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Summary 
 

A genome-wide association study in chronic thromboembolic pulmonary 

hypertension and the ADAMTS13-VWF axis 

 

Michael Newnham 

 

Chronic thromboembolic pulmonary hypertension (CTEPH) is an important and severe 

consequence of pulmonary embolism (PE), resulting from failure of thrombus 

resolution.  Identifying genetic risk factors for CTEPH would provide important insights 

into pathobiology and might allow risk-stratification following PE.  A genome-wide 

association study (GWAS) was performed in 1250 CTEPH patients, 1492 healthy 

controls and ~7 million single-nucleotide polymorphisms to identify novel disease loci. 

 

The ABO locus was identified as the most significant common variant genetic 

association with CTEPH in both a discovery and validation cohort.  The A1 subgroup 

of ABO was enriched in CTEPH and this may result in multiple functional 

consequences including variation in plasma von Willebrand factor (VWF) levels. 

 

Abnormalities in haemostasis are implicated in CTEPH pathobiology, including 

elevated levels of VWF, which is cleaved by ADAMTS13 (a disintegrin and 

metalloproteinase with a thrombospondin type 1 motif, member 13).  The ADAMTS13-

VWF axis was investigated in 208 CTEPH patients including its relationship to ABO 

blood groups and ADAMTS13 genetic variants. 

 

Plasma ADAMTS13 levels are markedly reduced in CTEPH.  This is independent of 

pulmonary hypertension, disease severity or systemic inflammation.  Plasma VWF 

levels were confirmed to be markedly increased in CTEPH.  These findings implicate 

dysregulation of the ADAMTS13-VWF axis in CTEPH pathobiology. 
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1  Introduction 
 

1.1  Literature search 

 

A literature search was performed to ensure that there was a systematic approach to 

the evidence included in the introduction.  A Healthcare Databases Advanced Search 

(HDAS) was conducted using the databases Medline and PubMed.  The following 

search terms (including variations and acronyms) were used: 

1. Chronic thromboembolic pulmonary hypertension AND  

a. Aetiology OR pathobiology OR pathophysiology OR review OR update 

b. Genetics OR genome-wide association study OR single nucleotide 

polymorphism 

c. ADAMTS13 OR von Willebrand Factor OR haemostasis OR coagulation 

OR fibrinolysis 

2. (Venous thromboembolism OR pulmonary embolism OR deep-vein 

thrombosis) AND (genome-wide association study OR single nucleotide 

polymorphism) 

3. Genome-wide association study AND (review OR guideline) 

 

References lists from articles were reviewed for additional citations.  Literature and 

resources utilised during the PhD programme were also included where appropriate. 

 

1.2  Chronic thromboembolic pulmonary hypertension 

 

1.2.1  Overview 

Pulmonary hypertension is defined as an increase in mean pulmonary arterial 

pressure (mPAP) ≥25 mmHg at rest.(1)  Chronic thromboembolic pulmonary 

hypertension (CTEPH) is classified in group 4 pulmonary hypertension in the 

European Society of Cardiology / European Respiratory Society 2015 guidelines.(1)  

CTEPH can result from failure of thrombus resolution in the pulmonary 

arteries following acute pulmonary embolism (PE).(2)  Organisation and fibrosis of 

thrombotic material leads to obstruction of proximal pulmonary arteries and the 

subsequent development of a secondary small vessel (distal) vasculopathy, both of 



   
 

 2 

which contribute to pulmonary hypertension and subsequent right heart failure.(3, 4)  

CTEPH is an infrequent but important complication of PE, a common disease affecting 

1/1000, which increases with age.(5)  In a meta-analysis, the pooled incidence of 

CTEPH was ~3% in survivors of PE.(6)  

 

The diagnosis of CTEPH is based on international criteria and requires an mPAP ≥ 

25mmHg at right heart catheterisation (with a pulmonary arterial wedge pressure 

(PAWP) £15mmHg) and specific radiological defects after at least 3 months of 

effective anticoagulation.(7)  The most common imaging modalities to diagnose 

CTEPH are computed tomography pulmonary angiography (CTPA) and ventilation-

perfusion (VQ) scans, with  magnetic resonance angiography (MRA) and invasive 

pulmonary angiography performed less frequently (Figure 1.1).(8) 

 

CTEPH represents the most severe long-term consequence of acute PE, but there are 

a range of more common manifestations within post-PE syndrome.  Following PE, 

~50% of patients will have functional limitations, 25-33% have persistence of thrombi 

and 10-30% have persistent or worsening right ventricular function / pulmonary artery 

pressures.(9)  Also, within the post-PE spectrum is chronic thromboembolic disease 

(CTED), which is characterised by persistent pulmonary arterial thromboembolic 

occlusions without pulmonary hypertension (mPAP <25mmHg) in symptomatic 

patients.(10) 

 

Risk factors for CTEPH include previous venous thromboembolism (VTE), with 

preceding PE and deep vein thrombosis (DVT) occurring in 75% and 50% of patients 

respectively in European cohorts.(11)  The risk of developing CTEPH following VTE 

is higher with recurrent VTE, unprovoked VTE, larger PEs and right heart dysfunction 

at the time of the acute PE.(12-14)  Additional risk factors include: non-O blood groups, 

splenectomy, antiphospholipid antibodies / lupus anticoagulant, malignancy, thyroid 

replacement therapy and a putative association with ventriculo-atrial shunts / infected 

pacemakers.(12-14)  
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Figure 1.1  Imaging modalities for diagnosing CTEPH 

Different imaging modalities in a patient with CTEPH deemed to be operable. 

Perfusion (A) and ventilation (B) (VQ) scans showing typical mismatched perfusion 

defects.  C Computed tomography pulmonary angiogram (CTPA) displaying marked 

right ventricular dilation and a paucity of pulmonary arteries in the lower lobes. D 

Invasive pulmonary angiogram showing web and stenotic lesions in the pulmonary 

arteries of the right lung.  ANT (anterior), POST (posterior), LPO (left posterior 

oblique), RPO (right posterior oblique).  Figure reproduced with permission of the © 

ERS 2020, from (19). 
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1.2.1.1  CTEPH management 

 

Management of CTEPH consists of lifelong anticoagulation.(1)  Traditionally, vitamin-

K antagonists (e.g. warfarin) have been used for anticoagulating CTEPH patients and 

more recently direct oral anticoagulants (DOACs).(16)  The main side effect of long-

term anticoagulation treatment is major and clinically relevant non-major bleeding 

however, in CTEPH the major bleeding rate is low (<0.7%/person-year).(16)  There is 

no evidence that additional treatments including thrombolytic medications that result 

in blood clot dissolution, can prevent CTEPH following acute pulmonary embolism.(17, 

18) 

 

Suitable CTEPH patients should have a multi-disciplinary evaluation of surgical 

operability. Eligible patients are offered pulmonary endarterectomy (PEA), which 

involves removing obstructive thromboembolic material in surgically accessible 

pulmonary arteries.(7)  The procedure requires a midline sternotomy followed by 

cardiac bypass and deep hypothermic cardiac arrest (DHCA) to minimise bleeding in 

the surgical field.(19)  The obstructive thromboembolic material together with the 

intima and superficial medial layer of the pulmonary artery can be removed to the level 

of the subsegmental pulmonary arteries if required (Figure 1.2).(19)  PEA surgery is 

the optimal treatment in eligible patients, offering the best chance of symptomatic and 

prognostic improvement.(7)  Patients have marked improvements in haemodynamics, 

World Health Organisation (WHO) functional class, 6-minute walk distance (6mwd), 

patient reported outcomes including quality of life, and survival following PEA.(17, 20) 

 

Percutaneous balloon pulmonary angioplasty is a CTEPH treatment that involves 

dilating the stenotic pulmonary arterial segments with a balloon catheter.  It is a 

treatment modality that can be considered for selected CTEPH patients ineligible for 

PEA due to distal disease or alternatively, in those with persistent or recurrent 

pulmonary hypertension (PH) following PEA.(17, 21-23) 

 

Patients with surgically inaccessible disease, disproportionate distal predominant 

disease or with co-morbidities precluding PEA can be treated with licensed pulmonary 

artery vasodilator medication and emerging therapies.(24, 25) 
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Figure 1.2  Pulmonary endarterectomy specimen 

Pulmonary endarterectomy specimen removed from right and left pulmonary arteries.  

Figure reproduced with permission of the © Elsevier, from (26) 

 

 

1.2.2  CTEPH pathobiology 

1.2.2.1  CTEPH histology 

CTEPH occurs due to proximal occlusion of pulmonary arteries by organised fibrotic 

clots and a micro-vasculopathy in smaller pulmonary vessels.(3, 27)  Resected PEA 

specimens show remodelling of thrombi at various stages with different degrees of 

inflammation and cellularity, which is distinct from the fresh clot found in PE 

specimens.(2, 28)  In a series of 54 CTEPH patients undergoing PEA, the specimens 

were comprised of:  collagen (100%), elastin (67%), haemosiderin (56%), 

atherosclerosis (32%) and calcification (15%), with inflammation present in 53%.(29)  

Plexogenic lesions (a dynamic network of vascular channels) are a hallmark of 

idiopathic pulmonary arterial hypertension (IPAH) and have been identified in some 

studies of CTEPH, suggesting a degree of histopathological overlap with other types 

of pulmonary hypertension.(3, 30)  A more recent study utilising PEA specimens, 

CTEPH transplant tissue and a porcine model identified the importance of post-

capillary remodelling (venopathy) and anastomosis between the pulmonary and 

systemic circulation in CTEPH.(31) 
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1.2.2.2  CTEPH pathobiology: introduction 
There are a number of unanswered questions related to the pathobiology of CTEPH.  

Potential mechanisms and pathways that are involved include: excess thrombus 

formation, failure of fibrinolysis, endothelial dysfunction, failure of neovascularisation, 

inflammation, endothelial dysfunction and others including right ventricular adaptation 

and genetics.(2, 27, 32) 

 

1.2.2.3  Increased thrombus 

A thrombus (blood clot) is the final product of blood coagulation.  Coagulation involves 

a complex biological cascade and is a component of haemostasis, the process of 

stopping bleeding.  Haemostasis comprises vascular spasm, platelet activation and 

coagulation.  Following damage to the endothelium of a blood vessel, platelets are 

activated and recruited to the site of injury to form a platelet plug (described further in 

Section 1.6) (primary haemostasis).(33)  Injury to the endothelium leads to the release 

of tissue factor and a cascade of coagulation serine proteases that ultimately results 

in the formation of a cross-linked fibrin clot (secondary haemostasis) (Figure 1.3).(33) 

 

The observation that the risk of CTEPH is increased with larger and recurrent PEs is 

consistent with increased thrombus formation being important in CTEPH 

pathobiology.(12, 14)  Plasmatic factors associated with thrombus formation are 

increased in CTEPH including antiphospholipid antibodies / lupus anticoagulant, von 

Willebrand Factor (VWF) / Factor VIII, tissue-type plasminogen activator (t-PA) and 

type 1 plasminogen activator inhibitor (PAI-1) (Figure 1.4).(34-36)  Increased 

thrombus formation alone is unlikely to be the sole contributing factor to CTEPH 

pathobiology and  other studies have suggested that traditional thrombophilic risk 

factors and antiphospholipid antibodies are not over-represented in CTEPH (see 

Section 1.3.1).(34, 37)  Furthermore, ~25% of patients with CTEPH will not have a 

preceding (known) VTE and thrombolysis treatment of acute pulmonary embolism that 

decreases the thrombus burden has no effect on the development of CTEPH.(11, 18) 
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Figure 1.3  Blood coagulation overview 

Roman numerals (i.e. VII) denote clotting factors and a lowercase “a” denotes the 

active form. The coagulation cascade has two components, the initiation phase 

(extrinsic pathway) and the amplification phase (intrinsic pathway).  APC (activated 

protein C), TF (tissue factor), aTHR (antithrombin). 

Figure reproduced under creative commons license, from (38). 

 

 

1.2.2.4  Fibrinolysis 

If fibrinolytic mechanisms are involved in CTEPH pathobiology this may result in 

reduced thrombus dissolution (Figure 1.4).  Fibrin from CTEPH patients is partially 

resistant to plasma mediated lysis suggesting impaired fibrinolysis.(39)  Five 

fibrinogen variants have been described in CTEPH that result in differences in the 

molecular structure of fibrin.(40)  However, fibrin resistance is not specific to CTEPH 

and occurs in other forms of pulmonary hypertension and to a lesser extent PE 
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suggesting an epiphenomenon.(41)  There may be differences in fibrinogen genetic 

polymorphisms which account for fibrin resistance in CTEPH that is discussed further 

in Section 1.3.2.(42)  The fibrinolysis inhibitor thrombin-activatable fibrinolysis 

inhibitor (TAFI) is increased in CTEPH and plasma levels correlate with resistance to 

clot lysis, suggesting an additional fibrinolysis pathway that may be affected in 

CTEPH.(43) 

 

 

 
 

Figure 1.4  The fibrinolysis pathway 

A simplified diagram of the fibrinolysis pathway.  Fibrinolysis is the process of breaking 

down a fibrin blood clot formed during coagulation.  Blue arrows indicate stimulation 

and red inhibition. 

Figure reproduced under creative commons license, from (44) 
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1.2.2.5  Neoangiogenesis 

Restoration of pulmonary artery patency following thrombus obstruction is important 

following an acute pulmonary embolus and abnormalities in neoangiogenesis may be 

important in CTEPH pathobiology.  PEA specimens have reduced vascular structures 

and lower expression of vessel-specific genes.(45)  Impaired neoangiogenesis is 

associated with increased mortality and persistent PH following PEA.(46)  

Furthermore, factors that inhibit neoangiogenesis (e.g. platelet factor 4) are increased 

in PEA specimens, which may result in altered calcium homeostasis and endothelial 

dysfunction.(47)  These findings suggest neoangiogenesis is defective in CTEPH, 

although it is unclear whether this is causative. 

 

1.2.2.6  Inflammation and endothelial dysfunction 

Inflammation is important in other forms of pulmonary hypertension (e.g. PAH) and 

may be involved in CTEPH pathobiology.(48)  Some risk factors for CTEPH are also 

associated with inflammation including cancer, inflammatory bowel disease and 

infected indwelling lines.(12, 49)  Plasma C-reactive protein (CRP) is increased in 

CTEPH and may contribute to mechanisms involved in fibrotic vascular remodelling 

and endothelial dysfunction.(50, 51)  Inflammatory cells (macrophages, T-

lymphocytes and neutrophils) have been found to accumulate in PEA specimens and 

correlate with raised plasma CRP.(46)  Inflammatory mediators are also upregulated 

in PEA specimens including interleukin-6 (IL-6), monocyte chemoattractant protein-1 

(MCP-1), interferon-γ-induced protein-10 (IP-10) and macrophage inflammatory 

protein (MIP)-1α.  A number of circulating inflammatory markers are elevated in 

CTEPH including MCP-1, IL-6, IL-8, IP-10, MIP-1α and matrix metalloproteinase 9.(46, 

52, 53) 

 

1.2.2.7  Problems investigating CTEPH pathobiology 

Elucidating the pathobiology of CTEPH has been challenging for several reasons.  

Firstly, the haemostasis and fibrinolytic pathways have been implicated but are difficult 

to study in anticoagulated CTEPH patients.  Secondly, whilst risk factors for 

progression from acute PE to CTEPH have been described, identifying causative 

pathological mechanisms in the post-PE disease spectrum would require large well-

characterised prospective PE cohorts.(54)  Lastly, animal models do not appropriately 

recapitulate failure of thrombus dissolution or the chronic changes that occur in 
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CTEPH.(55)  Therefore, an alternative approach to investigating CTEPH pathobiology 

and circumventing these issues is to perform exploratory genetic studies. 

 

1.3  Genetics of CTEPH 

 

1.3.1  Traditional thrombophilia risk factors 

A thrombophilia is an abnormality of blood coagulation that increases the risk of 

thrombosis and can either be acquired or inherited.(56) The traditional heritable 

thrombophilias can be divided into loss of function mutations (antithrombin, protein C 

and protein S deficiencies) and gain of function mutations (prothrombin gene and 

factor V Leiden mutations).(57)   

 

1.3.1.1  Heritable thrombophilia overview 

The factor V Leiden (FVL) mutation is the most common heritable thrombophilia in the 

UK with the heterozygous form affecting 3-7% of Caucasian European 

populations.(56)  It is caused by a missense variant (rs6025) in the clotting factor V 

(F5) gene.(58)  The FVL mutation results in activated factor V (FVa) being resistant to 

the proteolytic effects of activated protein C (APC resistance) leading to increased 

FVa levels and increased generation of thrombin (Figure 1.5).(56) 



   
 

 11 

 
 

Figure 1.5  Activated protein C and the factor V Leiden mutation 

Activated protein C (in the presence of protein S (S) and calcium (Ca)) will usually 

inactivate factor Va.  When the FVL mutation is present, FVa is resistant to the 

proteolytic effects of activated protein C predisposing to clot formation 

Ca (ionised calcium), S (protein S). 

Figure reproduced with permission of the © CMAJ group, from (59) 

 

The prothrombin gene mutation is the second most common heritable thrombophilia 

in the UK affecting 1-2% of Caucasian Europeans.(56)  It is caused by a 3' 

untranslated region (UTR) variant (guanine to adenine; rs1799963) in the prothrombin 

(F2) gene at nucleotide position 20210 (termed the prothrombin G20210A 

mutation).(60)  This results in an increase in prothrombin (factor II) levels and a 

hypercoagulable state (Figure 1.6). 

 

Protein C and S are both vitamin-K dependent glycoproteins that have anticoagulant 

properties.(58)  Inherited protein C and S deficiencies affect approximately 0.3% and 
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0.1% of Caucasian European populations respectively.(56)  Deficiencies in either 

protein C or S lead to impaired inactivation of factors Va and VIIIa resulting in 

increased thrombus formation (Figure 1.6).(61)  Most mutations causing protein C / S 

deficiencies are heterozygous with homozygous being very rare and often fatal.  There 

have been over 160 different protein C gene (PROC) and ~200 protein S gene 

(PROS1) mutations described that exhibit an autosomal dominant pattern of 

inheritance.(62, 63) 

 

 
 

Figure 1.6  Activation and inhibition in the coagulation system 

Overview of the blood coagulation cascade with additional details related to inhibition 

(red arrows) and activation (blue arrows) 

Figure reproduced with permission of the © BMJ Publishing Group Ltd, from (56). 

 

 

Antithrombin is the main natural inhibitor of blood coagulation (Figure 1.6).(64)  

Antithrombin deficiency affects approximately 0.02% of Caucasian European 

populations.(56)  Deficiency in antithrombin leads to reduced inhibition of factors Xa 

and thrombin, thereby creating a hypercoagulable state (Figure 1.6).  The majority of 

mutations that lead to antithrombin deficiency are heterozygous with over 130 
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described in the SERPINC1 gene and exhibiting an autosomal dominant pattern of 

inheritance.(64)  

 

The heritable thrombophilias are summarised in Table 1.1 and the risk of VTE 

associated with heritable thrombophilias are described in Section 1.4.1. 

 

 

Thrombophilia Prevalence 

(%) 

Type of mutation 

/ inheritance 

Mechanism of 

thrombosis 

FVL, heterozygous 4 missense FVa resistant to 
proteolysis by 
activated protein C 

Prothrombin 
(G20210A) gene 
mutation 

1.5 missense Increased prothrombin 
(factor II) levels 

Protein C deficiency 0.3 >160 mutations 
Autosomal 
dominant 

Impaired inactivation of 
factors Va and VIIIa 

Protein S deficiency 0.1 ~200 mutations 

Autosomal 

dominant 

Impaired inactivation of 

factors Va and VIIIa 

Antithrombin 

deficiency 

0.02 >130 mutations 

Autosomal 

dominant 

Reduced inhibition of 

factors Xa and 

thrombin 

 

Table 1.1  Heritable thrombophilias 

Summary of prevalence (in a Caucasian European population), type of mutation and 

inheritance pattern and the consequence by which the thrombotic risk is increased. 

FVL (factor V Leiden). 

Adapted from (56)  

 

 

1.3.1.2  Heritable thrombophilias and CTEPH 

Genetic associations have been inferred from observational studies that have 

identified CTEPH risk factors.  Thrombotic risk factors (not including ABO) occurred in 

27.7% of 426 CTEPH patients in an international prospective register.(11)  Of the 



   
 

 14 

heritable thrombophilias, 9.6% and 8.9% had protein S and C deficiencies, 7.7% had 

the factor V Leiden (FVL) mutation, 3.5% had the prothrombin gene (G20210A) 

mutation and 0.7% had antithrombin III deficiency (some patients had more than one 

thrombophilia).(11) 

 

Early studies found no difference in the prevalence (see below) of FVL mutation 

between CTEPH and PAH or between CTEPH and healthy controls.(34, 65)  A study 

by Wolf et al, investigated the heritable thrombophilic risk factors between 46 patients 

with CTEPH and 100 healthy controls and found no statistical difference.(34)  

However, the FVL mutation occurred in 6.5% of CTEPH patients and 3% of healthy 

controls, and antitrypsin III deficiency, protein S deficiency and protein C deficiency 

did not occur at all in CTEPH or healthy controls.  The study conclusions were limited 

by a lack of power to detect group differences, which is compounded by the rarity of 

some of the heritable thrombophilias (see Section 1.3.1.1).  In a study by Wong et al, 

29% of CTEPH patients (n=45 total) were heterozygous for the FVL mutation 

compared with 8% in a group with other forms of pulmonary hypertension (n=200 

total).(37)  Study participants were all Caucasian, which is important as the FVL 

mutation occurs in ~5% of Caucasian populations but is rare in other ethnic 

groups.(37)  There was no difference in antithrombin III deficiency, protein C / S 

deficiency and prothrombin gene mutations between CTEPH and control groups.(37) 

There was a nominally significant difference in the frequency of the FVL mutation in 

another study by Suntharalingam et al of 214 CTEPH patients and 200 healthy 

controls (FVL: 3.6% versus 1.5%).(66)  There was no difference in antithrombin III 

deficiency, factor XIII, plasminogen activator inhibitor and tissue plasminogen activator 

polymorphisms between CTEPH and the healthy control groups.(66)  Both the Wong 

et al, and Suntharalingam et al studies were underpowered and only examined a 

limited number of genetic variants. 

