =

"

|α|≤k

!

R3

|∂αf(v)|2(1 + |v|2)s/2dv

239
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and the weighted Sobolev space Hk
s (R3) for those f where this is finite. By an abuse of

notation, we say that µ ∈ P(R3) belongs to Hk
s (R3) if µ admits a density f with respect to

the Lebesgue measure with f ∈ Hk
s (R3), and in this case we write ‖µ‖Hk

s (R3) = ‖f‖Hk
s (R3).

Similarly, we say that µ ∈ P(R3) is analytic if it admits an analytic density.

Let us also mention some other points of notation which we will use in this chapter. Since

we are (exclusively) interested in the Landau equation, we write L = LL and omit the

subscript. Similarly, since we only work with d = 3, we write S = S(R3) everywhere.

5.1.2 Main Results

We now give precise formulations of our results, corresponding to Theorem 3. Throughout

this chapter, we will work with the transport costs wp,ε for the functions dp,ε given in

Section 2.1. Our first result is the following stability result, which corresponds to Theorem

4.1.

Theorem 5.1. Fix γ ∈ (0, 1] and p > 2 and two weak solutions (µt)t≥0, (νt)t≥0 ⊂ S to

(LE) starting from µ0 and ν0, both belonging to Sp. Then there exists a stochastic process

(Vt, Ṽt)t≥0, such that πt = Law(Vt, Ṽt) ∈ Π(µt, νt), and that Vt, Ṽt solve (stLE) for µt, νt

respectively, for different white noises. Furthermore, for some constant C, depending only

on p and γ, the coupling satisfies for all t ≥ 0,

E[dp,1(Vt, Ṽt)] ≤ wp(µ0, ν0) exp
'
C(1 + t)Λp(µ0, ν0)

2
(
. (5.1)

Since πt = Law(Vt, Ṽt) is a coupling of µt, νt, the right-hand side is an upper bound for

wp,1(µt, νt).

As a byproduct of our analysis, we also obtain the following, which extends the equivalence

between (LE) to (stLE) to include all solutions.

Theorem 5.2. If (Vt)t≥0 is any solution to (stLE) with µt = Law(Vt) ∈ L1
loc([0,∞),S2+γ),

then (µt)t≥0 is a weak solution to (LE). Conversely, if (µt)t≥0 ⊂ S is a weak solution to

(LE), then there exists a solution (Vt)t≥0 to (stLE) with Law(Vt) = µt for all t.

Concerning existence, the following will prove Theorem 3iv).

Theorem 5.3. Let γ ∈ (0, 1] and µ0 ∈ S. Then there exists a stochastic process (Vt)t≥0

solving (stLE) with Law(V0) = µ0 and such that the laws µt = Law(Vt) satisfy µ ∈
L1
loc([0,∞),S2+γ). In particular, (µt)t≥0 ⊂ S is a weak solution to (LE) starting at µ0.

Taken together, Theorems 5.1, 5.2, 5.3 show that all weak solutions arise via the SDE

(stLE), that solutions to (stLE) exist as soon as µ0 ∈ S, and provide a quantitative

stability estimate as soon as the initial data belong to S2+ = ∪p>2Sp.
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Finally, we consider the regularity of solutions. The following regularity proves the asser-

tion of Theorem 3iii), and arises as a result of our uniqueness theorem, combined with

previous regularity results from the literature.

Theorem 5.4. Fix γ ∈ (0, 1]. Let (µt)t≥0 ⊂ S be any weak solution to (LE). Then we

have

for all k, s ≥ 0 and all t0 > 0, sup
t≥t0

‖µt‖Hk
s (R3) < ∞. (5.2)

and for all t > 0, µt is analytic and has a finite entropy.

Let us remark that we do not need to exclude the case of point masses as in the corre-

sponding theorem in [90], since we already excluded such cases by normalising to S. In

any case, if µ0 = δv0 is a point mass, then conservation of energy and momentum ensures

that µt = δv0 for all t > 0, and there is no hope of regularity.

5.1.3 Strategy

We first work towards the stability and uniqueness result Theorem 5.1, which follows

a pattern similar to the second proof given in the Boltzmann case in Chapter 4. The

principle remains the same, of using negative ‘Povzner terms’ to counteract the higher-

order terms which prevent a Grönwall estimate (see also the sketch proof of Proposition

4.18). In this case, we will find explicit, rather than explicitable constants; indeed, choose

p = 2 + ε will suffice to cancel the difficult terms. To allow for initial data with only

µ0 ∈ S2+, we will use the transport costs wp,1 introduced in Section 2.1, based on the cost

(1 + |v|p + |ṽ|p)|v − ṽ|2/(1 + |v − ṽ|2), rather than wp = wp,0 as we did in the previous

chapter, since wp,1 is defined on Pp(R3) rather than Pp+2(R3).

5.1.4 Plan of the Chapter

The chapter is structured as follows.

i). In Section 5.2, we will present some preliminary calculations on the coefficients a, b

of (1.8) which are used throughout the chapter.

ii). Section 5.3 is a self-contained result regarding a tightness property for solutions to

(stLE), analagous to Section 4.4, which will be used in the same way to construct

solutions via extraction of a subsequence converging in distribution.

iii). Section 5.4 introduces the Tanaka-style coupling, equivalent to Section 4.3, and

presents the key estimate without proof.
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iv). Section 5.5 gives the proof of the stability and uniqueness result Theorem 5.1. We

first prove the result in Lemma 5.10 under Gaussian moment conditions, which are

then carefully relaxed.

v). Section 5.6 gives the proof of Theorem 5.2, using tools which have already been

developed in constructing the coupling in Theorem 5.1 and in Section 5.3, following

the same argument as in the Boltzmann case in 4.7.

vi). Section 5.7 consists of a self-contained proof of our existence result Theorem 5.3,

building only on an existence result of Desvilettes and Villani, and using the de La

Vallée Poussin theorem and the compactness property in Section 5.3.

vii). In Section 5.8, we prove Theorem 5.4 about smoothness. We show a very mild

regularity result (Lemma 5.15): solutions do not remain concentrated on lines. This

allows us to apply results from the literature on the existence of regular solutions,

exploiting the uniqueness from Theorem 5.1.

viii). Finally, Section 5.9 contains the proof of the estimate Lemma 5.9.

5.1.5 Literature Review & Discussion

Let us discuss our results in the context of the literature on the Landau equation and the

other work in this thesis.

1. Well-Posedness of the Landau Equation We emphasise that the key result

of this chapter is the stability and uniqueness result Theorem 5.1, which continues the

study of stability of the hard potential Landau equation by Arsenv and Buryak [13],

Desvillettes and Villani [58], and by Fournier and Guillin [88]. As in Chapter 3 and

the works [142, 143], stability estimates can be used to prove propagation of chaos for

the many-particle system, and the estimate we establish here could be a first step in

this direction. In this context, it is particularly advantageous that our result requires

neither regularity nor exponential moments, as these are not readily applicable to the

empirical measures of the particle system. However, let us remark that the result we

obtain here on its own is not (yet) sufficient to use arguments analagous to Chapter 3 or

the abstract result of [143]; these would need a ‘second order’ stability result, comparable

to Proposition 3.15, whereas our current stability result is only first order.

As in the Boltzmann case, the Tanaka-Povzner argument we use here leads to Theorem

5.1 being stronger and more general than those found in the literature. The uniqueness

result of Desvillettes and Villani [58] requires that the initial data µ0 has a density f0

satisfying !

R3

(1 + |v|2)p/2f 2
0 (v)dv < ∞ for some p > 15 + 5γ, (5.3)
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while the result of the [88] recalled in Proposition 5.8 below allows measure solutions, but

requires a finite exponential moment. Our result therefore allows much less localisation

than either of the results above, while also not requiring any regularity on the initial data

µ0, ν0.

Let us also remark that the condition µ0 ∈ S2+ε, ε > 0 in Theorem 5.1 appears to

be almost optimal for γ > 0. As in the Boltzmann case, the Maxwell molecule case

γ = 0 of the Landau equation is particularly tractable, and results of Villani [187] show

that existence and uniqueness hold, assuming only that µ0 ∈ P2(R3). Moreover, in

Theorem 3.6, we prove a similar result for the Boltzmann equation for hard spheres

(HS) or cutoff hard potentials (CHPK), again requiring p > 2 moments. With only

p = 2 moments, the cutoff Boltzmann equation is known to have unique energy-conserving

solutions [144], but no quantitative stability estimate, and the technique fails as cutoff is

removed. This limitation is therefore consistent with the state-of-the-art for the (cutoff)

Boltzmann equation.

Moreover, since the Landau equation is known to converge exponentially to equilibrium

[41], we could interpolate between the short-time result here and the long-time convergence

to equilibrium to obtain a uniform-in-time Hölder stability estimate as we did in Theorem

3.6. However, the estimate obtained is fairly weak, as the resulting Hölder exponent

depends on the moments of the solutions, and so is much weaker than Theorem 3.6.

2. Coupling Arguments for the Landau Equation As discussed in the introduc-

tion, coupling arguments to prove stability go back as far as Tanaka [177] for the Boltz-

mann equation in the case of Maxwell molecules, and have subsequently been applied to

both hard potentials (as in the previous chapter) and soft potentials for the Boltzmann

equation. The idea was imported to the Landau equation by Funaki [95] and has previ-

ously been applied by Fournier [88] in the context of stability and propagation of chaos,

as well as Guérin [105, 106]. It also seems possible that the technique we develop here

could be applied to prove propagation of chaos via the coupling method of [88], but we

will not explore this here.

3. Existence Regarding existence, Theorem 5.3 extends the existence result of [58],

recalled in Proposition 5.12 below, as we only assume µ0 ∈ S, which is clearly necessary

for the definition of weak solutions, instead of µ0 ∈ P2+(R3). Theorem 5.2 similarly

extends, without moment hypotheses, a similar result of Fournier and Guillin [88] for a

stochastic differential equation driven by a Brownian motion, which requires 4 moments

on the initial data; as in the Boltzmann case it is satisfying to know that solving (LE) is

(unconditionally) equivalent to solving (stLE).
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4. Regularity Regarding regularity, Theorem 5.4 shows the smoothness of any weak

solution, assuming only that µ0 ∈ S, instead of showing the existence of one smooth so-

lution when µ0 ∈ P2+(R3) as in [58] and [45, 46]. Another possible approach to regularity

results is the use of Malliavin calculus, see Guérin [105], although this proof is already long

in the case of Maxwell molecules, while the proof of Theorem 5.4 is comparatively short,

based on Theorem 5.1 and the known results on the existence of regular solutions. Let

us finally mention that in the case γ = 0, a stronger ‘ulta-analytic’ regularity is known,

see Morimoto, Pravda-Starov and Xu [145]; in this case, one has the advantage that the

coefficients of (LE) are already analytic (polynomial) functions.

Let us remark that we do not include a similar result in the case of the non-cutoff hard

potentials (NCHP). In this case, we do not obtain a regularity result as an application of

the uniqueness, as we do here. In the case d = 3, Alexandre et al. [8] showed that, if µ0

admits a density, then the density ft of µt has
√
ft ∈ H

ν/2
loc (R3), which Chen and He [47]

improved to (1+ |v|2)
√
ft ∈ Hν/2(R3). Fournier [83] showed that the entropy immediately

becomes finite, which implies the existence of a density ft for µt for t > 0, and that the

density belongs to a certain Besov space. For the case of regularised hard potentials, where

the kinetic factor is replaced by something like (1 + |v|2)γ/2, Desvillettes and Wennberg

[60] proved that, provided µ0 ∈ S has finite entropy, then there exists a solution (µt)t≥0

admitting a density ft in the Schwarz space for all t > 0. If we modified the ideas of

Chapter 4 and of Fournier [83] to cover this case, we could use the same argument as in

the Landau case to prove that this applies to all solutions for this choice of kernel.

5. Other Landau Equations As mentioned in the introduction, the Landau equation

makes sense for the full range of the parameters γ ∈ [−3, 1], whereas the results of this

chapter apply exclusively to γ ∈ (0, 1]. Indeed, for γ > 0 the coefficients fail to be

Lipschitz at infinity, and the technique we use is exactly designed to compensate for this

failure. On the other hand, when γ < 0, the coefficients fail to be Lipschitz close to the

diagonal v = v*, and our current technique produces no compensation. Let us mention

the state of the art for the other cases of the Landau equation: the cases γ ∈ (−3, 0) have

been studied by Fournier, Guèrin and Hauray [85, 89]. As in the introduction, the case

γ = −3 is the most physically relevant case and corresponds to particles interacting by

repulsive Coulomb interactions, where the Boltzmann collision operator no longer makes

sense (ν = −2). This case has been studied by Villani [186], Desvillettes [54] and Fournier

[82]. We also study only the spatially homogeneous case; let us mention works by by Guo

[107], He and Yang [109], Golse, Imbert, Mouhot and Vasseur [99] and Mouhot [148] on

the Cauchy problem for the full, spatially inhomogeneous, Landau equation. Finally, the

Landau-Fermi-Dirac equation has been recently studied by Alonso, Bagland and Lods

[10].
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6. Dimension constraint We also remark on the constraint d = 3, which is specific

to this chapter. While the same principle would hold in general dimensions d ≥ 3, the

estimates on the parameters in Section 5.2 and hence the key calculations in Section 5.9

hold only for the particular choice d = 3. In general, the same technique would lead to

a requirement that p > p0 for some p0(d), as in Chapter 4, and so may not coincide with

the almost sharp results we obtain here.
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5.2 Some Preliminary Calculations

We introduce a few notation and handle some computations of constant use. We denote by

| · | the Euclidean norm on R3 and for A and B two 3×3 matrices, we put ‖A‖2 = Tr(AA∗)

and 〈〈A,B〉〉 = Tr(AB∗).

For x ∈ R3, we introduce

σ(x) = [a(x)]1/2 = |x|1+γ/2Πx⊥ .

For x, x̃ ∈ R3, it holds that

||σ(x)||2 = 2|x|γ+2 and 〈〈σ(x), σ(x̃)〉〉 = |x|1+γ/2|x̃|1+γ/2
'
1+

(x · x̃)2
|x|2|x̃|2

(
≥ 2|x|γ/2|x̃|γ/2(x·x̃).

(5.4)

Indeed, it suffices to justify the second assertion, and a simple computation shows that

Πx⊥Πx̃⊥ = I3 − |x|−2xx∗ − |x̃|−2x̃x̃∗ + |x|−2|x̃|−2(x · x̃)xx̃∗, from which we conclude that

〈〈σ(x), σ(x̃)〉〉 =|x|1+γ/2|x̃|1+γ/2Tr (Πx⊥Πx̃⊥) = |x|1+γ/2|x̃|1+γ/2[1 + |x|−2|x̃|−2(x · x̃)2],

which is greater than 2|x|γ/2|x̃|γ/2(x · x̃) because 1 + a2 ≥ 2a.

We note a useful inequality we will frequently use. For a, b ≥ 0 and α ∈ (0, 1), we have

that

|aα − bα| ≤ (a ∨ b)α−1|a− b|. (5.5)

To see this, assume without loss of generality that a ≥ b, and the claimed inequality

follows from aα− bα = aα[1− (b/a)α] ≤ aα(1− b/a) = aα−1(a− b). The case b ≥ a follows

by symmetry.

For x, x̃ ∈ R3, recalling that b(x) = −2|x|γx, we have

|b(x)− b(x̃)| ≤ 2|x|γ|x− x̃|+ 2|x̃|||x|γ − |x̃|γ| ≤ 2(|x|γ + |x̃|γ)|x− x̃|, (5.6)

because |x̃|||x|γ − |x̃|γ| ≤ |x̃|(|x| ∨ |x̃|)γ−1|x − x̃| ≤ |x̃|γ|x − x̃| by (5.5). We also have,

thanks to (5.4),

||σ(x)− σ(x̃)||2 ≤ 2|x|γ+2 + 2|x̃|γ+2 − 4|x|γ/2|x̃|γ/2(x · x̃) = 2||x|γ/2x− |x̃|γ/2x̃|2. (5.7)

Proceeding as for (5.6), we deduce that

||σ(x)−σ(x̃)||2 ≤ 2(|x|γ/2|x− x̃|+ |x̃|||x|γ/2− |x̃|γ/2|)2 ≤ 2(|x|γ/2+ |x̃|γ/2|)2|x− x̃|2. (5.8)

Finally, for v, v∗ ∈ R3, σ(v − v∗)v = σ(v − v∗)v∗, because Π(v−v∗)⊥(v − v∗) = 0, and so

|σ(v−v∗)v| ≤ C||σ(v−v∗)||(|v|∧|v∗|) ≤ C|v−v∗|1+γ/2(|v|∧|v∗|) ≤ C|v−v∗|γ/2|v||v∗|, (5.9)

because |v − v∗|(|v| ∧ |v∗|) ≤ (|v|+ |v∗|)(|v| ∧ |v∗|) ≤ 2|v||v∗|.
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5.3 A Tightness Property for Solutions of the Non-

linear SDE

We first prove the following tightness property for solutions to (stLE), which will be in

frequent use later. We remark that this step is not necessary when arguing at the level of

weak solutions (µt)t≥0 to (LE), but will be necessary in proving the ‘stochastic’ form of

the results Theorems 5.1, 5.2, 5.3; in preparation for applying the result in the course of

Theorems 5.2, 5.3, we are careful that the only moment requirements are some uniform

integrability property for µn ∈ L∞
loc([0,∞),P2(R3)) ∩ L1

loc([0,∞),P2+γ).

Lemma 5.5. Let (µn
t )t≥0 be a family of weak solution to (LE) with the uniform integra-

bility conditions

sup
tfin≥0

lim
R→∞

sup
n

sup
t≤tfin

!

R3

(1 + |v|2)1I|v|≥Rµ
n
t (dv) = 0; (5.10)

sup
t≥0

lim
R→∞

sup
n

! t

0

!

R3

(1 + |v|2+γ)1I|v|≥zµ
n
s (dv)ds = 0. (5.11)

For each n, let (V n
t )t≥0 be a solution to (stLE) with Law(V n

t ) = µn
t for all t ≥ 0. Then

the processes (V n
t )t≥0 are tight in the local uniform topology of C([0,∞),R3), and any

subsequential limit point (Vt)t≥0 is a solution to (stLE).

As in the Boltzmann case, we will use Lemma 4.14 in the proof. Compared to the

Boltzmann case Lemma 4.13, this lemma is much more borderline and difficult, because

we have the growth |Lf | ≤ C(1+ |v|2+γ+ |v∗|2+γ), and the exponent 2+γ is the borderline

case for local integrability estimates Λp(µt) ∈ L1
loc([0,∞)) from Proposition 2.12, unless

we make additional moment assumptions. By contrast, in the Boltzmann case, we had

the exponent 1 + γ ≤ 2, which we dominated using a priori esimtates on Λ2+(γ/2)(µt) ∈
L1
loc([0,∞)).

Proof of Lemma 5.5. First, (5.10) gives immediately that the second moments Λ2(µ
n
t ) are

bounded, and (5.11) implies that
& t

0
Λ2+γ(µ

n
u)du is bounded in n, locally uniformly in t.

Step 1: Tightness We first prove tightness. Let us fix ε > 0 and a time horizon tfin.

In what follows, A,C will be be allowed to vary from line to line, depending only on ε, tfin

and the uniform integrablity estimates, but not on n.

Returning to (stLE), we can write V n
t as

V n
t = V0 +Mn

t +

! t

0

!

R3

b(V n
u − v*)µ

n
u(dv*)du (5.12)
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where M is a R3-valued martingale with quadratic covariation

[Mn]t =

! t

0

!

R3

σ(V n
u − v*)σ

*(V n
u − v*)µ

n
u(dv*)du. (5.13)

Recalling (5.4) and that Law(V n
u ) = µn

u, we integrate to find that, for some absolute

constant C,

E (Tr[Mn]t) =

! t

0

!

R3

E[〈〈σ(V n
u − v*), σ(V

n
u − v*)〉〉]µn

u(dv*)du

= 2

! t

0

!

R3

E[|V n
u − v*|2+γ]µn

u(dv*)du

≤ C

! t

0

!

R3

(E[|V n
u |2+γ + |v*|2+γ)µn

u(dv*)du ≤ 2C

! t

0

Λ2+γ(µ
n
u)du.

(5.14)

By the uniform integrability hypothesis, the last expression is bounded, uniformly in

n ≥ 1 and t ≤ tfin. In particular, Mn
t are L2(P)-bounded, uniformly in n, and there exists

A, such that, for all n

P
6

sup
0≤t≤tfin

|Mn
t | > A

7
≤ ε

3
. (5.15)

For the drift term, we similarly estimate

E
2! t

0

!

R3

|b(V n
u − v*)|µn

u(dv*)

3
≤ C

! t

0

!

R3

(E[|V n
u |1+γ] + |v*|1+γ)du

≤ 2C

! t

0

Λ2(µ
n
u)du = 2CtΛ2(µ

n
0 ).

(5.16)

The final expression is bounded, uniformly in n, and so, possibly making A larger, we can

arrange that

P
6
sup
t≤tfin

@@@@
! t

0

!

R3

b(V n
u − v*)µ

n
u(du)

@@@@ > A

7
<

ε

3
(5.17)

again uniformly in n. Finally, using the boundedness of the second moments E[|V n
0 |2] = 1,

we can also choose A so that P(|V n
0 | > A) < ε/3, and combining everything, for a new A

and uniformly in n,

P
6

sup
0≤t≤tfin

|V n
t | > A

7
< ε. (5.18)

Let us now check equicontinuity with high probability on this event. For the drift term,

observe that, on this event, for any 0 ≤ t ≤ t′ ≤ tfin, we have the pathwise and almost

sure bound
@@@@@

! t′

t

!

R3

b(V n
u − v*)µ

n
u(dv*)

@@@@@ ≤ C

! t′

t

(|V n
u |+ |v*|)µn

u(dv*)

≤ C(t′ − t)(A1+γ + Λ2(µ
n
0 ))

≤ C(t′ − t)A1+γ

(5.19)
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for a new choice of A in the final line. For the martingale term, we use the Damins-

Dubbins-Schwarz theorem to write the ith component Mn,i of Mn as

Mn,i
t = Bn,i

[Ms,i]t
(5.20)

for three (not necessarily independent) Brownian motions Bn,i. On the event in (5.18),

we have the bound

[Mn,i]tfin ≤ C

6
tfinA

2+γ +

! tfin

0

Λ2+γ(µ
n
u)du

7
≤ z (5.21)

for some z < ∞, independent of n, and thanks to the usual pathwise regularity properties

of Brownian motion, there exists α, depending only on z, ε such that

P
-
|Bn,i

u − Bn,i
v | ≤ α|u− v|1/4/3 for all u, v ≤ z, i = 1, 2, 3

.
> 1− ε. (5.22)

Returning to the analysis leading to (5.14) and still working on the event in (5.18), we

have the almost sure, nonrandom upper bound, for all 0 ≤ t ≤ t′ ≤ tfin,

[Mn,i]t′ − [Mn,i]t ≤ 2

! t′

t

!

R3

|V n
u − v*|2+γµn

u(dv*)du

≤ C

/
A2+γ(t′ − t) +

! t′

t

Λ2+γ(µ
n
u)du

0
.

(5.23)

Let us now define ϑ : [0,∞) → [0,∞) to be the modulus of continuity

ϑ(x) := sup

+! t′

t

Λ2+γ(µ
n
u)du : 0 ≤ t ≤ t′ ≤ tfin, t

′ − t ≤ x, n ≥ 1

,
.

Clearly ϑ(0) = 0. Moreover, given ε > 0, we use (5.11) to find R such that, uniformly in

n,
& tfin
0

&
R3 |v|2+γ1I|v|≥Rµ

n
u(dv)du < ε/2, and choose x < ε/2(R2+γ). For any 0 ≤ t ≤ t′ ≤

tfin, |t− t′| ≤ x and any n, we have

! t′

t

Λ2+γ(µ
n
u)du ≤

! tfin

0

!

R3

|v|2+γ1I|v|≥Rµ
n
u(du)du+

! t′

t

!

R3

|v|2+γ1I|v|≤Rµ
n
u(dv)du

<
ε

2
+R2+γ(t′ − t) < ε

(5.24)

and we see that ϑ is continuous at 0. Returning to (5.23), still working on the event in

(5.18), we have

|[Mn,i]t − [Mn,i]t| ≤ C
-
A2+γ(t′ − t) + ϑ(t′ − t)

.
. (5.25)

Consequently, combining (5.18) and (5.22), we conclude that

P
6
|V n

t | ≤ A and |Mn
t −Mn

t′ | ≤ α
-
CA2+γ(t′ − t) + ϑ(t′ − t)

.1/4

for all 0 ≤ t ≤ t′ ≤ tfin

7
> 1− 2ε.

(5.26)
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Finally, combining with (5.19) and defining the set

K =

M
v ∈ C([0, tfin],R3) : |vt| ≤ A, |vt − vt′ | ≤ α(CA2+γ(t′ − t) + ϑ(t′ − t))1/4

· · ·+ CA1+γ(t′ − t) for all 0 ≤ t ≤ t′ ≤ tfin

N (5.27)

we have proven that, uniformly in n,

P ((V n
t )0≤t≤tfin ∕∈ K) < 2ε. (5.28)

The sets K are compact in the uniform topology of C([0, tfin],R3) by the classical Arzelà-

Ascoli Theorem, so it follows that (V n
t )0≤t≤tfin are tight for the uniform topology on any

compact time interval, and therefore the processes (V n
t )t≥0 are tight in the local uniform

topology.

Step 2: Characterisation of the Limits Let us now suppose that (Vt)t≥0 is any

process extracted from (V n
t )t≥0 as the limit in distribution, for the local uniform topology,

along some subsequence; to ease notation, we will not relabel the subsequence. Using

Skorokhod’s representation theorem, we can replace (V n
t )t≥0 by processes with the same

law so that the convergence is almost sure; we will use the same notation for the new

processes. Writing µt = Law(Vt), since Law(V
n
t ) = µn

t and V n
t → Vt almost surely, we see

that µn
t → µt in the weak topology.

To see that (Vt)t≥0 solves the SDE (stLE), it is sufficient to show that Vt −
& t

0

&
R3 b(Vu −

v*)µu(dv*) is a martingale with the correct covariation, equivalent to the expression (5.13)

we wrote for Mn above, in order to apply general results on nonlinear processes driven

by white noise [71]. Let us fix a time horizon tfin, and a sequence of continuous functions

vn ∈ C([0, tfin],R3), converging uniformly to v ∈ C([0, tfin] × R3). Thanks to uniform

convergence, we can find a compact setK containing the images of vn, v, for all n; let us fix

ε > 0. We will now show convergence of the integrated coefficients in this (deterministic)

setting.

For the drift term, we start by observing that |b(v − v*)| ≤ C(|v|1+γ + |v*|1+γ) ≤ C(1 +

|v|2)(1 + |v*|2) and hence, by the uniform integrability hypothesis (5.10), there exists R

such that

sup
t≤tfin

sup
n

sup
v∈K

!

R3

|b(v − v*)|1I|v!|≥Rµ
n
t (dv*)

≤ sup
v∈K

(1 + |v|2) sup
n

sup
t≤tfin

!

R3

(1 + |v*|2)1I|v|!≥Rµ
n
t (dv*) < ε.

(5.29)

Now, we choose a continuous functions ϕ : R3 → [0, 1] such that ϕ(v) = 1 if |v| ≤ R and

ϕ(v) = 0 if |v| ≥ R + 1. Using (5.29), it follows that

sup
n

sup
t∈[0,tfin]

sup
v∈K

@@@@
!

R3

b(v − v*)(1− ϕ)(v*)µ
n
t (dv*)

@@@@ < ε (5.30)
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and the same holds for µt by taking a limit of (5.29) and using lower semicontinuity. Let

us now fix t ∈ [0, tfin]. Applying Lemma 4.14, there exists n0 > 0 such that, for all n ≥ n0

and all v ∈ K, we have
@@@@
!

R3

b(v − v*)ϕ(v*)µ
n
t (dv*)−

!

R3

b(v − v*)ϕ(v*)µt(dv*)

@@@@ < ε. (5.31)

Moreover, it is easy to see that the map (v, v*) /→ b(v − v*)ϕ(v*) is uniformly continuous

on K × R3, and so there exists δ > 0 such that if v, w ∈ K with |v − w| < δ,
@@@@
!

R3

b(w − v*)ϕ(v*)µt(dv*)−
!

R3

b(v − v*)ϕ(v*)µt(dv*)

@@@@ < ε. (5.32)

In particular, as soon as n ≥ n0 is large enough that |vnt − vt| < δ, we combine the three

previous displays to obtain
@@@@
!

R3

b(vnt − v*)µ
n
t (dv*)−

!

R3

b(vt − v*)µt(dv*)

@@@@ < 4ε. (5.33)

In particular, we have shown convergence
!

R3

b(vnt − v*)µ
n
t (dv*) →

!

R3

b(vt − v*)µt(dv*) (5.34)

for any fixed t. To obtain convergence when we integrate in time, we use the same

argument as (5.29) to obtain the n-uniform bound, uniformly in t ≤ tfin
@@@@
!

R3

b(vnt − v*)µ
n
t (dv*)

@@@@ ≤ sup
v∈K

(1 + |v|2) sup
m

sup
u≤tfin

!

R3

(1 + |v*|2)µm
u (dv*) < ∞. (5.35)

Therefore, by bounded convergence, it follows that
! t

0

!

R3

b(vnt − v*)µ
n
t (dv*) →

! t

0

!

R3

b(vt − v*)µt(dv*) (5.36)

uniformly on compact time intervals. We next prove a similar property for the noise term.

For vn, v as above, we observe that ‖σ*σ(v − v*)‖ ≤ 2(1 + |v|2+γ)(1 + |v*|2+γ) and using

(5.11), we find R such that, uniformly in n,

sup
v∈K

! tfin

0

!

R3

‖σσ*(v − v*)‖1I|v|!≥Rµ
n
u(dv*)du

≤ 2 sup
v∈K

(1 + |v|2+γ) sup
n

! tfin

0

!

R3

(1 + |v*|2+γ)1I|v!|≥Rµ
n
u(dv*)du < ε.

(5.37)

We now choose ϕ as for the previous case with the new choice of R, from which it follows

that

sup
n

sup
t∈[0,tfin]

! t

0

!

R3

‖σσ*(vnu − v*)‖(1− ϕ)(v*)µ
n
u(dv*)du < ε (5.38)

and similarly for vu, µu. We again fix t ≤ tfin; applying Lemma 4.14 to each entry of the

matrix, we have

sup
v∈K

XXXX
!

R3

σσ*(v − v*)ϕ(v*)µ
n
t (dv*)−

!

R3

σσ*(v − v*)ϕ(v*)µt(dv*)

XXXX → 0. (5.39)
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Now, using bounded convergence, it follows that

XXXX
! t

0

!

R3

σσ*(vnu − v*)ϕ(v*)µ
n
u(dv*)du−

! t

0

!

R3

σσ*(vnu − v*)ϕ(v*)µu(dv*)du

XXXX → 0 (5.40)

as n → ∞, uniformly on [0, tfin]. Using uniform continuity of (v, v*) → σσ*(v − v*)ϕ(v*)

on (v, v*) ∈ K × R3 as we did for b, it also follows that

sup
t≤tfin

XXXX
!

R3

σσ*(vnt − v*)ϕ(v*)µt(dv*)−
!

R3

σσ*(vt − v*)ϕ(v*)µt(dv*)

XXXX → 0. (5.41)

Combining, it follows that

XXXX
! t

0

!

R3

σσ*(vnu − v*)ϕ(v*)µ
n
u(dv*)−

! t

0

!

R3

σσ*(vu − v*)ϕ(v*)µu(dv*)

XXXX → 0 (5.42)

uniformly in t ≤ tfin. Returning to (5.38), we have proven that

lim sup
n

sup
t≤tfin

XXXX
! t

0

!

R3

σσ*(vnt − v*)µ
n
u(dv*)du−

! t

0

!

R3

σσ*(vu − v*)µu(dv*)du

XXXX ≤ 2ε

(5.43)

and hence conclude that

! t

0

σσ*(vnu − v*)µ
n
u(dv*)du →

! t

0

σσ*(vu − v*)µu(dv*)du (5.44)

uniformly on compact time intervals. With these convergences in hand, we return to the

stochastic processes. The previous convergences apply pathwise with vnt = V n
t , vt = Vt,

so that almost surely

! t

0

b(V n
u − v*)µ

n
u(dv*)du →

! t

0

b(Vu − v*)µu(dv*)du; (5.45)

! t

0

σσ*(V n
u − v*)µ

n
u(dv*)du →

! t

0

σσ*(Vu − v*)µu(dv*)du (5.46)

uniformly on compact time intervals. Therefore, the martingales Mn
t = V n

t − V n
0 −& t

0

&
R3 b(V

n
u − v*)µ

n
u(dv*)du converge, uniformly on compact time intervals, to a process

Mt. As proven in Step 1, [Mn] are L2(P)-bounded on the compact time interval [0, tfin],

and hence so is M ; it therefore follows that M is a true, L2(P)-bounded martingale.

Similarly, the (true) martingales Zn
t = Mn

t ⊗Mn
t −

& t

0

&
R3 σσ

*(V n
u −v*)µ

n
u(dv*)du converge

almost surely, uniformly on compact time intervals, to

Zt = Mt ⊗Mt −
! t

0

!

R3

σσ*(Vu − v*)µu(dv*)du (5.47)

which is therefore a local martingale. We have therefore identified the quadratic variation

[M ]t =
& t

0

&
R3 σσ

*(Vu − v*)µu(dv*)du, and the step is complete.
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5.4 Tanaka-style Coupling of Landau Processes

We now set up the coupling of solutions which will lead to Theorem 5.1, corresponding to

the Tanaka coupling we used in the Boltzmann case in Chapter 4. For E = R3 or R3×R3,

we denote by C2
p(E) the set of C2 functions on E of which the derivatives of order 0 to 2

have at most polynomial growth.

Lemma 5.6. Fix γ ∈ (0, 1], and consider two weak solutions (µt)t≥0, (νt)t≥0 ⊂ S to (LE)

such that
&
R3 e

a|v|2(µ0 + ν0)(dv) < ∞ for some a > 0, and fix π0 ∈ Π(µ0, ν0). Then there

exists a stochastic process (Vt, Ṽt)t≥0, taking values in (R3)2, such that πt = Law(Vt, Ṽt) ∈
Π(µt, νt), and

#
$

%
Vt = V0 +

& t

0

&
R3×R3 b(Vs − v∗)πs(dv∗, dṽ∗)ds+

& t

0

&
R3×R3 σ(Vs − v∗)N(dv∗, dṽ∗, ds);

Ṽt = Ṽ0 +
& t

0

&
R3×R3 b(Ṽs − ṽ∗)πs(dv∗, dṽ∗)ds+

& t

0

&
R3×R3 σ(Ṽs − ṽ∗)N(dv∗, dṽ∗, ds)

(5.48)

where N = (N1, N2, N3) is a 3D-white noise on R3 × R3 × [0,∞) with covariance mea-

sure πs(dv∗, dṽ∗)ds. In particular, each coordinate (Vt)t≥0, (Ṽt)t≥0 solves the nonlinear

stochastic differential equation (stLE), and for all f ∈ C2
p(R3 × R3), the process

M f
t = f(Vt, Ṽt)− f(V0, Ṽ0)−

! t

0

!

R3×R3

Af(Vs, Ṽs, v∗, ṽ∗)πs(dv, dv*)ds (5.49)

is a martingale, where

Af(v, ṽ, v∗, ṽ∗) =
3"

k=1

[bk(v − v∗)∂vkf(v, ṽ) + bk(ṽ − ṽ∗)∂ṽkf(v, ṽ)]

+
1

2

3"

k,ℓ=1

[akℓ(v − v∗)∂
2
vkvℓ

f(v, ṽ) + akℓ(ṽ − ṽ∗)∂
2
ṽk ṽℓ

f(v, ṽ)]

+
3"

j,k,ℓ=1

σkj(v − v∗)σℓj(ṽ − ṽ∗)∂
2
vk ṽℓ

f(v, ṽ).

(5.50)

Remark 5.7. Let us make the following remark.

i). This will produce the coupling desired for prove Theorem 5.1 in the cases where the

initial data have Gaussian initial moments.

ii). Since πs ∈ Π(µs, νs), we have
&
R3×R3 b(Vs−v∗)πs(dv∗, dṽ∗)ds =

&
R3 b(Vs−v∗)µs(dv∗)ds.

Similarly,
& t

0

&
R3×R3 σ(Vs−v∗)N(dv∗, dṽ∗, ds) =

& t

0

&
R3 σ(Vs−v∗)W (dv∗, ds), for some

3D-white noise on R3 × [0,∞) of covariance measure µs(dv∗)ds. Hence in law, the

first SDE (for (Vt)t≥0) does not depend on (νt)t≥0.

iii). To prove the stability result purely at the level of the laws (µt)t≥0, we could instead

work at the level of the PDE and prove the existence of a solution πt ∈ Π(µt, νt) to
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the coupled Landau equation

〈f, πt〉 = 〈f, π0〉+
! t

0

!

(R3)2×(R32)

Af(x, y)πs(dx)πs(dy)ds. (5.51)

This is exactly the argument presented in [90]. We argue here at the stochastic level

to show how the coupling can be achieved in a dynamic way by coupling solutions to

(stLE).

iv). As in Chapter 4, this form of the coupling is crucial, rather than taking πt to be

(say) a wp,1-optimal coupling of µt, νt. As in the Boltzmann case, we will use the

fact that πt = Law(Vt, Ṽt) for a symmetry argument, which allows us to ensure that

the relevant estimates close.

v). We do not claim the uniqueness of solutions to (5.51) or uniqueness in law for

(Vt, Ṽt); existence is sufficient for our needs.

Along the way, we will use the following proposition, which plays the same rôle here that

Proposition 4.18 does in the Boltzmann case.

Proposition 5.8 ([88], Theorem 2). Fix γ ∈ (0, 1] and let µ0 ∈ S be such that

!

R3

e|v|
α

µ0(dv) < ∞ for some α > γ. (5.52)

Then there exists a unique weak solution (µt)t≥0 to (LE) starting at µ0.

As in the Boltzmann case in Section 4.5, we will outline the important points of the proof

of our auxiliary uniqueness result, following [88, Theorem 2]. Since this proof builds in

turn on a similar stochastic representation to that of Proposition 5.6, it is deferred until

after that proof. we remark now that the proof will only use the existence of a Landau

process, which can be proven by following Steps 1-5 of the argument below, while we need

this proposition to complete step 6. In particular, there is no circularity.

Proof of Proposition 5.6. We first prove the result for the case where the coefficients are

Lipschitz, sketching the argument of Guérin [105]. Since the coefficients b, σ appearing in

(5.48) are not Lipschitz, we will then use a compactness argument to produce solutions

from solutions of a truncated equation.

Step 1: Construction of a Truncated Equation We fix k ≥ 1 and define the

truncated two level coefficients Bk : R3 ×R3 → R3 ×R3 and Σk : R3 ×R3 → M6×3(R) by

Bk

/
x

x̃

0
=

/
bk(x)

bk(x̃)

0
; Σk

/
x

x̃

0
=

/
σk(x)

σk(x̃)

0
,
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where bk(x) = −2(|x| ∧ k)γx and σk(x) = (|x| ∧ k)γ/2|x|Πx⊥ , and define similarly

B

/
x

x̃

0
=

/
b(x)

b(x̃)

0
; Σk

/
x

x̃

0
=

/
σ(x)

σ(x̃)

0
,

Exactly the same arguments as lead to (5.6) and (5.8) show that Bk and Σk are globally

Lipschitz continuous on R3 × R3.

With this notation, we can compactly rewrite (5.48) as an equation for Xt = (Vt, Ṽt):

Xt = X0 +

! t

0

!

R3×R3

B(Xs − x)πs(dx)ds+

! t

0

!

R3×R3

Σ(Xs − x)N(dx, ds)

and approximating equations with Lipschitz coefficients

Xk
t = Xk

0 +

! t

0

!

R3×R3

Bk(X
k
s − x)πs(dx)ds+

! t

0

!

R3×R3

Bk(X
k − x)N(dx, ds). (5.53)

Step 2: Existence for the Truncated Equation We now prove the existence of

solutions to (5.53), following the arguments of Guérin, which adapt the usual argument

for stochastic differential equations to the white noise case. We consider the auxiliary

probability space ((0, 1),B(0, 1), dα), and we will write a subscript α to denote objects

defined on this probability space. We define the spaces C2 of continuous, adapted processes

X on the underlying probability space (Ω,F, (Ft)t≥0,P) to R3×R3 such that, for all t ≥ 0,

E[sups≤t |Xs|2] < ∞, and similarly C2
α for continuous processes on the auxiliary space,

which we equip with the norm

‖X‖2,t := E
2
sup
s≤t

|Xs|2
31/2

.

Now, let W = (W 1,W 2,W 3) be a white noise on [0,∞)× (0, 1) with covariance measure

dsdα, and X0 ∼ π0 be independent of W , and consider the map Φk on C2
α × C2, given by

Φk(Y, Z)t := X0 +

! t

0

!

(0,1)

Bk(Zs − Ys(α))dαds+

! t

0

!

(0,1)

Σk(Zs − Ys(α))W (ds, dα).

(5.54)

It is immediate that Φk(Y, Z) defines a continuous process, and Itô’s isometry shows that

Φk(Y, Z) ∈ C2. Since the coefficients are Lipschitz, the standard arguments for stochastic

differential equations lead to

‖Φk(Y, Z)−Φk(Y
′, Z ′)‖22,t ≤ Ck(1 + t)

6! t

0

‖Z − Z ′‖22,sds+
! t

0

‖Y − Y ′‖22,s,αds
7

(5.55)

for some constant Ck.

We now use a nonlinear version of the usual Picard iteration argument. For n = 0, we set

Xk,0
t := X0 ∈ C2. For the iterative step, givenXk,0, ..., Xk,n ∈ C2 and Y k,0, . . . , Y k,n−1 ∈ C2

α
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such that Law(Xk,0, . . . , Xk,n−1) = Lawα(Y
k,0, . . . , Y k,n−1), we can use the disintegra-

tion theorem and Skorokhod’s representation theorem to construct Y k,n ∈ C2
α such that

Law(Xk,0, ..., Xk,n) = Lawα(Y
k,0, . . . , Y k,n), and now define Xk,n+1 := Φk(Y

k,n, Xk,n). In

particular, we have Law(Xk,n−1, Xk,n) = Lawα(Y
k,n−1, Y k,n), and so (5.55) gives

‖Xk,n+1 −Xk,n‖22,t ≤ Ck(1 + t)

6! t

0

‖Xk,n −Xk,n−1‖22,s + ‖Y k,n − Y k,n−1‖22,s,αds
7

≤ 2Ck(1 + t)

6! t

0

‖Xk,n −Xk,n−1‖22,sds
7
.

(5.56)

Iterating this bound produces

‖Xk,n+1 −Xk,n‖22,t ≤ (2Ck(1 + t))n
! t

0

dt1....

! tn−1

0

dtn‖Xk,1 −Xk,0‖22,tn

≤ (2Ckt(1 + t))n

n!
‖Xk,1 −Xk,0‖22,t.

(5.57)

Thanks to the n! in the denominator, the right-hand side is summable, so completeness

of (C2, ‖ · ‖2,t) implies that there exists Xk ∈ C2 such that ‖Xk,n − Xk‖2,t → 0 for

all t, and similarly Y k ∈ C2
α. Since Law(Xk,n) = Lawα(Y

k,n) for all n, it follows that

Law(Xk) = Lawα(Y
k). Using (5.55), we also see that Xk,n+1 = Φk(Y

k,n, Xk,n) converges

in ‖ · ‖2,t to Φk(Y
k, Xk), for all t, so we finally conclude that Xk satisfies

Xk
t = Xk

0 +

! t

0

!

(0,1)

Bk(X
k
s − Y k

s (α)) dαds+

! t

0

!

(0,1)

Σk(X
k
s − Y k

s (α))W (ds, dα)

for a copy Y k of Xk.

Step 3: Characterisation of the laws We next identify an appropriate generator,

corresponding to (5.50), for the approximating processes Xk
t , and hence characterise the

laws πk
t = Law(Xk

t ) = Lawα(Y
k
t ). For any f ∈ C2

p(R3 × R3), we apply Itô’s formula to

find that

f(Xk
t ) = f(Xk

0 ) +M f,k
t +

! t

0

!

(0,1)

∇f(Xk
s ) · Bk(X

k
s − Y k

s (α))dαds

+

! t

0

!

(0,1)

1

2

6"

i,j=1

∂ijf(X
k
s )[Σk(X

k
s − Y k

s (α))Σ
∗
k(X

k
s − Y k

s (α))]ij]dαds

(5.58)

for some martingale Mk,f . Next, we observe that the integrated terms are exactly
! t

0

!

(0,1)

Akf(X
k
s , Y

k
s (α))dαds

where Akf is defined as Af in (5.50), replacing b, σ and a = σσ∗ by bk, σk and ak = σkσ
∗
k

respectively. Taking expectations and using that πk
t = Law(Xk

t ) = Lawα(Y
k
t ), we find

!

R3×R3

f(v, ṽ)πk
t (dv, dṽ) =

!

R3×R3

f(v, ṽ)π0(dv, dṽ)

+

! t

0

!

R3×R3

!

R3×R3

Akf(v, ṽ, v∗, ṽ∗)π
k
s (dv, dṽ)π

k
s (dv∗, dṽ∗)ds,
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For functions of the form f(v, ṽ) = f1(v)+f2(ṽ), we have Akf(v, ṽ, v∗, ṽ∗) = Lkf1(v, v∗)+

Lkf2(ṽ, ṽ∗), where Lkfi is defined as Lfi = LLfi, replacing b and a by bk and ak. It is

then straightforward to check that the approximate equation (5.59) conserves energy and

propagates moments, uniformly in k, using arguments similar to those of [58, Theorem

3] or Step 1 of the proof of Proposition 2.13ii). In particular, under our initial Gaussian

moment assumption, all moments of πk
t are bounded, uniformly k ≥ 1, locally uniformly

in t ≥ 0, and E[|V k
t |2] = E[|V k

0 |2] for all t ≥ 0, and similarly for Ṽt.

Step 4: A Compactness Argument We now argue that the laws of Xk are tight in

C([0,∞),R3 ×R3) using similar arguments to Lemma 5.5, which will justify passing to a

subsequence. Using the propagation of moments remarked in Step 3, it is straightforward

to show that E[sups≤t |Xk
s |2] is bounded, uniformly in k ≥ 1 and locally uniformly in t.

Next, using standard calculations, for any 0 ≤ s < t ≤ tfin, we have

|Xk
t −Xk

s |2 ≤ 2(t− s)

! t

s

!

(0,1)

|Bk(X
k
u)− Y k

u (α)|2dαds

+ 2

6! t

s

!

(0,1)

Σk(X
k
u)− Y k

u (α))W (ds, dα)

7
.

(5.59)

Taking expectations and using Itô’s isometry produces

E[|Xk
t −Xk

s |2] ≤ 2(t− s)

! t

s

!

(0,1)

E[|Bk(X
k
u)− Y k

u (α))|2]dαds

+ 2E
2! t

s

!

(0,1)

‖Σk(X
k
u)− Y k

u (α))‖2dsdα
3 (5.60)

Using the same estimates as in Section 5.2, we estimate

|Bk(X
k
u − Y k

u (α))|2 ≤ C(|Xk
u |2+2γ + |Y k

u (α)|2+2γ);

‖Σk(X
k
u)− Y k

u (α))‖2 ≤ C(|Xk
u |2+γ + |Y k

u (α)|2+γ)

for some constant C independent of k. We finally conclude that, allowing C to vary line

to line, independently of k,

E[|Xk
t −Xk

s |2] ≤ C

! t

s

!

Rd×Rd

|x|2+2γπk
u(dx) ≤ C(t− s). (5.61)

Therefore, by Kolmogorov’s continuity criterion, there exist Gk,tfin ∈ L2, with E[G2
k,tfin

]

bounded uniformly in k, such that |Xk
t −Xk

s | ≤ Gk,tfin |t − s|1/4 for all s, t ≤ tfin. It now

follows, using the classical Arzelà-Ascoli theorem, that the laws of (Xk
t )0≤t≤tfin are tight on

C([0, tfin],R3 × R3), and hence tight in the local uniform topology of C([0,∞),R3 × R3).

Therefore, using Prohorov’s theorem, we can find a (not relabelled) subsequence under

which Xk converges in distribution to a random variable X in the local uniform topology

of C([0,∞),R3 × R3). Finally, using Skorokhod’s representation theorem, we can find
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random variables Xk,′ , X ′ with the same laws as Xk, X, with almost sure convergence in

the local uniform topology; by an abuse of notation, we omit the ′ to ease notation. In

this way, we gain almost sure convergence, but Xk are no longer driven by the same white

noise W .

Step 5: Identification of the Limit We next analyse the limiting process Xt =

(Vt, Ṽt) constructed above. First, for any p ≥ 0, we have E[|Xk
t |p] bounded, uniformly in k

and locally uniformly in t ≥ 0, and taking the limit implies that E[|Xt|p] < ∞, uniformly

on compact time intervals. Next, for any given f ∈ C2
p(R3 × R3), we observe that, for

some C = Cf and some p,

|Akf(x, y)| ≤ Cf (1 + |x|p + |y|p) (5.62)

and that Akf → Af , uniformly in compact subsets of R3 × R3. By a truncation

argument and using Lemma 4.14, it therefore follows that
&
R3×R3 Akf(x, y)π

k
t (dy) →&

R3×R3 Af(x, y)πt(dy), uniformly on compact regions in R3 and on compact time inter-

vals; see Lemma 5.5 for a similar argument with fewer moment estimates. It follows that

!

R3×R3

Akf(X
k, y)πk(dy) →

!

R3×R3

Af(X, y)π(dy) (5.63)

uniformly on compact time intervals, almost surely. Moreover, for a new constant Cf , we

have @@@@
!

R3×R3

Akf(x, y)π
k(dy)

@@@@ ≤ Cf (1 + |x|p) (5.64)

uniformly in k, and similarly for
&
R3×R3 Af(x, y)π(dy). We can therefore use a further

truncation argument to see that (5.63) also holds for convergence in L1(P), uniformly on

compact time intervals. We then take the limit of the martingales

M f,k
t = f(Xk

t )− f(Xk
0 )−

! t

0

!

R3×R3

Akf(X
k
s , y)π

k
s (dy)ds (5.65)

found in step 3 to see that

M f
t = f(Xt)− f(X0)−

! t

0

!

R3×R3

Af(Xs, y)πs(dy)ds (5.66)

is a martingale, and correspondingly (5.51) holds. As in Lemma 5.5, the conclusion that

the desired form (5.48) holds for some white noiseN of the correct covariance is exactly the

result [71, Proposition 4.1], which shows that the martingale Mt = Xt−
& t

0

&
R3×R3 B(Xs−

y)πs(dy)ds can be disintegrating into the correct white noise integral.

Step 6: The constructed process couples the given solutions Finally, we address

the claim that πt is a coupling πt ∈ Π(µt, νt). Let us write µ̃t, ν̃t for the two marginals of πt.
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For any f1 ∈ C2
b (R3), we set f(v, ṽ) = f1(v) and observe that Af(v, ṽ, v∗, ṽ∗) = Lf1(v, v∗),

so that (5.51) tells us that

!

R3

f1(v)µ̃t(dv) =

!

R3

f1(v)µ0(dv) +

! t

0

!

R3

Lf1(v, v∗)µ̃s(dv∗)µ̃s(dv)ds.

Moreover, using the bounds on higher moments, we can take limits of the conservation

of energy E[|V k
t |2] = E[|V k

0 |2] to obtain Λ2(µ̃t) = Λ2(µ̃0) for all t ≥ 0. Therefore, (µ̃t)t≥0

is a weak solution to (LE) which starts at µ0. Since µ0 is assumed to have a Gaussian

moment, the uniqueness result Proposition 5.8 applies and so (µ̃t)t≥0 = (µt)t≥0 as desired.

The argument that (ν̃t)t≥0 = (νt)t≥0 is identical.

We now give sketch the important points of the proof of Proposition 5.8, which we deferred

earlier. We discuss the main points of [88, Theorem 2].

Sketch Proof of Proposition 5.8. Let us fix µ0 ∈ S with 〈e|v|α , µ0〉 < ∞, for some α > γ.

First, we follow Steps 1-5 of the previous proof (with some arbitrary ν0, or following the

arguments verbatim for processes in R3) to find a Landau process (Vt)t≥0 solving (stLE)

and with Law(V0) = µ0. Setting µt = Law(Vt), we get that µ ∈ L1
loc([0,∞),S2+γ) and is

a weak solution to (LE). We claim that this solution is unique; let (νt)t≥0 be any other

solution with ν0 = µ0.

Step 1: Itô representation of (stLE) Since we will not use the full strength of the

white-noise representation of (stLE), it is convenient to rewrite it as a SDE driven by a

Brownian motion. We first define averaged coefficients; for v ∈ R3 and µ ∈ P2+γ(R3),

define

b(v, µ) =

!

R3

b(v − v∗)µ(dv∗), a(v, µ) =

!

R3

a(v − v∗)µ(dv∗)

and let σ(v, µ) be a square root of a(v, µ). Now, using the martingale representation

theorem, it follows that Vt can be written as

Vt = V0 +

! t

0

b(Vs, µs)ds+

! t

0

σ(Vs, µs)dβs (5.67)

for a 3-dimensional Brownian motion βt.

Step 2: Tanaka Process for νt We now build a similar representation of νt. We

set W0 = V0, recalling that ν0 = µ0. For positive definite, symmetric 3 × 3 matrices

A,B, set U(A,B) to the the orthogonal matrix U(A,B) = B−1/2A−1/2(A1/2BA1/2)1/2,

and for nonnegative definite matrices and ε > 0, set Uε(A,B) := U(A+ εI, B + εI); it is

straightforward to see that the map (A,B) → Uε(A,B) is locally Lipschitz in the space

of 3× 3, nonnegative-definite matrices. We now consider, for ε > 0,

W ε
t = W ε

t +

! t

0

b(W ε
s , νs)ds+

! t

0

σ(W ε
s , νs)Uε(a(Vs, µs), a(W

ε
s , νs))dβs.
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Since the coefficients are locally Lipschitz, this SDE has pathwise unique, maximal solu-

tions, and using the orthogonality of Uε, the process Jβε
t =

& t

0
Uε(a(Vs, µs), a(W

ε
s , νs))dβs

is again a 3D-Brownian motion, so this is equivalent to (5.67) with νs in place of µs.

In particular, the solution is globally defined, and by proving uniqueness for the linear

evolution equation for Law(W ε
t ) (see [88, Proposition 10]), one finds that Law(W ε

t ) = νt.

Step 3: Tanaka Estimate Next, we derive an estimate for uε
t = E[|Vt − W ε

t |2]. For

π ∈ P2+γ(R3 × R3) and µ, ν ∈ P2+γ(R3), we set Eε(π, µ, ν) to be

Eε(π, µ, ν) =
!

R3×R3

6
‖σ(v, µ)− σ(w, ν)Uε(σ(v, µ), σ(w, ν))‖2

+ 2(v − w) · (b(v, µ)− b(w, ν))

7
π(dv, dw).

If we now set πε
t = Law(Vt,W

ε
t ), it follows from the Itô calculus of (5.67) that d

dt
uε
t =

Eε(πt, µt, νt), see also the derivation of Lemma 5.9 below, where we repeat this argument

with our weighted distances. For this case, one finds [88, Proposition 12] that, for some

κ > 0 and some C, and any M > 0,

Eε(πt, µt, νt) ≤ C
√
ε(1 + Λ2+γ(µt, νt)) +Muε

t + C
-
1 + Λ2+γ(νt) + 〈e|v|α , µt〉

.
e−κMα/γ

.

In the same spirit as Proposition 2.13i), the exponential moments on µt are propagated

to later times, and by Proposition 2.12, all polynomial moments are finite, bounded in

terms of the moments of µ0. Recalling that uε
0 = 0, since ν0 = µ0, we absorb all moments

into a constant C and find by Grönwall’s Lemma that

uε
t ≤ CeMt

'√
ε+ te−κMα/γ

(
.

Since πt is a coupling of µt, νt, the right-hand side is an upper bound for W2
2 (µt, νt).

Taking ε → 0 with M fixed, the first term converges to 0, and then taking M → ∞, the

second term converges to 0, since κ > 0 and α > γ. We conclude that W2(µt, νt) = 0 for

all t ≥ 0, and the uniqueness is complete.

We finally state the following central inequality, which will play the same rôle for the

Landau case as Lemma 4.10 does for the Boltzmann case. In terms of the proof above,

we refine the estimates on E , now working in terms of the white-noise representation, and

using our weighted distance, to avoid the compensation using exponential moments.

Lemma 5.9. Define, for the coupled generator A defined at (5.50) in Proposition 5.6,

Ep,ε(v, v∗, ṽ, ṽ∗) = Afp,ε(v, v∗, ṽ, ṽ∗) fp,ε(v, ṽ) = dp,ε(v, ṽ). (5.68)
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Then there is a constant C, depending only on p ≥ 2 and γ ∈ (0, 1], such that for all

ε ∈ (0, 1], all v, v∗, ṽ, ṽ∗ ∈ R3,

Ep,ε(v, v∗, ṽ, ṽ∗) ≤[2− p]dp+γ,ε(v, ṽ)

+ C
√
ε(1 + |v∗|p + |ṽ∗|p)dp+γ,ε(v, ṽ)

+ C
√
ε(1 + |v|p + |ṽ|p)dp+γ,ε(v∗, ṽ∗)

+
C√
ε
(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)

+
C√
ε
(1 + |v|p+γ + |ṽ|p+γ)dp,ε(v∗, ṽ∗).

We recognise the same fundamental structure as in Lemma 4.10, with the appearance of

terms higher order terms dp+γ,ε(v, ṽ), dp+γ,ε(v∗, ṽ∗) which prevent a Grönwall estimate, a

negative ‘Povzner term’, and lower-order cross-terms. Correspondingly, the strategy is

similar: we use the negative Povzner term to cancel the terms in the second and third

lines, using a symmetry argument, and the estimate using only the remaining term closes

to lead to a Grönwall argument. In this case, thanks to the exact Itô calculus, we can

find explicit, rather than the explicitable constant c in Lemma 4.10. We will also have to

choose ε > 0 small, depending on p and the pth moments of µt, νt, in order to ensure the

cancellation still holds. Relative to Chapter 4, this additional complication arises because

we work with dp,ε rather than dp = dp,0, which is necessary for the argument to hold with

only 2 + ε moments.

Let us mention that a rather direct computation, with ε = 0, i.e. with the cost dp,0(v, ṽ) =

(1 + |v|p + |ṽ|p)|v − ṽ|2, relying on the simple estimates (5.6), (5.8) and (5.9), shows that

Ep,0(v, v∗, ṽ, ṽ∗) ≤[32− p]dp+γ,0(v, ṽ) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,0(v, ṽ)

+ C(1 + |v|p+γ + |ṽ|p+γ)dp,0(v∗, ṽ∗).

The same arguments as in Chapter 4 then give a stability result in (P45, w32,0). Our

estimate is rather finer; we have to be very careful and to use many cancelations to

replace the Povzner term [32 − p] by [2 − p]. Moreover, we have to deal with dp,ε with

ε > 0 instead of dp,0, because wp,0 requires moments of order p + 2 to be well-defined.

All this is crucial to obtain a stability result in Pp(R3), for any p > 2. Since the proof is

rather lengthy, it is deferred to Section 5.9 for the ease of readability.
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5.5 Proof of Theorem 5.1

We now give the proof of our stability estimate. As with Lemma 4.21 in Section 4.6,

we first deal with the case when the initial data have a finite exponential (in this case:

Gaussian) moment, and then carefully relax this assumption.

Lemma 5.10. Fix γ ∈ (0, 1] and let (µt)t≥0, (νt)t≥0 ⊂ S be weak solutions to (LE)

with initial moments
&
R3 e

a|v|2(µ0 + ν0)(dv) < ∞ for some a > 0. Then there exists

(Vt)t≥0, (Ṽt)t≥0 solving (stLE), such that πt = Law(Vt, Ṽt) ∈ Π(µt, νt) for any t ≥ 0, and

such that (5.1) holds.

Proof. We fix p > 2, consider ε ∈ (0, 1] to be chosen later and introduce π0 ∈ Π(µ0, ν0)

such that

wp,ε(µ0, ν0) =

!

R3×R3

dp,ε(v, ṽ)π0(dv, dṽ).

Since we have a Gaussian moment condition, we can apply Lemma 5.6 to construct

(Vt, Ṽt)t≥0 using and remark that these individually solve (stLE), and πt = Law(Vt, Ṽt) ∈
Π(µt, νt) by the cited Lemma. We now define

uε(t) = E[dp,ε(Vt, Ṽt)] =

!

