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APPENDIX
A. DETAILS ABOUT LI

In the LI method originally proposed by Diggle and others (2007), the change of the underlying
outcome is decomposed into a compensator and a martingale increment. They assumed equa-
tion (3.1) and E(€;|Y;-1,X) = 0, but with D replaced by J (death was not considered in their

work) and with ¢; = (07

-2 )T, where 0;_» denotes a vector of j — 2 zeroes. They allowed Y

to be observed with a measurement error that is independent of X and the underlying outcome
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process. Seaman and others (2016), building on the work of Aalen and Gunnes (2010), discussed
how E(Y; — Y;_1|Yj_1,X) can be allowed to depend on Y;_; and discussed partly-conditional
inference. When data are monotone missing, the resulting model is that of expressions (3.1)
and (3.6). Seaman and others (2016) proposed several methods for estimating the parameters in
this model. They assumed that when data are monotone missing and E(Y; — Y;_1|Y;_1,X) is
allowed to depend on all of Y;_1 = (Y1,...,Y;_1), these methods are all equivalent to fitting the
model of expressions (3.1) and (3.2) by maximum likelihood (ML) and imputing missing outcomes
Y; sequentially as p; + ngTYj_l + 1/JJTX, setting p;, ¢;, and 1); to equal to their ML estimates.
This procedure is the same as MI, except that only one data set is imputed, p;, ¢;, and v; are
set to equal to their ML estimates rather than drawn from a posterior distribution, and no error
¢; is added to the imputed values. As with MI, post-death imputed outcomes should be deleted
before analysing the imputed data set. Variances are estimated by bootstrap. The LI imputation
method provides consistent estimation of the parameters of a model for E(Y;|Z, D > j) provided
that expressions (3.1) and (3.6), and mortal-cohort dDTIC and independent death hold (Seaman

and others, 2016).

B. EXAMPLE OF MORTAL COHORT DDTIC AND MAR

As we note, mortal-cohort dDTIC is the assumption that P(R; = 7; | Y;, X, D > j) = P(R; =

7 | Yj,l,X,D > j) for all j and all 7;. MAR conditional on subjects being alive would be

the assumption that P(R; = 7; | Y;, X,D > j) = P(R; = 7 | Yjobs(75), X, D > j) for all j,

where Yj’obs(ﬂ-) denotes the elements of YJ that are observed when Rj = 7. The following simple
example shows that mortal cohort dDTIC does not imply MAR conditional on subjects being

alive.

Let J =3 and P(Y2 = Y3 = 0) = 1. Suppose that only the five values of (Y2, Rz, R3, D) in

the following table have non-zero probability. The table shows the probabilities of these values.
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YQ RQ R3 D Probability
0 0 0 3 1/8
0 1 1 3 1/4
0 0 0o 2 1/8
1 1 1 3 1/4
1 0 0 2 1/4
It can be seen that P(Ry = R3 = 0| Y5, D > 3) equals 1/3 if Y5 = 0 and equals 0 if Y5 = 1.

As this depends on the unobserved Ys, the data are not MAR conditional on subjects being
alive. However, since P(Ry = R3 = 0 | Y5,Y5,D > 3) = P(Ry, = R3 = 0| Y5,D > 3) and

P(Ry=0]|Y3,D >2)=P(Ry=0]| D > 2) =1/2, the data do satisfy mortal-cohort dDTIC.

C. DETAILS ON “MOST COMPLEX SCENARIOS FOR MORTAL-COHORT DDTIC AND

INDEPENDENT DEATH TO HOLD'"

Here we show that Graph 2 does not satisfy f-MAR. We use d-separation as a procedure to
determine conditional independence, and we show that Ry is not conditionally independent of Y5
given Y7, D and X. An analogous argument shows that, more generally, Ry is not independent
of Y}, given Ry_1, Yi—1, D and X.

We let J = 3 (the argument is the same when J > 3). Conditioning on D is the same as
conditioning on the set of indicator variables {I(D > 2),I(D > 3)}. After dropping all of the
variables that are neither included in the set { R, X, Y1, Y2, I(D > 2),1(D > 3)} nor are ancestors

of the variables in that set, we are left with directed acyclic graphs displayed in Figure C.1.

’I(D I(D > 3) ‘

Figure C.1: Directed acyclic graph for J = 3 after removing variables not in the set
{R2,Y1,Ys,I(D > 2),I(D > 3)} nor in the set of their ancestors
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Figure C.2: Graph for J = 4 after moralizing Graph C.1

After moralizing the graph, we are left with the conditional independence graph displayed in
Figure C.2. It can be seen that there is a path, Y5 — Ry, from Y5 to Ry that is not blocked by the
set {Y1,X,I(D > 2),I(D > 3)}. Hence, Y3 is not independent of Ry given Y7, X, and D.