 

1.3.2  ABO and fibrinogen genes 

ABO groups are another heritable thrombotic risk factor.  Non-O blood groups are 

more prevalent in CTEPH than the general population occurring in 76% and 54% 

respectively.(67, 68)  The frequency of non-O blood groups in CTEPH and VTE 

appears similar across studies.(67)  However, there has not been a direct study 
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comparison in the same population to determine if ABO groups are different in 

resolved PE versus CTEPH. 

 

A genetic variant (rs6050) in the FGA gene encoding Fibrinogen Aα chain protein is 

more common in CTEPH than healthy controls. (42, 66)  A study of 101 patients with 

CTEPH and 102 with pulmonary embolism in a Han Chinese population reported an 

over-representation of this FGA polymorphism in CTEPH compared to PE.  This study 

was limited by the inability to adjust for population stratification (a potential difference 

in the allele frequencies of subpopulations; discussed further in Section 1.5) and small 

sample size for genetic associations.  Furthermore, rs6050 has been associated with 

VTE in genetic studies and the FGA-FGB-FGG gene region is associated with VTE in 

genome-wide association studies (Section 1.5).(69-71)  The allele (a variant of a gene 

at a given location) frequencies of the rs6050 FGA genetic variant between CTEPH 

and VTE have not been investigated in an adequately powered study. 

 

1.3.3  Genetic variants associated with pulmonary arterial hypertension in 

CTEPH 

Genetic variants associated with pulmonary arterial hypertension (PAH) have been 

investigated in CTEPH and are described below (Section 1.3.3.2) together with the 

background to PAH (Section 1.3.3.1) for context and comparison with the genetics of 

CTEPH. 

 

1.3.3.1  Pulmonary arterial hypertension overview 

PAH  is classified as group 1 (pre-capillary) pulmonary hypertension in the European 

Society of Cardiology / European Respiratory Society 2015 guidelines.(1)  The 

pathobiological processes in PAH involve endothelial dysfunction, pulmonary arterial 

smooth muscle proliferation and accumulation of fibroblasts, myofibroblasts and 

inflammatory cells in the pulmonary arterial wall.(72)  The net effect is pulmonary 

vascular remodelling and vessel obstruction resulting in pulmonary hypertension and 

eventually right heart failure.(72)  It is diagnosed according to right heart catheter 

haemodynamic criteria (mPAP > 20mmHg, a pulmonary vascular resistance (PVR) ³ 

3 Wood units and a PAWP £ 15mmHg) in the absence of other causes of pre-capillary 

PH (e.g. left heart disease, chronic lung disease, CTEPH).(1, 73)  PAH has an 
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incidence of 2.0 - 7.6 cases per million adults per year with a female preponderance 

affecting them four times more often.(74)  There are a number of sub-types of PAH 

including idiopathic PAH (IPAH), heritable PAH (HPAH), drug / toxin induced PAH and 

PAH associated with other diseases (e.g. connective tissue disease or congenital 

heart disease) (Table 1.2).(73)  Current licensed medical treatments are pulmonary 

artery vasodilating medications that aim to improve the vasoconstriction, but do not 

alter the underlying disease pathobiological mechanisms.  PAH is an incurable 

disease with a median survival of 6 years, which varies depending on the particular 

type of PAH.(74) 

 

1 PAH 

1.1  Idiopathic PAH 

1.2  Heritable PAH 

1.3  Drug- and toxin-induced PAH 

1.4  PAH associated with: 

1.4.1  Connective tissue disease 

1.4.2  HIV infection 

1.4.3  Portal hypertension   

1.4.4  Congenital heart disease 

1.4.5  Schistosomiasis 

1.5  PAH long-term responders to calcium channel blockers 

1.6  PAH with overt features of venous/capillaries (PVOD/PCH) involvement 

1.7  Persistent PH of the newborn syndrome 

 

Table 1.2  Clinical classification of PAH (group 1 PH) 

PAH (pulmonary arterial hypertension), PVOD (pulmonary veno-occlusive disease), 

PCH (pulmonary capillary haemangiomatosis) 

Table from (73) 

 

HPAH describes patients with an identified germline mutation or a family history of 

PAH (not associated with other diseases).(75)  In 70–80% of families with PAH and 

10–20% of IPAH cases the cause is a mutation in the gene encoding the bone 

morphogenetic protein receptor type II (BMPR2).(76)  There are over 400 
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heterozygous germline BMPR2 mutations that have been identified to date.(75)  

BMPR2 is a receptor for the transforming growth factor-b (TGF-b) superfamily and is 

expressed on the surface of a wide range of cells particularly the pulmonary vascular 

endothelium.  Mutations in BMPR2 cause abnormal signalling that can adversely 

impact endothelial barrier function, DNA repair, cell proliferation, inflammation, 

metabolism and mitochondrial function.(72)  A number of other rare gene variants 

have been identified for PAH and are summarised in Figure 1.7.  There have also 

been common genetic variant associations with PAH that are described further in 

Section 1.3.4. 

 

 

 
 

Figure 1.7  HPAH pathways and gene variants 

Rare gene variants that have been associated with HPAH are summarised in the figure 

(in addition SMAD1 and SMAD4; not shown).  EIF2AK4 mutations are associated with 

PVOD (pulmonary veno-occlusive disease) / PCH (pulmonary capillary 

haemangiomatosis). 
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ABCC8 (ATP binding cassette subfamily C member 8), ACVRL1 (activin A receptor 

like type 1),  ADP (Adenosine diphosphate), AQP1 (Aquaporin 1),  ATP (Adenosine 

triphosphate), ATP13A3 (ATPase 13A3), BMP (bone morphogenetic protein), BRE 

(BMP-responsive element), CAV1 (Caveolin 1), EIF2AK4 (Eukaryotic translation 

initiation factor 2 alpha kinase 4), ENG (Endoglin), GCN2 (general control 

nonderepressible 2), GDF2 (growth differentiation factor 2), KCNK3 (potassium two 

pore domain channel subfamily K member 3), SMAD (SMAD family member), SOX17 

(SRY-box transcription factor 17), TBX4 (T-box transcription factor 4). 

Figure reproduced with permission of the © Springer Nature, from (75) 

 

 

1.3.3.2  Pulmonary arterial hypertension genetic variants and CTEPH 

Genetic variants that occur in other types of pulmonary hypertension have been 

investigated in CTEPH.  A study of 49 patients with CTEPH and 17 with PE in a Han 

Chinese population reported a higher frequency of variants in genes associated with 

PAH including BMPR2, ACVRL1, ENG, SMAD9, CAV1, KCNK3, and CBLN2.(77)  

However, this candidate gene approach was potentially confounded by the small 

sample size, incomplete assessment of variant deleteriousness and inability to adjust 

for population stratification.  Larger studies in Caucasian CTEPH cohorts have not 

identified mutations in the bone morphogenetic protein type II receptor (BMPR2) gene 

that occur in heritable and idiopathic pulmonary arterial hypertension.(78, 79)  

Prostacyclin is an important regulator of vascular tone and proliferation, and variants 

in genes related to prostacyclin have been implicated in PAH.(80)  A study in 90 

CTEPH patients and 144 healthy controls in a Japanese cohort investigated a 

variable-number tandem repeat (VNTR) polymorphism in the 5'-upstream promoter 

region of the PGIS gene that has also been associated with PAH.(80, 81)  However, 

this specific VNTR PGIS gene promotor variant was not associated with CTEPH.(81)  

Importantly, some candidate genes (e.g. PGIS) putatively associated with PAH and 

used in studies of CTEPH genetic associations, have not been replicated in larger 

studies of PAH using robust methodology.(82)  In summary, genetic variants 

associated with PAH do not convincingly occur in CTEPH in the limited studies 

performed. 
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1.3.3.3 Other CTEPH genetic associations 

There are apparent differences in CTEPH between Japanese and Caucasian 

populations with a female preponderance, less preceding DVT and a lower overall 

incidence of CTEPH in Japanese patients.(83)  Consequently, studies have 

investigated the human leukocyte antigen (HLA) region in Japanese CTEPH cohorts 

and potential associations in the HLA-DPB1 (DPB1*0202 allele) and NFKBIL1 

(IKBLp*03 allele) genes have been identified, which require validation.(84, 85)  The 

HLA class II histocompatibility antigen, DP(W2) beta chain (HLA-DPB1) protein is 

expressed on antigen presenting cells and plays a key role in the immune system, 

whereas the role of the NF-kappa-B inhibitor-like protein (NFKBIL1) protein is unclear 

but may also be involved in immune function as it is located in the major 

histocompatibility complex class I region.(86, 87)  In a separate Japanese study of 97 

patients with CTEPH, variants in the ACE gene that expresses the protein angiotensin-

converting enzyme, which has a role in vascular remodelling and endothelial 

dysfunction, were investigated.(88)  There was no difference in genotype frequencies 

between CTEPH and healthy controls.(81, 88)  A small, unvalidated whole exome 

sequencing study in 30 patients with CTEPH in a Chinese population identified one 

patient with a MUC6 missense variant (rs201234174), a gene encoding a glycoprotein 

expressed by epithelial tissues.(89) 

 

1.3.4  CTEPH genetic architecture 

There are limited observational case reports of presumed “familial” CTEPH however, 

genotyping was not performed to establish shared genetic mutations.(90-92)  A recent 

study of 66 prevalent CTEPH cases used genealogy data (without genotypes) to infer 

genetic relationships.(90-92)  They found that whilst a classical Mendelian inheritance 

was not observed in CTEPH, there was an excess of familial clustering, which implies 

shared risk factors that may be genetic.(90-92)  Interestingly, the relative risk of VTE 

was increased in the 1st degree relatives of CTEPH patients, which could suggest an 

excess of heritable thrombophilias.(90-92)  Whether the familial clustering was due to 

shared genetic risk factors for VTE, CTEPH or shared environmental risk factors 

remains an unanswered question. 

 

Whilst the genetic architecture of CTEPH has not been fully elucidated in robust 

studies, a Mendelian inheritance pattern is not clearly observed. As CTEPH 
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predominantly occurs following VTE, its genetic architecture may mirror VTEs, which 

is primarily a complex polygenic disease (Section 1.4).  In complex, polygenic 

diseases, common genetic variants exert small effect sizes on disease risk compared 

with highly penetrant Mendelian diseases whereby rare mutations exert large effects 

on disease risk (Figure 1.8). 

 

 
 

Figure 1.8  The disease effect size of alleles with varying frequencies  

The disease effect size (Odds ratio) of an allele is plotted against the frequency of the 

allele. In highly penetrant Mendelian diseases (top left of the figure) rare mutations 

exert large effects on the disease risk, whereas in most polygenic diseases 

investigated with genome-wide associations studies, common variants exert small 

effects on disease risk (bottom right of figure). 

Figure reproduced with permission of the Copyright: © 2012 Bush, Moore, from (93). 
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CTEPH can be juxtaposed with the genetic architecture of PAH, which is a Mendelian 

disorder with an autosomal dominant inheritance and incomplete penetrance, whereby 

not all individuals with the genetic mutation (e.g. in BMPR2) exhibit the PAH 

phenotype.(76)  The incomplete penetrance suggests there are additional causative 

factors that may include additional genetic, epigenetic or environmental 

contributors.(76)  Recent studies have identified common genetic variant associations 

with PAH in the HLA-DPA1/DPB1 region (rs2856830) and near the SOX17 (SRY-Box 

Transcription Factor 17) gene locus (rs10103692 and rs10103692).(94)  The HLA-

DPA1/DPB1 gene region is within the major histocompatibility class II region and 

involved in the immune system, whereas the SOX17 gene has a pivotal role in 

angiogenic processes including the development of the lung microvasculature.(75) 

 

1.3.5  CTEPH epigenetics 

Differences in gene expression and epigenetic mechanisms that do not involve 

changes in the DNA sequence have been implicated in CTEPH pathobiology.(95, 96) 

These include changes in microRNAs, DNA methylation and transcription factor 

expression.(97-99)  These epigenetic studies are also limited by small sample sizes, 

lack of replication cohorts and establishing the functional consequences of the 

potential epigenetic differences.(95) 

 

1.3.6  Genetics of CTEPH: summary 

Overall, genetic studies in CTEPH have been small, underpowered and unvalidated.  

Familial clustering suggests shared risk factors, which may be genetic.  A Mendelian 

pattern of inheritance does not occur in CTEPH, and it is more likely to follow a 

complex disease paradigm with common variants exerting small to moderate effects.  

This would be consistent with CTEPH being a severe consequence of VTE, itself a 

polygenic disease, which is described in Section 1.4.  Non-O blood groups are over-

represented in CTEPH, but other heritable thrombophilias and PAH associated gene 

variants have not been conclusively associated.  To fully understand CTEPH genetic 

associations, the genetics of VTE need to be considered. 
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1.4  Genetics of venous thromboembolism 

 

1.4.1  Traditional thrombophilia risk factors 

There are a number of risk factors for venous thromboembolism including 

environmental (e.g. cancer, surgery, trauma, immobilisation, pregnancy, age, body 

mass index, medications) and genetic.(100)  VTE is highly heritable with family-based 

studies estimating the variation in VTE that is attributable to genetics to be ~60%.(101)  

This is consistent with the incidence of VTE varying with ethnicity, being higher in 

Caucasians and Africans compared with Asians.(102) 

 

Genetic risk factors for VTE include the traditional heritable thrombophilias (Section 

1.3.1).  Loss of function mutations in the anticoagulant genes (antithrombin, protein C 

and protein S deficiencies) increase the risk of VTE 5-20 fold but they are rare, being 

present in <1% of the population.(103)  Gain of function (heterozygous) mutations in 

procoagulant genes (prothrombin (G20210A), and factor V Leiden mutation) have a 

more moderate impact on VTE risk of 2-5 fold.(57)  In a meta-analysis of 126,525 

patients with VTE from 173 case-control studies, the significant risk associations were: 

FVL mutation (OR 9.45 95% CI 6.72-13.30) and prothrombin gene mutation (OR 3.17; 

95% CI 2.19-3.46).(104)  The VTE risk from the FVL mutation is lower in subsequent 

genetic studies (see Section 1.4.3), and varies from 5 fold in heterozygotes to 50 fold 

in homozygotes.(103)  The risk of VTE with different hereditary thrombophilias is 

summarised in Table 1.3.  Fibrinogen variants (FGG gene) are also associated with 

VTE (OR 2.4; 95% CI 1.5-3.9) and result in a decrease in plasma levels of fibrinogen 

gamma.(105)  A combination of more than one hereditary thrombophilias has a 

synergistic effect on VTE risk.  In a pooled analysis of 2310 VTE cases and 3204 

healthy controls, patients with heterozygous FVL and prothrombin gene mutations had 

a 20 fold increased risk of VTE (95% CI 11-36).(106) 

 

Heritable thrombophilias can further increase the risk of VTE when combined with 

other pro-thrombotic risk factors including pregnancy, and oestrogen containing 

medications (e.g. the oral contraceptive pill (OCP) and hormonal replacement therapy 

(HRT)).  In pregnancy, a number of clotting factors (I, II, VII, VIII, IX and XII) are 

increased, and fibrinolysis is inhibited, which increases the risk of VTE.(59)  In a case-

control of pregnant women 44% with VTE had the FVL mutation (heterozygous) 
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compared to 8% without VTE (relative risk (RR) 9; 95% CI 5-17).(107)  In the same 

study, 17% of pregnant women with VTE had the prothrombin (G20210A) gene 

mutation compared to 1% without (RR 15; 95% CI 4-53).(107)  The risk of VTE is also 

increased in pre-menopausal women with the FVL mutation that are taking oestrogen 

containing OCPs (RR 35; 95% CI 8-154) and post-menopausal women with the FVL 

mutation taking oestrogen containing HRT (RR 7; 95% CI 3-14).(108, 109)  However, 

whilst the relative risks are synergistically increased by the combination of heritable 

thrombophilias and pregnancy or oestrogen containing medications, the absolute risk 

remains low, particularly in the latter.(110) 

 

Thrombophilia VTE relative risk 

FVL, heterozygous 3-5 

FVL, homozygous 10-50 

Prothrombin (G20210A) gene mutation 2-4 

Antithrombin deficiency 10-20 

Protein C deficiency 5-15 

Protein S deficiency 10 

 

Table 1.3  Risk of VTE with different hereditary thrombophilias 

The relative risk of VTE with different heritable thrombophilias.  Heterozygous is the 

carriage of a mutation of only one allele, whereas homozygous is of two alleles.  

FVL (Factor V Leiden). 

Adapted from (56, 103, 110)  

 

 

Studies on VTE risk factors including genetic associations, will often consider DVT 

and PE together rather than separately.  This is partly due to their co-occurrence, with 

(predominantly asymptomatic) PE occurring in 40-50% of proximal DVT, and 

(predominantly proximal and asymptomatic) DVT occurring in 70% of patients with 

PE.(111)  Therefore, to define isolated DVT (DVT without PE) or isolated PE (PE 

without DVT) for comparative studies would require imaging of both the lower limbs 

(e.g. doppler ultrasonography) and lungs (e.g. CTPA), which is not routinely performed 

in clinical practice.  Nevertheless, differential risk factors between DVT and PE have 
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been observed.  The FVL mutation occurs more frequently in  DVT  than PE, which is 

termed the factor V Leiden paradox.(112)  A meta-analysis identified significantly more 

patients with DVT had the FVL mutation compared to those with isolated PE (OR 2.39; 

95% CI 2.08-2.75).(113)  The mechanism by which the FVL mutation exerts its 

increased risk on DVT is unclear.(112)  

 

Common variant genetic associations in venous thromboembolism that have been 

discovered by genome-wide associations studies are described in Section 1.5.5. 

 

1.4.2  Venous thromboembolism and ABO 

Non-O blood group is the most important population attributable genetic risk factor for 

VTE, as it occurs more commonly than other heritable thrombophilias, despite 

conferring a lower individual risk (OR 2.09; 95% CI 1.83-2.38).(114)  In a US study, 

non-O blood group occurred in 64.2% of VTE cases (n=492) compared with 52.5% of 

controls (n=1008).(115)  Furthermore, the combination of non-O blood group and a 

thrombophilia has a supra-additive effect on VTE risk.(115)  Interestingly, non-O blood 

groups are more common in recurrent and idiopathic VTE, which are also risk factors 

for progression from acute PE to CTEPH.(116, 117)   

 

The ABO groups vary by the ABH(O) antigens (oligosaccharide residues) and are 

found on red blood cells, platelets and VWF, a protein involved in haemostasis and 

described in Section 1.6.(118)  The ABO gene encodes glycosyltransferase enzymes 

that transfer specific monosaccharides to the H precursor antigen.(119)  Individuals 

with blood groups A and B have terminal sugar moieties consisting of N-
acetylgalactosamine and d-galactose, respectively, whereas those with blood group 

O lack transferase enzyme activity and therefore only express the H antigen.(120)  

Whilst the exact mechanism(s) linking ABO antigen group to thrombotic risk has not 

been defined, it may be mediated by VWF levels, which are 25% lower in O group 

individuals.(121) 

 

1.5  Genome-wide association studies 

 
Performing a genome-wide association study in CTEPH is an opportunity to 

investigate genetic associations that may inform disease pathobiology.  GWAS is a 
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method of examining genetic variants across the genome of individuals to identify 

associations with a disease or trait.  This section will provide an overview of the 

background, methods, statistics and challenges of GWAS. 

 

1.5.1  GWAS background 

GWAS has been transformative in identifying genetic variants associated with multiple 

common traits.(122)  Common (polygenic) traits are caused  by a combination of many 

genetic and environmental factors in contrast to Mendelian single-gene 

disorders.(123) 

 

In contrast to linkage studies in highly penetrant genetic conditions that identify 

causative variants, GWASs have found many genetic variants with relatively small 

effect sizes that predispose to disease.(124)  Family-based linkage studies utilise 

family pedigrees with the disease of interest together with genetic markers to identify 

associated genes based on the concept that chromosomal regions co-segregate in 

families.(93)  However, linkage analysis is limited by low power for complex traits that 

are associated with multiple genes and the challenge in narrowing down causative 

variants from large co-segregated chromosomal regions. (93, 124)  GWAS 

predominantly investigate the genetic variation in single nucleotide polymorphisms 

(SNPs), which are single base pair changes in the DNA sequence.(93)  There are over 

80 million SNPs in the human genome with an individual’s genome varying from a 

reference genome by 4-5 million SNPs. (125)  Common variants have traditionally 

been defined as those with a minor allele frequency (MAF; for a biallelic SNP the 

frequency of the second most common allele) > 5%, low-frequency variants are those 

with a MAF 1-5% and rare variants have a MAF <1%.(126)  More recently, common 

variants have been defined as those with a MAF ≥1% and rare variants having a MAF 

<1%, although as allele frequencies are continuous the cut-offs are arbitrary.(122)  As 

individual GWAS associations are predominately common SNPs with modest effect 

sizes, they are neither necessary nor sufficient to cause disease.(124)  The concept 

that common diseases have a different genetic architecture to rare Mendelian and are 

associated with common variants is termed the common-variant common disease 

hypothesis.(127) 
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The first GWAS was performed in 2005 and identified a common genetic variant  in 

the complement factor H gene in age-related macular degeneration (AMD).(128)  

There have subsequently been over 5000 GWAS performed for over 70,000 variant-

trait associations (Figure 1.9).(129)  Whilst the first GWAS included only 96 cases 

with AMD, modern GWAS from the largest consortia have included hundreds of 

thousands of cases and a continued increase in case numbers is likely.(128, 130)  

GWAS is superior to candidate gene approaches (for example a study of genes 

associated with thrombosis and fibrinolysis), which are limited by widespread false-

positive associations and the inability to evaluate unknown (a priori) genetic 

variants.(131)  With a hypothesis free approach, GWAS has identified multiple genes 

that were not previously implicated in disease pathogenesis and variants in genomic 

regions containing no genes (intergenic).(132)  The transition from candidate gene 

studies to GWAS for the investigation of complex diseases was possible due to the 

reduced cost of SNP genotyping over the last two decades.(124) 

 

GWAS has many different applications in addition to identifying SNP-trait associations 

that can inform disease pathobiology.  The proliferation of international consortia and 

biobanks (i.e. DeCODE, UK Biobank) have enabled larger GWAS to be performed 

that have identified an increasing number of common variant associations.(133, 134)  

These risk variants can be combined into polygenic risk scores together with traditional 

environmental risk factors to predict an individual’s disease susceptibility, a tenet of 

personalised medicine.(135)  GWAS can inform clinical treatments by identifying 

genetic variants that are associated with efficacy, drug metabolism and side 

effects.(93)  Another benefit of large biobank cohorts is they contain a number of 

diseases and traits that enables genetic variants of interest to be studied across 

different phenotypes in phenome-wide association studies (PheWAS).(136)  PheWAS 

has shown that many individual genetic variants are associated with multiple traits, 

which is termed pleiotropy.(137)  Risk variants identified by GWAS can be used as 

genetic instruments in Mendelian randomisation studies, the process of investigating 

causal relationships between potentially modifiable risk factors (e.g. CRP) and health  

outcomes (e.g. coronary artery disease).(137-139)  An overview of the different 

genetic applications for GWAS is summarised in Table 1.4. 
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Figure 1.9 GWAS SNP-trait associations have increased over time 
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Data for the GWAS associations was from the GWAS Catalog.(140)  SNPs were included if they had a p<5x10-8 and were not in 

linkage disequilibrium (LD; see Section 1.5.2) (r2 < 0.5) with another associated SNP (if they were in LD, the SNP with the lowest p-

value was retained).  Only the top three traits and diseases with the largest number of SNP associations for each year have been 

included to improve visualisation.  