R3×R3

dp,ε(v, ṽ)πt(dv, dṽ). (5.69)

By Lemma 5.6, and since uε(0) = wp,ε(µ0, ν0), it holds that for all t ≥ 0,

uε(t) = wp,ε(µ0, ν0) +

! t

0

!

R3×R3

!

R3×R3

Ep,ε(v, v∗, ṽ, ṽ∗)πs(dv∗, dṽ∗)πs(dv, dṽ)ds.

Using next Lemma 5.9 and a symmetry argument, we find that

uε(t) ≤ wp,ε(µ0, ν0) +

! t

0

(I1,ε(s) + I2,ε(s) + I3,ε(s))ds,

where, for some constant C > 0 depending only on p and γ,

I1,ε(s) =[2− p]

!

R3×R3

dp+γ,ε(v, ṽ)πs(dv, dṽ),

I2,ε(s) =C
√
ε

!

R3×R3

!

R3×R3

(1 + |v∗|p + |ṽ∗|p)dp+γ,ε(v, ṽ)πs(dv∗, dṽ∗)πs(dv, dṽ),

I3,ε(s) =
C√
ε

!

R3×R3

!

R3×R3

(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)πs(dv∗, dṽ∗)πs(dv, dṽ).

Using that πs ∈ Π(µs, νs), we use the moment estimates in Proposition 2.12 to see that,

up to a new choice of C,

I2,ε(s) ≤C
√
ε(1 + Λp(µs, νs))

!

R3×R3

dp+γ,ε(v, ṽ)πs(dv, dṽ)

≤ C
√
ε(1 + Λp(µ0 + ν0))

!

R3×R3

dp+γ,ε(v, ṽ)πs(dv, dṽ);
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and

I3,ε(s) ≤
C√
ε
(1 + Λp+γ(µs, νs))uε(s).

We now fix t > 0 and work on [0, t]. Choosing, for the value of C in the previous two

displays,

ε =
? p− 2

p− 2 + C(1 + Λp(µ0, ν0))

A2

we have ε ∈ (0, 1], and we can absorb I2,ε into the Povzner term so that I1,ε(s)+I2,ε(s) ≤ 0

for all s ∈ [0, t]. We now have the integral inequality

uε(r) ≤ wp,ε(µ0, ν0) +
C√
ε

! r

0

(1 + Λp+γ(µs, νs))uε(s)ds

for all r ∈ [0, t], and we apply the Grönwall lemma and Proposition 2.12ii) to obtain,

again changing C,

uε(t) ≤ wp,ε(µ0, ν0) exp
' C√

ε

! t

0

(1 + Λp+γ(µs, νs))ds
(

≤ wp,ε(µ0, ν0) exp
' C√

ε
(1 + t)Λp(µ0)

(
.

We now convert everything back to the distances dp,1, wp,1. Recalling that dp,1 ≤ dp,ε ≤
ε−1dp,1, we deduce that

u1(t) ≤ uε(t) and wp,ε(µ0, ν0) ≤
1

ε
wp,1(µ0, ν0).

We thus end with

E[dp,1(Vt, Ṽt)] ≤
1

ε
wp,1(µ0, ν0) exp

' C√
ε
Λp(µ0)(1 + t)

(
.

Recalling our choice for ε and allowing the value of C, still depending only on p and γ,

to change from line to line, we find that

E[dp,1(Vt, Ṽt)]

≤ C(1 + Λp(µ0, ν0))
2wp,1(µ0, ν0) exp

'
C(1 + Λp(µ0, ν0))Λp(µ0, ν0)(1 + t)

(

≤ wp(µ0, ν0) exp
'
CΛp(µ0, ν0)

2(1 + t)
(

where, in the final line, we changed C again to move the moment prefactor into the

exponent. This was our goal, and the lemma is complete.

In order to relax the initial Gaussian moment condition, we will use the following conver-

gence, which replaces Lemma 4.22.

Lemma 5.11. Fix γ ∈ (0, 1] and p > 2. Let (µt)t≥0 be a weak solution to (LE), with

initial moment Λp(µ0) < ∞. Then wp,1(µt, µ0) → 0 as t → 0.
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Proof. First, thanks to the density of C2
b (R3) in Cb(R3), we deduce from (1.8) that µt → µ0

weakly. It classically follows that limt→0 W1,1(µt, µ0) = 0, where W1,1 is the (Monge-

Kantorovich-)Wasserstein distance defined in Section 2.1. Moreover, as remarked in Sec-

tion 2.1, there exists ρt ∈ Π(µ0, µt) attaining W1,1(µt, µ0) =
&
R3×R3(1∧ |v−w|)ρt(dv, dw).

Now, fix ε > 0; by Lemma 2.15, there exists R < ∞ and t0 > 0 such that

!

R3

(1 + |v|p)1I{|v|>R}µt(dv) < ε for all t ∈ [0, t0].

Since now

dp,1(v, w) ≤ (1 + |v|p + |w|p)(|v−w|∧ 1) ≤ (1 + |v|p)(|v−w|∧ 1) + (1+ |w|p)(|v−w|∧ 1)

we have

wp,1(µt, µ0) ≤
!

R3×R3

dp,1(v, w)ρt(dv, dw)

≤(1 +Rp)W1,1(µt, µ0) +

!

R3×R3

(1 + |v|p)1I{|v|>R}ρt(dv, dw)

+ (1 +Rp)W1,1(µt, µ0) +

!

R3×R3

(1 + |w|p)1I{|w|>R}ρt(dv, dw)

=2(1 +Rp)W1,1(µt, µ0) +

!

R3

(1 + |v|p)1I{|v|>R}µt(dv)

+

!

R3

(1 + |w|p)1I{|w|>R}µ0(dw),

where in the last line we recall ρt ∈ Π(µt, µ0). We conclude that for all t ∈ [0, t0],

wp,1(µt, µ0) ≤ 2(1 +Rp)W1,1(µt, µ0) + 2ε,

so that lim supt→0 wp,1(µt, µ0) ≤ 2ε and we are done, as ε > 0 was arbitrary.

The strategy of proving the full statement of Theorem 5.1 is now as follows. We fix

p > 2 and two solutions (µt)t≥0, (νt)t≥0 ⊂ S to (LE) with finite pth moments. By the

Gaussian moment creation Proposition 2.13, we can apply Lemma 5.10 by considering

instead (µs+t)t≥0, (νs+t)t≥0, which produces a coupling (V s
t , Ṽ

s
t )t≥0. We then construct the

coupling (Vt, Ṽt)t≥0 as a weak limit point, using Lemma 5.5.

We are now ready to remove the additional assumptions and prove the full stability and

coupling statement.

Proof of Theorem 5.1. We fix γ ∈ (0, 1], p > 2 and we consider two weak solutions (µt)t≥0

and (νt)t≥0 to (LE) such that Λp(µ0, ν0) < ∞.
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Step 1: Approximation Procedure Fix t > 0 and let 0 < s ≤ 1; thanks to Propo-

sition 2.13, we have
&
R3 e

a|v|2(µs + νs)(dv) < ∞ for some a > 0. Lemma 5.10 therefore

applies to (µu)u≥s, (νu)u≥s, so that there exists a coupling (V s
t , Ṽ

s
t )t≥0, where each coordi-

nate solves (stLE), with πs
t = Law(V s

t , Ṽ
s
t ) ∈ Π(µt+s, νt+s), and such that

E[dp,1(V s
t , Ṽ

s
t )] ≤wp,1(µs, νs) exp

'
CΛp(µs, νs)

2(1 + t)
(

(5.70)

≤wp,1(µs, νs) exp
'
CΛp(µ0, ν0)

2(1 + t)
(
.

Step 2: Extraction of a Subsequence We now show that the compactness result

Lemma 5.5 applies to each coordinate (V
1/n
t )t≥0, (Ṽ

1/n
t )t≥0, with µn

t = µt+1/n, ν
n
t = νt+1/n

respectively. For either coordinate, the first uniform integrability result (5.10) follows

immediately from Proposition 2.15. For (5.11), for any t,

sup
n

! t

0

!

R3

(1 + |v|2+γ)1I|v|≥Rµ
n
t (dv) ≤

! t+1

0

!

R3

(1 + |v|2+γ)1I|v|≥Rµ
n
t (dv) → 0

as R → ∞, using the fact that
& t+1

0
Λ2+γ(µu)du < ∞ and the dominated convergence

theorem; the case for νn
t is identical. It therefore follows that (V sn

t , Ṽ sn
t )t≥0 is also tight,

so we can find a sequence sn → 0 under which (V sn
t , Ṽt)t≥0 converges in distribution to a

limiting process (Vt, Ṽt)t≥0. It follows that both (V sn
t )t≥0 → (Vt)t≥0, (Ṽ

sn
t )t≥0 → (Ṽt)t≥0 in

distribution, so we apply the second part of Lemma 5.5 to conclude that (Vt)t≥0, (Ṽt)t≥0

solve (stLE) for some choices of white noise as desired.

Step 3: Conclusion We now show that the limit point (Vt, Ṽt)t≥0 found above satisfies

all the desired properties. Let us fix t ≥ 0; for all n, Law(V sn
t ) = µt+sn and, as already

remarked in Lemma 5.11, we have µt+sn → µt in the weak topology, so we take the limit

to conclude that Law(Vt) = µt. The same argument applies to Ṽt, and so we see that

πt = Law(Vt, Ṽt) ∈ Π(µt, νt) as desired. For the bound (5.1), we recall the relaxed triangle

inequality (2.19), we have, for some constant C depending only on p,

wp,1(µs, νs) ≤ C[wp,1(µs, µ0) + wp,1(µ0, ν0) + wp,1(ν0, νs)]

and as s → 0, the first and third terms converge to 0 by Lemma 5.11, so

lim sup
s→0

wp,1(µs, νs) ≤ Cwp,1(µ0, ν0).

An identical argument for the couplings πsn
t = Law(V sn

t , Ṽ sn
t ) shows that E[dp,1(V sn

t , Ṽ sn
t )] →

E[dp,1(Vt, Ṽt)], and we can take the limit in (5.70) to obtain the desired result.
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5.6 Equivalence of The Landau Equation and Landau

Processes

We now prove Theorem 5.2. As remarked in the introduction, it is already clear, by

applying Itô’s formula as in Lemma 5.6, that if (Vt)t≥0 is a solution of (stLE) such that

the laws µt belong to L1
loc([0,∞),S2+γ), then (µt)t≥0 is a weak solution to (LE). Let us

now apply the results we have already obtained to prove the other implication, following

exactly the same argument as Theorem 4.3 in the Boltzmann case.

Proof of Theorem 5.2. Let (µt)t≥0 ⊂ S be any weak solution to (LE). For all s > 0, µs

has Gaussian moment, and in particular, we can apply Lemma 5.6 to construct a solution

(V s
t )t≥0 to (stLE) with Law(V s

t ) = µs+t for all t ≥ 0 - either by taking νt to be an

arbitrary solution to (LE), or by repeating the arguments of Lemma 5.6 verbatim. We

apply Lemma 5.5 exactly as in Step 2 of the proof of Theorem 5.1 to find sn → 0 and

(Vt)t≥0 solving (stLE), which is the limit in distribution of (V sn
t )t≥0. The conclusion that

µt = Law(Vt) is exactly as in Step 3 of the proof of Theorem 5.1, and we are done.

5.7 Proof of Theorem 5.3

Our starting point for existence is the following result, due to Desvillettes and Villani,

which proves existence with a pth moment, for any p > 2.

Proposition 5.12. Suppose that µ0 ∈ Pp(R3) for some p > 2. Then a weak solution

starting at µ0 exists.

The cited result also assumes that µ0 has a density, but this is only used to show that

the solution constructed also has a density: the construction of a solution remains valid

without this assumption. The novelty of Theorem 5.3 lies in relaxing the additional

moment requirement, which we replace by the de La Vallée Poussin theorem to achieve

control sharper than Λ2 without additional assumptions on the initial data.

Proof of Theorem 5.3. Let us start from µ0 ∈ S. By the de La Vallée Poussin theorem,

there exists a C2-function h : [0,∞) → [0,∞) such that h′′ ≥ 0, h′(∞) = ∞ and

!

R3

h(|v|2)µ0(dv) < ∞. (5.71)

We can also impose that h′′ ≤ 1 and that h′(0) = 1, and argue similarly to Step 3 of

Proposition 2.8.
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Step 1: Approximation Procedure We consider n0 ≥ 1 such that for all n ≥ n0,

αn =
&
R3 1I{|v|≤n}µ0(dv) ≥ 1/2 and set, for n ≥ n0,

µn
0 (dv) = α−1

n 1I{|v|≤n}µ0(dv) ∈ P(R3).

Since µn
0 is compactly supported, it has all moments finite and there exists a weak solution

(µn
t )t≥0 to (LE) starting at µn

0 by Proposition 5.12. Of course, µn
0 converges weakly to µ0

as n → ∞, and Λ2(µ
n
0 ) → 1. Moreover, we can use Theorem 5.2 to find (V n

t )t≥0 solving

(stLE) with Law(V n
t ) = µn

t for all t ≥ 0.

Step 2: A Uniform Integrability Property We now show a uniform integrabil-

ity property for the solutions µn
t found above, using the hypothesised function h. By

Proposition 2.12, all polynomial moments of µn
t are bounded, uniformly in t ≥ 0 (but

not necessarily in n). We can therefore apply the weak formulation (1.8) of (LE) to the

function f(v) = h(|v|2): arguing as in (2.126),

∂kf(v) = 2vkh
′(|v|2); ∂2

kℓf(|v|2) = 2h′(|v|2)1I{k=ℓ} + 4vkvlh
′′(|v|2)

and so, setting x = v − v∗ as usual,

Lf(v, v∗) = h′(|v|2)[2v · b(x) + Tra(x)] + 2|σ(x)v|2h′′(|v|2).

Recalling (5.9) and that 0 ≤ h′′ ≤ 1, we bound the second order term by

2|σ(x)v|2h′′(|v|2) ≤ C|x|γ|v|2|v∗|2 ≤ C(|v|2+γ|v∗|2 + |v|2|v∗|2+γ).

Meanwhile, since b(x) = −2|x|γx and Tra(x) = 2|x|γ+2, the first term is

h′(|v|2)[2v · b(x) + Tra(x)] = 2h′(|v|2)[−|x|γ|v|2 + |x|γ|v∗|2]
≤ −2h′(|v|2)|v|2+γ + 2h′(|v|2)|v∗|γ|v|2 + 2h′(|v|2)|v|γ|v∗|2 + 2h′(|v|2)|v∗|2+γ

≤ −h′(|v|2)|v|2+γ + C(1 + |v|2)|v∗|γ+2.

We used that |x|γ ≥ |v|γ − |v∗|γ, that |x|γ ≤ |v|γ − |v∗|γ and, for the last inequality, that

there is C > 0 such that |v∗|γ|v|2 + |v|γ|v∗|2 ≤ 1
2
|v|2+γ + C|v∗|2+γ and that h′(r) ≤ 1 + r.

All in all,

Lf(v, v∗) ≤ −h′(|v|2)|v|2+γ + C(1 + |v|2)|v∗|γ+2 + C(1 + |v∗|2)|v|γ+2.

We thus find, by (1.8), recalling that Λ2(µ
n
t ) = Λ2(µ

n
0 ), that

!

R3

h(|v|2)µn
t (dv) +

! t

0

!

R3

h′(|v|2)|v|2+γµn
s (dv)ds

≤
!

R3

h(|v|2)µn
0 (dv) + 2C(1 + Λ2(µ

n
0 ))

! t

0

!

R3

|v|2+γµn
s (dv)ds

≤ 2

!

R3

h(|v|2)µ0(dv) + 6C

! t

0

!

R3

|v|2+γµn
s (dv)ds,
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since µn
0 ≤ 2µ0 and Λ2(µ0) = 1. But since h′(∞) = ∞, there is a constant κ such that

6C|v|2+γ ≤ 1
2
h′(|v|2)|v|2+γ + κ for all v ∈ R3. We finally get

!

R3

h(|v|2)µn
t (dv) +

1

2

! t

0

!

R3

h′(|v|2)|v|2+γµn
s (dv)ds ≤ 2

!

R3

h(|v|2)µ0(dv) + κt

and we conclude that for all tfin < ∞, we have the uniform integrability

Ktfin := sup
n

+
sup

t∈[0,tfin]

!

R3

h(|v|2)µn
t (dv) +

! tfin

0

!

R3

|v|2+γh′(|v|2)µn
t (dv)dt

,
< ∞. (5.72)

Step 3: Construction of a Limit We now construct (Vt)t≥0 solving (stLE) starting

at µ0 by using Lemma 5.5 to extract a subsequence converging in law in n ≥ n0. Let us

fix tfin and let Ktfin be the (finite) supremum appearing in (5.72). For (5.10), we have

sup
t≤tfin

sup
n

!

R3

(1 + |v|2)1I|v|≥Rµ
n
t (dv) ≤

1 +R2

h(R2)
sup
t≤tfin

sup
n

!

R3

h(|v|2)µn
t (dv)

≤ 1 +R2

h(R2)
Ktfin

(5.73)

where we note that h(x)/x is increasing, by convexity of h. Since h′(∞) = ∞, it follows

that h(x)/x → ∞ as x → ∞, so the right-hand side converges to 0 as R → ∞, and (5.10)

is proven. For the second item, we argue similarly: we have

sup
n

! tfin

0

!

R3

(1 + |v|2+γ)1I|v|≥Rµ
n
t (dv)dt ≤

1 +R2+γ

R2+γh′(R2)
sup
n

! tfin

0

!

R3

|v|2+γh′(|v|2)µn
t (dv)dt

≤ 1 +R2+γ

R2+γh′(R2)
Ktfin → 0

(5.74)

as R → ∞. We now apply Lemma 5.5 to find nk ≥ n0, nk → ∞ along which (V nk
t )t≥0 con-

verge in distribution to a limit (Vt)t≥0, which solves (stLE). We observe that Law(V nk
0 ) =

µnk
0 converges to Law(V0), so we conclude that Law(V0) = µ0 as desired. Taking the weak

limits µnk
t → µt in (5.72) and using lower semicontinuity,

sup
t∈[0,tfin]

!

R3

h(|v|2)µt(dv) +

! t

0

!

R3

|v|2+γh′(|v|2)µt(dv)dt ≤ Ktfin < ∞ (5.75)

for all tfin ≥ 0, which implies that µ ∈ L∞
loc([0,∞),P2(R3)) ∩ L1

loc([0,∞),P2+γ(R3)). It

finally remains to check that µt conserves energy; let us fix t ≥ 0. Recalling that Λ2(µ
n
t ) =

Λ2(µ
n
0 ) for all n and that Λ2(µ

n
0 ) → Λ2(µ0) = 1, we immediately have from lower semi-

continuity
!

R3

|v|2µt(dv) ≤ lim inf
k

!

R3

|v|2µnk
t (dv) = lim inf

k
Λ2(µ

nk
t )

= lim inf
k

Λ2(µ
nk
0 ) = 1.

(5.76)
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For any t and any ε, we use (5.73) to find R < ∞ such that, uniformly in n,
!

R3

|v|21I|v|≥Rµ
n
t (dv) < ε (5.77)

and similarly for µt. Letting now χR : R3 → [0, 1] be a continuous, compactly sup-

ported function with χR(v) = 1 when |v| ≤ R, it follows that
&
R3 |v|2χR(v)µ

nk
t (dv) →&

R3 |v|2χR(v)µt(dv), while for each k,
!

R3

|v|2χR(v)µ
nk
t (dv) ≥

!

R3

|v|2µnk
t (dv)−

!

R3

|v|21I|v|≥Rµ
nk
t (dv)

= Λ2(µ
nk
t )−

!

R3

|v|21I|v|≥Rµ
nk
t (dv)

≥ 1− ε

(5.78)

so that taking a limit produces
&
R3 |v|2µt(dv) ≥ 1 − ε. Since ε > 0 was arbitrary, we

conclude that Λ2(µt) = 1 = Λ2(µ0) for all t ≥ 0, so µ ∈ L1
loc([0,∞),S2+γ) and the proof

is complete.

5.8 Proof of Theorem 5.4

We now prove our regularity result Theorem 5.4. As a starting point, we recall some

results from the literature, on which we will build.

Proposition 5.13 (Theorem 6, [58]). Suppose that µ0 ∈ Pp(R3) for some p > 2, and that

the support of µ0 is not a line:

for all v0, v1 ∈ R3, µ0({v0 + λv1 : λ ∈ R}) < 1. (5.79)

Then there exists a weak solution (µt)t≥0 starting at µ0 such that for all t > 0, µt has

finite entropy H(µt) < ∞ and

for all k, s ≥ 0 and all t0 > 0, sup
t≥t0

‖µt‖Hk
s (R3) < ∞. (5.80)

When (5.79) holds, we say that µ0 is not concentrated on a line. Let us remark that the

cited theorem as it is stated assumes that µ0 has a density, but that this can be removed

in favour of (5.79); see the remark below [58, Lemma 9]. The same conclusion was later

extended by Chen, Li and Xu [46] as follows.

Proposition 5.14 ([46], Theorem 1.1). Fix γ ∈ (0, 1]. Let (µt)t≥0 ⊂ S be a weak solution

to (LE) such that the estimate (5.80) holds. Then µt is analytic for all t > 0.

We begin with the following very mild regularity principle, which guarantees that the

hypotheses of Proposition 5.13 apply at some small time, provided that µ0 has 4 moments.

We then ‘bootstrap’ to the claimed result, using Propositions 2.12 and 5.14 and our

uniqueness result.
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Lemma 5.15. Let γ ∈ (0, 1] and µ0 ∈ S4, and let (µt)t≥0 be the weak solution to (LE)

starting at µ0. Then, for any t0 > 0, there exists t1 ∈ [0, t0) such that µt1 is not concen-

trated on a line.

Proof. If µ0 is already not concentrated on a line, there is nothing to prove, since we can

choose t1 = 0 and the conclusion is immediate. We thus assume that µ0 concentrates on

a line and, by translational and rotational invariance, that µ0 concentrates on the z-axis

L0 = {(0, 0, z) : z ∈ R}. Further, the assumption that µ0 ∈ S implies that it is not a point

mass, so we can find two disjoint compact intervals K1, K2 ⊂ L0 such that µ0(K1) > 0

and µ0(K2) > 0. Thanks to Theorem 5.2, we can find a solution (Vt)t≥0 to (stLE) such

that Law(Vt) = µt for all t ≥ 0.

Step 1: Itô representation of (stLE) We return to the representation of (stLE) and

of Vt in terms of a Brownian motion from Proposition 5.8. The averaged coefficients are

given by, for v ∈ R3 and µ ∈ P2+γ(R3), define

b(v, µ) =

!

R3

b(v − v∗)µ(dv∗), a(v, µ) =

!

R3

a(v − v∗)µ(dv∗)

and σ(v, µ) is a square root of a(v, µ). We recall that Vt can be written as

Vt = V0 +

! t

0

b(Vs, µs)ds+

! t

0

σ(Vs, µs)dβs (5.81)

for a 3-dimensional Brownian motion βt. Moreover, using the disintegration theorem, we

find probability measures Pv0 , v0 ∈ R3, under which Vt solves (5.81) with the deterministic

initial condition V0 = v0, and write Ev0 for the corresponding expectations. We then have

µt(A) = P(Vt ∈ A) =

!

R3

Pv0(Vt ∈ A)µ0(dv)

for any A ∈ B(R3) and any t ≥ 0.

Step 2: Small-Time Scaling Limit We now claim that if F : R3 → R is bounded

and continuous and Z ∼ N (0, I3), then

lim
ε→0

sup
v0∈K1

@@@Ev0

?
F
'Vε − v0√

ε

(A
− E

?
F
'
σ(v0, µ0)Z

(A@@@ = 0. (5.82)

Let U be an open ball for the Euclidean norm containing K1, and for v ∈ R3, let π(v)

be the minimiser of |v − ṽ| over ṽ ∈ U , which is unique by strict convexity; moreover,

the map v /→ π(v) is readily seen to be Lipschitz with constant 1. Recalling the growth

bounds

|b(v − v∗)| ≤ C|v − v∗|1+γ, ‖a(v − v∗)‖ ≤ C|v − v∗|2+γ,
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that supt≥0 Λ4(µt) < ∞ by Proposition 2.12i), one checks that |b(v, µs)| + ||σ(v, µs)|| ≤
C(1 + |v|1+γ) and, since µt → µ0 weakly as t → 0, that a(v, µt) → a(v, µ0), and thus

σ(v, µt) → σ(v, µ0), uniformly over v ∈ U , as t → 0. We now define

bt(v) = b(π(v), µt); σt(v) = σ(π(v), µt)

so that bt(v) and σt(v) are bounded, globally Lipschitz in v, agree with b(v, µt), σ(v, µt)

for v ∈ U and σt(v) converges uniformly on R3 as t ↓ 0. Now, let Ṽt be the solution to

the stochastic differential equation (5.81), driven by the same Brownian motion β with

these coefficients in place of b(v, µt) and σ(v, µt), started at Ṽ0 = V0; this is licit as the

coefficients are globally Lipschitz. Let T be the stopping time when Ṽt first leaves U ; by

uniqueness, we have Vt = Ṽt for all t ∈ [0, T ]. Using now that bt and σt are bounded, that

σt → σ0 uniformly and that Ṽt → v0 as t → 0, we see that

lim sup
ε→0

sup
v0∈K1

Ev0

?@@@
Ṽε − v0√

ε
− σ0(v0)

βε√
ε

@@@
2A

(5.83)

≤ lim sup
ε→0

sup
v0∈K1

1

ε
Ev0

?
2
'! ε

0

bs(Ṽs)ds
(2

+ 2
'! ε

0

(σs(Ṽs)− σ0(v0))dβs

(2A
= 0.

Recalling that σ0(v0) = σ(v0, µ0) when v0 ∈ K1 and that βε√
ε
∼ N (0, I3), we conclude that

sup
v0∈K1

@@@Ev0

?
F
'Vε − v0√

ε

(A
− Ev0 [F (σ(v0, µ0)Z)]

@@@

≤ sup
v0∈K1

@@@Ev0

?
F
' Ṽε − v0√

ε

(A
− Ev0

?
F
'
σ0(v0)

βε√
ε

(A@@@+ 2‖F‖∞ sup
v0∈K1

Pv0(T < ε) → 0

where the final convergence follows (5.83) and the fact that supv0∈K1
Pv0(T < ε) → 0

because d(K1, U
c) = inf{|v − ṽ| : v ∈ K1, ṽ ∕∈ U} > 0 and because bt and σt are bounded.

The proof of the claim is complete.

Step 3. We now construct three test functions Fi to which apply Step 2: let Bi ⊂ R2, i =

1, 2, 3 be disjoint open balls in the plane such that no line (in the plane) meets all three,

and let χi : R2 → [0, 1] be nonzero, smooth bump functions, supported on each Bi. Now,

we define ρ : R3 → R2 the projection ρ(v1, v2, v3) = (v1, v2). We then introduce the

bounded smooth functions Fi : R3 → [0, 1] defined by Fi(v) = χi(ρ(v)). Observe that

Fi(v) ≤ 1I{ρ(v)∈Bi}.

Since µ0 concentrates on the z-axis L0, denoting by e3 = (0, 0, 1), we have, for all v0 ∈ L0,

a(v0, µ0) =

!

R3

|v0 − v|γ+2Π(v−v0)⊥µ0(dv) = h(v0)Πe⊥3
= h(v0)

8

a9
1 0 0

0 1 0

0 0 0

:

b; ,

where h(v0) =
&
R3 |v0 − v|γ+2µ0(dv). One easily checks that h is bounded from above

and from below on K1, since supv0∈K1
h(v0) ≤ C(1 + Λ2+γ(µ0)) and infv0∈K1 h(v0) ≥
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αγ+2µ0(K2), where α > 0 is the distance betweenK1 andK2. Since σ(v0, µ0) = [a(v0, µ0)]
1/2

and since ρ(Z) ∼ N (0, I2), we deduce that for some δ > 0 and all i = 1, 2, 3,

inf
v0∈K1

Ev0 [Fi(σ(v0, µ0)Z)] = inf
v0∈K1

E[χi(h
1/2(v0)ρ(Z))] ≥ 2δ > 0.

Thanks to (5.82), we can find ε0 > 0 such that for all ε ∈ (0, ε0), all i = 1, 2, 3,

inf
v0∈K1

Ev0

?
Fi

'Vε − v0√
ε

(A
≥ δ whence inf

v0∈K1

Pv0

'
ρ
'Vε − v0√

ε

(
∈ Bi

(
≥ δ.

Step 4. Now, we fix t0 > 0 as in the statement, and consider t1 ∈ (0, ε0∧ t0). For a given

line L = {x0+λu0 : λ ∈ R} ⊂ R3 and for v0 ∈ K1, we denote by Lt1,v0 = ρ((L− v0)/
√
t1),

which is a line (or a point) in R2. There is i ∈ {1, 2, 3}, possibly depending on t1, such

that Lt1,v0 ∩Bi = ∅, so that

Pv0(Vt1 ∈ L) =Pv0

'Vt1 − v0√
t1

∈ L− v0√
t1

(

≤Pv0

'
ρ
'Vt1 − v0√

t1

(
∈ Lt1,v0

(

≤1− Pv0

'
ρ
'Vt1 − v0√

t1

(
∈ Bi

(

≤1− δ

by Step 3. In other words, for all v0 ∈ K1, Pv0(Vt1 ∈ R3 \ L) ≥ δ, whence

µt1(R3 \ L) =
!

R3

Pv0(Vt1 ∕∈ L)µ0(dv0) ≥ δµ0(K1) > 0.

The proof is complete.

We now prove our claimed result.

Proof of Theorem 5.4. Let µ0 ∈ S, and let (µt)t≥0 be any weak solution to (LE) starting at

µ0. Fix t0 > 0. By Proposition 2.12i), picking t1 ∈ (0, t0) arbitrarily, we have Λ4(µt1) < ∞,

so µt1 ∈ S4. We can therefore apply Lemma 5.15 to find t2 ∈ [t1, t0) such that µt2 is not

concentrated on a line, and we also have Λ4(µt2) < ∞, still by Proposition 2.12i), because

t2 > 0.

Now, by Proposition 5.13 there exists a solution (νt)t≥0 to (LE) starting at ν0 = µt2 such

that, for all s, k ≥ 0 and δ > 0,

sup
t≥δ

‖νt‖Hk
s (R3) < ∞

and such that H(νt) < ∞ for all t > 0; by Proposition 5.14, ν̃t is further analytic for all

t > 0.

Since the fourth moment Λ4(µt2) < ∞, we can apply the uniqueness in Theorem 5.1 to

see that there is a unique weak solution to (LE) starting at ν0 = µt2 , so we must have

νt = µt2+t for all t ≥ 0. In particular, µt0 = νt0−t2 is analytic and has finite entropy and

choosing δ = t0 − t2, for all s, k ≥ 0, supt≥t0 ‖µt‖Hk
s (R3) < ∞.
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5.9 Proof of the central inequality

We now turn to the proof of Lemma 5.9. It is convenient to first break up Ep,ε, which we

accomplish with the following Itô lemma, carefully applying the coupling operator to our

cost function.

Lemma 5.16. Adopt the notation of Lemma 5.9 and fix p ≥ 2 and ε ∈ [0, 1], and let dp,ε

be the transport cost defined in Section 2.1. For v, v∗, ṽ, ṽ∗ ∈ R3,

Ep,ε(v, ṽ, v∗, ṽ∗) ≤T1(v, v∗, ṽ, ṽ∗) + T2(v, v∗, ṽ, ṽ∗) + T2(ṽ, ṽ∗, v, v∗)

+ T3(v, v∗, ṽ, ṽ∗) + T3(ṽ, ṽ∗, v, v∗),

where, setting x = v − v∗ and x̃ = ṽ − ṽ∗,

T1(v, v∗, ṽ, ṽ∗) =(1 + |v|p + |ṽ|p)ϕ′
ε(|v − ṽ|2)

?
2(v − ṽ) · (b(x)− b(x̃)) + ||σ(x)− σ(x̃)||2

A
,

T2(v, v∗, ṽ, ṽ∗) =ϕε(|v − ṽ|2)
?
p|v|p−2v · b(x) + p

2
|v|p−2||σ(x)||2 + p(p− 2)

2
|v|p−4|σ(x)v|2

A
,

T3(v, v∗, ṽ, ṽ∗) =2p|v|p−2ϕ′
ε(|v − ṽ|2)[σ(x)v] · [(σ(x)− σ(x̃))(v − ṽ)].

Proof. Let us fix p ≥ 2, ε > 0, and recall that dp,ε is given by

dp,ε(v, ṽ) = (1 + |v|p + |ṽ|p)ϕε(|v − ṽ|2) (5.84)

where the function ϕε(r) = r/(1 + εr) satisfies

0 ≤ ϕ′
e ≤ 1; ϕ′′

e ≤ 0. (5.85)

Let f(v, ṽ) = dp,ε(v, ṽ) = (1 + |v|p + |ṽ|p)ϕε(|v − ṽ|2). We have

∂vkf(v, ṽ) = p|v|p−2vkϕε(|v − ṽ|2) + 2(vk − ṽk)(1 + |v|p + |ṽ|p)ϕ′
ε(|v − ṽ|2)

and a symmetric expression for ∂ṽkf(v, ṽ). Differentiating again, we find

∂2
vkvℓ

f(v, ṽ) =p|v|p−21I{k=ℓ}ϕε(|v − ṽ|2) + p(p− 2)|v|p−4vkvℓϕε(|v − ṽ|2)
+ 2p|v|p−2vk(vℓ − ṽℓ)ϕ

′
ε(|v − ṽ|2) + 21I{k=ℓ}(1 + |v|p + |ṽ|p)ϕ′

ε(|v − ṽ|2)
+ 4(vk − ṽk)(vℓ − ṽℓ)(1 + |v|p + |ṽ|p)ϕ′′

ε(|v − ṽ|2)
+ 2p|v|p−2(vk − ṽk)vℓϕ

′
ε(|v − ṽ|2)

and a symmetric expression for ∂2
ṽk ṽℓ

f(v, ṽ). Concerning the cross terms,

∂2
vk ṽℓ

f(v, ṽ) =2p|v|p−2vk(ṽℓ − vℓ)ϕ
′
ε(|v − ṽ|2) + 2p|ṽ|p−2(vk − ṽk)ṽℓϕ

′
ε(|v − ṽ|2)

− 4(vk − ṽk)(vℓ − ṽℓ)(1 + |v|p + |ṽ|p)ϕ′′
ε(|v − ṽ|2)

− 21I{k=ℓ}(1 + |v|p + |ṽ|p)ϕ′
ε(|v − ṽ|2).



274 5.9. PROOF OF THE CENTRAL INEQUALITY

Let us now examine the sums in the definition of Af one by one. First,

3"

k=1

[bk(v − v∗)∂vkf(v, ṽ) + bk(ṽ − ṽ∗)∂ṽkf(v, ṽ)]

=p|v|p−2v · b(v − v∗)ϕε(|v − ṽ|2) (= A1)

+ p|ṽ|p−2ṽ · b(ṽ − ṽ∗)ϕε(|v − ṽ|2) (= A2)

+ 2(1 + |v|p + |ṽ|p)(v − ṽ) · (b(v − v∗)− b(ṽ − ṽ∗))ϕ
′
ε(|v − ṽ|2). (= A3)

Next, using that for x, y, z ∈ R3, Tr a(x) = ||σ(x)||2 and
<3

k,ℓ=1 akℓ(x)ykzℓ = [σ(x)y] ·
[σ(x)z],

1

2

3"

k,ℓ=1

akℓ(v − v∗)∂
2
vkvℓ

f(v, ṽ) =
p

2
|v|p−2‖σ(v − v∗)‖2ϕε(|v − ṽ|2) (= B1)

+
p(p− 2)

2
|v|p−4|σ(v − v∗)v|2ϕε(|v − ṽ|2) (= B2)

+ 2p|v|p−2[σ(v − v∗)v] · [σ(v − v∗)(v − ṽ)]ϕ′
ε(|v − ṽ|2) (= B3)

+ (1 + |v|p + |ṽ|p)‖σ(v − v∗)‖2ϕ′
ε(|v − ṽ|2) (= B4)

+ 2(1 + |v|p + |ṽ|p)|σ(v − v∗)(v − ṽ)|2ϕ′′
ε(|v − ṽ|2). (= B5)

Similarly,

1

2

3"

k,ℓ=1

akℓ(ṽ − ṽ∗)∂
2
ṽk ṽℓ

f(v, ṽ) =
p

2
|ṽ|p−2‖σ(ṽ − ṽ∗)‖2ϕε(|v − ṽ|2) (= C1)

+
p(p− 2)

2
|ṽ|p−4|σ(ṽ − ṽ∗)ṽ|2ϕε(|v − ṽ|2) (= C2)

+ 2p|ṽ|p−2[σ(ṽ − ṽ∗)ṽ] · [σ(ṽ − ṽ∗)(ṽ − v)]ϕ′
ε(|v − ṽ|2) (= C3)

+ (1 + |v|p + |ṽ|p)‖σ(ṽ − ṽ∗)‖2ϕ′
ε(|v − ṽ|2) (= C4)

+ 2(1 + |v|p + |ṽ|p)|σ(ṽ − ṽ∗)(ṽ − v)|2ϕ′′
ε(|v − ṽ|2). (= C5)

Finally, we look at the cross-terms:

3"

j,k,ℓ=1

σkj(v − v∗)σℓj(ṽ − ṽ∗)∂
2
vk ṽℓ

f(v, ṽ)

=− 2p|v|p−2[σ(v − v∗)v] · [σ(ṽ − ṽ∗)(v − ṽ)]ϕ′
ε(|v − ṽ|2) (= D1)

+ 2p|ṽ|p−2[σ(v − v∗)(v − ṽ)] · [σ(ṽ − ṽ∗)ṽ]ϕ
′
ε(|v − ṽ|2) (= D2)

− 4(1 + |v|p + |ṽ|p)[σ(v − v∗)(v − ṽ)] · [σ(ṽ − ṽ∗)(v − ṽ)]ϕ′′
ε(|v − ṽ|2) (= D3)

− 2(1 + |v|p + |ṽ|p)〈〈σ(v − v∗), σ(ṽ − ṽ∗)〉〉ϕ′
ε(|v − ṽ|2). (= D4)
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Recalling the notation x = v − v∗ and x̃ = ṽ − ṽ∗, we find that

A3 +B4 + C4 +D4 =T1(v, v∗, ṽ, ṽ∗),

A1 +B1 +B2 =T2(v, v∗, ṽ, ṽ∗),

A2 + C1 + C2 =T2(ṽ, ṽ∗, v, v∗),

B3 +D1 =T3(v, v∗, ṽ, ṽ∗),

C3 +D2 =T3(ṽ, ṽ∗, v, v∗),

and finally that

B5 + C5 +D3 =2(1 + |v|p + |ṽ|p)|(σ(x)− σ(x̃))(v − ṽ)|2ϕ′′
ε(|v − ṽ|2) ≤ 0

since ϕ′′
ε is nonpositive, see (5.85).

We now analyse the terms one by one.

Proof of Lemma 5.9. We introduce the shortened notation x = v − v∗, x̃ = ṽ − ṽ∗ and

start from the bound in the previous lemma

Ep,ε ≤ T1 + T2 + 5T2 + T3 + 5T3, (5.86)

where T1 = T1(v, v∗, ṽ, ṽ∗), T2 = T2(v, v∗, ṽ, ṽ∗), 5T2 = T2(ṽ, ṽ∗, v, v∗), etc. In the whole

proof, C is allowed to change from line to line and to depend (only) on p and γ.

Step 1. We begin with T1, which is the most difficult term. We start from

T1 = (1 + |v|p + |ṽ|p)ϕ′
ε(|v − ṽ|2)[g1 + g2 + g3],

where

g1 =[(v − ṽ)− (v∗ − ṽ∗)] · (b(x)− b(x̃)) + ||σ(x)− σ(x̃)||2,
g2 =(v − ṽ) · (b(x)− b(x̃)),

g3 =(v∗ − ṽ∗) · (b(x)− b(x̃)).

Step 1.1. Recalling that b(x) = −2|x|γx and using (5.7), we find

g1 ≤2(x− x̃) · [−|x|γx+ |x̃|γx̃] + 2|x|γ+2 + 2|x̃|γ+2 − 4|x|γ/2|x̃|γ/2(x · x̃)
=2(|x|γ + |x̃|γ)(x · x̃)− 4|x|γ/2|x̃|γ/2(x · x̃)
=2(x · x̃)(|x|γ/2 − |x̃|γ/2)2.

Using now (5.5) with α = γ/2,

g1 ≤ 2|x||x̃|(|x|∨|x̃|)γ−2(|x|−|x̃|)2 = 2(|x|∧|x̃|)(|x|∨|x̃|)γ−1(|x|−|x̃|)2 ≤ 2(|x|∧|x̃|)γ|x−x̃|2.
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Since |x− x̃| = |(v − ṽ)− (v∗ − ṽ∗)|, we end with

g1 ≤ 2(|x| ∧ |x̃|)γ|v − ṽ|2 + 2(|x| ∧ |x̃|)γ(2|v − ṽ||v∗ − ṽ∗|+ |v∗ − ṽ∗|2).

Step 1.2. We next study g2, assuming without loss of generality that |x| ≥ |x̃|. We write,

using (5.5) with α = γ,

g2 =2(v − ṽ) · [−|x|γ(x− x̃) + (|x̃|γ − |x|γ)x̃]
≤− 2|x|γ(v − ṽ) · (x− x̃) + 2|v − ṽ||x̃|(|x| ∨ |x̃|)γ−1||x|− |x̃||
≤− 2|x|γ(v − ṽ) · (x− x̃) + 2|v − ṽ||x̃|γ|x− x̃|.

Since now x = v − v∗ and x̃ = ṽ − ṽ∗, we see that

g2 ≤− 2|x|γ|v − ṽ|2 + 2|x|γ|v − ṽ||v∗ − ṽ∗|+ 2|x̃|γ[|v − ṽ|2 + |v − ṽ||v∗ − ṽ∗|]
≤2(|x|γ + |x̃|γ)|v − ṽ||v∗ − ṽ∗|

since |x| ≥ |x̃| by assumption. By symmetry, the same bound holds when |x| ≤ |x̃|.

Step 1.3. Using now (5.6), we see that

g3 ≤2|v∗ − ṽ∗|[|x|γ + |x̃|γ]|x− x̃| ≤ 2(|x|γ + |x̃|γ)[|v − ṽ||v∗ − ṽ∗|+ |v∗ − ṽ∗|2].

Step 1.4. Gathering Steps 1.1, 1.2, 1.3, we have checked that

T1 ≤ (1+|v|p+|ṽ|p)ϕ′
ε(|v−ṽ|2)

?
2(|x|∧|x̃|)γ|v−ṽ|2+C(|x|γ+|x̃|γ)(|v−ṽ||v∗−ṽ∗|+|v∗−ṽ∗|2)

A
.

Recalling that rϕ′
ε(r) ≤ ϕε(r) by (2.11) and that |x|γ ≤ |v|γ + |v∗|γ and |x̃|γ ≤ |ṽ|γ + |ṽ∗|γ,

we may write T1 ≤ T1,1 + T1,2, where

T1,1 =2(1 + |v|p + |ṽ|p)[(|v|γ + |v∗|γ) ∧ (|ṽ|γ + |ṽ∗|γ)]ϕε(|v − ṽ|2),
T1,2 =C(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)ϕ′

ε(|v − ṽ|2)(|v − ṽ||v∗ − ṽ∗|+ |v∗ − ṽ∗|2).

First,

T1,1 ≤2(|v|γ + |v∗|γ)ϕε(|v − ṽ|2) + 2|v|p(|v|γ + |v∗|γ)ϕε(|v − ṽ|2) + 2|ṽ|p(|ṽ|γ + |ṽ∗|γ)ϕε(|v − ṽ|2)
=2(|v|p+γ + |ṽ|p+γ)ϕε(|v − ṽ|2) + 2(|v|γ + |v∗|γ + |v|p|v∗|γ + |ṽ|p|ṽ∗|γ)ϕε(|v − ṽ|2)
≤2(|v|p+γ + |ṽ|p+γ)ϕε(|v − ṽ|2) + C(1 + |v∗|γ + |ṽ∗|γ)(1 + |v|p + |ṽ|p)ϕε(|v − ṽ|2)
=2dp+γ,ε(v, ṽ) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ).

We next use that ab ≤ ε1/2a2 + ε−1/2b2 to write

T1,2 ≤C
√
ε(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)ϕ′

ε(|v − ṽ|2)|v − ṽ|2

+
C√
ε
(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)ϕ′

ε(|v − ṽ|2)|v∗ − ṽ∗|2

≤C
√
ε(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)ϕε(|v − ṽ|2)

+
C√
ε
(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)|v∗ − ṽ∗|2,
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because rϕ′
ε(r) ≤ ϕε(r) and ϕ′

ε(r) ≤ 1 by (2.11). We carry on with

T1,2 ≤C
√
ε(1 + |v|p+γ + |ṽ|p+γ)ϕε(|v − ṽ|2) + C

√
ε(1 + |v|p + |ṽ|p)(|v∗|γ + |ṽ∗|γ)ϕε(|v − ṽ|2)

+
C√
ε
(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)(1 + ε|v∗ − ṽ∗|2)ϕε(|v∗ − ṽ∗|2)

≤C
√
εdp+γ,ε(v, ṽ) + C

√
ε(1 + |v∗|γ + |ṽ∗|γ)dp,ε(v, ṽ)

+
C√
ε
(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)ϕε(|v∗ − ṽ∗|2)

+ C
√
ε(1 + |v|p + |ṽ|p)(|v|γ + |v∗|γ + |ṽ|γ + |ṽ∗|γ)(|v∗|2 + |ṽ∗|2)ϕε(|v∗ − ṽ∗|2)

≤C
√
εdp+γ,ε(v, ṽ) + C

√
ε(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)

+
C√
ε
(1 + |v|p+γ + |ṽ|p+γ)(1 + |v∗|γ + |ṽ∗|γ)ϕε(|v∗ − ṽ∗|2)

+ C
√
ε(1 + |v|p+γ + |ṽ|p+γ)(|v∗|2 + |ṽ∗|2)ϕε(|v∗ − ṽ∗|2)

+ C
√
ε(1 + |v|p + |ṽ|p)(1 + |v∗|2+γ + |ṽ∗|2+γ)ϕε(|v∗ − ṽ∗|2).

Since p ≥ 2, since γ ∈ (0, 1) and since ε ∈ (0, 1], we end with

T1,2 ≤C
√
εdp+γ,ε(v, ṽ) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)

+
C√
ε
(1 + |v|p+γ + |ṽ|p+γ)dp,ε(v∗, ṽ∗)

+ C
√
ε(1 + |v|p + |ṽ|p)dp+γ,ε(v∗, ṽ∗).

Summing the bounds on T1,1 and T1,2, we have proven that

T1 ≤2dp+γ,ε(v, ṽ) (5.87)

+ C
√
ε(1 + |v∗|p + |ṽ∗|p)dp+γ,ε(v, ṽ)

+ C
√
ε(1 + |v|p + |ṽ|p)dp+γ,ε(v∗, ṽ∗)

+
C√
ε
(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)

+
C√
ε
(1 + |v|p+γ + |ṽ|p+γ)dp,ε(v∗, ṽ∗).

Step 2. We next turn to T2. By (2.126)-(2.127) and by definition of T2, we see that

T2 ≤ϕε(|v − ṽ|2)
?
− p|v|p+γ + p|v|p|v∗|γ + Cp2(|v|p−2+γ|v∗|2 + |v|p−2|v∗|2+γ)

A
.

≤ϕε(|v − ṽ|2)
?
− p|v|p+γ + C(1 + |v∗|2+γ)(1 + |v|p)

A
.

It follows that

T2 ≤ −p|v|p+γϕε(|v − ṽ|2) + C(1 + |v∗|p+γ)dp,ε(v, ṽ), (5.88)
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and, still allowing C to change from line to line and to depend on p, that

T2 + T̃2 ≤− p(|v|p+γ + |ṽ|p+γ)ϕε(|v − ṽ|2) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ) (5.89)

=− p(dp+γ(v, ṽ)− ϕε(|v − ṽ|2)) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ)

≤− pdp+γ(v, ṽ) + C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ),

where the equality uses the definition (2.10) of dp+γ,ε, and in the final line we absorb

ϕ(|v − ṽ|2) ≤ dp,ε(v, ṽ) into the second term.

Step 3. We finally deal with T3, T̃3; by symmetry, it suffices to treat the case of T3.

Recalling that |σ(x)v| ≤ C|x|γ/2|v||v∗| by (5.9), and that ||σ(x) − σ(x̃)|| ≤ C(|x|γ/2 +
|x̃|γ/2)|x− x̃| by (5.8), we directly find

T3 ≤C|v|p−1|v∗||x|γ/2(|x|γ/2 + |x̃|γ/2)|x− x̃||v − ṽ|ϕ′
ε(|v − ṽ|2)

≤C|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)(|v − ṽ|2 + |v − ṽ||v∗ − ṽ∗|)ϕ′
ε(|v − ṽ|2)

=T3,1 + T3,2,

where

T3,1 =C|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)|v − ṽ|2ϕ′
ε(|v − ṽ|2),

T3,2 =C|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)|v − ṽ||v∗ − ṽ∗|ϕ′
ε(|v − ṽ|2).

Since rϕ′
ε(r) ≤ ϕε(r) by (2.11), we have

T3,1 ≤C(1 + |v∗|1+γ + |ṽ∗|1+γ)(1 + |v|p−1+γ + |ṽ|p−1+γ)ϕε(|v − ṽ|2)
≤C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ).

Next, we use that, with a = |v − ṽ| and a∗ = |v∗ − ṽ∗|, since a[ϕ′
ε(a

2)] ≤
I

a2ϕ′
ε(a

2) ≤I
ϕε(a2) by (2.11),

aa∗ϕ
′
ε(a

2) ≤
I

ϕε(a2)
I

ϕε(a2∗)(1 + εa2∗) ≤ [ϕε(a
2) + ϕε(a

2
∗)](1 +

√
εa∗)

to write T3,2 ≤ T3,2,1 + T3,2,2 + T3,2,3 + T3,2,4, where

T3,2,1 =C|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)ϕε(|v − ṽ|2),
T3,2,2 =C|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)ϕε(|v∗ − ṽ∗|2),
T3,2,3 =C

√
ε|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)|v∗ − ṽ∗|ϕε(|v − ṽ|2),

T3,2,4 =C
√
ε|v|p−1|v∗|(|v|γ + |ṽ|γ + |v∗|γ + |ṽ∗|γ)|v∗ − ṽ∗|ϕε(|v∗ − ṽ∗|2).

We have

T3,2,1 ≤C(1 + |v∗|1+γ + |ṽ∗|1+γ)(1 + |v|p−1+γ + |ṽ|p−1+γ)ϕε(|v − ṽ|2)
≤C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ),
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as well as

T3,2,2 ≤C(1 + |v∗|1+γ + |ṽ∗|1+γ)(1 + |v|p−1+γ + |ṽ|p−1+γ)ϕε(|v∗ − ṽ∗|2)
≤C(1 + |v|p+γ + |ṽ|p+γ)dp,ε(v∗, ṽ∗),

and, dropping
√
ε and using that |v∗ − ṽ∗| ≤ |v∗|+ |ṽ∗|,

T3,2,3 ≤C(1 + |v∗|2+γ + |ṽ∗|2+γ)(1 + |v|p−1+γ + |ṽ|p−1+γ)ϕε(|v − ṽ|2)
≤C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ).

Finally, using again the bound |v∗ − ṽ∗| ≤ |v∗|+ |ṽ∗|,

T3,2,4 ≤C
√
ε(1 + |v|p−1+γ + |ṽ|p−1+γ)(1 + |v∗|2+γ + |ṽ∗|2+γ)ϕε(|v∗ − ṽ∗|2)

≤C
√
ε(1 + |v|p + |ṽ|p)dp+γ,ε(v∗, ṽ∗).

Summing the bounds on T3,1, T3,2,1, T3,2,2, T3,2,3 and T3,2,4, we conclude that

T3 + T̃3 ≤C(1 + |v∗|p+γ + |ṽ∗|p+γ)dp,ε(v, ṽ) (5.90)

+ C(1 + |v|p+γ + |ṽ|p+γ)dp,ε(v∗, ṽ∗)

+ C
√
ε(1 + |v∗|p + |ṽ∗|p)dp+γ,ε(v, ṽ)

+ C
√
ε(1 + |v|p + |ṽ|p)dp+γ,ε(v∗, ṽ∗).

Gathering (5.86), (5.87), (5.89) and (5.90) completes the proof since ε ∈ (0, 1].
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Chapter 6

Large Deviations of the Kac Process

6.1 Introduction & Main Results

This chapter is dedicated to the investigation of the large deviations of the (unlabelled)

Kac system. Throughout, we will work with a labelled Kac process (µN
t ) arising from a

labelled process VN
t . As in the introduction we fix, forever, a time horizon tfin ∈ (0,∞),

and write • for processes indexed by t ∈ [0, tfin], so that µN
• = (µN

t )0≤t≤tfin .

For this chapter, it will be convenient to parametrise collisions by the ‘ω-representation’

from Section 2.4, which we here write as

v′(v, v*, σ) = v − ((v − v*) · σ)σ; v′*(v, v*, σ) = v* + ((v − v*) · σ)σ (6.1)

which has the advantage that the map Tσ : (v, v∗) → (v′, v′∗) is a self-inverse linear

isometry of (Rd)2. With this parametrisation, the regularised hard spheres (rHS) and

cutoff Maxwell Molecules (GMM) kernels in the introduction are1

B(v, σ) =

#
$

%
1 + |v| (rHS)

1 (MM).
(6.2)

As usual, we write Ψ(|v|) for the kinetic factor, given by 1 + |v|, 1 in the two cases

respectively. Also uniquely for this chapter, we will not normalise to µN
t ∈ S, and will take

initial velocities sampled independently from a reference measure µ*
0 ∈ S, which satisfies

some further conditions (Hypothesis 6.1 below). For example, while the normalisation

procedure in Section 2.3 is innocuous at the level of the law of large numbers, it can make

a significant difference at the level of large deviations, and by insisting on independence

we have access to Sanov’s Theorem [51]. We will comment further on possible hypotheses

in the discussion section.
1Properly, the kernels with the usual ‘σ-representation’ are the pushforward of these kernels under

the map taking this representation to the usual one. This abuse of terminology will not cause problems

in the sequel.
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6.1.1 Framework of Large Deviations

We recall that we carefully interpret the informal estimate (1.33) by asking that, for Kac

processes µN
• and associated empirical fluxes wN ,

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ A

.
≤ − inf {I(µ•, w) : (µ•, w) ∈ A} ; (6.3)

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ − inf {I(µ•, w) : (µ•, w) ∈ U} (6.4)

for any closed set A and open set U ; in order to state our main results, we must carefully

introduce the functional spaces and topology we use, and specify our (candidate) rate

function I. Formally, we consider the space P2 of probability measures on Rd with finite

second moment, equipped with the Monge-Kantorovich-Wasserstein distance W1,1 defined

in Section 2.1. We write PN
2 for the subspace consisting of empirical measures onN points,

and D for the Skorokhod space

D :=

M
µ• ∈ D([0, tfin], (P2,W1,1)) : sup

t≤tfin

〈|v|2, µt〉 < ∞, µtfin = µtfin−

N
(6.5)

which we equip with a metric inducing the Skorokhod J1-topology; see Appendix 6.A. For

the empirical fluxes, we recall, and write throughout, the notation E for the parameter

space of collisions E = (0, tfin] × Rd × Rd × Sd−1 and Et = (0, t] × Rd × Rd × Sd−1 ⊂ E.

We write M(E) for the space of finite Borel measures on E satisfying2 w({tfin} × Rd ×
Rd × Sd−1) = 0, which we equip with the Wasserstein1 metric ρ1 described in Section 2.1,

now with S = E with the metric induced from E ⊂ R3d+1, which is given by

ρ1(w,w
′) = sup

M
〈g, w − w′〉 : sup

E
|g| ≤ 1, sup

p,q∈E,p ∕=q

|g(p)− g(q)|
|p− q| ≤ 1

N
(6.6)

where | · | is the Euclidean norm on E ⊂ R3d+1. We also recall that (µN
t , w

N
t ) is a Markov

process in PN
2 ×M(E) with time-dependent generator given on bounded functions by

GN
t F (µN , wN) = N

!

Rd×Rd×Sd−1

(F (µN,v,v!,σ, wN,t,v,v!,σ)− F (µN , wN))

· · ·× B(v − v*, σ)µ
N(dv)µN(dv*)dσ

(6.7)

where the changes in the measure and the flux are

µN,v,v!,σ := µN +
1

N
∆(v, v*, σ); wN,t,v,v!,σ := wN +

1

N
δ(t,v,v!,σ). (6.8)

where we have introduced the notation

∆(v, v∗, σ) = δv′ + δv′∗ − δv − δv∗ .

We will also frequently use the notation

∆f(v, v∗, σ) := 〈f,∆(v, v∗, σ)〉 = f(v′) + f(v′∗)− f(v)− f(v∗).

We will make the following further hypotheses on the reference measure µ*
0:

2This condition on the empirical flux, and the left-continuity of µN
• at tfin, can be imposed on the

sample paths with modification on a set of probability 0.
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Hypothesis 6.1. Let us write Ez(µ) for the Gaussian moment functional Ez(µ) := 〈ez|v|2 , µ〉 ∈
[0,∞]. Then we assume that µ*

0 ∈ S, and that the following hold.

i). Gaussian upper bound: there exists z1 > 0 such that Ez1(µ*
0) < ∞.

ii). Gaussian Lower Bound: there exists z2 < ∞ such that Ez(µ*
0) < ∞ for z < z2, and

Ez(µ*
0) → ∞ as z ↑ z2.

iii). Continuous Density: µ*
0 has a continuous density f *

0 with respect to the Lebesgue

measure, and for some z3 ∈ (0,∞) and c > 0,

f *
0 ≥ ce−z3|v|2 . (6.9)

Under the initial conditions described above, Sanov’s Theorem [51] applies to show that

the initial data satisfy a large deviation function in (P2,W ) with rate function given by

the relative entropy

H(µ0|µ*
0) :=

#
$

%

&
Rd

dµ0

dµ!
0
log

'
dµ0

dµ!
0

(
µ*
0(dv) if µ0 ≪ µ*

0;

∞ else.
(6.10)

6.1.2 A Proposed Rate Function

Let us review a candidate rate function identified by Léonard [131] for exactly this prob-

lem. For µ• ∈ D we define wµ ∈ M(E) by

wµ(dt, dv, dv*, dσ) = B(v − v∗, σ)dtµt(dv)µt(dv*)dσ. (6.11)

We say that (µ•, w) ∈ D ×M(E) is a measure-flux pair if w ≪ wµ and if they solve the

continuity equation: for all 0 ≤ t ≤ tfin,

µt = µ0 +

!

Et

∆(v, v*, σ) w(ds, dv, dv*, dσ) = µ0 +

!

E

∆(v, v*, σ) 1I{s≤t} w(ds, dv, dv*, dσ).

(CE)

We will use, throughout, the notation K for the density dw
dwµ

, which we call a tilting

function. With this notation, if (µ•, w) is a measure-flux pair, then µ• solves a controlled

Boltzmann equation

µt = µ0 +

!

Et

∆(v, v*, σ)K(s, v, v*, σ)B(v − v∗, σ)dsµs(dv)µs(dv*)dσ (CBEK)

in the sense of Bochner integrals. Equivalently, given µ• solving (CBEK) for some K ∈
L1(wµ), one can define w = Kwµ and (µ•, w) is a measure-flux pair. We define the

dynamic cost of a trajectory (µ•, w) ∈ D ×M(E) to be

J (µ•, w) :=

#
$

%

&
E
τ
'

dw
dwµ

(
wµ(ds, dv, dv*, dσ) if (µ•, w) is a measure-flux pair;

∞ else
(6.12)
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where τ : [0,∞] → [0,∞] is the function τ(k) = k log k − k + 1, and define the full rate

function to be

I(µ•, w) := H(µ0|µ*
0) + J (µ•, w). (6.13)

An analagous upper bound, which can be recovered from this rate function using the

contraction principle on (µ•, w) → µ• is obtained by Léonard [131] in a different topology,

and the same rate function has been found in other contexts for kinetic large deviations;

see the comments in the literature review.

6.1.3 Main Results

We are now in a position to carefully state our results, corresponding to Theorem 4.

Our first result collects some useful facts on the proposed rate function I and on the

exponential tightness.

Proposition 6.1 (Exponential Tightness and Semicontinuity). Fix a probability space

(Ω,F,P). For N ≥ 2, let µN
• be either regularised hard sphere or Maxwell Molecule

Kac processes with initial velocities drawn independently from a measure µ*
0 satisfying

Hypothesis 6.1i). Then the following hold.

i). The random variables (µN
• , w) ∈ D×M(E) are exponentially tight: for any M > 0,

there exists a compact set K ⊂ D ×M(E) such that

lim sup
N

1

N
logP

-
(µN

• , w
N) ∕∈ K

.
≤ −M. (6.14)

ii). The function I is lower semicontinuous on D ×M(E): the lower sub-level sets

{(µ•, w) ∈ D ×M(E) : I(µ•, w) ≤ a} ⊂ D ×M(E) (6.15)

are closed.