The argument to show that Graph 2 does not satisfy p-MAR is almost identical. We do this
by showing that Rs is not independent of Y5 given Yy, X and I(D > 3). Since I(D > 2) is a
parent of I(D > 3) in Graph 2, after dropping all the variables that are neither included in the
set {R2,Y1,Ys, I(D > 2),I(D > 3)} no are ancestors of the variables in this set, we are again
left with the directed acyclic graph given in C.1. The resulting conditional independence graph
is therefore, again, that given in Figure C.2. It can be seen that there is a path, Ry — Y5, from

Y2 to Ry that is not blocked by the set {Y1, X, I(D > 3)}.

D. DETAILS OF SIMULATIONS 1 AND 2

In order to calculate the true values of parameters 35 in the analysis model, we simulated data
for N = 10? individuals and calculated the average outcome at each visit for males and females
separately.

In simulations 1 and 2, the baseline covariate is generated and the parameters for the longi-
tudinal, survival and dropout models are chosen to mimic the data from the OCTO study. Data

are generated in a sequential manner, and we assume a simplified version of Directed Acyclic
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Graphs (DAGs) 1 and 2, respectively (Figures D.1a and D.1b). Note that in Figure D.1a, Y}, R;,
and I(D > j) depend on Y;_1, but not on Y;_». In Figure D.1b, ¥; and R; depend on Y;_1, but

not on Yj_o; I(D > j) depends on the last observed outcome, but not on the ones before.

(a) Simplified DAG 1 for Simulation 1

(b) Simplified DAG 2 for Simulation 2. If Y5 # &,
then omit the dependence in red.

Figure D.1

D.1 Simulation 1 under scenario 1

In simulation 1, data is generated according to DAG D.la. The longitudinal outcome, survival
and dropout times are generated using the models below. Assume Y; ~ N(17.63,2.3492). For

j=1{2,3,4,5}, while D > j, let:

Y; :ﬂS,j +ﬁinj—1 +5§,jsex+5j (D.1)

B .2=5-295, B 5 =0.7349, B35 , =-0.5150,e2 ~ N (0, 1.8507)

B5.5=6.537, B 5 =0.6445, B5 5 =-0.7152, e3 ~ N(0,1.818°)
B5.4=4.181, B 4, =0.7420, B35 , =-0.7740, e ~ N(0,1.7872)
B 5=4.201, B 5 =0.7165 , 85 5 =-0.0203, €5 ~ N(0,1.971%)

e e o
(I

Survival model at visit j is

logitP(D > j|D > j —1,Y;_1,Rj_1,X) =logitP(D > j|D > j — 1,Y;_1,X)

= (5073' + 517j}/j_1 + 527jsex (DQ)
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00,2 =-1.127, 61,2 =0.1935, 62,2 =0.3505
00,3 =-5.909, 1,3 =0.4323, d2,3 = 0.4040
5074 =-3.200, 61,4 =0.2418, 2,4 = 0.9848
do,5 =-3.210, 41,5 =0.2519, d2,5 = 0.6246

e e e
Il

Il
Al

dropout model, for all j = {2, 3,4, 5},

logitP(R; = 1|R;_1 = 1,X,Y;, D > j) =logitP(R; = 1|R;_1 = 1,X,Y;_1, D > j)

=wp,j + w1,;Y;j_1 + wa j8€x (D.3)

wo,2 :—2.109, w1,2 :0.19317 w22 = -0.0862
wo,3 =-3.593, w13 =0.2421, w3 —0.6357
wo,4 =-1.959, wi 4 =0.1756, wa 4 =0.7582
wo,5 =-3.432, w15 =0.2507, wa 5 —0.5435

e e
Il

D.2  Simulation 2 under scenario 2

In simulation 2, data is generated according to DAG D.1b. We define A; to indicate the last
observed visit before j. For example, if R3 = {1,1,0}, then A3 = 2. The longitudinal and
dropout models and their corresponding parameters are the same as those in equations (D.1) and

(D.3). The survival model for j and A;_1 = a;_1 is

logitP(D > j|D > j —1,Y;-1,X) =logitP(D > j|D > j — 1,Ya,_,, X)
= 507j + 61,jYAj_1 =+ 52,jsex

j=2 A1 =1: o2 =-1.127, 41,2 = 0.1935, d2,2 = 0.3505
j=3 A =2: Jg,3 =-5.561, 61,3 =0.4323, §2,3 = 0.4040
j=3 Az =1: 0,3 =2.429, 61,3 =-0.0979, d2,3 = 1.024
j=4 A3 =3: J0,4 =-2.695, 61,4 =0.2418, J2,4 = 0.9848
j=4 A3 =2: dg,4 =5.540, 01,4 =0.4973, 624 = 1.570
j=4 A3 =1: do,4 =0.5887, 61,4 =0.0554, §2,4 = 0.4973
j=5 Ag=4: o5 =-2.446, 61,5 =0.2519, J2 5 = 0.6246
j=5 Ag4=3: do5 =-1.441, 61,5 =0.0657, 62,5 = 3.228
j=5 A4 =2: do55 =3.208, 01,5 =-0.2185, J2,5 = 0.0141
j=5 Ag4=1: o5 =-8.625, 61,5 =1.089, d2 5 = 1.527
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E. SIMULATION 3

