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Background: DNA methylation is an important mechanism of epigenetic regulation in development and disease.
New generation sequencers allow genome-wide measurements of the methylation status by reading short stretches
of the DNA sequence (Methyl-seq). Several software tools for methylation analysis have been proposed over recent

years. However, the current trend is that the new sequencers and the ones expected for an upcoming future yield
sequences of increasing length, making these software tools inefficient and obsolete.

Results: In this paper, we propose a new software based on a strategy for methylation analysis of Methyl-seq
sequencing data that requires much shorter execution times while yielding a better level of sensitivity, particularly for
datasets composed of long reads. This strategy can be exported to other methylation, DNA and RNA analysis tools.

Conclusions: The developed software tool achieves execution times one order of magnitude shorter than the
existing tools, while yielding equal sensitivity for short reads and even better sensitivity for long reads.
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Background
The introduction of NGS (Next Generation Sequenc-
ing) technologies has made possible the sequencing of
genomic DNA in a short time (days), producing billions
of short DNA samples (commonly denoted as reads). The
typical read length produced by current NGS sequencers
ranges from 50 to 400 nucleotides (nts), though new
sequencers yielding reads of several thousand nts are
already in the market [1]. Also, the upcoming genera-
tion of portable high-throughput sequencers is expected
to produce huge datasets containing very long reads [2].
A particular topic of DNA analysis is DNA methy-
lation. By aligning and comparing (mapping) bisulfite-
treated reads to the genomic DNA sequence, it is possible
to determine the methylation of each pair-base. Several
methylation tools have been developed over recent years
[3-6]), but all of these tools decrease their performance
for reads whose length exceeds 100-150 nts. In order to
tackle this problem, we developed HPG-Methyl, a new
tool for analyzing the methylation of bisulfite reads [7].
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The strategy implemented in this tool was the use of a
parallel pipeline that aligns the reads by using both the
Burrows-Wheeler Transform (BWT) [8] and the Smith-
Waterman algorithm (SWA) ([9]). The combination of
both algorithms in HPG-Methyl provides the best perfor-
mance for all the considered methylation analysis tools.
Nevertheless, for large datasets with long reads the execu-
tion times are still too long, preventing the analysis tasks
from being carried out in an interactive way.

In this paper, we propose a new strategy for methylation
analysis that greatly reduces the required execution time
of the mapping tools while yielding a better level of sen-
sitivity, particularly for datasets composed of long reads.
This strategy can be exported not only to other methy-
lation analysis tools, but also to DNA and RNA analysis
tools. It consists of two independent techniques: first, we
use a bidirectional implementation of the BWT that tries
to map each read onto the reference genome simultane-
ously starting from both read ends (and proceeding to the
center of the read), instead of mapping each read from one
end to the opposite one.Unlike other implementations of
bidirectional BWT [10, 11], it allows up to two EIDs when
aligning a read, increasing the performance of the align-
ment tool. This technique does not add any computational
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cost to the BWT, and it helps to discard wrong alignments
more efficiently. Second, a different pipeline scheme [7] is
used for those reads which cannot be completely mapped
by using the BWT. The new pipeline scheme merges sev-
eral stages into a single but more flexible stage, based
on the BWT. This new stage provides considerably fewer
candidate regions of the genome where each considered
read can be mapped, although these regions are much
more likely to be correct. As a result, the use of the
SWA in the pipeline is greatly reduced, and it maps much
shorter read segments. Since the computational cost of
the SWA depends on the read length, and these tech-
niques greatly reduce the number and length of the read
segments mapped by using the SWA, the proposed strat-
egy greatly improves the performance of the methylation
tools, allowing them to linearly scale with the length of the
reads. We have implemented this strategy in HPG-Methyl,
developing a new version denoted as HPG-Methyl2. The
performance evaluation results show that the new tool
achieves execution times one order of magnitude shorter
than the existing tool, while yielding slightly better sensi-
tivity for short reads and significantly better sensitivity for
long reads.

Implementation

A new implementation of the Burrows-Wheeler Transform
The Burrows-Wheeler Transform (BWT) is a compres-
sion procedure originally designed for data (text) com-
pression [12, 13]. Later, it was used as a backward search
method (from the last character of the query string to
the first one) to efficiently align short sequencing reads
against a large reference sequence such as the human
genome, allowing errors (mismatches), insertions or dele-
tions (EIDs) [8]. Many software tools and BWT imple-
mentations have been proposed for sequence alignment
[14, 15]. Although the computational cost of the BWT
increases with the number of allowed EIDs due to the
search tree exploration process, most of the existing
implementations use pruning or greedy schemes to avoid
an exponential cost [8, 10, 15].