We emphasise that we do not claim that I is ‘good’, in that the sub-level sets are compact;

indeed, Theorem 6.5 suggests that this is false.

Our main positive result is as follows. We rederive, in our context, the upper bound with

our rate function, which reproduces the result of Léonard [131], and prove a lower bound

with the same rate function on a restricted set. In this way, the proposed rate function

captures at least some of the correct large deviation behaviour of the Kac process.

Theorem 6.2. Let B be either the regularised hard spheres or Maxwell molecules kernel,

and for N ≥ 2 let (µN
• , w

N) be a Kac process and its flux, with particles drawn initially

from µ*
0 satisfying Hypothesis 6.1, and let I be the rate function given above. Then
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i). For all A ⊂ D ×M(E) closed, we have

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ A

.
≤ − inf {I(µ•, w) : (µ•, w) ∈ A} . (6.16)

ii). For all U ⊂ D ×M(E) open, we have

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ − inf {I(µ•, w) : (µ•, w) ∈ U ∩R} (6.17)

where R = {(µ•, w) ∈ D ×M(E) : 〈1 + |v|2 + |v*|2, w〉 < ∞}.

Next, let us show some applications of the positive large deviations result at the level

of nonrandom (µ•, w) ∈ D × M(E). We first show how the entropy plays the role of a

quasipotential for the Kac dynamics and Boltzmann equation. Let us refer the reader to

[31, Section 3.3] for a general discussion of such results.

Corollary 6.3 (Entropy as a Quasipotential). Let B be either the regularised hard spheres

or Maxwell molecules kernel, and fix µ ∈ P2. Then

H(µ|γ) ≥ inf

M
H(ν0|γ) +

!

E

τ(K)dwν : ν ∈ D, ν solves (CBEK), νtfin = µ

N
(6.18)

and

H(µ|γ) ≤ inf

M
H(ν0|γ) +

!

E

τ(K)dwν : ν ∈ D, ν solves (CBEK), νT = µ,

and

!

E

(|v|2 + |v*|2)Kdwν < ∞
N
.

(6.19)

In this sense, we view τ(K) as the entropic cost of moving to a higher-entropy state by

controlled Boltzmann dynamics (CBEK). The second item also implies a weak form of

the H-Theorem (H), as it shows that H(µt|γ) is strictly decreasing along solutions µ• to

(BE) such that (µ•, wµ) ∈ R, but the upper bound would be false without this second

moment condition due to Theorem 6.5 below.

Our second application is a short result concerning the time-reversal of the large deviations

theory we construct. We define the time reversal operation on (µ•, w) ∈ D × M(E) by

writing T(µ•, w) = (Tµ•,Tw), where the time reversal of the path is

TµN
• =

-
µN
(tfin−t)−

.
0≤t≤tfin

; (6.20)

and the time reversal of the flux w is given by specifying, for bounded measurable g :

E → R,
!

E

g(t, v, v∗, σ)(Tw)(dt, dv, dv∗, dσ) :=
!

E

g(tfin − t, v′, v′∗, σ)w(dt, dv, dv∗, dσ). (6.21)

It is well-known that the Kac process is reversible in equilibrium, so that if µN
• is formed

by sampling independently from γ, then the law of TµN
• is the same as that of µN

• . Our

result on the time-reversibility of large deviations is as follows.
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Proposition 6.4 (Time-Reversibility of Large Deviations). Let µN
• be a Kac process for

either (rHS, GMM) formed by sampling initial velocities independently from γ and let wN

be its associated empirical flux.

i). The law of the time-reversal T(µN
• , w

N) is the same as that of (µN
• , w

N).

ii). For any (µ•, w) ∈ R, we have I(Tµ•,Tw) = I(µ•, w), for the same set R as in

Theorem 6.5.

iii). Let (µ•, w) ∈ D ×M(E) be a measure-flux pair, with tilting function K, such that

µt, µt− all admit strictly positive densities ft, ft− > 0 with respect to the Lebesgue

measure for all t ∈ [0, tfin]. Then the time-reversal (Tµ•,Tw) is a measure-flux pair

with the new tilting function

TK(t, v, v∗, σ) = K(tfin − t, v′, v′∗, σ)
ftfin−t(v

′)ftfin−t(v
′
∗)

ftfin−t(v)ftfin−t(v∗)
.

iv). Let (µ•, wµ) ∈ R be an energy-conserving solution to (BE) and its associated flux,

and suppose that µt admits a strictly positive density ft for all t ∈ [0, tfin]. Then the

dynamic cost of the time-reversal is

J (Tµ•,Twµ) =

! tfin

0

D(ft)dt =

!

E

log

6
ft(v)ft(v∗)

ft(v′)ft(v′∗)

7
wµ(dt, dv, dv∗, dσ)

where D(ft) is the entropy dissipation, defined for nonnegative f ∈ L1(dv) by

D(f) =

!

Rd×Rd×Sd−1

log

6
f(v)f(v∗)

f(v′)f(v′∗)

7
B(v − v∗, σ)f(v)f(v∗)dvdv∗dσ.

We therefore conclude Boltzmann’s H-Theorem: for such solutions,

H(µtfin |γ) +
! tfin

0

D(fs)ds = H(µ0|γ).

As discussed in the literature review, the proposed rate function is a very natural candidate

for describing the large deviations behaviour, and one might expect to be able to find a

‘true’ lower bound (6.4). In this context, the restricted lower bound presented here is

somewhat dissatisfying, as it leaves open the question of which open sets U are such that

infU I = infU∩R I, or the possibility that a better upper bound may be possible. The

restriction to a set R of ‘good’ paths, as here, is necessary for the paths in question to

be approximated by paths which can be recovered by a Girsanov transform; see Lemma

6.16. Key to this argument is that these paths should be uniquely specified by the

initial data and tilting K, so that the path is the unique possible hydrodynamic limit of

‘tilted’ dynamics along any subsequence. However, at the level of the Boltzmann equation

(BE), this uniqueness is known not to hold: solutions with increasing energy have been

constructed by Lu and Wennberg [133]. Since the energy 〈|v|2, µN
t 〉 is almost surely
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conserved by the paths of the stochastic Kac process, one might hope that such solutions

are somehow spurious and can be excluded from the large deviation analysis by redefining

I to be ∞ on such paths. However, we prove the following theorem, which shows that

such solutions can be reached with finite exponential cost, and so cannot be excluded from

the large deviation analysis, but the occurrence of such paths is not correctly predicted by

the proposed rate function. Equivalently, this example can be understood as producing

explicitable open sets U such that the infima of the rate function over U and U ∩R do

not coincide.

Theorem 6.5. Assume the notation of Proposition 6.1.

i). Suppose B is the regularised hard spheres kernel, and the reference measure µ*
0 sat-

isfies Hypothesis 6.1i-ii). Let Θ : [0, tfin] → (0,∞) be increasing and left-continuous,

with Θ(0) = 1 and such that, for some closed set P ⊂ [0, tfin], 0 ∈ P, tfin ∕∈ P with

null interior, Θ is locally constant on [0, tfin]\P . For some constant α = α(Θ(tfin)),

define

A(t) := α

6
inf

s∈P :s<t
(t− s)

7−2

∈ (0,∞] (6.22)

and consider the set AΘ given by

AΘ :=

M
(µ•, w) ∈ D ×M(E) : µ• solves (BE), w = wµ, µ0 = µ*

0,

and for all t ≥ 0, 〈|v|2, µt〉 = Θ(t) and 〈|v|4, µt〉 ≤ A(t)

N
.

(6.23)

Then AΘ is compact, nonempty, and I(µ•, w) = 0 on AΘ. We have, for the same

z2 as in Hypothesis 6.1,

inf
U⊃AΘ

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −Θ(tfin)z2 (6.24)

where the infimum runs over all open sets U ⊂ D×M(E) containing AΘ, and there

exists an open set V ⊃ AΘ such that

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ V

.
< 0. (6.25)

ii). Suppose instead that B is the cutoff Maxwell Molecules kernel. For all δ > 0 and Θ

as above, and with A as above with α depending on δ as well as Θ(tfin), define the

set

AΘ,δ :=

M
(µ•, w) ∈ D ×M(E) : (µ•, w) is a measure-flux pair with

K(t, v, v*, σ) = 1 + δ|v − v*|, µ0 = µ*
0, and for all t > 0,

〈|v|2, µt〉 = Θ(tfin) and 〈|v|4, µt〉 ≤ A(t)

N
.

(6.26)
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The sets AΘ,δ are compact and nonempty, and I(µ•, w) ≤ 4δ2Θ(tfin)tfin for all

(µ•, w) ∈ AΘ,δ. We have

inf
U⊃AΘ,δ

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −Θ(tfin)(z2 + Cδ) (6.27)

where, as above, the infimum runs over all open sets U containing AΘ,δ. However,

there exist open sets Vδ ⊃ AΘ,δ such that, for any Θ,

lim sup
δ↓0

lim inf
N

1

N
P
-
(µN

• , w
N) ∈ Vδ

.
< 0. (6.28)

In both cases, the first point shows that such behaviour cannot be excluded by superex-

ponential estimates, and so is a form of behaviour which must be taken into account in

the large deviation theory; the second point shows that the rate function on such paths is

not that predicted above. In the first case, we will construct changes of measure QN ≪ P,
with an exponential cost associated to changing the initial data and sub-exponential cost

associated to modifying the dynamics, so that o(N) particles containing O(1) energy are

temporarily ‘frozen’ and, under these new measures, the Kac processes concentrate on the

set AΘ given. The argument for the Maxwell molecule case is similar, with an additional

exponential cost O(eNδ) necessary to modify the dynamics. In these cases, the behaviour

of o(N) particles has a macroscopic effect on the evolution of the whole process, meaning

that the large deviation behaviour is not purely captured by the empirical measure and

control K. Possible generalisations of this phenomenon will be discussed in Section 6.1.5.2

below

Let us now examine some consequences of the counterexamples presented in Theorem

6.5. One might hope that it is possible to prove a true large deviation principle under

well-chosen initial conditions where one puts in ‘by hand’ that there is no such concen-

tration initially. The following easy corollary suggests that, even under such well-chosen

conditions, the same concentration of energy can occur as a result of the binary collisions.

Corollary 6.6. Let us take µ*
0 = γ, and fix a decreasing, right-continuous function Θ,

Θ(tfin) = 1, which is locally constant aside from at a closed set P ⊂ [0, tfin] with empty

interior, tfin ∈ P, 0 ∕∈ P . For either Maxwell molecules or hard spheres, there exists an

explicitable function A such

B =

M
(µ•, w) ∈ D ×M(E) : 〈|v|2, µt〉 = Θ(t) for all t ∈ [0, tfin] and 〈|v|4, µt〉 ≤ A(t)

N

(6.29)

satisfies

inf
U⊃B

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
> −∞. (6.30)

where, as above, the outer infimum runs over open U ⊂ D containing B.
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As a result, it is not possible to find a superexponential estimate to prevent the accumu-

lation of energy in o(N) particles at future times.

Since the stochastic processes µN
• are exponentially tight in D, it follows that one can

extract subsequences satisfying a true large deviation principle in the sense of (6.3, 6.4).

As a consequence of Theorem 6.5, no such subsequence can avoid the bad paths we have

constructed.

Corollary 6.7. Let µ*
0 be a reference measure satisfying Hypothesis 6.1i-ii), and let

µN
• , w

N be N-particle Kac processes, either for the regularised hard spheres or Maxwell

molecules case. Suppose that L ⊂ N is an infinite subsequence such that (µN
• , w

N)N∈L

satisfy a large deviation principle in D × M(E) with some rate function 5I. Then there

exists (µ•, w) in D × M(E) such that 5I(µ•, w) < ∞ but such that t /→ 〈|v|2, µt〉 is not

constant.

6.1.4 Plan of the Chapter

This chapter is structured as follows.

i). In the remainder of this section, we will review some recent works on large deviations

and related problems, and make some remarks on the hypothesis and functional

framework.

ii). In Section 6.2, we derive an upper bound Theorem 6.2i); in doing so, we will prove

Proposition 6.1, using a variational representation of the rate function I for the

lower semi-continuity.

iii). Section 6.3 presents, without detailed proof, a change-of-measure formula for the

Kac process which we will use in the lower bound and in Theorem 6.5.

iv). Section 6.4 proves the restricted lower bound Theorem 6.2ii), based on an approxi-

mation argument for paths belonging to R and a standard ‘tilting’ argument.

v). Section 6.5 gives the proof of Corollary 6.3 and Proposition 6.4 based on Theorem

6.5.

vi). The proof of Theorem 6.5 is given in Section 6.6, based on the moment properties

of the Kac process in Section 2.5 and a careful analysis of Cramér bounds.

vii). Section 6.7 gives the proof of the negative applications Corollary 6.7, and Corollary

6.6, which is based on the same time-reversal principle as Proposition 6.4.

viii). Finally, Appendix 6.A is a self-contained appendix on the Skorokhod topology and

Appendix 6.B contains a justification of the change-of-measure formula.
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6.1.5 Literature Review & Discussion

1. Large Deviations for Jump Particle Systems The theory of large deviations

for Markov processes in the small-noise limit goes back to Freidlin and Wentzell [94]. The

seminal work of Feng & Kurz [77] developed tools based on a comparison principle for

Hamilton-Jacobi equation in infinite dimensions, which are general but hard to verify.

The analysis is somewhat different in the case where the dynamics are driven by diffusive

rather than jump noise, see the discussion in Léonard [131]. In this context let us mention

the recent works [15, 32, 33, 152].

Within collisional kinetic theory, previous works have reported upper bounds of a sim-

ilar form. The work of Léonard [131] already cited considers the same case of the

energy-preserving Kac model, and produces a rate function exactly given by I(µ•) =

infw I(µ•, w), albeit for a different topology. Rezakhanlou [166] considers a collisional

model for a spatially inhomogeneous gas, where the positions take values in the unit cir-

cle R/Z and the velocities take values only in a finite set, and finds an upper bound and a

restricted lower bound, where the infimum runs only over a subset R ∩ U as in Theorem

6.2 rather than over the full open set U as in (6.4). The rate function is analagous to the

variational form (c.f. Lemma 6.11 or [131, Theorem 7.1]). Bodineau et al. [23] consider

the full spatially inhomogeneous Boltzmann–Grad limit with random initial data and de-

terministic dynamics for local interactions; the rate function is again given in a variational

form, and the lower bound is again restricted to sufficiently good paths. Most recently, a

very similar large deviation result for a range of ‘Kac–like’ processes has been found by

Basile et al. [16]. The lower bound is again of the restricted form as in Theorem 6.2, and

is proven only in cases where the collisions preserve momentum but not energy.

Outside of kinetic theory, analagous rate functions have been found for large deviations of

jump processes, for instance [62]. A number of works [160, 159, 165] have considered the

case of ‘reaction networks’, which formally includes the Kac/Boltzmann dynamics consid-

ered here by viewing Rd as a continuum of particle species; these works are the origin of

considering the pair (µN
• , w

N) which significantly eases the analysis. Other works [66, 124]

in the context of reaction networks or mean-field dynamics exploit a control representa-

tion of the dynamics, leading to an equation similar to (CBEK) with random controls K

and the same cost function τ , and using weak convergence method due to Dupuis [65]. In

this weak convergence method, it is essential that the control uniquely determines possi-

ble limiting paths (see a similar argument in the proof of Theorem 6.5ii) in Section 6.4),

whereas this type of uniqueness is known not to be hold in the Boltzmann case, even in

the most advantageous possible case of Maxwell molecules. In the work [124], the key

to removing the restriction on regular paths is an approximation argument so that paths

are perturbed to lie in the interior of the space of probability measures on the space of

the finite space of species S, which is clearly impossible in the infinite-dimensional setting
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here.

Let us mention that this is a very natural form for the rate function jump processes. One

recognises τ as the dynamic cost of controlling a Poisson random measure: for a Poisson

process of unit intensity, a straightforward argument using Stirling’s formula shows that

P(N−1ZN ≈ z) ≍ exp(−Nτ(z)) in the same sense as (6.3, 6.4). Similarly, if one fixes a

finite space S and a probability measure µ and forms XN as a Poisson random measure

of intensity Nµ, then one has the equivalent

P
-
N−1XN ≈ ν

.
≍ exp

/
−N

"

S

τ

6
ν(x)

µ(x)

7
µ(x)

0
= exp

6
−N

!

S

τ

6
dν

dµ

7
µ(dx)

7
.

(6.31)

The proposed rate function above would correspond to the intuition that, given µN
t ≈ µt,

the instantaneous distribution of jumps is approximately Poisson, with intensity ≈ B(v−
v∗, σ)dtµt(dv)µt(dv*)dσ.

As remarked above, several other works [62, 166, 23, 16] have encountered the same

problem that the lower bound can only be proven over a class of good paths. Both

the works [62, 166] conjecture that a ‘true’ lower bound should hold in the respective

frameworks. In the works cited above, such a conjecture has only been proven in the

cases of reaction networks with a finite set of species [124, 160, 159, 165] or mean-field

dynamics with finite state space [66], which are very far from the Kac/Bolzmann dynamics

we consider. To the best of our knowledge, the current work represents the first time that

such a hypothesis has been falsified. It is also interesting to note that this is different

from what one finds in the Freidlin-Wentzell theory of stochastic scalar conservation laws,

see [136]. In this case, the limiting scalar conservation law admits many weak solutions,

and a large deviation principle holds with 0 rate on all solutions to the limiting equation.

For this case, the cost of approximating a solution which is not the unique entropic

solution is subexponential, whereas in the Kac process we consider here, there is a nonzero

exponential cost required to reach the non-energy-conserving solutions to (BE).

2. Remarks on the Hypotheses & Functional Framework We make the following

remarks on the Hypothesis 6.1 and on the functional framework. Firstly, the hypotheses

allow the very natural choice of taking µ*
0 to be the equilibrium distribution

µ*
0(dv) = γ(dv) =

1

(2πd−1)d/2
e−d|v|2/2dv (6.32)

but Hypothesis 6.1ii). disallows measures of the form µ*
0(dv) ∝ (1 + |v|2)−mγ(dv),m > d

2
.

In general, the condition that µN
0 be given by drawing particles independently from a

reference measure µ*
0 will not propagate in time. However, this is natural in order to

ensure that µN
0 satisfies a large deviation principle; elementary counterexamples can be
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found to show that the more usual conditions, that the initial data be chaotic or entrop-

ically chaotic [108], do not imply a large deviation principle for µN
0 . Moreover, in the

most important case µ*
0 = γ, the independence is propagated, as γ⊗N is an equilibrium

distribution for the N -particle dynamics.

Regarding the functional framework, while (P2,W1,1) is not complete, the choice of metric

W1,1 and Skorokhod space D are natural to guarantee that (µN
• , w

N) are exponentially

tight. One could alternatively equip P2 with the Wasserstein2 metric W2 or the weighted

metrics Wγ defined in Section 2.1. In this case, the map µ /→ 〈|v|2, µ〉 continuous, and one

can take a limit of the pathwise energy conservation 〈|v|2, µN
t 〉 = 〈|v|2, µN

0 〉 to conclude

that all possible large deviation paths still conserve energy. However, carefully follow-

ing the arguments leading to our counterexamples in Section 6.6 proves that the initial

measures µN
0 then fail to be exponentially tight, as does the whole process (µN

• , w
N).

Since large deviations techniques rely heavily on such tightness to prove the existence of

subsequential limits under the change of measures, we have been unable to determine I
correctly determines the large deviations in this framework. In light of this, we interpret

Theorem 6.5 as showing the existence of a different kind of large deviations behaviour,

where macroscopic energy concentrates in o(N) particles, which is not captured by con-

vergence in (P2,W2).

In future works, it may be interesting to consider the large deviations in the functional

framework similar to that of Léonard [131]. Recalling the notation A0 for the continuous

functions of quadratic growth on Rd, we write P2 for the space of linear maps m : A0 → R
satisfying m(1) = 1, m(f) ≥ 0 whenever f ≥ 0, and such that there exists µ = j[m] ∈ P2

with 〈f, µ〉 = m(f) for all bounded f ∈ Cb(Rd). We then equip P2 with the product

topology from the inclusion P2 ⊂ RA0 , and we can view P2 ⊂ P2 via the identification

ι : P2 → P2, ι(µ)(ϕ) := 〈ϕ, µ〉, so that the Kac process can be understood as taking

values in P2. Moreover, thanks to the classical Tychonoff theorem, the sets

K = {m ∈ P2 : for all f ∈ A0, |m(f)| ≤ a} (6.33)

are compact for all a ∈ [0,∞). In this framework, one has both exponential tightness,

and continuity of the map m /→ m(|v|2). On the other hand, we warn the reader that

elements of P2 are typically not measures, since j[m] = µ does not imply that m = ι(µ).

Indeed, following the construction of the initial data in Section 6.6 leading to Theorem

6.5 produces limits with m(|v|2) = Θ(tfin) > 〈|v|2, j[m]〉 = 1.

3. Generality of the Phenomenon In keeping with the rest of the thesis, we consider

only the Kac collisional process. However, we remark that the key ingredients of the

counterexample Theorem 6.5 may generalise to other large deviation systems. Although

we will not explore the general case in more detail, the key points we require generalse to

an interacting particle system on a state space S as follows:
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1. Conserved Quantity: There exists ϕ : S → [0,∞) such that, almost surely,

〈ϕ, µN
t 〉 is constant along sample paths;

2. Criticality: The initial distributions are such that the limit

F (z) := lim
N

N−1 logE[eNz〈ϕ,µN
0 〉]

exists in [0,∞] for all z. Moreover, the function F (z) is finite on a neighbourhood

I of the origin, but diverges to infinity as z ↑ sup I < ∞.

3. Delocalisation Mechanism: For some ψ with ψ ≥ ϕ, supψ/ϕ = ∞, one either

has

(a) Uniformly in N , for all t > 0 and all starting points µN
0 , E〈ψ, µN

t 〉 < ∞ can

be controlled only in terms of t and 〈ϕ, µN
0 〉, uniformly in compact subsets of

t ∈ (0,∞); or

(b) For some µN
0 and for all δ > 0, one can find changes of measure QN ≪ P

by modifying only the dynamics, such that supN EQN 〈ψ, µN
t 〉 can be controlled

in terms of t, 〈ϕ, µN
0 〉, δ, uniformly in N , uniformly in compact subsets of t ∈

(0,∞), and the perturbation is small in the sense that QN(dQ
N

dP > eNδa) < 1
2

for N large enough, for some a depending only on 〈ϕ, µN
0 〉.

In our case, the conserved quantity ϕ is the energy ϕ(v) = |v|2, and this would apply

to any system with stochastic, energy-preserving dynamics. The second point is natural

for Gibbs distributions in statistical mechanics with no interaction potential, where the

density with respect to some Lebesgue measure is given by ∝ e−H = e−N〈ϕ,µN
0 〉. The

third point says that, potentially under a small perturbation of the dynamics, the sys-

tem rapidly distributes ϕ among all particles. Let us remark that, thanks to item 2, no

exponential moments for 〈ψ, µN
0 〉 can be hoped for, so that bounds on EQN 〈ψ, µN

t 〉 will

not hold under typical changes of measure QN ≪ P: we only ask that one such change

of measure can be found. In our case, this rôle will be played by the moment creation

property and Povzner estimates with ψ = |v|p, p > 2, see Proposition 2.10; case a) corre-

sponds to regularised hard spheres, and case b) to Maxwell molecules.

In either case, since both ϕ is necessarily unbounded, the dynamics cannot only be cap-

tured by a weakly continuous function of the empirical measure. Item 2 allows cases

where a macroscopic pertubation of 〈ϕ, µN
0 〉 is achieved with only a small pertubation

of µN
0 in the weak topology, and playing the pathwise conservation (item 1) against the

delocalisation mechanism (item 3) instantaneously spreads this pertubation to the whole

empirical measure. This leads to a law of large numbers for paths µ• along which 〈ϕ, µt〉
is not conserved, and is a given, nonconstant function Θ(t) which is constant aside from a

jump discontinuity at 0; more general Θ could be found with further assumptions on the

dynamics. The dynamic cost required for such paths is either 0, or eO(Nδ), by following
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exactly the arguments in Section 6.6; the conclusion that the large deviation occurrence

of such limit paths is not correctly predicted by the näıve rate function then follows by

exploiting the conflict between the non-conservative limit paths and conservative finite-N

paths (item 1).

4. Relationship to Other Problems We mention some other aspects of the Boltz-

mann/Kac dynamics which are related to the current work.

4a. Boltzmann’s H-Theorem and Relaxation to Equilibrium As already men-

tioned above, large deviations give a probabilistic meaning to Boltzmann’s Entropy func-

tional H(·|γ); the H-Theorem, which guarantees that entropy increases along solutions

to (BE) or its spatially inhomogeneous version, goes back to the foundations of kinetic

theory; quantitative versions of this increase, and hence qualifying the convergence to

equilibrium, have been a major topic in the analysis of the Boltzmann Equation (among

many others, [43, 181, 21, 188, 190, 57]). Let us also mention the work of Mischler and

Mouhot [142], which gives a probabilistic proof of the H-theorem via entropic chaos of

the Kac process; however, as remarked above, entropic chaos does not lead to the large

deviations considered here. Proposition 6.4 gives (another) proof of the well-known H-

Theorem, based on large deviations; it is also satisfying that we can give a large-deviations

meaning to the entropy dissipation functional D(ft) as the dynamic cost of reversing the

Boltzmann path, see also paragraph 5 below.

4b. Gradient Descent Following the seminal work of Jordan, Kinderlehrer and Otto

[120], it has been shown that many equations of mean-field type can be understood as the

gradient flow of the entropy for a metric adapted to the particular problem, so that the

dynamics not only increase entropy, but do so in the most efficient way possible. Further, it

is known that such gradient flow properties can be derived from large deviation principles

[3, 64, 2, 140, 74]. Since such a gradient descent formulation of the Boltzmann equation

is already known [73, 31, 16], we will not explore this here.

4c. Energy Non-Conserving Solutions to the Boltzmann Equation The proof

of Theorem 6.5 follows the construction of energy non-conserving solutions to the Boltz-

mann equation by Lu and Wennberg [133], using the moment production properties of

the Kac process (in Proposition 2.10) in place of those of the Boltzmann equation, now

keeping track of the exponential change of measure necessary to obtain such paths as large

deviations. The conclusion of Theorem 6.5 is exactly that such paths cannot be avoided

when attempting to classify all events of exponentially small probability P(AN) ≥ e−cN ,

and that the occurrence of such paths is strictly more rare than predicted by the candidate

rate function I.
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Concerning the negative result Theorem 6.5, identical arguments would hold with the

true hard spheres kernel (HS), the cutoff hard potentials (CHPK), or with some modi-

fication for noncutoff Maxwell molecules. The difficulty with the cases (HS, CHPK) in

this chapter lies exclusively in the proof of the lower bound of Theorem 6.2ii), where we

need an approximation argument; in these cases, the kinetic factor Ψ vanishes near 0,

and logΨ(|v− v∗|) fails to be continuous near the diagonal v = v∗. It is possible that our

arguments in Section 6.4 could be modified to deal with these cases, but this would require

refinement of an already difficult proof. In the case of noncutoff hard potentials (NCHP),

the framework of the empirical flux no longer makes sense, since w is almost surely an

infinite measure, and one must be more careful with the formulation of the continuity

equation, but the same arguments leading to a proof of Theorem 6.5, now phrased only

in terms of the empirical measures, would remain valid.

5. Reversibility Let us refer to the recent work of Bouchet [31] which discusses the

classical paradox of reversibility with an analysis based on large deviations, with a rate

function analagous to (6.13) above. The same paper also studies the properties the entropy

H(·|γ) as the quasipotential driving the Boltzmann dynamics for the inhomogeneous case.

Bouchet remarked that the relevant rate function is reversible in time, and proposed

that the irreversibility of the Boltzmann equation arises from considering only the “most

probable” evolution or the law of large numbers rather than all possible evolutions. Let

us remark that something similar happens in our case; Proposition 6.4 shows that, when

one reverses a Boltzmann path, some of the overall cost is moved from the cost H(·|γ)
of the initial data onto the dynamical cost, which is coherent with Corollary 6.3. At

the probabilistic level, starting from equilibrium, one obtains solutions to the Boltzmann

equation with µ0 ∕= γ by making a change of measure depending only on µN
0 , whereas if

one applies the same change of measure at some future time t > 0, the same overall change

of measure is split between an initial cost and a dynamic cost, and one finds limiting paths

which instead satisfy a controlled Boltzmann equation (CBEK) up to time t.

6. Comparison to Other Parts of the Thesis We remark that this chapter has a

somewhat different nature from those preceeding. In Chapters 3-4 in particular, we had

the freedom to play with as many polynomial moments as were necessary, and even in

Chapter 5 we were able to use control of some higher moment and the moment creation

property. By contrast, at the large deviation level one would need estimates of the form

P(〈f, µN
t 〉 > a) ≤ e−εN , for some f ≥ 0. In the case where the processes is in equilibrium

µ*
0 = γ, the classical Cramér theorem shows us that such estimates hold if, and only

if,
&
Rd e

δf(v)γ(dv) < ∞ for some δ > 0, which is false as soon as f has super-quadratic

growth at infinity. We also cannot use the de la Vallée-Poussin Theorem for a priori

estimates as we did in Theorem 5.3, for the same reason. This argument would show

that, for any limit path (µ•, w), that there is a smooth, convex h, with h′(∞) = ∞,
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such that 〈h(|v|2), µ0〉 < ∞. On the other hand, the arguments of Section 6.6 show that

there exists events of probabilities at least e−cN , for some finite c, conditional on which,

〈h(|v|2), µN
0 〉 → ∞ almost surely, simultaneously for all such h. Thus, if we take a ‘bottom

up’ approach to large deviations and attempt to classify all sequences of events AN of

negative exponential probability P(AN) ≥ e−cN , then we are really constrained to what

can be done with 2 moments.

Let us remark that a similar phenomenon takes place at the level of the limiting paths,

since the wide range of possible controls K in the controlled Boltzmann equation (CBEK)

destroys all hope repeating the kinds of calculations in Section 2.5. Indeed, for any p, we

could set

K(t, v, v∗, σ) = 1I{|v′|p + |v′∗|p > |v|p + |v∗|p}

which guarantees that the pth moment always increases, unlike the behaviour without the

control K in Chapter 2.

We also remark that, when considering the convergence of the Kac process under a change

of measure, as an intermediate step (see Lemma 6.24 and the proof of Theorem 6.2ii) at

the start of Section 6.4), we are restricted to qualitative techniques, using tightness and an

identification of the limit paths, similar to the methods of Sznitman [173]. As remarked

above, we do not have access to moment estimates, even for ‘nice’ controls, which prevents

us adapting some of the more recent quantitative techniques (Mischler and Mouhot [142],

Norris [157], or the arguments of Chapters 3-4). Indeed, we even develop, in the course

of Theorem 6.5, a law of large numbers for solutions to (BE) which do not conserve

energy, and for which all moments higher than second become unbounded. In any case,

quantifying the rate of convergence in these steps would not change the main results,

which are concerned with the asymptotics of the negative N -exponential.

Finally, let us remark that we could seek some qualitative bounds of the form

P( sup
t≤tfin

W1,1(µ
N
t , µt) > ε) ≤ e−δN

for some explicit or explicitable δ = δ(ε) and N ≥ N0(ε), which is the approach taken in

the work by Bolley, Guillin and Villani [26]. In the case (GMM), this could be achieved

using some of the techniques of Section 3.2 and improving the control of the martingales

to an exponential control, as described the review paper [49]. However, in the much more

realisting and interesting case (rHS, HS), this is hindered by the same lack of control of

moments higher than second of the particle system µN
t with exponentially high probability

as described above.
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6.2 Exponential Tightness & Upper Bound

In this section, we will prove Propositon 6.1 and the upper bound Theorem 6.2i). We

first verify exponential tightness in Subsection 6.2.1. In Subsection 6.2.2 we introduce

a variational form for the rate function, similar to that of Léonard [131, Theorem 3.1,

Theorem 7.1] and prove equivalence of the two formulations; this leads to a simple proof

of lower semicontinuity in Proposition 6.1ii) and the fact that (CE) defines a closed set

for the topology of D ×M(E). Finally, we use the variational formulation to prove the

upper bound in Section 6.2.1, based on standard martingale techniques and a covering

argument.

6.2.1 Exponential Tightness

We first prove that (µN
• , w

N) are exponentially tight in D×M(E), which proves the first

assertion Proposition 6.1i.

Lemma 6.8 (Verification of Conditions for Exponential Tightness). For any M > 0, the

following hold.

a). For λ > 0, set Kλ = {µ ∈ P2 : 〈|v|2, µ〉 ≤ λ} and Dλ := {µ• ∈ D : µt ∈
Kλ for all t}. There exists λ ∈ (0,∞) such that

lim sup
N

1

N
logP

-
µN
• ∕∈ Dλ

.
≤ −M. (6.34)

b). For all δ > 0, define qN(δ) = sup(W1,1(µ
N
s , µ

N
t ) : |s − t| < δ). For all ε > 0, there

exists δ > 0 such that

lim sup
N

1

N
logP

-
qN(δ) > ε

.
≤ −M. (6.35)

c). There exists C > 0 such that

lim sup
N

1

N
logP

-
wN(E) > C

.
≤ −M. (6.36)

Let us remark that the first item proves that, for each fixed t ∈ [0, tfin], µ
N
t are exponen-

tially tight because Kλ are compact for the metric W1,1. Together, the first two conditions

verify the well-known criteria for exponential tightness in the Skorokhod space D due to

Feng and Kurz [77, Theorem 4.1]. In the third item, the sets {w ∈ M(E) : w(E) ≤ C}
are compact for the metric ρ1, which induces the weak topology, and hence the third item

shows that wN are exponentially tight in M(E). Together, these prove that the pair

(µN
• , w

N) together are exponentially tight in D ×M(E).
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Proof of Lemma 6.8. Fix M throughout. We start with the first point, and begin by

noting that, thanks to Hypothesis 6.1i) and a Chebychev bound, for z1 > 0 sufficiently

small and all λ > 0,

P
-
〈|v|2, µN

0 〉 > λ
.
≤ e−Nλz1E

?
eNz1〈|v|2,µN

0 〉
A
= exp (−N(λz1 − log Ez1(µ*

0)))

where, in the right-hand side, we recall that µN
0 is given by sampling particles indepen-

dently from µ*
0. Taking λM = z−1

1 (M + log Ez1(µ*
0)), we conclude that

P
-
µN
0 ∕∈ KλM

.
= P

-
〈|v|2, µN

0 〉 > λM

.
≤ e−MN .

To extend this to the whole process we note that the kinetic energy 〈|v|2, µN
t 〉 is constant

in time, so that µN
t ∈ DλM

if, and only if, µN
0 ∈ KλM

. Therefore

P
-
µN
• ∕∈ DλM

.
= P

-
µN
0 ∕∈ KλM

.
≤ e−MN

and the first item follows. For the second item, we observe that the instantaneous rate

of the Kac process, in either the regularised hard spheres (rHS) or Maxwell molecules

(GMM) case, is bounded by

N

!

Rd×Rd×Sd−1

B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv*)dσ ≤ N

!

Rd×Rd

(3 + |v|2 + |v*|2)µN
t (dv)µ

N
t (dv*)

≤ 3N(1 + 〈|v|2, µN
0 〉)

(6.37)

where we note that, for either kernel, B(v− v*, σ) ≤ 1+ |v|+ |v*| ≤ 3+ |v|2+ |v*|2, and in

the final inequality, we recall again that the second moment 〈|v|2, µN
t 〉 is independent of

time. It therefore follows that we can construct a time-homogenous Poisson process 5wN
t ,

of constant, random rate 3N(1+ 〈|v|2, µN
0 〉), such that 5wN

t has jumps on a superset of the

times when µN
t jumps, see also the equivalent construction above (3.231). This leads to

the bound, for any s ≤ t,

(wN
t − wN

s )([0, tfin]× Rd × Rd × Sd−1) ≤ 1

N
( 5wN

t − 5wN
s ).

For each δ, we now pick a partition 0 = t0 < t1... < tm of size ⌈tfin/δ⌉ by taking constant

steps of size δ. We now observe that W1,1(µ
N
t , µ

N
t−) ≤ 4/N at times when µN

t jumps,

and for any |s − t| ≤ δ, the interval [s, t] is contained in at most two adjacent intervals

[ti−1, ti+1]. Together, we conclude that

qN(δ) ≤ 8max
i

1

N
( 5wN

ti
− 5wN

ti−1
). (6.38)

For λM as above and for any z > 0, we bound

P
6

1

N
( 5wN

ti
− 5wN

ti−1
) >

ε

8

@@@@ µ
N
0 ∈ KλM

7
≤ e−zNε/8E

2
e
z( "wN

ti
− "wN

ti−1
)

@@@@ µ
N
0 ∈ KλM

3

≤ exp
'
−N

'zε
8

− 3(1 + λM)δ(ez − 1)
(( (6.39)
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where, in the second line, we use the bound that the rate of 5wN is at most 3N(1 + λM)

if µN
0 ∈ KλM

. We now choose z = 8(M + 1)/ε, and δ > 0 small enough, depending on

z,λM , so that 3(1 + λM)δ(ez − 1) < 1. For this choice of δ, the final expression in (6.39)

is e−NM , for each interval. Finally, we take a union bound:

{qN(δ) > ε} ⊂ {µN
0 ∕∈ KλM

} ∪
c

i≤⌈tfin/δ⌉

M
5wN
ti
− 5wN

ti−1
>

Nε

8
, µN

0 ∈ KλM

N
.

By the choices of λM and δ,

P
-
qN(δ) > ε

.
≤ (1 + ⌈tfin/δ⌉)e−NM

and the second item now follows. The final item follows in exactly the same way: following

(6.39), for all C > 0 we bound

P
-
wN(E) > C

@@µN
0 ∈ KλM

.
≤ P

-
5wN
tfin

> CN
@@µN

0 ∈ KλM

.

≤ e−CNE
?
e "wN

tfin

@@µN
0 ∈ KλM

A

≤ exp

6
−N

-
C − 3(1 + λM)tfin(e− 1)

.7
(6.40)

and choosing C = M + 3(1 + λM)tfin(e − 1) makes the final probability at most e−MN .

Using a union bound,

P
-
wN(E) > C

.
≤ P

-
wN(E) > C

@@µN
0 ∈ KλM

.
+ P

-
µN
0 ∕∈ KλM

.
≤ 2e−MN (6.41)

from which (6.36) follows.

Let us also record, for later use, the following corollary.

Corollary 6.9. Let QN ≪ P be changes of measure such that

lim
a→∞

lim inf
N

QN

6
dQN

dP
≤ eNa

7
= 1. (6.42)

Then the laws of (µN
• , w

N) under QN are tight: for all ε > 0 there exists a compact set

K ⊂ D ×M(E) such that

sup
N

QN
-
(µN

• , w
N) ∕∈ K

.
< ε. (6.43)

Proof. This follows from Proposition 6.1i) and the hypothesis (6.42) by purely general

considerations. Let us fix ε > 0; thanks to (6.42) we can choose a such that, for all but

finitely many N ,

QN

6
dQN

dP
> eNa

7
<

ε

2
(6.44)
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and, changing a if necessary, we can arrange that (6.44) holds for all N . We now

choose M = a − log(ε/2); by Proposition 6.1i), there exists a compact set K such that,

lim supN N−1 logP((µN
• , w

N) ∕∈ K) < −M which implies that, for all N sufficiently large,

P
-
(µN

• , w
N) ∕∈ K

.
≤ e−MN . (6.45)

Since the space D ×M(E) is a separable metric space, each (µN
• , w

N) is tight so K can

be replaced with a larger compact set such that (6.45) again holds for all N . Together,

(6.44, 6.45) imply that

QN
-
(µN

• , w
N) ∕∈ K

.
≤ QN

6
dQN

dP
≤ eNa, (µN

• , w
N) ∕∈ K

7
+QN

6
dQN

dP
> eNa

7

< eNaP
-
(µN

• , w
N) ∕∈ K

.
+

ε

2
≤ eNae−N(a+log(ε/2)) +

ε

2
≤ ε

(6.46)

and we are done.

6.2.2 Variational Formulation of the Rate Function

In preparation for the upper bound, we will now present a variational formulation of the

rate function. This will also allow us to prove the lower semicontinuity in Proposition

6.1. We are aided in this equivalence by the inclusion of the flux in the large deviation

principle: the choice of K, if it exists, is unique, which allows us to significantly simplify

the proof of Léonard [131].

We begin with the following construction. Let us write C1,0
0,b ([0, tfin]× Rd) for those func-

tions f : [0, tfin] × Rd → R which are continuous and bounded, with a continuous and

bounded time derivative ∂tft, such that both ft, ∂tft are Lipschitz in the Rd-variable, and

such that f0 = ftfin = 0. For ϕ ∈ Cb(Rd), f ∈ C1,0
0,b ([0, tfin] × Rd) and g ∈ Cc(E) and

t ∈ [0, tfin], we define

Ξ(µ•, w,ϕ, f, g)t = Ξ0(µ•,ϕ) + Ξ1,t(µ•, w, f) + Ξ2,t(µ•, w, g) (6.47)

where

Ξ0(µ•,ϕ) = 〈ϕ, µ0〉 − log〈eϕ, µ*
0〉; (6.48)

Ξ1,t(µ•, w, f) :=〈ft, µt〉 −
! t

0

〈∂sfs, µs〉ds−
!

Et

∆f(s, v, v*, σ)w(ds, dv, dv*, dσ) (6.49)

and

Ξ2,t(µ•, w, g) : =

!

Et

(g(s, v, v*, σ)w(ds, dv, dv*, dσ)

−
!

Et

(eg − 1)(s, v, v*, σ)wµ(ds, dv, dv*, dσ)).

(6.50)
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We write Ξ(µ•, w,ϕ, f, g) for the terminal value Ξ(µ•, w,ϕ, f, g) = Ξ(µ•, w,ϕ, f, g)tfin . Let

us note that these processes make sense at the level of the particle system µN
• , w

N . The

function f here entering into Ξ1,t(µ•, w, f) will play the rôle of a Lagrange multiplier to

enforce the constraint of the continuity equation. This is made precise by the following

result.

Lemma 6.10. Fix (µ•, w) ∈ D ×M(E). Then

sup
)
Ξ1,tfin(µ•, w, f) : f ∈ C1,0

0,b ([0, tfin]× Rd)
*
=

#
$

%
0 if (µ•, w) solves (CE);

∞ else.
(6.51)

Proof. For the case where (µ•, w) solves (CE), we will show that, for all f ∈ C1,0
0,b ([0, tfin]×

Rd) and all t ∈ [0, tfin], we have the time-dependent equivalent of (CE):

〈f, µt〉 =
! t

0

〈∂sfs, µs〉ds+
!

Et

∆f(s, v, v*, σ)w(ds, dv, dv*, dσ). (6.52)

This will immediately imply that Ξ1,t(µ•, w, f) = 0 for all f and all t, which implies the

claim. The proof of this formulation is slightly complicated by the lack of regularity, since

we only assume a priori that µ• is càdlàg rather than continuous; we will instead use the

facts about càdlàg paths from Proposition 6.28. Since (6.52) is linear in f , we can assume

that ft, ∂tft have Lipschitz norm bounded by 1: ‖ft‖0,1, ‖∂tft‖0,1 ≤ 1, in the notation of

(2.6). Fix t ∈ [0, tfin], ε > 0, δ > 0.

Let us write P ⊂ [0, tfin] for those s ∈ [0, tfin] withW1,1(µs−, µs) ≥ ε; thanks to Proposition

6.28a), P is finite, and we write m = |P | < ∞ for its cardinality. Possibly making δ > 0

smaller, Proposition 6.28b) guarantees that δ can be chosen so that any interval [u, v) of

length δ either contains a point of P , or for all s ∈ [u, v), W1,1(µs, µu) < ε. Now, for such

δ, we decompose (0, t] into intervals (ti, ti+1] of length at most δ, and add

〈fti+1
, µti+1

− µti〉 =
!

Eti+1\Eti

∆f(ti+1, v, v*, σ)w(ds, dv, dv*, dσ); (6.53)

〈fti+1
− fti , µti〉 =

! ti+1

ti

〈∂sfs, µti〉ds (6.54)

to obtain

〈fti+1
, µti+1

〉 − 〈fti , µti〉 =
! ti+1

ti

〈∂sfs, µti〉ds

+

!

Eti+1\Eti

∆f(ti+1, v, v*, σ)w(ds, dv, dv*, dσ).
(6.55)

We approximate the two terms by
@@@@
! ti+1

ti

〈∂sfs, µti〉ds−
! ti+1

ti

〈∂sfs, µs〉ds
@@@@ ≤

! ti+1

ti

W1,1(µs, µti)ds

≤ 2ε(ti+1 − ti) + δ · 1IP∩[ti,ti+1) ∕=∅

(6.56)
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since, by the choice of δ and the noramlisation of f , either 〈∂sfs, µs, µti〉 ≤ 2W1,1(µs, µti) ≤
ε for all s ∈ [ti, ti+1], or there is a point of P in [ti, ti+1), in which case we use the trivial

bound W1,1(µs, µti) ≤ 1 and recall that the interval is of length at most δ. For the second

term
@@@@@

!

Eti+1\Eti

(∆f(ti+1, v, v*, σ)−∆f(s, v, v*, σ))w(ds, dv, dv*, dσ)

@@@@@

≤

@@@@@

!

Eti+1\Eti

4‖fti+1
− fs‖∞w(ds, dv, dv*, dσ)

@@@@@

≤ 4δw
-
Eti+1

\ Eti

.

(6.57)

where in the final line we recall that we have scaled so that ‖∂tft‖∞ ≤ 1. Adding, we

conclude that
@@@@〈fti+1

, µti+1
〉 − 〈fti , µti〉 −

! ti+1

ti

〈∂sfs, µs〉ds

−
!

Eti+1\Eti

∆f(s, v, v*, σ)w(ds, dv, dv*, dσ)

@@@@

≤ 2ε(ti+1 − ti) + δ · 1IP∩[ti,ti+1) ∕=∅ + 4δw
-
Eti+1

\ Eti

.
.

(6.58)

Summing over all such intervals (ti, ti+1] covering (0, t], and recalling that f0 ≡ 0, we

obtain
@@@@〈ft, µt〉 −

! t

0

〈∂sfs, µs〉ds−
!

Et

∆f(s, v, v*, σ)w(ds, dv, dv*, dσ)

@@@@

≤ 2εt+mδ + 4δw(E)

(6.59)

and the right-hand side can be made arbitrarily small by taking ε, δ → 0, recalling that

w is a finite measure by hypothesis, so the claim (6.52) is proven, and we conclude that

supf Ξ1,tfin(µ•, w, f) = 0 as claimed. Otherwise, if (CE) fails, there exists some t0 ∈ (0, tfin]

and some g ∈ Cc(Rd) such that

〈g, µt0〉 − 〈g, µ0〉 −
!

Et0

∆g(v, v*, σ)w(ds, dv, dv*, dσ) > 1. (6.60)

Further, if t0 = tfin, then the same is true at some t′0 < tfin, since µ is continuous at tfin,

and w(tfin ×Rd ×Rd × Sd−1) = 0 by hypothesis, so we assume that t0 ∈ (0, tfin). We now

fix a smooth, increasing function χ : R → R such that χ = 0 on (−∞, 0] and χ = 1 on

[1,∞), and for 0 < δ < min(t0, tfin − t0), we construct f
δ ∈ C1,0

0,b ([0, tfin]×Rd) by defining

f δ
t (v) :=

#
11111$

11111%

χ(t/δ)g(v) if t ∈ [0, δ];

g(v) if δ < t ≤ t0;

χ(1− (t− t0)/δ)g(v) if t0 < t < t0 + δ

0 else.

(6.61)
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Thanks to right-continuity of µt, we observe that
& tfin
0

〈∂tf δ
t , µt〉dt → 〈g, µ0〉− 〈g, µt0〉, and

using dominated convergence,
!

E

∆f δ(s, v, v*, σ)w(ds, dv, dv*, dσ) →
!

Et0

∆g(v, v*, σ)w(ds, dv, dv*, dσ). (6.62)

Therefore, Ξ1,tfin(µ•, w, f
δ) converges to

Ξ1,tfin(µ•, w, f
δ) → 〈g, µt0〉 − 〈g, µ0〉 −

!

Et0

∆g(v, v*, σ)w(ds, dv, dv*, dσ) > 1 (6.63)

and in particular, we can choose δ > 0 small enough that Ξ1,tfin(µ•, w, f
δ) > 1. By

linearity, for all λ > 0, Ξ1,tfin(µ•, w,λf
δ) > λ, and so the supremum is infinite, as claimed.

We now use this equality to show that the functions Ξ above give a variational formulation

of the rate function I given in the introduction.

Lemma 6.11. For (µ•, w) ∈ D ×M(E), we have

I(µ•, w) = sup
)
Ξ(µ•, w,ϕ, f, g) : ϕ ∈ Cb(Rd), f ∈ C1,0

0,b ([0, tfin]× Rd), g ∈ Cc(E)
*
.

(6.64)

Proof. Let us write 5I for the right-hand side. Since Ξ0 depends only on ϕ, Ξ1 only on f

and Ξ2 only on g, the supremum decomposes as

5I(µ•, w) = sup
ϕ

Ξ0(µ•,ϕ) + sup
f

Ξ1,tfin(µ•, w, f) + sup
g

Ξ2,tfin(µ•, w, g) (6.65)

where the suprema run over the same sets as above. Optimising over ϕ produces the well-

known variational formulation supϕ Ξ0(µ0,ϕ) = H(µ0|µ*
0) of the relative entropy. This

identity can be found in [123, Appendix 1], or derived using essentially the same argument

as for Ξ2,tfin below. Thanks to Lemma 6.10, the supremum over f is infinite unless the

continuity equation (CE) holds, in which case this term vanishes.

We now deal with the third term. If w ∕≪ wµ, there is a compact set E ′ ⊂ E with

w(E ′) > 0 but wµ(E
′) = 0, and since E is a metric space and w is a Borel measure, we

can find open Un ↓ E ′ and closed An ⊃ E ′, An ⊂ Un with wµ(Un) ↓ 0. We now choose

gn ∈ Cc(E) so that 0 ≤ gn ≤ 1, gn = 1 on An, and = 0 except on Un, and bound for

λ > 0, !

E

λgnw(ds, dv, dv*, dσ) ≥ λw(E ′); (6.66)

!

E

(eλgn − 1)wµ(ds, dv, dv*, dσ) ≤ (eλ − 1)wµ(Un) (6.67)

so that

Ξ2,tfin(µ•, w,λgn) ≥ λw(E ′)− (eλ − 1)wµ(Un). (6.68)
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By taking λ = λn → ∞ slowly enough, the right-hand side can be made arbitrarily large

as n → ∞, so in this case supg Ξ2,tfin(µ•, w, g) = ∞. On the other hand, if w ≪ wµ, let

us write K for the tilting function dw
dwµ

, so that

Ξ2,tfin(µ•, w, g) =

!

E

(Kg − eg + 1)(s, v, v*, σ)wµ(ds, dv, dv*, dσ). (6.69)

Observing that, for all x ∈ R, y ≥ 0, it holds that xy ≤ (ex − 1) + (y ln y − y + 1) =

(ex − 1) + τ(y), the first term
&
Kg can be bounded by

!

E

Kg(s, v, v*, σ)wµ(ds, dv, dv*, dσ)

≤
!

E

τ(K)wµ(ds, dv, dv*, dσ) +

!

E

(eg − 1)wµ(ds, dv, dv*, dσ)

(6.70)

which leads to the bound, uniformly in g ∈ Cc(E),

Ξ2,tfin(µ•, w, g) ≤
!

E

τ(K(s, v, v*, σ))wµ(ds, dv, dv*, dσ) (6.71)

whether or not the right-hand side is finite. On the other hand, let us fix M . By Lusin’s

theorem, we can construct continuous, bounded gn ∈ Cc(E) with gn → lnK ∧ M for

wµ-almost all (t, v, v*, σ), so that

Kgn − egn + 1 ≤ MK + 1 (6.72)

and

Kgn − egn + 1 → K(lnK ∧M)− (K ∧ eM) + 1 (6.73)

for wµ-almost all (s, v, v*, σ). Since K ∈ L1(wµ), we can use dominated convergence to

obtain

Ξ2,tfin(µ•, w, gn) →
!

E

(K(lnK ∧M)− (K ∧ eM) + 1)wµ(ds, dv, dv*, dσ) (6.74)

and the supremum is at least the right-hand side. The integrand is increasing in M , and

converges to τ(K) pointwise, so the whole integral converges to
&
E
τ(K)dwµ. We conclude

that

sup {Ξ2,tfin(µ•, w, g) : g ∈ Cc(E)} ≥
!

E

τ(K(s, v, v*, σ))wµ(ds, dv, dv*, dσ) (6.75)

and (6.71) shows that this is an equality. Putting everything together, we have shown

that

sup
f,g

{Ξ1,tfin(µ•, w, f) + Ξ2,tfin(µ•, w, g)}

=

#
$

%

&
E
τ(K)wµ(ds, dv, dv*, dσ) if (µ•, w)is a measure flux pair;

∞ else

(6.76)
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and the right-hand side is exactly the definition of J (µ•, w). Returning to (6.65), we have

proven that
5I(µ•, w) = H(µ0|µ*

0) + J (µ•, w) = I(µ•, w) (6.77)

as desired.

Thanks to this variational form, we readily obtain the lower semi-continuity claimed in

Proposition 6.1. We first record, as a separate lemma, a result which will be helpful later.

Lemma 6.12. For fixed f ∈ L∞([0, tfin], Cb(Rd)) and g ∈ Cc(E), the maps

µ• /→
! tfin

0

〈ft, µt〉dt; µ• /→
!

E

gwµ(ds, dv, dv*, dσ) (6.78)

are continuous in the topology of D.

Proof. Noting that the topology ofD is induced by a metric, it is sufficient to prove sequen-

tial continuity: let us fix µ
(n)
• → µ•. By Proposition 6.29, it follows thatW1,1(µ

(n)
t , µt) → 0

for dt-almost all t, and for all such t, we also have the weak convergence µ
(n)
t ⊗ µ

(n)
t →

µt ⊗ µt. Since g has compact support in E, for any fixed σ and for such t, the map

(v, v*) /→ g(t, v, v*, σ)B(v− v∗, σ) is bounded and continuous, and so we have the conver-

gences

〈ft, µ(n)
t 〉 → 〈ft, µt〉; (6.79)

!

Rd×Rd

g(t, v, v*, σ)B(v − v∗, σ)µ
(n)
t (dv)µ

(n)
t (dv*)

→
!

Rd×Rd

g(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*).

(6.80)

Since these hold for all σ and dt-almost all t, we can integrate and use bounded convergence

to find that ! tfin

0

〈ft, µ(n)
t 〉dt →

! tfin

0

〈ft, µt〉dt; (6.81)

!

E

gwµ(n)(ds, dv, dv*, dσ) →
!

E

gwµ(ds, dv, dv*, dσ) (6.82)

and we are done.

Lemma 6.13. For fixed ϕ ∈ Cb(Rd), f ∈ C1,0
0,b ([0, tfin]× Rd) and g ∈ Cc(Rd), the maps

(µ•, w) → Ξ0(µ•,ϕ); (µ•, w) → Ξ1,tfin(µ•,ϕ); (µ•, w) → Ξ2,tfin(µ•,ϕ); (6.83)

(µ•, w) → Ξ(µ•, w,ϕ, f, g) (6.84)

are continuous for the topology of D×M(E). In particular, the sub-level sets {I ≤ a} ⊂
D × M(E) are closed for all a ∈ [0,∞), as is the set of pairs (µ•, w) for which (CE)

holds, and {µ ∈ P2 : H(µ|µ*
0) ≤ a} in the topology of (P2,W ).
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Proof. With the choices of topologies on D,M(E), the maps

w /→
!

E

gw(ds, dv, dv*, dσ); w /→
!

E

∆f(s, v, v*, σ)w(ds, dv, dv*, dσ)

are immediately continuous, and thanks to Proposition 6.29a), so are µ• /→ 〈ϕ, µ0〉;µ• /→
〈ftfin , µtfin〉. Combining with Lemma 6.12, with ft replaced by ∂tft, each expression ap-

pearing in the definitions of Ξi,tfin is continuous, and we conclude the claimed continuity

of the stated maps. For the second point, we use Lemma 6.11 to write the sublevel sets,

for any a ∈ [0,∞], as

{I ≤ a} =
`

ϕ∈Cb(Rd),f∈C1,0
0,b ([0,tfin]×Rd),g∈Cc(E)

{(µ•, w) : Ξ(µ•, w,ϕ, f, g)tfin ≤ a} . (6.85)

Each set in the intersection is closed, and hence so is the left-hand side, which proves

lower semi-continuity; the assertion forH(·|µ*
0) is identical, recalling again thatH(µ|µ*

0) =

supϕ Ξ0(ϕ, µ0). The remaining assertion is similar: using Lemma 6.10,

{(µ•, w) : (CE) holds} =
`

f∈C1,0
0,b ([0,tfin]×Rd)

{(µ•, w) : Ξ1,tfin(µ•, w, f) = 0} (6.86)

which is an intersection of closed sets, and hence closed.

6.2.3 Upper Bound

Using the variational formulation above, we now prove the upper bound in Theorem 6.2.

We begin with a local version of the result.

Lemma 6.14. Fix (µ•, w) ∈ D × M(E) with finite rate I(µ•, w) < ∞, and fix ε > 0.

Then there exists an open set U ∋ (µ•, w) such that

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≤ −I(µ•, w) + ε. (6.87)

If instead I(µ•, w) = ∞ and M < ∞ then there exists an open set U ∋ (µ•, w) such that

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≤ −M. (6.88)

Proof. Let us consider the first case; the second is essentially identical. Thanks to Lemma

6.11, we can choose ϕ ∈ Cb(Rd), f ∈ C1,0
0,b ([0, tfin]× Rd) and g ∈ Cc(E) such that

I(µ•, w) < Ξ(µ•, w,ϕ, f, g) +
ε

2
(6.89)

and, thanks to Lemma 6.13, we can find open U ∋ (µ•, w) such that, for all (µ′
•, w

′) ∈ U ,
we have

Ξ(µ′
•, w

′ϕ, f, g) > Ξ(µ•, w,ϕ, f, g)−
ε

2
> I(µ•, w)− ε. (6.90)



CHAPTER 6. LARGE DEVIATIONS OF THE KAC PROCESS 307

We consider the processes

ZN
t := exp

-
NΞ(µN

• , w,ϕ, f, g)t
.
. (6.91)

We first observe that, since µN
• , w

N satisfy the continuity equation (CE), Lemma 6.10

shows that, for all t ≥ 0,

Ξ1,t(µ
N
• , w

N ,ϕ, f, g) = 0. (6.92)

Next, we show that ZN is a martingale, following arguments of [49]. We observe that at

points (t, v, v*, σ) of w
N , ZN

t jumps by

ZN
t − ZN

t− = ZN
t−

-
eg(t,v,v!,σ) − 1

.
(6.93)

while between jumps, ZN
t is differentiable and

∂tZ
N
t = −N

!

Rd×Rd×Sd−1

ZN
t

-
eg(t,v,v!,σ) − 1

.
B(v − v∗, σ)µ

N
t (dv)µ

N
t (dv*)dσ. (6.94)

Together, ZN
t admits the representation

ZN
t = ZN

0 +N

!

Et

ZN
s−

-
eg(s,v,v!,σ) − 1

.
(wN − wµN )(ds, dv, dv*, dσ). (6.95)

Recalling the generator (1.31), ZN
t is a local martingale, and since it is clearly positive, a

supermartingale, and at time 0,

E
G
eNΞ0(µ•,ϕ)

H
=

E
?
eN〈ϕ,µN

0 〉
A

〈eϕ, µ*
0〉N

= 1 (6.96)

where we recall that µN
0 is formed by independent samples from µ*

0. We now take the

expectation of

1I
-
(µN

• , w
N) ∈ U

.
≤ ZN

tfin
exp (−N inf {Ξ(µ′

•, w
′,ϕ, f, g) : (µ′

•, w
′) ∈ U})

≤ ZN
tfin

exp (−N(I(µ•, w)− ε))
(6.97)

to obtain

P
-
(µN

• , w
N) ∈ U

.
≤ E[ZN

tfin
] exp (−N(I(µ•, w)− ε))

≤ exp (−N(I(µ•, w)− ε))
(6.98)

to produce the desired result. The case where I(µ•, w) = ∞ is essentially identical.

We now give the proof of the global upper bound.