Figure E.1: DAG 3 of simulation 3

Here we show the details of simulation 3 under Directed Acyclic Graph 3 (figure E.1) for N = 500.
In this simulation, D is generated first. Then the longitudinal outcomes, and dropout times are
generated afterwards. Both of the longitudinal and dropout models depend on D, and missing
outcomes due to dropout are removed afterwards. Note that we can also model the time of death
and longitudinal outcomes in a shared-parameter joint model.

For simplicity, we assume the following analysis model:

E(Y;|D > j) =80 + B11(j = 2) + B1(j = 3) + B31(j = 4) + Bal(j = 5) (E.1)

We assume that time of death follows N(7.492,3.714%) distribution. The longitudinal outcomes

and the dropout times are generated using the models below. For j = {2,3,4,5}, while D > j,

let:
Y; =08, +B87;Yi—1+ 55 sex+ 05 ;D +¢; (E.2)
=2 Bg,—5.054, B; , =0.7316, B3 , —0.5662, A3, =0.0520, e ~ N(0, 1.850°)
j=3:  B55=5.162, B; 5 =0.6456, 3 ; —-0.8348, 85 ; =0.1980, €3 ~ N(0,1.8042)
j=4: B3 ,=3.959, B; 4 =0.7414, B3, =-0.7798, B3, =0.0309, 4 ~ N(0,1.793?)
j=5:  B55=4.201, B; 5 =0.7165, B3 5 =-0.0203,c5 ~ N(0,1.9712)
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dropout model, for all j = {2,3,4,5}, with D in X, is

IOgitP(Rj = 1|Rj_1 = 1,X, YD,D 2 j) ZIOgItP(RJ = 1‘Rj_1 = l,X,Yj_l,D 2 ])

=wo,j + w1, Yj-1 + w2 jsex +ws ;D (E.3)
j=2:  wo,2 =3.100, w12 =0.1801, w2 2 —-0.3588, w3 2 = 0.2403
j=3:  wo,3 =6.968, w1,3 =0.2518, w2 3 =0.1700, w3,3 = 0.5238
j=4: w4 =-6.459, wy,4 =0.1442, wo 4 =0.3834, w3 4 = 0.7136
J=5:  wos —-3.432, w15 —0.2507, wa 5 —0.5435

F. PROOF THAT MORTAL-COHORT dDTIC f(Y;|Y;_1,R;, X, D > j) = f(Y;|Y;-1,X,D > j) 18

EQUIVALENT TO f(R;|Y;,X,D > j) = f(R;|Y;—1,X,D > j)

J
f(Y—j,ijXvD>j

e J ) _ S, XD =)
f(Yj—lijaX’D 2]) f(Y]—1)X7D 2])

— ‘i(RﬂY],X,D}])f(}_/],X,D}j) _ f(_ J7X>D>J)
F(Rj|Y;—1,X,D > j)f(Y;-1,X,D >j)  f(Yj—1,X,D >j)

f(R]|}7]7XaD>]):f(R]D?J—laXaD)])

G. PROOF OF THEOREM 1

Theorem 1: u-MAR holds if and only if mortal-cohort dDTIC and missingness-independent
death hold.
We start by proving (1) mortal-cohort dDTIC and missingness-independent death — u-MAR,

then we prove (2) u-MAR = mortal-cohort dDTIC and missingness-independent death.

(1) Mortal-cohort dDTIC and missingness-independent death —- u-MAR

To prove (1), first, we prove by induction that mortal-cohort dDTIC can also be written as

P(Rk+1 = 1|Rk:17}7ij>]7X) :P(Rk+1 :1|Rk = laijflvD;jaX), vk +1 g]

T

)

Base case: For any j, suppose that only the first visit was observed such that R; = (1,0,0,...,0)
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then by the mortal-cohort dDTIC

P(Ri=1,Ry=...=R;=0Y;,D>j,X)=P(Ri=1,Ry=...= R; =0|Y;_1,D > j, X)

Under a monotone missing pattern, this implies

P(Ry=1|Ry =1,Y;,D > j, X) = P(Ry = 1|R, = 1,Y;_1,D > j, X)

Induction assumption: Suppose that P(R, = 1|R,—1 = 1,Y;,D > j,X) = P(R, = 1|R,_; =
1,Y;-1,D > j, X), for all p < k < j (i.e. we observe all visits up to and including visit p). We

shall show that

P(Riy1=1Ry=1,Y;,D>§,X)=P(Ret1 =1|Rr =1,Y;_1,D > j,X),Vk+1<j (G.1)

