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Topological states of matter exhibit many novel properties due to the presence of robust topological invariants
such as the Chern index. These global characteristics pertain to the system as a whole and are not locally
defined. However, local topological markers can distinguish between topological phases, and they can vary
in space. In equilibrium, we show that the topological marker can be used to extract the critical behaviour
of topological phase transitions. Out of equilibrium, we show that the topological marker spreads via a flow
of currents emanating from the sample boundaries, and with a bounded maximum propagation speed. We
discuss the possibilities for measuring the topological marker and its flow in experiment.
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Topological quantum systems exhibit many striking
phenomena due to the inherent topological properties of
their ground state wavefunctions. Experimental signa-
tures in two-dimensions include the robust quantisation
of the transverse charge transport, with direct links to
topological invariants [1]. The observation of the Quan-
tum Hall Effect in graphene highlights that topology can
be relevant at room temperature [2], widening the scope
for practical applications. The recent discovery of topo-
logical insulators [3–5] extends the reach of topology to
a wider class of materials and dimensionalities, giving
rise to exotic phases such as topological superconduc-
tors [6]. Discoveries of topological phases in photonic sys-
tems [7–11] and cold atomic gases [12–21] have expanded
the range of experimental probes and measurement tech-
niques, providing access to a much broader range of phys-
ical observables. These diverse systems could also play
an important role in fault tolerant quantum information
processing [22].

Recently, the behaviour of non-equilibrium topological
systems has come under scrutiny, with a view towards the
time-dependent interrogation and manipulation of their
novel topological properties. Theoretical studies include
quantum quenches in p+ip superfluids [23, 24] and Chern
insulators [25, 26]. Non-equilibrium dynamics of topo-
logical systems has also been examined in the context of
periodically driven Floquet systems [27–31], as recently
realised in experiment [14]. A notable finding is that
global topological invariants are preserved under unitary
evolution [23–25, 27], unless dynamically-induced sym-
metry breaking takes place [32]. However, local physical
observables, such as the magnetisation, can change [25].
In addition, the Hall response is no longer quantised, and
undergoes temporal dynamics [26, 28–30].

In this work, we examine the equilibrium and non-
equilibrium properties of Chern insulators from the van-
tage point of the real-space topological marker [34]. We
show that the topological marker can be used to extract
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Figure 1. Lattice geometry and phase diagram. a Lat-
tice geometry of the Haldane model. We consider a diamond-
shaped sample (light grey) with edges composed of L unit cells
along primitive lattice vectors, and N = 2L2 sites. b Den-
sity plot of the Chern marker (3) in the central cell (bold) in
panel a, with L = 17. The dashed lines are the phase bound-
aries M = ±

√
3 sinϕ of the Haldane model [33] with t1 = 1,

t2 = 1/3 and a = 1.

the critical behaviour of topological phase transitions, in
spite of the fact that no traditional local order parameter
exists. Out of equilibrium, we show that the topological
marker spreads via a flow of currents, with a maximum
propagation speed that is determined by the band struc-
ture of the final Hamiltonian. In finite-size samples, these
currents emanate from the sample boundaries. We dis-
cuss the relevance of these findings to experiment.

Model. In order to expose the applications of the
topological marker, we focus on the Haldane model [33].
This model is celebrated for realising topological bands
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without an external magnetic field, as recently exploited
in cold atomic gas experiments [12, 14]. It also played
an important role in the discovery of topological insula-
tors [35]. The Hamiltonian describes spinless fermions on
a honeycomb lattice

Ĥ = −t1
∑
〈i,j〉

(
ĉ†i ĉj + h.c.

)
− t2

∑
〈〈i,j〉〉

(
eiϕij ĉ†i ĉj + h.c.