Proof of Theorem 6.5i). Let A be any closed subset of D ×M(E) and fix ε ∈ (0, 1]. Let

us assume that A is nonempty, and that infA I < ∞. Choosing M = infA I + 1, by

Proposition 6.1i) there exists a compact set K ⊂ D ×M(E) such that

lim sup
N

1

N
P
-
(µN

• , w
N) ∕∈ K

.
≤ −M. (6.99)
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Now, A ∩ K is compact, since A was assumed to be closed. For all (µ•, w) ∈ A, we now

use Lemma 6.14 to construct U(µ•, w) ∋ (µ•, w): if I(µ•, w) < ∞ then choose U(µ•, w)

such that

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U(µ•, w)

.
≤ −I(µ•, w) + ε (6.100)

or if I(µ•, w) = ∞, then choose U(µ•, w) such that

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U(µ•, w)

.
≤ −M. (6.101)

The sets {U(µ•, w) : (µ•, w) ∈ A∩K} are an open cover ofA∩K, so by compactness we can

find n < ∞ and (µ
(i)
• , w(i)) ∈ A∩K such that A∩K is covered by Ui = U(µ(i)

• , w(i)), i ≤ n

and conclude that for each N ,

P
-
(µN

• , w
N) ∈ A

.
≤ P

-
(µN

• , w
N) ∕∈ K

.
+

n"

i=1

P
-
(µN

• , w
N) ∈ Ui

.
. (6.102)

The limiting exponential behaviour for the upper bound is then given by the maximum

of the exponentials in each term:

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ A

.

≤ max

6
lim sup

1

N
logP

-
(µN

• , w
N) ∈ V

.
: V = Kc,U1, ...,Un

7
.

(6.103)

The terms appearing in the right hand side are all either bounded by −M ≤ − infA I,
for the cases where V = Kc or V = Ui, for a path (µ

(i)
• , w(i)) with I(µ(i)

• , w(i)) = ∞, or at

most −I(µ(i)
• , w(i)) + ε ≤ − infA I + ε. All together, we conclude that

lim sup
N

1

N
logP

-
µN
• , w

N) ∕∈ A
.
≤ − inf{I(µ•, w) : (µ•, w) ∈ A}+ ε (6.104)

and taking ε → 0 concludes the proof in the case where the infimum is finite. The case

where the infimum is infinite is essentially identical: we now keep M as a free parameter,

choose a compact set K such that lim supN N−1 logP((µN
• , w

N) ∕∈ K) ≤ −M , and cover

A ∩K with open sets U(µ•, w) ∋ (µ•, w) satisfying (6.101). The same covering argument

then gives

lim sup
N

1

N
logP

-
(µN

• , w
N) ∕∈ A

.
≤ −M (6.105)

and the conclusion follows by taking M → ∞.
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6.3 Change of Measure for the Kac Process

In order to prove Theorem 6.5 and its consequences, we will use the following change of

measure necessary to perturb the initial data and dynamics. The changes of measure we

will use are as follows.

Proposition 6.15 (Kac process under change of measure). Let µN
t be a Kac process

with collision kernel B, and velocities initially sampled independently from µ*
0, which

is a Markov process on a filtered probability space (Ω,F, (Ft)t≥0,P), and let wN
t be the

associated empirical flux. Let ϕ : Rd → R be such that
&
eϕ(v)µ*

0(dv) = 1, A0 ∈ F0 such

that cN = E[1IAeN〈ϕ,µN
0 〉] > 0, and let K : PN

2 × E → [0,∞) be measurable and such that

K/(1 + |v|+ |v*|) is uniformly bounded. Define a new measure Q by

dQ
dP

=exp

6
N〈ϕ, µN

0 〉+N〈logK(µN
0 , ·), wN〉

−N

! tfin

0

!

E

(K − 1)(µN
0 , t, v, v*, σ)wµN (dt, dv, dv*, dσ)

7
c−1
N 1IA

(6.106)

where we understand the right-hand side to be 0 if supp(wN)∩ {K = 0} ∕= ∅. Then Q is a

probability measure, under which µN
0 is given as the empirical measure of N independent

draws from eϕ(v)µ*
0(dv) conditioned on A0 ∈ F0, and under which (µN

0 , µ
N
t , w

N
t ) is a time-

inhomogeneous Markov process, with time-dependent generator, for bounded F : PN
2 ×

PN
2 ×M(E) → R,

GtF (ν, µN , wN) = N

!

Rd×Rd×Sd−1

(F (ν, µN,v,v!,σ, wN,t,v,v!,σ)− F (ν, µN , wN))

· · ·×K(ν, t, v, v*, σ)B(v − v∗, σ)µ
N(dv)µN(dv*)dσ.

(6.107)

This is a version of the Girsanov theorem for jump processes; see, for example, [123,

Appendix 1, Theorem 7.3], which is tailor-made for our purposes. The hypotheses on

the growth of K are probably not the most general possible, but are sufficient for the

applications in this paper in Sections 6.4, 6.6. Since this does not appear to be standard,

a proof is given in Appendix 6.B.
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6.4 Restricted Lower Bound

We now give a proof of the lower bound with the additional integrability hypothesis. The

restricted lower bound is based on the following approximation lemma.

Lemma 6.16 (Approximation by Regular Paths). Let (µ•, w) be a measure-flux pair such

that

I(µ•, w) < ∞; 〈1 + |v|2 + |v*|2, w〉 < ∞.

Then there exists a sequence (µ
(n)
• , w(n)) of measure-flux pairs whose tilting functions K(n)

are continuous, such that and K(n)(t, v, v*, σ)B(v − v*, σ) is bounded and bounded away

from 0, such that µ
(n)
0 admits a bounded density with respect to µ*

0, and such that

sup
t≤tfin

W1,1(µ
(n)
t , µt) + ρ1(w

(n), w) → 0; lim sup
n

I(µ(n)
• , w) ≤ I(µ•, w). (6.108)

Moreover, each (µ
(n)
• , w(n)) is the unique measure-flux pair starting from µ

(n)
0 and with

tilting function K(n).

Throughout, we write the indexes (n) in the superscripts in brackets, to distinguish them

from similar notation for the Kac process µN
• , w

N .The proof of this lemma is rather tech-

nical, and so is deferred until Subsection 6.4.1. Once this lemma is in hand, the restricted

lower bound Theorem 6.2ii) follows straightforwardly from standard ‘tilting’ arguments,

using the change-of-measure given in Proposition 6.15 via the following law of large num-

bers.

Lemma 6.17. Let (µ•, w) be a measure-flux pair whose tilting function K is continuous

and such that KB(v − v∗, σ) is bounded and bounded away from 0, such that µ0 has a

bounded density with respect to µ*
0, and such that the pair (µ•, w) is the unique measure-

flux pair with this tilting function and this initial measure. Let QN be the measures given

by Proposition 6.15 with ϕ = log dµ0

dµ!
0
and K : E → (0,∞) the tilting function for (µ•, w).

Then for all open sets U ∋ (µ•, w) and ε > 0, we have

QN

6
(µN

• , w
N) ∈ U ,

@@@@
1

N
log

dQN

dP
− I(µ•, w)

@@@@ < ε

7
→ 1. (6.109)

Proof. We start by applying Proposition 6.15. Since K is a function only E → R,
(µN

t , w
N
t ) is a Markov process with generator given by (6.107) applied to functions F :

PN
2 ×M(E) → R. For the initial data, µN

0 is given, under QN , by sampling N particles

independently with common law elog dµ0/dµ!
0µ*

0 = µ0.

Step 1: Functional Law of Large Numbers We begin by show that, under QN , the

pairs (µN
• , w

N) converge in probability to (µ•, w). Since K is bounded and ϕ is bounded

above, Corollary 6.9 applies and the laws QN ◦ (µN
• , w

N)−1 are tight on D × M(E), so
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every subsequence has a further subsequence converging weakly on D ×M(E). We will

now prove that the only possible subsequential limit is δ(µ•,w), which implies that the

whole sequence QN ◦ (µN
• , w

N)−1 converges weakly to this limit, and hence

QN
-
(µN

• , w
N) ∈ U

.
→ 1. (6.110)

Let L ⊂ N be any subsequence along which QN ◦ (µN
• , w

N)−1 converges weakly. thanks to

Skorokhod’s representation theorem, we can realise all (µN
• , w

N), N ∈ L with these laws

on a common probability space, with probability measure Q, converging Q-almost surely

to a limit (5µ•, 5w). For each N , (µN
• , w

N) almost surely lies in the set of pairs satisfies

the continuity equation, which is closed by Lemma 6.13, and hence (5µ•, 5w) almost surely

satisfies (CE). We now show that the limit is almost surely a measure-flux pair with tilting

K: for all g ∈ Cc(E), the processes

MN,g
t = 〈g, wN

t 〉 −
!

Et

g(s, v, v*, σ)K(s, v, v*, σ)B(v − v∗, σ)dsµ
N
s (dv)µ

N
s (dv*)dσ (6.111)

is a càdlàg martingale, with previsible, increasing quadratic variation

[MN,g]t =
1

N

!

Et

g(s, v, v*, σ)
2K(s, v, v*, σ)B(v − v∗, σ)dsµ

N
s (dv)µ

N
s (dv*)dσ

≤ ‖g‖2∞ sup
E

(B(v − v∗, σ)K)tfin/N,

(6.112)

see, for instance, [49, 157]. In particular, since B(v− v∗, σ)K is bounded by construction,

the constant in the final expression is finite. Therefore, for all such g,

EQ

@@@@〈g, w
N〉 −

!

E

gK(s, v, v*, σ)B(v − v∗, σ)dsµ
N
s (dv)µ

N
s (dv*)dσ

@@@@ ≤
Cg√
N

(6.113)

for some constant Cg. Taking N → ∞ through S, the first term in the expectation

converges almost surely to 〈g, 5w〉, and the second term converges to
&
gKdw"µ by Lemma

6.12 applied to gK. We now take N → ∞ through L to obtain

EQ

@@@@〈g, 5w〉 −
!

E

g(s, v, v*, σ)K(s, v, v*, σ)w"µ(ds, dv, dv*, dσ)

@@@@ = 0 (6.114)

and so the integrand is 0, Q-almost surely. Taking a union bound over a countable dense

set in Cc(E), we conclude that 5w = Kw"µ almost surely, and the limit is a measure-flux pair

with the prescribed rate function K. Since the initial velocities are drawn independently

from µ0 under Q, we have the elementary convergence µN
0 → 5µ0 in Q-probability, which

implies that µ0 = 5µ0. By hypothesis, these properties uniquely characterise the desired

limit (µ•, w), so Q((5µ•, 5w) = (µ•, w)) = 1 and the step is complete.

Step 2: Law of Large Numbers for the Dynamic Cost. We will now show that

the (random) exponential cost induced by the change of measure (6.106) converges under

QN : for all ε > 0,

QN

6@@@@
1

N
log

dQN

dP
− I(µ•, w)

@@@@ > ε

7
→ 0. (6.115)
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We begin by using the definitions of I and (6.106) to rewrite the difference as

1

N
log

dQN

dP
− I(µ•, w) = 〈ϕ, µN

0 〉 −H(µ0|µ*
0) + 〈logK,wN − w〉

−
!

E

(K − 1)(t, v, v*, σ)B(v − v∗, σ)
-
µN
t (dv)µ

N
t (dv*)− µt(dv)µt(dv*)

.
dσ

(6.116)

and examine the terms one by one. Fix, throughout, ε, ε′ > 0.

Step 2a: Cost of the Initial Data For the cost of the initial data, 〈ϕ, µN
0 〉 is the

empirical mean of log dµ0

dµ!
0
, sampled at N independent draws from µ0. The mean of each

draw is exactly
&
Rd log

dµ0

dµ!
0
(v)µ0(dv) =: H(µ0|µ*

0), so by the weak law of large numbers,

for all N large enough

QN
-
|〈ϕ, µN

0 〉 −H(µ0|µ*
0)| > ε/4

.
< ε′/3. (6.117)

Step 2b: Integral against Empirical Flux Let us now examine the second term. By

the choice of K, logK is continuous, bounded above, and bounded below by log(c/B(v−
v∗, σ)) for some constant c > 0. We can further bound this below by

log
1

B(v − v∗, σ)
≥ log

1

(1 + |v|)(1 + |v*)
≥ −c(|v|+ |v*|) (6.118)

for a new constant c: in particular, | logK| ≤ C(1 + |v| + |v*|) is continuous, and of at

most linear growth. Recalling that B(v−v∗, σ)K is bounded, we also estimate, uniformly

in N ,

EQN

G
〈1 + |v|2 + |v*|2, wN〉

H

= EQN

2!

E

(1 + |v|2 + |v*|2)B(v − v∗, σ)K(t, v, v*, σ)µ
N
t (dv)µ

N
t (dv*)dσ

3

≤ CEQN 〈1 + |v|2, µN
0 〉 = C〈1 + |v|2, µ0〉.

(6.119)

Elementary Chebychev estimates produce R < ∞ such that, uniformly in N ,

QN
-
〈(1 + |v|+ |v*|)1I|v|>R or |v!|>R, w

N〉 > ε/12C
.
< ε′/6; (6.120)

and similarly, using the boundedness of B(v − v∗, σ)K and finiteness of the second mo-

ments, the second moment 〈1+|v|2+|v*|2, w〉 < ∞ is also finite, and so we can additionally

choose R so that

〈(1 + |v|+ |v*|)1I|v|>R or |v!|>R, w〉 <
ε

12C
(6.121)

and construct a continuous, compactly supported function g : E → R such that |g −
logK| ≤ C(1 + |v| + |v*|) and which agrees with logK when both |v|, |v*| ≤ R. We

therefore find from (6.120) that

QN
-
〈|g − logK|, wN〉 > ε/12

.
< ε′/6; 〈|g − logK|, w〉 < ε

12
. (6.122)
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Thanks to the convergence in distribution, for N large enough,

QN
-
|〈g, wN − w〉| > ε/12

.
< ε′/6 (6.123)

and we find from (6.122,6.123) that

QN
-@@〈logK,wN − w〉

@@ > ε/4
.
< ε′/3. (6.124)

Step 2c: Integral against Compensator We finally deal with the third term in

(6.116). Since B(v − v∗, σ)K is bounded and K is continuous, it follows that B(v −
v∗, σ)(K−1) is of at most linear growth, so there exists C such that |B(v−v∗, σ)(K−1)| ≤
C(1+ |v|+ |v*|), and as in the previous step, we can choose R such that, uniformly in N ,

QN

6
sup
t≤tfin

!

Rd×Rd

(1 + |v|+ |v*|)1I|v|>R or |v!|>Rµ
N
t (dv)µ

N
t (dv*) > ε/12Ctfin

7
< ε′/6

(6.125)

for the new meaning of C, and similarly such that

sup
t≤tfin

!

Rd×Rd

(1 + |v|+ |v*|)1I|v|>R or |v!|>Rµt(dv)µt(dv*) ≤ ε/12Ctfin. (6.126)

We again truncate, with a proxy h : E → R which is continuous, compactly supported,

agrees with (K−1)B(v−v∗, σ) if both |v|, |v*| ≤ R, and such that |(K−1)B(v−v∗, σ)−h| ≤
C(1 + |v|+ |v*|) for the same constant C. Using Lemma 6.12 again,

QN

6@@@@
!

E

h(t, v, v*, σ)dt(µ
N
t (dv)µ

N
t (dv*)− µt(dv)µt(dv*))dσ

@@@@ > ε/12

7
< ε′/6 (6.127)

for N large enough, while (6.125) implies that

QN

6@@@@
!

E

(h− B(v − v∗, σ)(K − 1))dtµN
t (dv)µ

N
t (dv*)dσ

@@@@ >
ε

12

7
< ε′/6 (6.128)

and (6.126) implies that
@@@@
!

E

(h− B(v − v∗, σ)(K − 1))dtµt(dv)µt(dv*)

@@@@ <
ε

12
. (6.129)

Gathering (6.127, 6.128, 6.129), we conclude that, for N large enough,

QN

6@@@@
!

E

(K − 1)B(v − v∗, σ)dt(µ
N
t (dv)µ

N
t (dv*)− µt(dv)µt(dv*))dσ

@@@@ > ε/4

7
< ε′/3.

(6.130)

Returning to (6.116), we combine (6.117, 6.124, 6.130) to obtain, for all ε, ε′ > 0, and all

N large enough, depending on ε, ε′,

QN

6@@@@
1

N
log

dQN

dP
− I(µ•, w)

@@@@ > ε

7
< ε′ (6.131)

and we have proven the desired convergence (6.115). Together with the previous step, the

proof is complete.
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We can now prove the restricted lower bound.

Proof of Theorem 6.2ii). Let us fix a Skorokhod-open set U , a path (µ•, w) ∈ U ∩ R,

and ε > 0. Let us assume that I(µ•, w) < ∞. Thanks to Lemma 6.16, there exists a

measure-flux pair (µ′
•, w

′) ∈ U with overall cost I(µ′
•, w

′) < I(µ•, w) + ε, satisfying the

conclusions of Lemma 6.16. For the changes of measure QN ≪ P as in Lemma 6.17, we

then have, for all N large enough,

QN

6
(µN

• , w
N) ∈ U , dQ

N

dP
≤ exp (N(I(µ′

•, w
′) + ε))

7
≥ 1

2
(6.132)

which implies that

P
-
(µN

• , w
N) ∈ U

.

≥ EQN

=6
dQN

dP

7−1

1I

6
dQN

dP
≤ exp (N(I(µ′

•, w
′) + ε)) , (µN

• , w
N) ∈ U

7>

≥ 1

2
exp (−N(I(µ′

•, w
′) + ε)) ≥ 1

2
exp (−N(I(µ•, w) + 2ε)) .

(6.133)

Taking the logarithm and the limit N → ∞, and then ε → 0,

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −I(µ•, w). (6.134)

Of course, (6.134) trivially holds if I(µ•, w) = ∞, and so applies to any (µ•, w) ∈ U ∩R,

and the result is proven.

6.4.1 Proof of Approximation Lemma

We will now present the proof of the approximation lemma as a number of intermediate

steps. We will present the statements here, to give an overview of the proof of the overall

approximation lemma, and the proofs in Subsection 6.4.2. We begin with the following

definition.

Definition 6.4.1. Let (µ•, w) be a measure-flux pair, and λ > 0. Let gλ be the Gaussian

in Rd

gλ(x) :=
1

(2πλ)d/2
exp

-
−|x|2/2λ

.
. (6.135)

We define the convolutions (gλ 9 µ•), gλ 9 w by

(gλ 9 µ•)t(dv) = (gλ 9 µt)(dv) =

!

Rd

gλ(v − u)µt(du)dv; (6.136)

(gλ 9 w)(dt, dv, dv*, dσ) =

!

Rd×Rd

gλ(v − u)gλ(v* − u*)dvdv∗w(dt, du, du*, dσ). (6.137)

The measures gλ 9 µt are absolutely continuous with respect to the Lebesgue measure; we

will alternatively use the notation gλ 9 µt for their density on Rd.
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Remark 6.18. Let us note that the choice of Gaussian mollification is essential here, as

it is the unique mollifier which is invariant under changing between the pre- and post-

collisional velocities; see (6.152).

Lemma 6.19 (Approximation by Convolution). Suppose (µ•, w) is a measure-flux pair

with a bounded tilting function K, such that

〈|v|2 + |v*|2, w〉 < ∞; J (µ•, w) < ∞; sup
t≤tfin

〈|v|2, µt〉 = 〈|v|2, µ0〉 < ∞. (6.138)

Then, for all λ > 0, (µ• 9 gλ, w 9 gλ) is a measure-flux pair. Furthermore, there exists

a continuous function ϑ : [0, 1] → [0,∞), which is continuous at 0 and ϑ(0) = 0, and a

constant C, which only depends on upper bounds for the quantities in (6.138) and not

the boundedness of K, such that for all λ ∈ (0, 1],

J (gλ 9 µ•, gλ 9 w) ≤ J (µ•, w) + Cϑ(λ). (6.139)

Finally, the tilting function Kλ satisfies

sup
t,v,v!,σ

Kλ(t, v, v*, σ)B(v − v∗, σ) ≤ sup
t,v,v!,σ

K(t, v, v*, σ)B(v − v∗, σ) (6.140)

We now apply this to produce some approximation results.

Lemma 6.20. Let µ•, w be as in Lemma 6.16. Then there exist measure-flux pairs

µ
(n)
• , w(n) such that

J (µ(n)
• , w(n)) → J (µ•, w) (6.141)

sup
t≤tfin

‖(1 + |v|2)(µ(n)
t − µt)‖TV + ‖(1 + |v|2 + |v*|2)(w(n) − w)‖TV → 0 (6.142)

and, for each n, the tilting function K(n) is such that K(n)(t, v, v*, σ)B(v−v∗, σ) is bounded

and K(n) is continuous in v, v*. Furthermore, the starting points µ
(n)
0 can be taken to be

of the form

µ
(n)
0 (dv) = c−1

n

-
µ0(dv) + ν(n)(dv)

.
(6.143)

for a suitable normalising constant cn → 1 and measures ν(n) with 〈1 + |v|2, ν(n)〉 → 0.

Lemma 6.21. Let µ•, w be as in Lemma 6.16. Then there exist measure-flux pairs

µ
(n)
• , w(n) such that

I(µ(n)
• , w(n)) → I(µ•, w); sup

t≤tfin

W1,1

'
µ
(n)
t , µt

(
+ ρ1(w

(n), w) → 0 (6.144)

and, for each n, the tilting function K(n) is such that K(n)(t, v, v*, σ)B(v−v∗, σ) is bounded

and K(n) is continuous in v, v*.
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Lemma 6.22. Let µ•, w be a measure-flux pair with finite rate I(µ•, w) < ∞, such

that K(t, v, v*, σ)B(v − v∗, σ) is bounded and K is continuous in v, v*. Then there exist

measure-flux pairs µ
(n)
• , w(n) with

I(µ(n)
• , w) → I(µ•, w); sup

t≤tfin

‖µ(n)
t − µt‖TV + ‖w(n) − w‖TV → 0 (6.145)

and additionally, for each n,

sup
(t,v,v!,σ)

K(n)(t, v, v*, σ)B(v − v∗, σ) ≤ sup
(t,v,v!,σ)

K(t, v, v*, σ)B(v − v∗, σ) + 1; (6.146)

inf
(t,v,v!,σ)

K(n)(t, v, v*, σ)B(v − v∗, σ) > 0; (6.147)

sup
dµ

(n)
0

dµ*
0

< ∞ (6.148)

and such that K(n) are continuous functions on E. Moreover, the approximations are

uniquely characterised among measure-flux pairs by the initial value µ
(n)
0 and the tilting

function K(n).

Equipped with these lemmas, the stated result Lemma 6.16 follows by a standard diagonal

argument.

Proof of Lemma 6.16. Let us fix µ•, w as given, and construct a sequence of approximat-

ing measure-flux pairs µ
(n)
• , w(n) as follows. By Lemma 6.21, there exists a pair µ

(n,1)
• , w(n,1)

whose tilting function K(n,1) is continuous in v, v* and K(n,1)B(v− v∗, σ) is bounded, and

such that

sup
t≤tfin

W1,1

'
µ
(n,1)
t , µt

(
+ ρ1(w

(n,1), w) +
@@I(µ(n,1)

• , w(n,1))− I(µ•, w)
@@ < 1

n
. (6.149)

Thanks to Lemma 6.22, we can approximate µ
(n,1)
• , w(n,1) by a further pair µ

(n,2)
• , w(n,2),

whose tilting function K(n,2) is continuous and so that K(n,2)B(v− v∗, σ) is still bounded

and bounded away from 0, and where µ
(n,2)
0 has a bounded density with respect to µ*

0,

which is uniquely characterised among measure-flux pairs by the initial data µ
(n,2)
0 and

tilting function K(n,2), with further error

sup
t≤tfin

‖µ(n,2)
t − µ

(n,1)
t ‖TV + ‖w(n,2) − w(n,1)‖TV +

@@I(µ(n,2)
• , w(n,2))− I(µ(n,1)

• , w(n,1))
@@ < 1

n
.

(6.150)

Combining (6.149, 6.150), we recall that the total variation distance on measures on Rd,

respectively E, dominates the Wasserstein1 distance W1,1, respectively ρ1, so the sequence

µ
(n)
• = µ

(n,2)
• , w(n) = w(n,2) has the desired properties.
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6.4.2 Proof of Lemmas

We start with the convolution lemma, which is the most difficult step.

Proof of Lemma 6.19. We divide the proof into several steps. Throughout, C will denote

a constant, which may vary from line to line, but is allowed to depend only on the

quantities specified in (6.138).

Step 1: (gλ 9 µ•, gλ 9 w) solves the continuity equation. This property is fairly

well-known, see Erbar [73] or Basile [16], and we include a proof for completeness. If we

fix f ∈ Cb(Rd), let us denote gλ 9 f the convolution (gλ 9 f)(v) :=
&
Rd gλ(v − w)f(w)dw,

and observe that 〈f, gλ 9 µt〉 = 〈gλ 9 f, µt〉 for all t ∈ [0, tfin]. Now, using the continuity

equation for (µ•, w) with the test function gλ 9 f , for all t ∈ [0, tfin],

〈f, gλ 9 µt〉 − 〈f, gλ 9 µ0〉 = 〈gλ 9 f, µt〉 − 〈gλ 9 f, µ0〉

=

!

Et

∆(gλ 9 f)(v, v*, σ)w(ds, dv, dv*, dσ).
(6.151)

Let us now fix v, v*, σ, and observe that the map Tσ : (v, v*) → (v′, v′*) is a linear isometry

of Euclidean distance on (Rd)2; for variables (u′, u′
*) ∈ (Rd)2, let us write (u, u*) for the

preimage under Tσ. We therefore have

(gλ 9 f)(v
′) + (gλ 9 f)(v

′
*)

=
1

(2πλ)d

!

Rd×Rd

(f(u′) + f(u′
*)) exp

6
− |u′ − v′|2 + |u′

* − v′*|2
2λ

7
du′du′

*

=
1

(2πλ)d

!

Rd×Rd

(f(u′) + f(u′
*)) exp

6
− |u− v|2 + |u* − v*|2

2λ

7
du′du′

*

=
1

(2πλ)d

!

Rd×Rd

(f(u′) + f(u′
*)) exp

6
− |u− v|2 + |u* − v*|2

2λ

7
dudu*

=

!

Rd×Rd

(f(u′) + f(u′
*))gλ(u− v)gλ(u* − v*)dudu*

(6.152)

where the penultimate line makes the change of variables (u′, u′
*) = Tσ(u, u*), with unit

determinant. We now substitute the resulting identity

∆(gλ 9 f)(v, v*, σ) =

!

Rd×Rd

(f(u′) + f(u′
*)− f(u)− f(u*))gλ(u− v)gλ(u* − v*)dudu*

=

!

Rd×Rd

(∆f)(u, u*, σ)gλ(u− v)gλ(u* − v*)dudu*

(6.153)
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into (6.151) to obtain

〈f, gλ 9 µt〉 − 〈f, gλ 9 µ0〉

=

!

Et

!

Rd×Rd

(∆f)(u, u*, σ)gλ(u− v)gλ(u* − v*)w(ds, dv, dv*, dσ)dudu*

=:

!

Et

(∆f)(u, u*, σ)(gλ 9 w)(ds, du, du*, dσ)

(6.154)

and, since f is arbitrary, we conclude that (gλ 9µ•, gλ 9w) satisfies the continuity equation

(CE) as desired.

Step 2: Identification of the Tilting Function. To show that (µ•, w) is a measure-

flux pair, and in preparation for estimating the dynamic cost, we will now explicitly find

a tilting function. Let us write K for the tilting function for the pair (µ•, w), so that

w = Kwµ. For any Borel subset A ⊂ E, we observe that

(gλ 9 w)(A) =

!

E

!

Rd×Rd

1IA(t, u, u*, σ)gλ(u− v)gλ(u* − v*)K(t, v, v*, σ)

· · ·× wµ(dt, dv, dv*, dσ)dudu*

=

!

E

1IA(t, u, u*, σ)

6!

Rd×Rd

gλ(u− v)gλ(u* − v*)K(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*)

7

· · ·× dudu*dtdσ.

(6.155)

Now, let us define Kλ by

Kλ(t, u, u*, σ) :=

&
Rd×Rd gλ(u− v)gλ(u* − v*)K(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*)

B(u− u*)(gλ 9 µt)(u)(gλ 9 µt)(u*)
(6.156)

and observe that this is a well-defined function, since K was assumed to be bounded and

B is bounded away from 0, and where in the denominator (gλ 9 µt)(u) > 0 denotes the

density of the measure gλ9µt with respect to the Lebesgue measure. Returning to (6.155),

this definition yields

(gλ 9 w)(A) =

!

E

1IA(t, u, u*, σ)K
λ(t, u, u*, σ)B(u− u*)(gλ 9 µt)(u)du

· · ·× (gλ 9 µt)(u*)du*dtdσ

=

!

E

1IA(t, u, u*, σ)K
λ(t, u, u*, σ)(gλ 9 µt)(du)(gλ 9 µt)(du*)dtdσ

=

!

E

1IA(t, u, u*, σ)K
λ(t, u, u*, σ)wgλ*µ(dt, du, du*, dσ).

(6.157)



CHAPTER 6. LARGE DEVIATIONS OF THE KAC PROCESS 319

We conclude that Kλ is a tilting function for (gλ 9µ•, gλ 9w), and so this is a measure-flux

pair as claimed, and the bound (6.140) is immediate. For future convenience, we will now

define

rλt (u, u*) :=

!

Rd×Rd

gλ(u− v)gλ(u* − v*)Ψ(|v − v∗|)µt(dv)µt(dv*) (6.158)

recalling that Ψ(|v|) is the kinetic factor in the kernel, and introduce the proxy to Kλ

given by

K
λ
(t, u, u*, σ) : =

&
Rd×Rd gλ(u− v)gλ(u* − v*)K(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*)

rλt (u, u*)

=

!

Rd×Rd

K(t, v, v*, σ)ν
λ
(t,u,u!)(dv, dv*)

(6.159)

which we have written in terms of the integral against the probability measures

νλ
(t,u,u!)(dv, dv*) =

Ψ(|v − v∗|)gλ(v − u)µt(dv)gλ(v* − u*)µt(dv*)

rλt (u, u*)
(6.160)

recalling that the kernels B of interest take the form B(v, σ) = Ψ(|v|). For any u, u*, σ,

the quotient is given by the function

Kλ

K
λ
(t, u, u*, σ) = ψλ(t, u, u*) :=

rλt (u, u*)

Ψ(|u− u*|)(gλ 9 µt)(u)(gλ 9 µt)(u*)

=
1

Ψ(|u− u*|)

!

Rd×Rd

Ψ(|v − v∗|)
gλ(v − u)µt(dv)

(gλ 9 µt)(u)

gλ(v* − u*)µt(dv*)

(gλ 9 µt)(u*)
.

(6.161)

which depends only on µt, and not on w.

Step 3: Decomposition of the Rate Function We now break the rate function up

into several parts which can be more easily manipulated. We start from

J (gλ 9 µ•, gλ 9 w) =

!

E

(τ − 1)(Kλ(t, v, v*, σ))wgλ*µ(dt, dv, dv*, dσ) + wgλ*µ(E) (6.162)

where we recall that (τ − 1)(x) = x log x − x is a convex function on [0,∞). Next, we

observe that

(τ − 1)(Kλ) = Kλ logψλ + ψλ(τ − 1)(K
λ
). (6.163)

For the first term, we start with the observation that

Kλ(t, u, u*, σ)wgλ*µ(dt, du, du*, dσ)

=

!

Rd×Rd

K(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*)gλ(u− v)gλ(u* − v*)dtdσdudu*

(6.164)
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from which it follows that we can rewrite the integral of the first term as an error term

Tλ(µ•, w) :=

!

E

Kλ(t, u, u*, σ) logψλ(t, u, u*)wgλ*µ(dt, du, du*, dσ)

=

!

E×Rd×Rd

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dt

· · ·× µt(dv)µt(dv*)dσdudu*.

(6.165)

To integrate the second term, we note that

ψλ(t, u, u*)wgλ*µ(dt, du, du*, dσ) = rλt (u, u*)dtdudu*dσ. (6.166)

Since νλ
(t,u,u!)

are probability measures, we can apply Jensen to (6.159) with the convex

function τ − 1 to find

(τ − 1)(K
λ
(t, u, u*, σ)) ≤

!

Rd×Rd

(τ − 1)(K(t, v, v*, σ))ν
λ
(t,u,u!)(dv, dv*)

=
1

rλt (u, u*)

!

Rd×Rd

(τ − 1)(K(t, v, v*, σ))B(v − v∗, σ)gλ(u− v)gλ(u* − v*)µt(dv)µt(dv*).

(6.167)

Gathering (6.166, 6.167), we obtain

!

E

ψλ(t, u, u*)(τ − 1)(K
λ
)(t, u, u*, σ)wgλ*µ(dt, du, du*, dσ)

≤
!

E×Rd×Rd

(τ − 1)(K(t, v, v*, σ))B(v − v∗, σ)gλ(u− v)gλ(u* − v*)dtµt(dv)µt(dv*)dσ

=

!

E

(τ − 1)(K(t, v, v*, σ))B(v − v∗, σ)dtµt(dv)µt(dv*)dσ

=

!

E

(τ − 1)(K(t, v, v*, σ))wµ(dt, dv, dv*, dσ).

(6.168)

Returning to (6.162) and using the analagous equation for µ•, we finally obtain the de-

composition

J (gλ 9 µ•, gλ 9 w) ≤ J (µ•, w) + (wgλ*µ − wµ)(E) + Tλ(µ•, w). (6.169)

It is very straightforward to show that the second term converges to 0 as λ → 0, with a

rate depending only on supt〈|v|2, µt〉.

Step 4: Analysis of ψλ. We now turn to the error term Tλ identified in (6.165), which

depends on the continuity of logΨ. We remark first that this term cannot be avoided

purely on general considerations; consider, for example, the kernel Ψ(|v|) = 1I|v|≥1 in which
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case J (gλ9µ•, gλ9w) can become infinite due to contributions in the region {|v−v*| < 1}.

We start with an upper bound for ψλ. We define first the measures

ξλ(t,u)(dv) :=
gλ(v − u)µt(dv)

(gλ 9 µt)(u)
. (6.170)

Setting R :=
I

2 sups〈|v|2, µs〉, a Chebychev bound shows that µt(|v| ≤ R) ≥ 1
2
for all t,

which leads to the lower bound

(gλ 9 µt)(u) ≥
1

2
exp

-
−(|u|+R)2)/2λ

.
/(2πλ)d/2. (6.171)

We now estimate

Z
|v|21I|v−u|>R+|u|, ξ

λ
(t,u)

[
=

&
|v−u|>R+|u| e

−|v−u|2/2λ|v|2µt(dv)/(2πλ)
d/2

(gλ 9 µt)(u)

≤ e−(|u|+R)2/2λ/(2πλ)d/2

(gλ 9 µt)(u)

!

|v−u|>R+|u|
|v|2µt(dv)

≤ 2 sup
s
〈|v|2, µs〉 = R2.

(6.172)

Together with a trivial bound for the remaining region, we conclude that

Z
|v|2, ξλ(t,u)

[
≤ 3R2 + 4|u|2 ≤ C(1 + |u|2) (6.173)

since R ≥ 1 depends only on the quantities in (6.138). Using the lower bound Ψ(|u−u*|) ≥
1 and the upper bound Ψ(|v − v∗|) ≤ 1 + |v| + |v*| ≤ C(1 + |v|2 + |v*|2), we now return

to (6.161) to obtain

ψλ(t, u, u*) ≤ C(1 + |u|2 + |u*|2). (6.174)

This bound will be useful in general, for (u, u*) where ψλ cannot be shown to be close to

1. We complement this with a bound which will show that, for most points (u, u*) in the

support of (gλ 9 µt)
⊗2, ψλ is not too much bigger than 1. We will exploit, repeatedly, the

observation that, for the kernels of interest,

Ψ(|v − v∗|) ≤ (1 + |v − u|+ |v* − u*|)Ψ(|u− u*|). (6.175)

Fix t ≥ 0, and suppose that v0, v0* are such that there exists a sets U ∋ v0, U* ∋ v0* of

diameter c
√
λ and µt(U), µt(U*) ≥ ελd/2, and (u, u*) is such that |(u, u*)−(v0, v0*)| < x

√
λ,

for some constant c and parameters ε > 0, x < ∞ to be chosen later. In this case, we

bound the denominator below by observing that

(gλ 9 µt)(u) ≥
1

(2πλ)d/2
e−(x

√
λ+c

√
λ)2/2λµt(U) ≥ ε

(2π)d/2
exp

-
−x2 − c2

.
(6.176)



322 6.4. RESTRICTED LOWER BOUND

and similarly for u*. In this setting, we return to (6.161) and split the integral defining

ψλ into the regions depending on whether |(v, v*)− (u, u*)| < λ1/3 + 3x
√
λ or not. In the

first case,

Ψ(|v − v∗|) ≤ (1 + 2λ1/3 + 6x
√
λ)Ψ(|u− u*|) (6.177)

and so
!

|(v,v!)−(u,u!)|<λ1/3+3x
√
λ

Ψ(|v − v∗|)
Ψ(|u− u*|)

gλ(v − u)µt(dv)

(gλ 9 µt)(u)

gλ(v* − u*)µt(dv*)

(gλ 9 µt)(u*)

≤ 1 + 2λ1/3 + 6x
√
λ.

(6.178)

On the other hand, using (6.176) and the trivial bounds Ψ(|v−v∗|) ≤ 1+ |v|+ |v*|,Ψ(|u−
u*|) ≥ 1, we bound the term from the second region by

!

|(v,v!)−(u,u!)|≥λ1/3+3x
√
λ

Ψ(|v − v∗|)
Ψ(|u− u*|)

gλ(v − u)µt(dv)

(gλ 9 µt)(u)

gλ(v* − u*)µt(dv*)

(gλ 9 µt)(u*)

≤ C

!

Rd×Rd

(1 + |v|+ |v*|)λ−d exp

6
− 1

2λ
(9x2λ+ λ2/3)

7
ε−2 exp(2x2 + 2c2)

· · ·× µt(dv)µt(dv*)

≤ C exp
-
2c2 − x2

.
ε−2.

(6.179)

where, in the final line, we recall that λ−d exp(−λ−1/6/2) is uniformly bounded on (0,∞),

and that the remaining integral is controlled in terms of the second moments of µt, so can

be absorbed into C. Gathering (6.177, 6.179), we conclude that for (u, u*), x, ε as above,

ψλ(t, u, u*) ≤ 1 + 2λ1/3 + 6x
√
λ+ C exp(2c2 − x2)ε−2

≤ (1 + 2λ1/3 + 6x
√
λ)

-
1 + C exp(2c2 − x2)ε−2

.
.

(6.180)

Step 5: Analysis of Tλ. Equipped with this preliminary analysis of ψλ in the previous

step, we bound the final term Tλ appearing in (6.169). Together with the observation

under (6.169), this suffices to prove (6.139) and finish the proof of the lemma.

We break up the integration space E × Rd × Rd in the definition of Tλ as follows. For

M ≥ 2, R ∈ [3,∞) ∩
√
λN, x ∈ (0,∞), ε ∈ (0,∞) to be chosen later, we form a partition

P of (−R,R]d into (2R/
√
λ)d translates of (0,

√
λ]d, and for v ∈ (−R,R]d, write B(v) for

the unique B ∈ P containing v. We now consider the partition of E × Rd × Rd given by

A1 :=

M
v, v* ∈ (−R,R]d, K(t, v, v*, σ) ≤ M,µt(B(v)) ≥ ελd/2, µt(B(v*)) ≥ ελd/2,

|(u, u*)− (v, v*)| < x
√
λ

N
;
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A2 :=

M
v, v* ∈ (−R,R]d, K(t, v, v*, σ) ≤ M,µt(B(v)) ≥ ελd/2, µt(B(v*)) ≥ ελd/2,

|(u, u*)− (v, v*)| ≥ x
√
λ

N
;

A3 :=
)
v, v* ∈ (−R,R]d, K(t, v, v*, σ) ≤ M,µt(B(v)) < ελd/2 or µt(B(v*)) < ελd/2

*
;

A4 :=
)
v, v* ∈ (−R,R]d, K(t, v, v*, σ) > M

*
;

A5 :=
)
(v, v*) ∕∈ (−R,R]2d

*
. (6.181)

We analyse the contributions from these regions one-by-one. Roughly, A1 is the ‘good’

region, containing most of the contributions from the integrating measure, where logψλ

is small by (6.180), and the remaining terms are small, depending on the parameters

M,R, x, ε; at the end, we will optimise, so that M,R, x → ∞ and ε → 0 as functions of

λ → 0.

Step 5a: Contribution from A1 For the region A1, we observe that the hypotheses

leading to (6.180) hold, with U = B(v), U* = B(v*) and c =
√
d is an absolute constant.

Further, K < M and B(v − v∗, σ) ≤ 1 + 2R ≤ CR, so we integrate (6.180) to find

!

A1

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dtµt(dv)µt(dv*)dσdudu*

≤ CMR
'
log(1 + 2λ1/3 + 6x

√
λ) + log(1 + ε−2e−x2

)
(
.

(6.182)

Step 5b: Contribution from A2. For A2, we use the general upper bound (6.174),

which is valid without restriction on u, u*. For fixed v, v* we use Hölder’s inequality to

see that
!

Rd×Rd

logψλ(t, u, u*)1I|(u,u!)−(v,v!)|≥x
√
λgλ(u− v)gλ(u* − v*)dudu*

≤ C

!

Rd×Rd

log(1 + |u|2 + |u*|2)1I|(u,u!)−(v,v!)|≥x
√
λgλ(u− v)gλ(u* − v*)dudu*

≤ C

6!

Rd×Rd

(1 + |u|2 + |u*|2)gλ(u− v)gλ(u* − v*)dudu*

71/2

· · ·×
6!

Rd×Rd

1I[|(u′, u′
*)| > x

√
λ]gλ(u

′)gλ(u
′
*)du

′du′
*

71/2

≤ C(1 + |v|+ |v*|) exp
-
−x2/16d

.

(6.183)

where for the first factor in the final line, we integrated
&
|u|2gλ(u − v)du = |u|2 +

λ2 ≤ |u|2 + 1, and for the second factor we used standard tail estimates for the normal
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distribution, absorbing constants into the prefactor C. Bounding B(v−v∗, σ), K as above,

and integrating over t, v, v*, σ, we find

!

A2

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dtµt(dv)µt(dv*)dσdudu*

≤ CMR exp
-
−x2/16d

.
.

(6.184)

Step 5c: Contribution from A3. Similarly to the previous step, we start from a

bound on the integrals over u, u*, with t and v, v* fixed. We split the integral over u, u*

into {|(u, u*)− (v, v*)| ≤ (1+ |v|+ |v*|)} and {|(u, u*)− (v, v*)| > (1+ |v|+ |v*|)}. In the

first region, thanks to (6.175),

logψλ(t, u, u*) ≤ C log(1 + |u|2 + |u*|2) ≤ C log(1 + |v|2 + |v*|2) (6.185)

while the contribution from the second region is controlled by using Hölder’s inequality

in the same way as (6.183) to obtain

!

|(u,u!)−(v,v!)|>(1+|v|+|v!|)
logψλ(t, u, u*)gλ(u− v)gλ(u* − v*)dudu*

≤ C(1 + |v|+ |v*|) exp(−(1 + |v|+ |v*|)2/16d).
(6.186)

This term can be absorbed into the contribution from (6.185), and we conclude that, for

all t and v, v* ∈ Rd,

!

Rd×Rd

logψλ(t, u, u*)gλ(u− v)gλ(u* − v*)dudu* ≤ C log(1 + |v|2 + |v*|2). (6.187)

In particular, when v, v* ∈ (−R,R]d, the right-hand side can be replaced by C logR, and

B(v − v∗, σ) ≤ CR. We now integrate over A3 to find

!

A3

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dtµt(dv)µt(dv*)dσdudu*

≤ CM(R logR)

! tfin

0

µ⊗2
t

-
(v, v*) ∈ (−R,R]2d : µt(B(v)) < ελd/2 or µt(B(v*)) < ελd/2

.
dt

≤ CM(R logR)

! tfin

0

µt

-
v ∈ (−R,R]d : µt(B(v)) < ελd/2

.
dt

(6.188)

where the last line follows using a union bound, absorbing the factor of 2 into C. The

integrand is now

µt

-
v ∈ (−R,R]d : µt(B(v)) < ελd/2

.
=

"

B∈P

µt(B)1I(µt(B) < ελd/2)

≤ ελd/2(#P) = ε(2R)d

(6.189)
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recalling that #P = (2R/
√
λ)d. Substituting this bound back into (6.188) we conclude

that
!

A3

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dtµt(dv)µt(dv*)dσdudu*

≤ CM(Rd+1 logR)ε.

(6.190)

Step 5d: Contribution from A4. InA4, we use the same bound (6.187) on
&
logψλgλ(u−

v)gλ(u* − v*)dudu*, and observe that, on A4, K(t, v, v*, σ) ≤ M
τ(M)

τ(K). Integrating, it

follows that
!

A4

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u* − v*) logψλ(t, u, u*)dtµt(du)µt(dv*)dσdudu*

≤ C(logR)

6
M

τ(M)

7!

E

τ(K(t, v, v*, σ))wµ(dt, dv, dv*, dσ)

= C(logR)

6
M

τ(M)

7
J (µ•, w) = C(logR)

6
M

τ(M)

7

(6.191)

since C is allowed to depend on an upper bound for J (µ•, w).

Step 5e: Contribution from A5. We finally turn to the contribution from A5. Thanks

to (6.187), for any (v, v*) ∕∈ (−R,R]2d, we have

!

Rd×Rd

logψλ(t, u, u*)gλ(u− v)gλ(u* − v*)dudu* ≤ C log(1 + |v|2 + |v*|2)

≤ C
log(R2)

R2
(1 + |v|2 + |v*|2)

(6.192)

as (log x)/x is decreasing on [R,∞) ⊂ [e,∞), and 1 + |v|2 + |v*|2 ≥ R2. Integrating over

t, v, v*, σ, we obtain

!

A5

K(t, v, v*, σ)B(v − v∗, σ)gλ(u− v)gλ(u− v*) logψλ(t, u, u*)dtµt(dv)µt(dv*)dσdudu*

≤ C

6
logR2

R2

7!

E

(|v|2 + |v*|2)K(t, v, v*, σ)wµ(dt, dv, dv*, dσ)

= C

6
logR

R2

7
〈|v|2 + |v*|2, w〉 = C

6
logR

R2

7

(6.193)

recalling again that the second moment of w is one of the quantities (6.138) on which C

is allowed to depend.
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Step 5f: Conclusion Gathering (6.182, 6.184, 6.190, 6.191, 6.193), we conclude that,

for any M,R, x, ε as above,

Tλ(µ•, w) ≤ C

6
MR log(1 + 2λ1/3 + 6x

√
λ) +MR log

'
1 + e−x2

ε−2
(

· · ·+MRe−x2/16d +M(Rd+1 logR)ε+ (logR)

6
M

τ(M)

7
+

logR

R2

7
.

(6.194)

We now define ϑ1(λ) to be the infimum of the term in parantheses over the possible

choices of M,R, ε, x described at the start of Step 5 for λ > 0, and ϑ1(0) = 0. Although

this expression is somewhat complicated to optimise directly, it is straightforward to see

that ϑ1(λ) → 0 as λ ↓ 0: given a target η > 0, we can choose R such that the last term

is at < η/6, independently of M, ε, x,λ; with R thus fixed, we choose M such that the

second-last term is < η/6 for all ε, x,λ, and so on. Returning to (6.169), one obtains

an additional error, corresponding to the term wgλ*µ(E) − wµ(E), which can easily be

controlled, giving another term Cϑ2(λ). Adding the two, the lemma is proven, with a

new function ϑ.

Proof of Lemma 6.20. We now prove Lemma 6.20 based on the following truncation ar-

gument.

Step 1: Definition For n ≥ 1, let Bn be the set {v ∈ Rd : |v| ≤ n} and

E(n) = {(t, v, v*, σ) : B(v − v∗, σ)K(t, v, v*, σ) ≤ n, and v, v*, v
′, v′* ∈ Bn} (6.195)

and define

ν(n) =

!

Ec
(n)

(δv′1Iv′∈Bn + δv′!1Iv′!∈Bn) w(dt, dv, dv*, dσ); (6.196)

cn = (µ0 + ν(n))(Rd); (6.197)

and let the flux be

w(n)(dt, dv, dv*, dσ) = c−1
n K(t, v, v*, σ) 1IE(n)

wµ(dt, dv, dv*, dσ)

= c−1
n 1IE(n)

w(dt, dv, dv*, dσ)
(6.198)

Let µ
(n)
• be given by

µ
(n)
t =

µ0 + ν(n)

cn
+

!

Et

∆(v, v*, σ) w(n)(ds, dv, dv*, dσ). (6.199)
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This definition gives a signed measure with µ
(n)
t 1IBc

n
= c−1

n µ01IBc
n
≥ 0, and we further

observe that for any Borel A ⊂ Bn and t ≤ tfin,

µ
(n)
t (A) ≥ c−1

n µ0(A)

+ c−1
n

!

Et

'
(∆1IA)(v, v*, σ)1IE(n)

+ (1IA(v
′) + 1IA(v

′
*))1IEc

(n)

(
w(ds, dv, dv*, dσ)

≥ c−1
n

6
µ0 +

!

Et

∆1IA(v, v*, σ) w(ds, dv, dv*, dσ)

7
= c−1

n µt(A).

(6.200)

It follows that µ
(n)
t is a positive measure for all t ≤ tfin, and thanks to the normalisation

by cn, it follows that µ
(n)
t is a probability measure. Moreover, it also follows that µt1IBn

is absolutely continuous with respect to µ
(n)
t , and that

d(µt1IBn)

dµ
(n)
t

≤ cn µ
(n)
t -almost everywhere (6.201)

and the form (6.143) of µ
(n)
0 is immediate by construction. Further, the conntinuity

equation (CE) follows immediately by construction.

Step 2: Convergence of the Truncated Measure-Flux Firstly, we show that µ
(n)
•

approximates µ• uniformly in the weighted total variation norm ‖ξ‖TV+2 = 〈1+ |v|2, |ξ|〉.
At time 0,

‖µ(n)
0 − µ0‖TV+2 ≤ c−1

n 〈1 + |v|2, ν(n)〉+ |1− cn|
cn

〈1 + |v|2, µ0〉. (6.202)

In the first term,

〈1+|v|2, ν(n)〉 =
!

E

((1+|v′|2)1Iv′∈Bn+(1+|v′*|2)1Iv!∈Bn)1IEc
(n)
w(dt, dv, dv*, dσ) → 0 (6.203)

by applying dominated convergence: the integrand is at most 2(1+ |v|2+ |v*|2) by energy

conservation, and by hypothesis, 〈2 + |v|2 + |v*|2, w〉 < ∞. It follows already from these

estimates that cn → 1, and the second term on the right-hand side of (6.202) converges

to 0. Similarly, we estimate
XXX(µ(n)

t − µ
(n)
0 )− (µt − µ0)

XXX
TV+2

≤ 4c−1
n

!

Ec
(n)

(1 + |v|2 + |v*|2)1IEc
n
w(ds, dv, dv*, dσ)

+ 4|1− c−1
n |

!

E

(1 + |v|2 + |v*|2)w(ds, dv, dv*, dσ)

→ 0

(6.204)

and we conclude that supt≤tfin
‖µ(n)

t − µt‖TV+2 → 0. A similar argument shows that

‖w(n) − w‖TV+2 → 0 (6.205)
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as desired. Let us remark that this would still be true, working in TV rather than

TV + 2, even without the additional integrability assumption, but we will crucially use

the finiteness of 〈1+ |v|2, ν(n)〉 in controlling the cost of the initial data after a convolution

later.

Step 3: Tilting Function for the Truncated Pair We now construct the tilting

function K(n), which completes the proof that µ
(n)
• , w(n) is a measure-flux pair. By con-

struction, we have

µ
(n)
t − µ

(n)
0 =

!

Et

∆(v, v*, σ)w
(n)(ds, dv, dv*, dσ) (6.206)

and

w(n)(dt, dv, dv*, dσ) = c−1
n K(t, v, v*, σ)1IE(n)

(t, v, v*, σ)B(v − v*, dσ)µt(dv)µt(dv*)dt

= c−1
n K(t, v, v*, σ)1IE(n)

(t, v, v*, σ)B(v − v*, dσ)(µt1IBn)(dv)(µt1IBn)(dv*)dt

(6.207)

where, in the last line, we observe that 1IE(n)
= 1IE(n)

1IBn(v)1IBn(v*). Recalling the absolute

continuity (6.201), we have

w(n)(dt, dv, dv*, dσ) = K(n)(t, v, v*, σ)wµ(n)(dt, dv, dv*, dσ) (6.208)

where K(n) is given by

K(n)(t, v, v*, σ) = c−1
n K(t, v, v*, σ)1IE(n)

(t, v, v*, σ)

/
d(µt1IBn)

dµ
(n)
t

0
(v)

/
d(µt1IBn)

dµ
(n)
t

0
(v*).

(6.209)

From (6.201) and the definition of E(n),

B(v − v∗, σ)K
(n)(t, v, v*, σ) ≤ ncn (6.210)

is bounded, as claimed.

Step 4: Convergence of the Dynamic Cost It remains to show that J (µ(n), w(n)) →
J (µ,w). From the total variation convergence proven above, it follows that (µ

(n)
• , w(n)) →

(µ•, w) in the topology of D ×M(E). This implies that lim infn J (µ(n), w(n)) ≥ J (µ,w)

by lower semicontinuity (Lemma 6.13), and so it suffices to prove an upper bound. We

start by observing that, by construction

(τ − 1)(K(n))wµ(n)(dt, dv, dv*, dσ) = (logK(n) − 1)w(n)(dt, dv, dv*, dσ)

= c−1
n 1IE(n)

(logK(n) − 1)w(dt, dv, dv*, dσ)
(6.211)

and that, on E(n), K
(n) ≤ cnK, so

(τ − 1)(K(n))wµ(n)(dt, dv, dv*, dσ) ≤ c−1
n (logK − 1 + log cn)w(dt, dv, dv*, dσ)

= c−1
n ((τ − 1)(K) + log cn)wµ(dt, dv, dv*, dσ).

(6.212)
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Integrating, and recalling the definition of J , we see that

J (µ(n)
• , w(n))− wµ(n)(E) =

!

E

(τ − 1)(K(n))wµ(n)(dt, dv, dv*, dσ)

≤ c−1
n (J (µ•, w)− wµ(E)) + (c−1

n log cn)wµ(E).

(6.213)

Using the weighted total variation convergence, it is straightforward to see that wµ(n)(E) →
wµ(E). Since cn → 1, we conclude that lim supn J (µ

(n)
• , w(n)) ≤ J (µ,w) and we are

done.

Combining the previous two results, we prove Lemma 6.21. The main difficulty with the

construction above is that the presence of ν(n) may make the cost of the initial data large:

a priori ν(n) could be singular, which would give H(µ
(n)
0 |µ*

0) = ∞. To avoid this, we will

convolve with the mollifiers gλ, at a scale λ = λn to be chosen. For this reason, it is

import to have the uniform convergence of the cost function in Lemma 6.19.

Proof of Lemma 6.21. Let µ•, w be as given, and let µ(n,0), w(n,0) be the approximations

produced by Lemma 6.20. We observe first that, thanks to the strong convergence (6.141,

6.142),

sup
n
〈1 + |v|2 + |v*|2, w(n,0)〉 < ∞; sup

n
J (µ(n,0)

• , w(n,0)) < ∞; (6.214)

sup
n

sup
t≤tfin

〈|v|2, µ(n,0)
t 〉 < ∞. (6.215)

For any λ > 0, let µ
(n,λ)
• , w(n,λ) be the convolutions

µ(n,λ)
• := gλ 9 µ

(n,0)
• ; w(n,λ) := gλ 9 w

(n,0). (6.216)

Thanks to Lemma 6.19 and (6.214, 6.215), there exists some C, uniform in n, such that

J (µ(n,λ), w(n,λ)) ≤ J (µ(n,0), w(n,0)) + Cϑ(λ). (6.217)

We consider now the cost due to the initial data. Firstly, we write

µ
(n,0)
0 = (1− pn)(gλ 9 µ0) + pn(gλ 9 ξ

(n)) (6.218)

with pn = ν(n)(Rd)/cn → 0, and ξ(n) := ν(n)/ν(n)(Rd). Using the convexity of H(·|µ*
0), we

immediately have

H
-
µ(n,λ)

@@µ*
0

.
≤ (1− pn)H(gλ 9 µ0|µ*

0) + pnH(gλ 9 ξ
(n)|µ*

0). (6.219)

We investigate these terms one at a time.



330 6.4. RESTRICTED LOWER BOUND

Step 1: Entropy of H(gλ 9 µ0|µ*
0). We first show that

lim sup
λ→0

H(gλ 9 µ0|µ*
0) ≤ H(µ0|µ*

0) (6.220)

where we recall that, since I(µ•, w) < ∞ by hypothesis, the right-hand side is a finite

limit. Since µ0 is absolutely continuous with respect to µ*
0, it is absolutely continuous with

respect to the Lebesgue measure; let us write f0 for its density, and recall the notation f *
0

for the density of µ*
0. We can then write H(µ0|µ*

0) =
&
f0 log(f0/f

*
0 ) < ∞, and, recalling

that f *
0 ≥ ce−z3|v|2 by Hypothesis 6.1iii), log f0 ≤ log(f0/f

*
0 )− log c+ z3|v|2. Since µ0 has

a finite second moment, we see that
&
f0 log f0dv < ∞. Further, bounding

− log f *
0 ≤ log c+ z3|v|2

and

(log f *
0 )1If!

0≥1f0 ≤ f *
0 exp(1If!

0≥1) + f0 log f0

we conclude that
&
| log f *

0 |f0 < ∞. We now write, as a difference of finite integrals,

H(µ0|µ*
0) =

!

Rd

f0 log f0dv +

!

Rd

(− log f *
0 )f0(v)dv =

!

Rd

f0 log f0dv +

!

Rd

(− log f *
0 )µ0(dv)

(6.221)

and similarly

H(gλ 9 µ0|µ*
0) =

!

Rd

(gλ 9 f0) log(gλ 9 f0)dv +

!

Rd

(gλ 9 f0)(− log f *
0 )dv

=

!

Rd

(gλ 9 f0) log(gλ 9 f0)dv +

!

Rd

(− log f *
0 )(gλ 9 µ0)(dv).

(6.222)

Let us fix ε > 0. For the first term, we recall that the function x log x is convex on [0,∞),

which implies that, for all λ > 0,
!

Rd

(gλ 9 f0) log(gλ 9 f0)dv ≤
!

Rd

f0 log f0dv. (6.223)

For the second term, we recall that − log f *
0 is continuous, and − log f *

0 ≤ − log c+ z3|v|2

for some c > 0 and z3 < ∞. Using the fact 〈|v|2, gλ9µ0〉 = 〈|v|2, µt〉+dλ → 〈|v|2, µ0〉 < ∞
and gλ9µ0 → µ0 weakly, we use the same argument as in Lemma 2.15 to check the uniform

integrability

lim sup
M

lim sup
λ→0

〈|v|21I|v|≥M , gλ 9 µ0〉 = 0 (6.224)

whence there exists M < ∞ and λ0 > 0 such that, for all λ < λ0,
!

|v|>M

(− log f *
0 )+(gλ 9 µ0)(dv) ≤

!

|v|>M

@@log c+ z3|v|2
@@ (gλ 9 µ0)(dv) <

ε

4
(6.225)

where + denotes the positive part. Using the weak convergence gλ 9 µ0 → µ0, there exists

λ1 < λ0 such that, for all λ < λ1,
@@@@
!

|v|≤M

(− log f *
0 )(gλ 9 µ0)(dv)−

!

|v|≤M

(− log f *
0 )µ0(dv)

@@@@ <
ε

3
(6.226)
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since the indicator 1I|v|≤M is discontinuous on a µ0-measure set, by absolute continuity.

Finally, observe that the map

µ /→ 〈1I|v|>M,f!
0≥1(log f

*
0 ), µ〉 (6.227)

is lower semicontinuous for the weak convergence, since the integrand is nonnegative, and

is finite for µ = µ*
0 as noted above. Therefore, we can find λ2 < λ1 such that, for all

λ < λ2,
!

|v|>M,f!
0≥1

(log f *
0 )(gλ 9 µ0)(dv) >

!

|v|>M,f!
0≥1

(log f *
0 )µ0(dv)−

ε

3
. (6.228)

For such λ, we split the second integral in (6.229) into regions {|v| ≤ M}, {|v| > M, f *
0 ≥

1} and {|v| > M, f *
0 < 1} to obtain

H(gλ 9 µ0|µ*
0) ≤

!

Rd

f0 log f0dv +

!

|v|≤M

(− log f *
0 )(gλ 9 µ0)(dv)

−
!

|v|>M,f!
0≥1

(log f *
0 )(gλ 9 µ0)(dv) +

!

|v|>M,f!
0<1

| log f *
0 |(gλ 9 µ0)(dv)

≤
!

