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APPENDIX

A. Details about LI

In the LI method originally proposed by Diggle and others (2007), the change of the underlying

outcome is decomposed into a compensator and a martingale increment. They assumed equa-

tion (3.1) and E(εj |Ȳj−1, X) = 0, but with D replaced by J (death was not considered in their

work) and with φj = (0T
j−2, 1)T , where 0j−2 denotes a vector of j − 2 zeroes. They allowed Yj

to be observed with a measurement error that is independent of X and the underlying outcome
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process. Seaman and others (2016), building on the work of Aalen and Gunnes (2010), discussed

how E(Yj − Yj−1|Ȳj−1, X) can be allowed to depend on Ȳj−1 and discussed partly-conditional

inference. When data are monotone missing, the resulting model is that of expressions (3.1)

and (3.6). Seaman and others (2016) proposed several methods for estimating the parameters in

this model. They assumed that when data are monotone missing and E(Yj − Yj−1|Ȳj−1, X) is

allowed to depend on all of Ȳj−1 = (Y1, . . . , Yj−1), these methods are all equivalent to fitting the

model of expressions (3.1) and (3.2) by maximum likelihood (ML) and imputing missing outcomes

Yj sequentially as ρj + φTj Ȳj−1 + ψT
j X, setting ρj , φj , and ψj to equal to their ML estimates.

This procedure is the same as MI, except that only one data set is imputed, ρj , φj , and ψj are

set to equal to their ML estimates rather than drawn from a posterior distribution, and no error

εj is added to the imputed values. As with MI, post-death imputed outcomes should be deleted

before analysing the imputed data set. Variances are estimated by bootstrap. The LI imputation

method provides consistent estimation of the parameters of a model for E(Yj |Z,D > j) provided

that expressions (3.1) and (3.6), and mortal-cohort dDTIC and independent death hold (Seaman

and others, 2016).

B. Example of mortal cohort dDTIC and MAR

As we note, mortal-cohort dDTIC is the assumption that P (R̄j = r̄j | Ȳj , X,D > j) = P (R̄j =

r̄j | Ȳj−1, X,D > j) for all j and all r̄j . MAR conditional on subjects being alive would be

the assumption that P (R̄j = r̄j | Ȳj , X,D > j) = P (R̄j = r̄j | Ȳj,obs(r̄j), X,D > j) for all j,

where Ȳj,obs(r̄j) denotes the elements of Ȳj that are observed when R̄j = r̄j . The following simple

example shows that mortal cohort dDTIC does not imply MAR conditional on subjects being

alive.

Let J = 3 and P (Y2 = Y3 = 0) = 1. Suppose that only the five values of (Y2, R2, R3, D) in

the following table have non-zero probability. The table shows the probabilities of these values.
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Y2 R2 R3 D Probability
0 0 0 3 1/8
0 1 1 3 1/4
0 0 0 2 1/8
1 1 1 3 1/4
1 0 0 2 1/4

It can be seen that P (R2 = R3 = 0 | Y2, D > 3) equals 1/3 if Y2 = 0 and equals 0 if Y2 = 1.

As this depends on the unobserved Y2, the data are not MAR conditional on subjects being

alive. However, since P (R2 = R3 = 0 | Y2, Y3, D > 3) = P (R2 = R3 = 0 | Y2, D > 3) and

P (R2 = 0 | Y2, D > 2) = P (R2 = 0 | D > 2) = 1/2, the data do satisfy mortal-cohort dDTIC.

C. Details on “Most complex scenarios for mortal-cohort dDTIC and

independent death to hold"

Here we show that Graph 2 does not satisfy f-MAR. We use d-separation as a procedure to

determine conditional independence, and we show that R2 is not conditionally independent of Y2

given Y1, D and X. An analogous argument shows that, more generally, Rk is not independent

of Yk given Rk−1, Ȳk−1, D and X.

We let J = 3 (the argument is the same when J > 3). Conditioning on D is the same as

conditioning on the set of indicator variables {I(D > 2), I(D > 3)}. After dropping all of the

variables that are neither included in the set {R2, X, Y1, Y2, I(D > 2), I(D > 3)} nor are ancestors

of the variables in that set, we are left with directed acyclic graphs displayed in Figure C.1.

I(D > 2) I(D > 3)

Y ∗2

X,Y1 Y2

R2

Figure C.1: Directed acyclic graph for J = 3 after removing variables not in the set
{R2, Y1, Y2, I(D > 2), I(D > 3)} nor in the set of their ancestors
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I(D > 2) I(D > 3)

Y ∗2

X,Y1 Y2

R2

Figure C.2: Graph for J = 4 after moralizing Graph C.1

After moralizing the graph, we are left with the conditional independence graph displayed in

Figure C.2. It can be seen that there is a path, Y2−R2, from Y2 to R2 that is not blocked by the

set {Y1, X, I(D > 2), I(D > 3)}. Hence, Y2 is not independent of R2 given Y1, X, and D.