Suppose that the missingness history up to and including visit j is {R; =1,..., Ry = 1, Rgy1 =
0,...R; = 0} (i.e. all visits up to and including visit k& were observed). The left hand side of

P(R;|Y;,D > j,X) = P(R;|Y;_1,D > j, X) is

P(Ry+1 =0|Rr, = 1,Y;,D > 5, X)

k J
HP(RP = 1|RP*1 = 17}/J7D>]’X):| [ H P(Rq :Oqufl :07}7ij >J7X)]
q

p=2 =k+2

and the right hand side of P(R;|Y;, D > j,X) = P(R;|Y;-1,D > j, X) is

P(Rry1 =0|R, =1,Y; 1, D > j, X)

k

[[ PR, =1Ry 1 =1,Y;4,D > j,X)] X
p=2

j —

[ P(Ry=0lR;1=0,Y;-1,D >j,X)

q=k+2

Using the induction assumption, equation (G.1) is true. Hence, mortal-cohort dDTIC can be

written as

P(Ry1 =1|R, =1,Y;,D 2 j,X) = P(Rgy1 = 1R, = 1,Yj1,D 2 j, X), VEk+1<]
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Second, we shall show that
(i). P(Rk+1 =1Rx, =1,Y;,D =34,X) = P(Rgs1 = 1|Rx, = 1,Y;,D > j,X)

=P(Rpp1=1Ry=1,Y;_1,D > j,X), Vk+1<j, j>3
(G2)

and
(ii). P(Rky1 = 1Ry =1,Y;_1,D > §,X) = P(Rky1 = 1Ry = 1,Y; 1, D > j—1,X), Vk+1<j, j=>3

Equations in (i) hold because,
P(Ri+1=1R, =1,Y;,D = j,X)

- 1-PD>j+1D>jRp1=1Y;,X
= P(Ripy = 1Ry = 1.Y;, D > j,x) L PP 2 # 1D 2 j By = 115, X)
1-P(D>j+1|D>j R, =1,Y;,X)

= P(Rp41 =1|R, = 1,Y;,D > j, X) (G3)
= P(Rpsy = 1Ry = 1,Y;_1,D > j, X) (G.4)
Equation (G.3) is true because of missingness-independent death, and equation (G.4) is true
because of mortal-cohort dDTIC.
Equation (ii) holds because,

P(Rj41 =1|R, =1,Y;_1,D > j, X)

P(D>‘7|D>‘7717Rk+1 :]-aifj—laX)

=P(Rey1 =1Ry=1,Y;,_1,D > j—1,X)
= P(Ry41 =1Rr=1,Y;_1,D > j — 1, X) (G.5)
Equation (G.5) is true because of missingness-independent death. It can be shown then, by

induction (applying mortal-cohort dDTIC and missingness-independent death iteratively),
P(Riy1=1Ry=1,Y;_1,D > §,X) = P(Rp41 = 1|Rt = 1,Y},, D > k + 1, X)

Thus, by mortal-cohort dDTIC and missingness-independent death, u-MAR holds.

(2) u-MAR = mortal-cohort dDTIC and missingness-independent death

Note that by Bayes’ theorem, it can be shown that the following equations are true under u-MAR:

P(Rk - 1|}%k—1 - 15Y]7D:jaX) :P(Rk = 1‘Rk—1 = la}/jaD>]7X)

=P(Ry,=1Ry_1=1,Y,1,D>2kX), Vj=k
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1. First we note that under monotone missing data, it can be shown that mortal-cohort dDTIC
can be written as P(R; = 1|D > j,Y;,X) = P(R; = 1|D > j,Y;_1,X). We shall show that
P(R;=1|D >j,Y;,X) = P(R; =1|D > j,Y;_1, X) when u-MAR holds.

J

P(R; =1|D > j,Y;,X) = [[ P(Rk = 1|Re—1 = 1,D > j,V;, X)
k=2

J
(u—I\iAR) H P(Rk = 1|Rk71 = 1aD 2 j7?}71’X)
k=2
=P(R;=1|D > j,Y;_1,X)

2. We shall show that P(R; = 1|D > j +1,Y;,X) = P(R; = 1|D > j,Y;,

X) (i.e. missingness-
independent death holds) when u-MAR holds.