Nevertheless, the BWT is used to perform a unidirec-
tional backward search in all cases. The BWT starts from
one end of the read, trying to align as many nucleotides
(nts) of the read as possible to a sequence of the ref-
erence genome, until an EID is found. Figure la) illus-
trates the mapping of a portion of the read, denoted as
a segment. The mapping procedure is as follows: the last
nucleotide of the read is searched in the reference genome.
Next, the sequence of the last two nts of the read is
searched on the reference genome, then the sequence
of the last three nts, and so on. In each search, a new
nucleotide from the end of the read is added to the
sequence to be found. This procedure is repeated, until an
EID is reached. At that point, a segment of the read will be
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aligned to one or more locations of the reference genome.
Also, it is possible to use the BWT to perform the align-
ment in the opposite direction [10] by constructing the
Ferragina and Manzini Index [16] for the reversal of the
read.

Unlike other implementations of bidirectional BWT
[10, 11] our BWT implementation allows up to two EIDs
when aligning a read. To be precise, it can be configured
to allow 0, 1, or 2 EIDs. As illustrated in Fig. 1b), the bidi-
rectional alignment of the read simultaneously starts from
both read ends, looking for the occurrences of the first
(and last) nts. This strategy allows the duplication of the
supported EIDs without exponentially increasing the size
of the search tree. As in unidirectional implementations,
further nts are added to the initial sequences, until too
many EIDs are found. The main differences is that when
the procedure finishes, we have two mapped segments
instead of one, and the distance between the segments can
also be used to search the correct mapping of the read
in the reference genome. The main difference with other
bidirectional implementations is that the proposed one
can be configured to allow two EIDs, and this fact can
help to increase the performance of the alignment tool, as
shown in the “Results” section.

Implementation in a parallel pipeline

The BWT implementation and use described in the
previous section can be used in any alignment pro-
cess. In order to prove its potential, we have integrated
this version of the BWT in the parallel pipeline of a
software tool designed for methylation analysis, termed
HPG-Methyl [7].

Like most of current software tools [8, 14|, HPG-
Methyl combines multi-seeding with dynamic program-
ming methods such as the SWA. It first uses BWT to
align small segments of the reads (seeds) in the genome.
Depending on the location of the seeds, one or more can-
didate areas are considered for aligning the rest of the
read segments using SWA. In this way, the higher com-
putational cost of the SWA algorithm is required only for
inter-seed spaces, instead of the entire read.

Figure 2 illustrates the main processing performed
by HPG-Methyl [7] on each read of the input dataset
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Fig. 2 Parallel pipeline in HPG-Methyl tool

(although some pre and post-processing are needed due to
methylation, this processing is carried out in other stages
that remain unchanged). For each pre-processed read, the
BWT stage tries to align the whole read against the ref-
erence genome using the unidirectional BWT. If this is
achieved, the read is stored for post-processing. How-
ever, the BWT can efficiently handle only a few EIDs,
and the probability of alignment failure when using the
BWT increases with the read length. When the alignment
is not achieved, the next HPG-Methyl stage of the BWT
consists of splitting the read into # segments denoted as
seeds (8 segments in the figure), and independently align-
ing each seed of the read against the reference genome
by using the BWT. This stage is called seeding. Each of
the seeds can be aligned everywhere, but the alignment
of two or more seeds at short distances can reveal candi-
date areas for read alignment. Thus, the next stage of the
pipeline consists of selecting those areas in the reference
genome (with lengths similar to the read length) where
two or more seeds have been aligned. These areas are
called Candidate Alignment Locations (CALs), since the
potential alignment of the whole read in these areas need
to be carefully analyzed. The next pipeline stage consist of
using another more accurate algorithm (the SWA, which
requires a much higher computational cost) to align the
read against each of the CALs. However, it must be noted
that the alignment of the read against the CAL means a
huge reduction in the computational cost, compared to
the alignment of the read against the whole genome.

In order to take full advantage of the BWT imple-
mentation described in the previous section, we have
changed the HPG-Methyl pipeline, denoting this new
pipeline as HPG-Methyl2. HPG-Methyl2 merges several
stages into a single but more flexible stage, based on the
BWT. The new stage provides considerably fewer candi-
date regions of the genome where each considered read
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can be mapped, although these regions are much more
effective. As a result, the use of the SWA in the pipeline is
greatly reduced, and it is used to map much shorter read
segments.