The argument to show that Graph 2 does not satisfy p-MAR is almost identical. We do this

by showing that R2 is not independent of Y2 given Y1, X and I(D > 3). Since I(D > 2) is a

parent of I(D > 3) in Graph 2, after dropping all the variables that are neither included in the

set {R2, Y1, Y2, I(D > 2), I(D > 3)} no are ancestors of the variables in this set, we are again

left with the directed acyclic graph given in C.1. The resulting conditional independence graph

is therefore, again, that given in Figure C.2. It can be seen that there is a path, R2 − Y2, from

Y2 to R2 that is not blocked by the set {Y1, X, I(D > 3)}.

D. Details of simulations 1 and 2

In order to calculate the true values of parameters βk in the analysis model, we simulated data

for N = 109 individuals and calculated the average outcome at each visit for males and females

separately.

In simulations 1 and 2, the baseline covariate is generated and the parameters for the longi-

tudinal, survival and dropout models are chosen to mimic the data from the OCTO study. Data

are generated in a sequential manner, and we assume a simplified version of Directed Acyclic
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Graphs (DAGs) 1 and 2, respectively (Figures D.1a and D.1b). Note that in Figure D.1a, Yj , Rj ,

and I(D > j) depend on Yj−1, but not on Ȳj−2. In Figure D.1b, Yj and Rj depend on Yj−1, but

not on Ȳj−2; I(D > j) depends on the last observed outcome, but not on the ones before.

I(D > 2) I(D > 3)

Y1 Y2 Y3

R2 R3

(a) Simplified DAG 1 for Simulation 1

I(D > 2) I(D > 3)

Y ∗2 Y ∗3

Y1 Y2 Y3

R2 R3

(b) Simplified DAG 2 for Simulation 2. If Y ∗2 6= ∅,
then omit the dependence in red.

Figure D.1

D.1 Simulation 1 under scenario 1

In simulation 1, data is generated according to DAG D.1a. The longitudinal outcome, survival

and dropout times are generated using the models below. Assume Y1 ∼ N(17.63, 2.3492). For

j = {2, 3, 4, 5}, while D > j, let:

Yj = βs
0,j + βs

1,jYj−1 + βs
2,jsex + εj (D.1)

j=2: βs
0,2=5.295, βs

1,2 =0.7349, βs
2,2 =-0.5150,ε2 ∼ N(0, 1.8502)

j=3: βs
0,3=6.537, βs

1,3 =0.6445, βs
2,3 =-0.7152, ε3 ∼ N(0, 1.8182)

j=4: βs
0,4=4.181, βs

1,4 =0.7420, βs
2,4 =-0.7740, ε4 ∼ N(0, 1.7872)

j=5: βs
0,5=4.201, βs

1,5 =0.7165 , βs
2,5 =-0.0203, ε5 ∼ N(0, 1.9712)

Survival model at visit j is

logitP (D > j|D > j − 1, Ȳj−1, R̄j−1, X) = logitP (D > j|D > j − 1, Yj−1, X)

= δ0,j + δ1,jYj−1 + δ2,jsex (D.2)
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j=2: δ0,2 =-1.127, δ1,2 =0.1935, δ2,2 =0.3505
j=3: δ0,3 =-5.909, δ1,3 =0.4323, δ2,3 = 0.4040
j=4: δ0,4 =-3.200, δ1,4 =0.2418, δ2,4 = 0.9848
j=5: δ0,5 =-3.210, δ1,5 =0.2519, δ2,5 = 0.6246

dropout model, for all j = {2, 3, 4, 5},

logitP (Rj = 1|Rj−1 = 1, X, Ȳj , D > j) =logitP (Rj = 1|Rj−1 = 1, X, Yj−1, D > j)

=ω0,j + ω1,jYj−1 + ω2,jsex (D.3)

j=2: ω0,2 =-2.109, ω1,2 =0.1931, ω2,2 = -0.0862
j=3: ω0,3 =-3.593, ω1,3 =0.2421, ω2,3 =0.6357
j=4: ω0,4 =-1.959, ω1,4 =0.1756, ω2,4 =0.7582
j=5: ω0,5 =-3.432, ω1,5 =0.2507, ω2,5 =0.5435

D.2 Simulation 2 under scenario 2

In simulation 2, data is generated according to DAG D.1b. We define Aj to indicate the last

observed visit before j. For example, if R̄3 = {1, 1, 0}, then A3 = 2. The longitudinal and

dropout models and their corresponding parameters are the same as those in equations (D.1) and

(D.3). The survival model for j and Aj−1 = aj−1 is

logitP (D > j|D > j − 1, Ȳj−1, X) = logitP (D > j|D > j − 1, YAj−1 , X)