J
P(R; =1D>j+1,Y;,X) = [[ P(Bx = 1|Rx-1 = 1,D > j + 1,Y;, X)
k=2
(u~-MAR) J —
= [ P(Rx = 1|Rx1 = 1,D > j,Y;, X)
k=2

H. VALIDITY OF MIy

Let us assume equations (4.12) and (4.13) for D = I, and Y| X, D =1 ~ N(u®, £®). We would
like to show that under -MAR, MI; will be valid. It can be shown that -MAR can be written
as P(Rg|D =1,Y},X) = P(Rg|D =1,Y}_1, X) ,Vk < [, which is equivalent to
Y, ... YRy, D=1,Ys 1, X)=f(Vs,...,.Ya|D=1,Y_1,X) Vk<I
Therefore, if R,_1 =1, R =0
f(Yi|Re—1 =1L, R, =0,...,R; =0,D=1Y,_1,X) = f(Y;|D=1,Y,_1,X) VEk<j
For subjects whose D = [, let n; denote the value of Y in the data set created by MI (as N — o0)

with true values of ) and £,
)Y itR; =1
BENEWV, D =1,X), ifR;=0

-y if Rj =1
-\ BE(Y;|Yy,D=1,X), ifR; =0
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where U is the last visit that the outcome is observed. Then,

E(m;|D>35,X)=>" {E(Y;-|Rj =1,D>j,D=1,X)P(R;=1|D>j,D=1,X)P(D=1D > j,X)+
vizj

—

=> {E(ijj =1,D>4,D=1,X)P(R;=1D>j,D=1,X)P(D=1D > j,X)+

vizj
Note that conditioning on {Ry = 1,Ry4+1 = ... = R; = 0} is equivalent to conditioning on

(U,{R; = 0}), which is equivalent to conditioning on U. Then, by {-MAR

Eyyy, [E(Y;|[Yy,D =1,D > j,X)|R; =0,D > j,D =1, X]
= BEu{Ey, [E(Y;|Yu,U,D=1,D > j,X,R; = 0)|U,R; =0,D > j,D =, X]|R; =0,D > j,D =1, X}
=E(Y;|R; =0,D>j,D=1X)

Therefore,

E(m|D>j4,X)= {E(leRJ‘ =1,D>j,D=1,X)P(R; =1|D >j,D=1,X)P(D=1|D > j, X)+

vizj
E(Y;|R; =0,D >4,D=1,X)P(R; =0|D >j,D=1,X)P(D=1D>j, X)}
= B(Y;|D > j, X)
Since the true values of ¥ and X are unknown, we can replace them by their maximum
likelihood estimates i) and (). If we assume equations (4.12) and (4.13), under -MAR, it can
be shown that (41, 2(”) are consistent parameter estimates of (1), (). Since we explained
in Section 3.2 that MI; and LI imputation; are very similar, we would expect both MIy and LI

imputation to be valid.

I. PROOF OF THEOREM 2

We will first show how AIPW estimating equations (equation (6.14)) are derived from AIPWCC
in Seaman and Copas (2009). Ignoring any terms in AIPW estimating equations that contains

R; for j > D, the AIPW estimating equations can be written as
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Ry R, R o
1\ = U — — = H;(Y;, X;
(8.0 =t (ﬂ)+;<ﬁj(yth;Q) e ) MY Xi8.)
Rp Rp =
D=J —U I(D<J —H Yp, X;
=I( ) 5 1. Xoa) (B)+1(D < J) 5 1. Xoa) p(Yp, X; 8, 7)+
o o
IZ 1 ( M Mun )H'(Y X;8.7)
= (Yo, X;a) - Fa (Vs Xia) ) T
D—-1
Rp ( Rj RjJrl ) _
=2 U+ — - H,(Y;, X3 8,
ip(Yp-1,X; ) ® S\, Xa0) 7Y, X a) i(¥5, X5 8.7)

Theorem 2: Under f-MAR, the AIPW gives consistent estimations if either the dropout model
or the model H;(Y;, X;f,7) is correctly specified.

Under Theorem 2, we assume f-MAR:
P(R;=1R;—1 =1,Yp,X)=P(R; =1|Rj_1 =1,Y;_1,X), Vj

and equivalently written as f(Yp,...,Y;|Y;-1,R; =1,X) = f(Yp,...,Y;|Y;-1,Rj—1 = 1, X).

Equation (6.14) can be written as

\I’(ﬂvCM?’y): [H (ijvX 67 ) J 1(Y 17X /8 7)] (Il)

A0 X
Let &, % be consistent estimators of «, vy, and let «,,7, be the limiting values of &,%. Let 7,; =
7oj(Yj-1,X) = 7(¥j—1, X; ) and Hoj = Ho;(Y;, X) = H; (Y}, X; 8,7%)-

To show double robustness, we show that when 8 = 8,, E[¥(8, as,7,)] = 0. First we assume
that the imputation model is correctly specified such that H,; = Ey,., . v, (U(8)Y;, R; =1, X).

First take expectation with regards to the first term of equation (I.1).