Figure 3 illustrates the new pipeline. Since the BWT
stage now yields the alignment of two read segments, the
BWT stage has been modified to include the seeding and
CAL search stages. The BWT stage starts by using the
BWT to align the whole read. However, in case of fail-
ure (when reaching the maximum number of EIDs that
BWT can efficiently handle), the bidirectional BWT will
yield the alignment of two read segments, the forward and
backward segments. These segments can be considered
as seeds, and the areas where these segments have been
aligned (including the distances between the two seg-
ments) will later be considered as potential CALs. Next,
the inner limits of the aligned read seeds are annotated
(the inner limits are those nts in the read where each iter-
ation finishes because it has found too many EIDs. These
limits are illustrated in Fig. 3 by red crosses.), and the
inner read segment between these limits is considered
again as the read to be aligned. In this way, Fig. 3 shows
how the BWT is iteratively applied to align the inner seg-
ment of the read that has still not been aligned, until the
length of the inner segment is lower than a certain thresh-
old. At that point, we will have # seed pairs (forward and
backward seeds) that cover most of the read, and they can
be merged and filtered to generate new CALs. In effect,
we consider that a new CAL is formed by either any seed
whose length is greater than a given threshold, or by any
group of seeds (two or more) whose alignment is found
within a distance lower than the read length (including the
length of the seeds). Figure 3 illustrates the cases where
the second forward seed (seedg) fulfills the former crite-
rion and the pair formed by the first forward seed (seed{ )
and the second backward seed (seedg ) fulfills the latter.

The next stage in the pipeline is the SW stage, where
the SWA is used to study the alignments of the read in the
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Fig. 3 New parallel pipeline in HPG-MethylI2 tool
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CALsyielded by this stage, as in the HPG-Methyl software
[7]. However, it must be noted that there is a crucial differ-
ence between the HPG-Methyl pipeline and the strategy
described here (HPG-Methyl2): in the former case, only
one iteration of the BWT was applied, and for those reads
not mapped in that iteration the seeding stage generated
new and short read seeds from scratch. As a result, the
length of the unmapped segments between seeds to be
studied using the SWA could be any number between the
length of the seed and the length of the read. In the lat-
ter case (HPG-Methyl2), the BWT is iteratively applied
before generating the CALs, in such a way that the cor-
rect CALs will probably contain more than two seeds,
and therefore the length of the unmapped segments to be
studied using the SWA will be much shorter. In this way,
the computational cost of the pipeline remains closer to a
linear cost than to quadratic cost with regard to the read
length. Also, the existence of more seeds within each CAL
helps to align more reads, while the probability of multiple
alignments for each CAL decreases. Finally, the probabil-
ity of generating CALs which cannot be aligned is greatly
reduced.

Results and discussion

In this section, we present a comparative performance
evaluation of the BWT implementation and deployment
described in the previous section. We have denoted this
implementation as HPG-Methyl2. For comparison pur-
poses, we have also evaluated two additional tools: HPG-
Methyl and Bismark. These tools were selected because
they yielded the best performance at the time HPG-
Methyl was evaluated [7]. We have measured the sensitiv-
ity and execution time yielded by the considered software
tools when using synthetic as well as real datasets.
The former datasets have been extracted from the ref-
erence genome (which in turn was downloaded from
Ensemble.org (http://grch37.ensembl.org/Homo_sapiens/
Info/Index)), while the latter ones have been obtained
from the European Nucleotide Archive (http://www.ebi.
ac.uk/ena/data/view/SRR309230 and SRR837425). All the

Table 1 Sensitivities yielded for a synthetic dataset with a
mutation rate of 1%

Length HPG-Methyl2 HPG-Methyl Bismark

(nt) R W R W R W
75 95.50 0.69 9337 0.62 8830 0.1
150 99.01 046 96.87 0.80 94.59 0.08
400 99.75 0.18 97.55 048 97.55 0.10
800 99.93 0.06 97.58 043 98.45 0.08
1600 99.75 0.06 96.94 048 - -
3200 99.68 0.08 96.42 049 - -
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Table 2 Execution times (min.) for processing the synthetic
dataset (1% mutation rate)