= δ0,j + δ1,jYAj−1 + δ2,jsex

j=2 A1 = 1 : δ0,2 = -1.127, δ1,2 = 0.1935, δ2,2 = 0.3505
j=3 A2 = 2: δ0,3 =-5.561, δ1,3 =0.4323, δ2,3 = 0.4040
j=3 A2 = 1: δ0,3 =2.429, δ1,3 =-0.0979, δ2,3 = 1.024
j=4 A3 = 3: δ0,4 =-2.695, δ1,4 =0.2418, δ2,4 = 0.9848
j=4 A3 = 2: δ0,4 =5.540, δ1,4 =0.4973, δ2,4 = 1.570
j=4 A3 = 1: δ0,4 =0.5887, δ1,4 =0.0554, δ2,4 = 0.4973
j=5 A4 = 4: δ0,5 =-2.446, δ1,5 =0.2519, δ2,5 = 0.6246
j=5 A4 = 3: δ0,5 =-1.441, δ1,5 =-0.0657, δ2,5 = 3.228
j=5 A4 = 2: δ0,5 =3.208, δ1,5 =-0.2185, δ2,5 = 0.0141
j=5 A4 = 1 : δ0,5 =-8.625, δ1,5 =1.089, δ2,5 = 1.527
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E. Simulation 3

I(D > 2) I(D > 3) I(D > 4)

D

Y1 Y2 Y3 Y4

R2 R3 R4

Figure E.1: DAG 3 of simulation 3

Here we show the details of simulation 3 under Directed Acyclic Graph 3 (figure E.1) for N = 500.

In this simulation, D is generated first. Then the longitudinal outcomes, and dropout times are

generated afterwards. Both of the longitudinal and dropout models depend on D, and missing

outcomes due to dropout are removed afterwards. Note that we can also model the time of death

and longitudinal outcomes in a shared-parameter joint model.

For simplicity, we assume the following analysis model:

E(Yj |D > j) =β0 + β1I(j = 2) + β2I(j = 3) + β3I(j = 4) + β4I(j = 5) (E.1)

We assume that time of death follows N(7.492, 3.7142) distribution. The longitudinal outcomes

and the dropout times are generated using the models below. For j = {2, 3, 4, 5}, while D > j,

let:

Yj = βs
0,j + βs

1,jYj−1 + βs
2,jsex + βs

3,jD + εj (E.2)

j=2: βs
0,2=5.054, βs

1,2 =0.7316, βs
2,2 =-0.5662, βs

3,2 =0.0520, ε2 ∼ N(0, 1.8502)

j=3: βs
0,3=5.162, βs

1,3 =0.6456, βs
2,3 =-0.8348, βs

3,3 =0.1980, ε3 ∼ N(0, 1.8042)

j=4: βs
0,4=3.959, βs

1,4 =0.7414, βs
2,4 =-0.7798, βs

3,4 =0.0309, ε4 ∼ N(0, 1.7932)

j=5: βs
0,5=4.201, βs

1,5 =0.7165, βs
2,5 =-0.0203,ε5 ∼ N(0, 1.9712)
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dropout model, for all j = {2, 3, 4, 5}, with D in X, is

logitP (Rj = 1|Rj−1 = 1, X, ȲD, D > j) =logitP (Rj = 1|Rj−1 = 1, X, Yj−1, D > j)

=ω0,j + ω1,jYj−1 + ω2,jsex + ω3,jD (E.3)

j=2: ω0,2 =-3.100, ω1,2 =0.1801, ω2,2 =-0.3588, ω3,2 = 0.2403
j=3: ω0,3 =-6.968, ω1,3 =0.2518, ω2,3 =0.1700, ω3,3 = 0.5238
j=4: ω0,4 =-6.459, ω1,4 =0.1442, ω2,4 =0.3834, ω3,4 = 0.7136
j=5: ω0,5 =-3.432, ω1,5 =0.2507, ω2,5 =0.5435

F. Proof that mortal-cohort dDTIC f(Yj |Ȳj−1, R̄j , X,D > j) = f(Yj |Ȳj−1, X,D > j) is

equivalent to f(R̄j |Ȳj , X,D > j) = f(R̄j |Ȳj−1, X,D > j)

f(Yj |Ȳj−1, R̄j , X,D > j) = f(Yj |Ȳj−1, X,D > j)

⇐⇒ f(Ȳj , R̄j , X,D > j)

f(Ȳj−1, R̄j , X,D > j)
=

f(Ȳj , X,D > j)

f(Ȳj−1, X,D > j)

⇐⇒ f(R̄j |Ȳj , X,D > j)f(Ȳj , X,D > j)

f(R̄j |Ȳj−1, X,D > j)f(Ȳj−1, X,D > j)
=

f(Ȳj , X,D > j)

f(Ȳj−1, X,D > j)

∴ f(R̄j |Ȳj , X,D > j) = f(R̄j |Ȳj−1, X,D > j)

G. Proof of Theorem 1

Theorem 1: u-MAR holds if and only if mortal-cohort dDTIC and missingness-independent

death hold.

We start by proving (1) mortal-cohort dDTIC and missingness-independent death =⇒ u-MAR,

then we prove (2) u-MAR =⇒ mortal-cohort dDTIC and missingness-independent death.