)
+M

∑
i∈A

n̂i −M
∑
i∈B

n̂i, (1)

where the fermionic creation and annihilation operators
ĉ†i and ĉi obey anticommutation relations {ĉi, ĉ†j} = δij ,

and n̂i ≡ ĉ†i ĉi; see Fig. 1a. Here, t1 and t2 are the first
and second neighbour hopping amplitudes, and the angu-
lar brackets 〈〉 and 〈〈〉〉 indicate summation over the first
and second neighbour pairs respectively. The parame-
ter M breaks the inversion symmetry between the A and
B sublattices, as indicated by the red and blue dots in
Fig. 1a, yielding a trivial insulating phase for sufficiently
large M . The phase ϕij = ±ϕ breaks time-reversal sym-
metry, and is positive (negative) for anticlockwise (clock-
wise) second neighbor hopping, as shown in Fig. 1a. This
allows for topological phases at half-filling, even without
a net magnetic field [33]. The phases are distinguished
by the Chern index, which is a global property of a band
of Bloch states |ψ(k)〉:

C =
1

2π

∫
BZ

d2k Ω, (2)

where Ω = ∂kxAky − ∂kyAkx is the Berry curvature,
Akµ = i〈ψ(k)|∂kµ |ψ(k)〉 is the Berry connection, and the
integral is over the 2D Brillouin zone. The Chern index
thereby characterises the topology of the band of states
|ψ(k)〉 and is robustly quantised. For the ground state of
the Haldane model at half-filling, C = ±1 in the topolog-
ical phases and C = 0 in the non-topological phase; see
Fig. 1b. Throughout the manuscript, we fix the hoppings
t1 = 1, t2 = 1/3, and the lattice spacing a = 1.

Local Chern Marker. In open-boundary systems,
or in the presence of disorder, the lack of translational
invariance renders the expression (2) undefined. Re-
cently, the notion of a local Chern marker has been in-
troduced [34], with the explicit representation

c(rα) = −4π

Ac
Im

∑
s=A,B

〈rαs |P̂ x̂Q̂ŷP̂ |rαs〉, (3)

where Ac is the area of a real-space unit cell, P̂ is the
projector onto the ground state, and Q̂ = Î − P̂ is
the complementary projector. The sum is over the two
sublattice sites s = A,B within the unit cell α, and
|ri〉 = ĉ†i |0〉 is the state localised on the corresponding site

i ≡ αs. Owing to the shortsightedness of P̂ for gapped
phases [36], the topological marker defined in Eq. (3) has
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Figure 2. Scaling of the Chern marker. a Vertical slice
through the phase diagram in Fig. 1b with ϕ = π/2, showing
the variation of the local Chern marker in the centre of the
sample as a function of M . The results smoothly interpo-
late between 1 and 0 in the vicinity of the topological phase
transition. The different curves correspond to increasing sys-
tem sizes L = 15, 17, 19, 21, 23, 25, 27, 29, as illustrated. The
curves cross in a narrow region within 0.5% of Mc =

√
3, the

exact transition point of the Haldane model for the chosen
parameters. The width ∆M of the transition region, corre-
sponding to the interval from c = 0.95 to c = 0.05 (horizontal

lines), scales as ∆M ∼ L−1/ν . Inset: linear plot showing
ν = 0.995(6) ≈ 1. This is consistent with the correlation
length exponent in the low-energy Dirac theory. b Re-plotting
the data in panel a as c ∼ f̃((M−Mc)L

1/ν) with ν = 1 yields
scaling collapse.

a quasi-local character [37, 38]; for Chern insulators, P̂
is exponentially localised in the gapped bulk, but has
extended support along the sample boundaries. In or-
der to orient the subsequent discussion, in Fig. 1b, we
show the phase diagram of the Haldane model (1) ob-
tained from the real-space Chern marker (3); see also
Ref. [34]. The Chern marker clearly discriminates be-
tween the topological and non-topological phases [34], in
accordance with the phase diagram obtained from the
low-energy Dirac theory [33]. In finite-size samples, the
Chern marker averages to zero, but in the interior of the
sample it nonetheless distinguishes between topological
and non-topological phases [34]. For recent applications
of the Chern marker in clean and disordered samples see
Refs. [39–43].