Rd

f0 log f0(dv) +

6!

|v|<M

(− log f *
0 )µ0(dv) +

ε

4

7

−
/!

|v|>M,f!
0≥1

(log f *
0 )(gλ 9 µ0)(dv)−

ε

4

0
+

ε

4

=

!

Rd

f0 log f0dv −
!

|v|≤M or f!
0≥1

(log f *
0 )µ0(dv) + ε

≤ H(µ0|µ*
0) + ε

(6.229)

and we have proven (6.220).

Step 2: Entropy of Remainder Term. We next turn to the convolution gλ 9 ξ(n).

On the one hand, the density of gλ 9 ξ(n) is at most gλ(0); on the other hand, taking

R2 = 2〈|v|2, ξ(n)〉, it follows by Chebychev that

ξ(n)(|v| ≤ R) ≥ 1−R−2〈|v|2, ξ(n)〉 = 1

2
. (6.230)

For any fixed u, if |v| ≤ R then gλ(u − v) ≥ gλ(0) exp(−(|u|2 + R2)/λ), and integrating

over this region gives

(gλ 9 ξ
(n))(v) ≥ 1

2
exp

-
−(|u|2 + 2〈|v|2, ξ(n)〉)/λ

.
gλ(0). (6.231)

Together with Hypothesis 6.1iii), there exists a constant aλ such that
@@@@log

d(gλ 9 ξ
(n))

dµ*
0

(u)

@@@@ ≤ cλ

'
1 + |u|2 + 〈|v|2, ξ(n)0 〉

(
. (6.232)
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We now integrate, and recall that the second moment of 〈|v|2, gλ 9 ξ(n)〉 = dλ+ 〈|v|2, ξ(n)〉,
to find

H(gλ 9 ξ
(n)|µ*

0) =

!

Rd

log
d(gλ 9 ξ

(n))

dµ*
0

(v)(gλ 9 ξ
(n))(dv) ≤ aλ

Z
1 + |v|2, ξ(n)

[
(6.233)

potentially for a new choice of aλ.

Step 3: Control of Overall Cost We now combine (6.217, 6.219, 6.220, 6.233) to see

that, for some constant C and aλ,

I(µ(n,λ)
• , w(n,λ)) ≤ I(µ•, w) +

-
J (µ(n,0)

• , w(n,0))− J (µ•, w)
.
+ Cϑ(λ)

+

6
H(gλ 9 µ0|µ*

0)−H(µ0|µ*
0)

7
+ aλ〈1 + |v|2, pnξ(n)〉.

(6.234)

By the definitions of pn, ξ
(n), it follows that pnξ

(n) = ν(n)/cn; by Lemma 6.20, 〈1 +

|v|2, ν(n)〉 → 0, cn → 1, so for fixed λ > 0, the last term converges to 0 as n → ∞. We can

therefore choose a sequence λn → 0 which decays slowly enough that aλn〈1+ |v|2, ν(n)〉 →
0. We now define µ

(n)
• := µ

(n,λn)
• , w(n) := w(n,λn). Every term except the first on the right-

hand side of (6.234) converges to 0, and in particular lim supn I(µ
(n)
• , w(n)) ≤ I(µ•, w).

Step 4: Conclusion. We now check that the diagonal sequence extracted has all the

desired properties. First, thanks to (6.140), the convolution with gλn preserves the bound-

edness, so

sup
(t,v,v!,σ)

K(n)(t, v, v*, σ)B(v − v∗, σ) ≤ sup
(t,v,v!,σ)

K(n,0)(t, v, v*, σ)B(v − v∗, σ) < ∞. (6.235)

To see convergence of the overall sequence, note that W1,1(µ, gλ 9 µ) ≤ C
√
λ for all

measures µ, and since W1,1 is dominated by the total variation distance,

sup
t≤tfin

W1,1(µ
(n)
t , µt) ≤ sup

t≤tfin

W1,1(gλn 9 µ
(n,0)
t , µ

(n,0)
t ) + sup

t≤tfin

XXXµ(n,0)
t − µt

XXX
TV

≤ C
I

λn + sup
t≤tfin

XXX(1 + |v|2)(µ(n,0)
t − µt)

XXX
TV

→ 0.

(6.236)

Similarly, ρ1(gλn 9 w(n,0), w(n,0)) ≤ C
√
λn, so that ρ1(w

(n), w) → 0.

Finally, we prove Lemma 6.22, which allows us to impose an asymptotic lower bound on

K, so we control how fast | logK| grows as v, v* → ∞.

Proof of Lemma 6.22. Let us consider the space MS2(Rd) of signed measures with finite

second moment 〈1 + |v|2, |ξ|〉 < ∞, equipped with the complete distance given by the

weighted total variation norm ‖ξ‖TV+2 := ‖(1 + |v|2)ξ‖TV. We start from a measure-flux

pair (µ•, w) as in the statement, so that the tilting function K is continuous in v, v*, and

B(v − v∗, σ)K is bounded; since B is bounded away from 0, this implies the same for K.
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Step 1: Construction of K We begin with a family of mollifiers. Let us fix a smooth

function η : R → [0,∞), supported on [−1, 1] and such that
&
ηds = 1, and for t ∈

[0, tfin],λ > 0, define

ηλ(s, t) =
η((s− t)/λ)

& tfin
0

η((u− t)/λ)du
(6.237)

so that ηλ is continuous in both arguments, ηλ(·, t) is supported on [0, tfin]∩[t−λ, t+λ], and& tfin
0

ηλ(s, t)ds = 1. For the spherical directions, let hλ(·, ·) be the heat kernel on Sd−1, so

that hλ(·, σ) is a smooth function on Sd−1 which integrates to 1, and hλ(σ
′, σ)dσ′ → δσ(dσ

′)

weakly as λ → 0. With these fixed, we define K(n) by

K(n)(t, v, v*, σ) :=

!

[0,tfin]×Sd−1

K(s, v, v*, σ
′)η1/n(s, t)h1/n(σ

′, σ)dsdσ′ +
1

nB(v − v∗, σ)
.

(6.238)

From the construction, the continuity of K in v, v* implies that each K(n) is continuous

on E. K(n) also inherit the upper bound: there exists M such that

sup
n

sup
t,v,v!,σ

B(v − v∗, σ)K
(n)(t, v, v*, σ) ≤ M ; sup

t,v,v!,σ
B(v − v∗, σ)K(t, v, v*, σ) ≤ M

(6.239)

and by construction infE B(v − v∗, σ)K
(n) ≥ 1

n
> 0. Finally, for all (v, v*) fixed, dtdσ

almost everywhere, K(n)(t, v, v*, σ) → K(t, v, v*, σ).

Step 2: Construction of µ
(n)
• by Picard-Lindelöf We now construct processes µ

(n)
• ,

which at this stage may be signed measures, via the machinery of the Picard-Lindelöf

theorem. For any t ∈ [0, tfin], ξ ∈ MS2, define the signed measures

Φ(t, ξ) :=

!

Rd×Rd×Sd−1

∆(v, v*, σ)B(v − v∗, σ)K(t, v, v*, σ)ξ(dv)ξ(dv*)dσ; (6.240)

Φn(t, ξ) :=

!

Rd×Rd×Sd−1

∆(v, v*, σ)B(v − v∗, σ)K
(n)(t, v, v*, σ)ξ(dv)ξ(dv*)dσ. (6.241)

Using the uniform boundedness of B(v − v∗, σ)K,B(v − v∗, σ)K
(n), it is easy to see that

‖(Φn(t, ξ)− Φn(t, ξ
′)‖TV+2 ≤ C‖(ξ − ξ′)‖TV+2(‖ξ‖TV+2 + ‖ξ′‖TV+2) (6.242)

for some constant C, uniformly in n, and similarly for Φ. It then follows from the Picard-

Lindelöf theorem that, for any ξ
(n)
0 , ξ0, there exist unique local solutions to the integral

equations

ξ
(n)
t = ξ

(n)
0 +

! t

0

Φn(s, ξ
(n)
s )ds; ξt = ξ0 +

! t

0

Φ(s, ξs)ds. (6.243)

Further, observing that ‖Φn(t, ξ)‖TV ≤ C‖ξ‖TV, it follows that ‖ξ(n)t ‖TV grows at most

exponentially in time; using the similar estimate that ‖Φn(t, ξ)‖TV+2 ≤ C‖ξ‖TV+2‖ξ‖TV

by taking ξ′ = 0 above, the same holds for ‖ξ(n)t ‖TV+2, so the solutions are globally defined.
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Let us now consider these equations to construct our approximations. For the initial data,

we recall that the finiteness of the entropy H(µ0|µ*
0) ≤ I(µ•, w) < ∞ implies that µ0 has

a density with respect to µ*
0, and we set

µ
(n)
0 (dv) = cn

6
dµ0

dµ*
0

∧ n

7
µ*
0(dv) (6.244)

for a normalising constant cn → 1 which makes µ
(n)
0 a probability measure. We now take

µ
(n)
• to be the unique solution ξ

(n)
t produced to ∂tξ

(n)
t = Φn(t, ξ

(n)
t ) for this choice of initial

data. It follows by definition of K that the process µt given satisfies ∂tµt = Φ(t, µt), which

must then by the unique solution.

Step 3: Positivity of µ
(n)
• . To see that this gives positive measures, we use an inte-

grating factor introduced by Norris [155] in the context of a similar construction for the

Smoluchowski equation. We define

θ
(n)
t (v) := exp

6! t

0

!

Rd×Sd−1

(K(n)(s, v, v*, σ) +K(n)(s, v*, v, σ))B(v − v∗, σ)µ
(n)
s (dv*)dσds

7

(6.245)

and

Φ+
n (t, ξ) =

!

Rd×Rd×Sd−1

(θ
(n)
t (v′)δv′ + θ

(n)
t (v′*)δv′!)B(v − v∗, σ)K

(n)(t, v, v*, σ)ξ(dv)ξ(dv*)dσ.

(6.246)

Thanks to the boundedness, θ
(n)
t is bounded and bounded away from 0, uniformly on

compact time intervals, and Φ+
n (ξ) ≥ 0 whenever ξ ≥ 0. These integrating factors are

such that ∂t(θ
(n)
t µ

(n)
t ) = Φ+

n (t, θ
(n)
t µ

(n)
t ), while applying the same arguments as above in

the smaller space (P2, ‖ ·‖TV+2) shows that the unique solution to ∂tνt = Φ+
n (t, νt) remains

positive if ν0 ∈ P2 is a positive measure. It follows that θ
(n)
t µ

(n)
t ≥ 0 are positive measures,

and hence so are µ
(n)
t ; recalling again the boundedness, energy conservation implies that

〈|v|2, µ(n)
t 〉 = 〈|v|2, µ(n)

0 〉 < ∞ is constant for each n, and we conclude that µ
(n)
• ∈ D. We

define the corresponding flux w(n) by

w(n)(dt, dv, dv*, dσ) := K(n)(t, v, v*, σ)wµ(n)(dt, dv, dv*, dσ) (6.247)

so that µ
(n)
• , w(n) is a measure-flux pair. Moreover, if (µ′

•, w
′) is any measure-flux pair

with µ′
0 = µ

(n)
0 and with tilting function K(n), then ∂tµ

′
t = Φn(t, µ

′
t), which implies

that µ′
t = µ

(n)
t by the uniqueness in step 2, and w′ = Kwµ′ = Kwµ(n) = w, so each

approximating pair (µ
(n)
• , w(n)) is uniquely characterised by the initial value and tilting

function, as claimed.
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Step 4: Convergence of the Approximations. Let us now show that the measure-

flux pairs constructed above converge as n → ∞. We start from

‖Φn(t, µ
(n)
t )− Φ(t, µt)‖TV+2 ≤ ‖Φn(t, µ

(n)
t )− Φn(t, µt)‖TV+2 + ‖Φn(t, µt)− Φ(t, µt)‖TV+2

≤ C‖µ(n)
t − µt‖TV+2(‖µ(n)

t ‖TV+2 + ‖µt‖TV+2) + ‖Φn(t, µt)− Φ(t, µt)‖TV+2

(6.248)

using (6.242). In the first term, we observe that ‖µ(n)
t ‖TV+2 = 〈1 + |v|2, µ(n)

0 〉 is bounded
uniformly in n, t, thanks to energy conservation and the construction of µ

(n)
0 , and we

absorb this constant factor into C. We can now use Grönwall’s Lemma to obtain

sup
t≤tfin

‖µ(n)
t − µt‖TV+2 ≤ eCtfin

6
‖µ(n)

0 − µ0‖TV+2 +

! tfin

0

‖Φn(t, µt)− Φ(t, µt)‖TV+2dt

7
.

(6.249)

The first term is readily seen to converge to 0 using the construction (6.244) of µ
(n)
0 ,

recalling that µ0 has finite second moment. For the second term, we return to the definition

of Φ,Φn to see that

‖Φn(t, µt)− Φ(t, µt)‖TV+2

≤ 2

!

Rd×Rd×Sd−1

(1 + |v|2 + |v*|2)(K(n) −K)(t, v, v*, σ)B(v − v∗, σ)µt(dv)µt(dv*)dσ

(6.250)

and integrating over t ∈ [0, tfin] produces
! tfin

0

‖Φn(t, µt)− Φ(t, µt)‖TV+2dt

≤ 2

!

E

(1 + |v|2 + |v*|2)(K(n) −K)B(v − v∗, σ)dtµt(dv)µt(dv*)dσ.

(6.251)

We now apply dominated convergence to see that the right-hand side converges to 0, since

B(v − v∗, σ)(K
(n) −K) is bounded by (6.239), and converges to 0 for dtµt(dv)µt(dv*)dσ

almost all (t, v, v*, σ), while µt has constant, finite second moment. Returning to (6.249),

we conclude that ‖µ(n)
t − µt‖TV+2 → 0, which is stronger than the required convergence.

For the flux, we estimate

‖w(n) − w‖TV ≤
!

E

|K(n) −K|B(v − v∗, σ)dtµ
(n)
t (dv)µ

(n)
t (dv*)dσ

+

!

E

KB(v − v∗, σ)dt|µt(dv)µt(dv*)− µ
(n)
t (dv)µ

(n)
t (dv*)|dσ.

(6.252)

The first term converges to 0 as above, and recalling (6.239), the second term is bounded

by
!

E

KB(v − v∗, σ)dt|µt(dv)µt(dv*)− µ
(n)
t (dv)µ

(n)
t (dv*)|dσ ≤ 2C

! tfin

0

‖µ(n)
t − µt‖TVdt → 0

(6.253)

and we have proven that ‖w(n) − w‖TV → 0 as desired.
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Step 5: Convergence of the Cost Function We finally check the convergence of

the rate function I along our subsequence. First, for the cost of the initial data, the

construction of µ
(n)
0 gives

H(µ
(n)
0 |µ*

0) ≤ log cn +H(µ0|µ*
0)

and cn → 1 by construction, so we have lim supn H(µ
(n)
0 |µ*

0) ≤ H(µ0|µ*
0). It therefore

suffices, by the usual lower semicontinuity, to prove the same thing for the dynamic cost

J . We start by writing

J (µ(n)
• , w(n)) =

!

E

τ(K(n))wµ(n)(dt, dv, dv*, dσ)

≤ J (µ•, w) +

!

E

τ(K(n))(wµ(n) − wµ)(dt, dv, dv*, dσ)

+

!

E

(τ(K(n))− τ(K))wµ(dt, dv, dv*, dσ).

(6.254)

In the second term, B(v − v∗, σ)K
(n) ≤ M everywhere, and since B ≥ 1, this implies the

same bound forK(n) and hence the bound τ(K(n)) ≤ 1+τ(M), uniformly in n. The second

term is now at most (1 + τ(M))‖w(n) − w‖TV → 0. Similarly, τ(K(n)) → τ(K) converges

dtµt(dv)µt(dv*)dσ almost everywhere, and hence wµ almost everywhere, with the same

uniform bound as above. Since wµ(E) < ∞, we can apply dominated convergence to see

that the third term → 0, and we are done.
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6.5 Applications of the Positive Result 6.2

We now prove Corollary 6.3 and Proposition 6.4, which are applications of Theorem 6.2.

6.5.1 Entropy as a Quasipotential

We begin with the proof of Corollary 6.3.

Proof of Corollary 6.3. We apply a contraction principle (see [77, 147]) argument to The-

orem 6.2. Since we do not have a ‘true’ large deviation principle, and must further

compensate for the failure of the rate function I to be good, the arguments do not follow

from any statement of the contraction principle we have found in the literature, and we

present the arguments in detail.

Let us fix µ ∈ P2 and ε > 0 and consider

Uε := {(µ•, w) ∈ D ×M(E) : W1,1(µtfin , µ) < ε} (6.255)

so that the closure is

U ε := {(µ•, w) ∈ D ×M(E) : W1,1(µtfin , µ) ≤ ε} (6.256)

Let us take µ*
0 = γ and, for each N , sample initial velocities independently from γ. In

this case, the N -particle system is in equilibrium, so that the distribution of µN
tfin

is that

of a N -particle independent sample from γ. In particular, Sanov’s theorem [51] applies,

so that µN
tfin

satisfies a large deviation principle with rate function H(·|γ). We first prove

the first item (6.18): by Sanov’s Theorem

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ Uε

.
= lim inf

N

1

N
logP

-
W1,1(µ

N
tfin

, µ) < ε
.

≥ − inf{H(ν|γ) : W1,1(ν, µ) < ε}
≥ −H(µ|γ)

(6.257)

while, immediately

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ Uε

.
≤ lim sup

N

1

N
logP

-
(µN

• , w
N) ∈ U ε

.
. (6.258)

If H(µ|γ) = ∞ there is, of course, nothing to prove; otherwise, we choose M > H(µ|γ)
and using Proposition 6.1i), pick a compact set K ⊂ D ×M(E) such that

lim sup
N

N−1P((µN
• , w

N) ∕∈ K) ≤ −M.



338 6.5. APPLICATIONS OF THE POSITIVE RESULT 6.2

From (6.258) and applying Theorem 6.2i),

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U ε

.

≤ max

6
lim sup

N

1

N
logP

-
(µN

• , w
N) ∈ U ε ∩K

.
, lim sup

N

1

N
logP

-
(µN

• , w
N) ∕∈ K

.7

≤ max
-
− inf

)
I(ν•, w) : (ν•, w) ∈ U ε ∩K)

*
,−M

.
.

(6.259)

Comparing against (6.257), we must have that

H(µ|γ) ≥ min
-
inf{I(ν•, w) : (ν•, w) ∈ U ε ∩K},M

.
(6.260)

and since M > H(µ|γ) by construction,

H(µ|γ) ≥ inf{I(ν•, w) : (ν•, w) ∈ U ε ∩K} (6.261)

We claim that the right-hand side converges as ε ↓ 0:

inf
)
I(ν•, w) : (ν•, w) ∈ U ε ∩K)

*
→ inf{I(ν•, w) : νtfin = µ, (ν•, w) ∈ K}. (6.262)

It is immediate that the left-hand side is increasing as ε ↓ 0 and that the right-hand side

is an upper bound; it is therefore sufficient to prove convergence on a subsequence. For

each n, pick (ν
(n)
• , w(n)) ∈ U1/n ∩K with error at most 1/n from the infimum. Since K is

compact, we can pass to a subsequence with (ν
(n)
• , w(n)) → (ν•, w); the limit has νtfin = µ

and (ν•, w) ∈ K. By lower-semicontinuity from Proposition 6.1ii), we have

I(ν•, w) ≤ lim inf
n

I(ν(n)
• , w(n)) ≤ lim inf

n

6
inf

)
I(ν•, w) : (ν•, w) ∈ U1/n ∩K)

*
+

1

n

7

(6.263)

so that

inf{I(ν•, w) : νtfin = µ, (ν•, w) ∈ K} ≤ lim inf
n

-
inf

)
I(ν•, w) : (ν•, w) ∈ U1/n ∩K)

*.

(6.264)

which proves the claim (6.262). Returning to (6.261), we take ε → 0 to find

H(µ|γ) ≥ inf {I(µ•, w) : νtfin = µ, (ν•, w) ∈ K}
≥ inf {I(µ•, w) : νtfin = µ}

(6.265)

and observe that the right-hand side is exactly the claimed bound in (6.18). For the

second item (6.19), we apply the lower bound of Sanov:

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U ε

.
= lim sup

N

1

N
logP

-
W1,1(µ

N
tfin

, µ) ≤ ε
.

≤ − inf{H(ν|γ) : W1,1(ν, µ) ≤ ε}.
(6.266)
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On the other hand,

lim sup
N

1

N
logP

-
(µN

• , w
N) ∈ U ε

.
≥ lim inf

N

1

N
logP

-
(µN

• , w
N) ∈ Uε

.

≥ − inf {I(ν•, w) : (ν•, w) ∈ Uε ∩R}
≥ − inf {I(ν•, w) : νtfin = µ, (ν•, w) ∈ R} .

(6.267)

We conclude that

inf{H(ν|γ) : W1,1(ν, µ) ≤ ε} ≤ inf {I(ν•, w) : νtfin = µ, (ν•, w) ∈ R} . (6.268)

As ε → 0, the left-hand side converges to H(µ|γ) by the lower semi-continuity of entropy

(cf. Lemma 6.13), and the right-hand side is exactly the right-hand side of (6.19), so we

are done.

6.5.2 Time Reversal

We now give the proof of Proposition 6.4, based on the time-reversibility of the Kac

process. Throughout, we work with µ*
0 = γ, and recall the definitions of the time reversals

from (6.20, 6.21), given by

Tµ• :=
-
µ(tfin−t)−

.
0≤t≤tfin

and by specifying, for all bounded, measurable g : E → R,

〈g,Tw〉 =
!

E

g(tfin − t, v′, v′∗, σ)w(dt, dv, dv∗, dσ)

where v′, v′∗ are understood as functions of (v, v∗, σ) through the representation (6.1).

Proof of Proposition 6.4. We deal with the assertions one by one.

i). For the first assertion, we start from the well-known fact that the law of TµN
•

on D is the same as that of µ•; for instance, this follows from the fact that the

(labelled) generator GL (1.12) is self-adjoint in the space L2((Rd)N , γ⊗N), which

implies reversibility in equilibrium. To deduce the same for the pair (TµN
• ,TwN)

we observe that, conditional on µN
• , w

N places a point of mass N−1, selecting one of

the four possible parameter choices for the incoming velocities and deflection angle

(v, v∗, σ) uniformly at random. In the time reversal, TwN places the same mass

at the corresponding outgoing velocities, which are the incoming velocities for the

corresponding change in the time-reversal TµN
• , and again selecting one possibility

at random. This is exactly the same as the law of wN conditional on µN
• , so we are

done.
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ii). For the second point, we apply Theorem 6.2 together with the previous point. Let

us note first that T is self-inverse, preserves the topology of D ×M(E), and takes

R to itself. Let us assume that (µ•, w) ∈ R, and that I(µ•, w) < ∞. We apply

lower-semicontinuity, and recall that the topology is induced by a metric, to find an

open neighbourhood U such that I ≥ I(µ•, w)− ε on the closure U . Now
1

N
logP

-
(µN

• , w
N) ∈ U

.
≤ 1

N
logP

-
(µN

• , w
N) ∈ U

.
(6.269)

while using reversibility

1

N
logP

-
(µN

• , w) ∈ U
.
=

1

N
logP

-
(TµN

• ,TwN) ∈ U
.

=
1

N
logP

-
(µN

• , w
N) ∈ T−1U

.
.

(6.270)

The preimage T−1U is an open neighbourhood of T−1(µ•, w) = (Tµ•,Tw), and so

the limit inferior of the left-hand side of (6.269) is at least −I(Tµ•,Tw), using

Theorem 6.2ii). On the other hand, the limit superior of the right-hand side is at

most −I(µ•, w) + ε, by the choice of U , and we conclude that

I(Tµ•, T w) ≥ I(µ•, w)− ε

and since ε > 0 was arbitrary,

I(Tµ•, T w) ≥ I(µ•, w). (6.271)

A similar argument holds if I(µ•, w) = ∞, now letting M > 0 be arbitrarily large

and choosing U so that I ≥ M on U , so that (6.271) holds for any (µ•, w) ∈ R.

Finally, T takes R into itself and is self-inverse, so we conclude the reverse inequality

by applying the same thing to (Tµ•,Tw) ∈ R.

iii). The third item now identifies the tilting function K when we reverse a measure-flux

pair such that µt admits a strictly positive density ft. First, it is straightforward to

check that if (µ•, w) satisfies the continuity equation, so does (Tµ•,Tw), for instance,
using the variational formulation in Lemma 6.10. We let K be the tilting function

for (µ•, w), write TK for the putative tilting function for the reversed pair given in

the statement. Fixing g : E → R a bounded and measureable function, we write

〈g,Tw〉 =
!

E

g(tfin − t, v′, v′∗, σ)K(t, v, v∗, σ)B(v − v∗, σ)ft(v)ft(v∗)dtdvdv∗dσ

(6.272)

using the definitions of Tw,K and ft. We next make the change of variables

(t, v, v∗, σ) → (tfin − t, v′, v′∗, σ), which is self-inverse and has unit Jacobian (as in

Lemma 6.19). Therefore, the previous expression can be rewritten

〈g,Tw〉 =
!

E

g(t, v, v∗, σ)K(tfin − t, v v∗ σ)B(v′ − v′∗, σ)ftfin−t(v
′)ftfin−t(v

′
∗)dtdvdv∗dσ

=

!

E

g(t, v, v∗, σ)K(tfin − t, v′, v′∗, σ)B(v − v∗, σ)ftfin−t(v
′)ftfin−t(v

′
∗)dtdvdv∗dσ.

(6.273)
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Since ft > 0 everywhere, we insert

ftfin−t(v
′)ftfin−t(v

′
∗) =

6
ftfin−t(v

′)ftfin−t(v
′
∗)

f(tfin−t)−(v)f(tfin−t)−(v∗)

7
f(tfin−t)−(v)f(tfin−t)−(v∗) (6.274)

and recall the definition

TK :=

6
ftfin−t(v

′)ftfin−t(v
′
∗)

f(tfin−t)−(v)f(tfin−t)−(v∗)

7
K(tfin − t, v′, v′∗, σ) (6.275)

to write

〈g,Tw〉 =
!

E

g(t, v, v∗, σ)(TK)(t, v, v∗, σ)B(v−v∗, σ)f(tfin−t)−(v)dv f(tfin−t)−(v∗)dv∗dtdσ.

(6.276)

Since f(tfin−t)− is the density of (Tµ•)t, the last factors are exactly the definition of

wTµ, and since g is arbitrary, we conclude that

Tw = (TK)wTµ (6.277)

for the claimed function TK, and the claim is proven.

iv). For the third point additionally assume that (µ•, wµ) ∈ R is an energy-conserving

solution to (BE), together with its associated flux. It is immediate that µt = µt− for

all t and K = 1, so we can omit the − in the time index to find the tilting function

is

TK(t, v, v′, σ) =
ftfin−t(v

′)ftfin−t(v
′
∗)

ftfin−t(v)ftfin−t(v∗)
. (6.278)

Let us now compute the dynamic cost. We consider first
!

E

(TK) log(TK)wTµ(dt, dv, dv∗, dσ)

=

!

E

ft(v
′)ft(v

′
∗) log

6
ft(v

′)ft(v
′
∗)

ft(v)ft(v∗)

7
B(v − v∗, σ)dtdvdv∗dσ

(6.279)

by making the change of variables t → tfin−t and cancelling the factors of ft(v)ft(v∗).

Using again the change of variables between (v, v∗) → (v′, v′∗) for each fixed σ and

that B(v′ − v′∗, σ) = B(v − v∗, σ) this is exactly

!

E

ft(v)ft(v∗) log

6
ft(v)ft(v∗)

ft(v′)ft(v′∗)

7
B(v − v∗, σ)dtdvdv∗dσ =

! tfin

0

D(ft)dt. (6.280)

For the other terms, the same argument shows that
!

E

(TK)wTµ(dt, dv, dv∗, dσ) =

!

E

ft(v
′)ft(v

′
∗)B(v − v∗, σ)dtdvdv∗dσ

=

!

E

ft(v)ft(v∗)B(v − v∗, σ)dtdvdv∗dσ

=

!

E

wTµ(dt, dv, dv∗, dσ)

(6.281)
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where we used again, in the third line, the change of variables (v, v∗) → (v′, v′∗) and

that B(v′ − v′∗, σ) = B(v − v∗, σ). The contributions from the second and third

terms in τ(x) = x log x− x+ 1 therefore cancel, and we are left with

J (Tµ•,Twµ) =

!

E

ft(v)ft(v∗) log

6
ft(v)ft(v∗)

ft(v′)ft(v′∗)

7
B(v − v∗, σ)dtdvdv∗dσ

=

! tfin

0

D(ft)dt

(6.282)

as claimed. Finally, using item ii) and the hypothesis that (µ•, wµ) ∈ R, the previous

item gives I(µ•, wµ) = I(Tµ•,Twµ), which we now express

H(µ0|γ) = H(µtfin |γ) +
! tfin

0

D(ft)dt (6.283)

as desired.

Let us mention that we will use this same time-reversal principle to derive Corollary 6.6

from Theorem 6.5 in Section 6.7.
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6.6 Proof of Theorem 6.5

We now turn to the proof of the main counterexample Theorem 6.5. Let us fix, throughout,

Θ and P as in the theorem. We first present the proofs in detail in the case of the

regularised hard sphere potential B = 1 + |v|: we will first carefully construct a change

of measures QN using the general form in Proposition 6.15. We then prove a law of

large numbers for the modified measures in Lemmas 6.24, showing that any subsequential

limit in distribution under the new measures almost surely lands in AΘ; the proof is

further broken down into Lemmas 6.25 - 6.27, and we finally show how this implies the

stated conclusion. We will discuss at the end the necessary modifications for the Maxwell

Molecule case B = 1.

6.6.1 Construction of a change of measure QN .

Throughout, let us fix (Ω,F, (Ft)t≥0,P) on which are defined regularised hard sphere Kac

processes µN
• and their empirical fluxes wN . We now use the Girsanov formula recalled in

Proposition 6.15, and construct the tilting ϕ of the initial data and dynamic modification

of K of the dynamics separately.

Step 1. Construction of Initial Data. Let us consider the random variablesXM ,M ≥
0, which describe the initial localisation of the energy in the initial data:

XM =
Z
|v|21I|v|≥M , µN

0

[
. (6.284)

Since the particles are sampled independently from µ*
0, we can write XM as the mean

of N independent variables, which each have the distribution YM = |V |21I|V |≥M ;V ∼ µ*
0.

We write ψM for the cumulant generating function for YM , and ψ*
M for the associated

Legendre transform:

ψM(λ) = logE
G
eλYM

H
; ψ*

M(a) = sup {aλ− ψM(λ)} .

By Hypothesis 6.1ii), it follows that ψM(λ) = ∞ for all λ ≥ z2 and all M , which implies

that ψ*
M(a) ≤ az2, uniformly in M .

For M > 0 and λ ∈ [0, z2) to be chosen later, we will take ϕM,λ to be the function

ϕM,λ(v) = λ|v|21I|v|≥M − ψM(λ) (6.285)

so that, under any change of measure of the form (6.106) for this choice of ϕ, each initial

velocity V i
0 is distributed independently with law

µ*
0,λ,M(dv) = exp

-
λ|v|21I|v|≥M − ψM(λ)

.
µ*
0(dv). (6.286)
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Step 2: Choice of λ We now choose λ as a function of M . For fixed M , it is standard

to check that

EM(λ, µ*
0) =

!

Rd

|v|2 exp
-
λ|v|21I|v|≥M − ψM(λ)

.
µ*
0(dv) = 〈|v|2, µ*

0,λ,M〉

is continuous on [0, z2), EM(0, µ*
0) = 1, and observe that EM(λ, µ*

0) diverges to infinity as

λ ↑ z2 thanks to Hypothesis 6.1ii). In particular, we can choose λ = λ(M) ∈ (0, z2) such

that

EM(λM , µ*
0) = 〈|v|2, µ*

0,λM ,M〉 = Θ(tfin) ∈ (1,∞).

With this choice of λ, we write ϕM = ϕM,λM
and µ*

0,M for µ*
0,λM ,M .

Step 3: Choice of K. We next choose the dynamic tilting function K = KM,r,N ,

depending on the same parameter M and an additional parameter r, to be chosen later.

Given r ∈ N, let 0 = t
(r)
0 ≤ t

(r)
1 ≤ ... ≤ t

(r)
r = tfin be the partition given by

t
(r)
i = inf

M
t ∈ [0, tfin] : Θ(t) ≥

6
1− i

r

7
Θ(0) +

i

r
Θ(tfin)

N
∈ P. (6.287)

By Hypothesis 6.1iii), µ*
0,M has a density, and in particular the function r /→ 〈|v|21I|v|≤r, µ

*
0,M〉

is continuous. We can therefore choose M0 ≤ M1 ≤ M2 ≤ Mr−1 ≤ Mr = ∞ such that,

for all i = 0, 1, ..r − 1, Z
|v|21I|v|≤Mi

, µ*
0,M

[
= Θ(ti+) (6.288)

and observe that M0 > M . We now construct a tilting function K = KM,r,N by setting,

for t
(r)
i−1 ≤ t < t

(r)
i ,

KM,r,N(µN
0 , t, v, v*, σ) =

#
$

%
0 if either v, v* ∈ Supp(µN

0 ) ∩ {|v| ≥ Mi−1} = St;

N1INt≥1/Nt else

(6.289)

where Nt = Nt(M, r) is the number of particles not in the special set, which is constant

on [t
(r)
i−1, t

(r)
i ):

Nt = N −N〈1I|v|≥Mi−1
, µN

0 〉 = N〈1I|v|<Mi
, µN

0 〉 = N −#St. (6.290)

Throughout, we will suppress the dependence of KM,r,N on the initial data µN
0 . In this

way, particles with initial velocity |v| ∈ [Mi−1,Mi) are ‘frozen’ until time t
(r)
i . Moreover,

since the special set St is finite, almost surely, no particles ever enter St, and so under

the new measures, all particles whose initial velocity is ≤ Mi−1 interact as a Kac process

on Nt particles on [t
(r)
i−1, t

(r)
i ). Let us also remark that KM,r,N satisfies the hypotheses of

Proposition 6.15, since Nt depends only on µN
0 , with the uniform bound KM,r,N ≤ N .

With this choice of K and ϕ = ϕM as in steps 1-2, we now take QN
M,r to be the change of

measure given by Proposition 6.15.
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Step 4: Choice of M, r. By the law of large numbers, as N → ∞ with M fixed,

QN
M,r

-
W1,1(µ

N
0 , µ

*
0,M) > δ

.
→ 0 (6.291)

for any δ > 0 and, with M, r fixed, for all δ > 0,

QN
M,r

'
For all i = 0, ..., r,

@@@〈|v|21I[|v| ≤ Mi], µ
N
0 〉 −Θ(t

(r)
i +)

@@@ < δ
(
→ 1; (6.292)

QN
M,r

6@@@@
N0(M, r)

N
− 〈1I|v|≤M0 , µ

*
0,M〉

@@@@ < δ

7
→ 1. (6.293)

Now, we compare the equations

eψM (λM ) =

!

Rd

eλM |v|21Iv|≥Mµ*
0(dv); (6.294)

Θ(tfin)e
ψM (λM ) =

!

Rd

eλM |v|21I|v|≥M |v|2µ*
0(dv) (6.295)

to obtain

eψM (λM ) =

!

|v|<M

µ*
0(dv) +

!

|v|≥M

eλM |v|2µ*
0(dv)

≤ 1 +
1

M2

!

Rd

|v|2eλM |v|21I[|v|≥M ]µ*
0(dv)

(6.296)

which implies that

eψM (λM ) ≤ 1 +
Θ(tfin)

M2
eψM (λM ) (6.297)

and hence ψM(λM) → 0 as M → ∞. This implies the convergence of µ*
0,M to µ*

0: for any

f with |f | ≤ 1, we estimate

@@〈f, µ*
0 − µ*

0,M〉
@@ ≤

!

|v|<M

|f(v)|
@@1− e−ψM (λM )

@@µ*
0(dv) +

〈|v|2|f |, µ*
0 + µ*

0,M〉
M2

≤
@@1− e−ψM (λM )

@@+ Θ(tfin) + 1

M2
→ 0

and, since f was arbitrary, the right-hand side is a bound for ‖µ*
0−µ*

0,M‖TV ≥ W1,1(µ
*
0, µ

*
0,M).

Similarly, we observe that

〈1I[|v| ≤ M0], µ
*
0,M〉 ≥ 1−

〈|v|2, µ*
0,M〉

M2
0

≥ 1− Θ(tfin)

M2
(6.298)

using that M0 ≥ M . Combining everything, and using a diagonal argument, we can

construct a sequence MN → ∞, rN → ∞ slowly enough that, for all δ > 0,

QN
MN ,rN

6
max
i≤rN

@@@〈|v|21I[|v| ≤ MN,i], µ
N
0 〉 −Θ(t

(r)
i +)

@@@ < δ

7
→ 1 (6.299)

QN
MN ,rN

6
inf

t∈[0,tfin]

Nt(MN , rN)

N
< 1− δ

7
→ 0 (6.300)

QN
MN ,rN

(W1,1(µ
N
0 , µ

*
0,MN

) > δ) → 0 (6.301)
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where MN,i are the values constructed in Step 3 associated to MN . We now set 5QN :=

QN
MN ,rN

and define QN by conditioning

QN(A) := c−1
N

5QN

6
A ∩

M
〈|v|2, µN

0 〉 ≤ 2Θ(tfin),
N0

N
≥ 1

2

N7

where

cN = 5QN

6M
〈|v|2, µN

0 〉 ≤ 2Θ(tfin),
N0

N
≥ 1

2

N7
→ 1

are the appropriate normalising constants. We write throughout KN for KN,MN ,rN , and

we remark that, since QN is the conditioning of 5QN to events of high 5QN -probability, the

same convergences (6.299-6.301) hold with QN in place of 5QN = QN
MN ,rN

. By Proposition

6.15, under the measuresQN , the particles are initially sampled independently from µ*
0,MN

,

conditional on N0

N
≥ 1

2
and 〈|v|2, µN

0 〉 ≤ 2Θ(tfin), and the dynamics are then governed by

the inhomogeneous generator (6.107). We begin with the following preparatory lemma.

Lemma 6.23 (Estimate on the Radon-Nidoykm Derivative). For the changes of measure

QN ≪ P constructed above, and for all ε > 0,

QN

6
1

N
log

dQN

dP
> z2Θ(tfin) + ε

7
→ 0. (6.302)

Proof. By definition, the change of measure is

1

N
log

dQN

dP
≤ 〈ϕMN

, µN
0 〉+ 〈logKN , wN〉 −

!

E

(KN − 1)(t, v, v*, σ)wµN (dt, dv, dv*, dσ)

− log 5QN

6
〈|v|2, µN

0 〉 ≤ 2Θ(tfin),
N0

N
≥ 1

2

7
.

(6.303)

The final term immediately converges to 0, thanks to (6.299). For the first term, recall

that φMN
= φMN ,λMN

≤ λMN
|v|2, and that λMN

≤ z2 is bounded, uniformly in N , and

(6.299) gives

QN
-
〈ϕMN

, µN
0 〉 > z2Θ(tfin) + ε/3

.
≤ QN

-
〈|v|2, µN

0 〉 > Θ(tfin) + ε/3z2
.
→ 0. (6.304)

In the second term, observe that logKN,MN ,rN ≤ logN/N0(MN , rN) on the support of

wN , QN -almost surely, since by definition of wN , no points in the support of wN have

either v, v* belonging to the special set St. Thanks the conditioning in the definition of

QN , we have, QN -almost surely,

supKN ≤ 2, 〈|v|2, µN
0 〉 ≤ 2Θ(tfin)

and the same arguments as in Section 6.2 show that we can bound NwN(Et) by a QN -

Poisson process of rate NC, for some constant C. All together, there exists a new constant

C, depending only on Θ(tfin), on such that

QN
-
wN(E) > C

.
→ 0. (6.305)
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Using (6.301) again,

QN (logN/N0(MN , rN) > ε/3C) → 0 (6.306)

and, together with (6.305),

QN
-
〈logKN , wN〉 > ε/3

.
→ 0. (6.307)

For the final term, we will find an upper bound for
&
E
|KN,MN ,rN − 1|dwµN . We split

the integral into cases where neither v, v* ∈ St and its complement. In the first case

(v, v*, σ) ∈ Sc
t × Sc

t × Sd−1, we have

|1−KN(t, v, v*, σ)| ≤
N

Nt(MN , rN)
− 1.

On the other hand, observing that St ⊂ {|v| ≥ MN}, the contributions from v ∕∈ St and

v* ∕∈ St can be controlled by straightforward Markov inequalities: for some constant C,

!

Rd×Rd

(1 + |v|+ |v*|)(1Iv∈St + 1Iv!∈St)µ
N
t (dv)µ

N
t (dv*) ≤ CM−1

N 〈1 + |v|2, µN
0 〉2. (6.308)

Together we obtain

!

Rd×Rd×Sd−1

@@1−KN(t, v, v*, σ)
@@B(v − v∗, σ)µ

N
t (dv)µ

N
t (dv*)dσ

≤ C

66
N

Nt(MN , rN)
− 1

7
+

1

MN

7
〈1 + |v|2, µN

t 〉2.

(6.309)

We recall that MN → ∞, use (6.300) to bound the first factor, and return to the definition

of QN to bound the moment factor by (1 + Θ(tfin))
2, QN -almost surely. It follows that

that

QN

6!

E

|1−KN(t, v, v*, σ)|wµN (dt, dv, dv*, dσ) > ε/3

7
→ 0. (6.310)

Gathering (6.304, 6.307, 6.310) and returning to (6.303), the lemma is proven.

6.6.2 Law of Large Numbers

We next prove the following law of large numbers under the new measures for the sets

AΘ given in the theorem.

Lemma 6.24. Let QN be the probability measures constructed above, and suppose L ⊂
N is an infinite subsequence such that, the laws QN ◦ (µN

• , w
N)−1 converges weakly on

D×M(E), and let (µ•, w) be a random variable, defined with respect to a new probability

space (Ω,F,Q) and whose distribution is the limit. Then, for AΘ as in Theorem 6.5 for

some α > 0 to be chosen,

Q ((µ•, w) ∈ AΘ) = 1. (6.311)
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It will be convenient, throughout, to realise all (µN
• , w

N), N ∈ L and (µ•, w) on a common

probability space with probability measure Q, such that the law of (µN
• , w

N) under Q is

the same as under QN , and such that µN
• → µ• and wN → w almost surely, and such that

(6.299 - 6.301) hold with almost sure convergence as N → ∞ through L:

Q
6
max
i≤rN

@@@〈|v|21I[|v| ≤ MN,i], µ
N
0 〉 −Θ(t

(r)
i +)

@@@ → 0

7
= 1; (6.312)

Q
6

inf
t∈[0,tfin]

Nt(MN , rN)

N
→ 1

7
= 1 (6.313)

Q(W1,1(µ
N
0 , µ

*
0,MN

) → 0) = 1. (6.314)

We will write EQ for the expectation under this probability measure. For clarity, we will

subdivide the argument into three smaller steps. We also observe that each µN
• has jumps

of size at most 4/N , and so the limit µ• is Q-almost surely continuous and the Skorokhod

convergence can be upgraded to uniform convergence by Proposition 6.29c),

Q
6
sup
t≤tfin

W1,1(µ
N
t , µt) → 0 as N → ∞ through L

7
= 1. (6.315)

We also note immediately from (6.301) that

W1,1(µ
N
0 , µ

*
0) ≤ W1,1(µ

N
0 , µ

*
0,MN

) +W1,1(µ
*
0,MN

, µ*
0) → 0

Q-almost surely, so that µ0 = µ*
0 almost surely. We now prove the remaining properties

defining AΘ one by one. First, we prove that the limit process (µ•, w) is almost surely a

measure-flux pair.

Lemma 6.25 (Limiting Path as a Measure-Flux Pair). Continue in the notation following

Lemma 6.24. Then

Q ((µ•, w) is a measure-flux pair, w = wµ) = 1. (6.316)

In particular

Q (µ• is a solution to (BE) with µ0 = µ*
0) = 1. (6.317)

Proof. This lemma is similar to Step 1 in the proof of the lower bound in Section 6.4.

As in the cited proof, the continuity equation (CE) holds for the finite paths (µN
• , w

N)

Q-almost surely, and since the set of pairs (µ•, w) satisfying the continuity equation is

closed by Lemma 6.13, it follows that (µ•, w) solves (CE) almost surely.

We next show that w = wµ, almost surely. Let us fix g : E → R continuous and compactly

supported, and start by observing that the process

MN,g
t =

!

Et

g(s, v, v*, σ)(w
N −KNwµN )(ds, dv, dv*, dσ) (6.318)
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is a Q-martingale, with previsible quadratic variation at most

[MN,g]t = N−1

!

Et

g2KN(s, v, v*, σ)B(v − v∗, σ)µ
N
s (dv)µ

N
s (dv*)dsdσ

≤ N0(MN , rN)
−1tfin‖g‖2∞(3 + 2〈|v|2, µN

0 〉)
≤ N0(MN , rN)

−1tfin‖g‖2∞(3 + 4Θ(tfin)).

(6.319)

We now observe that MN,g
0 = 0 and [MN,g]tfin → 0 Q-almost surely, which implies by

standard martingale estimates that

sup
t≤tfin

MN,g
t → 0 in Q-probability. (6.320)

We now investigate the difference between these martingales and the equivalent processes

with K ≡ 1:

MN,g
tfin

−
!

E

g(s, v, v*, σ)(w
N − wµN )(ds, dv, dv*, dσ)

=

!

E

g(s, v, v*, σ)(1−KN)wµN (ds, dv, dv*, dσ)

(6.321)

We already controlled the integral of 1−KN at (6.309) in the previous proof; integrating

over time,
@@@@
!

E

g(wN − wµN )(ds, dv, dv*, dσ)−MN,g
t

@@@@

≤ Cgtfin

66
N

N0(MN , rN)
− 1

7
+

1

MN

7
〈1 + |v|2, µN

0 〉2

≤ Cgtfin

66
N

N0(MN , rN)
− 1

7
+

1

MN

7
(1 + 2Θ(tfin))

2

(6.322)

and, by the choice of rN ,MN , the right-hand side converges to 0, almost surely. Finally,

using Lemma 6.12, Q-almost surely,
@@@@
!

E

g(t, v, v*, σ)(wµN − wµ)(ds, dv, dv*, dσ)

@@@@ → 0. (6.323)

We now gather (6.320, 6.322, 6.323) to conclude that, Q-almost surely, 〈g, w − wµ〉 = 0.

This extends to all g ∈ Cc(E) simultaneously by taking a union bound over a countable

dense subset of Cc(E) to conclude that Q(w = wµ) = 1, and the lemma is proven.

Next, we prove that the second moment 〈|v|2, µt〉 coincides everywhere with the function

Θ(t) given.

Lemma 6.26 (Second Moment of Limiting Path). We continue in the notation following

Lemma 6.24. Then

Q
-
〈|v|2, µt〉 = Θ(t) for all t ≤ tfin

.
= 1. (6.324)
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Proof. We start by decomposing

µN
t = ξNt +

Nt

N
νN
t (6.325)

where ξNt is the empirical measure of frozen particles ξNt = 1Stµ
N
0 , which is constant on

each time interval [t
(rN )
i−1 , t

(rN )
i ), and on each such time interval, νN

t is a Kac process on Nt

particles. Thanks to the conditioning in the construction of QN , we have the Q-almost

sure bound

〈|v|2, νN

t
(r)
i−1

〉 ≤ N

N
t
(r)
i−1

〈|v|21I|v|≤MN,i−1
, µN

0 〉 ≤ 4Θ(tfin). (6.326)

We now fix an interval I ⊂ [0, tfin] \ P and ℓ > 0 such that

inf
t∈I,s∈P,s<t

(t− s) ≥ ℓ > 0. (6.327)

For each N , the points t
(rN )
i all belong to P , and so do not lie in I; we may therefore apply

the moment creation property in Proposition 2.10i) to obtain, for all N large enough,

EQ

2
sup
t∈I

〈|v|4, νN
t 〉

3
≤ Cℓ−2 EQ

?
〈|v|2, νN

t
(rN )
i

〉
A
= C ℓ−2 (6.328)

for some C depending only on Θ(tfin), uniformly in N . We next observe that ‖ξNt ‖TV ≤
1−N0/N → 0, uniformly in time Q-almost surely, and so it follows from (6.315) that

Q
6
sup
t≤tfin

W1,1(ν
N
t , µt) → 0 as N → ∞ through L

7
= 1. (6.329)

Using Fatou’s lemma and the lower semicontinuity of moments, we may now send N → ∞
through L in (6.328) to obtain, for I as before, the same estimate on supI〈|v|4, µt〉, and
together

EQ

2
sup
t∈I

-
〈|v|4, νN

t 〉+ 〈|v|4, µt〉
.3

≤ Cℓ−2 (6.330)

so we can find a large R, depending on ℓ, such that, for all N ,

Q
6
sup
t∈I

〈|v|21I|v|≥R, ν
N
t + µt〉 ≥ ε/3

7
< ε′/3. (6.331)

Now, let fR be a continuous, compactly supported function with 0 ≤ fR ≤ |v|2 and

fR = |v|2 when |v| ≤ R. By the uniform convergence (6.315), for N ∈ L large enough,

Q
6
sup
t∈I

|〈fR, νN
t − µt〉| ≥ ε/4

7
< ε′/3 (6.332)

and thanks to (6.331),

Q
6
sup
t∈I

〈|v|2 − fR, ν
N
t + µt〉 ≥ ε/3

7
< ε′/3 (6.333)
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and together, for N ∈ L large enough,

Q
6
sup
t∈I

@@〈|v|2, νN
t 〉 − 〈|v|2, µt〉

@@ > 2ε/3

7
≤ 2ε′/3. (6.334)

For each N , the interval I lies in some [t
(r)
i−1, t

(r)
i ), r = rN , i = iN , as the endpoints of all

such intervals always belong to P , and in particular, νN
t is a conservative Kac process on

this interval, with

〈|v|2, νN

t
(r)
i−1

〉 = N

N
t
(r)
i−1

〈|v|21I|v|≤MN,i(N)−1
, µN

0 〉 (6.335)

Thanks to (6.300), the first factor converges to 1, Q-almost surely, and using (6.301), for

all ε > 0, we obtain

Q
6
sup
t∈I

@@@〈|v|2, νN
t 〉 −Θ(t

(rN )
i(N)−1+)

@@@ > ε

7
→ 0. (6.336)

Since I is an interval disjoint from P , Θ is constant on I, and by the construction of the

points t
(r)
i , we have the nonrandom bound

sup
t∈I

@@@Θ(t)−Θ(t
(rN )
i(N)−1+)

@@@ ≤
1

rN
→ 0 (6.337)

and we conclude that, for N ∈ L large enough,

Q
6
sup
t∈I

@@〈|v|2, νN
t 〉 −Θ(t)

@@ ≥ ε/3

7
< ε′/3. (6.338)

Combining (6.334, 6.338), we have shown that, for all ε, ε′ > 0,

Q
6
sup
t∈I

@@〈|v|2, µt〉 −Θ(t)
@@ > ε

7
≤ ε′ (6.339)

so that 〈|v|2, µt〉 = Θ(t) for all t ∈ I, Q-almost surely. We can now cover [0, tfin] \ P by

a countable collection of intervals of this form, so that this conclusion holds for all t ∕∈ P

almost surely.

We now show that, on a single almost sure event, this also holds for t ∈ P . As remarked

in Lemma 6.25, there is a Q-almost sure event on which µ• is a solution to (BE) with

µ0 = µ*
0, and in particular µ• is continuous and the energy 〈|v|2, µt〉 is nondecreasing by

Proposition 2.14. On this event, the equality 〈|v|2, µ0〉 = 〈|v|2, µ*
0〉 = 1 = Θ(0) certainly

holds at time t = 0, and on the intersection of this event and the event where the second

moment equality holds for t ∕∈ P , then any t ∈ P \ {0} can be approached from below by

s ∈ [0, tfin] \ P . By left-continuity of Θ,

Θ(t) = lim sup
s↑t,s ∕∈P

Θ(s) = lim sup
s↑t,s ∕∈P

〈|v|2, µs〉 ≤ 〈|v|2, µt〉. (6.340)

For the other inequality, on the same almost sure event as above, fix t ∈ P and ε > 0. By

monotone convergence, we can find a continuous, compactly supported function 0 ≤ f ≤
|v|2 such that 〈|v|2, µt〉 < 〈f, µt〉+ ε. Using continuity in W1,1,

〈|v|2, µt〉 < 〈f, µt〉+ ε = lim sup
s↑t,s ∕∈P

〈f, µs〉+ ε ≤ lim sup
s↑t

Θ(s) + ε = Θ(t) + ε (6.341)
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and, since ε > 0 was arbitrary, we have equality at t. We emphasise again that the

almost sure event used here does not depend on t ∈ P , and so the equality holds for all t

simultaneously with Q-probability 1, as desired.

Finally we check the fourth moment conditions.

Lemma 6.27 (Fourth Moment of Limiting Path). Continue in the notation above. For

A(t) as in (6.22), for some α > 0 to be chosen, we have

Q
-
〈|v|4, µt〉 ≤ A(t) for all t ∈ [0, tfin]

.
= 1. (6.342)

Proof. Since A = ∞ on P , there is nothing to prove for such times. Let us fix I = [u, v] ⊂
(0, tfin] disjoint from P , and let u′ = max(s : s ∈ P, s < u), which always exists, belongs to

P and is strictly less than u, because P is closed and 0 ∈ P, 0 < u. For any Ja = [a, v] ⊃ I

with u′ < a ≤ u, we apply Lemma 6.25 to see that,Q-almost surely, (µt)t∈Ja is a solution

to (BE), with constant energy given by 〈|v|2, µt〉 = Θ(t) = Θ(a) ≤ Θ(tfin), because Ja is

disjoint from P . Proposition 2.6 now applies pathwise, and for some absolute constant

C,

Q
-
〈|v|4, µt〉 ≤ CΘ(tfin)(t− a)−2 for all t ∈ I

.
= 1. (6.343)

We now take a ↓ u′ to obtain

Q
-
〈|v|4, µt〉 ≤ CΘ(tfin)(t− u′)−2 for all t ∈ I

.
= 1. (6.344)

Choosing α = CΘ(tfin), the bound is exactly A(t), because t−u′ = min(t−s : s ∈ P, s < t)

for all t ∈ I. We now cover [0, tfin] \ P with countably many such I, and the claim is

proven.

Together, Lemmas 6.25, 6.26, 6.27 prove the conclusions of Lemma 6.24

6.6.3 Proof of Theorem

We now give the proof in the case of the regularised hard spheres kernel.

Proof of Theorem 6.5a. We first check that AΘ ⊂ D ×M(E) are compact. This follows

almost exactly the same argument as Lemma 6.24 above: fix (µ
(n)
• , w(n)) ∈ AΘ. Since

the spaces {µ ∈ P2 : 〈|v|2, µ〉 ≤ Θ(tfin)} are compact for W , and using the Boltzmann

equation (BE) and the second moment bound to check equicontinuity, we can pass to a

subsequence converging to a limit (µ•, w). First, since continuous functions are closed

for Skorokhod convergence, µ• must also be continuous, so one can upgrade to uniform

convergence supt W1,1(µ
(n)
t , µt) → 0 by Proposition 6.29c). Immediately, µ0 = µ*

0, and

the lower semicontinuity of moments gives 〈|v|4, µt〉 ≤ A(t), supt〈|v|2, µt〉 ≤ Θ(tfin). Using

the same argument as (6.323) and the second moment bound, wµ(n) = w(n) → wµ so that
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w = wµ, and the same argument as before allows us to take the limit of the continuity

equation to conclude that µ• solves (BE). Finally, repeating the arguments of Lemma

6.26, 〈|v|2, µt〉 can be found as the limit of 〈|v|2, µ(n)
t 〉 = Θ(t) away from P to obtain

〈|v|2, µt〉, t ∕∈ P . Since µ• solve (BE), 〈|v|2, µt〉 is nondecreasing by Proposition 2.14, and

we may take left-limits to extend the equality to t ∈ P .

For the rate function, we return to the definition (6.13): all µ• ∈ AΘ start at µ0 = µ*
0, we

have H(µ0|µ*
0) = 0, and the unique choice K = 1 gives τ(K) = 0, so J (µ•, w) = 0 and

I(µ•, w) = 0 as desired.

We now prove (6.24,6.25). For the first item, let U ⊃ AΘ be any open set, and L′ ⊂ N a

subsequence such that

lim
N→∞,N∈L′

1

N
logP

-
(µN

• , w
N) ∈ U

.
= lim inf

N∈N

1

N
logP

-
(µN

• , w
N) ∈ U

.
. (6.345)

For the changes of measure QN constructed above, we recall Lemma 6.23 to see that

Corollary 6.9 applies, so that the laws QN ◦ (µN
• , w

N)−1 are tight. We can therefore

use Prohorov’s Theorem pass to a further subsequence L ⊂ L′ such that the laws QN ◦
(µN

• , w
N)−1 converge to the law of a new random variable (µ•, w) under a new probability

measure Q. This is exactly the setting of Lemma 6.24, from which Q((µ•, w) ∈ AΘ) = 1,

which certainly implies that AΘ is nonempty. We then have

lim inf
N∈L

QN
-
(µN

• , w
N) ∈ U

.
≥ Q((µ•, w) ∈ U) ≥ Q((µ•, w) ∈ AΘ) = 1

since U ⊃ AΘ. Fixing ε > 0 and recalling Lemma 6.23 again, we see that, for N ∈ L large

enough,

QN

6
(µN

• , w
N) ∈ U , dQ

N

dP
≤ eN(Θ(tfin)z2+ε)

7
>

1

2
.

It follows that, for N ∈ L large enough,

P
-
(µN

• , w
N) ∈ U

.
= EQN

=6
dQN

dP

7−1

1I(µN
• , w

N) ∈ U ]
>

≥ e−N(Θ(tfin)z2+ε)QN

6
µN
• ∈ U , dQ

N

dP
≤ eN(z2Θ(tfin)+ε)

7

≥ 1

2
e−N(Θ(tfin)z2+ε).

(6.346)

Taking the logarithm and the limit N → ∞ through L ⊂ L′ and then the limit ε ↓ 0, we

conclude that

lim
N→∞,N∈L′

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −Θ(tfin)z2

and by the choice (6.345), we have proven the same bound for the limit inferior over the

full sequence N ∈ N. The lower bound is independent of U ⊃ AΘ, and so we have proven

the claim (6.24).
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For the second item (6.25), we observe that Θ is locally constant at tfin, so we can find

an interval I ∋ tfin, with inf(t− s : t ∈ I, s ∈ P ) > 0 and such that Θ(t) = Θ(tfin) > 1 for

all t ∈ I. Thanks to the fourth moment bound in the construction of AΘ, we can choose

R < ∞ and a continuous, compactly supported function 0 ≤ fR(v) ≤ |v|2 such that, for

all µ• ∈ AΘ,

inf
t∈I

〈fR, µt〉 >
1 +Θ(tfin)

2
. (6.347)

Now, writing |I| for the Lebesgue measure of I, we choose V to be the set

V =

M
(µ•, w) ∈ D ×M(E) :

!

I

〈fR, µt〉dt >
1 +Θ(tfin)

2
|I|

N
. (6.348)

V is open in D×M(E) by Lemma 6.12, and AΘ ⊂ V by construction. However, for all N ,

we have the bound 〈fR, µN
t 〉 ≤ 〈|v|2, µN

0 〉 for all t, because the kinetic energy is constant

in time, so

P
-
(µN

• , w
N) ∈ V

.
≤ P

6
〈|v|2, µN

0 〉 >
1 +Θ(tfin)

2

7
. (6.349)

We now apply Cranmér’s theorem. Recalling the notation ψ0,ψ
*
0 defined in Subsection

6.6.1, we recall that ψ*
0(a) > 0 for all a ∕= 〈|v|2, µ*

0〉 = 1, and

lim inf
N

2
1

N
logP

-
(µN

• , w
N) ∈ V

.3
≤ lim inf

N

2
1

N
logP

6
〈|v|2, µN

0 〉 >
1 +Θ(tfin)

2

73

= −ψ*
0

6
1 +Θ(tfin)

2

7
< 0.

(6.350)

6.6.4 Maxwell Molecules Case

We now give the proof in the case of Maxwell molecules. In this case, since the kernel

B is bounded, the moment creation property no longer holds; we also change measure so

that, under QN , the Kac process has a kernel 5B = 5Bδ with linear growth. The previous

argument then applies, albeit with an additional (small) exponential cost. Since the

argument is almost identical, we will discuss only the essential modifications relative to

the regularised hard spheres case. As before, let us fix (Ω,F, (Ft)t≥0,P) on which are

defined Maxwell molecule Kac processes µN
• and their empirical fluxes wN .