Figure from (122) 
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Analysis 
 

Purpose 
GWAS  
 

Detecting trait-SNP associations 

Estimation of SNP 

heritability 
 

Evaluation of genetic architecture  

Population differences in 

allele frequencies 

  

Reconstructing human population history and 

detecting evidence of natural selection  

Polygenic risk scores  
 

Detecting pleiotropy; validating GWAS discoveries  

Mendelian randomization 
 

Testing causal relationships  

Trait GWAS with -omics 

GWAS 
 

Fine-mapping; detecting target genes and functional 

consequence of genetic variant  

 

Table 1.4 GWAS genetic applications 
SNP heritability involves estimating the proportion of genetic variation captured by 

common SNPs.  Pleiotropy is the concept that individual genetic variants are 

associated with multiple traits.  Fine-mapping is discussed further in Section 1.5.3. 

In addition, GWASs have a role in estimating genetic correlation to detect pleiotropy, 

detect copy number variant (CNV) – trait associations, and quantify the genome 

architecture by assessing linkage disequilibrium (Section 1.5.4)  

Table adapted from (122) 

 
 
1.5.2  GWAS methods 
Since the understanding that candidate gene studies produced many false positive 

associations, GWAS methodology has been developed to be systematic and robust 

with a focus on quality control and reducing bias.  The stages include sample 

preparation, microarray clustering and genotyping of SNPs, sample and SNP quality 

control, statistical analysis and validation/replication of results.  Additional steps 

include genetic imputation and meta-analysis, which are discussed in Section 1.5.3.   

 

Genomic DNA is extracted from individual samples (e.g. whole blood) and quantitively 

assessed to ensure sufficient DNA for genotyping.  SNPs are genotyped using high-

throughput microarrays, whereby wells are coated with an allele-specific 
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oligonucleotide probe (short DNA sequence) that binds with sample DNA fragments 

and is then labelled with fluorescent dyes to produce an intensity signal.(141)  The 

signals are detected and then converted to genotypes (Figure 1.10).  SNP microarrays 

vary in the number of SNPs they genotype, which is usually 200,000 to over 2 

million.(122)  Whilst GWASs still predominantly use SNP microarrays, there is 

increased utilization of SNPs from whole genome sequencing for association testing 

and this is likely to increase in the future.(122) 

 

Following genotype calling, comprehensive quality control is undertaken for individual 

samples and SNPs followed by any necessary exclusions to reduce potential 

confounding.(142)  The quality control steps are further explained in detail in Chapter 
2.  In a case control study design, the different allele frequencies can then be 

compared between disease cases and healthy controls or a disease comparator 

group.  This should then be followed by a confirmation of associated SNP-traits in a 

separate validation cohort.(143)  An overview of the GWAS process is shown in 

Figure 1.11. 
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Figure 1.10 SNP microarray overview 
Genomic DNA (gDNA) is amplified (left panel), followed by DNA fragmentation and 

direct hybridisation of sample DNA with microarray (in this example “BeadChip”) 

bound oligonucleotides (short DNA sequences) (middle panel) and finally fluorescent 

staining to produce an intensity signal (red or green) that is computationally analysed 

to provide genotype calls (right panel). 

Figure reproduced with permission of the © Illumina from Illumina Infinium 2 assay 

schema, (https://dnatech.genomecenter.ucdavis.edu/infinium-assay/; accessed 

22/1/20) 

 

 



   
 

 32 

 
 

Figure 1.11 GWAS overview 
A SNPs across the genome are microarrayed for each individual (small segment of 

chromosome 9 displayed) 

B In a case-control GWAS, each SNP (SNP1, SNP2, …, SNPx) is compared between 

cases and controls.  For a biallelic hypothetic SNP there would be two alleles (A/a) 

and 3 potential genotypes (AA (common homozygote), Aa (heterozygote), aa (variant 

homozygote)).  The statistical comparison results in a p-value for each SNP based on 

the allele frequencies between cases and controls.  

C Following quality control steps, the SNP associations (p-values) are visualised on 

the y-axis of a Manhattan plot, with SNP genomic position plotted on the x-axis 

Figure reproduced with permission of the © Massachusetts Medical Society, from 

(123) 
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1.5.3  GWAS association testing and statistics 
GWASs are able to capture variation across the whole genome without directly 

measuring all SNPs due to linkage disequilibrium (LD), which is the non-random 

association of alleles at two or more loci (Figure 1.12).(144)  Alleles at flanking loci 

tend to be inherited together, with specific combinations termed 

haplotypes.(145)  Whilst a single genotyped (tag) SNP is unlikely to have direct 

functional (causal) effects, it may be in LD with common variants that do, thus acting 

as a proxy marker.(146)  GWASs rely on LD to infer SNP associations without 

genotyping them all individually.  As genetic variation and associations are affected by 

ancestry, samples with different ancestry could introduce confounding from genotype 

differences between (and within) cases and controls that are related to population 

(ethnicity) differences rather than SNP-trait associations.(147, 148)  This population 

structure can result in a difference in allele frequencies due to ancestry rather than 

SNP-trait associations and needs to be accounted for in the analysis.   

 

After quality control steps and any appropriate exclusions, association testing is 

performed.  In a case-control study, allele frequencies can be statistically compared 

between cases and controls using a simple chi-squared test.  However, there are 

usually other potential confounders (including population structure) that require 

adjusting for and therefore, multivariable logistic regression (for binary case/control) 

or linear regression (for continuous traits) is performed.  GWAS case-control 

association testing results are often presented as an odds ratio for each SNP.  For a 

hypothetical biallelic SNP (A/a) the allelic OR would represent the odds of disease in 

an individual with allele A compared with the odds of disease in an individual carrying 

allele a.(145)   
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Figure 1.12 Linkage and linkage disequilibrium 
Within families, when a pair of genetic markers remains linked due to co-segregation of chromosomal regions rather than being 

separated by recombination events (red lines) then linkage has occurred (left panel).  In contrast, in populations where there are a 

number of recombination events over time, genetic markers move from linkage disequilibrium to linkage equilibrium (right panel).  

Linkage disequilibrium is the non-random association of alleles at two or more loci. 

Figure from (93) 
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In a GWAS, the number of genotyped SNPs ranges from hundreds of thousands to 

millions and a statistical test is performed on each, which creates a problem of multiple 

testing and false positive associations.(132)  This is addressed in GWAS by adjusting 

p-values for multiple testing or setting a more stringent threshold for p-value 

significance.  This is often performed using the Bonferroni correction method, whereby 

the p-value (alpha) is divided by the number of SNPs (i.e. 0.05 / 1,000,000 = p < 5x10-

8).  A p-value <5x10-8 has become the standard to denote genome-wide 

significance.(143)  GWAS association testing results are often visualised using 

Manhattan plots as shown in Figure 1.14.  In addition to a case-control GWAS, sub-

phenotypes and continuous variables within diseases and traits can be explored using 

GWAS methodology. 

 

The SNP coverage across the genome can be increased with genetic imputation, 

which is the statistical inference of unobserved genotypes that have not been directly 

measured by microarrays (Figure 1.13).(149)  The measured alleles are compared 

with reference haplotypes (i.e. HapMap) and a statistical probability is estimated for 

the unmeasured genetic variants.(149)  This allows more genetic variants to be tested 

for phenotype associations. 

 

The increased utilisation of GWAS has led to results from different studies for the same 

diseases or traits.  These results can be pooled together in a GWAS meta-analysis 

using the individual level genotype data or the summary statistics generated from 

association testing.(150)  This increases sample size and the power to detect genetic 

variants with smaller effects on disease risk.  
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Figure 1.13 Genetic imputation 
Genetic imputation is a method of predicting missing genotypes by utilising reference haplotypes 

a Genotypes of individuals (rows) for different SNPs (columns), some of which are missing and denoted by a question mark.  For a 

hypothetical biallelic SNP (A/a) there are 3 potential genotypes which are displayed as 0 (aa), 1 (aA) and 2 (AA) 

b GWAS association testing does not reveal any significant associations prior to imputation 

c Individual genotypes are phased (a statistical process of estimating haplotypes) and this process is displayed for 3 example 

individuals (the colours denote which reference haplotype they match to in d) 

d Phased haplotypes are compared to a reference panel of dense haplotypes 

e Missing genotypes are imputed using the matched reference haplotypes and this is performed statistically to take account of the 

uncertainty of each imputed SNP. 

f Repeat association testing using imputed SNPs can lead to more significant associations 

Figure from (149) 

 



   
 

 39 

1.5.4  GWAS challenges 

There was initial concern that the common variant associations that were discovered 

by GWAS did not sufficiently explain the heritability that was estimated from pedigree 

studies, which was termed “missing heritability”.(151)  In 2009, GWASs of height had 

identified ~40 SNP-trait loci which only explained 5% of the variance in height 

compared to 80% that was estimated from pedigree studies.(151, 152)  However, as 

GWAS sample sizes increased and methodology improved it was recognised that 

most “missing” heritability in common traits could be explained by a combination of 

common variants below the genome-wide statistical threshold and to a lesser extent 

rare variants with larger effect size.(153-155) 

 

A key challenge following a GWAS is to identify causal variants, which are the variants 

that have a direct or indirect functional effect on disease risk.(124)  Whilst linkage 

disequilibrium enables variation in the genome to be investigated without directly 

genotyping all SNPs it presents a challenge when associations are discovered.  As 

adjacent variants are correlated and there are more segregating variants than 

genotyped using SNP micro-arrays, any associated SNP is unlikely to be the causal 

variant and the association due to LD in the haplotype structure.(124, 137)  The 

process of narrowing down the GWAS association to a causal variant or set of variants 

is termed fine mapping.  Fine mapping is made more challenging as most GWAS 

associations are in non-coding and inter-genic genomic regions and their functional 

consequences are more difficult to interrogate than for causal variants within coding 

sequences in Mendelian diseases.(137, 156)  The genetic correlation across common 

diseases also makes fine mapping more challenging as GWAS associated variants 

can be associated with multiple traits (pleiotropy).(157)  To date, whilst limited studies 

have bridged the gap between GWAS associations and biological disease 

mechanisms, progress is now being made as methodologies improve and datasets of 

functional annotations have become available.(122) 

 

Fine mapping methods for narrowing down causative variants include increasing SNP 

density, statistical methods (e.g. Bayesian), utilising genomic functional annotations 

and trans-ethnic fine mapping.(158)  Increasing SNP density by either genetic 

imputation (Section 1.5.3) or additional genotyping is able to narrow down causal 

variants by filling in the missing genotypes between SNP micro-array markers.(158)  
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A number of statistical methods for fine-mapping have been developed including those 

utilising Bayes theorem, a probability theory based on the probability of prior 

events.(159)  The posterior probabilities generated by a GWAS Bayesian analysis can 

be used to form “credible sets” of causal variants however, statistical methods alone 

cannot determine causality.(158, 160)  Trans-ethnic fine mapping involves combining 

separate GWAS for the same trait in different populations and using the difference in 

LD structure to narrow down causative variants.(158, 161)  Most GWAS have a bias 

towards European populations and a future challenge will be to expand GWAS in other 

populations, which could uncover novel risk variants and improve trans-ethnic fine 

mapping.(137)  

 

As most GWAS associations are in non-coding and inter-genic regions of the genome, 

they may be exerting their effects by influencing transcriptional regulation of 

genes.(156)  In such cases, linking the GWAS association to a biological disease 

mechanism requires an understanding of the role of non-coding variants in 

transcriptional regulation.  Functions assigned to non-coding variants (annotation) 

include promoters and enhancers (of transcription), transcription factor binding sites, 

chromatin accessibility, histone modification and DNase hypersensitivity sites.(158, 

162)  Genomic annotation has been possible due to the development of genome-wide 

databases of functional activity including the Encyclopaedia of DNA Elements 

(ENCODE), Roadmap Epigenomics Project and the Genotype-Tissue Expression 

(GTEx) project which have mapped regulatory elements across multiple cell types and 

tissues.(137, 163-165)  GWAS associations can be fine-mapped by identifying non-

coding variants enriched for regulatory functions from these annotation databases, 

which can narrow down causative variants for subsequent experimental investigation 

of functional consequences.(158) 

 

1.5.5  Venous thromboembolism GWASs 

Prior to genome-wide associations studies, most VTE genetic risk factors were in 

genes associated with coagulation and fibrinolysis. Whilst there is strong heritability 

for VTE, identified genetic risk factors occur in only half of people, suggesting 

additional genetic associations.(70) 
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Additional VTE genetic risk factors have been described in several genome-wide 

association studies (GWAS), a method of identifying common single nucleotide 

polymorphisms (SNPs) associated with disease (Section 1.5).  A meta-analysis of 

7,507 VTE cases from 12 case-control studies and testing ~7 million SNPs, reported 

9 significant loci.  Of these loci, 6 were involved in the haemostasis / fibrinolytic 

pathways (ABO, F2, F5, F11, FGG, PROCR genes) and 3 novel loci (TSPAN15, 

SLC44A2 and ZFPM2) were identified (Figure 1.14).(70)  The ZFPM2 locus was not 

replicated in an additional 3009 VTE subjects, but has been identified in a subsequent 

separate GWAS.(166)  The function of the SLC44A2 and TSPAN15 loci is unclear, 

but the locus in SLC44A2 may be a shared genetic risk factor for coronary artery 

disease (CAD) and stroke.(167)  Other studies have suggested that currently, ABO is 

the only shared genetic risk factor between VTE and CAD.(168)  Epidemiological 

studies have identified older age, smoking and increasing body mass index (BMI) as 

shared risk factors between VTE and CAD.(169)   

 

 
Figure 1.14  Manhattan plot of VTE associated genetic loci 

7,507 VTE cases, 52,632 control subjects and 6,751,884 SNPs in the discovery 

cohort.  P-values (-log10) are plotted against genomic position, with those above the 

dotted line (Bonferroni p-value threshold = 5x10-8) representing significant 

associations.  Figure reproduced © Elsevier, from(70). 
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Genetic studies have also been used in several other ways to investigate VTE.  An 

individual’s risk of VTE has been investigated by combining multiple genetic risk loci 

associated with VTE in polygenic risk scores with and without traditional 

epidemiological risk factors.(170, 171)  This method has the potential to be applied to 

risk stratify patients with PE for the likelihood of developing CTEPH.  This is an unmet 

clinical need where currently no validated tools exist.(172)  Genetic studies using 

Mendelian randomisation, a method to investigate putative causal relationships 

between modifiable risk factors and disease have found a causal relationship between 

obesity and VTE.(138, 166, 173) 

 

1.6  Von Willebrand Factor and ADAMTS13 

 

As described in Section 1.2.2, abnormalities in haemostasis are implicated in CTEPH 

pathobiology.(39, 174)  This includes elevated VWF, a multimeric plasma glycoprotein 

that is synthesized by vascular endothelial cells and megakaryocytes.(35, 175)  VWF 

is stored in Weibel-Palade bodies and alpha-granules, and secreted after activation of 

the endothelium or platelets.(175)  VWF plays an important role in platelet recruitment 

by mediating adhesion of platelets to the endothelium and is also a carrier protein for 

the pro-coagulant blood clotting Factor VIII.(175)   

 

VWF activity is normally regulated by ADAMTS13 (a disintegrin and metalloproteinase 

with a thrombospondin type 1 motif, member 13), a plasma protein that specifically 

cleaves the more active high molecular weight VWF multimers, thus preventing 

excessive aggregation of platelets.(176)  ADAMTS13 is predominately produced by 

hepatic stellate cells, in addition to vascular endothelial cells and 

megakaryocytes.(177)  Shear stress causes VWF to undergo a conformational 

change exposing its active binding site to platelets.(178)  This also exposes its A2 

domain, which allows ADAMTS13 to bind and cleave ultra-large VWF into smaller and 

less pro-thrombotic multimers.(178)  The mechanism by which ADAMTS13 is 

regulated has not been fully elucidated.  ADAMTS13 is unusual for coagulation 

enzymes as it is secreted in a constitutively active form and has no known endogenous 

inhibitor.(177)  Plasma proteins that inhibit other members of the ADAMTS family (i.e. 

alpha-2 macroglobulin) do not affect ADAMTS13 activity towards VWF.(177)  It has 

been proposed that ADAMTS13 is regulated at the VWF substrate level.(177) 
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1.6.1  Thrombotic thrombocytopenic purpura 

The critical role of ADAMTS13 levels in haemostasis is exemplified by thrombotic 

thrombocytopenic purpura (TTP).  TTP is a rare disease that is characterised by micro-

angiopathic haemolytic anaemia, low platelet levels (thrombocytopenia) and 

microvascular thrombi formation (Figure 1.15).(179)  TTP occurs due to severely 

reduced plasma levels of ADAMTS13 (activity levels < 10%) that is predominately a 

result of ADAMTS13 autoantibodies and less frequently due to rare ADAMTS13 

mutations.(180, 181)  The autoantibodies are mainly anti-ADAMTS13 immunoglobulin 

G (IgG) in three quarters of acute TTP that inhibit the ADAMTS13 mediated proteolysis 

of VWF.(179, 180)  TTP has a prevalence of ~10 cases per million individuals and the 

autoantibody form is more common with increasing age, in females and with black 

ethnicity.(182, 183)  Acute episodes of autoantibody TTP are associated with diseases 

that increase VWF levels including bacterial infections, other autoimmune diseases 

(e.g. systemic lupus erythematous and antiphospholipid syndrome), pregnancy, 

certain drugs and cancer.  However, in 50% no precipitating cause is identified 

(idiopathic TTP).(179)  Acute episodes of TTP can be life threatening and are treated 

with plasma exchange to remove the ADAMTS13 autoantibodies and/or 

immunosuppression, with recombinant ADAMTS13 an emerging treatment with 

ongoing clinical trials.(184-187) 

  

Congenital TTP (Upshaw-Schulman syndrome) is caused by rare ADAMTS13 

mutations and occurs in <10% of all TTP.(188)  Over 130 heterozygous and 

homozygous mutations in ADAMTS13 have been reported and inheritance is primarily 

autosomal recessive.(189, 190)  Parents of index-cases with congenital TTP do not 

have clotting abnormalities but do have mildly reduced ADAMTS13 levels consistent 

with heterozygous ADAMTS13 variant carriage.(188)  Mutations have been described 

throughout the ADAMTS13 gene, with 60% being missense mutations and the 

remaining truncating mutations (nonsense, frame-shift or splice-site mutations).(189, 

190)  These mutations cause abnormalities in ADAMTS13 synthesis, activity or 

secretion.(189)  

 



   
 

 44 

 
 

Figure 1.15  Pathophysiology of thrombotic thrombocytopenic purpura  

The top right of the figure demonstrates that under normal physiological conditions, 

ultra-large VWF is secreted from endothelial cells and cleaved by ADAMTS13 into 

smaller, less pro-thrombotic VWF multimers. 

In TTP (top left of the figure) there is a severe reduction of ADAMTS13, leading to 

much less cleavage of ultra-large VWF multimers and consequently higher circulating 

levels.  The ultra-large VWF bind to platelets that can aggregate within microvessels 

resulting in tissue ischaemia, platelet consumption (thrombocytopenia) and micro-

angiopathic haemolytic anaemia (demonstrated by schistocytes on a blood film). 

Figure reproduced © the American Society of Hematology, from (179) 

 

 

1.6.2  VWF, ADAMTS13 and thrombotic diseases 

Plasma VWF is increased in a range of thrombotic conditions including CAD, 

ischaemic stroke and VTE.(191, 192)  Conversely, plasma ADAMTS13 is modestly 

reduced in CAD and ischaemic stroke.(191, 193)  There are discordant findings in 
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patients with acute PE, with increased, no difference and decreased ADAMTS13 

reported.(194-196)  VWF and Factor VIII are known to be elevated in CTEPH and do 

not change following PEA suggesting a role in pathogenesis.(35, 37)  Furthermore, 

the VWF multimer distribution in CTEPH mirrors healthy controls indicating the 

increase in plasma levels is not just driven by ultra-large VWF.(35) However, the role 

of ADAMTS13 in CTEPH has not been investigated to date.   