Er, vpx <§1IHM> = B, |x By, R, x <§11 By, .y (UB)|Y1, B = 17X)>
— B (R i [Bv,....vy (U wmxm) (1.2)
R
— B ( B gy, </3)X>)

Equation (I.2) hold because of -MAR. It can be shown that Ey, (U(8)|X) = 0 when § = .
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Next, for any (j,Y;—1, R;, X), such that 2 < j < D,

Eyv.v, 1 R, X ;Z (Hoj — Hoj-1)

= ;Z {Ev, [Bv,i1 o UB)Y, Ry = 1, X) Y1, Ry = 1, X] — Ho,j—1}

= 2By (U)o By = 1.X) = Hoyr} (13)
= ZJJ {Ev,,.. o (UBYj-1,Rj—1 = 1,X) = By, v, (U(B)|[Yj-1,Rj-1 = 1,X)} (1.4)
—0

where equation (I.3) and equation (I.4) hold because of -MAR. Next, we assume the dropout
model is correctly specified such that 7,; = P(R; = 1|Y;_1,X), Vj = {1,...,D}.

Using equation (6.14), taking expectation of the first component of the estimating equation:

R R
Egr, vp1x {frozU(ﬁ)} = By, \xErpvp,x {ﬁ;U(ﬁ)}
— By, x {ﬁjDU(B)P(RD _ 1|}7D,X)}
— By, x {ﬁ:DU(ﬁ)froD} (L5)

= By, (U(B)|X) =0 (when 8 = 5,)

where equation (I.5) hold because of -MAR. Finally in the second component of equation (6.14),
for any (j,Yp, X) such that j < D — 1,

R;  Rj
b (- 22 )

_ {P(Rj =1|Yp, X) ~ P(Rjy1 = 1|YD7X)}H A
— o

Toj To,j+1

{ﬂ'oj _ To,j+1 } H,; (1.6)

Toj  To,j+1

0

where equation (I.6) hold because of f-MAR.

Before we prove the rest of Theorem 2, we need the following proposition:
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Proposition: Let X_p be a vector of covariates which does not include D. Then, if independent

death holds,

f(}/S|RJ = 1,Rj+1 = O,E,D = l,D = S,X,D) = f(}/S|RJ = 1,Rj+1 =0,Y;,D X X,D> (17)

)

Vj < s <t and under (2), Vj < s <!
Proof of Proposition:

First we note that independent death implies

P(D 2 t|D = S,}/;,E,Rj = ].,Rj+1 = O,X_D) = P(D 2 t|D > S,Y}',RJ‘ = 1,Rj+1 = O,X_D), Vj <s<t
The left-hand side of equation (I.7) can be written as

f(Ys|Rj =1,Rj41 =0,Y;,D=1,D>5,X p)

P(D=1|D>sYs,Y;,R; =1,Rj41 =0,X_p)
P(D = l|D > S,}_fj,Rj = 1,Rj+1 = O,Xfp)

= f(Yis] = 17Rj+1 = OvﬁvD > SvX—D)

=f(Ys|Rj =1,Rj41 =0,Y;,D > 5, X_p)x
P(D>1D>sYs,Y;,Ri=1,Ris1 =0,X_p) — P(D>1+1|D >5Ys,V;,R; =1, Rj41 = 0, X_p)
P(Dz2ID> S,)_/]-,Rj =1,Rj+1=0,X_p)—P(D=21+1|D > s,Yj,Rj =1,Rj4+1=0,X_p)
= f(Ys|R; =1,Rj+1 =0,Y;,D > 5,X_p) (by independent death)

Rest of Theorem 2: The dropout model and the imputation model need not condition on D if
the following conditions are met: (1) u-MAR holds, and the dropout model is correctly specified,
or if (2) £MAR, p-MAR and independent death hold, and H;(Y;, X;3,7) is correctly specified.

Note that p-MAR implies mortal-cohort dDTIC.

Again, to show double robustness, we show that when 8 = 3,, E[¥ (S, a,,7,)] = 0. First we as-
sume that the imputation model is correctly specified such that Ho; = By, . v, (U(B)|Y;, R; =
1,X). Again, let Uy(B) be the sth component of U(8). First take expectation with regards to the

first term of equation (I.1).
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E ity
Ry1,Yp|X ~
1,YD| Tol

D

]gl
= ER D>s 7E’
28 ~ Yp
! Tol

s=1

L. WEN, G.M. TERRERA, S.R. SEAMAN

(L.8)

ZUs(ﬁHD > S,XD:|> =0 (when 8=23,)

We now show equation (I.8) holds because of -MAR, independent death, and p-MAR. For any

sth component of U(3),

By, (U(B)|Y1,R1 = 1,X) = By, (U(B)|Y1,R1 = 1, Rz = 0, X)
=Eyv,(UB)|Y1,Ri =1,R, =0,D > s,X_p)
= Ey,(UP)|Y1,D > s,X_p)

Equation (1.9) holds because of -MAR, equation (I.10) holds because of independent death, and

equation (I.11) holds because of p-MAR.