Proof of Theorem 6.5b). Fix Θ, E, δ > 0 as in the statement. We construct the modifi-

cation of the initial data via ϕM exactly as for the case of hard spheres above. With the

same notation on Mi,MN,i, t
(r)
i and the special set of ‘frozen’ particles St, we now choose

K to be given by

KN,M,r(t, v, v*, σ) =

#
$

%
0 if either v, v* ∈ St;

N(1 + δ|v − v*|)1INt≥1/Nt else
(6.351)
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where, again, we supress the argument µN
0 . In this way, the non-frozen particles interact

as a Kac process with kernel (1+δ|v|) on Nt particles on each time interval [t
(r)
i−1, t

(r)
i ). We

choose MN , rN → ∞ in exactly the same way as before, and write 5QN for the resulting

changes of measure via Proposition 6.15:

d5QN

dP
= exp

6
N〈ϕMN

, µN
0 〉+ 〈logKN , wN〉

−N

! tfin

0

!

Rd×Rd×Sd−1

(KN − 1)wµN (dt, dv, dv*, dσ)

7
.

(6.352)

Again, we construct QN ≪ 5QN by conditioning to the event of high probability where

〈|v|2, µN
0 〉 ≤ 2Θ(tfin) and N0/N ≥ 1

2
. We will write K = (1 + δ|v − v*|) for the limiting

tilting function. The strategy is now similar to the previous case. The law of large numbers

follows in the same way for the new definition of AΘ without essential modification,

allowing α to depend on δ and arguing in the same was as leading to (6.309) to obtain

!

E

|KN −K|(t, v, v*, σ)wµN (dt, dv, dv*, dσ)

≤ Ctfin

66
N

N0(MN , rN)
− 1

7
+

1

MN

7
〈1 + |v|2, µN

0 〉2.
(6.353)

This is, in fact, the same estimate as before, up to the inclusion of δ; the linear factor

(1+δ|v−v*|) now included inK,KN replaces the equivalent one previously in the measure

wµN = B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv*)dσdt so that the previous calculations are unchanged.

With these modifications, the proof of the law of large numbers works exactly as before.

We again estimate the change of measure 1
N
log dQN

dP . In this case, we will only find an

estimate which asymptotically holds with sufficiently large probability, rather than with

probabilities converging to 1 as we did before; this will not affect the final result. We

recall that

1

N
log

dQN

dP
= 〈ϕMN

, µN
0 〉+ 〈logKN , wN〉 −

!

E

(KN − 1)(t, v, v*, σ)wµN (dt, dv, dv*, dσ)

− log 5QN

6
〈|v|2, µN

0 〉 ≤ 2Θ(tfin),
N0

N
≥ 1

2

7
.

(6.354)

As before, the final term converges to 0. Let us fix ε > 0. The term from the change of

initial data is exactly as in the hard spheres case:

QN
'
〈ϕMN

, µN
0 〉 > z2Θ(tfin) +

ε

3

(
→ 0. (6.355)

In the second term, we now use the upper bound

logKN ≤ logN/N0(MN , rN) + log(1 + δ|v − v*|) ≤ logN/N0(MN , rN) + δ(|v|+ |v*|).
(6.356)



356 6.6. PROOF OF THEOREM 6.5

As in the hard spheres case, the first term contributes at most (logN/N0)w
N(E) ≤ ε/2

with high QN -probability, and in the second term, observe that

δ〈|v|+ |v*|, wN
t 〉 − δ

!

Et

N

N0

(1 + δ|v − v*|)(|v|+ |v*|)dsµN
s (dv)µ

N
s (dv*)dσ (6.357)

is a QN -supermartingale, so there exists a constant C such that

EQN

G
δ〈|v|+ |v*|, wN〉

H
≤ δEQN

2!

E

2(|v|+ |v*|+ 2δ|v|2 + 2δ|v*|2)dsµN
s (dv)µ

N
s (dv*)dσ

3

≤ δCEQN

2! tfin

0

〈|v|2, µN
s 〉ds

3
= δCtfinΘ(tfin).

(6.358)

Therefore, up to a new choice of C, for all N ,

QN
-
δ〈|v|+ |v*|, wN〉 > δCtfinΘ(tfin)

.
≤ 2

9
(6.359)

and including the term logN/N0, we conclude that

QN
-
〈logKN , wN〉 > δCtfinΘ(tfin) + ε/3

.
<

1

3
. (6.360)

For the final term of the first line of (6.354), we observe that |KN − 1| ≤ |KN − K| +
|K − 1| ≤ |KN −K|+ δ(|v|+ |v*|), and arguing from (6.353), for all N sufficiently large,

QN

6!

E

|KN −K|wµN (dt, dv, dv*, dσ) > ε/3

7
→ 0 (6.361)

while in the second term, we have the pathwise inequality

!

E

δ(|v|+ |v*|)wµN (dt, dv, dv*, dσ) ≤ 2δ

! tfin

0

〈|v|2, µN
t 〉dt ≤ 4δtfinΘ(tfin) (6.362)

which implies

QN

6!

E

|KN − 1|wµN (dt, dv, dv*, dσ) > 4δtfinΘ(tfin) + ε/3

7
→ 0. (6.363)

Gathering (6.355, 6.360, 6.363), we conclude that, for some absolute constant C and all

N large enough,

QN

6
1

N
log

dQN

dP
> Θ(tfin)(z2 + Cδ) + ε

7
<

1

3
. (6.364)

Exactly the same argument also implies that

lim
a→∞

lim sup
N

QN

6
dQN

dP
> eNa

7
= 0 (6.365)

so that Corollary 6.9 applies.



CHAPTER 6. LARGE DEVIATIONS OF THE KAC PROCESS 357

The conclusions of the theorem now follow in the same pattern as the hard spheres case.

For the dynamic cost of any (µ•, w) ∈ AΘ,δ, one bounds τ(k) ≤ (k − 1)2 to obtain

J (µ•, w) =

!

E

τ(1 + δ|v − v*|)dtµt(dv)µt(dv*)dσ ≤ 2δ2
!

E

(|v|2 + |v*|2)dtµt(dv)µt(dv*)dσ

= 4δ2
! tfin

0

Θ(t)dt ≤ 4δ2tfinΘ(tfin)

(6.366)

and recalling that µ0 = µ*
0 for all such µ•, we conclude that the same bound holds for

I(µ•, w). If we now fix an open set U ⊃ AΘ,δ, we let L′ be an infinite subsequence along

which N−1 logP((µN
• , w

N) ∈ U) converges to its lim inf; using Corollary 6.9 to prove

tightness, we can pass to a further subsequence L such that the laws QN ◦ (µN
• , w

N)−1

converge weakly for the changes of measure above. By the law of large numbers, for

N ∈ L large enough,

QN
-
(µN

• , w
N) ∈ U

.
≥ 1

2
(6.367)

and, for ε > 0 fixed, combining with (6.364), for all sufficiently large N ∈ L,

QN

6
(µN

• , w
N) ∈ U , 1

N
log

dQN

dP
≤ Θ(tfin)(z2 + Cδ) + ε

7
≥ 1

6
. (6.368)

For such N ∈ L, we invert in the usual way to find

P
-
(µN

• , w
N) ∈ U

.
≥ 1

4
exp (−N(Θ(tfin)(z2 + Cδ) + ε)) . (6.369)

Since L ⊂ L′ attains the limit inferior, we take the logarithm and send N → ∞ through

L to obtain

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −Θ(tfin)(z2 + Cδ)− ε (6.370)

and taking ε → 0 proves the claim. The final item, regarding open Vδ, follows in the same

way as in the hard spheres case: we fix an open interval I ∋ tfin on which Θ is constant,

and bounded away from E, and write |I| for its Lebesgue measure. Recalling that the

fourth moment condition on AΘ,δ depends on δ, we can choose R = Rδ and a continuous,

compactly supported 0 ≤ fδ ≤ |v|2, which coincides on |v|2 when |v| ≤ Rδ such that, for

all (µ•, w) ∈ AΘ,δ,

inf
t∈I

〈fδ, µt〉 >
1 +Θ(tfin)

2
(6.371)

and, following the previous case, take

Vδ :=

M
(µ•, w) ∈ D ×M(E) :

!

I

〈fδ, µt〉dt >
6
1 +Θ(tfin)

2

7
|I|

N
. (6.372)

Using Lemma 6.12 as before, these are open and contain AΘ,δ by construction, and uni-

formly in δ,

1

N
logP

-
(µN

• , w
N) ∈ Vδ

.
≤ 1

N
logP

6
〈|v|2, µN

0 〉 >
1 +Θ(tfin)

2

7
(6.373)
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so by Cramér,

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ Vδ

.
≤ lim inf

N

1

N
logP

6
〈|v|2, µN

0 〉 >
1 +Θ(tfin)

2

7

≤ −ψ*
0

6
1 +Θ(tfin)

2

7
< 0.

(6.374)

The final bound is uniform in δ > 0, and the theorem is complete.
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6.7 Applications of the Negative Result Theorem 6.5

We now give the two corollaries 6.7, 6.6, which are applications of the negative result

Theorem 6.5.

Proof of Corollary 6.7. Throughout, fix Θ arbitrarily as in the statement of Theorem 6.5,

and, in the case of Maxwell molecules, pick δ > 0 arbitrarily, and let A = AΘ,AΘ,δ be the

resulting ‘bad’ set from Theorem 6.5 in either case. For a contradiction, let (µN
• )N∈L be an

infinite subsequence which satisfies a large deviation principle with a rate function 5I such

that 5I(µ•, w) = ∞ if µ• does not conserve energy. Since no paths in A conserve energy,

we know that I(µ•, w) = ∞ for all (µ•, w) ∈ A by construction. Due to exponential

tightness in Proposition 6.1, the rate function must be good; that is, the sublevel sets

{(µ•, w) ∈ D × M(E) : 5I(µ•, w) ≤ a} are compact in D × M(E) for any a ∈ [0,∞).

Now, for any a, {5I ≤ a} is disjoint from A, and since D×M(E) is a normal topological

space, there exists an open set Ua ⊃ A whose closure Ua is disjoint from {5I ≤ a}. By

hypothesis,

lim sup
N∈S

2
1

N
logP

-
(µN

• , w
N) ∈ Ua

.3
≤ − inf

K
5I(µ•, w) : µ• ∈ Ua

L

≤ −a.

(6.375)

This is inconsistent with the conclusions (6.24,6.27) of Theorem 6.5 for a large enough,

and we have the desired contradiction.

We conclude with the proof of Corollary 6.6, which shows that the same behaviour,

in which energy concentrates in a few particles, can also arise as a result of the binary

collisions, even if the initial data are well-controlled. We will use a time-reversal argument,

setting µ*
0 = γ, and recalling the definitions of Tµ•,Tw from (6.20,6.21) respectively. We

work with either regularised hard spheres or Maxwell molecules.

Proof of Corollary 6.6. Let Θ be the function given, and set ΘT to be the time reversed

function ΘT(t) := Θ(tfin − t). By hypothesis, ΘT satisfies the conditions required in

Theorem 6.5; in the case of Maxwell Molecules, choose δ > 0 arbitrarily, and in either

case set AT to be the fourth moment bound given by Theorem 6.5 and AT,Θ the resulting

bad set constructed by Theorem 6.5. We now set A(t) := AT(tfin − t) and set JAT to be

the projection
JAT = {µ• : (µ•, w) ∈ AT,Θ} . (6.376)

Since AT,Θ are compact and T preserves the Skorokhod topology of D, it follows that JAT

are also compact, as are JA := {Tµ• : µ• ∈ JAT} and by construction, the set desired can

be written as B = JA×M(E).

Let us now fix U ⊃ B open and M > 0 to be chosen later. Thanks to Lemma 6.8,
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we can choose a compact K ⊂ M(E) such that P(wN ∕∈ K) ≤ e−MN for all N , and

since JA × K is compact, we can choose U1,U2, open in D,M(E) respectively, such that
JA×K ⊂ U1 × U2 ⊂ U . Now, TU1 is open and contains JAT and using reversibility,

P(µN
• ∈ TU1) = P(TµN

• ∈ U1) = P(µN
• ∈ U1). (6.377)

Using Theorem 6.5 in either of the two cases on the open set TU1 ×M(E) ⊃ AT,Θ, for

some finite C, independent of M , it holds that

lim inf
N

1

N
logP

-
µN
• ∈ TU1

.
= lim inf

N

1

N
logP

-
(µN

• , w
N) ∈ TU1 ×M(E)

.
≥ −C (6.378)

and thanks to (6.377), the same holds with U1 in place of TU1. We now observe that

− C ≤ lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U1 ×M(E)

.

≤ max

6
lim inf

N

1

N
logP

-
(µN

• , w
N) ∈ U1 × U2

.
, lim inf

N

1

N
logP

-
wN ∕∈ U2

.7

≤ max

6
lim inf

N

1

N
logP

-
(µN

• , w
N) ∈ U

.
,−M

7

(6.379)

where, in the final line, we use the choice of K and recall that U2 ⊃ K. If we now choose

M > C, we must have that

lim inf
N

1

N
logP

-
(µN

• , w
N) ∈ U

.
≥ −C > −∞ (6.380)

as claimed.



Appendix

6.A Some Properties of Skorohod Paths

We will now recall some facts about right-continuous, left-limited (càdlàg) paths, and

the resulting Skorohod topology. For a fixed metric space (X, d) and tfin, we write

D([0, tfin], (X, d)) for the set of all such functions x• : [0, tfin] → X, which we equip

with the metric

ρ(x•, y•) = inf

M
max

6
sup
t≤tfin

d(x(t), y(ι(t))), sup
t≤tfin

|t− ι(t)|
7

: ι ∈ Λ

N
(6.381)

where the infimum runs over the set Λ of increasing, continuous bijections ι : [0, tfin] →
[0, tfin]. We say that x has a jump of size at least ε > 0 at t if d(x(t), x(t−)) ≥ ε.

Our first result is a replacement for uniform continuity in the context of such paths.

Proposition 6.28. Let x• ∈ D([0, tfin], (X, d)) and fix ε > 0. Then

a). There exists at most finitely many t ∈ [0, tfin] such that d(x(t), x(t−)) > ε.

b). There exists δ > 0 such that, for all t ∈ [0, tfin], either there exists s ∈ [t, t +

δ) ∩ [0, tfin] with a jump discontinuity of size at least d(x(s−), x(s)) ≥ ε or, for all

s ∈ [t, t+ δ) ∩ [0, tfin], we have d(x(t), x(s)) < ε.

Proof. For the first item, suppose that we can find a countable sequence of distinct tn ∈
(0, tfin] such that d(x(tn−), x(tn)) > ε, and up to passing to an infinite subsequence, we

can also arrange that tn converges monotonically, either increasingly or decreasingly, to a

limit t ∈ [0, tfin]. We consider the two cases separately:

1. If tn ↑ t, we can pick sn ∈ [tn − n−1, tn] such that d(x(sn), x(tn)) > ε, which

contradicts the fact that both x(sn), x(tn) → x(t−) by the left-limitedness.

2. If tn ↓ t, we can pick sn ∈ (t, tn), still so that d(x(sn), x(tn)) > ε, and obtain the

same contradiction by the convergence x(tn), x(sn) → x(t) by right-continuity.
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In either case, we have a contradiction, so the claim is proven.

We now prove item b). Suppose, for a contradiction, that the conclusion is false, so that

we can construct tn, sn, with tn < sn < tn +n−1, such that there is no jump of size ≥ ε in

[tn, sn), but such that d(x(tn), x(sn)) ≥ ε. As before, by passing to a infinite subsequence,

we can arrange that either tn ↓ t or tn ↑ t. We again deal with the cases separately.

1. If tn ↑ t, we split further into cases, depending on whether sn > t infinitely often or

not.

(a) If sn > t infinitely often, we can pass to a further subsequence so that tn ↑
t, sn ↓ t, so that d(x(tn), x(sn)) → d(x(t−), x(t)). Since d(x(tn), x(sn)) ≥ ε for

all n by construction, we conclude that there is a jump discontinuity of size

≥ ε at t, which contradicts the hypothesis that [tn, sn) contains no such jumps.

(b) Otherwise, sn ≤ t eventually, so by passing to a subsequence, tn, sn ↑ t and

x(tn), x(sn) → x(t−), which contradicts having d(x(tn), x(sn)) ≥ ε.

2. If tn ↓ t, then sn ↓ t and x(tn), x(sn) → x(t), contradicting that d(x(tn), x(sn)) ≥ ε.

Since all possible cases lead to a contradiction, the claim is proven.

We next classify some continuity properties for the Skorokhod convergence. These results

are standard and included for completeness.

Proposition 6.29. a). The maps x• /→ x(0), x• /→ x(tfin) are continuous with respect

to the metric ρ.

b). If xn
• ∈ D([0, tfin], (X, d)) converge to x• with respect to ρ, then for all but countably

many t ∈ [0, tfin], d(x
n(t), x(t)) → 0.

c). If, in b), the limit path x• is continuous, then we additionally have the uniform

convergence supt d(x
n(t), x(t)) → 0.

Proof. For the first item, observe that ι(0) = 0, ι(tfin) = tfin for all ι ∈ Λ, which implies

that d(x(0), y(0)) ≤ ρ(x•, y•) for all x•, y•, and similarly at tfin. For the second item,

from the previous proposition, x• is continuous at all but countably many t ∈ [0, tfin].

For points of continuity t of x•, fix ε > 0: there exists δ > 0 such that, for all s with

|s− t| < δ, |x(s)−x(t)| < ε/2. For all n sufficiently large, we have ρ(xn
• , x•) < min(δ, ε/2)

and so we can pick ι ∈ Λ such that sup |t− ι(t)| < δ and supt |xn(ι(t))− x(t)| < ε/2. We

now conclude: we have |t− ι−1(t)| < δ, and so

|xn(t)− x(t)| ≤ |xn(t)− x(ι−1(t))|+ |x(ι−1(t))− x(t)| < ε/2 + ε/2 = ε (6.382)

and we are done. The final item also follows, noting that as x• is continuous, it is

uniformly continuous, which implies that δ, and hence n, can be chosen independently of

t ∈ [0, tfin].
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6.B A Singular Girsanov Theorem for Jump Pro-

cesses

We now justify the changes of measure in Proposition 6.15. We start from a filtered

probability space (Ω,F, (Ft)t≥0,P), on which is defined a Kac process µN
• its empirical

flux wN
t . We have a deterministic tilting ϕ : Rd → R of the initial data, such that&

eϕ(v)µ*
0(dv) = 1, and A0 ∈ F0 such that αN = E[eN〈ϕ,µN

0 〉1IA0 ] > 0. By an abuse

of notation, we understand A0 as a subset of P2
N . Regaring the dynamics, we have

a measurable K : PN
2 × E → [0,∞), enjoying a bound K/(1 + |v| + |v*|) ≤ C, for

some absolute constant C. The modification of the dynamics with therefore be random,

depending on the initial value µN
0 : our new measures are given by

dQ
dP

=exp

6
N〈ϕ, µN

0 〉+N〈logK(µN
0 , ·), wN

tfin
〉

−N

!

E

(K − 1)(µN
0 , t, v, v*, σ)wµN (dt, dv, dv*, dσ)

7
1IA0/αN

(6.383)

where, if wN has any point with K = 0, then the integral 〈logK(µN
0 , ·), wN〉 = −∞ and

the density is understood to be 0.

We start from a disintegration of P: let L0 be the law of µN
0 on PN

2 , and for any ν ∈ PN
2 ,

let Pν be the law of the Kac process started from ν, so that, for any A ∈ F,

P(A) =
!

PN
2

Pν(A)L0(dν). (6.384)

We now write, again for any A ∈ F,

Q(A) =

!

PN
2

Eν

?
Zδ,ν

tfin
1IA

A6eN〈ϕ,ν〉1IA0(ν)

αN

L0

7
(dν) =

!

PN
2

Qν(A)5L0(dν) (6.385)

where we define the modified law 5L0 by

5L0(dν) =
eN〈ϕ,ν〉1IA0(ν)

αN

L0(dν) (6.386)

and modify the conditional law Pν by

Zν
t = exp

6
N〈logK(ν, ·), wN

t 〉 −N

!

E

1Is≤t(K
δ − 1)(ν, s, v, v*, σ)wµN (ds, dv, dv*, dσ)

7

(6.387)

where we again set Zν
t = 0 if there are any point with K = 0, and Qν = Zν

tfin
Pν .

For the initial law, L0 is the pushforward of (µ*
0)

⊗N by the map θN : (v1, .., vN) →
N−1

<
δvi , and note that exp(N〈ϕ, ν〉) = exp(

<
ϕ(vi)). It therefore follows that 5L0 is

the pushforward of the measure

exp(
"

ϕ(vi))
F

i

µ*
0(dvi) =

F

i

eϕ(vi)µ*
0(dvi)1IA0 [θN(v1, ...vN)]/αN
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by θN . Since ϕ was chosen so that
&
eϕdµ*

0 = 1, each factor is a probability measure, and

so 5L0 is the probability measure on PN
2 for the empirical measure of sampling N particles

independently from the probability measure eϕµ*
0 and conditioning that the empirical

measure lies in A0, as claimed.

We now consider the modification of each Pν . We observe that the conservation of energy

guarantees that there exists M = Mν such that, Pν-almost surely, µN
t is supported on

[−M,M ]d for all t, and wN is supported on (t, v, v*, σ) ∈ E with |v|, |v*| ≤ M . In

particular, thanks to the hypothesised bound, one finds the upper bound

sup
t≤tfin

Zν
t ≤ exp

-
CNMν(1 + wN(E))

.
(6.388)

and the right-hand side has all moments finite, since NwN
t (E) can be dominated by a

Poisson process of rate 3(1 + 〈|v|2, ν〉), as in Section 6.2.1. We now observe that, at

collisions, Zν
t changes by

Zν
t − Zδ,ν

t− = Zν
t−

-
elogK(ν,t,v,v!,σ) − 1

.
= Zν

t− (K(ν, t, v, v*, σ)− 1) (6.389)

which is valid whether or notK(ν, t, v, v*, σ) is strictly positive, while in between collisions,

Zν
t is differentiable, with

d

dt
Zν

t = −N

!

Rd×Rd×Sd−1

(K − 1)(ν, t, v, v*, σ)B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv*). (6.390)

Together, we obtain

Zν
t = Zν

0 +

!

E

1Is≤tNZν
s− (K(ν, s, v, v*, σ)− 1) (wN − wµN )(ds, dv, dv*, dσ) (6.391)

which is a Pν-local martingale, and hence a true martingale using the upper bound (6.388),

with constant mean Zν
0 = 1. It follows that each Qν is a probability measure, and hence

so is Q.

Let us now describe the dynamics under each Qν . Let us fix a bounded, measurable

function F : P2
N × P2

N ×M(E) → R, and let At be given by

At =N

!

Rd×Rd×Sd−1

(F (ν, µN,v,v!,σ, wN,t,v,v!,σ)− F (ν, µN , wN))

· · ·×K(ν, t, v, v*, σ)B(v − v∗, σ)µ
N(dv)µN(dv*)dσ.

(6.392)

We now consider Y ν
t := Zν

t (F (ν, µN
t , w

N
t )−

& t

0
Asds). The changes at jumps are given by

Y ν
t − Y ν

t− = Zν
t−

6
K(ν, t, v, v*, σ)− F (ν, µN

t−, w
N
t−)− F (ν, µN

t−, w
N
t−)

· · ·− (K(ν, t, v, v∗, σ)− 1)

! t

0

Asds

7

= Y ν
t−(K(ν, t, v, v∗, σ)− 1) +K(ν, t, v, v∗, σ)Z

ν
t−(F (ν, µN

t , w
N
t )− F (ν, µN

t−, w
N
t−))

(6.393)
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while the drift between jumps is

d

dt
Y ν
t = Zν

t

6
−N

6
F (ν, µN

t , w
N
t )−

! t

0

Asds

7!

Rd×Rd×Sd−1

(K(ν, t, v, v*, σ)− 1)

· · ·× B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv*)dσ

7
− AtZ

ν
t

= −NY ν
t

!

Rd×Rd×Sd−1

(K(ν, t, v, v∗, σ)− 1)B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv∗)dσ

−NZν
t

!

Rd×Rd×Sd−1

(F (ν, µN
t− +

1

N
∆(v, v∗, σ), w

N
t− +

1

N
δ(t,v,v∗σ))− F (ν, µN

t−, w
N
t−))

· · ·×K(ν, t, v, v∗, σ)B(v − v∗, σ)µ
N
t−(dv)µ

N
t−(dv∗)dσ

= −N

!

Rd×Rd×Sd−1

H(ν, t, v, v∗, σ)B(v − v∗, σ)µ
N
t (dv)µ

N
t (dv∗)dσ

(6.394)

where the final line defines H. Combining the previous two displays, we write Y ν
t as the

stochastic integral

Y ν
t − Y ν

0 = N

!

Et

H(ν, s, v, v∗, σ)(w
N − wµN )(ds, dv, dv*, dσ) (6.395)

H is then locally bounded and previsible, so we conclude from (6.395) that Y ν which is

again a Pν-martingale, using almost sure bound on the supports of wµ, w
N under Pν as

commented above. It follows that F (ν, µN
t , w

N
t ) −

& t

0
Asds is a Qν-martingale, and we

conclude that (µN
0 , µ

N
t , w

N
t ) is a (Ω,F, (Ft)t≥0,Qν)-Markov process with time-dependent

generator

GtF (ν ′, µN , wN) =N

!

Rd×Rd×Sd−1

(F (ν ′, µN,v,v!,σ, wN,t,v,v!,σ)− F (ν ′, µN , wN))

· · ·×K(ν ′, t, v, v*, σ)B(v − v∗, σ)µ
N(dv)µN(dv*)dσ.

(6.396)

Using the same boundedness arguments as before, this generator characterises a unique

semigroup PK
s,t of transition kernels on PN

2 ×PN
2 ×M(E), so that for any 0 = t0 < t1.... < tn

and Borel sets Ai ⊂ PN
2 × PN

2 ×M(E), we have

Qν

-
(µN

0 , µ
N
ti
, wN

ti
) ∈ Ai, i = 0, ..., n

.

=

!

A0×...×An

δ(ν,ν,0)(dx0)P
K
t0,t1

(x0, dx1)....P
K
tn−1,tn

(xn−1, dxn).

(6.397)

Returning to (6.385), we conclude

Q
-
(µN

0 , µ
N
ti
, wN

ti
) ∈ Ai, i = 0, ..., n

.

=

!

A0×...×An

δ(ν,ν,0)(dx0)P
K
t0,t1

(x0, dx1)....P
K
tn−1,tn

(xn−1, dxn)5L0(dν)

(6.398)
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which is exactly the statement that, under Q, (µN
0 , µ

N
t , w

N
t ) is the Markov process with

generator (6.396), and initial data (µN
0 , µ

N
0 , 0), with µN

0 sampled from 5L0 as above.



Chapter 7

Bilinear Coagulation Equations

7.1 Introduction & Main Results

This chapter is dedicated to the proof of Theorem 5, concerning the behaviour of the

coagulative interaction clusters for the Kac process. As already mentioned in the intro-

duction, this analysis does not rely at all on the way we obtained the coagulative particle

system from the underlying Boltzmann dynamics; in fact, with the different structure of

the equations, the coagulative equations we consider in this chapter have very different

properties from (BE), and so this chapter will have a very different nature from the others.

Since the proofs will not rely closely on the underlying Boltzmann dynamics, we will build

a general framework of bilinear coagulation systems which promotes the key properties of

the equations (Sm, Fl) in the introduction to axioms. We will state and prove Theorems

7.2 - 7.3 concerning the corresponding particle systems and limiting equations for this

more general setting, and we will show how these apply to the Boltzmann case in Section

7.2

7.1.1 Definitions

We begin by precisely introducing our notion of a bilinear coagulation space. Our analysis

rests on the bilinear form of the total rate of merger K(x, y) between two particles, which

allows us to connect the Smoluchowski equation to random graphs in Section 7.5. The

following definition makes this precise.

Definition 7.1.1. A Bilinear Coagulation System is a 6-tuple (S,R, π, K, J, (JN)N≥1)

consisting of a complete metric space S, a continuous involution R on S, a finite col-

lection of continuous maps π = (πi)0≤i≤n+m, n ≥ 1,m ≥ 0 from S to R, a nonnegative

(‘coagulation’) symmetric kernel K : S ×S → M(S) and a family of (‘evolution’) kernels

JN , J : S → M(S), such that the following hold.

367
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i). For all 0 ≤ i ≤ n+m and all x, y ∈ S,

πi = πi(x) + πi(y) K(x, y, ·)- almost everywhere (7.1)

and for all x ∈ S,N ≥ 1,

πi = πi(x) J(x, ·)- almost everywhere and JN(x, ·)- almost everywhere. (7.2)

ii). For 1 ≤ i ≤ n, the map πi : S → R takes only nonnegative values, and π0 takes

values in the positive integers N.

iii). The involution R satisfies

πi ◦R =

#
$

%
πi 0 ≤ i ≤ n;

−πi, n+ 1 ≤ i ≤ n+m
(7.3)

and, for all x, y ∈ S and N ≥ 1,

K(Rx,Ry, ·) = R#K(x, y, ·); J(Rx, ·) = R#J(x, ·); JN(Rx, ·) = R#J
N(x, ·)

(7.4)

where we write # for the pushforward of a measure.

iv). There exists a constant C such that, for all x ∈ S,

m"

i=n+1

πi(x)
2 ≤ Cϕ(x)2 (7.5)

where ϕ(x) =
<n

i=0 πi(x). Moreover, any sublevel set Sξ = {x ∈ S : ϕ(x) ≤ ξ} is a

countable union of compact sets, for any ξ ∈ [0,∞).

v). For all x, y ∈ S, the total rate K(x, y) = K(x, y, S) may be expressed as

K(x, y) =
"

1≤i,j≤n+m

aijπi(x)πj(y) (7.6)

for a fixed (n+m)× (n+m) symmetric real matrix A = (aij)1≤i,j≤n+m. Moreover,

the matrix A is of the block-diagonal form

A =

/
A+ 0

0 Apar

0
(7.7)

where A+, Apar are n × n and m × m square matrices respectively, and all entries

of A+ are nonnegative. Finally, for all 1 ≤ i ≤ n +m, there exists 1 ≤ j ≤ n +m

such that aij > 0, so that no row or column of A vanishes.

vi). Regarding the evolution kernels JN , J , we ask that the total rate J(x) = J(x, S), J
N
(x)

satisfy supx
J(x)
ϕ(x)

< ∞ and supN supx
J
N
(x)

ϕ(x)
< ∞. Further, for any ξ > 0, we have the

convergence supx∈Sξ
‖JN(x, ·) − J(x, ·)‖TV → 0, where the convergence is uniform

over the sublevel sets Sξ in item iv).
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vii). For f ∈ Cb(S), the maps

Kf : S × S → R, (x, y) /→
!

S

f(z)K(x, y, dz); (7.8)

Jf : S → R, x /→
!

S

f(z)J(x, dz) (7.9)

are continuous.

Remark 7.1. We think of π0(x) as counting the number of particles at time 0 which have

been absorbed into x. As a result, we will ask in (A5.) below that our initial measure λ0

is supported on {π0} = 1, and π0 artificially introduces monodisperse initial conditions.

If we are given a space S equipped only with π1, ..., πn+m, we can replace S by N× S, and

setting π0(a, x) = a, πi(a, x) = πi(x), i = 1, ..., n + m, (a, x) ∈ N × S. In this way, and

since π0 does not enter the total rate K(x, y), the artificial requirements on π0 above do

not restrict the physics of the coagulation system.

Stochastic Particle Systems. With the setting defined above, we can introduce the

interacting particle systems under consideration.

We study a system of coagulating particles (xN
j (t) : j ≤ lN(t)), and the associated empir-

ical measure

λN
t =

1

N

lN (t)"

j=1

δxN
j (t) (7.10)

with the following dynamical rules.

i). The rate at which unordered pairs of particles {x, y} in S merge to form a new

particle in A ⊂ S is 2K(x, y, A)/N .

ii). A particle of type x evolves can a particle of type y ∈ A ⊂ S with a total rate

JN(x,A).

This is a generalisation of a Marcus–Lushnikov coagulation process [134] on S, which we

will refer to as the stochastic coagulant. Note that a 1/N scaling of the pair interaction rate

is used, which ensures that each molecule has a total evolution rate of order 1. Dividing

jump rates by N is equivalent to accelerating time by the same factor and this alternative

formulation means that the jump rates in the definition of the “stochastic coalescent” in

[5] as well as of the “stochastic K-coagulant” in [156] omit the 1/N from the rates and

rescale time when taking the N → ∞ limit.
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Limiting kinetic equations. Let us first define a convenient class of test functions for

a weak formulation of the kinetic equations. We define

A := {f ∈ Cb(S) : sup{ϕ(x) : x ∈ supp(f)} < ∞}

so that any f ∈ A is supported on some Sξ, ξ < ∞. We now consider various forms of the

limiting Smoluchowski equation. Define a drift operator L, by specifying for all f ∈ A,

〈f, L(λ)〉 =
!

S3

{f(z)− f(x)− f(y)}K(x, y, dz)λ(dx)λ(dy)

+

!

S2

{f(y)− f(x)}J(x, dy).
(7.11)

Let us first remark that all the terms here make sense as soon as f ∈ A, thanks to the

form of the total rates of K, J in Definition 7.1.1. Compared to the dynamical rules for

the stochastic coagulant above, the absence of the factor of 2 in the coagulation term

here compensates for the fact that every unordered pair of particles x, y in the stochastic

coagulant appears twice in the integral. The weak form of the Smolochowski equation for

a process of measures (λt)t<T on S is

∀f ∈ A, t < T, 〈f,λt〉 = 〈f,λ0〉+
! t

0

〈f, L(λs)〉ds. (Sm)

As discussed in the introduction, equation (Sm) captures the effects of coagulations be-

tween finite clusters; in order to include the possibility of a non-inert macroscopic com-

ponent, or gel, we must move to a Flory-style equation. We modify the drift operator by

setting, for f ∈ A,

〈f, Lg(λt)〉 = 〈f, L(λt)〉 −
!

S

f(x)K(x, y)λt(dx)(λ0 − λt)(dy). (7.12)

In our general context, our Flory equation is now to ask

∀f ∈ A, t < T, 〈f,λt〉 = 〈f,λ0〉+
! t

0

〈f, Lg(λs)〉ds. (Fl)

As in the introduction, the additional term comes into play only after λt ceases to conserve

the quantities 〈πi,λt〉, 1 ≤ i ≤ n+m, and the extra term represents the interaction with

the gel. This generalises the Smoluchowski coagulation equations [171] in a way analogous

to Flory [199], and we use the term ‘K-coagulant’ for a solution to (Fl), following [156].

Precise conditions on measurability and integrability required to interpret these equations

concretely are given in Appendix 7.A.

We write

gt = (Mt, Et, Pt) = 〈π,λ0 − λt〉 = (〈πi,λ0 − λt〉)n+m
i=0 (7.13)

for the gel data, whereMt, Et, Pt are the 0
th, 1st−nth, and (n+1)th−(n+m)th coordinates,

respectively. Following remarks in [156], one may show that if λt is a solution to (Fl),
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then the maps t /→ 〈πi,λt〉, i ≤ n are non-increasing, which guarantees that Mt, Et ≥ 0.

We write SΠ for the state space of gel data, given by

SΠ = N× Rn × Rm (7.14)

and use the same notation πi, 0 ≤ i ≤ n+m for the projections onto the factors. Similarly,

we define RΠ : SΠ → SΠ, by

RΠ(m, e, p) = (m, e,−p). (7.15)

This definition is consistent in the sense that RΠ(πx) = π(Rx) for all x ∈ S, by point iii) of

Definition 7.1.1. When x ∈ S and g ∈ SΠ, we use K(x, g) for the rate of absorption, given

by (7.6) with the new meanings of πi(g). We will also write ϕ for the linear combination

ϕ =
<

i≤n πi, defined on both S and SΠ.

Definition 7.1.2 (Conservative Solutions). Let S be a bilinear coagulation system. We

say that a solution (λt)t<T to either (Sm) or (Fl) is conservative if all the functions

t /→ 〈πi,λt〉, 0 ≤ i ≤ n+m are constant on [0, T ).

Thus, any solution to (Sm) or (Fl) is conservative up to some time 0 ≤ tg ≤ ∞, and

non-conservative thereafter.

We will usually impose symmetry requirements (A1.) on the initial data which guarantee

that 〈πi,λt〉 = 0 for all t, for all i = n + 1, .., n + m. As noted above, the functions

t /→ 〈πi,λt〉, i ≤ n are non-increasing, whenever (λt)t<T is a local solution to either

equation. Therefore, under hypothesis (A1.), a solution (λt)t<T to either equation is

conservative if, and only if, the map t /→ 〈ϕ,λt〉 is constant on [0, T ).

We will work in the space M≤1(S) of (Borel) measures on S with total mass at most 1,

which we equip with the metric ρ1 defined in Section 2.1 for this choice of (S, d).

7.1.2 Statement of Results

We will make the following hypotheses on the initial data λ0.

Hypothesis 7.1. We will ask that the initial data λ0 is a sub-probability measure on a

bilinear coagulation space S, satisfying the following hypotheses.

(A1.) The measure λ0 is even under the transformation R: R#λ0 = λ0.

(A2.) For all i ≤ n, we have 〈π3
i ,λ0〉 < ∞.

(A3.) The set {πi : 1 ≤ i ≤ n} is linearly independent in the space L2(λ0). In particular,

none of the functions πi : 1 ≤ i ≤ n are 0 λ0-almost everywhere.
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(A4.) The kernel K is λ0-irreducible: if A ⊂ S is such that, for all x ∈ A and y ∈ Ac,

K(x, y) = 0, then either λ0(A) = 0 or λ0(A
c) = 0. Moreover, λ0 is not a point mass.

(A5.) The initial data λ0 is supported on {x ∈ S : π0(x) = 1}.

Let us remark that if (A3.) is false, we can repeat all of the arguments in terms of a smaller

subset of {πi : i ≤ n} and recover the integrals of the removed components through linear

dependence. If (A4.) is false, the space S can be decomposed into smaller, irreducible

spaces, and particles in different components do not interact; we can therefore recover

solutions of the limiting equations through linear combinations of the limiting equation

on each irreducible component.

We summarise our results on the analysis of the Flory equation (Fl) as follows.

Theorem 7.2. Let S be a π0-bilinear coagulation system, and let λ0 be a sub-probability

measure on S satisfying Hypothesis 7.1. Then the equation (Fl) has a unique solution

(λt)t≥0 starting at λ0; we write gt = (Mt, Et, Pt) for the gel data defined in (7.13). This

solution has the following properties.

1. Phase Transition. Let tg be the first time at which the solution λt fails to be

conservative, that is:

tg := inf{t ≥ 0 : 〈πi,λt〉 ∕= 〈πi,λ0〉 for some 0 ≤ i ≤ n+m} = inf{t ≥ 0 : 〈ϕ,λt〉 < 〈ϕ,λ0〉}.
(7.16)

Then tg ∈ (0,∞), and can be given explicitly in terms of the moments of λ0 as

tg = σ1(Z(λ0))
−1 (7.17)

where σ1(·) denotes the largest eigenvalue of a matrix, and Z(λ0) is the n × n matrix of

moments

Z(λ0)ij = 2〈(Aπ)iπj,λ0〉, 1 ≤ i, j ≤ n. (7.18)

2. Behaviour of the Second Moment. Consider the second moments

Q(t) = (〈πiπj,λt〉)ni,j=0; E(t) = 〈ϕ2,λt〉. (7.19)

Then

i). Q(t) is finite and continuous, and so locally bounded, on [0,∞) \ {tg}.

ii). On [0, tg), each moment Qij is monotonically increasing, as is E .

iii). At the gelation time, E(tg) = ∞, and E(t) → ∞ as t → tg.
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3. Representation of Gel Data. For each t ≥ 0, there exists a unique maximal

n-tuple ct = (cit)
n
i=1 ≥ 0 such that, for all x ∈ S,

n"

i=1

citπi(x) = 2t

!

S

/
1− exp

/
−

n"

i=1

citπi(y)

00
K(x, y)λ0(dy). (7.20)

ct undergoes a phase transition at time tg: if t ≤ tg, then ct = 0, and if t > tg then at

least one component of ct is strictly positive. Moreover, the map t /→ ct is continuous.

The gel data are given in terms of ct by

git =

!

S

πi(x)

/
1− exp

/
−

n"

j=1

cjtπj(x)

00
λ0(dx), 1 ≤ i ≤ n+m. (7.21)

Therefore, if t > tg then Mt > 0, and Et > 0 componentwise, while Pt = 0 for all t ≥ 0.

Moreover, the map t /→ gt is continuous, and gtg = 0.

4. Gel Dynamics. The map t /→ gt is differentiable on t ∈ (tg,∞), and

d

dt
git =

n"

j,k=1

〈πiπj,λt〉ajkgkt , 1 ≤ i ≤ n. (7.22)

5. Order of the Phase Transition, and the Size-Biasing Effect. The map t /→ ct

is right-differentiable at tg, and as a consequence, the phase transition of gt is first order.

That is, the right-derivatives of the gel data git, i = 0, 1, ..., n exist and are strictly positive

at tg. Moreover, there exist θi ≥ 0, i = 1, .., n, such that
<

i θi = 1 and such that

n"

i=1

θi(g
′
tg+)i ≥

6<n
i=1〈θiπi,λ0〉
〈π0,λ0〉

7
(g′tg+)0. (7.23)

We call this a size-biasing effect: the average of the linear combination
<

i θiπi over

particles in the early gel is at least the average over all particles. Let us define also the

total interaction rate, which will quantify the inhomogeneity of the initial data λ0:

s(x) =

!

S

K(x, y)λ0(dy). (7.24)

If s is not constant λ0-almost everywhere, then θi can be chosen so that the inequality in

(7.23) is strict.

We also prove the following theorem, which is a law of large numbers result for the

coagulating particle system (xN
j (t) : j ≤ lN(t)) . Firstly, following ideas of [156], we

show that the empirical measure λN
t converges to the limiting solution (λt)t≥0 in the

weak topology, uniformly in time. The second part of the result is that the stochastic gel
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gNt = N−1π(xN
1 (t)) itself satisfies a law of large numbers, converging to the true gel gt as

N → ∞, where we order1 the particles so that xN
1 is the largest particle by π0.

We make the following hypotheses for the law of large numbers. These are naturally

satisfied when, for example, the initial particles (xN
i (0) : 1 ≤ i ≤ lN(0)) are sampled as a

Poisson random measure with intensity Nλ0. However, it is useful for some intermediate

results to give these results in the more general form used here.

Hypothesis 7.2. Let λN
0 be the initial data the stochastic coagulant, and let λ0 be the

initial data of the limiting Flory equation.

(B1.) As N → ∞, the initial measures λN
0 = 1

N

<
i≤lN (0) δxi

converge in probability to λ0

in ρ1, that is:

ρ1(λ
N
0 ,λ0) → 0 in probability. (7.25)

Moreover, λN
0 is supported on the set {π0 = 1}.

(B2.) We also have the convergence

〈πi,λ
N
0 〉 → 〈πi,λ0〉 in probability (7.26)

for all 0 ≤ i ≤ n+m, and the uniform integrability

sup
N≥1

E〈ϕ2,λN
0 〉 < ∞; sup

N≥1
E
G
〈ϕ2,λN

0 〉1I
-
〈ϕ2,λN

0 〉 ≥ M
.H

→ 0 as M → ∞.

(7.27)

Theorem 7.3. Let λ0 be a sub-probability measure on S satisfying Hypothesis 7.1, and

let (λt)t≥0, (gt)t≥0 be the associated solution to (Fl) and corresponding gel. For N ≥ 1,

let λN
t be the stochastic coagulant with initial data satisfying Hypothesis 7.2, and write

(xN
j (t) : j ≤ lN(t)) for the particles of the stochastic system, sorted in decreasing order

of π0. Let gNt = N−1(πi(x
N
1 (t)))

n
i=0 be the data of the largest particle in the stochastic

system, normalised by N−1. Then we have the convergence

sup
t≥0

-
ρ1

-
λN
t ,λt

.
+
@@gNt − gt

@@. → 0 (7.28)

in probability. In particular, we have the following phase transition:

i). If t ≤ tg, then the largest particle has gel data of the order op(N);

ii). If t > tg, the largest particle has gel data of the order Θp(N).

Moreover, if ξN is any sequence with ξN → ∞ and ξN
N

→ 0, then we may define 5gNt by

summing the data of all particles xN
j (t) with π0(x

N
j (t)) ≥ ξN , and normalising by N . Then

the same result holds when we replace gNt by 5gNt in (7.28).

Here, and throughout, we use the notation op(·),Op(·),Θp(·) for the probabilistic equiv-

alents of o(·),O(·),Θ(·), and say that an event2 holds with high probability if relevant

probabilities converge to 1 as N → ∞. Precise definitions can be found in [117].

1With an arbitrary rule for tie-breaks.
2Or, more formally, a sequence of events indexed by N .
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7.1.3 Plan of the Chapter.

Our programme will be as follows.

i). In the remainder of this section, we will discuss other works on coagulating particle

systems in the literature, and how they relate to our results.

ii). Before beginning on the analysis of the more general framework of bilinear coagu-

lation systems, we discuss in Section 7.2 how the general framework can be applied

to the specific case of the Kac interaction clusters. This will show how Theorems

7.2 - 7.3 imply Theorem 5 and link this chapter back to the ideas discussed in the

introduction.

iii). In Section 7.3, we will prove that the limiting equation (Fl) has unique, globally

defined solutions, based on a truncation argument from [155, 156].

iv). In Section 7.4, we prove an initial result, Lemma 7.7, on the convergence of the

stochastic coagulant, using the ideas of [156, Theorem 4.1]. This will later be

used to prove later points of Theorem 7.2 based on probabilistic arguments for the

empirical measures λN
t , and the random graphs GN

t introduced in Section 7.5.

v). In Section 7.5, we show how the stochastic coagulant can be coupled to a family

of inhomogenous random graphs defined in [28]. Key results for these graphs are

recalled in Appendix 7.B. The critical time tc for these graphs may be found exactly,

leading to the explicit expression in Theorem 7.2.

vi). A weakness of the preceding sections is that, a priori, the critical time tc for the

graph processes may differ from the gelation time tg; in Section 7.6, we show that

this cannot happen. This is based on a preliminary version of Theorem 7.3, which

shows convergence of (λN
t , g

N
t ) at a single fixed time t ≥ 0.

vii). Section 7.7 is dedicated to a proof of item 2 of Theorem 7.2, concerning the second

moments Qij(t) = 〈πiπj,λt〉, E(t) = 〈ϕ2,λt〉. The statements about the subcritical

and critical cases t < tg, t = tg follow general ideas in [155, 156], while the statement

about the supercritical case t > tg uses additional ideas from the theory of random

graphs.

viii). Section 7.8 uses the ideas of previous sections to prove items 3 and 4 of Theorem

7.2, concerning the gel data gt beyond the critical point.

ix). Section 7.9 uses the analysis of the gel to extend Lemma 7.7 to show that convergence

is uniform in time.

x). Section 7.10 proves item 5 of Theorem 7.2, concerning the behaviour near the critical

point. This completes the proof of this theorem.
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xi). To finish the proof of Theorem 7.3, we revisit the ideas of Section 7.6 to prove

convergence of the stochastic gel gNt , 5gNt , uniformly in time. This is the focus of

Section 7.11, and builds further on ideas of previous sections.

7.1.4 Literature Review

Let us discuss some literature connected to the coagulation equations we discuss here

and which is specific to this chapter. Smoluchowski originally considered the case where

particles have only a mass in N, and where the coagulation x, y /→ x + y has a general

rate K(x, y). In this case, identifying measures λ ∈ M≤1(N) with a summable sequence,

the equation analagous to (Sm) reads

d

dt
λt(x) =

"

y<x

K(y, x− y)λt(y)λt(x− y)dy − 2λt(x)
∞"

y=1

K(x, y)λt(y)dy, (7.29)

For an extensive review we refer to [5]. The case K(x, y) := xy is known as the multi-

plicative coagulation kernel and in this case with λ0 = δ1, the solution of (7.29) exhibits

gelation at tg =
1
2
.

The existence and value of the gelation time has been studied for a range of K. For

particles with integer masses and ε(xy)α ≤ K(x, y) ≤ Mxy, M ∈ R+,α ∈ (1
2
, 1) Jeon

[119] proved the existence of a gelation phase transition and provided an upper bound on

the gelation time.

Müller [151] first introduced the study of coagulation equations on a continuous state

space. Norris [155, 156] introduced a more general form, analagous to (Sm) on a general

space S, allowing particles with internal structure and where, for any pair of particles,

there are multiple possible coagulation products, in terms of a general conserved function

ϕ, which is the spirit of our current investigation. This work provided showed that, if the

merger rate goes like K(x, y) ≤ ϕ(x) + ϕ(y), then tg = ∞, so no gelation occurs, and

that, if the kernel is bounded above and below by multiples of ϕ(x)ϕ(y), that gelation

occurs at a finite, positive time, coinciding with the blow-up of the second moment.

Under the second assumption, [156, Theorem 2.2] finds upper and lower bounds for the

gelation time; however, these bounds do not coincide in general. Although these ideas

do not immediately apply to our bilinear case, we will use this as an intermediate step

in the derivation of Theorem 7.2.2. Normand [153] obtained explicit results concerning

the blowup of a second moment for a sexed model which gives a lower bound on the

gelation time, and in a later work [154] finds explicit expressions for the gelation time for

a selection of models with arms. Consequently, this is one of the first (families of) models

for which the gelation time can be found semi-explicitly; moreover, several aspects of our

analysis extend what was previously known about the Smoluchowski equation, using the

connection to random graphs [28].
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The study of gelation as the formation of a very large connected structure by joining

basic building blocks goes back at least to Flory [78] whose motivation was hydrocarbon

polymerisation in the manufacture of plastics. Flory understood polymerisation as the

formation of a random graph, rather than in terms of coagulation, and was aware of a

sharp phase transition at the emergence of a giant connected structure, which he termed

‘gel’. A rigorous proof of the random graph phase transition was provided by Erdős and

Rényi [75] for the multiplicative coagulant. In terms of the random graphs we will use

throughout this chapter, the case of the multiplicative coagulant corresponds exactly to

sparse Erdős-Réyni graphs. The existence of a phase transition corresponding to the

formation of a giant particle, which corresponds to the phase transition in Theorem 7.3,

was first discussed by Lushnikov [134], who uses this to explain the explosion of the

second moment, corresponding to item 2 of Theorem 7.2, in the particular case of the

multiplicative kernel. The first connection between random graph and particle approaches

appears in [34], where the phase transition is proved for the particle coagulation process

and an interpretation as a new proof for a phase transition in the Erdős-Rényi random

graph is noted; this is also discussed in the survey article [5]. We extend this connection,

and show that the bilinear form of the merger rate allows us to couple the stochastic

coagulant process to inhomogeneous random graphs as considered by [28].

As in the introduction, the original motivation of this chapter was to study a concept of

interaction clusters introduced by Gabrielov et al. [96] in the context of the spatially in-

homogeneous Boltzmann equation (spBE). The distribution of the sizes of the interaction

clusters is formally derived in [161] in terms of the solution of the Boltzmann equation.

Reducing to the case of cutoff Maxwell molecules for the spatially homogeneous Boltz-

mann equation, the phase transition observed in [96] can be identified precisely and the

cluster size distributions observed to match those arising from the Smoluchowski coag-

ulation equation with product kernel [134, 5, 161]. This current chapter is in the spirit

of [162], where the clusters were studied for the Kac process as a softer problem, and

which considers kernels including the hard sphere case to investigate the dependence of

the gelation phenomena on the kinetic factor. It was formally shown in this work that, in

a large particle number limit, the distribution of the cluster sizes converges to a version

of the Smoluchowski coagulation equation with a time-dependent product kernel. This

work also conjectured that gelation happens before the mean free time, which we verify

for the kernels (Qa,b) here.

Let us finally remark that the systems we study are pure coagulation systems, rather

than coagulation-fragmentation systems (see, for example [1, 17, 139]); once particles are

merged, they remain merged forever. This simplification leads to very different behaviour;

for example, the long-time behaviour of both the particle system and the limiting equation

is degenerate, as all the mass is eventually absorbed into a single particle. This is why we

can obtain uniform-in-time convergence in Theorem 7.3 without contradicting the sorts

of arguments we saw in Section 3.7 for the Kac process.
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7.2 Application to the Boltzmann Equation and Kac

Process

Before turning to the analysis of coagulation systems in general, let us show how Theorems

7.2 and 7.3 apply in the case in the introduction to the coagulative structure of interaction

clusters.

Let us first construct a space S which is rich enough to record all the information of

collision histories in a cluster. We define the space of k-particle clusters CLk to be the

space of connected multigraphs3 x on {1, . . . , k}, where each vertex i is equipped with an

ordered c(x)i = ci = degx(i)+1-tuple of vectors v1i , ...v
ci
i ∈ Rd, and the edges E(x) have a

partial ordering ! such that any edges with a common vertex are comparable. The edges

will represent collision events between particles, with e ! e′ meaning that the collision

event represented by e takes place before that represented by e′; the tuples v1i , ..., v
cx(i)
i

represent the velocities taken by particle i, initially and then after successive collisions,

and we can extract the most recent velocities by keeping only the last entry of each

tuple: v(x) = (v
cx(i)
i )ki=1. All x ∈ CLk are understood up to isomorphism, that is, up to

a relabelling of {1, ..., k} preserving the edges, the total ordering and the map v. This

admits a complete metric, given by

dk(x, y) = min

#
$

%1, inf
τ

k"

i=1

"

j≤cx(i)

|vji − wj
τ(i)|

Q
R

S

where the infimum runs over the (possibly empty) set of relabelings τ ∈ Sym(1, .., k)

which map the edges of x, with their partial order, onto those of y, and where we write

vji , w
j
i for the tuples associated to x, y. The overall state space for the coagulation is then

the disjoint union

S =
d

k≥1

CLk

which we give a metric by setting d(x, y) = dk(x, y) if both x, y ∈ CLk for some k, and

d(x, y) = 1 otherwise. Let us also say that x is a tree if the underlying graph is a tree,

that is, contains no cycles.

2. Coagulation & Evolution Kernels We next specify the transition maps K, J, JN

representing coagulation events and internal evolution respectively. For K, for each x ∈
CLp, y ∈ CLq with most recent velocities v(x) = (vi),v(y) = (wi) respectively and

i ≤ p, j ≤ q, let us form a family of new graphs as follows. We form a new graph on

{1, ..., p + q} by adding p to the labels attached to y, keeping the edge structure and

partial ordering the same. We add a new edge between i and j + p, and the new partial

3i.e. allowing multiple edges between the same vertexes.
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ordering is the minimal extension of the previous partial orderings such that the new edge

on (i, j + p) lies above all previous edges in x, y with which it shares a vertex. Finally,

the tuples of velocities at i, j + p are changed by appending v
1+cx(i)
i = v′(vi, wj, σ) and

w
1+cy(j+p)
j+p = v′∗(vi, wj, σ), for σ ∈ Sd−1 and the usual post-collisional velocities v′, v′∗.

Calling this new graph4 M(x, y, i, j, σ), the coagulation kernel K is formally given by

specifying, for f ∈ Cc(S),

!

S

f(z)K(x, y, dz) :=
"

i≤p,j≤q

!

Sd−1

f (M(x, y, i, j, σ))B(vi − wj, σ)dσ. (7.30)

The other kind of behaviour is internal evolution, which in the Boltzmann model corre-

sponds to a collision between particles already belonging to the same cluster. Continuing

in the notation for x above, we define the family of new graphs for internal structure

changes as follows. For i, j ≤ p, we add a new edge between vertexes i, j, extending

the partial ordering so that this lies above all other edges with which it shares a ver-

tex. The tuples of velocities of i, j are changed by adding v
1+cx(i)
i = v′(vi, vj, σ) and

v
1+cx(j)
j = v′∗(vi, vj, σ) respectively; we call the new graph U(x, i, j, σ). The corresponding

kernel at the level of the Kac process is given by specifying

!

S

f(y)JN(x, dy) = N−1
"

i,j≤p

!

Sd−1

f (U(x, i, j, σ))B(vi − vj, σ)dσ

which forces the choice J = 0 in the limit.

3. Involution and Conserved Quantities We next specify the involution R and the

conserved quantities πi. For R, we simply negate all the velocities in a graph x, keeping

the graph structure and partial ordering fixed. We set n = 2 and m = d the dimension of

the underlying space, and define for x ∈ CLp,

π0(x) = π1(x) = p; π2(x) =

p"

j=1

|vj|2; πi+2(x) =

p"

j=1

(vj)i

where vj = v
cx(j)
j are the most recent velocities associated to x, and where i refers to the

ith component of the vector in Rd.

4. Verification of requirements Let us now check that these are compatible with

Definition 7.1.1. The requirement i) that πi add at coagulation and are preserved under

internal evolution follows immediately from the fact that binary collisions (v, v∗) → (v′, v′∗)

preserve energy and momentum; item ii) is true by the definitions, and iii) follows by the

rotational invariance of the kernel. iv). is, in this context, simply the Cauchy-Schwarz

inequality, and items vi-vii) are easy to check.

4Formally, an equivalence class of such graphs.
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The only item which requires some thought, and for which we must restrict to the kernels

(Qa,b), is item v), where we require that the total interaction rate has a certain specific

(exact) form. As in the introduction, we expand the total rate of the coagulation kernel

K by setting f = 1 in (7.30) to find, in the same notation as above,

K(x, y) =
"

i≤π0(x),j≤π0(y)

!

Sd−1

B(vi − wj, σ)dσ

=
"

i≤π0(x),j≤π0(y)

(a+ b|vi|2 − 2bvi · wj + b|wj|2)

= aπ1(x)π1(y) + b(π1(x)π2(y) + π2(x)π1(y))− 2b
d"

i=3

πi(x)πi(y)

(7.31)

which is of the form desired, with the block-diagonal matrix

A =

8

aaaaaaaaa9

a b 0 0 . . . 0

b 0 0 0 . . . 0

0 0 −2b 0 . . . 0

0 0 0 −2b . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . −2d

:

bbbbbbbbb;

. (7.32)

With this framework, let us now see how the statement of Theorem 5 in the introduction

corresponds to Theorems 7.2, 7.3 which we will prove in this chapter. The conditions

that 〈|v|6, µ0〉 < ∞ and the symmetry of µ0 imply that the Hypotheses 7.1 holds, whereas

Hypothesis 7.2 follows from the convergence µN
0 → µ0, 〈|v|4, µN

0 〉 → 〈|v|4, µ0〉 hold, when
we obtain λN

0 ,λ0 as the pushforward of µN
0 , µ0 under the map which takes v to the graph

x1
v on {1}, with no edges and decorated with the assignment v1 = v.

With these in hand, almost all of Theorem 5 follows immediately. To compute the gelation

time explicitly, we recall that µ0 ∈ S and that λ0 is its pushforward, as above, to get

〈π1π1,λ0〉 = 1; 〈π1π2,λ0〉 = 〈|v|2, µ0〉 = 1; 〈π2π2,λ0〉 = 〈|v|4, µ0〉 = Λ4(µ0).

The requirement that 〈π3
1,λ0〉 is trivial, and 〈π3

2,λ0〉 = 〈|v|6, µ0〉 is finite by assumption.

The matrix of moments Z(λ0)ij = 2〈(Aπ)iπj,λ0〉, i, j ≤ n is therefore

Z(λ0) =

/
2a+ 2b 2a+ 2bΛ4(µ0)

2b 2b

0
(7.33)

The eigenvalues are the two roots of a quadratic equation which simplifies to

x2 − 2x(a+ 2b) + 4b2(1− Λ4(µ0)) = 0

of which the larger is is the positive root, producing

t−1
g = a+ 2b+

I
(a+ 2b)2 + 4b2(Λ4(µ0)− 1)
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which is the value claimed in Theorem 5. For comparison, the reciprocal of the mean free

time is the mean collision rate:

t−1
mf = 2

!

Rd×Rd

(a+ b|v − w|2)µ0(dv)µ0(dw) = 2(a+ 2b)

which is strictly less than t−1
g unless b2(Λ4(µ0)−1) = 0, which gives exactly the two special

cases in Theorem 5: either b = 0 or Λ4(µ0) = 1, and in the latter case the normalisation

Λ2(µ0) = 1 implies that µ0(|v| = 1) = 1. We also remark that the special case of point 5

of Theorem 7.2 occurs only when the map

v /→
!

Rd

(a+ b|v − w|2)µ0(dw) = a+ b+ b|v|2

is constant µ0(dv)-almost everywhere, which is exactly the same two special cases: either

b = 0 or |v| is constant µ0-almost everywhere.