 

VWF and ADAMTS13 have been correlated with d-dimers, a fibrin degradation 

product that acts as a proxy marker of hypercoagulability.(194, 197)  Elevated d-dimer 

has a well described clinical application in the diagnosis of venous thromboembolism 

and is also raised in CTEPH. (198, 199) 

 

A large proportion of the variation in VWF levels is genetically determined, with 30% 

due to ABO groups.(200)  ADAMTS13 is situated ~200 kilobases (kb) distal to ABO 

and is genetically regulated with 20% of its variance attributable to common variants 

at the ADAMTS13 locus.(201)  ADAMTS13 is not known to vary with ABO groups in 

healthy cohorts.(202)  Similar to other thrombotic diseases, the non-O blood groups 

are over-represented in CTEPH suggesting a mechanism by which VWF levels are 

increased.(68)   

 

1.7  Pilot CTEPH GWAS data 

 

Royal Papworth Hospital is the UK national referral centre for pulmonary 

endarterectomy, making it suitably placed to co-ordinate a GWAS, which requires 

large sample numbers and multi-centre collaboration.  In 2014, a pilot CTEPH GWAS 

was performed by Royal Papworth Hospital and the University of Cambridge. 

 

Provisional GWAS results from 500 patients with CTEPH and 1500 healthy controls 

identified significant associations in chromosome 9 corresponding to the ABO and 

ADAMTS13 gene loci.  These genes are associated with thrombosis and haemostasis 

which are plausible pathways involved in CTEPH pathobiology. 
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1.8  Hypotheses and Aims 

 

The hypothesis of this thesis is that chronic thromboembolic pulmonary hypertension 

is a polygenic disease with common variant genetic associations.  Furthermore, 

ADAMTS13 may be a novel genetic association in CTEPH.  Functional consequences 

that have an impact on CTEPH pathobiology may be related to genetic variant 

associations including dysregulation of the ADAMTS13-VWF axis, which will be 

investigated.   

 

The study aims are:  

 

1. To perform a genome-wide association study in chronic thromboembolic 

pulmonary hypertension 

2. To investigate the ADAMTS13-VWF axis in CTEPH patients including its 

relationship to ABO groups and ADAMTS13 genetic variants 

3. To investigate CTEPH sub-phenotype genetic associations  
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2  Materials and Methods 
 

2.1  GWAS 

 

2.1.1  Sample size calculations 

The required GWAS sample size was estimated using the GAS (Genetic Association 

Study) online power calculator 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html, accessed 

20/1/16).(203)  Multiple sample sizes were estimated by varying the SNP effect odds ratio 

(OR), minor allele frequency (MAF), power, and genetic model (additive, multiplicative, 

autosomal dominant and autosomal recessive) (Figure 2.1).  An estimated 1000 cases 

would be required for a power of 80% to detect an odds ratio of 1.75 assuming a MAF of 

0.1 for an additive genetic model.(93)  In GWAS, the underlying genetic model is unknown 

and the additive model is most commonly applied to avoid multiple testing.(145)  A higher 

sample size is required to detect associations with lower MAFs and smaller ORs. 

 

2.1.2  Study samples and participants 

The study was approved by the regional ethics committee (REC no. 08/H0304/56 and 

08/H0802/32) and all study participants provided written informed consent from their 

respective institutions.  

 

To date, 1555 self-reported Caucasian CTEPH patients have been recruited from 5 

European and 1 United States specialist pulmonary hypertension centres.  This includes: 

Bad Nauheim (Kerckhoff Heart and Lung Centre, Bad Nauheim, Germany); Papworth 

(Royal Papworth Hospital, Cambridge, UK), Imperial (Hammersmith Hospital, Imperial 

College Healthcare NHS Trust, London, UK), Leuven (KU Leuven - University of Leuven, 

Leuven, Belgium), San Diego (University of California, San Diego, USA) and Vienna 

(Medical University, Vienna, Austria).  CTEPH was diagnosed using international 

criteria.(1)  Patients were excluded if they had a PH diagnosis other than group 4 PH.  

Centres supplied all available bio-banked samples that had been consented for genomic 

studies and were suitable for DNA extraction.  CTEPH samples were compared to 1536 
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healthy Caucasian controls from the UK Blood Service (UKBS) arm of the Wellcome Trust 

Case Control Consortium (WTCCC).(204)  Shared controls were used in the original 

WTCCC study and were utilised in the current methodology as the sample numbers were 

limited by re-genotyping controls (Section 2.1.3).(204) 

 

 
 

Figure 2.1  GWAS sample size calculations 

The estimated number of cases required for a one-stage GWAS when different conditions 

are varied assuming an equal number of healthy controls:  Minor allele odds ratio (top 

axis: 1.5, 1.75, 2), MAF (minor allele frequency) (right axis: 0.1,0.25,0.4), and genetic 

models (coloured lines).  The odds ratio is the ratio of the probability that SNP minor allele 

is associated with disease to the probability that is not.(205)  The genetic models describe 

the specific relationship between the genotype and phenotype and included  additive, 
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multiplicative, recessive and dominant.  For two hypothetical alleles (a and A) at a biallelic 

SNP locus the three possible genotypes are a/a, a/A and AA.  In a multiplicative model 

the disease risk is increased n-fold for each additional risk allele (e.g. allele A), in an 

additive model n-fold for a/A and 2n-fold for A/A, in a recessive model two copies of A are 

required and in a dominant model either one or two copies of allele A for an n-fold increase 

in disease risk.(145)  The dashed red horizontal line represents a power of 80%.  

Replotted from data obtained from the online GAS power calculator.(203)   

 

 

2.1.3  DNA extraction and DNA microarray 

Genomic DNA was extracted and processed from whole blood or buffy coat fractions and 

quantified with ultraviolet-visible spectrophotometry (LGC, Hoddesdon, Herts, UK).  DNA 

was normalised to a concentration of 50ng/μL and a total volume greater than 4μl (total 

DNA > 200ng), which was required for the DNA microarray.  Genotyping was performed 

using the Illumina HumanOmniExpressExome-8 v1.2 BeadChip Microarray containing 

964,193 single-nucleotide polymorphism (SNP) markers (Kings College, London, 

UK).  The Genome Reference Consortium human genome (build 37) (GRCh37) was used 

for genomic positions.  Three batches were genotyped from 2014-16 (batch1: 2014, 

batch2: 2015, batch3: 2016).  All WTCCC controls were genotyped in batch1 using the 

same Illumina microarray chip as CTEPH cases.   

 

2.1.4  GWAS quality control 

2.1.4.1  GWAS quality control: overview 

Sample and SNP quality control (QC) steps are summarised in Figure 2.2.  This occurred 

in three broad stages: micro-array clustering and genotype calling, sample QC and 

exclusions, SNP marker QC and exclusions.  Samples and SNPs were quality controlled 

in separate micro-array batches and merged together following individual batch QC 

exclusions.  Phasing and imputation were then performed for all remaining samples.  

Following imputation, additional SNP QC was performed prior to statistical association 

testing. 
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Figure 2.2  Flow chart of GWAS analysis steps 

HWE (Hardy-Weinberg equilibrium), IBD (identity by descent), INFO (information score), 

MAF (minor allele frequency), PCA (principal component analysis), QC (quality control), 

sd (standard deviation), 1000G (1000 Genomes phase 3)  

 

 

2.1.4.2  Micro-array intensity data quality control and genotype calling 

Each batch of micro-array intensity data was normalised, clustered and genotypes were 

called independently using Illumina GenomeStudio (v2.0).(206)  Samples containing 

more than 1% missing genotypes (a marker of DNA sample quality) were removed and 

SNPs were re-clustered to remove confounding from differential SNP exclusions between 
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batches.  The rationale for this approach in relation to the study SNP exclusions is 

described in Section 3.2.2.3.2.  SNPs with poor clustering quality scores (GenTrain score 

(<0.7) or clustering separation score (<0.5)) were excluded following re-clustering.(206, 

207)  A higher score (range 0-1; both) reflects better SNP calling quality or separation. 

 

2.1.4.3  Sample quality control 

Sample quality control involved an assessment of administrative exclusions (incorrect 

phenotype), divergent ancestry, relatedness, discordant sex and outlying heterozygosity.  

Sample genotype missingness exclusions were performed at the genotype calling stage 

(Section 2.1.4.2).  The sample and SNP QC steps were performed using PLINK (v1.9 

beta) unless otherwise stated.(208) 

   

Samples with non-Caucasian ancestry could introduce confounding from genotype 

differences between (and within) cases and controls that are related to population 

(ethnicity) differences rather than SNP-trait associations.(147)  Divergent ancestry was 

assessed using principal component analysis (PCA), a statistical dimensionality reduction 

method.  Each batch was merged with the 1000 Genomes phase 3 data using an 

intersecting set of SNPs.(209)  A robust set of independent SNPs (n=30,609) was used 

for PCA using the following criteria: genotype missingness < 5%, SNPs in Hardy-

Weinberg equilibrium (HWE) (p>1x10-5), minor allele frequency (MAF) > 5%, independent 

SNPs (pairwise R2 < 0.2).  Furthermore, SNPs in several regions with long-range linkage 

disequilibrium (LD) were excluded.(210)  PCA against all populations in the 1000 

Genomes data was conducted using the `SNPRelate` R package, and samples not 

clustering with European populations were excluded.(211)  A second PCA was then 

performed with the remaining samples against European 1000 Genome reference 

samples only, and outlying samples were also excluded.  Thresholds were set by visual 

inspection of plots.   

 

Related samples can introduce confounding due to genotype association within families 

rather than SNP-trait associations.  Sample relatedness (including duplicates) was 

assessed by calculating the proportion of shared alleles at genotyped SNPs for sample 
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pairs.  This was achieved by estimating the parameter identity by descent (IBD) from the 

calculated parameter identity by state (IBS) in PLINK.(208)  To generate the pairwise IBD 

matrix an independent set of SNPs (n=228,646) was generated by LD pruning after 

removal of long-distance high LD regions.(210)  LD was calculated for each SNP pair 

within a window of 50 SNPs and one of the pair was removed if high LD was present 

(R2>0.2), before the window was shifted by 5 SNPs and the process repeated.  Samples 

were then excluded if they had a proportion of IBD score (PI_HAT > 0.1875), which 

approximates to a threshold between a 2nd and 3rd degree relative.(212)   

 

Additionally, individual samples were removed due to outlying heterozygosity (3 standard 

deviations from the mean) and missing genotypes (>1%; described in Section 2.1.4.2), 

both markers of DNA sample quality.  Sex discordance between centre-reported sex and 

genotype determined sex was assessed from X-chromosome homozygosity rates but no 

samples were excluded on this basis (see Section 3.2.2.2 for rationale).   

 

2.1.4.4  SNP quality control 

Following sample QC exclusions, SNP markers were removed due to missing genotypes 

(>1%), deviation from HWE (p < 1x10-6), which was only assessed in healthy control 

samples, differential missingness rate between cases and controls (p < 1x10-5) and multi-

allelic SNPs.  Hardy-Weinberg assumptions are used to estimate allele and genotype 

frequencies between generations.  Deviation from HWE can signify population 

stratification, genotyping errors or association with the study trait, and hence its 

application to study controls.(213) 

 

The 3 batches were then merged using an intersecting set of SNPs and further PCA was 

performed using the robust SNP set previously used for divergent ancestry QC, to check 

for batch and recruiting centre effects. 

 

2.1.5  Phasing, genetic imputation and post-imputation SNP QC  

After quality control exclusions there were 1250 CTEPH cases, 1492 healthy controls and 

915,999 SNPs.  Phasing and imputation was performed using EAGLE 2 (v2.0.5) and 
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positional Burrows–Wheeler transform (PBWT) software via the Sanger imputation 

service (https://imputation.sanger.ac.uk, accessed 17/1/17).(214, 215)  The reference 

panel was the Haplotype Reference Consortium (release 1.1), containing ~39 million 

biallelic SNPs from 32,470 individuals.(216)  Following imputation, SNPs were excluded 

if they had a low minor allele frequency (<1%) or if they were poorly imputed (INFO 

(information) score < 0.5), with 7,675,738 SNPs remaining for association testing.   

 

2.1.6  Association testing 

Case-control association testing was performed using the post-imputation allelic dosages 

(scale 0-2).  Logistic regression assuming an additive genetic model was applied to each 

SNP marker using PLINK software.  Models were adjusted for covariates, namely 

ancestry informative principal components described in Section 2.1.4.3.  The final models 

used for case-control association testing in the discovery, validation and joint (discovery 

and validation combined) cohorts used 5 principal components as covariates.  Within-

case CTEPH analyses also included genotyping batch or recruiting centre as covariates 

in addition to 5 principal components to investigate any additional confounding. 

 

Genomic inflation was estimated using the parameter lambda, which was calculated by 

comparing the median of observed and expected test statistics.(145)  Genomic inflation 

values above 1 can indicate population stratification or genotyping errors.(145)  To 

identify independent and secondary signals at associated loci, conditional analysis was 

performed.  Association testing was repeated and conditioned on the allelic dosage of the 

peak (most significant) SNP in that genomic region.  The micro-array intensity clusters for 

the peak SNP (present pre-imputation) in the associated loci were re-examined to confirm 

adequate genotyping. 

 

2.1.7  Linkage disequilibrium 

Linkage disequilibrium was quantified within the study dataset using PLINK and for a 

reference dataset (1000 Genomes project data: all European (non-Finnish) populations) 

using LDlink (https://analysistools.nci.nih.gov/LDlink/, accessed 22/01/2018).(217)  The 
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degree of LD was assessed with the parameters R2 (which takes into account the 

correlation of SNPs and the allele frequency) and D’ (prime).(144) 

 

2.1.8  Genetic ABO groups 

The ABO groups A1, A2, B and O were reconstructed using haplotypes from phased data 

and a described list of tagging ABO SNPs (Table 2.1).  The ABO groups are described 

in Section 1.4.2 and in addition, the A group can be divided into A1 and A2 subgroups 

which have very similar chemical structures, with the A1 group expressing more A 

epitopes (the part of the antigen molecule that the antibody attaches to) and having 

greater antigenicity.(218)  This resulted in 10 groups (A1A1, A1A2, A1B, A1O, A2A2, 

A2B, A2O, BB, BO, OO), from which blood groups A, B, AB and O were inferred.  

 

The tagging SNPs used to reconstruct the genetic ABO groups A1, A2, B and O from 

phased haplotypes were: rs8176746, rs8176704, rs687289 and rs507666.(219)  The 

genetic ABO groups were compared to the available ABO antigen groups measured by 

serology (n=1490 healthy control group) to confirm the accuracy of this method (98% 

concordance).  There were 22 healthy controls and 32 cases that were not able to be 

classified with an ABO group.  The 10 genetic ABO groups were converted into A, B, AB 

and O groups using the following criteria: A = A1A1, A1A2, A2A2, A1O, A2O; B = BB, 

BO; AB = A1B, A2B; O = OO. 

   

Genetic ABO group Haplotype  

 rs8176746  rs8176704  rs687289  rs507666  

A1  C G  A  A  

A2  C A  A  G  

B  A G  A  G  

O  C G  G  G  

 

Table 2.1  Haplotypes used to reconstruct genetic ABO groups 

Haplotypes from 4 “tagging” SNPs from phased genotypes were used to assign genetic 

ABO groups.  Table adapted from Paré et al. (219) 



   
 

 55 

2.1.9  Fine mapping 

Fine mapping was performed to narrow down the associated SNPs and identify a causal 

variant or a set of variants.(158)  Statistical analysis and genomic functional annotations 

were used in the fine-mapping process.  

 

2.1.9.1  99% credible set 

Association testing was performed by Bayesian analysis using SNPtest (v2.5.4-beta3) 

assuming an additive model with 5 ancestry informative principal components as 

covariates and using the default priors.(220)  The posterior probabilities were then 

calculated by dividing the Bayes factor for each SNP (within a 200kb region of the peak 

associated SNP) by the sum of all Bayes factors for that region.  Posterior probabilities 

were ranked in descending order and the SNPs included in the 99% cumulative sum 

comprised the 99% credible set.(158)  

 

2.1.9.2 Genomic functional annotations 

Genomic functional annotations for the associated loci were investigated using the 

fumaGWAS (Functional mapping and annotation of GWAS) tool (v1.3.2; 

http://fuma.ctglab.nl/).(221)  Summary statistics from GWAS association testing were 

uploaded to the online platform and SNPs were annotated for biological function.  SNPs 

were then mapped to genes based on genomic proximity, cis-expression quantitative trait 

loci (eQTL) interactions and 3D chromatin interactions.(221)  Data from 18 biological 

repositories was used in these processes including: ANNOVAR (222), Combined 

Annotation Dependent Depletion (CADD) score (223), RegulomeDB (224), 15-core 

chromatin state (225), Genotype-Tissue Expression (GTEx)(165), Roadmap 

Epigenomics Project (164) and Encyclopaedia of DNA Elements (ENCODE) (163).  For 

the fumaGWAS analyses, GTEx (v7) incorporated data from 53 tissue types (including 

systemic arterial and left heart samples) and ENCODE utilised 127 cell/tissue types, but 

no resources included pulmonary vascular endothelial or right heart samples.(221) 

 

Independently associated SNPs and correlated SNPs are linked to the GWAS catalog to 

facilitate interrogation of other trait-SNP associations in the literature.(140)  
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Association testing was also performed at the gene level using MAGMA (Multi-marker 

Analysis of GenoMic Annotation) via fumaGWAS.(226)  Gene-based analysis may 

increase power as less statistical tests are performed than when individual SNP markers 

are tested.(226)  SNPs were mapped to 19,311 protein coding genes and then multiple 

regression (SNP-wise model) was performed with the summary statistics data from the 

combined GWAS analysis using MAGMA.(226)  Gene-set analysis was then performed 

utilising the gene-based p-values for 4728 curated gene sets and 6166 gene ontology 

(GO) terms from the Molecular Signatures Database (MsigDB v5.2).(221, 227)  

 

2.2  ADAMTS13-VWF axis 

 

2.2.1  Study samples and participants 

The study was performed with the same regional ethics committee approval as described 

for the GWAS (REC no. 08/H0304/56 and 08/H0802/32).  All study participants provided 

written informed consent from their respective institutions.  

 

All consecutive CTEPH patients from the national PEA centre (Royal Papworth Hospital, 

United Kingdom (UK)) with available plasma samples (August 2013-December 2016) 

(Figure 2.3) and genotype data were included in the study (n=208).  CTEPH was 

diagnosed using international criteria and healthy volunteers (n=68) without major 

comorbidities were used as a control group (Papworth and Hammersmith Hospital, 

UK).  CTEPH patients were excluded if they had other major contributing factors to their 

pulmonary hypertension.  Additional patient groups were recruited as disease 

comparators including chronic thromboembolic disease (CTED, n=35), idiopathic 

pulmonary arterial hypertension (IPAH, n=30) and pulmonary embolism (PE, 

n=28).  CTED was characterised by persistent pulmonary arterial thromboembolic 

occlusions without pulmonary hypertension (mean pulmonary arterial pressure 

<25mmHg) in symptomatic patients.(10)  The IPAH (Papworth, UK) and PE 

(Hammersmith, UK) groups were also diagnosed using international criteria. 
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The 208 CTEPH patients represented 40% (208/514) of all the patients diagnosed with 

CTEPH during the same period at Royal Papworth Hospital, UK.  Healthy controls and 

disease comparators were selected for the closest possible age- and sex- matching to 

the CTEPH group, and additionally all IPAH patients were matched for anticoagulation 

therapy usage but had not had a venous thromboembolism. 

 

 
 

Figure 2.3  Flow chart of study design and study participant numbers   

PEA (pulmonary endarterectomy), pQTL (protein quantitative trait loci).  The number in 

each group are shown in bold. 

 

 

2.2.2  ADAMTS13 and VWF plasma concentrations 

Plasma ethylenediaminetetraacetic acid (EDTA) samples were used to measure 

ADAMTS13 and VWF antigen (Ag) levels by enzyme-linked immunosorbent assays 

(ELISA).  Samples for the CTEPH, CTED and IPAH groups were obtained closest to the 

time of diagnosis, and pre-operatively for the CTEPH and CTED patients undergoing 

PEA.  Additionally, to assess the effect of PEA, ADAMTS13 and VWF levels were 
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measured in 22 paired post-PEA samples taken at a follow-up time within 1 year of 

surgery.  The PE group were sampled from a specialist PE follow-up service 

(Hammersmith, UK) at a median of 220 days following an acute PE. 

 

2.2.2.1  ADAMTS13 plasma concentration 

ADAMTS13 plasma antigen levels were quantified using a polyclonal rabbit anti-

ADAMTS13 antibody (5μg/mL, anti-TSP2–4 depleted) as previously described.(202, 

212)  The antibody was immobilised in 96-well microplates (Nunc, Rochester, USA) in 

50mM carbonate buffer, pH 9.6 at 4°C overnight.  Washes were performed with 

phosphate buffered saline (PBS) + 0.1% Tween-20 (PBST), and this was repeated 

between each step.  Wells were blocked with 1% bovine serum albumin (BSA) in PBS for 

1 hour.  Plasma samples were diluted 1:20 using 1% BSA in PBS and added to the wells 

in duplicate for 2 hours.  A standard curve of 0-126 ng/mL was made with normal human 

control plasma (NHP) (Technoclone, Vienna, Austria) that had known concentrations of 

ADAMTS13.(202)  Bound ADAMTS13 was detected with biotinylated anti-TSP2–4 

polyclonal antibody for 2 hours followed by incubation of wells with streptavidin-

horseradish peroxidase (HRP) (GE Healthcare, UK) for 1 hour.  Plates were developed 

with a peroxidase substrate (o-phenylenediamine dihydrochloride (OPD); Sigma-Aldrich, 

Darmstadt, Germany) for 5 minutes and the reaction was stopped with 65μL/well of 2.5M 

H2SO.  Absorbance was read at 492nm (FLUOstar Omega plate reader, BMG 

Labtech).  ADAMTS13 concentrations were obtained by interpolating from the standards 

fitted with a four-parameter logistic curve.  The intra- and inter-assay coefficients of 

variation were 8 and 12% respectively. 

 

To enable a comparison with other published thrombotic diseases, each ADAMTS13 

plasma antigen level was divided by the median of the healthy control group and 

expressed as a percentage.  The CTEPH group was then divided into quartiles of the 

ADAMTS13 distribution of the healthy control group.  The quartile thresholds were used 

to stratify CTEPH patients and healthy controls into groups using a combination of 

ADAMTS13 and VWF levels.  Odds ratios for the different groups were then assessed 

using logistic regression adjusted for age, sex, ethnicity and experimental batch. 