Next, for any (j,Y;_1, R;, X), such that 2 < j < D,

R,
EYJIYJ‘—LRJ‘,X L?Oj (Hoj — o,j—l)}

D
R; _
= ﬁij {Elele R, XEYjt1,...,YD (Z Us(BIY;, R = 17X> - HO,j—l}
oJ s=1
D
R, _ _
= {EYj EYji1nYp <Z Us(B)IYj, By = 1, Rj1 = 07X> Yj—1,Rj—1=1,R; =0, X} - Ho,jl}
oJ s=1
(1.12)
R; <
== {EY,. By, .Y <Z Us(B)Yj,Rj =1,Rj41 =0,X_p,D > s) Yj-1,Rj-1=1,R;=0,X_p,D>s
oJ s=1
(1.13)
R; < .
== < {EYj ,,,,, Yp (Z Us(B)Yj-1,X-p,D > s) — Ho,j—1>} (I.14)
oJ s=1
R D D
== {Eyj ,,,,, Y (Z Us(B)|Yj-1,X_p,D > s> - Ey,...vp <Z Us(B)Yj-1,X_p,D > s> } (1.15)
o] s=1 s=1

Equation (I.12) holds because of f-MAR, equation (I.13) holds because of independent death,

and equation (I.14) holds because of p-MAR. Similar arguments can be made for the second

expectation in equation (I.15).

B
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Next, we assume the dropout model is correctly specfied such that 7,; = P(R; = 1|Y;,X) =
P(R; =1|Y;-1,D 2 j), ¥j = {1,..., J}.

Using equation (6.14), taking expectation of the first component of the estimating equation:

Egr, vp|x {;TZ))U(@} = By, \xErpvp.x {%U(ﬁ)}
— By, x {wa)P(RD _ 1|YD,X>}
ToD
— Eyyx {ﬁjDU(ff)froD} (1.16)

=0 (when 8= 8,)

where equation (I.16) hold because of u-MAR.

Finally in the second component of equation (6.14), for any (j, Yp, X) such that j < D — 1,

R;  Rjn
Erolvo.x {(ffojy - 7~ro]j+1> HOJ}

{P(RJ = 1‘%*17D >J7X*D) _ P(RJ+1 = 1|YDaD 2J+17’XD)}H )
0j

Toj To,j+1

{W"j _ W} H,, (1.17)

Toj  To,j+1

0

where equation (I.17) hold because of u-MAR.
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J. SUPPLEMENTARY SIMULATION RESULTS

Table J.1: Misspecified dropout or imputation models in AIPW for simulation 1. AIPWd refers
to ATIPW with incorrect dropout models (sex is omitted), AIPWi refers to AIPW with incorrect
imputation models (sex is omitted), and AIPWAdi refers to AIPW with incorrect dropout and
imputation models (sex is omitted in both models).

AIPWdy (strat on D) AIPWiy (strat on D) ATPWdiy (strat on D)

bias  s.bias SE bias  s.bias SE bias  s.bias SE

Bo -0.003  -1.695 0.151 -0.003  -1.695 0.151 -0.003  -1.695 0.151
b -0.003  -2.199 0.149 -0.004 -3.005 0.149 -0.002  -1.161 0.149
B -0.008 -3.833 0.221 -0.010  -4.429 0.223 -0.044  -20.155 0.217
B3 -0.009 -2.883 0.309 -0.012  -3.680 0.315 -0.109  -36.959  0.296
Ba -0.011  -2.652 0.412 -0.010 -2.280 0.428 -0.084 -22.717 0.372
Bsea 0.008  3.500 0.217 0.008  3.500 0.217 0.008 3.500 0.217
Bsex1  -0.006 -2.897 0.207 -0.004 -2.027 0.207 -0.002  -1.232  0.206
Bsewz -0.005 -1.722 0.315 -0.002  -0.588 0.317 0.016 4.958 0.312
Bsexs  0.006  1.337 0.411 0.010  2.446 0.417 0.068  17.135 0.400
Bsexa  0.005  0.947  0.562 0.005  0.936  0.575 0.050 9.533  0.528

Table J.2: Results under simulation 3 with true parameter values:
Bo = 17.630, 1 = 0.358, B2 = 0.064, 53 = —0.596, 4 = —1.140

1IEE IPW,, IPW, IPW;(D € X)
bias s.bias SE bias s.bias SE bias s.bias SE bias s.bias SE
Bo  -0.0013 -1.2940  0.1039 -0.0013  -1.2940 0.1039 -0.0013  -1.2940 0.1039 -0.0013  -1.2940 0.1039
/1 01717 151.0461 0.1137 0.0096 8.9202 0.1079 0.0096  8.9202 0.1079 -0.0036 -3.3368 0.1093
Bo 0.4285 266.4189 0.1608 0.0824  52.3295 0.1575 0.0918 58.1518 0.1579 0.0009  0.4966  0.1809
B3 0.3442  165.6292 0.2078 -0.0289  -14.0999  0.2049 0.0221  10.8535 0.2036 0.0015  0.6655 0.2204
Ba 04229 157.7189 0.2682 -0.1025 -35.8201 0.2861 -0.0067 -2.4082 0.2785 -0.0079 -2.8390 0.2774