(1) Mortal-cohort dDTIC and missingness-independent death =⇒ u-MAR

To prove (1), first, we prove by induction that mortal-cohort dDTIC can also be written as

P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X) = P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X), ∀k + 1 6 j

Base case: For any j, suppose that only the first visit was observed such that R̄j = (1, 0, 0, . . . , 0)T ,
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then by the mortal-cohort dDTIC

P (R1 = 1, R2 = . . . = Rj = 0|Ȳj , D > j,X) = P (R1 = 1, R2 = . . . = Rj = 0|Ȳj−1, D > j,X)

Under a monotone missing pattern, this implies

P (R2 = 1|R1 = 1, Ȳj , D > j,X) = P (R2 = 1|R1 = 1, Ȳj−1, D > j,X)

Induction assumption: Suppose that P (Rp = 1|Rp−1 = 1, Ȳj , D > j,X) = P (Rp = 1|Rp−1 =

1, Ȳj−1, D > j,X), for all p 6 k < j (i.e. we observe all visits up to and including visit p). We

shall show that

P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X) = P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X),∀k + 1 6 j (G.1)

Suppose that the missingness history up to and including visit j is {R1 = 1, . . . , Rk = 1, Rk+1 =

0, . . . Rj = 0} (i.e. all visits up to and including visit k were observed). The left hand side of

P (R̄j |Ȳj , D > j,X) = P (R̄j |Ȳj−1, D > j,X) is

P (Rk+1 = 0|Rk = 1, Ȳj , D > j,X)

[
k∏

p=2

P (Rp = 1|Rp−1 = 1, Ȳj , D > j,X)

] j∏
q=k+2

P (Rq = 0|Rq−1 = 0, Ȳj , D > j,X)


and the right hand side of P (R̄j |Ȳj , D > j,X) = P (R̄j |Ȳj−1, D > j,X) is

P (Rk+1 = 0|Rk = 1, Ȳj−1, D > j,X)

[
k∏

p=2

P (Rp = 1|Rp−1 = 1, Ȳj−1, D > j,X)

]
×

 j∏
q=k+2

P (Rq = 0|Rq−1 = 0, Ȳj−1, D > j,X)


Using the induction assumption, equation (G.1) is true. Hence, mortal-cohort dDTIC can be

written as

P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X) = P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X), ∀k + 1 6 j
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Second, we shall show that

(i). P (Rk+1 = 1|Rk = 1, Ȳj , D = j,X) = P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X)

= P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X), ∀k + 1 6 j, j > 3
(G.2)

and

(ii). P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X) = P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j − 1, X), ∀k + 1 6 j, j > 3

Equations in (i) hold because,

P (Rk+1 = 1|Rk = 1, Ȳj , D = j,X)

= P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X)
1− P (D > j + 1|D > j, R̄k+1 = 1, Ȳj , X)

1− P (D > j + 1|D > j, R̄k = 1, Ȳj , X)

= P (Rk+1 = 1|Rk = 1, Ȳj , D > j,X) (G.3)

= P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X) (G.4)

Equation (G.3) is true because of missingness-independent death, and equation (G.4) is true

because of mortal-cohort dDTIC.

Equation (ii) holds because,

P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X)

= P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j − 1, X)
P (D > j|D > j − 1, R̄k+1 = 1, Ȳj−1, X)

P (D > j|D > j − 1, R̄k = 1, Ȳj−1, X)

= P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j − 1, X) (G.5)

Equation (G.5) is true because of missingness-independent death. It can be shown then, by

induction (applying mortal-cohort dDTIC and missingness-independent death iteratively),

P (Rk+1 = 1|Rk = 1, Ȳj−1, D > j,X) = P (Rk+1 = 1|Rk = 1, Ȳk, D > k + 1, X)

Thus, by mortal-cohort dDTIC and missingness-independent death, u-MAR holds.

(2) u-MAR =⇒ mortal-cohort dDTIC and missingness-independent death

Note that by Bayes’ theorem, it can be shown that the following equations are true under u-MAR:

P (Rk = 1|Rk−1 = 1, Ȳj , D = j,X) = P (Rk = 1|Rk−1 = 1, Ȳj , D > j,X)

= P (Rk = 1|Rk−1 = 1, Ȳk−1, D > k,X), ∀j > k
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1. First we note that under monotone missing data, it can be shown that mortal-cohort dDTIC

can be written as P (Rj = 1|D > j, Ȳj , X) = P (Rj = 1|D > j, Ȳj−1, X). We shall show that

P (Rj = 1|D > j, Ȳj , X) = P (Rj = 1|D > j, Ȳj−1, X) when u-MAR holds.

P (Rj = 1|D > j, Ȳj , X) =

j∏
k=2

P (Rk = 1|Rk−1 = 1, D > j, Ȳj , X)

(u-MAR)
=

j∏
k=2

P (Rk = 1|Rk−1 = 1, D > j, Ȳj−1, X)

= P (Rj = 1|D > j, Ȳj−1, X)

2. We shall show that P (Rj = 1|D > j + 1, Ȳj , X) = P (Rj = 1|D > j, Ȳj , X) (i.e. missingness-

independent death holds) when u-MAR holds.