   
 

 59 

2.2.2.2  VWF plasma concentration 

VWF plasma antigen levels were quantified in a similar well-described manner using a 

polyclonal rabbit anti-VWF antibody (3.1 μg/mL; Dako, Santa Clara, USA).(212)  After 

overnight antibody immobilisation and washes, wells were blocked with 1% BSA in PBST 

for 1 hour.  Plasma samples were diluted 1:400 in PBST 1% BSA and a standard curve 

of 0-125 ng/L was made with NHP that had a known concentration of VWF.(202)  VWF 

was detected with 1.1μg/mL Polyclonal Rabbit Anti-Human VWF/HRP (Dako) followed by 

plate development with OPD for 3 minutes.  The intra- and inter-assay coefficients of 

variation were 5 and 8% respectively. 

 

2.2.2.3  Replicate sample measurements 

The ADAMTS13 and VWF ELISAs were performed for all groups in 2016 

(batch1).  Additional CTEPH samples (n=115) were included in 2017 (batch2) and 

replicates (ADAMTS13: n=24, VWF: n=12) were used to enable the correction of any 

batch effects.  This was achieved by adjusting batch2 values by the median of the 

differences if replicates were significantly different between the two batches.  If batch 

adjustment was applied, the validity of this approach was assessed with a multivariable 

linear model using the uncorrected ADAMTS13 or VWF values.  

 

2.2.3  ADAMTS13 activity, D-dimer and VWF multimeric size 

Additional experiments were performed on a subset of the CTEPH (n=23) and healthy 

control (n=14) groups to identify potential mechanisms for any dysregulation of the 

ADAMTS13-VWF axis.  Plasma lithium heparin samples were used to measure 

ADAMTS13 activity and D-dimer concentrations.  The CTEPH sample subset were those 

with the lowest ADAMTS13 antigen levels (below the first quartile of the CTEPH group) 

and the healthy controls were those with ADAMTS13 antigen levels closest to the median 

of the control group.  An estimate of VWF multimeric size was made by measuring VWF 

collagen binding (VWF:CBA) and comparing this with VWF antigen levels in the CTEPH 

(n=21) samples with the highest VWF antigen concentrations (above the third quartile of 

the CTEPH group) and the same healthy control subset. 
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ADAMTS13 activity was measured with a fluorescence resonance energy transfer 

(FRET) assay.  D-Dimers were quantified by ELISA and VWF multimeric size was 

assessed using a collagen binding assay. 

 

2.2.3.1  ADAMTS13 activity 

ADAMTS13 activity was measured with a fluorescence resonance energy transfer 

(FRET) assay using a short synthetic VWF peptide (VWF73: PeptaNova, Sandhausen, 

Germany) containing the ADAMTS13 cleavage site for VWF.(228)  Plasma samples and 

NHP were diluted to 1:10 in reaction buffer (5 mM Bis-Tris, 25 mM CaCl2 and 0.005% 

Tween-20 at pH 6.0) in 96-well plates (Nunc, Rochester, USA).  FRETS-VWF73 

substrate (an equal volume of 4μM) was added and fluorescence was recorded at 1-

minute intervals for 1 hour (FLUOstar Omega plate reader) to monitor substrate 

proteolysis.  Assays were repeated 3 times to obtain the mean fluorescence and 

ADAMTS13 activity was normalised to NHP, which was defined as 100%. 

 

2.2.3.2  D-Dimer plasma levels 

Plasma D-Dimer levels were quantified using an ELISA kit (ab196269, abcam, 

Cambridge, USA) according to the manufacturer’s instructions.  Plasma lithium heparin 

samples from CTEPH patients and healthy controls were used at a dilution of 1:1000. 

 

2.2.3.3  VWF multimeric size 

VWF multimeric size was evaluated with a collagen binding assay (CBA) which utilises 

the increased collagen binding of higher multimeric VWF.  Human type III placental 

collagen (5μg/mL) was immobilised in 96-well microplates plates (Nunc) in 50mM 

carbonate buffer, pH 9.6 at 4°C overnight.  After washes with PBST, wells were blocked 

with 2% BSA in PBST for 1 hour.  Plasma lithium heparin samples were diluted 1:100 in 

PBST 1% BSA and a standard curve of 0-1000ng/mL was made with NHP.  VWF was 

detected with 1.1μg/mL polyclonal rabbit anti-human VWF/HRP (Dako) followed by plate 

development with OPD for 3 minutes.  Collagen binding is reported as a ratio over the 

total plasma VWF antigen. 
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2.2.4  Immunohistochemistry 

ADAMTS13 is primarily secreted by the liver and is also produced by vascular endothelial 

cells however, its expression in pulmonary arteries in health and disease are 

unclear.(177)  ADAMTS13 expression in the pulmonary arteries and PEA specimens was 

assessed with immunohistochemistry.  Tissue sections from peripheral regions of 

explanted lungs of patients with CTEPH undergoing transplantation (n=6) were compared 

to tumour-free sections from lung cancer patients undergoing surgical lung resection 

(n=6).  Additionally, ADAMTS13 expression was assessed in the chronic thromboembolic 

material removed during PEA surgery (n=5).  Tissue sections used from explanted 

CTEPH lungs, controls (tumour-free lung cancer resections sections) and PEAs were a 

random and representative sample. 

 

Immunohistochemistry is a method for investigating cell or tissue antigens using specific 

antibodies that can be visualised through staining.(229)  The stages of 

immunohistochemistry include specimen preparation and fixation, antigen retrieval, 

antibody incubation and washing and counterstaining.(229, 230)  Antigen-antibody 

interactions are identified by immunostaining (Figure 2.4). 

 

Tissue sections were mounted onto charged adhesive microscope slides (CellPath, UK) 

and dried overnight at 50ºC. Antigen retrieval was performed using a low pH buffer in an 

automated antigen retrieval system (PT-module, DakoCytomation, UK) following the 

manufacturers protocol.  Primary antibodies raised against polyclonal rabbit anti-

ADAMTS13 (1:50 dilution; ab71550, Abcam, USA) and polyclonal rabbit anti-human VWF 

(1:2000 dilution; ab9378, Abcam, USA) were labelled using dextran-coupled peroxidase 

(Envision, DakoCytomation, UK), visualised with 3,3’-diaminobenzidine hydrochloride 

(DAB) to create a brown-coloured reaction product, counterstained with haematoxylin and 

examined by light microscopy. 
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Figure 2.4 Indirect immunohistochemistry using a polymer-based detection system 

Immunohistochemistry can be performed using a number of different methods and this is 

an example of indirect immunohistochemistry that utilises secondary antibodies.  The cell 

(antigen) is exposed to a primary antibody (purple), which binds to a secondary antibody 

(brown) that is coupled to the enzyme horseradish peroxidase (HRP). This catalyses the 

DAB (diaminobenzidine) substrate to produce a colour change. 

Figure from (230) 

 

 

2.2.5  Protein quantitative trait loci 

208 CTEPH patients with ADAMTS13 / VWF antigen levels and 28 patients with CTED 

were also included in the CTEPH GWAS.  Genotypes were available for 207 (185 CTEPH; 

22 CTED) after GWAS quality control exclusions.  These patients were included in the 

analysis comparing ADAMTS13 / VWF protein levels to genetic ABO group and the 

protein quantitative trait loci (pQTL) analysis.  Matched genotypes and ADAMTS13 / VWF 

antigen levels were not available for the healthy control, IPAH or PE groups.  

 

Associations between the post-imputation allelic dosages of SNPs in the ADAMTS13 

gene ± 40kb (n=396 SNPs), and log transformed ADAMTS13 protein levels (the 
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dependent variable) were evaluated using multivariable linear regression.  The model 

was adjusted for age, sex, ADAMTS13 plasma antigen experimental batch and additional 

models were adjusted for the first 5 ancestry informative principal components used in 

the GWAS analysis and VWF antigen levels.  The ADAMTS13 ± 40kb region included the 

ADAMTS13 cis-pQTLs that have previously been described.(201, 231, 232)  A Bonferroni 

p-value threshold <1.26x10-4 (0.05/396 variants) was used to denote statistical 

significance.  Partitioning of the variance explained by each variable within the models 

was performed by averaging over orders using the R package `relaimpo`.(233) 

 

2.2.6  Clinical phenotype data 

Phenotype data for the CTEPH, CTED and IPAH groups was recorded closest to the time 

of diagnosis and pre-operatively for the CTEPH and CTED patients undergoing 

PEA.  This included demographics, haemodynamics, WHO functional class, 6-minute 

walk distance (6mwd), clinical blood tests, smoking history and anticoagulation therapy 

usage.  Additionally, post-operative haemodynamics were recorded within 1 year of 

surgery for the CTEPH and CTED patients that underwent PEA, as part of routine 

care.  Haemodynamics were evaluated by right heart catherisation according to 

international guidelines and PEA was performed as previously described.(1, 7)  The PE 

group had phenotype data recorded at a follow-up visit (median 220 days) after their acute 

PE, which also included a ventilation perfusion (VQ) scan to assess residual perfusion 

defects. 

 

2.2.7  Statistical analysis 

The differences in categorical variables between groups were assessed using Chi-

squared or Fisher’s exact test, and the Cochran-Armitage test for WHO functional 

class.  The differences in continuous variables were assessed using the Mann-Whitney 

U test and the Kruskal-Wallis test.  Post-hoc pairwise diagnostic group comparisons were 

performed using Dunn’s test with false discovery rate (FDR) adjustment for multiple 

testing.  For matched values pre- and post-PEA Wilcoxon signed-rank test was used.  P-

values are reported to 3 decimal places and experimental data are reported to 3 
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significant figures.  Data averages are described as median ± interquartile range unless 

specified. 

 

Group differences in ADAMTS13 and VWF antigen levels were assessed using 

multivariable linear regression.  ADAMTS13 or VWF plasma levels (dependent variables) 

were log-transformed after assessing log-likelihoods using the Box-Cox power 

transformation.  Log-transformed ADAMTS13 and VWF were used in all multivariable 

linear regression models (Tables 4.4, 4.5, 4.8, 4.9, 4.10, 4.11 and 4.12).  The models 

were adjusted for age, sex, experimental batch (Tables 4.4, 4.5, 4.8, 4.9, 4.10, 4.11 and 

4.12) and additionally ethnicity (Tables 4.4, 4.5, 4.9 and 4.10), VWF (Tables 4.4 and 

4.12) and 5 ancestry informative principal components (Table 4.12).  The β coefficients 

and confidence intervals are presented as percentage change ((expβ-1) x 100) to enable 

clinical interpretation of the log-transformed values.  Models were checked for normality 

of residuals, homoscedasticity and multicollinearity (variance inflation factor), with 

additional checks performed using the R package `gvlma`.(234).  Interacting effects 

between the variables that were used in Tables 4.4 and 4.5 were investigated.  The 

significant (p<0.05) and informative interactions were included in additional multivariable 

linear regression models (Table 4.8). 

  

Spearman's rank correlation coefficients were used to describe associations between 

ADAMTS13 or VWF protein levels and clinical phenotypes associated with disease 

severity (pulmonary vascular resistance (PVR), 6mwd and NT-proBNP) and blood 

markers of inflammation (white cell count (WCC), C-reactive protein (CRP), neutrophil 

and lymphocyte percentages).  P-values from correlation testing were corrected 

for multiple testing using false discovery rate (FDR) adjustment.  
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2.3  CTEPH phenotype–genotype associations 

 

2.3.1  Phenotype data 

A minimal phenotype dataset for CTEPH patients was initially requested from recruiting 

centres that included age, sex and disease distribution in the pulmonary arteries 

(surgically accessible = proximal, surgically inaccessible = distal). 

 

Additional CTEPH phenotype–genotype analyses were performed by utilising deeply 

phenotyped CTEPH datasets from Royal Papworth Hospital and other centres where 

available.  A systematic approach was applied when compiling phenotypes to ensure that 

data within centres and ultimately across centres was harmonised and reproducible. 

 

2.3.1.1  Data extraction and quality control steps 

Exploratory analyses of additional CTEPH phenotype-genotype associations used data 

almost exclusively from Royal Papworth Hospital.  The data extraction and quality control 

steps described will predominately focus on this centre and is summarised in Figure 2.5. 

 

CTEPH phenotypes were extracted from separate clinical NHS databases held locally at 

Royal Papworth Hospital.  At the time of data extraction (mid-2017), the databases were 

not linked and searching directly by disease (CTEPH) was not always possible.  When a 

diagnostic search could not be performed, data was extracted using the consultant codes 

of pulmonary hypertension physicians responsible for CTEPH patient care.  The data was 

then merged with a diagnostic list and filtered to include CTEPH patients (Figure 2.5). 

 

Each dataset was quality controlled separately and an overview of the size of each 

starting dataset prior to filtering, and the number of available variables is summarised in 

Table 2.2. 
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Figure 2.5  Flow chart of phenotype data extraction and quality control 

This flow chart applied to the majority of data used for the additional phenotype-genotype 

analyses from Royal Papworth Hospital.  QC (quality control). 

 

 

Quality control steps were performed in R Markdown annotated documents to facilitate 

reproducibility.(235)  Each dataset had separate QC steps, but generally these involved: 

variable name standardisation, data harmonisation, exclusion of extreme outliers, 

exclusion using physiological rules and QC of dates.  Data harmonisation involved 

standardising variable classes (e.g. continuous, characters, factors, dates), standardising 

data groups within variables, and standardising variable units (of measurement).  Data 

was excluded (set to “NA”) if it was outside a range of biologically/physiologically possible 

values (e.g. height 5cm) or if inconsistent with physiological rules (i.e. cardiac output is 

always higher than cardiac index).  Dates were standardised and anchor dates (i.e. date 

of CTEPH diagnosis) were selected to enable the correct assignment of longitudinal data. 
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 N variables N total N individuals 

Pulmonary 

Haemodynamics 

30 3,366 2,329 

Pulmonary Function 

tests 

20 12,677 3,448 

QoL 4 17,896 4,206 

WHO FC 2 28,828 4,724 

6mwt 7 11,156 4,152 

Surgical data 90 1,581 1,578 

Clinical blood tests 26 41,744 4,157 

Survival 3 6,753 6,750 

  

Table 2.2  Summary of extracted datasets 

Summary of a selection of the extracted datasets containing CTEPH phenotypes.  

Datasets for demographics, co-morbidities, echocardiography and radiology not shown.  

The number of variables (N variables) for each dataset does not include identification 

numbers, duplicate variables or multiple dates.  The total (N total) number of tests/rows 

for each dataset is shown together with the number of unique individuals, which differ 

from N total if there are multiple tests per individual.  The surgical dataset primarily 

contained patients with CTEPH however, the other datasets were extracted by consultant 

codes or a wider diagnostic group (pulmonary hypertension).  For those datasets, the N 

total and N individuals do not just represent CTEPH patients.  Following QC, these 

datasets were filtered by CTEPH diagnosis.  Datasets varied in the time periods covered 

but generally contained data from 2007-2017.  QoL (Quality of life), WHO FU (World 

Health Organisation functional class), 6mwt (six-minute walking test).  
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After the QC steps, datasets were merged with a diagnostic list of pulmonary 

hypertension groups / subtypes and filtered for CTEPH patients.  Subsequently, 

phenotype data was filtered by patients that had been genotyped and included in the 

GWAS analysis (Section 3.2.2.2).  This enabled additional phenotype-genotype analyses 

to be performed. 

 

2.3.1.2 Data centralisation 

Data centralisation allows disparate datasets from separate tests within a centre (Table 

2.2) and from different centres to be standardised and secured for future use.  

OpenClinica is an open source clinical data capture and management platform 

(https://www.openclinica.com/) utilised for CTEPH data capture.  Electronic case report 

forms (eCRFs) were designed using OpenClinica templates (Figure 2.6).  The content of 

the eCRFs was determined by the data availability from extracted CTEPH datasets.  

Additional parameters were decided by a pulmonary hypertension expert clinical panel 

that comprised 5 pulmonary hypertension physicians and additional researchers (Table 

2.3).  The ultimate aim was to import the extracted CTEPH datasets into OpenClinica and 

have additional functionality for manual data entry that could be shared between centres. 
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Figure 2.6  Electronic case report form for right heart catheterisation data 

A section of an eCRF for right heart catheterisation (RHC) data is displayed.  The eCRF 

is dynamic with certain sections being hidden/displayed dependent on the question 

answers.  Multiple eCRFs were designed for different phenotype data (Table 2.3) 
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Phenotype domain Example eCRF 

ID Centre ID, Research ID, Genotype ID 

Demographics Sex and ethnicity 

Symptoms and risk 

factors 

CTEPH symptoms, co-morbidities, VTE risk factors, VTE 

management, CTEPH risk factors 

Diagnosis MDT diagnosis 

Investigations 6mwt, clinical blood tests, RHC, PFTs,  

Management Medications, PEA, BPA 

Outcome Mortality, longitudinal outcome data (RHC, WHO FC, QoL, 

6mwt) 

 

Table 2.3  Phenotype domains and example eCRFs for OpenClinica data capture 

The CTEPH phenotype groups and example eCRFs for each domain. 

ID (identification), VTE (venous thromboembolism), MDT (multi-disciplinary team), 6mwt 

(six-minute walking test) RHC (right heart catheterisation), PFTs (pulmonary function 

tests), PEA (pulmonary endarterectomy), BPA (balloon pulmonary angioplasty), WHO FC 

(World Health Organisation functional class), QoL (quality of life).  

 

 

2.3.2  GWAS associations 

2.3.2.1  Additional case-control analysis 

Case-control analysis was performed as described in Section 2.1.6.  The loci associated 

with VTE were examined in the CTEPH case-control GWAS to identify differential 

associations.(70)   

 

Abnormalities in haemostasis and fibrinolysis are implicated in the pathobiology of 

CTEPH.  Patients with VTE and CTEPH are treated with anticoagulation, which is 

predominantly the drug warfarin.  GWASs have identified loci associated with warfarin 

metabolism.(236)  In the CTEPH GWAS, these loci were examined to establish whether 

inadequate anticoagulation due to genetic variants related to warfarin metabolism were 

associated.  
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Post-imputation allelic dosages were converted to alleles (A, T, C, G) using PLINK. 

Genotypes for the significant case-control GWAS associations (p<5x10-8) were used in a 

logistic regression model with case/control as the dependent variable.  Genotypes for the 

lead SNP associations were also used in an analysis of CTEPH disease severity.  

Disease severity at baseline (closest to diagnosis) was assessed by right heart catheter 

haemodynamics (mPAP, CI, PVR) for the CTEPH group.  Haemodynamics were also 

stratified by genetic ABO groups (Section 2.1.8) and additional CTEPH severity 

measures (6mwd and WHO FC) were stratified by ABO group. 

 

Survival was investigated in CTEPH patients from Royal Papworth Hospital following PEA 

as this represented the largest group that received the same intervention.  Survival from 

the time of PEA was recorded until April 2018 using a centralised national resource.  Post-

PEA survival differences between genetically inferred ABO groups were assessed using 

Kaplan-Meier plots.  As multiple variables can influence post-PEA survival in CTEPH, a 

cox proportional hazards model was constructed with age, sex and pre-operative disease 

severity (mPAP) as covariables.  The cox models were checked for proportional hazards 

assumptions, influential observations and non-linearity. 

 

2.3.2.2  Additional phenotype-genotype associations 

CTEPH can occur in different pulmonary artery distributions from the central, proximal 

pulmonary arteries to the distal vasculature.  Different risk factors have been associated 

with distal and proximal CTEPH and this may reflect differing pathobiological 

mechanisms.(11, 78)  Disease distribution (proximal (operable) or distal (surgically 

inaccessible) disease) was used as the dependent variable in a logistic regression 

analysis within CTEPH cases.  SNP allelic dosages, 5 ancestry informative principal 

components (Section 2.1.4.3), age, sex and recruiting centre were included in the model 

as independent variables. 

 

Distal CTEPH and post-PEA persistent or recurrent PH have been grouped together for 

clinical drug trials.(24)  The rationale is that post-PEA PH may be due to residual distal 

disease, as the more proximal chronic thromboembolic material has been removed.  A 
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separate logistic regression analysis was performed comparing proximal CTEPH with 

distal CTEPH and post-PEA residual PH. 

 

Patients can have a comparable amount of chronic thromboembolic obstruction but 

differing degrees of pulmonary hypertension and right ventricular adaptation.(237)  

Pulmonary and right ventricular adaptation may be associated with different genetic 

associations within CTEPH.  Linear regression was performed with either mPAP, CI or 

PVR as the dependent variable and the independent variables included SNP allelic 

dosages, 5 ancestry informative principal components, age, sex and recruiting centre. 

 

2.4  Software and online tools 

 

The analyses were performed using the following software and online tools: GAS online 

power calculator(203), Genomestudio (version(v)2.0)(206), PLINK (v1.90beta)(208), 

bcftools (v1.4.1)(238), LDLink(217), Snptest (v2.5.4-beta3)(220), fumaGWAS 

(v1.3.2)(221), LocusZoom (v0.4.8)(239), gnomAD(240), Ensembl 37 (241), R 

(v3.4.3)(235) and RStudio (v1.1.414)(242).  The R packages used included: MASS(243), 

coin(244), gvlma(234), PMCMR(245), SNPRelate(211), relaimpo(233), jtools(246), 

forestmodel(247), forestplot(248), survival(249), survminer(250) and the tidyverse 

suite(251). 
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3  GWAS 
 

3.1  Introduction 

 

Investigating CTEPH aetiology and pathobiology has been challenging for several 

reasons.  Firstly, no small animal model exists that adequately recapitulates failure of 

thrombus resolution or the chronic pulmonary artery and right ventricular changes 

observed in CTEPH.  Secondly, investigating biological pathways related to 

haemostasis and fibrinolysis is confounded by anticoagulation treatment that all 

CTEPH patients receive.  Finally, CTEPH is an uncommon complication of PE 

affecting ~3% of PE survivors.  Therefore, very large cohorts of extensively 

phenotyped individuals post-PE would be required to establish the genetic and 

environmental drivers of CTEPH development. 