We must also check that the solution (λt)t≥0 to the corresponding Flory equation (Fl)

concentrates on tree-clusters. For k ≥ 1, let us choose a continuous, nonincreasing func-

tion gk on [0,∞) which is supported on [0, k + 1] and equal to 1 on [0, k]. We now define

the functions

fk(x) =

#
$

%
gk(π2(x)) if x ∈ CLp is not a tree, p ≤ k;

0 else

so that each fk belongs to the class A. We next observe that, for any x, y, i, j, σ, the

graph with one edge added M(x, y, i, j, σ) is a tree if and only if both x, y are trees,

since we only add one edge between the respective copies of x, y. It follows that, if

fk(M(x, y, i, j, σ)) > 0, then at least one of x, y has π1 ≤ k, π2 ≤ k and fails to be a tree;

without loss of generality, let us suppose that this is x. Since gk is nonincreasing, we get

fk(M(x, y, i, j, σ)) = gk(π2(x) + π2(y)) ≤ gk(π2(x)) = fk(x).

Overall it follows that, in any case,

fk(M(x, y, i, j, σ))− fk(x)− fk(y) ≤ 0

for any x, y, i, j, σ, and recalling that J = 0 for this application, 〈fk, L(λ)〉 ≤ 0 for any λ.

In particular, along our solution λt we have 〈fk, Lg(λt)〉 ≤ 0, so 〈fk,λt〉 is nonincreasing.
This starts at 0 because all singletons are trees, and since fk ≥ 0 we conclude that

〈fk,λt〉 = 0 for all t. Now sending k ↑ ∞ for any fixed t, the functions fk converge

upwards to the indicator on clusters which are not trees, so

λt(x : x is not a tree) = lim
k
〈fk,λt〉 = 0

and we conclude that λt is supported on trees as claimed.

Let us finally check the claim regarding recovering a solution to the Boltzmann equation;



382 7.2. APPLICATION TO THE BOLTZMANN EQUATION AND KAC PROCESS

let λ0 be obtained by pushing µ0 forward as above, and let λt be the corresponding solution

to (Fl); in Theorem 5, we claimed that the measures µt given by forgetting the cluster

structure (and keeping only the most recent velocities) produced an energy-conserving

solution to (BE) on [0, tg], but were not probability measures for t > tg. We deal with

the claims t ≤ tg, t > tg separately.

Step 1. t ≤ tg Let us fix f ∈ Cb(Rd) with ‖f‖∞ ≤ 1, and fix for the moment t < tg. Let

us set g = F*f be the function on S which evaluates f at all the most recent velocities:

g(x) = (F*f)(x) :=

π0(x)"

i=1

f(vi); (v1, ..., vπ0(x)) = v(x).

Let us now fix x ∈ CLp, y ∈ CLq with most recent velocities (vi), (wj) as above. We

observe, as in the introduction, that

g(M(x, y, i, j, σ))− g(x)− g(y)

= f(v′(vi, wj, σ))− f(v′∗(vi, wj, σ))− f(vi)− f(wj)

so that
!

S

(g(z)− g(x)− g(y))K(x, y, dz)

=
"

i≤p,j≤q

!

Sd−1

(f(v′(vi, wj, σ))− f(v′∗(vi, wj, σ))− f(vi)− f(wj))B(vi − wj, σ)dσ.

(7.34)

We now use a truncation argument. For R ≥ 1, let ψR be a continuous function which is

equal to 1 on [0, R] and supported only on [0, R+1]. We now set gR(x) := g(x)ψR(π1(x)+

π2(x)), so that we may use gR as test functions in (Sm, Fl). For t < tg, only L(λt) counts,

and we have

〈gR,λt〉 = 〈gR,λ0〉+
! t

0

〈gR, L(λs)〉ds, t < tg.

We now take R → ∞; since |gR| ≤ π1 is integrated by all λt, we get 〈gR,λt〉 → 〈g,λt〉.
For the dynamic term, we write

! t

0

〈gR, L(λs)〉ds =
! t

0

!

S×S×S

(gR(z)− gR(x)− gR(y))λs(dx)λs(dy)K(x, y, dz).

For each x, y, z and s ≤ t, the integrand converges to g(z)−g(x)−g(y); to use dominated

convergence we write, uniformly in R, |gR(z) − gR(x) − gR(y)| ≤ 2(π1(x) + π1(y)). We

then dominate
&
S
K(x, y, dz) ≤ C(π1(x) + π2(x))(π1(y) + π2(y)), for some C, so that for

all x, y, uniformly in R,
!

S

|gR(z)− gR(x)− gR(y)|K(x, y, dz)

≤ C(π1(x) + π2(x))
2(π1(y) + π2(y)) + C(π1(x) + π2(x))(π1(y) + π2(y))

2.
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The right-hand side is integrable on [0, t], because t < tg, using Theorem 7.2.2.i) to see

that 〈(π1 + π2)
2,λs〉 is bounded on s ∈ [0, t], and 〈π1 + π2,λs〉 is bounded globally. We

can therefore use dominated convergence to see that
! t

0

〈gR, L(λs)〉ds →
! t

0

!

S×S×S

(g(z)− g(x)− g(y))K(x, y, dz)λs(dx)λs(dy)ds

for all t < tg, and we conclude that

〈g,λt〉 = 〈g,λ0〉+
! t

0

!

S×S×S

(g(z)− g(y)− g(x))K(x, y, dz)λs(dx)λs(dy)ds. (7.35)

Finally, we express everything in terms of the original function f and µt = Fλt. We have

〈g,λt〉 = 〈f, µt〉 by definition, and integrating (7.34) shows that
!

S×S×S

(g(z)− g(x)− g(y))K(x, y, dz)λs(dx)λs(dy) = 〈f,Q(µs)〉.

We therefore conclude from (7.35) that, for any t < tg,

〈f, µt〉 = 〈f, µ0〉+
! t

0

〈f,Q(µs)〉ds (7.36)

so that (µt)t<tg solves (BE) as desired. We also have that 〈1, µ0 − µt〉 = 〈π1,λ0 − λt〉 = 0,

so we have a probability measure, and 〈|v|2, µ0 − µt〉 = 〈π2,λ0 − λt〉 = 0, so we conserve

energy, for t ≤ tg.

To extend (7.36) to include the critical point, we observe that 〈π1,λtg〉 = 1, so for all

ε > 0, there exists R < ∞ such that 〈π11I{π1 > R},λtg〉 < ε; it is straightforward

to see that this integral can only increase on [0, tg], so the same holds for t < tg. For

the same truncated functions gR as earlier, we have that 〈gR,λt〉 → 〈gR,λtg〉 as t ↑ tg,

using (Fl), and 〈|g − gR|,λt〉 ≤ 〈π11I{π1 > R},λt〉 < ε for t ≤ tg, so we conclude that

lim supt↑tg |〈g,λt−λtg〉| ≤ 2ε. Since ε > 0 was arbitrary, we conclude that 〈f, µt〉 = 〈g,λt〉
converges to 〈f, µtg〉 = 〈g,λtg〉 as t ↑ tg. It is an easy calculation to see that 〈f,Q(µt)〉 is
bounded, we can take a limit t ↑ tg of (7.36) above to see that the same equality holds at

t = tg.

Step 2. t > tg. In the case t > tg, we set f = 1 in the notation above, which produces

g = F*f = π1. We therefore have, as remarked above,

〈1, µt〉 = 〈π1,λt〉 = 1−Mt

which is valid for all t ≥ 0. As soon as t > tg, Theorem 7.2.3 shows that Mt > 0, and µt

is a strictly sub-probability measure.

Let us conclude with a remark on the choice of S. We chose here a fairly complicated

space, which is rich enough to encode not only the most recent velocities but also the entire

collisional history. Most of the applications would be the same if we could extract only

the most recent velocities or even only the overall particle number, energy and momentum

of each cluster, to work on (much) simpler spaces.
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7.3 Well-Posedness of the Flory Equation

This chapter is dedicated to a first analysis of the Smoluchowski equations (Sm, Fl),

following Norris [155, 156]. Our goal in this section is to prove the following lemma on

the well-posedness of (Fl).

Lemma 7.4. For any measure λ0 ∈ M≤1(S) satisfying (A1.), the equation with gel (Fl)

has a unique global solution (λt)t≥0 starting at λ0. Moreover, Pt = 0 for all t ≥ 0.

Corollary 7.5. Suppose (λ′
t)t<T is a conservative local solution to the equation without

gel, (Sm), starting at λ0. Then λt = λ′
t for all t < T , and T < tg. Hence, (Sm) has a

unique maximal conservative solution, given by (λt)t<tg .

Our proof of Lemma 7.4 is an adaptation of the arguments in [155, Section 2] and [156,

Section 2] and is based on a truncation argument. Recalling that ϕ =
<n

i=0 πi, we see

that K(x, y) ≤ ∆ϕ(x)ϕ(y) for some ∆ = ∆(A). For all ξ > 0, we define the truncated

particle space

Sξ = {x ∈ S : ϕ(x) ≤ ξ}. (7.37)

We consider the following ‘truncation at level ξ’: in the empirical measure, we track only

those particles inside Sξ, and consider all other particles to belong to a ‘truncated gel’.

Although the particles in the truncated gel affect the dynamics in Sξ, these contributions

depend only on the total data gξ of the truncated gel, due to the bilinear form of the

kernel. This leads to an ordinary differential equation with Lipschitz coefficients in an

infinite dimensional space.

We formalise this intuition as follows. For a measure λξ supported on Sξ and gξ ∈ Sg, we

define a signed measure Lξ
g(λ

ξ, gξ) on Sξ by specifying, for all f ∈ Cb(S),
Z
f, Lξ

g(λ
ξ, gξ)

[

=

!

Sξ×Sξ×S

[f(z)1I[ϕ(z) ≤ ξ]− f(x)− f(y)]K(x, y, dz)λξ(dx)λξ(dy)

+

!

Sξ

(f(y)− f(x))J(x, dy)λξ(dx)−
!

Sξ

f(x)K(x, gξ)λξ(dx).

(7.38)

This corresponds to the dynamics of particles inside Sξ. The rate of change of the trun-

cated gel data is given by

Rξ
g(λ

ξ, gξ) =

!

S2
ξ

π(x+ y)1I[ϕ(x) + ϕ(y) > ξ]K(x, y)λξ(dx)λξ(dy)

+

!

Sξ

π(x)K(x, gξ)λξ(dx).

(7.39)

We now seek measures λξ
t supported on Sξ and gel data gξt = (M ξ

t , E
ξ
t , P

ξ
t ) ∈ Sg such that,

for all bounded measurable f on Sξ,

〈f,λξ
t 〉 = 〈f,λξ

0〉+
! t

0

Z
f, Lξ

g(λ
ξ
s, g

ξ
s)
[
ds; (Fl|1ξ)
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gξt = gξ0 +

! t

0

Rξ
g(λ

ξ
s, g

ξ
s)ds. (Fl|2ξ)

We will use the following existence and uniqueness result for the restricted dynamics (Fl|1ξ ,
Fl|2ξ).

Lemma 7.6. [Existence and Uniqueness of Restricted Dynamics] Suppose λξ
0 is a finite

measure on Sξ which satisfies (A1.), and gξ0 ∈ Sg satisfies πi(g
ξ
0) = 0 for all i > n. Then

there exists a unique map (λξ
t , g

ξ
t ) on [0,∞), which solves the restricted dynamics (Fl|1ξ,

Fl|2ξ). Moreover, for all t ≥ 0, λξ
t is a positive, finite measure on Sξ, P

ξ
t = 0 for all times

t ≥ 0, and gξt ∈ Sg.

Sketch Proof of Lemma 7.6. This may be proved by a straightforward modification of the

arguments in [155, Proposition 2.2]. We define Picard iterates ((λ
(ξ,n)
t , g

(ξ,n)
t ) : n ≥ 0, t ≥

0) by

(λ
(ξ,0)
t , g

(ξ,0)
t ) = (λξ

0, g
ξ
0); (7.40)

'
λ
(ξ,n+1)
t , g

(ξ,n+1)
t

(
= (λξ

0, g
ξ
0) +

! t

0

(Lξ
g, R

ξ
g)
-
λ(n,ξ)
s , g(n,ξ)s

.
ds. (7.41)

One then uses bilinear continuity arguments in total variation norm ‖ · ‖TV to show that,

given a bound 〈ϕ,λξ
0〉 + ϕ(gξ0) ≤ C, there is a positive time T = T (ξ, C) > 0 such that

the Picard iterates (λ
(ξ,n)
t )t≤T converge uniformly in total variation on [0, T ], and that the

limit λξ
t solves (Fl|1ξ , Fl|2ξ), possibly allowing λξ

t to be a signed measure. This argument

also implies that the solution is unique on this interval. Now, we note that the quantity

〈ϕ,λξ
t 〉 + ϕ(gξt ) is constant in time, and therefore this construction can be repeated on

[T, 2T ], [2T, 3T ], etc, which proves global existence and uniqueness. Finally, an integrating

factor is introduced (see also Step 3 of Lemma 6.22) to argue that λt is a positive measure.

In our case, it is also straightforward to see that the gel dataM ξ
t , E

ξ
t ≥ 0, and that P ξ

t = 0,

thanks to the symmetry (A1.).

Proof of Lemma 7.4. We first show existence. For all ξ < ∞, we let (λξ
t , g

ξ
t ) be the

solution to the dynamics (Fl|1ξ , Fl|2ξ) restricted to Sξ, with initial data

λξ
0(dx) = 1I[x ∈ Sξ] λ0(dx); gξ0 =

!

x ∕∈Sξ

π(x)λ0(dx). (7.42)

Observe that, if ξ < ξ′, then 5λξ
t , 5g

ξ
t given by

5λξ
t (dx) = 1Ix∈Sξ

λξ′

t (dx); 5gξt = gξ
′

t +

!

x∈Sξ′\Sξ

π(x)λξ′

t (dx) (7.43)

solve the dymanics (Fl|1ξ ,Fl|2ξ) with the same initial data λξ
0, g

ξ
0. From uniqueness in Lemma

7.6, it follows that 5λξ
t = λξ

t ; 5g
ξ
t = gξt . This shows that the measures λξ

t are increasing in
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ξ, while the gel data M ξ
t , E

ξ
t are decreasing, and P ξ

t is identically 0, by symmetry (A1.).

Therefore, the limits

λt = lim
ξ↑∞

λξ
t ; Mt = lim

ξ→∞
M ξ

t ; Et = lim
ξ→∞

Eξ
t (7.44)

exist in the sense of monotone limits; one can then check that λt and gt = (Mt, Et, 0)

satisfy the full equation (Fl), with initial values λ0 and g0 = 0.

To see uniqueness, let λt be the solution constructed above and write gt = (Mt, Et, Pt) for

the data of the gel. Let 5λt be any solution to (Fl) starting at λ0, and let 5gt = (M̃t, Ẽt, P̃t)

be the associated data of the gel. For all ξ < ∞, it is simple to verify that

5λξ
t (dx) = 1Ix∈Sξ

5λt(dx); 5gξt = 5gt +
!

Sc
ξ

π(x)5λt(dx) (7.45)

is a solution to the dynamics (Fl|1ξ , Fl|2ξ) on Sξ. By uniqueness in Lemma 7.6, it follows

that 5λξ
t = λξ

t , and taking monotone limits, we see that 5λt = limξ→∞ 5λξ
t = limξ→∞ λξ

t = λt.

The argument for 5g is identical.

7.4 Convergence of the Stochastic Coagulant

We now turn to a preliminary version of Theorem 7.3. In this section, we will outline the

proof of the convergence of the stochastic coagulant λN
t to a solution λt of (Fl), locally

uniformly in time. Most of the arguments are well-known for the Smoluchowski equation

[155, 156], and for brevity, we will sketch the proof with an indication of the nontrivial

technical details. Throughout, we fix λ0 satisfying Hypothesis 7.1, and λN
t with initial

data λN
0 satisfying Hypothesis 7.2. Our result is as follows.

Lemma 7.7. Suppose λ0 satisfies Hypothesis 7.1, and let (λt)t≥0 be the solution to (Fl)

starting at λ0. Let (λN
t )t≥0 be stochastic coalescents with initial data λN

0 satisfying Hy-

pothesis 7.2. Then we have the local uniform convergence

∀tf ≥ 0 sup
t≤tf

ρ1(λ
N
t ,λt) → 0 in probability (7.46)

where recall that ρ1 is a complete metric inducing the weak topology.

Remark 7.8. We will later upgrade the local uniform convergence to full uniform con-

vergence in Lemma 7.37. We also remark that this does not immediately imply the con-

vergence of the gel terms in Theorem 7.3, as the test functions involved neither belong to

A, nor are even bounded. This will be dealt with in Sections 7.6, 7.11, where the proofs

build on this result.

Proof. Since we seek only qualitative convergence, we use the well-known method of

proving tightness and identifying possible limit paths.
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Step 1. Tightness Firstly, the jump rates can bounded, uniformly in time, in terms of

the initial second moment 〈ϕ2,λN
0 〉, with a total jump rate of the form cN(1 + 〈ϕ2,λN

0 〉).
Thanks to (B2.), the kinetic factors these are stochastically bounded: 〈ϕ2,λN

0 〉 ∈ Op(1)

as N → ∞, while the jumps are all of the order N−1 in the metric d. As a result, it

follows that for all tf ≥ 0, the processes (λN
t )0≤t≤tf are tight in the Skorohod topology of

D([0, tf ], (M≤1(S), ρ1)), see for instance [116, Theorem 4.6] or [4].

Step 2. Identification of the Limit Let us now prove that the only possible limit

path is the desired path (λt)t≤tfin given by (Fl). Let us fix a subsequence L ⊂ N, along
which (λN

t )t≤tfin converges in distribution in the Skorokhod topology to a limit (λt)t≤tfin .

We observe that, for almost all ξ > 0, the following hold:

i). Almost surely, for almost all t ≤ tf ,

λt ({x : ϕ(x) = ξ}) + λt ⊗ λt ({(x, y) : ϕ(x+ y) = ξ}) = 0; (C1.)

ii). This also holds for t = 0. That is, almost surely,

λ0 ({x : ϕ(x) = ξ}) + λ0 ⊗ λ0 ({(x, y) : ϕ(x+ y) = ξ}) = 0. (C2.)

For such ξ, we consider the pair

λN,ξ
t = λN

t 1ISξ
; gN,ξ

t = 〈π,λN
t − λN,ξ

t 〉 (7.47)

and take the limit N → ∞. We first observe that λ0 = λ0 using (B1.), and that gN,ξ
t →

〈π,λ0 − λ
ξ

t 〉 = gξt using (C1.-C2.). For any f ∈ A, we observe that the process

MN,f
t = 〈f,λN,ξ

t − λN,ξ
0 〉 −

! t

0

!

Sξ×Sξ×S

(f(z)1Iz∈Sξ
− f(x)− f(y))K(x, y, dz)λN

s (dx)λ
N
s (dy)ds

−
!

Sξ

f(x)K(x, gN,ξ
s )λN

s (dx)ds

−
! t

0

!

Sξ×Sξ

(f(y)− f(x))JN(x, dy)λN
s (dx)ds

(7.48)

is a martingale, of quadratic variation on the order E[MN,f ]tfin ≤ CN−1, and so MN,f
t

converge in probability in the Skorokhod topology to the 0 process. On the other hand,

on the subsequence L, we take the limit N → ∞. This is licit, since we can use (C1., C2.)

to show that the discontinuity of the indicators in z, x, y does not change the convergence,

since the sets where the integrand is discontinuous receive 0 mass in the limit. We therefore

have the convergence in distribution

MN,f
t → 〈f,λξ

t − λ
ξ

0〉 −
! t

0

〈f, Lξ
g(λ

ξ

t , g
ξ
t )〉ds (7.49)
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and it follows that the right-hand side is 0 almost surely. Taking an intersection over a

countable set of functions in Cb(Sξ) which are dense for the topology of uniform converge

on compact sets, and since (Fl|1ξ) depends only on the behaviour on the set Sξ, we conclude

that λt1ISξ
, gξt = 〈π,λ0−λ

ξ

0〉 satisfy the truncated equation (Fl|1ξ) with λ
ξ

0 = λξ
0 and gξ0 = 0,

and a similar argument holds for (Fl|2ξ). Thanks to the construction of solutions to the

global equation (Fl) in Lemma 7.4, we know that for all such ξ, λt1ISξ
coincides with

λt1ISξ
almost surely. Finally, we take a limit of such ξ ↑ ∞, to conclude the equality

λt = λt, t ≤ tf . We have now identified the only possible limit process as the (nonrandom)

solution (λt)t≥0 to (Fl) starting at λ0, so we must have λN
t → λt in the Skorokhod topology

in probability.

Step 3. Uniformity of Convergence Since the limit process (λt)0≤t≤tf is continuous

in the weak topology (M≤1(S), ρ1), it follows that we may upgrade from Skorohod to

uniform convergence:

sup
0≤t≤tf

ρ1
-
λN
t ,λt

.
→ 0 in probability (7.50)

as claimed.

7.5 Coupling of the Stochastic Coagulant to Random

Graphs

In this section, we will show that the stochastic coagulant defined in the introduction may

be coupled to a dynamic version of the random graphs GV(N, tk/N) considered in [28].

This allows us to apply some results of that paper, which we summarise in Appendix 7.B,

to analyse the stochastic coagulant process and the limit equation.

Definition 7.5.1. [Dynamic Inhomogenous Random Graphs] Fix a measure λ0 satisfying

Hypothesis 7.1. Let xN = (xi, i = 1, 2, ..., lN) be a collection random points in S of

potentially random length lN , and sample τe ∼ Exponential(1), independently of each

other, for e = (ij), 1 ≤ i, j ≤ lN , and independently of xN . We define the kernel

k(v, w) = 2K (x, y) (7.51)

where the right-hand side is the total mass of the interaction kernel K(x, y) = K(x, y, S).

We form the random graphs (GN
t )t≥0 on {1, 2, ..., lN} by including the edge e = (ij) if

t ≥ Nτe
k(xi, xj)

. (7.52)

We write GN
t ∼ G(xN ,

tK
N
) for the distribution of GN

t , for a single fixed t ≥ 0. We

say that GN
0 satisfy Hypothesis 7.2 for λ0 if the same is true of the empirical measures

λN
0 = N−1

<
i≤lN δxi

. We emphasise that the xi do not change during the dynamics.
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This has the following immediate consequences. Firstly, the conditions in Hypothesis

7.2 guarantee that V = (S,λ0, (xN)N≥1), is a generalised vertex space in the sense of

[28], which is recalled in Definition 7.B.1, and k is an irreducible kernel as described in

Definition 7.B.2, thanks to (A4.). Using both parts of (B2.), one can also show that the

kernel k is graphical in the sense of Definition 7.B.4.

For all times t, GN
t is an instance of the inhomogeneous random graph from Definition

7.B.3. Moreover, the process (GN
t )t≥0 is increasing, and is a Markov process, by the

memoryless property of the exponential variables τe. We write T for the convolution

operator

(Tf)(x) =

!

S

f(y)k(x, y)λ0(dy) (7.53)

and ‖T‖ for the associated operator norm in L2(λ0).

We write also tc = ‖T‖−1. The following is the basic statement of a phase transition for

GN
t , which follows from Theorem 7.45.

Lemma 7.9. Let λ0 satisfy Hypothesis 7.1, and let GN
t be the random graphs constructed

above, such that GN
0 satisfy Hypothesis 7.2. Write C1(G

N
t ) for the size of the largest

component of GN
t . Then we have the following phase transition:

i). If t ≤ tc, then N−1C1(G
N
t ) → 0 in probability.

ii). If t > tc, then there exists c = c(t) such that, with high probability, C1(G
N
t ) ≥ cN.

We write C1(G), ...Cj(G), ... for the connected components, which we also call clusters, of

G, in decreasing order of size, allowing Cj = ∅ if G has fewer than j components and

Cj(G) for the number of vertices in Cj(G). For a cluster C of the graph GN
t , we will write

M(C) =
"

i∈C

π0(xi), E(C) =
/
"

i∈C

πj(xi)

0n

j=1

, P (C) =
/
"

i∈C

πj(xi)

0n+m

j=n+1

(7.54)

for the unnormalised data, and

π(C) =
"

i∈C

π(xi) = (M(C), E(C), P (C)) , ϕ(C) =
"

i∈C

n"

j=0

πj(xi). (7.55)

We write δ(C) for the point mass δ(C) = δπ(C), and π*(G
N
t ) for the normalised empirical

measure

π*(G
N
t ) =

1

N

"

Clusters

δ(C) (7.56)

where the sum is over all clusters C of GN
t . This is connected to the stochastic coagulants

as follows:
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Lemma 7.10 (Coupling of Random Graphs and Stochastic Coagulants). Fix points xN =

(x1, ..., xlN (0)) in S, and let (GN
t )t≥0 be the random graph process described in Definition

7.5.1 for this choice of vertex data. Consider also a stochastic coagulant (λN
t )t≥0 started

from λN
0 = 1

N

<
i≤lN (0) δxi

. Then the processes π*(G
N
t ) and π#λ

N
t are equal in law.

Remark 7.11. This is the key result which makes much of our analysis possible. Many

of the remaining points of Theorem 7.2 above concern only the moments 〈πi,λt〉, 〈ϕ2,λt〉
which depend on λt only through the pushforward π#λt. By applying Lemma 7.7 in the

space SΠ, we can use the pushforwards π#λ
N
t as stochastic proxies to π#λt, and thanks to

Lemma 7.10, the measures π#λ
N
t can be realised as π*(G

N
t ) for a random graph process

GN
t . In this way, we can apply results from the theory of random graphs [28] to deduce

results about solutions (λt) to the Smoluchowski equation (Fl).

Further, the new kernel k here represents the rate of merger of an unordered pair {x, y},
since there is only one edge: “x merges with y” is the same as “y merges with x”. The

(graph) kernel k therefore has to be the same merger rate as for the stochastic particle

system, forcing the inclusion of the factor 2.

Sketch of proof of Lemma 7.10. Let us fix xN . Firstly, both processes are Markov: for

π#λ
N
t , the follows because the total rate (7.6) depends only on π(x), π(y), and similarly

for π*(G
N
t ). One may also verify that the two processes undergo the same transitions at

the same rates, again thanks to (7.6), and that the total rate is bounded in terms of xN .

The boundedness of the total rate implies the uniqueness in law for the corresponding

Markov generator, which concludes the proof.

Combining this with the approximation result Lemma 7.7 for the stochastic coagulant,

we may connect the random graph process to the limit equation as follows.

Lemma 7.12 (Convergence of the Random Graphs). Let λ0 be a measure on S satisfying

Hypothesis 7.1, and let (GN
t )t≥0 be the random graph processes constructed above with

initial data xN = (x1, ...xlN ) which satisfies Hypothesis 7.2. Let (λt)t≥0 be the solution to

the Smoluchowski Equation (Fl) starting at λ0; then we have the local uniform convergence

sup
t≤tf

ρ1,Π(π*(G
N
t ), π#λt) → 0 (7.57)

in probability, for all tf < ∞, where ρ1,Π is defined as for ρ1 on the projected state space

SΠ ⊂ Rn+m+1.

We can also compute the critical time associated to GN
t explicitly:

Lemma 7.13 (Computation of critical time). Let λ0 be a measure satisfying Hypothesis

7.1, and let GN
t be random graphs satisfying Hypothesis 7.2. Then the convolution operator

T constructed above is a bounded linear map on L2(λ0) and the inverse of the critical time
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for the graph phase transition, t−1
c , is the largest eigenvalue of the n × n matrix Z(λ0)

given by Z(λ0)ij = 〈(Aπ)iπj,λ0〉. In particular, tc ∈ (0,∞).

Remark 7.14. This is exactly the form claimed for tg in Theorem 7.2. However, we have

not yet established that tc = tg; this is the content of Lemma 7.16.

Proof of Lemma 7.13. Firstly, by (A2.), it is easy to see that k ∈ L2(S × S,λ0 × λ0),

and so, by Lemma 7.47, ‖T‖ = t−1
c is the largest eigenvalue of T ; its eigenspace is one-

dimensional and consists of functions that are single signed, λ0- almost everywhere. Since

0 < ‖T‖ < ∞ we have 0 < tc < ∞.

In order to reduce from the operator T to the matrix Z(λ0) we construct a basis {ei}i≥1

of L2(λ0) such that

ei(x) = πi(x), i = 1, 2, ..n+m (7.58)

and, for i > n + m, ei is orthogonal to E = Span(e1, ..., en+m). Note that π0 plays

no special rôle in the basis, because it does not appear in the rate K. We also write

E+ = Span(e1, ...en) and ESym = Span(en+1, ...., en+m). By expanding the total rate

K(x, y), we see that, for all f ∈ L2(λ0),

(Tf)(x) = 2
n+m"

i,j=1

aij〈f, πi〉L2(λ0)πj(x) (7.59)

where 〈·, ·〉L2(λ0) denotes the L2(λ0) inner product, and the factor of 2 comes from the

definition (7.51). Therefore, T maps into the subspace E, and is 0 on its orthogonal com-

plement. We further note that the subspaces E+, Esym are orthogonal, and are invariant

under T . Therefore, the eigenspace Eλ corresponding to λ = t−1
c is a direct sum Eλ

+⊕Eλ
sym

of eigenspaces contained within E+, Esym.

Since Eλ is one-dimensional, one summand must be trivial, and so either Eλ = Eλ
+ ⊆ E+,

or Eλ ⊆ Esym. To exclude the second possibility, we note that any f ∈ Esym satisfies

f(Rx) = −f(x) for all x by Definition 7.1.1, while eigenfunctions of T are single-signed

λ0-almost everywhere. It therefore follows that Eλ ⊆ E+ and that t−1
c is the largest

eigenvalue of T |E+ .

The result is now immediate since (7.59) shows that Z(λ0) is the matrix representation

of T |E+ respect to the basis introduced above.

We also define κt as the survival function from Lemma 7.44, given by the maximal solution

to

κt(x) = 1− exp (−t(Tκt)(x)) . (7.60)

We note, for future use, the following properties where k is the kernel given above.
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Lemma 7.15. The survival function κt(v) = ρ(tk, x) takes the form

κt(x) = 1− exp

/
−

n"

i=1

citπi(x)

0
(7.61)

for some cit ≥ 0. Moreover, the functions t /→ cit are continuous.

This proves the first two assertions of item 4 of Theorem 7.2.

Proof. Using the symmetry k(Rx,Ry) = k(x, y) and Hypothesis (A1.), it is simple to

verify that ρ̃(x) := κt(Rx) also satisfies the fixed point equation (7.60). By maximality

of κt, we must have κt(Rx) ≤ κt(x) for all x ∈ S, which implies that κt is even under R.

Using the identification of the range of T as in Lemma 7.13, we see that there exist

cit : 1 ≤ i ≤ n+m such that

t(Tκt)(x) =
n+m"

i=1

citπi(x) (7.62)

and expanding k as in (7.59), the coefficients are given explicitly by

cit = 2t
n"

j=1

aij〈πjκt,λ0〉. (7.63)

Since κt is even, we have cit = 0 for i > n, and since κt ≥ 0, cit ≥ 0 for i = 1, ..., n. Using

(7.60) again, we obtain the claimed representation

κt(x) = 1− exp

/
−

n"

i=1

citπi(x)

0
. (7.64)

The continuity follows by applying dominated convergence to (7.63), and using the con-

tinuity of κt established in Theorem 7.49.

7.6 Equality of the Critical Times

In this section, we will prove that the critical time tc for the graph process, introduced in

Section 7.5, coincides with the gelation time for the limiting equation, defined in Section

7.3 as the time at which mass and energy begin to escape to infinity.

Lemma 7.16. Let λ0 be a measure on S satisfying Hypothesis 7.1. Let (λt)t≥0 be the

solution to (Fl) starting at λ0, with associated data Mt, Et of the gel; recall that tg is

defined by

tg := inf{t ≥ 0 : 〈ϕ,λt〉 < 〈ϕ,λ0〉} = inf{t ≥ 0 : gt ∕= 0}. (7.65)

Let (GN
t ) be the random graph processes constructed above, and suppose that Hypothesis

7.2 holds for GN
0 ,λ0. Then the critical time tc for the graph transition process coincides

with the gelation time tg.
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The following is a straightforward corollary.

Corollary 7.17. Let λ0 satisfy Hypothesis 7.1, and let (λt)t≥0 be the solution to (Fl)

starting at λ0, with gelation at tg. Then tg is given explicitly by (7.17).

Proof of Corollary 7.17. Let us form xN by sampling points as a Poisson random measure

with intensity Nλ0. It is immediate that the resulting data xN satisfies Hypothesis 7.2

for the measure λ0, and the critical time tc of the associated graphs GN
t is given by the

claimed expression (7.17). From the previous lemma, it now follows that the gelation time

tg = tc, which proves the claimed result.

The proof of Lemma 7.16 is based on the following weak version of the convergence

of the gel in Theorem 7.3, which will be revisited in Section 7.11 to establish uniform

convergence.

Lemma 7.18. Let (λt)t≥0,Mt, Et be as in Lemma 7.16 and GN
t be as in the proof of

Corollary 7.17. Fix t > 0, and write gNt for the scaled mass and energy of the largest

particle in GN
t , as in Section 7.5:

gNt =
1

N
π(C1(GN

t )) =

8

9 1

N

"

i∈C1(GN
t )

πj(xi)

:

;
n+m

j=0

= (MN
t , EN

t , PN
t ). (7.66)

Then MN
t → Mt and EN

t → Et in probability.

We first show that Lemma 7.18 implies Lemma 7.16; the remainder of this section is

dedicated to the proof of Lemma 7.18.

Proof of Lemma 7.16. Let us assume, for the moment, that Lemma 7.18 holds. Through-

out, let (xi)
lN

i=1 be the vertex data of the random graph process, which we recall are

independent of time.

Firstly, suppose for a contradiction that tg < tc. Then ϕ(gtc) > 0, but we bound

ϕ(gNtc ) ≤
6

1

N
C1(G

N
tc )

7 1
2

8

9 1

N

lN"

i=1

ϕ(xi)
2

:

;

1
2

. (7.67)

The first term converges to 0 in probability, by definition of the phase transition in

Theorem 7.45, and the second term is bounded in L2(P) by hypothesis (B2.). This implies

that ϕ(gNtc ) → 0 in probability, which contradicts Lemma 7.18; we must therefore have

that tg ≥ tc.

Conversely, if t < tg, then Mt = 0 by definition. Now, the convergence

1

N
C1(G

N
t ) = MN

t → 0 (7.68)
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in probability implies that the largest cluster is of the order op(N), which is only possible

if t ≤ tc by Lemma 7.9. Since t < tg was arbitrary, we must have tg ≤ tc, and together

with the previous argument, we have shown that tg = tc as claimed.

The proof of Lemma 7.18 is based on the following argument. We know, from Theorem

7.48, that any ‘mesoscopic’ clusters contain negligable mass; thanks to the integrability

assumption (A2.), the same is true for the energy. Therefore, almost all mass and energy

either belongs to the ‘microscopic’ scale, whose convergence is quantified by Lemma 7.7,

or the giant component, whose convergence is the subject of interest here. Therefore, with

a suitable approximation argument, the claimed convergence will follow from the quoted

results.

We begin with a preparatory lemma; throughout, we will assume the notation of Lemma

7.18. For the proof of of Lemma 7.16, and later Theorem 7.3, we will wish to study the

convergence of integrals 〈ϕf,λN
t 〉, for functions f which do not belong to A. However, the

convergence result Lemma 7.7 only gives us information about weak convergence, which

requires bounded and continuous test functions. Our second preparatory lemma allows

us to approximate the integrals 〈ϕf,λN
t 〉 for functions f whose support is bounded in the

π0-direction.

Lemma 7.19 (A step towards uniform integrability). Let λ0, (λ
N
t )t≥0 be as in the previous

lemma. Then, for every r > 0,

β(r, η) := sup
N≥1

E
2
sup
t≥0

O
ϕ1I[ϕ(x) > η, π0(x) ≤ r],λN

t

P3
→ 0 as η → ∞. (7.69)

Proof. We note that 〈ϕ1I[ϕ(x) > η, π0(x) ≤ r],λN
t 〉 depends on λN

t only through the

pushforward π#λ
N
t , since the integrand only depends on the values of π at the different

particles. From Lemma 7.10, we can find random graphs GN
t , such that xN is an enu-

meration of the atoms of λN
0 and π*(G

N
t ) = π#λ

N
t for all times t. With this coupling, we

express the integral as follows:

〈ϕ1I[ϕ(x) > η, π0(x) ≤ r],λN
t 〉 =

1

N

"

Clusters C⊂GN
t

ϕ(C)1I[ϕ(C) > η, π0(C) ≤ r]

=
1

N

lN (t)"

j=1

"

i∈Cj(GN
t )

ϕ(xi)1I
G
ϕ(Cj(GN

t )) > η, π0(Cj(GN
t )) ≤ r

H
.

(7.70)
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Using Cauchy-Schwarz, we bound

sup
t≥0

O
ϕ1I[ϕ(x) > η, π0(x) ≤ r],λN

t

P

≤

8

9 1

N

lN (0)"

j=1

ϕ(xj)
2

:

;

1
2
8

9sup
t≥0

1

N

lN (t)"

j=1

"

i∈Cj(GN
t )

1I
G
ϕ(Cj(GN

t )) > η, Cj(G
N
t ) ≤ r

H
:

;

1
2

=

8

9 1

N

lN (0)"

i=1

ϕ(xi)
2

:

;

1
2 6

sup
t≥0

O
π01I[ϕ(x) > η, π0(x) ≤ r],λN

t

P7 1
2

.

(7.71)

As remarked in Definition 7.5.1, the data xi associated with the graph nodes are constant

in time, so the first factor is independent of t ≥ 0, and is bounded in L2(P) by the second

assertion of (B2.). Therefore, it is sufficient to prove the claim with ϕ replaced by π0.

Now we note that with probability one

sup
t≥0

Z
π01I[ϕ(x) > η, π0(x) ≤ r],λN

t

[
≤ r sup

t≥0

Z
1I[ϕ(x) > η],λN

t

[
≤ r

η
sup
t≥0

Z
ϕ,λN

t

[
=

r

η

Z
ϕ,λN

0

[

and the result follows from (B2.).

Using the preparatory lemma developed above, we now prove Lemma 7.18.

Proof of Lemma 7.18. Throughout, we let (λN
t )t≥0 be a stochastic coagulant coupled to a

random graph process (GN
t )t≥0, as described in Section 7.5 with vertex data xN = (xi)

lN (0)
i=1 ;

thanks to this construction, MN
t is exactly the size of the largest cluster in GN

t , and EN
t

are the sums

EN
t =

8

9N−1
"

j∈C1(GN
t )

πi(xj)

:

;
n

i=1

. (7.72)

The case t = 0 is trivial, and can be omitted. We deal first with the 0th coordinate MN
t ;

the cases for the 1st, ..., nth coordinates EN
t are entirely analagous.

Fix t > 0, and let ξN be a sequence, to be constructed later, such that

ξN → ∞;
ξN
N

→ 0. (7.73)

We now construct ‘bump functions’ as follows. Let ηr → ∞ be a sequence growing

sufficiently fast that, in the notation of Lemma 7.19, β(r, ηr) → 0, and let

S(r) := {x ∈ S : π0(x) < r,ϕ(x) ≤ ηr}. (7.74)

Let 5hr be the indicator 5hr = 1I[π0(x) < r], and construct a continuous function 5fr such

that

0 ≤ 5fr ≤ 1; 5fr = 1 on S(r); 5fr(x) = 0 if π0(x) ≥ r. (7.75)
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The final condition is compatible with continuity because π0 : S → N is continuous and

integer valued. We define fN = 5fξN and hN = 5hξN . We now decompose the difference

MN
t −Mt :

MN
t −Mt = (〈π0,λt〉 − 〈π0fN ,λt〉)\ ]^ _

:=T 1
N

+ 〈π0fN ,λt − λN
t 〉\ ]^ _

:=T 2
N

+ 〈π0(fN − hN),λ
N
t 〉\ ]^ _

:=T 3
N

+ 〈π0hN ,λ
N
t 〉 − (〈π0,λ

N
0 〉 −MN

t )\ ]^ _
:=T 4

N

+ 〈π0,λ
N
0 − λ0〉\ ]^ _

:=T 5
N

.

(7.76)

where we recall that Mt = 〈π0,λ0 − λt〉. We now estimate the errors T i
N , i = 1, 3, 4, 5; the

remaining term T 2
N will be dealt with separately, and requires careful construction of the

sequence ξN .

Step 1. Estimate on T 1
N . Let zN be the lower bound zN = 1IS(ξN )

, so that zN ≤ fN ≤ 1.

As N → ∞, π0zN ↑ π0, and so by monotone convergence, 〈π0zN ,λt〉 ↑ 〈π0,λt〉. This

implies that the (nonrandom) error T 1
N → 0.

Step 2. Estimate on T 3
N . From the definitions of fN , hN , we observe that

|T 3
N(t)| = 〈π0(hN − fN),λ

N
t 〉 ≤ 〈π01I[π0(x) < ξN ,ϕ(x) > ηξN ],λ

N
t 〉. (7.77)

Therefore, in the notation of Lemma 7.19, E
G
supt≥0 |T 3

N(t)|
H
≤ β(ξN , ηξN ). By construc-

tion of ηr, and since ξN → ∞, it follows that E[supt≥0 |T 3
N(t)|] → 0, which implies conver-

gence to 0 in probability.

Step 3. Estimate on T 4
N . Recalling that hN(x) = 1I[π0(x) < ξN ] and using the coupling

to random graphs, we have the equality

〈π0hN ,λ
N
t 〉 = 〈π0,λ

N
0 〉 −MN

t 1I

2
MN

t ≥ ξN
N

3
− 1

N

"

j≥2:Cj(GN
t )≥ξN

"

i∈Cj(GN
t )

π0(xi) (7.78)

which gives the equality

T 4
N = −MN

t 1I

6
MN

t <
ξN
N

7
− 1

N

"

j≥2:Cj(GN
t )≥ξN

π0(Cj(GN
t )). (7.79)

Using Cauchy-Schwarz, we bound

@@T 4
N(t)

@@ ≤

8

9 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

:

;

1
2
8

9 1

N

lN (0)"

i=1

ϕ(xi)
2

:

;

1
2

+
ξN
N

. (7.80)

The first term converges to 0 in probability by Theorem 7.48 and (B2.), and the second

converges to 0 since ξN ≪ N . Together, these imply that T 4
N(t) → 0 in probability.
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Step 4. Estimate on T 5
N . Using the first part of (B2.), we have the convergence in

distribution

〈π0,λ
N
0 〉 → 〈π0,λ0〉 (7.81)

which implies that T 5
N → 0 in probability as desired.

Step 5. Construction of ξN , and convergence of T 2
N . It remains to show how a

sequence ξN can be constructed such that T 2
N → 0 in probability and such that (7.73)

holds. Recalling the definition of f̃r above, let A1
r,N be the events A1

r,N = {|〈ϕ 5fr,λN
t −

λt〉| < 1
r
}; as N → ∞ with r fixed, both P(A1

r,N) → 1, by Lemma 7.7. We now define

Nr inductively for r ≥ 1 by setting N1 = 1, and letting Nr+1 be the minimal N >

max(Nr, (r + 1)2) such that, for all N ′ ≥ N , P(A1
r+1,N ′) > r

r+1
. Now, we set ξN = r for

N ∈ [Nr, Nr+1). It follows that ξN → ∞ and ξN ≤
√
N ≪ N , and

P
-
C1(G

N
t )) ≥ ξN

.
≥ 1− 1

ξN
→ 1. (7.82)

Therefore, ξN satisfies the requirements (7.73) above. Moreover,

P
6
|T 2

N | <
1

ξN

7
≥ P

-
A1

ξN ,N

.
> 1− 1

ξN
→ 1 (7.83)

and so, with this choice of ξN , T 2
N → 0 in probability. Since we have now dealt with every

term appearing in the decomposition (7.76), it follows that MN
t → Mt in probability, as

claimed.

The arguments for the 1st − nth components EN
t are identical to those above, using the

same bound (7.80) on T 4
N .

We also note, for future use, an important corollary of this argument.

Corollary 7.20. At the instant of gelation, the gel is negligible: gtg = 0.

Proof. For the 0th − nth components, this follows from the critical case of Theorem 7.45

exactly as in (7.67). The remaining m components git, i > n are identically 0 by the

symmetry (A1.), as in Lemma 7.4.

7.7 Behaviour of the Second Moments

In this section, we consider part 2 of Theorem 7.2, concerning the behaviour of the second

moments Q(t)ij = 〈πiπj,λt〉, 0 ≤ i, j ≤ n and E(t) = 〈ϕ2,λt〉. Following [134, 156], one

might expect that the gelation time tg corresponds to a divergence of E(t) as t ↑ tg; by an

approximation argument, we will show that this is indeed the case. We also introduce a

duality argument, corresponding to Theorem 7.50, which allows us to prove that E is finite

on (tg,∞). The final assertion follows from the fact that gtg = 0, which is the content of

Corollary 7.20.
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7.7.1 Subcritical Regime

We first deal with the subcritical regime [0, tg), to show that the second momentsQij(t), E(t)
are finite and increasing on this interval, and that tg is exactly the first time at which E
diverges.

Lemma 7.21. Suppose λ0 satisfies Hypothesis 7.1, and let (λt)t≥0 be the corresponding

solution to (Fl). The second moments Q(t)ij = 〈πiπj,λt〉, 0 ≤ i, j ≤ n, E(t) = 〈ϕ2,λt〉
are finite, continuous and increasing on [0, tg), and E(t) = 〈ϕ2,λt〉 increases to infinity

as t ↑ tg, where tg is the associated gelation time.

The ideas of this argument follow [156], where there is a similar result for approximately

multiplicative kernels, for which the total rate K(x, y) is bounded above and below by

nonzero multiples of 5ϕ(x)5ϕ(y), where 5ϕ is a mass function playing the same rôle as our

ϕ. Unfortunately, this cannot be applied directly, for two reasons.

i). Firstly, the total rate in (7.6) contains the terms aijπi(x)πj(y), n ≤ i, j ≤ n +m of

indefinite sign.

ii). Secondly, the remaining combination of πi, 1 ≤ i ≤ n is not a priori of approximately

multiplicative form: particles where some πi are small, and others large, will in

general prevent such a bound from holding.

Our strategy will be as follows.

1. Firstly, we will show that if (λt)t≥0 solves (Fl), then the pushforward measures

(π#λt)t<tg(λ0) solve a modified equation (mΠFl) on the simpler space SΠ = N ×
[0,∞)n ×Rm, with a reduced kernel KΠ,m. This allows us to eliminate the terms of

indefinite sign mentioned above. This new equation has unique solutions, and so νt =

π#λt is the unique solution starting at ν0 = π#λ0; in particular, the second moments

〈ϕ2, νt〉, 〈ϕ2,λt〉 coincide, and gelation takes place at the same time tg(λ0) = tg(ν0).

Therefore, we can prove the desired result working solely at the level of (mΠFl).

2. Thanks to results of Norris [156, Theorem 2.1], if (νt)t≥0 is a solution to (mΠFl)

with 〈ϕ2, ν0〉 < ∞, then there exists te = te(ν0) > 0 such that 〈ϕ2, νt〉 is locally

integrable on [0, te) and such that 〈ϕ2, νt〉 ↑ ∞ as t ↑ te.

3. We introduce a truncated state space SΠ
ε , which excludes particles where any πi/π0, 1 ≤

i ≤ n is either very large or very small, and construct new initial data νε
0 which are

supported in this space. In this context, the kernel KΠ,m is approximately multi-

plicative, and so [156, Theorem 2.2] guarantees that the solutions (νε
t )t≥0 undergo

gelation at exactly the blow-up time te(ν
ε
0).
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4. We argue, from the characterisation of the gelation time in Section 7.5, that our

construction gives an approximation of the gelation times: tg(ν
ε
0) → tg(ν0). We

will argue, based on a system of ordinary differential equations for the moments

〈πiπj, νt〉 = 〈πiπj,λt〉, that the blowup time is also continuous: te(ν
ε
0) → te(ν0).

Together with the previous points, this proves the claimed result.

We begin by introducing the modified equation.

Lemma 7.22. Let KΠ be the kernel on SΠ = N× [0,∞)n × Rm given by KΠ(p, q, dr) =
<n+m

i,j=1 aijpiqjδp+q(dr), and let KΠ,m be the symmetrised kernel

KΠ,m(p, q, dr) =
1

4
KΠ(RΠp, q, dr) +

1

2
KΠ(p, q, dr) +

1

4
KΠ(p,RΠq, dr) (7.84)

where we recall that RΠ : SΠ → SΠ is given by (7.15). Consider the corresponding

equation incorporating gel, for measures on SΠ, which we write as

νt = ν0 +

! t

0

Lm
g (νs)ds. (mΠFl)

Let λ0 be a measure on S satisfying Hypothesis 7.1, and let (λt)t≥0 be the corresponding

solution to (Fl). Then the pushforward measures νt = π#λt are the unique solution to

(mΠFl) starting at ν0 = π#λ0.

Remark 7.23. Under the new kernel KΠ,m, the quantities πi are still conserved for 0 ≤
i ≤ n, but not for n + 1 ≤ i ≤ n + m. However, since we seek to analyse 〈ϕ2,λt〉,ϕ =
<

0≤i≤n πi, we will not need any conservation properties of πi for i > n in this section.

Sketch Proof of Lemma 7.22. Much of the proof consists of algebraic manipulations, us-

ing the definitions and hypotheses in Definition 7.1.1. In the interest of brevity, such

manipulations will omitted.

Let us first consider the reflected measures R#λt = λt ◦R−1 on S. By (A1.), R#λ0 = λ0,

and using part iii) of Definition 7.1.1, one can show that for all t ≥ 0, all finite measures

λ on S and all bounded, measurable functions f on S, 〈f ◦R,L(λ)〉 = 〈f, L(R#λ)〉. From
this, and performing a similar manipulation for the gel term, it follows that (R#λt)t≥0

also solves the equation (Fl) with the same initial data which implies, by uniqueness, we

must have λt = R#λt for all t ≥ 0. Using this, one can now similarly prove that, for all t

and f as above,

〈f, L(λt)〉 =
!

S3

(f(z)− f(x)− f(y))K(Rx, y, dz)λt(dx)λt(dy)

=

!

S3

(f(z)− f(x)− f(y))K(x,Ry, dz)λt(dx)λt(dy).

(7.85)

Taking a linear combination, and again performing a similar manipulation for the gel

term, it follows that λt solves the equation analagous to (Fl) for the symmetrised kernel

KSym(x, y, dz) =
1

4
K(Rx, y, dz) +

1

2
K(x, y, dz) +

1

4
K(x,Ry, dz). (7.86)



400 7.7. BEHAVIOUR OF THE SECOND MOMENTS

Since the coagulation rate KSym(x, y, S) only depends on π(x), π(y), one can verify that

the pushforward measures π#λt on SΠ solve the projected equation (mΠFl) as claimed.

We now turn to the second point, which concerns the moment behaviour of the solutions

to (mΠFl). The following result follows from ideas of [156], which we will briefly sketch.

Lemma 7.24. Let ν0 be a measure on SΠ satisfying Hypothesis 7.1, and let (νt)t≥0 be

the corresponding solution to (mΠFl). Then there exists te = te(ν0) > 0 such that t /→
〈ϕ2, νt〉 is finite and increasing on [0, te), and 〈ϕ2, νt〉 ↑ ∞ as t ↑ te. Moreover, (νt)t<te is

conservative, and so te(ν0) ≤ tg(ν0).

The subscript e here denotes ‘explosion’: te is the first time the second moment diverges

to ∞.

Sketch Proof of Lemma 7.24. This argument applies different results from [156] to our

case. We say that a local solution (νt)t<T to (mΠFl) is strong if the map t /→ 〈ϕ2, νt〉 is
integrable on compact subsets of [0, T ). Applying the results of [156, Theorem 2.1], there

exists a unique maximal strong solution (ν ′
t)t<te(ν0) to (mΠFl), which is conservative and

that te(ν0) ≥ C〈ϕ2, ν0〉−1 for some constant C depending on A.

We next apply Corollary 7.5 to see that this solution must be an initial segment of

(νt)t<tg(ν0): that is, te(ν0) ≤ tg(ν0), and ν ′
t = νt for all t ≤ te(ν0). Therefore, the results of

[156] will apply to our process (νt)t<te(ν0).

Since (νt)t<te(ν0) is conservative, we follow the ideas of [156, Proposition 2.7], to obtain

the integral relations, for all t < te and 0 ≤ i, j ≤ n,

〈πiπj, νt〉 = 〈πiπj, ν0〉+ 2

! t

0

n"

k,l=1

〈πiπk, νs〉akl〈πlπj, νs〉ds. (7.87)

These immediately imply that 〈ϕ2, νt〉 is bounded on compact subsets of [0, te), and in

particular does not diverge before te. Moreover, since all terms on the right-hand side are

nonnegative, these relations imply that all moments 〈πiπj, νt〉 and 〈ϕ2, νt〉 are increasing

on [0, te).

Finally, we show that 〈ϕ2, νt〉 diverges near te(ν0). This follows from the time-of-existence

estimate quoted above: for t < te, the unique maximal strong solution starting at νt is

precisely (νs+t)s<te−t, and so for some C = C(A) < ∞,

te − t ≥ C〈ϕ2, νt〉−1. (7.88)

This rearranges to show that 〈ϕ2, νt〉 ≥ C(te−t)−1 which diverges as t ↑ te, as claimed.

In order to obtain the full connection of the explosion and gelation times, we modify the

setting to exclude the problematic particles in the remark above, which prevent KΠ,m

from being approximately multiplicative. Let

SΠ
ε = {p ∈ SΠ : επ0(p) ≤ πi(p) ≤ (ε−1 + ε)π0(p) for all 1 ≤ i ≤ n}. (7.89)
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Note that this state space is preserved under the kernel KΠ,m. Moreover, on the reduced

state space SΠ
ε , the modified kernel KΠ,m is approximately multiplicative [156] in the sense

that, for some δε > 0 and ∆ε < ∞, we have

δε ϕ(p)ϕ(q) ≤ KΠ,m(p, q) ≤ ∆ε ϕ(p)ϕ(q) (7.90)

for all p, q ∈ SΠ
ε .

We now construct approximations νε
0 to ν0 which are supported on SΠ

ε . Let us fix λ0

satisfying Hypothesis 7.1 and ν0 = π#λ0; for any ε > 0, let νε
0 be given by specifying, for

all bounded measurable functions h on SΠ,
!

SΠ

h(p)νε
0(dp)

=

!

SΠ

h(p0, p1 + ε, ....pn + ε, pn+1, ....pn+m)1I[pi ≤ ε−1 for all 1 ≤ i ≤ n]ν0(dp).

(7.91)

In this way, we shift ν0 slightly away from the axes, while also truncating when any πi

becomes large. It follows, from existence and uniqueness, that the solution (νε
t )t≥0 to

(mΠFl) starting at νε
0 is supported on SΠ

ε for all t ≥ 0. We can now apply [156, Theorem

2.2] to obtain the connection between gelation and explosion for these solutions:

Lemma 7.25. Let (νε
t )t≥0 be the solution to (mΠFl) starting at the measure νε

0 constructed

above. Let te(ν
ε
0) be the explosion time of the second moment, as above, and tg(ν

ε
0) the

first time that νε
t fails to be conservative. Then te(ν

ε
0) = tg(ν

ε
0).

This then connects the gelation phenomenon to the blowup of the second moment, as

desired, but only for the special case of the truncated and shifted initial distribution. We

now seek to remove this restriction to obtain the result for the original measures λ0, ν0.

To do this, we will show that tg(ν
ε
0) → tg(ν0) and te(ν

ε
0) → te(ν0) as we take ε ↓ 0.

Lemma 7.26 (Convergence of Gelation Times). Let ν0, ν
ε
0 be the measures constructed

above, and tg(ν0), tg(ν
ε
0) the corresponding gelation times. Then, as ε ↓ 0, tg(ν

ε
0) → tg(ν0).

Proof. First, we recall that π1, ...πn are linearly independent in L2(λ0), and hence in

L2(ν0), by hypothesis. Using the convergence 〈πiπj, ν
ε
0〉 → 〈πiπj, ν0〉, it follows that for

ε > 0 small enough, and any z with
<

i |zi| = 1, we have 〈(
<

i ziπi)
2, νε

0〉 > 0. This,

in turn, guarantees that π1, ...πn are linearly independent in L2(νε
0), for all ε > 0 small

enough.

We can now apply the explicit characterisation of tg obtained in Lemma 7.13 for the

measures νε
0:

tg(ν
ε
0) = σ1(Z(νε

0))
−1 (7.92)

where Z(νε
0) is the matrix Z(νε

0)ij = 2
<n+m

k=1 〈πiπk, ν
ε
0〉akj, 1 ≤ i, j ≤ n and σ1(·) here

denotes the largest eigenvalue of a matrix. Moreover, as ε ↓ 0, the coefficients of the
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matrices Z(νε
0) converge to the analagous matrix Z(ν0) for the measure ν0.

It is well-known, following for instance from [197], that as the coefficients of a matrix vary

continuously, so to do the associated eigenvalues, meaning that

σ1(Z(νε
0)) → σ1(Z(ν0)) (7.93)

as ε ↓ 0. Combining this with the characterisation of tg above, it follows that

tg(ν
ε
0) = σ1(Z(νε

0))
−1 → σ1(Z(ν0))

−1

= tg(ν0)
(7.94)

as desired.

Finally, we show the same result for the explosion times. Thanks to Lemma 7.24 and

(7.87), the matrix of second moments qij(t) = 〈πiπj, νt〉, 1 ≤ i, j ≤ n satisfies a closed

system of differential equations, with locally Lipschitz coefficients, on [0, te). We will now

show that te is exactly the time of existence of a solution started at q0.

Lemma 7.27. Consider the ordinary differential equations

q̇t = b(qt); b(q) = 2qA+q, q ∈ Matn(R); (Q1)

żt = w(qt)zt, w : Matn(R) → Matn+1(R) linear; z ∈ Rn+1 (Q2)

where we recall in (Q1) that A+ is the upper n×n block of the matrix A in (7.7). Then, for

all (z0, q0) ∈ Rn+1 ×Matn(R), there exists a unique maximal solution χ(t, z0, q0),ψ(t, q0)

starting at (z0, q0), defined until the time ζ(q0) where (Q1) blows up.

Then, for any measure ν0 on SΠ, the time of existence is exactly the explosion time:

te(ν0) = ζ(q0), (q0)ij = 〈πiπj, ν0〉, 1 ≤ i, j ≤ n. (7.95)

Proof. Firstly, it is straightforward to verify that qt does not depend on the initial data

z0, since (Q1) only depends on q; in particular, the blowup time ζ is a function only of

q0. It is also straightforward to verify that (Q2) cannot blow up before ζ(q0), since on

compact subsets [0, t] ⊂ [0, ζ(q0)), the coefficients of (Q2) are Lipschitz, uniformly over

this time interval. As a result, the time of existence for the pair (Q1, Q2) is exactly the

time of existence ζ(q0), as claimed.

To link the explosion times te and the time of existence ζ(q0), the equations (7.87) show

that the matrix qij(t) = 〈πiπj, νt〉, 1 ≤ i, j ≤ n and the vector zt = 〈π0πi, νt〉0≤i≤n solve the

system (Q1, Q2) on 0 ≤ t < te(ν0), which implies that te(ν0) ≤ ζ(q0). For the converse,

for t < te, we have the equality

χ(z0, q0)0 +
n"

i=1

ψ(q0, t)ii = 〈π2
0, νt〉+

n"

i=1

〈π2
i , νt〉 (7.96)
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where the initial data are

q0 = (〈πiπj, ν0〉)ni,j=1 z0 = (〈πiπ0, ν0〉)0≤i≤n. (7.97)

The left hand side is bounded on compact subsets of [0, ζ(q0)) and the right-hand side

dominates 〈ϕ2, νt〉 up to a constant C, which leads to a contradiction if we assume that

te < ζ(q0), since 〈ϕ2, νt〉 ↑ ∞ as t ↑ te(ν0). We therefore have ζ(q0) ≤ te(ν0) which proves

the equality desired.

We will now analyse the pair of equations presented above. This will prove the desired

continuity of te, and some points which will be helpful for later reference.

Lemma 7.28. Consider the differential equations (Q1, Q2) in the previous lemma, and

the sets

E = Matn([0,∞)); Eδ = {q ∈ E : ∀i, qii > δ}; E◦ = ∪δ>0Eδ; (7.98)

Ecs = {q ∈ E : for all i, j ≤ n and t < ζ(q), ψ(q, t)2ij ≤ ψ(q, t)iiψ(q, t)jj}. (7.99)

Then, if q0 ∈ Eδ, (ψ(q0, t))t<ζ(q0) ⊂ Eδ, and similarly if q0 ∈ Ecs, then (ψ(q0, t))t<ζ(q0) ⊂
Ecs. We have the following properties:

i). Let Jε be the set

Jε = {q ∈ E : ζ(q) ≥ ε}. (7.100)

Then for all ε, δ > 0, the set Jε ∩ Eδ ∩ Ecs is bounded.

ii). Suppose qε0 ∈ Ecs, ε > 0 and qε0 → q0 ∈ Ecs ∩ E◦ as ε → 0. Then ζ(qε0) → ζ(q0).

iii). Suppose I ⊂ R+ is an open interval, and the map (z0, q0) : I → Rn+1× (Ecs∩E◦) is

continuous, and such that t < ζ(q0(t)) for all t ≥ 0. Then the maps t /→ ψ(q0(t), t)

and t /→ χ(z0(t), q0(t), t) are continuous on I.