P (Rj = 1|D > j + 1, Ȳj , X) =

j∏
k=2

P (Rk = 1|Rk−1 = 1, D > j + 1, Ȳj , X)

(u-MAR)
=

j∏
k=2

P (Rk = 1|Rk−1 = 1, D > j, Ȳj , X)

= P (Rj = 1|D > j, Ȳj , X)

H. Validity of MIf

Let us assume equations (4.12) and (4.13) for D = l, and Ȳl|X,D = l ∼ N(µ(l),Σ(l)). We would

like to show that under f-MAR, MIf will be valid. It can be shown that f-MAR can be written

as P (R̄k|D = l, Ȳl, X) = P (R̄k|D = l, Ȳk−1, X) ,∀k 6 l, which is equivalent to

f(Yl, . . . , Yk|R̄k, D = l, Ȳk−1, X) = f(Yl, . . . , Yk|D = l, Ȳk−1, X) ∀k 6 l

Therefore, if Rk−1 = 1, Rk = 0

f(Yj |Rk−1 = 1, Rk = 0, . . . , Rj = 0, D = l, Ȳk−1, X) = f(Yj |D = l, Ȳk−1, X) ∀k 6 j

For subjects whose D = l, let ηj denote the value of Yj in the data set created by MI (as N →∞)

with true values of µ(l) and Σ(l).

ηj =

{
Yj , if Rj = 1

E(Yj |Ȳl, D = l,X), if Rj = 0

=

{
Yj , if Rj = 1

E(Yj |ȲU , D = l,X), if Rj = 0
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where U is the last visit that the outcome is observed. Then,

E(ηj |D > j,X) =
∑
∀l>j

{
E(Yj |Rj = 1, D > j,D = l,X)P (Rj = 1|D > j,D = l,X)P (D = l|D > j,X)+

E(ηj |Rj = 0, D > j,D = l,X)P (Rj = 0|D > j,D = l,X)P (D = l|D > j,X)

}
=
∑
∀l>j

{
E(Yj |Rj = 1, D > j,D = l,X)P (Rj = 1|D > j,D = l,X)P (D = l|D > j,X)+

EU,ȲU
[E(Yj |ȲU , D = l,D > j,X)|Rj = 0, D > j,D = l,X]P (Rj = 0|D > j,D = l,X)P (D = l|D > j,X)

}
Note that conditioning on {RU = 1, RU+1 = . . . = Rj = 0} is equivalent to conditioning on

(U, {Rj = 0}), which is equivalent to conditioning on U . Then, by f-MAR

EU,ȲU
[E(Yj |ȲU , D = l,D > j,X)|Rj = 0, D > j,D = l,X]

= EU{EȲU
[E(Yj |ȲU , U,D = l,D > j,X,Rj = 0)|U,Rj = 0, D > j,D = l,X]|Rj = 0, D > j,D = l,X}

= E(Yj |Rj = 0, D > j,D = l,X)

Therefore,

E(ηj |D > j,X) =
∑
∀l>j

{
E(Yj |Rj = 1, D > j,D = l,X)P (Rj = 1|D > j,D = l,X)P (D = l|D > j,X)+

E(Yj |Rj = 0, D > j,D = l,X)P (Rj = 0|D > j,D = l,X)P (D = l|D > j,X)

}
= E(Yj |D > j,X)

Since the true values of µ(l) and Σ(l) are unknown, we can replace them by their maximum

likelihood estimates µ̂(l) and Σ̂(l). If we assume equations (4.12) and (4.13), under f-MAR, it can

be shown that (µ̂(l), Σ̂(l)) are consistent parameter estimates of (µ(l), Σ(l)). Since we explained

in Section 3.2 that MIf and LI imputationf are very similar, we would expect both MIf and LI

imputationf to be valid.

I. Proof of Theorem 2

We will first show how AIPW estimating equations (equation (6.14)) are derived from AIPWCC

in Seaman and Copas (2009). Ignoring any terms in AIPW estimating equations that contains

Rj for j > D, the AIPW estimating equations can be written as
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Ψ(β, α, γ) =
RJ

π̃J(ȲJ−1, X;α)
U(β) +

J−1∑
j=1

(
Rj

π̃j(Ȳj−1, X;α)
− Rj+1

π̃j+1(Ȳj , X;α)

)
Hj(Ȳj , X;β, γ)

= I(D = J)
RD

π̃D(ȲD−1, X;α)
U(β) + I(D < J)

RD

π̃D(ȲD−1, X;α)
HD(ȲD, X;β, γ)+

min
(D−1,J−1)∑

j=1

(
Rj

π̃j(Ȳj−1, X;α)
− Rj+1

π̃j+1(Ȳj , X;α)

)
Hj(Ȳj , X;β, γ)

=
RD

π̃D(ȲD−1, X;α)
U(β) +

D−1∑
j=1

(
Rj

π̃j(Ȳj−1, X;α)
− Rj+1

π̃j+1(Ȳj , X;α)

)
Hj(Ȳj , X;β, γ)

Theorem 2: Under f-MAR, the AIPWf gives consistent estimations if either the dropout model

or the model Hj(Ȳj , X;β, γ) is correctly specified.