 

GWAS has the potential to circumvent some of the challenges to investigating the 

aetiology of CTEPH (Section 1.2.2.7).  A case-control GWAS was performed to 

compare SNP allele frequencies between CTEPH patients and healthy controls.  The 

statistically significant associations will guide subsequent investigation of CTEPH 

pathobiology.  As three-quarters of CTEPH patients have had a preceding pulmonary 

embolism the ultimate aim is to identify unique and differential genetic associations 

from resolved PE.  This may also inform and enhance clinical risk prediction post-PE. 

 

Royal Papworth Hospital and the University of Cambridge are optimally positioned to 

perform and co-ordinate this multi-centre international study.  Royal Papworth Hospital 

is the National referral centre for pulmonary endarterectomy, the surgical operation to 

remove chronic scarred blood clots from the proximal pulmonary arteries of CTEPH 

patients.  An extensive biobank of CTEPH samples has been established that have 

been utilised in the CTEPH GWAS. 

 

The aim of this Chapter was to perform a GWAS in CTEPH to identify genetic 

associations with disease susceptibility. 
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3.2  Results 

 

3.2.1  Study samples and participants 

1555 CTEPH cases and 1536 healthy control samples were recruited and genotyped 

from 6 international centres (Figure 3.1A).  CTEPH samples were genotyped in 3 

batches from 2014-2016 (Figure 3.1B).  All healthy controls samples (WTCCC) were 

genotyped in batch1 (Figure 3.1C).  Royal Papworth Hospital was the largest 

recruiting centre (n=747) and together with Hammersmith Hospital, Imperial 

Healthcare NHS trust, made up the discovery cohort (n=841).  The remaining 

European and US centres comprised the validation cohort (n=714). 

 

 

 
Figure 3.1  GWAS sample numbers prior to exclusions 

A Starting sample numbers for CTEPH cases by centre and B genotyping batch 

(batch1: 2014, batch2: 2015, batch3: 2016).  
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C Starting sample numbers for CTEPH cases and healthy controls (WTCCC) by 

centre and batch. 

n displayed at the top of each count bar.  Bad Nauheim (Kerckhoff Heart and Lung 

Centre, Bad Nauheim, Germany); Papworth (Royal Papworth Hospital, Cambridge, 

UK), Imperial (Hammersmith Hospital, Imperial College Healthcare NHS Trust, 

London, UK), Leuven (KU Leuven - University of Leuven, Leuven, Belgium), San 

Diego (University of California, San Diego, USA), Vienna (Medical University, Vienna, 

Austria), WTCCC (Wellcome Trust Case Control Consortium, UK). 

 

 

3.2.2  Study exclusions and GWAS quality control 

3.2.2.1  Sample exclusions: overview 

A total of 349 samples (CTEPH cases = 305 (20%), healthy controls = 44 (3%)) were 

excluded from the study (Figure 3.2).  Samples were excluded on the basis of 

thresholds and criteria defined in the methods (Section 2.1.4.3) for ancestry, 

heterozygosity, relatedness, sample genotype missingness and administrative (i.e. 

incorrect disease phenotype) (Figure 3.2).  The relatively high CTEPH case 

exclusions of 28% (n = 134) for batch1 and  31% (n=140) for batch2, improved to 11% 

(n = 69) for batch3 (Figure 3.2B). 

 

The number of exclusions from the healthy control WTCCC group (n=44) was similar 

to other studies which have used the same healthy control cohort.(204) 
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Figure 3.2  GWAS sample exclusions 

A Sample exclusion numbers for CTEPH cases and healthy controls (WTCCC) by 

centre and batch  

B Sample exclusions for CTEPH cases by genotyping batch and C centre. 

The "Total (unique)” row in B and C represents the distinct individual sample 

exclusions.  As samples could be excluded on more than one criterion, the individual 

exclusions do not equal the "Total (unique)" values.  Administrative reasons were due 

to either the incorrect disease phenotype (non-CTEPH) or non-Caucasian (self-

reported) samples that were identified after micro-arraying.  There were no exclusions 

for the San Diego centre (not shown).   

n displayed at the top of each count bar.  n=343 exclusions (unique) in Figure 3.2A-

C There was an additional n=6 exclusions when batch1, batch2 and batch3 were 

merged due to relatedness, resulting in n=349 total GWAS exclusions. 
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3.2.2.2  Sample exclusions: GWAS quality control 

Samples for exclusion from the study were identified by quality control steps outlined 

in Figure 2.2 (Materials and Methods).  Following genotype calling, samples with a 

genotype missingness of >1% were excluded (n: batch1=20, batch2=41, 

batch3=5).  The rationale for this approach is described in Section 

3.2.2.3.2.  Subsequently, each sample quality control step was performed on all the 

remaining samples prior to further sample removal.   

 

Firstly, samples were identified and excluded due to administrative reasons (incorrect 

phenotype or self-reported ethnicity) (n: batch1=6, batch2=81, batch3=2).   

 

Principal component analysis using a robust set of independent SNPs was used to 

identify samples with outlying ancestry (n: batch1=51, batch2=19, batch3=60) (Figure 

3.3).  Samples were initially excluded if they did not cluster with super-populations 

from 1000 genomes data (Figure 3.3A, D and G).  PCA was then repeated, and 

samples that did not cluster with 1000 genomes European populations were excluded 

(Figure 3.3B, E and H).  The remaining CTEPH cases and healthy controls cluster 

with the 1000 genomes European populations (Figure 3.3C, F and I). 

 

Sample relatedness (including duplicates) was assessed by estimating identity by 

descent in PLINK.  Samples were excluded if they had a proportion of IBD score 

(PI_HAT) > 0.1875, which approximates to a threshold between a 2nd and 3rd degree 

relative (n: batch1=54, batch2=2, batch3=7) (Figure 3.4).  In the WTCCC healthy 

control group there were 23 individual samples with IBD scores above the QC 

threshold (only half of which would have been excluded), which is similar to other 

studies that have used the same healthy control cohort.(204) 

 

DNA quality was assessed by excluding samples with outlying genotype missingness 

(>1%) and outlying heterozygosity (Figure 3.5).  The genotype missingness exclusion 

step was previously described and is performed after genotype calling.  Samples with 

high or low heterozygosity rates can represent contamination or inbreeding 

respectively and were excluded if they were ± 3 standard deviations from the mean of 

the batch group (n: batch1=30, batch2=10, batch3=12).(142) 
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Figure 3.3  Divergent ancestry assessed by principal component analysis 
Batch1 (A-C) contains both CTEPH cases and healthy control samples, and Batch2 (D-F) and Batch3 (G-I) contain CTEPH cases 

only. 

The first column of plots (A, D and G) are PCAs including the 1000 genomes super-populations (AFR, AMR, EAS, EUR and 

SAS).  The second column of plots (B, E and H) are PCAs including the 1000 genomes European (EUR) populations (CEU, FIN, 

GBR, IBS and TSI).  The third column of plots (C, F and I) are the PCAs after samples with divergent ancestry have been 

excluded.  The horizontal and vertical black lines in A, B, D, E, G and H are the clustering exclusion thresholds, set by visual 

inspection.  Group colours vary across plots and are defined in the individual legends. 

Study samples: CASE (CTEPH cases), CON (WTCCC healthy controls) 

Super populations: AFR (African), AMR (Admixed American), EAS (East Asian), EUR (European), SAS (South Asian). 

Populations: CEU (Utah Residents (CEPH) with Northern and Western European Ancestry), FIN (Finnish in Finland), GBR (British in 

England and Scotland), IBS (Iberian Population in Spain), TSI (Toscani in Italia). 
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Figure 3.4  Sample relatedness assessed by identity by descent 
The proportion of identity by descent (IBD) between pair-wise samples was 

determined in PLINK using the PI_HAT parameter.  PI_HAT ranges from 0 (unrelated) 

to 1 (duplicate or monozygotic twins).  PI_HAT is calculated by: P(IBD=2) + 0.5 

x P(IBD=1), where P(IBD=2) and P(IBD=1) are the probabilities that at a given locus 

2 or 1 alleles respectively are identical by descent.(207)  Sample pairs are plotted on 

the x-axis (Batch1=1,983,036, Batch2=55,955, Batch3=190,036).  The dotted red 

horizontal line represents a PI_HAT threshold of 0.1875 with excluded samples shown 

by red triangles.  For a pair of samples with high PI_HAT values, the sample with the 

lowest sample genotype rate was excluded.  
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Figure 3.5  Outlying sample heterozygosity plotted against sample genotype 
missingness 
The autosomal heterozygosity rate and genotype missingness were calculated using 

PLINK.  The dotted red horizontal and vertical lines represent thresholds of a 

heterozygosity rate ± 3 standard deviations from the mean and a genotype 

missingness of 1% respectively.  No sample outliers for genotype missingness are 

displayed as they were removed during an earlier QC step.  Missingness values were 

converted to log10 to improve visualisation. 

 

 

Sex discordance between centre-reported sex and genotype determined sex was 

assessed from X-chromosome homozygosity rates using PLINK (Figure 3.6).  PLINK 

assigns a male or female genotype if the X-chromosome homozygosity estimate is 

>0.8 and <0.2 respectively.(208)  There were 19, 1 and 8 samples that had discordant 
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sex in batches 1,2 and 3.  Sex discordance may arise for legitimate reasons in addition 

to sample handling and identification problems.  Patients with a self-reported gender 

different to that assigned at birth may be receiving oestrogen therapy and at increased 

risk of venous thromboembolism and potentially CTEPH.  To retain sample numbers, 

disease phenotypes were confirmed separately with centres and no exclusions were 

made due to discordant sex. 

 

 

 

Figure 3.6  Discordant sex for individual samples 
Discordant sex was assessed using X-chromosome homozygosity calculated in 

PLINK.  The dotted horizontal grey lines represent thresholds of 0.8 and 0.2 for male 

and female genotype assignment respectively.  The red triangles represent individual 

samples with discordant sex.  An X-chromosome homozygosity score of between 0.2-

0.8 was called as missing genotype sex. 
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Following quality control exclusions, 1250 CTEPH cases and 1492 healthy controls 

remained for genetic imputation and statistical association testing.  The number of 

individual samples for each centre and genotyping batch are summarised in Figure 
3.7.   

 

 

Figure 3.7  Total sample numbers following QC exclusions 
Sample numbers for CTEPH cases by A centre and B batch.  C Sample numbers for 

CTEPH cases and healthy controls by batch and centre. 

n displayed at the top of each count bar. 

 

 
3.2.2.3  SNP exclusions: GWAS quality control 
3.2.2.3.1  SNP exclusions: overview 

A total of 31,344 (3% of total), 27,692 (3%) and 35,648 (4%) SNPs were excluded 

from batches1, 2 and 3 respectively during quality control steps prior to genetic 
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imputation (Table 3.1).  SNPs were excluded on the basis of thresholds and criteria 

defined in Section 2.1.4.4 for micro-array intensity clustering and genotype calling 

quality, genotype missingness and deviation from Hardy-Weinberg equilibrium.  A 

minor allele frequency threshold was not applied until post-imputation. 

 

 

Batch1  Batch2  Batch3  
Starting SNPs 964193  964193  964193  

SNPs excluded 31344 27692 35648 

SNPs after QC removals 932849  936501   928545  

 

Table 3.1  Total number of SNP exclusions per batch prior to imputation 

 
 
3.2.2.3.2  Micro-array clustering, genotype calling and exclusions 

After the initial micro-array clustering and genotype calling using GenomeStudio(252), 

there were a disproportionate number of samples that were removed by applying 

clustering quality scores (GenTrain score < 0.7 and clustering separation score < 0.5) 

between batches (Table 3.2).  There were 30,289 and 35,648 removed from batches1 

and 3 respectively however, 468,806 were removed from batch2.  Failure to apply 

clustering quality scores resulted in false positive associations (Figure 3.8).  Manual 

inspection of micro-array data intensity plots for isolated significant SNPs confirmed 

that many were due to poor quality clustering (Figure 3.9). 

 

 

Batch1  Batch2  Batch3  
Starting SNPs 964193  964193  964193  

SNPs excluded 

GeneTrain score < 0.7 

Clustering separation score < 0.5 

30289  468806  35648  

SNPs after clustering QC removal 933904  495387  92854 

 

Table 3.2  SNP exclusions from micro-array clustering quality thresholds that 
were applied without a re-clustering step 
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The number of SNPs that were excluded when clustering quality thresholds were 

applied after micro-array clustering and genotype calling without the sample 

missingness exclusions and re-clustering steps. 

 

 

 

Figure 3.8  Manhattan plot of all associations including incorrect genotype 
clustering and calling 
This was an interim analysis of batch1 and batch2 data (CTEPH cases = 900, healthy 

controls = 1495) with similar quality control steps for samples and SNPs as described 

in the methods.  An additive model of association was applied using logistic regression 

and adjusted for 1 principal component prior to genetic imputation.  Manual inspection 

of micro-array intensity plots for isolated significant SNPs confirmed that many were 

due to poor quality micro-array intensity clustering. 
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Figure 3.9  Micro-array intensity clustering and false positive associations 
Micro-array intensity clustering for two biallelic SNPs with A good and B poor 

clustering, which fails to adequately separate the AB and BB genotypes.  Intensities 

for Allele A and B are plotted for each SNP, which generates 3 genotypes (coloured 

blue, purple and red).  A GenomeStudio algorithm was used for micro-array clustering 

and genotype calling.  SNPs with poor quality clustering that are not adequately 

removed by quality control steps can result in false positive associations. 

 

 

High missingness in a few individual samples has the potential to skew the SNP 

genotype calling algorithms.  To address the discordant number of SNPs removed 

from each batch when only a clustering quality score was applied, the micro-array 

intensity clustering and genotype calling methodology was refined.  First, micro-array 

clustering and genotype calling were performed, then samples with a missingness of 

greater than 1% were removed, followed by genotype re-clustering (cases and 

controls) and finally, SNPs were excluded using genotype clustering quality 

scores.  This resulted in a marked improvement in batch2 SNP exclusions (n=26,198) 

(Table 3.3) and similar exclusions from batches 1 (n=28,124) and 3 (n=33,212) 

respectively.  Applying a more stringent sample missingness threshold of 1% resulted 

in increased sample exclusions (1% sample missingness threshold: batch1=20, 

batch2=41, batch3=15 vs. 5% sample missingness threshold: batch1=6, batch2=15, 

batch3=5).  This was acceptable given the marked improvement in SNP retention.   
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3.2.2.3.3  SNP genotype missingness, deviations from Hardy-Weinberg 
distribution and pre-imputation minor allele frequency 

Low quality individual SNPs were excluded if their genotype missingness was greater 

than 1% (n: batch1=1746, batch2=1283, batch3=2180) (Figure 3.10).  SNPs with a 

differential missingness (p < 1x10
-5

) between cases and controls were also 

excluded.  This was only applied to batch 1 (n=1113 SNPs) as this was the only batch 

containing both cases and controls.  As batches were subsequently merged on 

intersecting SNPs, then these SNP removals applied to all batches. 

 

 

Figure 3.10  Genotype missingness SNP exclusions 
The red dotted vertical line in A, B and C represents a missingness of 1%.  The red 

dotted vertical line in D presents a p-value of 1x10
-5

 for differential missingness 

between CTEPH cases and healthy controls.  The axes are plotted on a log1p (e.g. 

log(x+1)) scale to allow visualisation of zero values for A-D.  P-values have been 

transformed to -log10 values in D. 
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If SNPs are in Hardy-Weinberg equilibrium their allele and genotype frequencies can 

be estimated between generations.  Deviation from HWE can occur due to genotyping 

errors, population stratification or a genuine disease association.(213)  There were 

only a modest number of SNPs excluded due to HWE (batch1=1094, batch2=291, 

batch3=425) (Figure 3.11) potentially due to the stringent genotype clustering 

exclusion QC step. 

 

 

 

Figure 3.11  SNP Hardy-Weinberg equilibrium exclusions 
The red dotted vertical line in A-C represents a p-value of 1x10

-6
, below which SNPs 

were considered to have deviated from HWE and were excluded.  The axes are plotted 

on a log1p scale to allow visualisation of zero values and p-values have been 

transformed to a -log10 value. 
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SNPs were not excluded due to a minor allele frequency prior to imputation.  The 

distribution of the minor allele frequency for each batch pre-imputation is shown in 

Figure 3.12. 

 

 

 

Figure 3.12  SNP minor allele frequency distribution prior to imputation 
The axes are plotted on a log1p scale to allow visualisation of zero values. 

 

 

A summary of the QC SNP exclusions prior to imputation is shown in Table 
3.3.  Batches 1, 2 and 3 were merged on an intersecting set of SNPs (n=915,999) and 

between-batch related samples were excluded as described in Section 3.2.2.2.  The 

data was then submitted for genetic imputation as described in the methods. 
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Exclusion 
threshold  

Batch1  Batch2  Batch3  

Starting SNPs 

 

964193  964193  964193  

Genotype clustering 
exclusions 

GenTrain < 0.7 

Clustering 

separation < 0.5 

28124  26198  33212 

SNP missingness exclusions > 1%   1746   1283   2180   

SNP differential missingness 
exclusions 

p < 1x10
-5

   1113   NA   NA   

Divergent Hardy-
Weinberg equilibrium 

p < 1x10
-6

   1094   291   425   

Total (unique) SNPs 
excluded   

 

31344 27692 35648 

SNPS after QC removals 

 

932849  936501   928545  

 

Table 3.3  SNP exclusions for each quality control step 
SNPs could be excluded on more than one criterion therefore, the individual SNP 

exclusions do not equal the "Total (unique)" values.  

 

 
3.2.2.3.4  Post GWAS QC: minor allele frequency and imputation quality 

Following genetic imputation there were ~40 million variants.  Imputation quality was 

assessed using an information (INFO) score parameter.  This ranged on a scale of 0-

1 from poor to high quality imputation (Figure 3.13).  Variants with an INFO score 

below 0.5 were excluded.  SNPs with low minor allele frequencies can be challenging 

for genotype clustering algorithms to call and are also more difficult to impute, which 

can result in false positive associations.(142)  SNPs were excluded if they had a low 

minor allele frequency (<1%) (Figure 3.14). 
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Figure 3.13  SNP imputation quality 
The information (INFO) score was a parameter supplied following genetic imputation 

to assess the imputation quality.  The dashed vertical red line represents an 

information score threshold of 0.5 below which, SNPs were excluded (n=18,043,895). 
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Figure 3.14  Minor allele frequency post imputation 
The dashed red vertical line represents a MAF threshold of 1% below which, variants 

were excluded (n=32,676,650).  The axes are plotted on a log1p scale to allow 

visualisation of zero values. 

 

 

After removal of SNPs with low imputation quality, low minor allele frequency and 

multi-allelic SNPs there were 7,675,738 remaining for association testing. 

 

3.2.2.4  Residual population structure 

Residual population structure was assessed after QC exclusions and prior to 

imputation for each batch and after merging batches 1, 2 and 3 on a common 

intersecting SNP set.  PCAs were performed and principal components were 

visualised using up to 20 eigenvector pairs to detect outlying clusters (Figures 3.15 

and 3.16; the first 5 eigenvector pairs are shown).  These principal components were 

used for to adjust for residual population structure in subsequent association testing. 
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Figure 3.15  Principal component analysis to detect residual population 
structure for each batch 
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PCAs were performed on individual batches prior to merging on a common SNP 

set.  The first two eigenvectors are displayed in A, C and E, and the first 5 pairs of 

eigenvectors are shown in B, D and F including the percentage of variation that is 

explained by the pair.  Up to 20 eigenvector pairs were visualised (not 

shown).  Colours used to represent centres vary between plots. 

BN (Bad Nauheim), IMP (Imperial), LEU (Leuven), PAP (Papworth), SD (San 

Diego), VIE (Vienna), WTCCC (Wellcome Trust Case Control Consortium). 
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Figure 3.16  Principal component analysis to detect residual population 
structure for combined batches 
PCAs were performed for all CTEPH cases and healthy controls following QC 

exclusions and merging batches, but prior to genetic imputation.  PCA plots have been 

coloured by A, B centre and C, D batch.  The first two eigenvectors are displayed in 

A, C, and the first 5 pairs of eigenvectors are shown in B, D including the percentage 

of variation that is explained by the pair.  Up to 20 eigenvector pairs were visualised 

(not shown). 

BN (Bad Nauheim), IMP (Imperial), LEU (Leuven), PAP (Papworth), SD (San 

Diego), VIE (Vienna), WTCCC (Wellcome Trust Case Control Consortium). 

 

 
3.2.2.5  Study participant characteristics post-QC 

The baseline characteristics of the case-control groups following QC exclusions are 

summarised in Table 3.4.  There was no difference in sex however, CTEPH cases 

were older than healthy controls (median ± IQR: 65 ± 22 vs. 45 ± 18; p < 0.001).  It 

was not necessary to adjust for age in the GWAS statistical association testing as the 

prevalence of CTEPH in the general population (< 1/30,000) is low and any 

confounding due to the presence of CTEPH in the healthy control group (unidentified 

or new incident cases with increasing age) was unlikely.  

 

 

Healthy Controls CTEPH cases p 

Study participants, n 1492 1250 

 

Sex: Female, n (%) 795 (52) 712 (49) 0.164 

Age, median ± IQR 45 ± 18 65 ± 22 < 0.001 

 

Table 3.4  Baseline characteristics for the case-control groups included in 
association testing 
Group differences in sex and age assessed by Chi-squared test and Mann-Whitney U 

test respectively. 
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3.2.3  GWAS statistical association testing 

Following genetic imputation, the data for the discovery and validation cohorts were 

combined in one dataset.  A joint analysis was initially performed prior to dividing the 

data into discovery and validation cohorts.  This also enabled selection of the most 

appropriate number of principal components to adjust for residual population structure 

that were then applied to the discovery and validation groups.  The composition of the 

discovery and validation cohorts was determined a priori.  The discovery cohort was 

comprised of UK centres and the remaining European and US centres made up the 

validation cohort.   