Critical Properties. Inspection of the phase dia-
gram in Fig. 1b highlights that, away from the phase
boundaries, the local Chern marker is 0,±1 within ma-
chine precision. However, in the vicinity of the transition
for finite-size samples, c is no longer quantised [34]. In
Fig. 2a, we show the variation of the Chern marker as
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one passes between the topological and non-topological
phases. It can be seen that the transition region narrows
with increasing system size, suggesting a sharp disconti-
nuity in the thermodynamic limit. Assuming that the de-
parture from quantisation in the middle of the sample oc-
curs when the bulk correlation length ξ (or alternatively,
the edge penetration depth) is of order (half the) system
size, finite-size effects become relevant when ξ ∼ L/2.
Further assuming that ξ ∼ (∆M)−ν , where ∆M is the
width of the transition region in Fig. 2a and ν is the
correlation length exponent, one expects that the width
scales with the system size according to ∆M ∼ L−1/ν .
In the inset of Fig. 2a we confirm this dependence, with
ν = 0.995(6) ≈ 1. This is consistent with the correla-
tion length exponent of the low-energy Dirac theory [44].
It is also compatible with the delocalisation of the edge
states into the interior of the sample on closing the gap.
Re-plotting the data in Fig. 2a with the scaling form
c ∼ f(ξ/L) = f((M −Mc)

−ν/L) = f̃((M −Mc)L
1/ν)

with ν = 1, shows that the data collapse onto a single
curve; see Fig. 2b. This confirms that the real-space
Chern marker can be used to extract the critical be-
haviour of topological phase transitions, in a similar way
to a local order parameter for conventional phase tran-
sitions. In contrast to approaches using the momentum
space Berry curvature [45, 46], the present technique can
be applied in non-translationally invariant settings.

Non-Equilibrium Dynamics. Having exposed the
equilibrium properties of the Chern marker, we turn our
attention to its non-equilibrium dynamics. Here, we fo-
cus on quantum quenches, where the system is prepared
in the ground state |ψ0(M,ϕ)〉 of the initial Hamilto-
nian Ĥ(M,ϕ) at half-filling and, upon sudden change
of the parameters to new values (M ′, ϕ′), it evolves as
exp [−iĤ(M ′, ϕ′)t]|ψ0(M,ϕ)〉. The Chern marker is eval-
uated using Eq. (3), and the projector onto the time
evolving state [40]. In Fig. 3a, we show the dynamics of
the Chern marker, evaluated in the centre of a finite-size
sample, following quenches for different starting points in
the topological phase to a fixed parameter point in the
non-topological phase. For these quenches, the Chern
marker initially remains quantised, but it departs from
quantisation after a characteristic timescale t∗, that is
independent of the initial Hamiltonian parameters. As
we shall discuss in more detail below, this timescale is
consistent with a flow of Chern marker currents, from
the vicinity of the sample boundaries towards the inte-
rior. Evidence for the propagation of these currents can
be seen in real-space plots of c(r) along a cut through
the centre of the sample, as indicated by the grey shaded
region in Fig. 1a. The Chern marker, which is initially
negative near the sample boundaries (to ensure that c(r)
integrates to zero) flows from the edges towards the in-
terior; see Fig. 3b. Probing the time at which c departs
from unity, in the middle of a sample for different system
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Figure 3. Non-equilibrium dynamics. a Time-evolution
of the Chern marker in the centre of a sample with L = 31, fol-
lowing quenches from different points in the topological phase
with M = −1,−0.5, 0, 0.5, 1, to the non-topological phase
with M ′ = 5, and ϕ = π/2 held fixed. The Chern marker
remains quantised until a characteristic time t∗, which is in-
dependent of the initial parameters. b Spatial profile of c(r)
along a cut corresponding to the shaded area in Fig. 1a, where
y is the vertical distance from the horizontal boundary, as in-
dicated in Fig. 1a. Explicitly, y = 3a`/2 where ` counts the
number of unit cells from the lower boundary, and a = 1. The
results are shown at times t = 0 (solid), 2.5 (dashed), 5 (dot-
ted), following a quench from M = 0 to M ′ = 5, with ϕ = π/2
held fixed. At t = 0, the edge has a width y0 ∼ 4.5 (shaded).
As t increases, a wave-like disturbance in c(r) propagates into
the interior. c Dependence of t∗ on y, for L = 11, 15, 19, 23, 27,
for the quench considered in b. A linear fit yields a propa-
gation speed v ∼ 4.06 ± 0.77; the y-intercept y ∼ 4.4 ± 2.0,
is close to the initial width of the edge. Inset: variation of v
with the parameter ϕ′ of the final Hamiltonian, with M ′ = 5
and initial parameters ϕ = π/2 and M = 0. The speed v
(crosses) corresponds to the maximum speed permitted by
the final band structure. It coincides with the maximum of
vy1 (k) = ∂E1(k)/∂ky (red), vy2 (k) = ∂E2(k)/∂ky (green) or
|vy2 (k)−vy1 (k)| (black), extremised over k-space, where E1(k)
and E2(k) are the energies of the lower and upper bands re-
spectively; see text. For comparison, we show the speed corre-
sponding to the onset of charge density disturbances (circles)
in the centre of the sample.