Under Theorem 2, we assume f-MAR:

P (Rj = 1|Rj−1 = 1, ȲD, X) = P (Rj = 1|Rj−1 = 1, Ȳj−1, X), ∀j

and equivalently written as f(YD, . . . , Yj |Ȳj−1, Rj = 1, X) = f(YD, . . . , Yj |Ȳj−1, Rj−1 = 1, X).

Equation (6.14) can be written as

Ψ(β, α, γ) =
R1

π̃1(X;α)
H1(Y1, X;β, γ)+

D∑
j=2

Rj

π̃j(Ȳj−1, X;α)

[
Hj(Ȳj , X;β, γ)−Hj−1(Ȳj−1, X;β, γ)

]
(I.1)

Let α̂, γ̂ be consistent estimators of α, γ, and let αo, γo be the limiting values of α̂, γ̂. Let π̃oj =

π̃oj(Ȳj−1, X) = π̃(Ȳj−1, X;αo) and Hoj = Hoj(Ȳj , X) = Hj(Ȳj , X;β, γo).

To show double robustness, we show that when β = βo, E[Ψ(β, αo, γo)] = 0. First we assume

that the imputation model is correctly specified such that Hoj = EYj+1,...,YD
(U(β)|Ȳj , Rj = 1, X).

First take expectation with regards to the first term of equation (I.1).

ER1,ȲD|X

(
R1

π̃o1
Ho1

)
= ER1|XEY1|R1,X

(
R1

π̃o1
EY2,...,YD

(U(β)|Y1, R1 = 1, X)

)
= ER1|X

(
R1

π̃o1
EY1

[EY2,...,YD
(U(β)|Y1, X)|X]

)
(I.2)

= ER1|X

(
R1

π̃o1
EȲD

(U(β)|X)

)
Equation (I.2) hold because of f-MAR. It can be shown that EȲD

(U(β)|X) = 0 when β = βo.
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Next, for any (j, Ȳj−1, R̄j , X), such that 2 6 j 6 D,

EYj |Ȳj−1,R̄j ,X

[
Rj

π̃oj
(Hoj −H0,j−1)

]
=
Rj

π̃oj

{
EYj

[
EYj+1,...,YD

(U(β)|Ȳj , Rj = 1, X)
∣∣Ȳj−1, Rj = 1, X

]
−H0,j−1

}
=
Rj

π̃oj

{
EYj ,...,YD

(U(β)|Ȳj−1, Rj = 1, X)−H0,j−1

}
(I.3)

=
Rj

π̃oj

{
EYj ,...,YD

(U(β)|Ȳj−1, Rj−1 = 1, X)− EYj ,...,YD
(U(β)|Ȳj−1, Rj−1 = 1, X)

}
(I.4)

= 0

where equation (I.3) and equation (I.4) hold because of f-MAR. Next, we assume the dropout

model is correctly specified such that π̃oj = P (Rj = 1|Ȳj−1, X), ∀j = {1, . . . , D}.

Using equation (6.14), taking expectation of the first component of the estimating equation:

ER̄D,ȲD|X

{
RD

π̃oD
U(β)

}
= EȲD|XER̄D|ȲD,X

{
RD

π̃oD
U(β)

}
= EȲD|X

{
1

π̃oD
U(β)P (RD = 1|ȲD, X)

}
= EȲD|X

{
1

π̃oD
U(β)π̃oD

}
(I.5)

= EȲD
(U(β)|X) = 0 (when β = βo)

where equation (I.5) hold because of f-MAR. Finally in the second component of equation (6.14),

for any (j, ȲD, X) such that j 6 D − 1,

ER̄D|ȲD,X

{(
Rj

π̃oj
− Rj+1

π̃o,j+1

)
Hoj

}
=

{
P (Rj = 1|ȲD, X)

π̃oj
− P (Rj+1 = 1|ȲD, X)

π̃o,j+1

}
Hoj

=

{
π̃oj
π̃oj
− π̃o,j+1

π̃o,j+1

}
Hoj (I.6)

= 0

where equation (I.6) hold because of f-MAR.

Before we prove the rest of Theorem 2, we need the following proposition:



Missing data due to dropout or death 15

Proposition: Let X−D be a vector of covariates which does not include D. Then, if independent

death holds,

f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D = l,D > s,X−D) = f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D > s,X−D) (I.7)

∀j < s < t and under (2), ∀j < s < l

Proof of Proposition:

First we note that independent death implies

P (D > t|D > s, Ys, Ȳj , Rj = 1, Rj+1 = 0, X−D) = P (D > t|D > s, Ȳj , Rj = 1, Rj+1 = 0, X−D), ∀j < s < t

The left-hand side of equation (I.7) can be written as

f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D = l,D > s,X−D)

= f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D > s,X−D)
P (D = l|D > s, Y s, Ȳj , Rj = 1, Rj+1 = 0, X−D)

P (D = l|D > s, Ȳj , Rj = 1, Rj+1 = 0, X−D)