 
3.2.3.1  Joint analysis: discovery and validation cohorts combined 

3.2.3.1.1  Association testing without covariates 

Imputed genotype dosages were used to test for an association between the CTEPH 

and healthy control groups.  Logistic regression assuming an additive genetic model 

was applied to each SNP marker.  When no covariates were used to adjust the models 

there are at least 4 associated loci, however the genomic inflation factor is elevated 

(lambda = 1.22) (Figure 3.17).  The inflation factor is estimated by comparing the 

median of observed and expected test statistics.(145)  Genomic inflation values above 

1 can indicate population stratification or genotyping errors.(145)  When the data is 

divided into discovery and validation cohorts (Sections 3.2.3.2 and 3.2.3.3) and 

association testing repeated without additional covariates, the genomic inflation is 

higher in the validation cohort (lambda = 1.03 vs. 1.47) (Figure 3.18).  As samples 

comprising the discovery and validation groups were genotyped across batches, the 

elevated genomic inflation values are a likely consequence of population 

stratification.  This can result in false positive associations due to differences in 

ancestry rather than a genuine disease association.(213)  To adjust for confounding 

from population stratification, eigenvectors from the pre-imputation PCAs (Section 
3.2.2.4) were included as covariates in the logistic regression models. 
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Figure 3.17  Case-control association testing without additional covariates: joint 
analysis 
Analysis of 1250 CTEPH cases (discovery and validation cohorts combined), 1492 

healthy controls and 7,675,738 SNPs.  The same healthy control group was used for 

the discovery and validation cohorts.  Statistical testing of individual SNPs using allelic 

dosage (range 0-2) for an association with CTEPH diagnosis was performed using 

logistic regression assuming an additive genetic model without additional 

covariates.  A p-value of <5x10
-8

 was considered genome-wide significant (dotted grey 

line B).  Genomic inflation factor (lambda)=1.22.   

A Quantile-quantile (QQ) plot of the observed and expected p-values. 

B Manhattan plot of p-values plotted against genomic position. 

P-values are transformed to a -log10 scale. 
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Figure 3.18  Case-control association testing without covariates: discovery and 
validation cohorts 
Manhattan plots of A Discovery and B Validation cohorts. 

Statistical testing without additional covariates was performed as described in Figure 
3.17.  The genomic inflation factor (lambda) for the discovery and validation cohorts 

are 1.03 and 1.47 respectively. 

 

 

3.2.3.1.2  Association testing adjusted for population stratification 

The first 2 eigenvectors were most significantly associated (p=1.48x10
-57

 and 

p=2.35x10
-30

) with the case-control group when logistic regression was performed 

(Table 3.5).  As the fifth eigenvector was nominally associated, the first 5 ancestry 

informative principal components were used to adjust for residual population 

stratification.  This markedly improved the genomic inflation (lambda = 1.04) and 

confirmed that the elevation was due to residual population substructure (Figure 
3.19).  As other eigenvectors were nominally associated (EV11 and EV16) with case-

control status, up to 20 were included as covariates in GWAS association 

testing.  These did not improve the genomic inflation further (lambda: EV1-10 = 1.05, 

EV1-20 = 1.05) and therefore, only the first 5 ancestry informative principal 

components were used for subsequent association testing.  
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β SE  p  

EV1  -43.0  2.69  1.48e-57  

EV2  30.0 2.62  2.35e-30  

EV3  -1.20 2.32  0.604  

EV4  0.884  2.22  0.690  

EV5  3.82 2.21  0.084  

EV6  1.32 2.21  0.550  

EV7  -0.376 2.20  0.864  

EV8  0.705 2.20  0.748  

EV9  2.71 2.21  0.220  

EV10  -1.86 2.19  0.396  

EV11  -6.51  2.22  0.003  

EV12  0.306  2.20  0.889  

EV13  2.78  2.21  0.209  

EV14  0.74  2.20  0.737  

EV15  -0.0785  2.20  0.972  

EV16  -3.98  2.20  0.071  

EV17  -0.0619  2.20  0.978  

EV18  0.237 2.19  0.914  

EV19  2.79 2.20  0.205  

EV20  3.40  2.20  0.122 

 

Table 3.5  Ancestry informative eigenvectors and case-control status 
Logistic regression of eigenvectors (EV) 1-20 on case-control status (case/control 

group ~ EV1 + EV2 + … + EV20).  The most significant eigenvectors are EV1 and 

EV2.  β (beta coefficient), SE (standard error), p (p-value). 
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Figure 3.19  Case-control association testing with 5 ancestry informative 
principal components: joint analysis 
Case-control association testing of 1250 CTEPH cases and 1492 controls using allelic 

dosages and assuming an additive genetic model adjusted for the first 5 ancestry 

informative principal components. 

A QQ plot and B Manhattan plot 

Genomic inflation factor (lambda)=1.04 

 

 

There were 87 significantly associated SNPs (p<5x10
-8

) (Table 3.6) that were all 

located in chromosome 9.  The lead SNP (rs2519093, OR (95% CI) = 2.4 (2.3-2.5), 

p=3.42x10
-31

) is an intronic variant in the ABO gene.  Rs2519093 was well imputed 

(INFO=0.951) with an effect allele (T) frequency of 0.165 in healthy controls and 0.316 

in CTEPH cases.  This compared with effect allele frequencies in reference 

populations of 0.182 (European (non-Finnish) in 1000 genomes phase 3) and 0.198 

(European (non-Finnish) in gnomAD).(240) 

 

 

Expected -log10(p) 

O
b
se

rv
e
d
 -

lo
g
10

(p
) 

Chromosome

-l
o
g
10

(p
) 

Lambda = 1.04
CTEPH: 1250
Controls: 1492
SNPs ~ 7.7 million

A B



   
 

 101 

rsID  CHR:POS_EA/NEA  GENE  FUNC  EAF_A  EAF_U  EAF_REF  INFO  OR (95% CI)  p  

rs2519093  9:136141870_T/C  ABO  intronic  0.316  0.165  0.182  0.951  2.4 (2.25-2.55)  3.42e-31  

rs532436  9:136149830_A/G  ABO  intronic  0.316  0.165  0.185  0.965  2.39 (2.24-2.53)  7.01e-31  

rs507666  9:136149399_A/G  ABO  intronic  0.316  0.166  0.185  0.965  2.38 (2.23-2.53)  8.89e-31  

rs635634*  9:136155000_T/C  ABO  intergenic  0.321  0.174  0.185  0.977  2.31 (2.16-2.46)  2.87e-29  

rs600038  9:136151806_C/T  ABO  intergenic  0.331  0.189  0.218  0.965  2.16 (2.02-2.3)  2.61e-26  

rs651007*  9:136153875_T/C  ABO  intergenic  0.330  0.189  0.215  0.971  2.13 (1.99-2.27)  7.1e-26  

rs579459*  9:136154168_C/T  ABO  intergenic  0.330  0.189  0.215  1.000  2.12 (1.98-2.26)  9.08e-26  

rs649129  9:136154304_T/C  ABO  intergenic  0.330  0.189  0.215  0.988  2.12 (1.98-2.27)  1.44e-25  

rs495828  9:136154867_T/G  ABO  intergenic  0.330  0.189  0.215  0.964  2.13 (1.99-2.27)  2e-25  

rs550057  9:136146597_T/C  ABO  intronic  0.386  0.241  0.280  0.972  2.03 (1.9-2.17)  5.88e-25  

rs9411378  9:136145425_A/C  ABO  intronic  0.380  0.236  0.290  0.887  2.09 (1.95-2.23)  6.5e-24  

rs529565  9:136149500_C/T  ABO  intronic  0.463  0.313  0.345  0.976  1.9 (1.77-2.02)  4.42e-23  

rs505922*  9:136149229_C/T  ABO  intronic  0.463  0.313  0.345  1.000  1.88 (1.75-2)  6.75e-23  

rs582094  9:136145484_T/A  ABO  intronic  0.463  0.315  0.350  0.990  1.89 (1.76-2.01)  7.08e-23  

rs2769071  9:136145974_G/A  ABO  intronic  0.463  0.315  0.350  0.971  1.9 (1.77-2.03)  7.81e-23  

rs582118  9:136145471_G/A  ABO  intronic  0.463  0.315  0.350  0.991  1.88 (1.76-2.01)  7.89e-23  

rs676996  9:136146077_G/T  ABO  intronic  0.463  0.315  0.353  0.991  1.88 (1.76-2.01)  8.1e-23  

rs597988  9:136144284_A/T  ABO  intronic  0.463  0.315  0.348  0.992  1.88 (1.76-2.01)  8.11e-23  

rs677355  9:136146046_A/G  ABO  intronic  0.463  0.315  0.353  0.971  1.9 (1.77-2.03)  8.12e-23  

rs492488  9:136144960_A/G  ABO  intronic  0.463  0.315  0.350  0.989  1.88 (1.76-2.01)  8.74e-23  

rs676457  9:136146227_T/A  ABO  intronic  0.463  0.315  0.350  0.991  1.88 (1.75-2.01)  1.05e-22  

rs687289*  9:136137106_A/G  ABO  intronic  0.463  0.315  0.353  0.989  1.88 (1.76-2.01)  1.1e-22  
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rs493246  9:136144994_A/G  ABO  intronic  0.463  0.315  0.350  0.999  1.87 (1.74-1.99)  1.79e-22  

rs495203  9:136145240_T/C  ABO  intronic  0.463  0.315  0.350  0.999  1.86 (1.74-1.99)  1.8e-22  

rs514659*  9:136142203_C/A  ABO  intronic  0.463  0.315  0.350  1.000  1.86 (1.74-1.99)  1.92e-22  

rs8176663  9:136144427_C/T  ABO  intronic  0.463  0.315  0.350  1.000  1.86 (1.74-1.99)  1.93e-22  

rs491626  9:136144873_T/C  ABO  intronic  0.463  0.315  0.350  1.000  1.86 (1.74-1.99)  1.93e-22  

rs545971  9:136143372_T/C  ABO  intronic  0.463  0.315  0.350  1.000  1.86 (1.74-1.99)  1.94e-22  

rs612169  9:136143442_G/A  ABO  intronic  0.463  0.315  0.348  1.000  1.86 (1.74-1.99)  1.94e-22  

rs687621*  9:136137065_G/A  ABO  intronic  0.463  0.315  0.350  1.000  1.86 (1.74-1.99)  2.27e-22  

rs527210  9:136146431_T/C  ABO  intronic  0.462  0.315  0.350  0.977  1.88 (1.75-2.01)  2.33e-22  

rs674302  9:136146664_A/T  ABO  intronic  0.463  0.315  0.350  0.999  1.86 (1.74-1.99)  2.41e-22  

rs554833  9:136147160_T/C  ABO  intronic  0.463  0.315  0.350  0.997  1.86 (1.74-1.99)  2.46e-22  

rs494242  9:136145118_T/C  ABO  intronic  0.478  0.339  0.377  0.985  1.79 (1.67-1.91)  4.19e-20  

rs644234  9:136142217_G/T  ABO  intronic  0.478  0.339  0.377  0.994  1.78 (1.65-1.9)  7.08e-20  

rs8176645  9:136149098_A/T  ABO  intronic  0.463  0.322  0.375  0.735  2.02 (1.86-2.17)  7.23e-20  

rs613534  9:136143120_G/A  ABO  intronic  0.478  0.339  0.377  0.995  1.78 (1.65-1.9)  7.42e-20  

rs543968  9:136143121_C/T  ABO  intronic  0.478  0.339  0.377  0.995  1.78 (1.65-1.9)  7.42e-20  

rs544873  9:136143212_A/G  ABO  intronic  0.478  0.339  0.377  0.995  1.78 (1.65-1.9)  7.42e-20  

rs643434  9:136142355_A/G  ABO  intronic  0.478  0.339  0.377  0.996  1.77 (1.65-1.9)  8.2e-20  

rs657152*  9:136139265_A/C  ABO  intronic  0.478  0.339  0.377  1.000  1.76 (1.63-1.88)  2.54e-19  

rs11244061  9:136153981_T/C  ABO  intergenic  0.187  0.102  0.120  0.947  2.1 (1.93-2.28)  7.95e-17  

rs11244084  9:136191010_T/C  LCN1P2  intergenic  0.165  0.091  0.075  0.850  2.03 (1.84-2.22)  1.38e-13  

rs142956930  9:136143330_G/A  ABO  intronic  0.131  0.066  0.017  0.513  3.31 (2.99-3.63)  3.57e-13  

rs8176681  9:136139754_T/C  ABO  intronic  0.654  0.548  0.592  0.990  1.54 (1.42-1.66)  3.36e-12  
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rs2073827  9:136137133_G/C  ABO  intronic  0.653  0.548  0.592  0.989  1.54 (1.42-1.66)  3.58e-12  

rs2073828  9:136137140_G/A  ABO  intronic  0.653  0.548  0.595  0.989  1.54 (1.41-1.66)  4.34e-12  

rs559723  9:136150484_A/G  ABO  intronic  0.382  0.490  0.498  0.988  1.53 (1.41-1.65)  4.67e-12  

rs616154  9:136150466_C/T  ABO  intronic  0.382  0.491  0.500  0.976  1.53 (1.41-1.65)  7.16e-12  

rs630014*  9:136149722_A/G  ABO  intronic  0.381  0.489  0.495  1.000  1.52 (1.4-1.64)  8.23e-12  

rs630510  9:136149581_A/G  ABO  intronic  0.381  0.489  0.495  0.998  1.52 (1.4-1.64)  8.39e-12  

rs8176690  9:136138317_A/G  ABO  intronic  0.653  0.548  0.592  0.980  1.53 (1.41-1.65)  8.97e-12  

rs2073826  9:136136963_G/T  ABO  intronic  0.652  0.548  0.595  0.977  1.52 (1.4-1.65)  1.22e-11  

rs8176715  9:136133148_T/C  ABO  intronic  0.379  0.481  0.410  0.917  1.52 (1.4-1.65)  5.19e-11  

rs8176668  9:136144059_A/T  ABO  intronic  0.669  0.572  0.617  0.977  1.5 (1.38-1.63)  7.19e-11  

rs7873635  9:136132012_T/C  ABO  intronic  0.333  0.428  0.383  0.831  1.58 (1.45-1.72)  7.56e-11  

rs7046674  9:136147012_C/T  ABO  intronic  0.669  0.571  0.620  0.991  1.5 (1.38-1.62)  7.87e-11  

rs8176649  9:136147295_G/A  ABO  intronic  0.669  0.571  0.620  0.992  1.5 (1.38-1.62)  7.95e-11  

rs7036642  9:136144626_G/A  ABO  intronic  0.669  0.572  0.620  0.985  1.5 (1.38-1.62)  9.6e-11  

rs3124761  9:136339755_C/T  SLC2A6  intronic  0.799  0.877  0.838  0.876  1.76 (1.59-1.93)  9.77e-11  

rs3094379  9:136334910_C/T  CACFD1  UTR3  0.798  0.876  0.838  0.887  1.75 (1.58-1.92)  1.25e-10  

rs8176691  9:136138229_C/T  ABO  intronic  0.668  0.572  0.620  0.989  1.49 (1.37-1.61)  1.78e-10  

rs8176682*  9:136139297_C/T  ABO  intronic  0.668  0.572  0.620  0.990  1.49 (1.37-1.61)  1.86e-10  

rs3124764  9:136329954_C/T  CACFD1  intronic  0.800  0.877  0.840  0.892  1.74 (1.57-1.91)  1.91e-10  

rs3124765  9:136328657_C/T  CACFD1  exonic  0.800  0.877  0.892   0.892  1.74 (1.57-1.91)  2.13e-10  

rs4962153*  9:136323754_G/A  ADAMTS13  intronic  0.800  0.877  0.838  0.900  1.72 (1.55-1.89)  3.01e-10  

rs3124766  9:136316942_A/G  ADAMTS13  intronic  0.200  0.124  0.162  0.906  1.71 (1.54-1.88)  3.4e-10  

rs28645493*  9:136305738_G/C  ADAMTS13  intronic  0.140  0.076  0.098  1.000  1.86 (1.66-2.05)  3.44e-10  
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rs739468  9:136326248_G/T  CACFD1  intronic  0.799  0.875  0.838  0.897  1.71 (1.54-1.88)  4.07e-10  

rs8176702  9:136136146_G/A  ABO  intronic  0.667  0.572  0.620  0.976  1.48 (1.36-1.6)  4.19e-10  

rs4962040  9:136133531_A/G  ABO  intronic  0.666  0.571  0.617  0.973  1.47 (1.35-1.6)  6.55e-10  

rs500499  9:136148648_G/C  ABO  intronic  0.362  0.454  0.432  0.959  1.47 (1.35-1.6)  8.6e-10  

rs500498  9:136148647_T/C  ABO  intronic  0.362  0.454  0.432  0.959  1.47 (1.35-1.6)  8.71e-10  

rs36222279  9:136315974_C/G  ADAMTS13  intronic  0.139  0.076  0.098  0.926  1.86 (1.66-2.06)  9.92e-10  

rs476410  9:136148368_G/C  ABO  intronic  0.362  0.454  0.432  0.961  1.47 (1.35-1.59)  1.01e-09  

rs41302667  9:136330428_A/G  CACFD1  intronic  0.138  0.076  0.098  0.911  1.87 (1.67-2.07)  1.18e-09  

rs645982  9:136148409_A/G  ABO  intronic  0.362  0.453  0.432  0.961  1.47 (1.34-1.59)  1.24e-09  

rs28602660  9:136312071_A/G  ADAMTS13  intronic  0.140  0.077  0.100  0.938  1.85 (1.65-2.04)  1.41e-09  

rs475419  9:136148231_C/T  ABO  intronic  0.362  0.453  0.432  0.979  1.45 (1.33-1.58)  2.17e-09  

rs660340  9:136147553_A/G  ABO  intronic  0.362  0.453  0.432  0.979  1.45 (1.33-1.58)  2.2e-09  

rs581107  9:136147702_C/T  ABO  intronic  0.362  0.453  0.432  0.979  1.45 (1.33-1.57)  2.24e-09  

rs28446901  9:136308796_G/C  ADAMTS13  intronic  0.234  0.149  0.180  0.920  1.62 (1.46-1.78)  2.34e-09  

rs473533  9:136148035_T/C  ABO  intronic  0.362  0.453  0.432  0.962  1.45 (1.33-1.58)  2.88e-09  

rs659104  9:136147823_T/G  ABO  intronic  0.362  0.453  0.432  0.970  1.45 (1.32-1.57)  4.1e-09  

rs633862  9:136155444_C/T  ABO  intergenic  0.367  0.455  0.448  0.971  1.43 (1.31-1.55)  6e-09  

rs558240*  9:136157133_A/G  ABO  intergenic  0.492  0.402  0.405  1.000  1.4 (1.29-1.52)  7.44e-09  

rs647800  9:136148000_A/G  ABO  intronic  0.347  0.429  0.405  0.975  1.41 (1.29-1.54)  3.48e-08 
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Table 3.6  Significant SNPs in the joint analysis 
 

Association testing for 1250 CTEPH cases, 1492 healthy controls and 7,675,738 SNPs post-imputation were included in the 

analysis.  Statistical testing of individual SNPs using allelic dosage (range 0-2) for an association with CTEPH diagnosis was 

performed using logistic regression assuming an additive genetic model.  5 principal components were used to adjust for any residual 

population structure.  A p-value of <5x10-8 was considered genome-wide significant and SNPs are ordered by significance.  The 

Genome Reference Consortium human genome (build 37) (GRCh37) was used for genomic positions.  The allele frequencies and 

the odds ratios are for the effect alleles.  P-values are displayed using exponential notation.  * SNPs with an asterisk were present 

on the micro-array chip pre-imputation and those without have been imputed.  rsID (reference SNP cluster ID), CHR (chromosome), 

POS (base position), EF (effect allele), NEA (non-effect allele), GENE (nearest gene for the SNP, from ANNOVAR), FUNC (functional 

consequence of the SNP on the gene, from ANNOVAR), EAF_A (effect allele frequency of CTEPH patients), EAF_U (effect allele 

frequency of healthy controls), EAF_REF (effect allele frequency of reference, 1000 genomes phase 3 European (non-Finnish) 

populations), INFO (information score, imputation quality), OR (odds ratio), p (p-value). 
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To ensure that the disease associations for CTEPH were not being confounded by 

recruiting centre or genotyping batch, separate within case analyses that included only 

CTEPH patients were undertaken.  Linear regression was performed with batch or 

centre as the dependent variable and the SNP allelic dosage as the independent 

variable, additionally adjusted for 5 ancestry informative principal components.  This 

confirmed that centre and batch were not major sources of confounding (Figure 

3.20).   

 

 
Figure 3.20  Batch and centre association testing with CTEPH 

Linear regression was performed with batch or centre as the dependent variable with 

the CTEPH group (n=1250): Batch or centre ~ SNP allelic dosage + EV1 + … + EV5. 

 

 

3.2.3.1.3  Independent associations 

The majority of the associated SNPs in the chromosome 9 locus were in close 

proximity to the ABO gene (Figure 3.21).  There was an additional cluster of significant 

SNPs around the ADAMTS13 gene that were in moderate to low linkage disequilibrium 

with the significant ABO SNPs (Figures 3.21 and 3.22).  These ADAMTS13 SNPs 

were not significant when the analysis was conditioned on the lead SNP in the ABO 

locus (rs2519093), indicating that they are not independently associated (Figure 

3.23).  There were no secondary associations in the ABO locus when conditioned on 

the lead ABO SNP (Figure 3.23).  
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Figure 3.21  Regional association plot of the associated locus in chromosome 9 

SNP p-values are plotted against genomic position and were generated with the 

association testing described in Figure 3.19.  The most statistically significant SNP 

(9:136141870=rs2519093) is plotted in purple with the correlation (linkage 

disequilibrium, from 1000 Genomes and HapMap) with respect to it, shown on a colour 

scale from red (high) to dark blue (low).  Gene positions are shown on the bottom 

panel of each plot.  The recombination rates (from HapMap) are plotted on the right 

axis.  The regional association plot was generated using Locuszoom.(239)  Some 

gene track annotations have been omitted to improve visualisation. 
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Figure 3.22  Linkage disequilibrium heat maps of significant SNPs in the ABO 

and ADAMTS13 loci 
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Pairwise SNP correlations for the significant SNPs in chromosome 9 were used to 

calculate LD using PLINK for the parameters R2 .  SNPs were assigned to the ABO or 

the ADAMTS13 locus depending on their proximity to the nearest gene.  Each axis 

tick mark represents a SNP (displayed as CHR:POS).  The LD range is from low LD 

(0; no correlation) to high LD (1; perfect correlation).   