sizes L, allows us to estimate the speed of propagation,
as illustrated in Fig. 3c. In addition to a well-defined
propagation speed v, it is evident that the disturbance
emanates from the vicinity of the edges, where y0 is the
finite width of the edge at equilibrium; see Fig. 3b.



4

Propagation Speed. In the inset of Fig. 3c we show
the non-trivial variation of v for quenches to different
points in the phase diagram. It can be seen that v co-
incides with the maximum speed (in this case in the y-
direction) allowed by the band structure, where we mea-
sure speeds in units of at1/~. Depending on the final
parameters this is either the maximum speed permitted
by the upper and lower bands, or the maximum of the
relative band velocities, extremised over k-space. The
latter is attributed to coherent particle-hole excitations
following the quench, and the presence of the excited
state projector Q̂ = Î − P̂ in the definition (3), yielding
interference terms oscillating at the frequency of the band
gap ∆(k) = E2(k)−E1(k). Due to this interference, the
associated propagation speed of the Chern marker can
be larger than the individual band speeds (e.g. if the
bands have slopes with opposite signs) as shown in the
inset of Fig. 3c. In contrast, the electrical charge density
responds on a timescale corresponding to the maximum
speed of the individual bands, as shown by the circles in
the inset of Fig. 3c; the two-band interference region in
the vicinity of ϕ′ = π/2 is absent.

Topological Marker Currents. Further evidence
for the propagation of Chern marker currents can also be
obtained from the dynamics of c(r) close to the sample
edges. For a finite-size sample with open boundaries,∫
c(r)d2r = 0 at all times. A local Chern current Jc

therefore exists, such that ∂c
∂t + ∇ · Jc = 0. In integral

form, the flux of the Chern current Fc out of a unit cell
is given by

Fc :=

∮
∂Ac

Jc · dl = −
∫
Ac

∂c

∂t
d2r, (4)