= f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D > s,X−D)×
P (D > l|D > s, Y s, Ȳj , Rj = 1, Rj+1 = 0, X−D)− P (D > l + 1|D > s, Y s, Ȳj , Rj = 1, Rj+1 = 0, X−D)

P (D > l|D > s, Ȳj , Rj = 1, Rj+1 = 0, X−D)− P (D > l + 1|D > s, Ȳj , Rj = 1, Rj+1 = 0, X−D)

= f(Ys|Rj = 1, Rj+1 = 0, Ȳj , D > s,X−D) (by independent death)

Rest of Theorem 2: The dropout model and the imputation model need not condition on D if

the following conditions are met: (1) u-MAR holds, and the dropout model is correctly specified,

or if (2) f-MAR, p-MAR and independent death hold, and Hj(Ȳj , X;β, γ) is correctly specified.

Note that p-MAR implies mortal-cohort dDTIC.

Again, to show double robustness, we show that when β = βo, E[Ψ(β, αo, γo)] = 0. First we as-

sume that the imputation model is correctly specified such that Hoj = EYj+1,...,YD
(U(β)|Ȳj , Rj =

1, X). Again, let Us(β) be the sth component of U(β). First take expectation with regards to the

first term of equation (I.1).
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ER1,ȲD|X

(
R1

π̃o1
Ho1

)
= ER1,Y1|X

(
R1

π̃o1
EY2,...,YD (U(β)|Y1, R1 = 1, X)

)
= ER1|D>s

(
R1

π̃o1
EY1

[
EY2,...,YD

(
D∑

s=1

Us(β)|Y1, D > s,X−D

)∣∣∣∣D > s,X−D

])
(I.8)

= ER1|D>s

(
R1

π̃o1
EȲD

[
D∑

s=1

Us(β)|D > s,X−D

])
= 0 (when β = βo)

We now show equation (I.8) holds because of f-MAR, independent death, and p-MAR. For any

sth component of U(β),

EYs(U(β)|Y1, R1 = 1, X) = EYs(U(β)|Y1, R1 = 1, R2 = 0, X) (I.9)
= EYs(U(β)|Y1, R1 = 1, R2 = 0, D > s,X−D) (I.10)
= EYs(U(β)|Y1, D > s,X−D) (I.11)

Equation (I.9) holds because of f-MAR, equation (I.10) holds because of independent death, and

equation (I.11) holds because of p-MAR.

Next, for any (j, Ȳj−1, R̄j , X), such that 2 6 j 6 D,

EYj |Ȳj−1,R̄j ,X

[
Rj

π̃oj
(Hoj −Ho,j−1)

]

=
Rj

π̃oj

{
EYj |Ȳj−1,R̄j ,X

EYj+1,...,YD

(
D∑

s=1

Us(β)|Ȳj , Rj = 1, X

)
−Ho,j−1

}

=
Rj

π̃oj

{
EYj

[
EYj+1,...,YD

(
D∑

s=1

Us(β)|Ȳj , Rj = 1, Rj+1 = 0, X

)∣∣∣∣Ȳj−1, Rj−1 = 1, Rj = 0, X

]
−Ho,j−1

}
(I.12)

=
Rj

π̃oj

{
EYj

[
EYj+1,...,YD

(
D∑

s=1

Us(β)|Ȳj , Rj = 1, Rj+1 = 0, X−D, D > s

)∣∣∣∣Ȳj−1, Rj−1 = 1, Rj = 0, X−D, D > s

]
−Ho,j−1

}
(I.13)

=
Rj

π̃oj

{
EYj ,...,YD

(
D∑

s=1

Us(β)|Ȳj−1, X−D, D > s)−Ho,j−1

)}
(I.14)

=
Rj

π̃oj

{
EYj ,...,YD

(
D∑

s=1

Us(β)|Ȳj−1, X−D, D > s

)
− EYj ,...,YD

(
D∑

s=1

Us(β)|Ȳj−1, X−D, D > s

)}
(I.15)

= 0

Equation (I.12) holds because of f-MAR, equation (I.13) holds because of independent death,

and equation (I.14) holds because of p-MAR. Similar arguments can be made for the second

expectation in equation (I.15).



Missing data due to dropout or death 17

Next, we assume the dropout model is correctly specfied such that π̃oj = P (Rj = 1|Ȳj , X) =

P (Rj = 1|Ȳj−1, D > j), ∀j = {1, . . . , J}.

Using equation (6.14), taking expectation of the first component of the estimating equation:

ER̄D,ȲD|X

{
RD

π̃oD
U(β)

}
= EȲD|XER̄D|ȲD,X

{
RD

π̃oD
U(β)

}
= EȲD|X

{
1

π̃oD
U(β)P (RD = 1|ȲD, X)

}
= EȲD|X

{
1

π̃oD
U(β)π̃oD

}
(I.16)

= 0 (when β = βo)

where equation (I.16) hold because of u-MAR.