Proof. i). Let us first fix q ∈ E. First of all write a* = min{aij : aij > 0} and let i, j

be such that aij > 0. We now estimate

d

dt
ψ(t, q)ij ≥ 2aijψ(t, q)

2
ij ≥ 2a*q

2
ij. (7.101)

This differential inequality may be integrated to obtain

ψ(t, q)ij ≥
qij

1− 2ta*qij
. (7.102)

In particular, this gives the upper bound ζ(q) ≤ (2a*qij)
−1, which implies the

claimed boundedness of Jε in the (i, j)th coordinate whenever aij > 0.
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We will now extend this boundedness to all n2 coordinates when we restrict to

q ∈ Eδ ∩ Jε ∩ Ecs. Let M be the maximum diagonal entry of q:

M = max
1≤i≤n

qii (7.103)

and fix i where this maximum is attained; by hypothesis on A, there exists j ≤ n

such that aij ≥ a* > 0. It is straightforward to see that the derivative d
dt
ψ(t, q)ij is

increasing along the solution, which implies the estimate

ψ
' ε
2
, q
(

ij
≥ ε

2
b(q)ij = ε

"

k,l≤n

qikaklqlj ≥ εqiiaijqjj ≥ εδa*M. (7.104)

By hypothesis, ζ(q) ≥ ε, so ζ(ψ( ε
2
, q)) ≥ ε

2
. Applying the bound on ζ above, we find

that
ε

2
≤ 1

2a2*εδM
. (7.105)

Finally, since we chose q ∈ Ecs, we have the uniform bound

max
ij

qij ≤ M ≤ (a2*ε
2δ)−1. (7.106)

ii). The lower semicontinuity of explosion times is standard, and follows from the con-

tinuous dependence on the initial data. Therefore, it is sufficient to prove that

lim supε→0 ζ(q
ε) ≤ ζ(q).

Suppose, for a contradiction, that for some η > 0, we have lim supε→0 ζ(q
ε) >

ζ(q) + η; by passing to a subsequence, we may assume that ζ(qε) > τ + η for all ε,

where we write τ = ζ(q). Moreover, since qε0 ∈ Ecs and qε → q ∈ E◦, we may assume

that qε, q ∈ Eδ ∩Ecs for all ε, for some δ > 0, which implies that ψ(qε, t) ∈ Eδ ∩Ecs

for all t < ζ(qε) and all ε > 0.

Now, if t ≤ τ , we have ζ(ψ(t, qε)) = ζ(qε)− t ≥ η, which implies the containment

{ψ(t, qε) : t ≤ τ, ε > 0} ⊂ Eδ ∩ Jη ∩ Ecs (7.107)

which we know, from item i)., to be bounded: for some C < ∞,

{ψ(t, qε) : t ≤ τ, ε > 0} ⊂ Matn([0, C]). (7.108)

By the lemma of leaving compact sets, there exists s < τ such that, for all t ∈ (s, τ),

ψt(q) ∕∈ Matn([0, C]). However, if we pick t ∈ (s, τ), we have ψt(q
ε) → ψt(q), by the

continuity of the dependence in the initial conditions, which is a contradiction.

Therefore, lim supε→0 ζ(q
ε) ≤ ζ(q), which proves the claimed convergence.

iii). Let us first establish the claim for ψ. Firstly, we note that by ii)., the map t /→
ζ(q0(t)) is continuous on I. Therefore, fixing t ∈ I, we may choose choose ε, δ > 0
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such that, if |t− s| ≤ δ, then s ∈ I and s < min (ζ (q0(s)) , ζ (q0(t))) − ε. Now, we

observe that, for s ∈ [t− δ, t+ δ],

|ψ(t, q0(t))− ψ(s, q0(s))| ≤ |ψ(t, q0(t))− ψ(t, q0(s))|+ |ψ(t, q0(s))− ψ(s, q0(s))|.
(7.109)

As s → t, the first term converges to 0 by continuity of the solution ψ(t, q) in the

initial data q0; it is therefore sufficient to control the second term. By the choice of

δ, for all s ∈ [t− δ, t+ δ], we have

ζ(ψ(s, q0(s))) = ζ(q0(s))− s > ε (7.110)

so that ψ(s, q0(s)) ∈ Jε. Moreover, by compactness of [t − δ, t + δ], there exists

some η > 0 such that q0(s) ∈ Eη for all s ∈ [t − δ, t + δ], and since q0(s) ∈ Ecs

and these sets are preserved under the flow, we have ψ(u, q0(s)) ∈ Eη ∩ Ecs for all

0 ≤ u < ζ(q0(s)). However, we showed in point i). above that that the intersection

of these three regions is compact and so there exists a constant M = M(ε): for all

s ∈ [t− δ, t+ δ], and for all u ≤ t+ δ,

u < ζ(q0(s)); |b(ψ(u, q0(s))| ≤ M. (7.111)

This implies the bound, for all s ∈ [t− δ, t+ δ],

|ψ(t, q0(s))− ψ(s, q0(s))| ≤ M |t− s| (7.112)

which implies the claimed continuity.

The case for χ(z0(t), q0(t), t) is similar. Let us fix t ∈ I; following the same argument

leading to (7.111), there exists δ > 0,M < ∞ such that, if s ∈ [t − δ, t + δ] then

s ∈ I and for all u ≤ s, ψ(u, q0(u)) ∈ Matn([0,M ]). The equation (Q2) can now be

integrated directly to obtain, for s ∈ [t− δ, t+ δ],

χ(s, z0(s), q0(s)) = exp

6! s

0

w (ψ(u, q0(u))) du

7
z0(s). (7.113)

In particular, it follows that χ(s, z0(s), q0(s)) is bounded as s varies in [t− δ, t+ δ].

With this, the argument for ψ can be modified to prove the same result

We can finally combine the previous lemmas to prove Lemma 7.21.

Proof of Lemma 7.21. Let us fix λ0 satisfying Hypothesis 7.1, and let ν0 be its push-

forward ν0 = π#λ0; let (λt)t≥0 and (νt)t≥0 be the solutions to (Fl, mΠFl) with these

starting points, respectively. By Lemma 7.22, νt is given by νt = π#λt and in particular,

E(t) = 〈ϕ2,λt〉 = 〈ϕ2, νt〉, Qij(t) = 〈πiπj,λt〉 = 〈πiπj, νt〉 and tg(ν0) = tg(λ0).

From Lemma 7.24, we know that there exists te = te(ν0) > 0 such that E(t) = 〈ϕ2, νt〉
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is finite, continuous and increasing on [0, te), and diverges to infinity as t ↑ te. Moreover,

thanks to the differential equations (7.87), all components of Q(t) are continuous and

increasing on [0, te).

Consider next the shifted initial data νε
0 given by (7.91); thanks to Lemma 7.25, we know

that tg(ν
ε
0) = te(ν

ε
0). By Lemma 7.26, tg(ν

ε
0) → tg(ν0). For the explosion times, we know

from Lemma 7.27 that te(ν
ε
0) = ζ(qε0) and te(ν0) = ζ(q0), where q

ε
0, q0 ∈ E are the matrixes

(q0)ij = 〈πiπj, ν0〉; (qε0)ij = 〈πiπj, ν
ε
0〉. (7.114)

By dominated convergence, qε0 → q0; by hypothesis (A3.), each (q0)ii = 〈π2
i , ν0〉 =

〈π2
i ,λ0〉 > 0, so q0 ∈ Eδ for some δ > 0. Finally, for all t < ζ(q0) = te(ν0), ψ(t, q0)ij =

〈πiπj, νt〉 which certainly satisfies the desired Cauchy-Schwarz inequality ψ(t, q0)
2
ij ≤

ψ(t, q0)iiψ(t, q0)jj, so q0 ∈ Ecs. A similar argument shows that qε0 ∈ Ecs for all ε > 0,

so Lemma 7.28 shows that te(ν
ε
0) = ζ(qε0) → ζ(q0) = te(ν0). Comparing these two limits,

tg(ν0) = te(ν0), concluding the proof.

7.7.2 The Critical Point

Using the concepts introduced above, we next consider the behaviour at and near the

critical time tg.

Lemma 7.29. In the notation of Lemma 7.21, we have

E(tg) = ∞ = lim
t→tg

E(t). (7.115)

Proof. We first show that E(tg) = ∞. Suppose, for a contradiction, that E(tg) < ∞.

Then, applying [156, Proposition 2.7] as in Lemma 7.24, we see that, for some positive

δ > 0, there exists a strong solution (νt)t<δ to (Sm), starting at λtg . This solution is

conservative, so is an initial segment of the solution (νt)t≥0 to (Fl) starting at λtg . By

Corollary 7.20, 〈ϕ,λtg〉 = 〈ϕ,λ0〉, which implies that (λtg+t)t≥0 solves (Fl) starting at λtg .

By uniqueness in Lemma 7.4, we conclude

νt = λtg+t for all t ≥ 0. (7.116)

On the other hand. by definition of tg,

〈ϕ,λtg+t〉 < 〈ϕ,λ0〉 = 〈ϕ,λtg〉 for all t > 0. (7.117)

This contradicts the fact that (νt)t<δ is strong, which therefore shows that E(t) = ∞.

The second point follows, because t /→ λt is continuous, and λ /→ 〈ϕ2,λ〉 is lower semi-

continuous, when M≤1(S) is equipped with the weak topology.
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7.7.3 The Supercritical Regime

We finally turn to the supercritical case; our result is as follows.

Lemma 7.30. In the notation of Lemma 7.21, the map t /→ E(t) is finite and continuous,

and therefore locally bounded, on (tg,∞).

The proof is based on a duality argument following Theorem 7.50, which connects the

measures in the supercritical regime to an auxiliary process in the subcritical case. Let

(GN
t )t≥0 be the random graph processes described in Section 7.5 with points xN sampled

as a Poisson random measure of intensity Nλ0; it is straightforward to see that Hypothesis

7.2 holds. Fix t > tg, and let 5GN
t be the graph GN

t with the giant component deleted.

Let κt(x) be the survival function defined in Lemmas 7.15, 7.44, and let Jλt
0(dx) = (1 −

κt(x))λ0(dx). By Lemma 7.4, there exists a unique solution (Jλt
s)s≥0 to the equation (Fl)

starting at Jλt
0; write Jtg(t) for its gelation time.

Let yN = (yi : i ≤ JlN) be an enumeration of the vertexes xi not belonging to the giant

component in GN
t . By Theorem 7.50, we can construct a random graph JGN

t on {1, ...,JlN}
with distribution G(yN , tk/N), such that, with high probability, JGN

t is the graph 5GN
t

formed by deleting the largest component of GN
t .

In order to appeal to Lemmas 7.12, 7.16, we will now verify that the desired Hypothesiss

7.1, 7.2 hold for the vertex space JV .

Lemma 7.31. Fix t > 0, and let λ0, G
N
t ,

Jλt
0 and JV be as described above. Then Hypothesis

7.2 hold for yN and Jλt
0.

Proof. To ease notation, we write Jλ0 for Jλt
0, λ

N
0 for the initial empirical measure of the

unmodified process corresponding to xN , and JλN
0 for the reduced empirical measure cor-

responding to yN :

JλN
0 =

1

N

#lN"

i=1

δyi . (7.118)

It is straightforward to see that Jλt
0 inherits the properties in Hypothesis 7.1 from λ0, and

so it is sufficient to establish Hypothesis 7.2.

For (B1.), we note that part of the content of Theorem 7.50 is the weak convergence

JλN
0 =

1

N

#lN"

i=1

δyi → Jλ weakly, in probability (7.119)

as desired. Moreover, by construction, Supp(JλN
0 ) ⊂ Supp(λN

0 ), so it follows from (B1.)

that JλN
0 is supported on {π0 = 1} as required.

We will now show that (B2.) follows from the previous point, together with the moment

estimates for the original initial measure λN
0 .
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Fix ξ < ∞, and let χ ∈ Cb(S) be such that 1ISξ
≤ χ ≤ 1ISξ+1

. We observe that
@@@〈π, JλN

0 〉 − 〈π, Jλ0〉
@@@ ≤

@@@〈πχ, JλN
0 − Jλ0〉

@@@+ 〈|π| 1ISc
ξ
, JλN

0 〉+ 〈|π| 1ISc
ξ
, Jλ0〉

≤
@@@〈πχ, JλN

0 − Jλ0〉
@@@+

C

ξ
〈ϕ2,λN

0 〉+
C

ξ
〈ϕ2,λ0〉

(7.120)

for some constant C, thanks to the bound in part iv) of the definition (7.1.1). We now

fix ε, δ > 0. Thanks to (A2., B2.), 〈ϕ2,λN
0 〉 is bounded in L1 and 〈ϕ2,λ0〉 < ∞, and so we

may choose ξ < ∞ such that the second and third terms are at most ε/3 with probability

exceeding 1 − δ/2, for all N . For this choice of ξ, the first term vanishes as N → ∞ by

weak convergence in probability, and so is at most ε
3
with probability exceeding 1 − δ/2

for all N large enough. Therefore, for all such N , we have

P
'
|〈π, JλN

0 − Jλ0〉| > ε
(
≤ δ (7.121)

which proves the desired convergence in probability.

For the second assertion of (B2.), we note that 〈ϕ2, JλN
0 〉 ≤ 〈ϕ2,λN

0 〉 by the construction

of yN , and 〈ϕ2,λN
0 〉 is uniformly integrable by the hypothesis (B2.).

We now use this preparatory result to prove Lemma 7.30.

Proof of Lemma 7.30. Let GN
t ,

5GN
t ,

JGN
t be as above. Recalling that we consider equality

of graphs to include equality of the vertex data, it follows from Theorem 7.50 that

P(π*( JGN
t ) = π*( 5GN

t )) → 1. (7.122)

From Lemmas 7.12, 7.31, we obtain the following convergences in probability:

π*(G
N
t ) → π#λt; π*( JGN

t ) → π#
Jλt
t (7.123)

in the weak topology, in probability. Moreover, the difference

π*(G
N
t )− π*( 5GN

t ) =
1

N
δ(C1(GN

t )) (7.124)

converges to 0 in the weak topology in probability, since the mass of the difference con-

verges to 0. It follows that

π*( 5GN
t ) → π#λt (7.125)

in the weak topology, in probability, and by uniqueness of limits, we have π#
Jλt
t = π#λt.

In particular, it follows that

〈ϕ2,λt〉 = 〈ϕ2, π#λt〉 = 〈ϕ2, π#
Jλt
t〉 = 〈ϕ2, Jλt

t〉. (7.126)

Using assumption (A2.), we can see that tk ∈ L2(S × S,λ0 × λ0), and so it follows from

Theorem 7.50 that the graphs JGN
t are subcritical. By Lemma 7.16, it follows that that

t < Jtg(t), and so by Lemma 7.21, we have

〈ϕ2,λt〉 = 〈ϕ2, Jλt
t〉 < ∞. (7.127)
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Using Theorem 7.49 and dominated convergence, the map

t /→ qt0 =
'T

πiπj, Jλt
0

U(n

i,j=1
= (〈(1− κt)πiπj,λ0〉)ni,j=1 ;

t /→ zt0 =
'T

πiπ0, Jλt
0

U(n

i=0
= (〈(1− κt)πiπ0,λ0〉)ni=0

(7.128)

are continuous, and qt0 takes values in E◦. Therefore, by the general ODE considerations

in Lemma 7.28 point iii)., it follows that the maps

t /→ qt(t) = ψ(t, qt0) =
'
〈πiπj, Jλt

t〉
(n

i,j=1
; t /→ ztt = χ(t, zt0, q

t
0) = (〈πiπ0, Jλt

t〉)ni=0

(7.129)

are finite and continuous on (tg,∞). Since π#
Jλt
t = π#λt, item iii) of Lemma 7.28 shows

that the maps t /→ Q(t)ij, 0 ≤ i, j ≤ n are finite and continuous on (tg,∞), which implies

that they are bounded on compact subsets.

Remark 7.32. The same argument also shows that t /→ Jtg(t) is continuous. This fact

will be used later in the proof of Lemma 7.42.

7.8 Representation and Dynamics of the Gel

7.8.1 Representation Formula

The duality construction used in the proof of Lemma 7.30 gives us a natural way to relate

the gel data gt to the survival function κt. This is the content of the following lemma.

Lemma 7.33. Let λ0 be an initial data satisfying Hypothesis 7.1, and let gt = (Mt, Et, 0)

be the gel data for the corresponding solution to (Fl). Let κt(·) be the corresponding

survival function defined in Section 7.5 and Appendix 7.B. Then we have the equality

gt = 〈κtπ,λ0〉. (7.130)

In particular, t /→ gt is continuous and if t > tg then Mt > 0, and Et > 0 componentwise.

Together with the identification of κt in Lemma 7.15, this proves part 3 of Theorem 7.2.

Proof. We deal with the supercritical and subcritical/critical cases, t > tg, t ≤ tg sepa-

rately.

Step 1. Supercritical Case t > tg. Let (Jλt
s)s≥0 and Jtg(t) be as in the proof of

Theorem 7.30. Then, since (Jλt
s)s≥0 is conservative on [0, Jtg), and t < Jtg(t), we have, for

all 0 ≤ i ≤ n+m,

〈πi, Jλt
t〉 = 〈πi, Jλt

0〉 =
!

S

πi(x)(1− κt(x))λ0(dx). (7.131)
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As shown in Lemma 7.30, π#λt = π#
Jλt
t, so we have

git : = 〈πi,λ0〉 − 〈πi,λt〉 = 〈πi,λ0〉 − 〈πi, Jλt
t〉

= 〈πiκt,λ0〉
(7.132)

as claimed.

Step 2. Subcritical and Critical Cases t ≤ tg. For t < tg, the result is immediate:

we have gt by definition of tg, and κt = 0 by Theorem 7.44. The critical case is identical,

recalling from Corollary 7.20 that gtg = 0.

Continuity follows from Theorem 7.49 by using dominated convergence. For the final

claim, if t > tg then κt(x) > 0 λ0 - almost everywhere, by Lemma 7.44. By hypothesis

(A3.), for all i = 1, ..., n, πi > 0 on a set of positive λ0 measure. Together, these imply

that 〈κtπi,λ0〉 > 0, as claimed.

7.8.2 Gel Dynamics Beyond the Critical Time

We now obtain point 4 of Theorem 7.2 as a consequence of the previous results. We have

already proven the continuity of gt on the whole time interval [0,∞) and the finiteness

of the second moments qt = (〈πiπj,λt〉)ni,j=1 in the supercritical regime. Therefore, it is

sufficient to prove the following result.

Lemma 7.34. In the notation of Theorem 7.2, let gt be the data of the gel associated to

(λt)t≥0. Then, for t ≥ tg, we have

git =

! t

tg

n"

j,k=1

〈πiπj,λt〉ajkgksds. (7.133)

Thanks to the continuity of the second moments above tg, this has the differential form,

holding in the classical sense,

d

dt
git =

n"

j,k=1

〈πiπj,λt〉ajkgkt . (7.134)

Remark 7.35. In proving Lemma 7.34, we will split the growth of the gel into two terms

T1 + T2, where T1 represents the absorption of particles into the gel, and T2 represents

the coagulation of smaller particles. We will show that T2 = 0, giving the claimed result;

this may be expected following the relationship between gelation and blowup of the second

moment E(t) in Lemma 7.21, and the finiteness of E in the supercritical regime.

Proof. We return to the truncated dynamics (Fl|1ξ , Fl|2ξ) used in the proof of Lemma 7.4.

We recall that, starting at

λξ
0 = 1ISξ

λ0; gξ0 =

!

x ∕∈Sξ

xλ0(dx) (7.135)
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the solution (λξ
t , g

ξ
t ) to (Fl|1ξ , Fl|2ξ) exists and is unique, and we have

λξ
t = λt1ISξ

; (M ξ
t , E

ξ
t ) ↓ (Mt, Et) as ξ ↑ ∞. (7.136)

where (λt)t≥0 is the solution to (Fl) starting at λ0, and (Mt, Et) are the nonzero compo-

nents of the associated gel data.

Fix s, t such that tg < s < t. Rewriting (Fl|2ξ) and using that P ξ
t = 0, we have that

gξ,it − gξ,is =

! t

s

n"

j,k=1

〈πiπj,λ
ξ
u〉ajkgξ,ku du

+
1

2

! t

s

!

S2
ξ

πi(x+ y)1I[ϕ(x+ y) > ξ]K(x, y)λu(dx)λu(dy)du.

(7.137)

Let us write T1(ξ), T2(ξ) for the two terms appearing in (7.137) for ease of notation.

We first show that T1(ξ) converges to the expression analagous to the claimed limit in

(7.133). By the monotonicity λξ
u ≤ λu, and local boundedness in Lemma 7.30, each

〈πiπj,λ
ξ
u〉 is bounded, uniformly in ξ < ∞ and u ∈ [s, t]. It is also straightforward to see

that the truncated gel data are bounded by gξ,iu ≤ 〈πi,λ0〉, so the integrand appearing in

T1(ξ) is bounded. Using (7.136) and bounded convergence, we take the limit ξ → ∞ to

obtain

T1(ξ) →
! t

s

n"

j,k=1

〈πiπj,λu〉ajkgkudu. (7.138)

We now deal with the second term T2(ξ), which we claim converges to 0. Expanding the

total rate K, we have

T2(ξ) =

! t

s

n"

j,k=1

!

S2

πi(x)πj(x)πk(y)1I [ϕ(x+ y) > ξ]λu(dx)λu(dy). (7.139)

The integrand converges to 0 pointwise as ξ → ∞, and is dominated by πi(x)πj(x)πk(y).

By Lemma 7.30,

sup
u∈[s,t]

!

S2

πi(x)πj(x)πk(y)λu(dx)λu(dy)du ≤ sup
u∈[s,t]

〈ϕ2,λu〉〈πk,λ0〉 < ∞. (7.140)

Therefore, by dominated convergence, T2(ξ) → 0 as ξ → ∞, as claimed. Combining this

with the analysis of the first term, we have shown that

git − gis =

! t

s

n"

j,k=1

〈πiπj,λu〉ajkgkudu. (7.141)

Taking s ↓ tg, and using the continuity gs ↓ 0 established in Lemma 7.33, we obtain the

claimed result.
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7.9 Uniform Convergence of the Stochastic Coagu-

lant

We now show how previous results, describing the dynamics of gt, imply convergence to

their maximum values 〈π0,λ0〉 as t → ∞. Using this, we will be able to upgrade the

previous result, Lemma 7.7, on the convergence of the stochastic coagulant to uniform

convergence.

Lemma 7.36. Let λ0 be an initial measure satisfying Hypothesis 7.1, and let gt be the gel

data for the associated solution (λt)t≥0) to (Fl). As t ↑ ∞, we have

git → gi∞ = 〈πi,λ0〉 (7.142)

for i = 0, ..., n.

Proof. Let us fix 1 ≤ i ≤ n, and write gi∞ for the claimed limit 〈πi,λ0〉; it is immediate

that git ≤ gi∞ for all t ≥ 0. Choose t0 > tg and 1 ≤ j ≤ n such that aij > 0. Thanks to

Lemma 7.33, ε = aijg
j
t0 > 0, and note also that gjt is increasing, so that this bound holds

uniformly in t ≥ t0. Applying Lemma 7.34 and taking t → ∞, we obtain the integral

inequality

lim
t→∞

-
git − git0

.
≥

! ∞

t0

〈π2
i ,λs〉aijgjsds ≥ ε

! ∞

t0

〈πi,λs〉2ds

≥ ε

! ∞

t0

-
gi∞ − gis

.2
ds

(7.143)

where the limit on the left hand side exists since git is increasing. Recalling that git is

bounded, the integral appearing on the right-hand side must converge, and since the

integrand is decreasing in s, this is only possible if (gi∞− gis)
2 → 0 as s → ∞, as desired.

We must deal separately with π0, since π0 does not appear in the dynamics explicitly and

the argument above does not apply. For this case, we note that the monotonicity κs ≤ κt

whenever s ≤ t implies that κt converges pointwise to a limit κ∞ ≤ 1. Using Lemma 7.33

and dominated convergence, we have, for all i = 1, ..., n

〈πiκ∞,λ0〉 = lim
t→∞

〈πiκt,λ0〉 = lim
t→∞

git = 〈πi,λ0〉. (7.144)

This implies the containment

{κ∞ < 1} ⊂ {πi = 0} ∪Ni (7.145)

for a λ0-null set Ni, for each i = 1, ...n. Taking an intersection, and since λ0(πi =

0 for all i = 1, ..n) = 0 by irreducibility (A4.), we see that κ∞ = 1, λ0-almost every-

where. By Lemma 7.33 and dominated convergence again,

Mt = g0t = 〈π0κt,λ0〉 → 〈π0,λ0〉 (7.146)

which is the claimed limit.
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Lemma 7.37. Fix a measure λ0 satisfying Hypothesis 7.1, and let (λt)t≥0 be the associated

solution to (Fl). Let λN
t be the stochastic coagulants, with initial data λN

0 satisfying

Hypothesis 7.2. Then we have the uniform convergence

sup
t≥0

ρ1(λ
N
t ,λt) → 0 (7.147)

in probability.

Proof. Fix ε > 0. By Lemma 7.36, we can find t+ ∈ (tg,∞) such that Mt+ > 〈π0,λ0〉− ε
3
.

Let A1
N be the event

A1
N =

K
MN

t+
> 〈π0,λ0〉 −

ε

2
; 〈π0,λ

N
0 〉 ≤ 〈π0,λ0〉+

ε

2

L
. (7.148)

By Lemma 7.18 and condition (B2.), it follows that P(A1
N) → 1. On this event, for any

bounded, Lipschitz f : S → R we have

sup
t≥0

〈f,λN
t − λt〉 ≤ sup

0≤t≤t+

〈f,λN
t − λt〉+ sup

t>t+

〈f,λN
t − λt〉

≤ sup
0≤t≤t+

〈f,λN
t − λt〉+

-
〈π0,λ

N
0 〉 −MN

t+

.
+
-
〈π0,λ0〉 −Mt+

.

≤ sup
0≤t≤t+

〈f,λN
t − λt〉+ ε.

(7.149)

Now, taking the supremum over all f : S → R which are 1-bounded and 1-Lipschitz, we

obtain on the same event

sup
t≥0

ρ1(λ
N
t ,λt) ≤ sup

t≤tfin

ρ1(λ
N
t ,λt) + ε (7.150)

and the first term converges to 0 in probability by Lemma 7.7. We conclude that, with

probability converging to 1, supt≥0 ρ1(λ
N
t ,λt) < 2ε, and since ε > 0 was arbitrary, we are

done.

7.10 Behaviour Near the Critical Point

We now prove item 5 of Theorem 7.2, concerning the phase transition: we will show that

the gel data gt = (git) have nonnegative right-derivatives at the gelation time tg. We start

from the nonlinear fixed point equation (7.20), which we rewrite as

ct = tF (ct); F (c)i = 2

!

S

/
1− exp

/
−

n"

k=1

ckπk(x)

00
n"

j=1

aijπj(x)λ0(dx). (7.151)

The following proof is a modification of the arguments in [28, Theorem 3.17], which

itself generalises an analagous, well-known result for the phase transition of Erdős-Réyni

graphs.
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Lemma 7.38. Suppose that λ0 satisfies Hypothesis 7.1, and let ct be as in Lemma 7.15.

Then ct is right-differentiable at tg, and the right-derivative c′
t+g

> 0 is componentwise

positive.

Proof. Let us equip Rn with the inner product

(c, c′)λ0
=

n"

i,j=1

cic
′
j〈πiπj,λ0〉 (7.152)

which is the pullback of the L2(λ0) inner product under c /→
<

i ciπi, and write | · |λ0 for

the associated norm on Rn. Differentiating under the integral sign twice, and using (A2.),

we write

F (c) = Zc− Σ(c) +R (c) (7.153)

where Z = Z(λ0) is the n×n matrix found in Lemma 7.13, Σ(·) is a quadratic term, and

R is a remainder:

Zij = 2
n"

k=1

aik〈πkπj,λ0〉; (7.154)

Σ (c)i =
n"

j,k,l=1

aij〈πjπkπl,λ0〉ckcl (7.155)

|R(c)|λ0
= o

-
|c|2λ0

.
as |c| → 0. (7.156)

The signs here are chosen to guarantee that, if c > 0, then Zc,Σ(c) > 0, and Z is self-

adjoint with respect to (·, ·)λ0 . We also recall from Lemma 7.13 that the largest eigenvalue

of Z is precisely t−1
g , and the corresponding eigenspace is 1-dimensional. Let ψ be an

associated eigenvector, scaled so that |ψ|λ0 = 1. We note that
<

i ψiπi is an eigenfunction

of T , and in particular, the sign of ψ can be chosen so that
<

i ψiπi > 0 is strictly positive

λ0-almost everywhere; using (7.59) it follows that ψi > 0 for all i = 1, ..., n. From Lemma

7.15, Theorem 7.45 and Theorem 7.49, we know that ctg = 0, that ctg+ε ∈ [0,∞)n \ 0 for

all ε > 0, and that t /→ ct is continuous at tg.

Let us write ψ⊥ for the orthogonal compliment of Span(ψ) with respect to (·, ·)λ0 . Since

Span(ψ) is exactly the eigenspace Ker(Z−t−1
g 1) of Z corresponding the largest eigenvalue

t−1
g , it follows from the self-adjointness of Z that Z maps ψ⊥ into itself. Moreover, since

ψ spans the eigenspace of Z for t−1
g , it follows that, for t > tg small enough, (tZ − 1)|ψ⊥

is invertible, and that the operator norm ‖(tZ − 1)|−1
ψ⊥‖λ0→λ0 with respect to | · |λ0 on

ψ⊥ ⊂ Rn is bounded as t ↓ tg.

Let P : Rn → Rn be the orthogonal projection onto ψ⊥ with respect to (·, ·)λ0 , and write

c∗t = Pct so that we have the orthogonal decomposition

ct = αtψ + c∗t (7.157)
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for some αt ∈ R and c∗t ∈ ψ⊥. Noting that ZP = PZ, it follows from (7.151, 7.157) that

c*t = P (tF (ct)) = tZc*t + tP (−Σ(ct) +R(ct)) . (7.158)

The function −Σ(c)+R(c) is of quadratic growth as |c|λ0 → 0, and using the invertibility

of (tZ− I)|ψ⊥ described above, it follows that there exists β > 0 such that |c∗t |λ0 ≤ β|ct|2λ0

whenever |ct|λ0 ≤ 1. In turn, it follows that |ct|λ0 ∼ αt as t ↓ tg. Now, using (7.151) and

the self-adjointness of Z, we obtain

αt = (ψ, ct)λ0 = (tgZψ, ct)λ0 = tg(ψ,Zct)λ0

=
tg
t
(ψ, ct)λ0 − tg (ψ,−Σ(ct) +R(ct))λ0

=
tg
t
αt − tg (ψ,−Σ(ct) +R(ct))λ0

.

(7.159)

We now expand to second order in αt; for clarity, we will number the error terms T i
t .

Since |ct|λ0 ∼ αt, it follows that that |c∗t |λ0 = O(α2
t ) and that R(ct) = o(α2

t ). Expanding

Σ(ct) using (7.157),

−Σ(ct) +R(ct) = −α2
tΣ(ψ) + T 1

t ; |T 1
t |λ0 = o(α2

t ). (7.160)

It therefore follows that

αt = tg

'αt

t
+ α2

t (ψ,Σ(ψ))λ0

(
+ T 2

t ; T 2
t = o(α2

t ). (7.161)

For t > tg small enough, αt > 0, and we may rearrange to find

t− tg = t tg αt(ψ,Σ(ψ))λ0 + T 3
t ; T 3

t = o(αt) (7.162)

and in particular αt ∼ t− tg as t ↓ tg, since

(ψ,Σ(ψ))λ0 =
n"

i,j,k,l=1

aijψiψkψl〈πjπkπl,λ0〉 > 0. (7.163)

Finally, we obtain
αt

t− tg
→ 1

t2g(ψ,Σ(ψ))λ0

as t ↓ tg. (7.164)

The calculations above show that |ct − αtψ| = O((t − tg)
2), and the claimed right-

differentiability now follows. Finally, since ψi > 0 is strictly positive componentwise

and α′
tg+ > 0, it follows that c′tg+ > 0 componentwise.

We now show how this implies item 5 of Theorem 7.2. From Lemmas 7.15, 7.33, we have,

for all i = 0, 1, ..., n

git =

!

S

/
1− exp

/
−

n"

j=1

cjtπj(x)

00
πi(x)λ0(dx) (7.165)
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Differentiating under the integral sign using hypothesis (A2.), we obtain

git =
n"

j=1

cjt〈πiπj,λ0〉+ o(ct). (7.166)

In the notation of the previous lemma, we see that for t > tg,

git = (t− tg)
n"

j=1

(c′tg+)j〈πiπj,λ0〉+ o(t− tg)

= α′
tg+(t− tg)

V
n"

j=1

ψjπjπi,λ0

W
+ o(t− tg).

(7.167)

which proves the desired right-differentiability. For the positivity, since all components of

c′tg+ are strictly positive, we have the lower bound for i = 1, ..., n

(g′tg+)i ≥ (c′tg+)i〈π
2
i ,λ0〉 > 0. (7.168)

A similar argument holds for the 0th component.

Finally, we address the size-biasing effect. We wish to choose a convex combination

θi : i = 1, ..., n such that
<n

i=1 θi(g
′
tg+)i

(g′tg+)0
≥

<n
i=1 θi〈πi,λ0〉
〈π0,λ0〉

. (7.169)

Thanks to the calculation above, this is equivalent to proving that
<n

i,j=1 θiψj〈πiπj,λ0〉<n
k=1 ψk〈πk,λ0〉

≥
<n

i=1 θi〈πi,λ0〉
〈π0,λ0〉

. (7.170)

If we choose θi = ψi/
<

j ψj, then these follow from the Cauchy-Schwarz inequality

V
"

i

ψiπi,λ0

W2

≤
V
(
"

i

ψiπi)
2,λ0

W
〈1,λ0〉

=

V
(
"

i

ψiπi)
2,λ0

W
〈π0,λ0〉.

(7.171)

We recall that the linear combination f =
<

i ψiπi is an eigenfunction of T , and so can

only be constant λ0-almost everywhere if s(x) = (T1)(x) is constant. In particular, if

s is not constant λ0-almost everywhere, the inequality (7.171) is strict, and hence so is

(7.169), as desired.

7.11 Convergence of the Gel

We now prove the remaining part of Theorem 7.3, concerning the uniform convergence of

the stochastic gel, drawing on other results we have proven. We recall that gNt are the data
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of the largest particle in the stochastic coagulant λN
t ; to conclude the proof of Theorem

7.3, we must extend Lemma 7.18, to show uniform convergence in time, in probability.

Throughout this section, let λ0 be an initial measure satisfying Hypothesis 7.1, and λN
t

be stochastic coagulants satisfying Hypothesis 7.2 for this choice of λ0. We will also let

GN
t be random graphs coupled to λN

t as described in Section 7.5, so that gNt is the data

of the largest component in GN
t .

This subsection is structured as follows. We recall that, in the proof of Lemma 7.18, we

used the result on mesoscopic clusters from [28]: if ξN → ∞ and ξN
N

→ 0, then for all

t ≥ 0,
1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t ) → 0 (7.172)

in probability. We will first state a lemma which extends this convergence to be uniform

in time. Equipped with this lemma, and previous results, we will show how the proof of

Lemma 7.18 can be modified to establish uniform convergence, and prove the analagous

result when we sum over all clusters exceeding a deterministic size ξN ≪ N. Finally, we

return to prove the preliminary lemma.

The key lemma which we will require is the following, which generalises the result of

Bollobás et al. recalled in Lemma 7.48.

Lemma 7.39. Let GN
t be as above, and let ξN be any sequence such that ξN → ∞,

ξN
N

→ 0. Then we have the uniform estimate

sup
t≥0

B

C 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

D

E → 0 in probability. (7.173)

The proof of this lemma will be deferred until Subsection 7.11.2

7.11.1 Proof of Theorem 7.3

It remains to prove that the convergence of the stochastic approximations gNt , 5gNt to the

gel, given by the gel data of the largest cluster, and of all clusters exceeding a certain

scale ξN respectively. This is the content of the following two lemmas.

Lemma 7.40. In the notation above, we have the uniform convergence

sup
t≥0

@@gNt − gt
@@ → 0 in probability. (7.174)

Lemma 7.41. Fix a sequence ξN such that ξN → ∞ and ξN
N

→ 0, and let 5gNt be given by

5gNt =
1

N

"

j≥1:Cj(GN
t )≥ξN

π(Cj(GN
t )) =

-
〈πi1I[π0 ≥ ξN ],λ

N
t 〉

.n+m

i=0
. (7.175)
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Then

sup
t≥0

@@5gNt − gNt
@@ → 0 in probability. (7.176)

We now prove these two lemmas, looking primarily at the 0th coordinate. The other

coordinates follow, with minor modifications which will be discussed later.

Proof of Lemma 7.40. This is an extension of the proof of Lemma 7.18, from where much

of the notation is taken. We deal first with the 0th coordinate MN
t − Mt. Let ηr be

a fast-growing sequence such that β(r, ηr) → 0 in the notation of Lemma 7.19, and let

S(r), 5fr, 5hr be as in Lemma 7.18. Let also ξN be a sequence, to be constructed later, such

that

ξN → ∞;
ξN
N

→ 0 (7.177)

and write fN = 5fξN , hN = 5hξN . We recall also the decomposition (7.76)

MN
t −Mt =

5"

i=1

T i
N(t) (7.178)

where the definitions of the error terms are given in (7.76). The bounds obtained on

T 3
N(t), T 5

N(t) in the proof of Lemma 7.18 are already uniform in time; we will now show

how the previous proof can be modified to estimate the other terms uniformly in time.

Step 1. Estimate on T 1
N(t) T 1

N(t) is the nonrandom error 〈π0,λt〉 − 〈π0fN ,λt〉. The

estimate in Lemma 7.18 shows that 〈π0fN ,λt〉 ↑ 〈π0,λt〉 for each fixed t ≥ 0. The maps

t /→ 〈π0fN ,λt〉, t /→ 〈π0,λt〉 are both continuous on [0,∞), by the definition of the

Flory dynamics (Fl) and Lemma 7.33 respectively. Let us extend both of these maps

to [0,∞] by defining both to be 0 at t = ∞; the extensions are continuous, by Lemma

7.36. Therefore, by Dini’s theorem, it follows that 〈π0fN ,λt〉 → 〈π0,λt〉 uniformly, which

implies that supt≥0 |T 1
N(t)| → 0 as desired.

Step 2. Estimate on T 4
N . As in (7.79), we have the equality, for all t ≥ 0

T 4
N(t) = −MN

t 1I

6
MN

t ≤ ξN
N

7
− 1

N

"

j≥2:Cj(GN
t )≥ξN

π0(Cj(GN
t )) (7.179)

where we have used the coupling of the random graphs (GN
t )t≥0 to the stochastic coagulant.

Therefore, we have the uniform bound

sup
t≥0

@@T 4
N(t)

@@ = 〈ϕ2,λN
0 〉

1
2

8

9sup
t≥0

1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

:

;

1
2

+
ξN
N

(7.180)

which converges to 0, by Lemma 7.39, (B2.), and because ξN ≪ N.
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Step 3. Construction of ξN , and convergence of T 2
N . To conclude the proof of the

supercritical case, it remains to show how a sequence ξN can be constructed such that

T 2
N → 0 uniformly, in probability. Recalling the definitions of f̃r above, let Ar,N be the

events

Ar,N =

M
sup
t≥0

|〈π0
5fr,λN

t − λt〉| <
1

r

N
. (7.181)

Then, asN → ∞ with r fixed, P(A1
r,N) → 1 by Lemma 7.37. We now defineNr inductively

for r ≥ 1 inductively, as in Lemma 7.18, by settingN1 = 1 and lettingNr+1 be the minimal

N > Nr such that, for all N ′ ≥ N ,

N ≥ (r + 1)2; P(Ar+1,N ′) >
r

r + 1
. (7.182)

Now, we set ξN = r for N ∈ [Nr, Nr+1). It follows that ξN satisfies the requirements above,

and

P
6
sup
t≥0

|T 2
N | <

1

ξN

7
≥ P

-
A1

ξN ,N

.
> 1− 1

ξN
→ 1 (7.183)

Therefore, with this choice of ξN , T 2
N → 0 uniformly in probability on t ≥ 0.

This concludes the proof for the 0th coordinate MN
t ; the 1st - nth coordinates are identical.

For the remaining m coordinates, we replace fN by 1
2
(fN(x) + fN(Rx)), which makes T 1

N

identically 0 by symmetry, and use the bound πi(x)
2 ≤ cϕ(x)2 in estimating T 4

N .

Proof of Lemma 7.41. We now turn to the case where, instead of considering the largest

cluster, we sum over the (possibly empty) set of clusters of size at least ξN , for a deter-

ministic sequence ξN . In this way, we have

5gNt = 〈π1I[π0 ≥ ξN ],λ
N
t 〉. (7.184)

Let us write hN(x) = 1I[π0(x) < ξN ], so that 5gNt = 〈π,λN
0 〉−〈πhN ,λ

N
t 〉.With this notation,

gNt − 5gNt = 〈πhN ,λ
N
t 〉 −

-
〈π,λN

0 〉 − gNt
.

(7.185)

is exactly the term T 4
N estimated in the proofs of Lemma 7.18, 7.40, for the new choice of

ξN . The estimate (7.180) therefore applies to bound supt≥0

@@gNt − 5gNt
@@, and the hypotheses

on ξN are sufficient to guarantee that the right-hand side converges to 0 in probability.

7.11.2 Proof of Lemma 7.39

We now turn to the proof of Lemma 7.39; our strategy is as follows. First, we prove

uniform convergence on compact subsets I ⊂ (tg,∞) in Lemma 7.42. We will then show

how this may be extended to the whole interval [0,∞), by arguing separately for an initial

interval [0, t−] and for large times [t+,∞).
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Lemma 7.42. Let GN
t and ξN be as above. Fix a compact subset I ⊂ (tg,∞). Then we

have the convergence

sup
t∈I

B

C 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

D

E → 0 in probability. (7.186)

Proof of Lemma 7.42. It is sufficient to show that for every t > tg the claim holds for

some I of the form I = (t−, t+) ⊂ (tg,∞) containing t. As in Theorem 7.30, let Jλt
0 be the

measure on S given by Jλt
0(dx) = (1 − κt(x))λ0(dx). We also write Jtg(t) for the gelation

time of the solution (Jλt
s)s≥0 to (Fl) starting at Jλt

0. We showed in the proof of Theorem

7.30 that, for all t > tg, Jtg(t) > t, and the map t /→ Jtg(t) is continuous. Therefore, for any
t > tg, we can choose t± such that

tg < t− < t < t+ < Jtg(t−). (7.187)

We form 5GN
t− from GN

t− by deleting all vertexes of the giant component of C1(G
N
t−). We

now form a new graph, 5GN
t−,t+

by including all edges between vertexes of 5GN
t− which are

present in the graph GN
t+
.

From Theorem 7.50 and Lemma 7.31, we can construct a sequence yN , N ≥ 1 satisfying

Hypothesis 7.2 for Jλt−
0 and random graphs JGN

t− ∼ G(yN , t−K/N), such that

P
'
JGN
t− = 5GN

t−

(
→ 1. (7.188)

We now form JGN
t−,t+

from JGN
t− by adding those edges present in GN

t+
. By the Markov

property of the graph process (GN
s )t≥0, these edges are independent of the construction

of JGN
t− , and so JGN

t−,t+
∼ G(yN , t+K/N).

Since Hypothesis 7.2 applies to yN and Jλt−
0 , Lemma 7.16 shows that the critical time for

G(yN , tK/N) is exactly the gelation time of (Jλt−
s )s≥0, which we have written as Jtg(t−). By

the choices of t±, t+ < Jtg(t−), and in particular, JGN
t−,t+

is still subcritical. By construction,

P
'
JGN
t−,t+

= 5GN
t−,t+

(
→ 1. (7.189)

For s ∈ [t−, t+], let C ′
1(G

N
s ) be the connected component of GN

s which contains C1(GN
t−),

and let C ′
1(G

N
s ) be its size. By definition, C ′

1(G
N
s ) ≤ C1(G

N
s ) and so

"

j≥2

Cj(G
N
s )1I

G
Cj(G

N
s ) ≥ ξN

H
≤

"

j≥1

Cj(G
N
s )1I

G
Cj(G

N
s ) ≥ ξN , Cj(GN

s ) ∕= C ′
1(G

N
s )

H
.

(7.190)

Moreover, the right-hand side is increasing as s runs over [t−, t+], since it can be rewritten

as

.... =
lN"

i=1

1I
G
∃j : i ∈ Cj(GN

s ), Cj(G
N
s ) ≥ ξN , i ∕∈ C1(GN

t−)
H

(7.191)
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and each summand can only increase in s as the clusters grow. Evaluating at the endpoint

t+, the construction of 5GN
t−,t+

gives

"

j≥1

Cj(G
N
t+
)1I

G
Cj(G

N
t+

≥ ξN , Cj(GN
t+
) ∕= C ′

1(G
N
t+
)
H
=

"

j≥1

Cj( 5GN
t−,t+

)1I
?
Cj( 5GN

t−,t+
) ≥ ξN

A
.

(7.192)

Combining (7.189, 7.190, 7.192) we see that, with high probability,

sup
s∈[t−,t+]

B

C 1

N

"

j≥2:Cj(GN
s )≥ξN

Cj(G
N
s )

D

E ≤ 1

N
C1( JGN

t−,t+
) +

1

N

"

j≥2:Cj( #GN
t−,t+

)≥ξN

Cj( JGN
t−,t+

).

(7.193)

The first term of the right-hand side converges to 0 in probability because JGN
t−,t+

is

subcritical, and the second term converges to 0 in probability by Theorem 7.48.

Proof of Lemma 7.39. For λ0 as in the hypothesis, letMt be the mass of the gel associated

to the solution (λt)t≥0 to (Fl). Fix ε > 0; without loss of generality, assume that ε < 1.

By continuity from Lemma 7.33 and Lemma 7.36, we can choose t± ∈ (tg,∞) such that

Mt− <
ε

3
; Mt+ > λ0(S)−

ε

3
. (7.194)

Consider now the events

A1
N =

M
1

N
C1(G

N
t−) <

2ε

3
;

1

N
C1(G

N
t+
) > λ0(S)−

ε

2
; 〈π0,λ

N
0 〉 < λ0(S) +

ε

2

N
;

(7.195)

A2
N =

#
1$

1%
1

N

"

j≥2:Cj(GN
t− )≥ξN

Cj(G
N
t−) <

ε

3

Q
1R

1S
. (7.196)

Thanks to the coupling described in Section 7.5, Lemma 7.18 implies that P(A1
N) → 1,

and P(A2
N) → 1 from Theorem 7.48. On the event A1

N ∩ A2
N , we bound as follows.

i). For the initial interval [0, t−], an argument similar to that of Lemma 7.42 shows

that, on this event,

sup
t∈[0,t−]

1

N

"

j≥2:
Cj(G

N
t )≥ξN

Cj(G
N
t ) ≤

1

N

"

j≥1:
Cj(G

N
t− )≥ξN

Cj(G
N
t−) =

1

N
C1(G

N
t−)+

1

N

"

j≥2:
Cj(G

N
t− )≥ξN

Cj(G
N
t−) < ε.

(7.197)

ii). For late times t ∈ [t+,∞), the largest cluster C1(GN
t ) is at least the size of the cluster

containing C1(GN
t+
). Therefore,

inf
t≥t+

1

N
C1(G

N
t ) ≥

1

N
C1(G

N
t+
) > λ0(S)−

ε

2
(7.198)
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and so

sup
t≥t+

B

C 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

D

E ≤ sup
t≥t+

=
1

N

"

j≥2

Cj(G
N
t )

>
≤ 〈π0,λ

N
0 〉−

1

N
C1(G

N
t+
) < ε.

(7.199)

Now, consider the events

A3
N =

#
$

% sup
t∈[t−,t+]

B

C 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

D

E < ε

Q
R

S ; (7.200)

AN = A1
N ∩ A2

N ∩ A3
N . (7.201)

By Lemma 7.42, P(A3
N) → 1, and so P(AN) → 1. On the event AN , we have

sup
t≥0

B

C 1

N

"

j≥2:Cj(GN
t )≥ξN

Cj(G
N
t )

D

E < ε (7.202)

which proves the claimed convergence in probability.



Appendix

7.A Weak Formulation of Smoluchowski and Flory

Equations

Throughout, we work with the weak formulation of the Smoluchowski and Flory equations

described in the introduction. In order to make sense of every term for a putative solution

(λt)t<T , we ask for the following conditions to hold.

i). For all Borel sets A ⊂ S, the map t /→ λt(A) is measurable;

ii). For all bounded, measurable functions f : S → R+ belonging to A, 〈f,λ0〉 < ∞;

iii). For all compact subsets S ′ ⊂ S and all t < T ,
! t

0

ds

!

S′×S

K(x, y)λs(dx)λs(dy) < ∞; (7.203)

If these hold, then we say can make sense of the following weak form of the Smoluchowski

equation (Sm).

iv). For all f ∈ A and t < T ,

〈f,λt〉 = 〈f,λ0〉+
! t

0

〈f, L(λs)〉ds. (7.204)

7.B Introduction to Inhomogenous Random Graphs

As discussed in the introduction, the connection between gelation and random graphs

is well-understood, and the multiplicative kernel corresponds to the well-known Erdős-

Réyni random graphs [78, 75, 5]. However, for our purposes, not all particles are equal:

particles with large values of πi(x) will undergo more collisions and exhibit quantitatively

different behaviour, and so we will need a more sophisticated model of random graphs

to accommodate this inhomogeneity. In this section, we will review the theory of inho-

mogenous random graphs developed in [28], which will play the same rôle for our model

that the Erdős-Réyni model does for the multiplicative kernel. We now summarise the

key definitions and results from [28] which we use in our work.

423
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Definition 7.B.1. A generalised vertex space is a triple V = (S,m, (xN)N≥1), consisting

of

• A separable metric space S, equipped with its Borel σ-algebra;

• A measure m on S, with m(S) ∈ (0,∞);

• A family of random variables xN = (x
(N)
1 , ..., x

(N)

lN
) taking values in S, and of poten-

tially random length lN , such that the empirical measures

mN =
1

N

lN"

k=1

δ
x
(N)
k

(7.205)

converge to m in the weak topology F(Cb(S)), in probability.

In the special case where m(S) = 1 and lN = N , we say that (S,m, (xN)N≥1) is a vertex

space.

Definition 7.B.2. A kernel is a symmetric, measurable map k : S × S → [0,∞). We

say that k is irreducible if, whenever A ⊂ S is such that k(x, y) = 0 for all x ∈ A and

y ∈ Ac, then either m(A) = 0 or m(Ac) = 0.

Definition 7.B.3 (Inhomogenous random graphs). Given a kernel k and a generalised

vertex space V, we let GN be a random graph on {1, 2, .., lN} given as follows. Conditional

on the values of xN , the edge e = (ij) is included with probability

pij = 1− exp

/
−
k(x

(N)
i , x

(N)
j )

N

0
(7.206)

and such that the presence of different edges is (conditionally) independent. We write

GN ∼ GV(N, k/N). We also consider the vertex data xN = (x
(N)
i )l

N

i=1 to be part of the

data of GN
t , so that an equality of random graphs G = G′ includes the equality of the

vertex data.

Remark 7.43. This differs slightly from the main definition in [28], but is rather one of

the alternatives considered in [28, Remark 2.4]

To treat a general class of kernels k, additional regularity is required, to prevent patholo-

gies. This is the content of the following defintion:

Definition 7.B.4 (Graphical Kernel). We say that a kernel k on a vertex space V =

(S,m, (vN)N≥1) is graphical if the following hold.

i). k is almost everywhere continuous on S × S;

ii). k ∈ L1(S × S,m⊗m);
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iii). If GN ∼ GV(N, k/N), then

1

N
E
G
e
-
GN

.H
→ 1

2

!

S×S
k(v, w)m(dv)m(dw) (7.207)

where e(·) denotes the number of edges of the graph.

Definition 7.B.5. Given a graph G, we write Cj(G) : j = 1, 2... for the connected com-

ponents of G, in decreasing order of their sizes #Cj(G) = Cj(G). If there are fewer than

j connected components, then Cj(G) = ∅ and Cj(G) = 0.

The phase transition is given in terms of the convolution operator

(Tf)(v) =

!

S

k(v, w)f(w)m(dw) (7.208)

for functions f such that the right-hand side is defined (i.e., finite or +∞) for m-almost

all v; for instance, if f ≥ 0 then Tf is well-defined, possibly taking the value ∞. We

define

‖T‖ = sup{‖Tf‖L2(m) : ‖f‖L2(m) ≤ 1, f ≥ 0}. (7.209)

If T defines a bounded linear map from L2(m) to itself, then ‖T‖ is precisely its operator

norm in this setting; otherwise, ‖T‖ = ∞. It is straightforward to show that if k ∈
L2(S × S,m ⊗ m) then T : L2(m) → L2(m) is a Hilbert-Schmidt operator, and that

‖T‖HS = ‖k‖L2(m) < ∞. In this case, ‖T‖ is certainly finite, and is the operator norm of

T : L2(m) → L2(m). The example of interest to us will fall into this case.

The analysis of the random graphs uses a branching process, similar to that used in the

standard analysis of Erdős-Rényi graphs. Many quantities of the graph can be expressed

in terms of the ‘survival probability’ κ(k, v) when the data v of the first vertex in the

branching process is given. To avoid the unnecessary complication of making this into

a precise definition, we use the following characterisation, which is equivalent by [28,

Theorem 6.2].

Theorem 7.44. Let k be an irreducible kernel on a generalised vertex space V, such that

k ∈ L1(S × S,m×m), and such that, for all x,
!

S

k(x, y)m(dy) < ∞. (7.210)

Consider the nonlinear fixed-point equation

∀x ∈ S, κ(x) = 1− e−(Tκ)(x) (7.211)

where T is the convolution operator (7.53). Then (7.211) has a maximal solution κk(x) =

κ(k; x); that is, for any other solution κ̃,

∀x ∈ S, κ̃(x) ≤ κ(k, x). (7.212)

It therefore follows that 0 ≤ κk(x) ≤ 1 for all x. The maximal solution is necessarily

unique, and so this uniquely defines κk. Moreover, we have the following dichotomy:
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i). If ‖T‖ ≤ 1, then κ(k, x) = 0 for all x;

ii). If ‖T‖ > 1, then κ(k, x) > 0 for all m-almost all x.

This can be stated dynamically as follows. Consider the survival function ‘at time t’, given

by κ(tk, x), which we will write throughout as κt(x). Then

• If t ≤ ‖T‖−1, then κt(x) = 0 for all x;

• If t > ‖T‖−1, then κt(x) > 0 for all x.

We can now state the main results on the phase transition, given by [28, Theorem 3.1

and Corollary 3.2].

Theorem 7.45 (Phase Transition). Let k be a graphical and irreducible kernel for a

vertex space V, with 0 < ‖T‖ < ∞. Let GN ∼ GV(N, k/N) be random graphs on a

common probability space. Then we have the convergence

1

N
C1(G

N
t ) →

!

S
κ(tk, v)m(dv) in probability. (7.213)

Therefore, if (GN
t )t≥0 is a dynamic family of random graphs GN

t ∼ GV(N, tk), then we

have the following dichotomy:

i). If t ≤ tc = ‖T‖−1, then there is no giant component, in particular

C1(G
N
t )

N
→ 0 (7.214)

in probability.

ii). If t > tc = ‖T‖−1, then there is a giant component: there exists c = c(t) > 0 such

that

P(C1(G
N
t ) > cN) → 1. (7.215)

Remark 7.46. Following [28], based on this dichotomy, we say that

i). GN is subcritical if ‖T‖ < 1;

ii). GN is critical if ‖T‖ = 1;

iii). GN is supercritical if ‖T‖ > 1.

The next result characterises tg in terms of the point spectrum σp(T ) as an operator on

L2(m), and appears as [28, Lemma 5.15]
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Theorem 7.47 (Spectrum of T ). Let V be a generalised vertex space and k be a graphical,

irreducible kernel on V such that k ∈ L2(S × S,m × m). Then the operator T defined

in (7.53) has an eigenvalue t−1
c = ‖T‖ in L2(m), and the corresponding eigenspace is

1-dimensional. Moreover, there exists an eigenfunction f such that f > 0 m-almost

everywhere.

The third result we will recall is [28, Theorem 3.6], which considers clusters of a scale

ξN ≪ N , excluding the largest cluster. We term these mesoscopic clusters.

Theorem 7.48. Let GN ∼ GV(N, k/N), for a (generalised) vertex space V and an irre-

ducible graphical kernel k. Let ξN be a sequence with

ξN → ∞;
ξN
N

→ 0. (7.216)

Then
1

N

"

j≥2:Cj(GN )≥ξN

Cj(G
N) → 0 (7.217)

in probability.

We will also make use of the following monotonicity and continuity properties, from [28,

Theorem 6.4].

Theorem 7.49. Let k be a kernel on a vertex space V, and let κt(·) = κ(tk, ·) be the

survival function defined above. Then the map t /→ κt(·) is monotonically increasing, in

the sense that for all 0 ≤ s ≤ t and for all x, κs(x) ≤ κt(x). We also have the following

continuity property. Let tn → t be a monotone sequence, either increasing or decreasing.

Then

κtn(x) → κt(x) for m- almost all x, and (7.218)

!

S
κtn(x)m(dx) →

!

S
κt(x)m(dx). (7.219)

The final result which we will need is a ‘duality’ result, connecting the supercritical and

subcritical behaviours. This is given by [28, Theorem 12.1].

Theorem 7.50. Let k be an irreducible graphical kernel on a generalised vertex space V,
such that ‖T‖ > 1. Let GN ∼ GV(N, k/N), and form 5GN by deleting all vertexes in the

largest component C1(GN). Then, defined on the same underlying probability space, there

is a generalised vertex space JV = (S, Jm, (yN)N≥1) with

Jm(dx) = (1− ρ(k; x))m(dx) (7.220)

and such that yN is an enumeration of those xi not belonging to the component C1(GN),

and a random graph JGN ∼ G #V(N, k/N) such that

P( 5GN = JGN) → 1. (7.221)

Furthermore, if k ∈ L2(S × S,m⊗m), then JGN is subcritical.
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We emphasise here that we have defined the equality 5GN = JGN to include equality of the

values xi associated to each vertex; this follows from the construction in [28], since the

values yN associated to JGN are exactly those xi not belonging to the giant component.

This generalises the standard ‘duality result’ of Bollobás [27] for Erdős-Rényi graphs.
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molekülen. In Kinetische Theorie II, pages 115–225. Springer, 1970.

[31] F. Bouchet. Is the Boltzmann equation reversible? A large deviation perspective

on the irreversibility paradox. J. Stat. Phys., 181(2):515–550, 2020.

[32] A. Budhiraja, Y. Chen, and L. Xu. Large deviations of the entropy production rate

for a class of Gaussian processes. J. Math. Phys., 62(5):Paper No. 052702, 25, 2021.

[33] A. Budhiraja and M. Conroy. Empirical measure and small noise asymptotics under

large deviation scaling for interacting diffusions. Journal of Theoretical Probability,

pages 1–55, 2021.
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[63] R. L. Dobrušin. Vlasov equations. Funktsional. Anal. i Prilozhen., 13(2):48–58, 96,

1979.

[64] M. H. Duong, V. Laschos, and M. Renger. Wasserstein gradient flows from large

deviations of many-particle limits. ESAIM Control Optim. Calc. Var., 19(4):1166–

1188, 2013.

[65] P. Dupuis and R. S. Ellis. A weak convergence approach to the theory of large

deviations. Wiley Series in Probability and Statistics: Probability and Statistics.

John Wiley & Sons, Inc., New York, 1997. A Wiley-Interscience Publication.



434 BIBLIOGRAPHY

[66] P. Dupuis, K. Ramanan, and W. Wu. Large deviation principle for finite-state mean

field interacting particle systems. arXiv preprint arXiv:1601.06219, 2016.

[67] A. Einav. An improved upper bound on the entropy production for the kac master

equation. Kinetic and Related Models, 2010.

[68] A. Einav. On Villani’s conjecture concerning entropy production for the Kac master

equation. Kinet. Relat. Models, 4(2):479–497, 2011.

[69] A. Einav. A counter example to Cercignani’s conjecture for the d dimensional Kac

model. J. Stat. Phys., 148(6):1076–1103, 2012.

[70] N. El Karoui and J. Lepeltier. Représentation des processus ponctuels multivariés à
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