where Ac and ∂Ac are the area and perimeter of a unit
cell. In Fig. 4a, we plot the right hand side of Eq. (4),
corresponding to the integrated flux of Jc through the
perimeter of a unit cell, at different spatial positions
along a cut through the sample, as illustrated in Fig. 1a.
The onset of a non-vanishing flux Fc occurs at later times
with increasing distance from the boundaries. The asso-
ciated propagation speed v can be extracted from a linear
fit of the onset time versus distance, as shown in Fig. 4b.
In the inset of Fig. 4b we plot v as a function of the initial
parameters for a fixed final Hamiltonian. The extracted
speed is approximately independent of the initial start-
ing parameters, and agrees with the speed obtained via
the analysis of Fig. 3. In this particular case, the speed v
is consistent with the maximum value of |vy2 (k)− vy1 (k)|
for the final band structure, which exceeds the maximum
speed of each band separately. In Fig. 4c, we show the
time evolution of the Chern marker at the mid-point of
the bottom edge of the sample. Due to the propagation
of Chern marker currents from the boundaries, the Chern
marker approaches a steady state value that is close to
(but not equal to) zero, corresponding to an excited state
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Figure 4. Topological marker currents. a Flux of the
Chern current Fc through a unit cell distant ` = 5 (dashed),
8 (dotted), and 11 (solid) unit cells from the boundary of
a sample with L = 31, following a quench from M = 0 to
M ′ = 5, with ϕ = π/2 held fixed. The flux departs from zero
at later times as ` increases, corresponding to the propagation
of Chern currents from the edges. Inset: Fourier transform
F̃c(ω) of the data. The characteristic oscillation frequency
range corresponds to the distribution of the band gap frequen-
cies (E2(k) − E1(k))/2π (shaded). b Onset time of Fc 6= 0
versus y = 3/2 `, for ` = 3, 4, 5, . . . 13. A linear fit yields
a speed v, corresponding to the maximum speed allowed by
the final band structure. The y-intercept is compatible with
the initial edge width, y0. Inset: Variation of the speed v
for quenches from different points in the phase diagram with
M ∈ [−1, 1] to M ′ = 5, with ϕ = π/2 held fixed. The speed
is consistent with the maximum of |vy2 (k)− vy1 (k)| allowed by
the final band structure (solid line), and exceeds the maxi-
mum speed of each band separately (red and green lines). c
Time-dependence of the Chern marker at the mid-point of
the sample edge, following the quench in panel a. The Chern
marker reaches a steady-state value that is close to, but not
equal to, zero. The plateau is subsequently destabilised due
to the onset of finite-size effects.

of the post-quench Hamiltonian. This steady state is ulti-
mately destabilised due to the onset of finite-size effects.

Experiment. Although the definition of the Chern
marker (2) may appear complicated, its static and dy-
namic properties could be accessible in experiment. This
could be done via measurements of the projection op-
erator P̂ , as recently performed in photonic topological
systems in a real-space basis [47], and in gyroscopic sys-
tems [48]. The projector could also be measured using
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quantum gas microscopes [49], based on recent proposals
to extract the single-particle density matrix [50]. Explic-
itly, this can be seen by inserting complete set of states∑
γ,s |rγs〉〈rγs | = Î into Eq. (3), and noting that the ma-

trix elements of the projector Pαsβs′ = 〈rαs |P̂ |rβs′ 〉 =∑
Ek<EF

〈rαs |ψk〉〈ψk|rβs′ 〉 are those of the single-particle
density matrix. The evaluation of c(rα) follows, as |rγs〉 is
a natural basis for the operators x̂ and ŷ. In equilibrium,
the Chern marker is also related to the local magnetisa-
tion [51], allowing further possibilities for experimental
investigation [52].

Conclusions. In this work we have examined the
equilibrium and non-equilibrium properties of the real-
space Chern marker. In equilibrium, we have shown that
it can be used to extract the critical properties of topo-
logical phase transitions, in a similar way to a local order
parameter for conventional transitions. Out of equilib-
rium, c(r) undergoes dynamics, giving rise to a flow of
topological marker currents with a bounded propagation
speed. There are many directions for theory and exper-
iment, including the impact of disorder and interactions
on the flow of topological marker currents, and their re-
alisations in other settings. In particular, it would be
interesting to understand if the Chern marker currents
can be Anderson localised in the presence of disorder,
and how their speed of propagation is influenced by the
presence of interactions. It would also be interesting to
explore the possibilities for manipulating these currents:
can they be gated and steered, and can novel devices
exploit them?

Data availability. The data presented in Figures 1b,
2, 3, and 4 can be reproduced from the equations in the
main text.
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