AIPW,, ATPW((D € X) MI, MI¢(D € X)

bias  s.bias SE bias  s.bias SE bias  s.bias SE bias  s.bias SE

Bo -0.001 -1.294 0.104 -0.001 -1.294 0.104 -0.001  -1.294 0.104 -0.001 -1.294 0.104

/1 0.010  9.115 0.108 -0.003 -2.864 0.108 0.008  7.305 0.108 -0.005 -4.762 0.109

B2 0.095 61.808 0.154 0.001  0.476 0.162 0.096 62.352 0.154 0.005  3.116 0.157

B3 0.038 19.243 0.199 0.000 -0.168 0.205 0.023 11.953 0.195 0.017  8.381 0.200

B4 0.023 8158 0.286 -0.006 -2.328 0.271 -0.012  -4.689 0.264 0.018  6.675 0.267

Table J.3: Simulation 3: methods stratifying on D

IPW; AIPW; MI
bias s-bias SE bias  s-bias SE bias  s-bias SE
Bo -0.001 -1.2940 0.104 -0.001 -1.294 0.104 -0.001 -1.294 0.104
/i -0.003  -2.743 0.110 -0.003  -2.765 0.109 -0.001 -1.037 0.108
B2 0.003 1.724  0.181 0.000 -0.034 0.165 0.002  0.995 0.163
Bs -0.004  -1.755 0.234 -0.001 -0.334 0.207 -0.008 -4.006 0.206
B4 -0.007  -2.408 0.278 -0.006 -2.195 0.271 -0.024  -9.138  0.268

K. ANALYSIS FROM A SIMULATED DATA SET

To reproduce the results found from the data analysis, we simulated a data set with similar design
as the real data used in the paper (code on https://github.com/1w499/mortalcohort_github).

The results from the analysis can be found on Table K.1.


https://github.com/lw499/mortalcohort_github
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Table K.1: Parameter estimate (standard error) of a simulated data set similar to OCTO.
Bo b1 B2 Bsex Bage Bedu Bsmo Bagel Bedut Bsmol
DMM  19.451 (0.350) 0.256 (0.080) -0.063 (0.007) -3.391 (0.233) -0.159 (0.045) 0.161 (0.045) -0.608 (0.231) 0.047 (0.043) 0.009 (0.008) -0.006 (0.009) -0.133 (0.043)
IEE 19.535 (0.392)  0.296 (0.107) -0.067 (0.009) -3.427 (0.240) -0.157 (0.049) 0.144 (0.051) -0.611 (0.239) 0.127 (0.060) 0.015 (0.012)  0.000 (0.013) -0.170 (0.059)
IPW,  19.600 (0.416) 0.132 (0.162) -0.078 (0.018) -3.421 (0.265) -0.169 (0.058) 0.146 (0.053) -0.651 (0.273) 0.161 (0.093) 0.035 (0.020) 0.002 (0.016) -0.101 (0.090)
IPW,  19.590 (0.410) 0.131 (0.154) -0.076 (0.017) -3.431 (0.261) -0.169 (0.056) 0.144 (0.052) -0.589 (0.269) 0.167 (0.090) 0.035 (0.018) ~ 0.003 (0.015) -0.135 (0.088)
IPW;  19.610 (0.465) 0.228 (0.162) -0.083 (0.019) -3.418 (0.301) -0.179 (0.056) 0.141 (0.057) -0.583 (0.305) 0.139 (0.091) 0.029 (0.018)  0.003 (0.015) -0.156 (0.090)
AIPW, 19573 (0.380) 0.299 (0.145) -0.072 (0.017) -3.475 (0.256) -0.162 (0.054) 0.142 (0.052) -0.547 (0.260) 0.082 (0.092) 0.013 (0.021) 0.003 (0.014) -0.241 (0.089)
AIPW; 19.560 (0.435) 0.264 (0.141) -0.069 (0.016) -3.462 (0.281) -0.165 (0.052) 0.144 (0.056) -0.506 (0.292) 0.063 (0.072) 0.014 (0.017) 0.003 (0.013) -0.226 (0.073)
ML, 19.511 (0.369) 0.277 (0.101) -0.066 (0.010) -3.478 (0.228) -0.150 (0.047) 0.154 (0.049) -0.575 (0.235) 0.087 (0.050) 0.007 (0.010) -0.005 (0.011) -0.203 (0.051)
ML, 19.540 (0.370)  0.249 (0.105) -0.065 (0.010) -3.470 (0.230) -0.151 (0.047) 0.149 (0.049) -0.563 (0.237) 0.076 (0.050) 0.009 (0.011) -0.003 (0.012) -0.196 (0.052)
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