Finally in the second component of equation (6.14), for any (j, ȲD, X) such that j 6 D − 1,

ER̄D|ȲD,X

{(
Rj

π̃oj
− Rj+1

π̃o,j+1

)
Hoj

}
=

{
P (Rj = 1|Ȳj−1, D > j,X−D)

π̃oj
− P (Rj+1 = 1|ȲD, D > j + 1, , X−D)

π̃o,j+1

}
Hoj

=

{
π̃oj
π̃oj
− π̃o,j+1

π̃o,j+1

}
Hoj (I.17)

= 0

where equation (I.17) hold because of u-MAR.
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J. Supplementary simulation results

Table J.1: Misspecified dropout or imputation models in AIPW for simulation 1. AIPWd refers
to AIPW with incorrect dropout models (sex is omitted), AIPWi refers to AIPW with incorrect
imputation models (sex is omitted), and AIPWdi refers to AIPW with incorrect dropout and

imputation models (sex is omitted in both models).

AIPWdf (strat on D) AIPWif (strat on D) AIPWdif (strat on D)
bias s.bias SE bias s.bias SE bias s.bias SE

β0 -0.003 -1.695 0.151 -0.003 -1.695 0.151 -0.003 -1.695 0.151
β1 -0.003 -2.199 0.149 -0.004 -3.005 0.149 -0.002 -1.161 0.149
β2 -0.008 -3.833 0.221 -0.010 -4.429 0.223 -0.044 -20.155 0.217
β3 -0.009 -2.883 0.309 -0.012 -3.680 0.315 -0.109 -36.959 0.296
β4 -0.011 -2.652 0.412 -0.010 -2.280 0.428 -0.084 -22.717 0.372
βsex 0.008 3.500 0.217 0.008 3.500 0.217 0.008 3.500 0.217
βsex1 -0.006 -2.897 0.207 -0.004 -2.027 0.207 -0.002 -1.232 0.206
βsex2 -0.005 -1.722 0.315 -0.002 -0.588 0.317 0.016 4.958 0.312
βsex3 0.006 1.337 0.411 0.010 2.446 0.417 0.068 17.135 0.400
βsex4 0.005 0.947 0.562 0.005 0.936 0.575 0.050 9.533 0.528

Table J.2: Results under simulation 3 with true parameter values:
β0 = 17.630, β1 = 0.358, β2 = 0.064, β3 = −0.596, β4 = −1.140

IEE IPWu IPWp IPWf (D ∈ X)
bias s.bias SE bias s.bias SE bias s.bias SE bias s.bias SE

β0 -0.0013 -1.2940 0.1039 -0.0013 -1.2940 0.1039 -0.0013 -1.2940 0.1039 -0.0013 -1.2940 0.1039
β1 0.1717 151.0461 0.1137 0.0096 8.9202 0.1079 0.0096 8.9202 0.1079 -0.0036 -3.3368 0.1093
β2 0.4285 266.4189 0.1608 0.0824 52.3295 0.1575 0.0918 58.1518 0.1579 0.0009 0.4966 0.1809
β3 0.3442 165.6292 0.2078 -0.0289 -14.0999 0.2049 0.0221 10.8535 0.2036 0.0015 0.6655 0.2204
β4 0.4229 157.7189 0.2682 -0.1025 -35.8201 0.2861 -0.0067 -2.4082 0.2785 -0.0079 -2.8390 0.2774

AIPWu AIPWf (D ∈ X) MIu MIf (D ∈ X)
bias s.bias SE bias s.bias SE bias s.bias SE bias s.bias SE

β0 -0.001 -1.294 0.104 -0.001 -1.294 0.104 -0.001 -1.294 0.104 -0.001 -1.294 0.104
β1 0.010 9.115 0.108 -0.003 -2.864 0.108 0.008 7.305 0.108 -0.005 -4.762 0.109
β2 0.095 61.808 0.154 0.001 0.476 0.162 0.096 62.352 0.154 0.005 3.116 0.157
β3 0.038 19.243 0.199 0.000 -0.168 0.205 0.023 11.953 0.195 0.017 8.381 0.200
β4 0.023 8.158 0.286 -0.006 -2.328 0.271 -0.012 -4.689 0.264 0.018 6.675 0.267

Table J.3: Simulation 3: methods stratifying on D
IPWf AIPWf MIf

bias s-bias SE bias s-bias SE bias s-bias SE
β0 -0.001 -1.2940 0.104 -0.001 -1.294 0.104 -0.001 -1.294 0.104
β1 -0.003 -2.743 0.110 -0.003 -2.765 0.109 -0.001 -1.037 0.108
β2 0.003 1.724 0.181 0.000 -0.034 0.165 0.002 0.995 0.163
β3 -0.004 -1.755 0.234 -0.001 -0.334 0.207 -0.008 -4.006 0.206
β4 -0.007 -2.408 0.278 -0.006 -2.195 0.271 -0.024 -9.138 0.268

K. Analysis from a simulated data set

To reproduce the results found from the data analysis, we simulated a data set with similar design

as the real data used in the paper (code on https://github.com/lw499/mortalcohort_github).

The results from the analysis can be found on Table K.1.

https://github.com/lw499/mortalcohort_github
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