Length (nt) HPG-Methyl2 HPG-Methyl Bismark
75 1.288 1.366 62.579
150 1.550 1.95 106.173
400 5.041 10.85 248.107
800 11.260 50.6 1246,89
1600 34.440 996.567 -

3200 164.593 7733.38 -

datasets contain fixed read lengths, and we have con-
sidered datasets of different reads lengths, from 75 to
3200 nts. All the synthetic datasets contain four million
reads. The performance evaluation has been carried out
on the same computer platform used to evaluate the HPG-
Methyl tool [7], a computer based on an Intel i7-3930K
processor (http://ark.intel.com/products/63697) with 48
Gbytes of RAM. Nevertheless, the average use of memory
shown by all the considered tools did not exceed 17 Gbytes
of RAM. We have used the default parameter settings in
the execution of the Bismark tool, other than the num-
ber of parallel execution threads. The Hpg-Methyl tools is
the only tool where the optimum parameter settings are
not automatically computed based on each read length,
and therefore these parameters should be explicitely used
in the command line according to the length of the reads
in the dataset, as described in the README.TXT file
(see the “Availability of data and materials” section). The
HPG-Methyl2 tool automatically computes the optimum
parameter settings for each read length, so it only needs
the number of parallel threads to be used in the execution.
An example execution command for each of the consid-
ered tools can be found in the “Additional file 1” (see the
Additional file section).

Table 1 shows the sensitivity yielded by the considered
tools for synthetic datasets with a mutation rate of 1%.
In this table, the columns labeled “R” shows the percent-
age of reads correctly aligned, and the columns labeled
“W” shows the percentage of reads wrongly aligned. The
aggregated value of both columns represents the ratio of
reads aligned by each software tool. All the software tools
have been configured to use the maximum number of
threads (one per CPU core). The “~” value means that
the executions had not finished after three days (72 h,
4320 min), and they were aborted. This table shows that

Table 3 Sensitivities yielded for real datasets

Dataset HPG-Methyl2 HPG-Methy! Bismark
SRR309230_1 8840 87.71 71.81
SRR837425_1 84.34 82.75 68.42
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Table 4 Execution times (min.) for processing the real datasets

Dataset HPG-Methyl2 HPG-Methyl Bismark
SRR309230_1 11333 12.053 82.120
SRR837425_1 8,404 19.047 95.194

HPG-Methyl2 yields the greatest sensitivity, although the
differences with regard to the other software tools remain
constant (about 2-3% in most cases). These results show
that HPG-Methyl2 is an efficient tool (in terms of sensi-
tivity) for datasets of any read length even if the mutation
rate is high.

Table 2 shows the execution times for the datasets with
a mutation rate of 1%. It shows that HPG-Methyl2 is the
fastest tool. For datasets with longer reads it shows a much
lower increase in the required execution time than HPG-
Methyl, while the time required by Bismark is several
orders of magnitude higher.

Also, we have tested the considered tools with real
datasets (SRR309230, SRR837425) containing 16.6 million
bisulfite reads coming from Homo sapiens. The length
of the reads in each file is 75 and 100 nts, respectively.
Table 3 shows the percentage of reads mapped. It shows
how HPG-Methyl2 again yields the greatest sensitivity for
real datasets, although the performance differences are
not very significant due to the short read length.

Finally, Table 4 shows the execution times required to
align the real datasets. It can be seen how both versions
of the HPG-Methyl software require similar execution
times for the SRR309230 dataset, while Bismark yields
much longer execution times. The reason for this behav-
ior is that the read length in this dataset is too short for
HPG-Methyl2 to significantly increase the performance.
However, the performance differences among the consid-
ered software tools for the SRR837425 datasets are more
significant, the execution time of HPG-Methyl2 being half
of that required by the HPG-Methyl tool.

Conclusions

The performance evaluation results show that the new
software tool achieves execution times one order of mag-
nitude shorter for long reads, while yielding equal or
better sensitivity. The strategy employed in this software
can be exported not only to other methylation analysis
tools, but also to DNA and RNA analysis tools. As a future
work to be done, we plan to apply the same strategy of
BWT deployment to other existing software tools with a
similar parallel pipeline, such as the HPG Aligner [17, 18].

Availability and requirements

Project name: HPG-Methyl2

Project home page: https://github.com/grev-uv/hpg-
methyl
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Operating System: The software has been tested on
Ubuntu Linux

Programming language: C

License: GPL v2

Additional file

Additional file 1: Text document containing an example of the
command launched to execute each of the tools. (TXT 2 kb)
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