 

 

 

 
 

Figure 3.23  Conditional analysis at the associated chromosome 9 locus 

A Regional association plot of the significant locus from the analysis described in 

Figure 3.19 and shown in Figure 3.21. 

B The analysis was repeated and conditioned on the lead SNP in ABO to identify 

independent associations (case/control group ~ SNP allelic dosage + lead ABO SNP 

(rs2519093) + EV1+ … + EV5).  The dotted horizontal lines represent a p-value 

threshold of 5x10-8. 

 

 

3.2.3.2  Discovery cohort analysis 

The discovery cohort included 678 CTEPH cases from UK centres (Papworth and 

Imperial) and 1492 healthy controls following quality control and imputation.  The data 

was divided into discovery and validation cohorts from the combined datasets using a 

priori group definitions.  Association testing was performed as described for the joint 

analysis using logistic regression with post-imputation SNP dosages (n=7,675,738) 

assuming an additive model and adjusted for 5 principal components.  There were 68 
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associated SNPs in chromosomes 4 and 9 (Figure 3.24 and Table 3.7).  The lead 

SNP in chromosome 4 (rs2036914, OR (95% CI) = 1.43 (1.30-1.56), p =4.79x10-8) was 

an intronic variant in the F11 gene.  The associated locus in chromosome 9 was the 

same as for the joint analysis, with the same lead intronic SNP (rs2519093) in ABO. 

 

 
 

Figure 3.24  Associated loci in the discovery cohort 

Association testing for 678 CTEPH cases and 1492 healthy controls.  Logistic 

regression was performed using post-imputation SNP dosages (n=7,675,738) 

assuming an additive model and adjusted for 5 ancestry informative principal 

components. 

A Manhattan plot of the discovery cohort associations 

B Regional association plot of the chromosome 4 locus in proximity to the F11 gene 

C Regional association plot of the chromosome 9 locus in proximity to the ABO gene 

Some gene tracks are omitted to improve visualisation 
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rsID  CHR:POS_EA/NEA  GENE  FUNC  EAF_A  EAF_U  EAF_REF  INFO  OR (95% CI)  p  

rs2519093  9:136141870_T/C  ABO  intronic  0.298  0.165  0.182  0.951  2.22 (2.06-2.38)  1.42e-22  

rs532436  9:136149830_A/G  ABO  intronic  0.297  0.165  0.185  0.965  2.21 (2.05-2.37)  2.89e-22  

rs507666  9:136149399_A/G  ABO  intronic  0.297  0.166  0.185  0.965  2.2 (2.04-2.36)  3.77e-22  

rs635634*  9:136155000_T/C  ABO  intergenic  0.302  0.174  0.185  0.977  2.14 (1.98-2.29)  4.47e-21  

rs600038*  9:136151806_C/T  ABO  intergenic  0.316  0.189  0.218  0.965  2.04 (1.88-2.19)  1.57e-19  

rs651007*  9:136153875_T/C  ABO  intergenic  0.316  0.189  0.215  0.971  2 (1.85-2.15)  3.86e-19  

rs579459*  9:136154168_C/T  ABO  intergenic  0.316  0.189  0.215  1.000  1.99 (1.84-2.14)  4.47e-19  

rs649129  9:136154304_T/C  ABO  intergenic  0.316  0.189  0.215  0.988  2 (1.85-2.15)  5.61e-19  

rs495828  9:136154867_T/G  ABO  intergenic  0.316  0.189  0.215  0.964  2 (1.85-2.16)  7.95e-19  

rs550057  9:136146597_T/C  ABO  intronic  0.370  0.241  0.280  0.972  1.93 (1.79-2.08)  2e-18  

rs9411378  9:136145425_A/C  ABO  intronic  0.364  0.236  0.290  0.887  1.99 (1.83-2.14)  7.19e-18  

rs529565  9:136149500_C/T  ABO  intronic  0.448  0.313  0.345  0.976  1.82 (1.68-1.96)  2.67e-17  

rs687289*  9:136137106_A/G  ABO  intronic  0.448  0.315  0.353  0.989  1.81 (1.67-1.95)  4.53e-17  

rs2769071  9:136145974_G/A  ABO  intronic  0.448  0.315  0.350  0.971  1.82 (1.68-1.96)  4.77e-17  

rs505922*  9:136149229_C/T  ABO  intronic  0.447  0.313  0.345  1.000  1.8 (1.66-1.93)  4.82e-17  

rs677355  9:136146046_A/G  ABO  intronic  0.448  0.315  0.353  0.971  1.82 (1.68-1.96)  5e-17  

rs597988  9:136144284_A/T  ABO  intronic  0.448  0.315  0.348  0.992  1.8 (1.67-1.94)  5.1e-17  

rs492488  9:136144960_A/G  ABO  intronic  0.448  0.315  0.350  0.989  1.81 (1.67-1.94)  5.15e-17  

rs582118  9:136145471_G/A  ABO  intronic  0.448  0.315  0.350  0.991  1.8 (1.67-1.94)  5.21e-17  

rs582094  9:136145484_T/A  ABO  intronic  0.448  0.315  0.350  0.990  1.8 (1.67-1.94)  5.27e-17  

rs676996  9:136146077_G/T  ABO  intronic  0.448  0.315  0.353  0.991  1.8 (1.67-1.94)  5.38e-17  

rs676457  9:136146227_T/A  ABO  intronic  0.447  0.315  0.350  0.991  1.8 (1.66-1.94)  6.59e-17  
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rs687621*  9:136137065_G/A  ABO  intronic  0.448  0.315  0.350  1.000  1.79 (1.65-1.93)  7.91e-17  

rs493246  9:136144994_A/G  ABO  intronic  0.448  0.315  0.350  0.999  1.79 (1.65-1.93)  9.06e-17  

rs495203  9:136145240_T/C  ABO  intronic  0.448  0.315  0.350  0.999  1.79 (1.65-1.93)  9.14e-17  

rs514659*  9:136142203_C/A  ABO  intronic  0.448  0.315  0.350  1.000  1.79 (1.65-1.92)  9.26e-17  

rs545971  9:136143372_T/C  ABO  intronic  0.448  0.315  0.350  1.000  1.79 (1.65-1.92)  9.32e-17  

rs612169  9:136143442_G/A  ABO  intronic  0.448  0.315  0.348  1.000  1.79 (1.65-1.92)  9.32e-17  

rs8176663  9:136144427_C/T  ABO  intronic  0.448  0.315  0.350  1.000  1.79 (1.65-1.92)  9.32e-17  

rs491626  9:136144873_T/C  ABO  intronic  0.448  0.315  0.350  1.000  1.79 (1.65-1.92)  9.32e-17  

rs527210  9:136146431_T/C  ABO  intronic  0.446  0.315  0.350  0.977  1.8 (1.66-1.94)  1.06e-16  

rs674302  9:136146664_A/T  ABO  intronic  0.447  0.315  0.350  0.999  1.79 (1.65-1.92)  1.17e-16  

rs554833  9:136147160_T/C  ABO  intronic  0.447  0.315  0.350  0.997  1.79 (1.65-1.92)  1.17e-16  

rs494242  9:136145118_T/C  ABO  intronic  0.466  0.339  0.377  0.985  1.74 (1.6-1.88)  1.48e-15  

rs644234  9:136142217_G/T  ABO  intronic  0.466  0.339  0.377  0.994  1.73 (1.59-1.86)  2.11e-15  

rs8176645  9:136149098_A/T  ABO  intronic  0.451  0.322  0.375  0.735  1.95 (1.78-2.11)  2.23e-15  

rs613534  9:136143120_G/A  ABO  intronic  0.466  0.339  0.377  0.995  1.73 (1.59-1.86)  2.29e-15  

rs543968  9:136143121_C/T  ABO  intronic  0.466  0.339  0.377  0.995  1.73 (1.59-1.86)  2.29e-15  

rs544873  9:136143212_A/G  ABO  intronic  0.466  0.339  0.377  0.995  1.73 (1.59-1.86)  2.29e-15  

rs643434  9:136142355_A/G  ABO  intronic  0.466  0.339  0.377  0.996  1.72 (1.59-1.86)  2.47e-15  

rs657152*  9:136139265_A/C  ABO  intronic  0.466  0.339  0.377  1.000  1.71 (1.58-1.85)  4.92e-15  

rs11244061  9:136153981_T/C  ABO  intergenic  0.176  0.102  0.120  0.947  1.97 (1.78-2.16)  2.44e-12  

rs11244084  9:136191010_T/C  LCN1P2  intergenic  0.159  0.091  0.075  0.850  1.92 (1.72-2.13)  2.5e-10  

rs142956930  9:136143330_G/A  ABO  intronic  0.125  0.066  0.017  0.513  2.99 (2.65-3.34)  5.83e-10  

rs559723  9:136150484_A/G  ABO  intronic  0.392  0.490  0.498  0.988  1.51 (1.37-1.64)  2.03e-09  
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rs616154  9:136150466_C/T  ABO  intronic  0.392  0.491  0.500  0.976  1.51 (1.37-1.64)  2.64e-09  

rs630014*  9:136149722_A/G  ABO  intronic  0.391  0.489  0.495  1.000  1.5 (1.36-1.63)  2.69e-09  

rs630510  9:136149581_A/G  ABO  intronic  0.391  0.489  0.495  0.998  1.5 (1.36-1.63)  2.86e-09  

rs8176681  9:136139754_T/C  ABO  intronic  0.642  0.548  0.592  0.990  1.49 (1.35-1.62)  6.94e-09  

rs2073827  9:136137133_G/C  ABO  intronic  0.642  0.548  0.592  0.989  1.49 (1.35-1.62)  7.75e-09  

rs2073828  9:136137140_G/A  ABO  intronic  0.642  0.548  0.595  0.989  1.49 (1.35-1.62)  8.7e-09  

rs7873635  9:136132012_T/C  ABO  intronic  0.340  0.428  0.383  0.831  1.57 (1.41-1.72)  1.18e-08  

rs8176690  9:136138317_A/G  ABO  intronic  0.642  0.548  0.592  0.980  1.48 (1.34-1.61)  1.34e-08  

rs2073826  9:136136963_G/T  ABO  intronic  0.642  0.548  0.595  0.977  1.48 (1.34-1.61)  1.59e-08  

rs8176715  9:136133148_T/C  ABO  intronic  0.387  0.481  0.410  0.917  1.49 (1.35-1.63)  2.25e-08  

rs8176649  9:136147295_G/A  ABO  intronic  0.661  0.571  0.620  0.992  1.47 (1.34-1.61)  2.31e-08  

rs3124761  9:136339755_C/T  SLC2A6  intronic  0.808  0.877  0.838  0.876  1.7 (1.52-1.89)  2.33e-08  

rs7046674  9:136147012_C/T  ABO  intronic  0.661  0.571  0.620  0.991  1.47 (1.34-1.61)  2.34e-08  

rs8176668  9:136144059_A/T  ABO  intronic  0.661  0.572  0.617  0.977  1.47 (1.34-1.61)  2.41e-08  

rs3124765  9:136328657_C/T  CACFD1  exonic  0.808  0.877  0.839   0.892  1.7 (1.51-1.88)  2.59e-08  

rs3124764  9:136329954_C/T  CACFD1  intronic  0.808  0.877  0.840  0.892  1.7 (1.51-1.88)  2.75e-08  

rs3094379  9:136334910_C/T  CACFD1  UTR3  0.808  0.876  0.838  0.887  1.69 (1.51-1.88)  2.75e-08  

rs7036642  9:136144626_G/A  ABO  intronic  0.661  0.572  0.620  0.985  1.47 (1.33-1.61)  2.78e-08  

rs28645493*  9:136305738_G/C  ADAMTS13  intronic  0.131  0.076  0.098  1.000  1.81 (1.6-2.02)  3.27e-08  

rs4962153*  9:136323754_G/A  ADAMTS13  intronic  0.808  0.877  0.838  0.900  1.68 (1.5-1.87)  3.54e-08  

rs8176682*  9:136139297_C/T  ABO  intronic  0.660  0.572  0.620  0.990  1.46 (1.32-1.6)  4.52e-08  

rs8176691*  9:136138229_C/T  ABO  intronic  0.660  0.572  0.620  0.989  1.46 (1.32-1.6)  4.77e-08  

rs2036914  4:187192481_T/C  F11  intronic  0.386  0.479  0.485  1.000  1.43 (1.3-1.56)  4.79e-08 
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Table 3.7  Significant SNPs in the discovery cohort 
Association testing for 678 CTEPH cases and 1492 healthy controls.  Logistic regression was performed using post-imputation SNP 

dosages (n=7,675,738) assuming an additive model and adjusted for 5 ancestry informative principal components.  * SNPs with an 

asterisk were present on the micro-array chip pre-imputation and those without have been imputed.  The column headings and 

additional details are described in Table 3.6. 
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3.2.3.3  Validation cohort analysis 

The validation cohort included 572 CTEPH cases from other European and US centres 

and the same 1492 healthy controls following quality control and 

imputation.  Association testing was performed as described for the joint analysis and 

discovery cohort.  There were 37 associated SNPs in chromosome 9 (Figure 3.25 and 
Table 3.8).  The associated locus in chromosome 9 was the same as for the joint 

analysis and discovery cohort, with the same lead intronic SNP (rs2519093) in 

ABO.  The odds ratio for the lead SNP is higher in the validation cohort than in the 

discovery cohort (OR: 2.2 vs. 2.7) and there is a corresponding higher effect allele 

frequency in the CTEPH group (EAF: 0.337 vs. 0.298).  The significant chromosome 

4 locus identified in the discovery cohort was not replicated in the validation cohort. 
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Figure 3.25  Associated loci in the validation cohort 
Association testing for 572 CTEPH cases and 1492 healthy controls.  Logistic 

regression was performed using post-imputation SNP dosages (n=7,675,738) 

assuming an additive model and adjusted for 5 ancestry informative principal 

components. 

A Manhattan plot of the discovery cohort associations 

B Regional association plot of the chromosome 9 locus in proximity to the ABO gene 

Some gene tracks are omitted to improve visualisation. 
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rsID  CHR:POS_EA/NEA  GENE  FUNC  EAF_A  EAF_U  EAF_REF  INFO  OR (95% CI)  p  

rs2519093  9:136141870_T/C  ABO  intronic  0.337  0.165  0.182  0.951  2.72 (2.48-2.96)  2.92e-16  

rs532436  9:136149830_A/G  ABO  intronic  0.338  0.165  0.185  0.965  2.72 (2.48-2.96)  2.95e-16  

rs507666  9:136149399_A/G  ABO  intronic  0.338  0.166  0.185  0.965  2.72 (2.48-2.96)  2.98e-16  

rs635634*  9:136155000_T/C  ABO  intergenic  0.343  0.174  0.185  0.977  2.65 (2.41-2.89)  1.64e-15  

rs600038  9:136151806_C/T  ABO  intergenic  0.348  0.189  0.218  0.965  2.37 (2.14-2.61)  7.18e-13  

rs651007*  9:136153875_T/C  ABO  intergenic  0.348  0.189  0.215  0.971  2.34 (2.1-2.57)  1.07e-12  

rs579459*  9:136154168_C/T  ABO  intergenic  0.348  0.189  0.215  1.000  2.32 (2.09-2.55)  1.11e-12  

rs495828  9:136154867_T/G  ABO  intergenic  0.348  0.189  0.215  0.964  2.34 (2.11-2.58)  1.43e-12  

rs649129  9:136154304_T/C  ABO  intergenic  0.347  0.189  0.215  0.988  2.33 (2.09-2.56)  1.51e-12  

rs550057  9:136146597_T/C  ABO  intronic  0.405  0.241  0.280  0.972  2.22 (2-2.45)  4.19e-12  

rs9411378  9:136145425_A/C  ABO  intronic  0.398  0.236  0.290  0.887  2.28 (2.04-2.52)  2.02e-11  

rs582094  9:136145484_T/A  ABO  intronic  0.482  0.315  0.350  0.990  1.95 (1.74-2.16)  5.44e-10  

rs505922*  9:136149229_C/T  ABO  intronic  0.482  0.313  0.345  1.000  1.94 (1.73-2.15)  5.45e-10  

rs2769071  9:136145974_G/A  ABO  intronic  0.482  0.315  0.350  0.971  1.96 (1.75-2.18)  5.82e-10  

rs677355  9:136146046_A/G  ABO  intronic  0.482  0.315  0.353  0.971  1.96 (1.75-2.18)  5.83e-10  

rs676996  9:136146077_G/T  ABO  intronic  0.482  0.315  0.353  0.991  1.95 (1.73-2.16)  5.84e-10  

rs676457  9:136146227_T/A  ABO  intronic  0.482  0.315  0.350  0.991  1.95 (1.73-2.16)  5.84e-10  

rs582118  9:136145471_G/A  ABO  intronic  0.482  0.315  0.350  0.991  1.94 (1.73-2.16)  5.88e-10  

rs529565  9:136149500_C/T  ABO  intronic  0.481  0.313  0.345  0.976  1.95 (1.74-2.16)  5.99e-10  

rs597988  9:136144284_A/T  ABO  intronic  0.482  0.315  0.348  0.992  1.94 (1.73-2.15)  6.37e-10  

rs492488  9:136144960_A/G  ABO  intronic  0.482  0.315  0.350  0.989  1.94 (1.73-2.15)  6.81e-10  
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rs687289*  9:136137106_A/G  ABO  intronic  0.482  0.315  0.353  0.989  1.94 (1.73-2.15)  8.56e-10  

rs674302  9:136146664_A/T  ABO  intronic  0.482  0.315  0.350  0.999  1.92 (1.71-2.13)  9.11e-10  

rs493246  9:136144994_A/G  ABO  intronic  0.482  0.315  0.350  0.999  1.92 (1.71-2.13)  9.16e-10  

rs495203  9:136145240_T/C  ABO  intronic  0.482  0.315  0.350  0.999  1.92 (1.71-2.13)  9.17e-10  

rs554833  9:136147160_T/C  ABO  intronic  0.482  0.315  0.350  0.997  1.92 (1.71-2.13)  9.53e-10  

rs514659*  9:136142203_C/A  ABO  intronic  0.482  0.315  0.350  1.000  1.92 (1.71-2.13)  9.97e-10  

rs545971  9:136143372_T/C  ABO  intronic  0.482  0.315  0.350  1.000  1.92 (1.71-2.13)  1e-09  

rs612169  9:136143442_G/A  ABO  intronic  0.482  0.315  0.348  1.000  1.92 (1.71-2.13)  1e-09  

rs8176663  9:136144427_C/T  ABO  intronic  0.482  0.315  0.350  1.000  1.92 (1.71-2.13)  1e-09  

rs491626  9:136144873_T/C  ABO  intronic  0.482  0.315  0.350  1.000  1.92 (1.71-2.13)  1e-09  

rs11244061  9:136153981_T/C  ABO  intergenic  0.199  0.102  0.120  0.947  2.43 (2.15-2.72)  1.04e-09  

rs527210  9:136146431_T/C  ABO  intronic  0.481  0.315  0.350  0.977  1.93 (1.72-2.15)  1.08e-09  

rs687621*  9:136137065_G/A  ABO  intronic  0.482  0.315  0.350  1.000  1.92 (1.71-2.13)  1.16e-09  

rs558240*  9:136157133_A/G  ABO  intergenic  0.511  0.402  0.405  1.000  1.77 (1.58-1.97)  1.54e-08  

rs8176645  9:136149098_A/T  ABO  intronic  0.478  0.322  0.375  0.735  2.05 (1.8-2.3)  2.98e-08  

rs142956930  9:136143330_G/A  ABO  intronic  0.139  0.066  0.017  0.513  4.35 (3.82-4.87)  4.18e-08 

 

Table 3.8  Significant SNPs in the validation cohort 
Association testing for 572 CTEPH cases and 1492 healthy controls.  Logistic regression was performed using post-imputation 

SNP dosages (n=7,675,738) assuming an additive model and adjusted for 5 ancestry informative principal components.  * SNPs 

with an asterisk were present on the micro-array chip pre-imputation and those without have been imputed.  The column headings 

and additional details are described in Table 3.6. 
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3.2.3.4  Genotyping quality of the significant GWAS associations 

To confirm that the significant associations described in the ABO locus and the F11 

locus (for the discovery cohort analysis) were adequately genotyped, the micro-array 

clustering plots were examined.  Prior to imputation, association testing was 

performed in a joint analysis of all samples (CTEPH cases=1250, Healthy 

controls=1492) and 640,744 SNPs (275,255 SNPs were excluded by a MAF threshold 

of <1%).  Logistic regression adjusted for 5 ancestry informative principal components 

identified the lead SNP in these two regions as rs635634 (9:136155000_T/C, OR 2.34, 

p=5.71x10-30) and rs2289252 (4:187207381_T/C, OR=1.34, p=7.97x10-7) (Table 3.9 

and Figure 3.26).  Micro-array clustering was adequate for these two SNPs, which 

confirmed that the associations were not due to genotyping errors (Figure 3.27). 
 

rsID CHR:POS_EA/NEA GENE FUNC OR (95% CI) P 
rs635634  9:136155000_T/C ABO intergenic 2.34 (2.19-2.48) 5.71e-30 

rs651007  9:136153875_T/C ABO intergenic 2.12 (1.98-2.25) 9.08e-26 

rs579459  9:136154168_C/T ABO intergenic 2.12 (1.98-2.25) 9.08e-26 

rs505922  9:136149229_C/T ABO intronic 1.88 (1.75-2) 6.75e-23 

rs687289  9:136137106_A/G ABO intronic 1.86 (1.73-1.98) 3.31e-22 

rs514659  9:136142203_C/A ABO intronic 1.86 (1.74-1.99) 1.92e-22 

rs687621  9:136137065_G/A ABO intronic 1.86 (1.74-1.99) 2.27e-22 

rs657152  9:136139265_A/C ABO intronic 1.76 (1.63-1.88) 2.54e-19 

rs630014  9:136149722_A/G ABO intronic 1.52 (1.4-1.64) 8.23e-12 

rs8176682  9:136139297_C/T ABO intronic 1.48 (1.36-1.6) 2.18e-10 

rs4962153  9:136323754_G/A ADAMTS13 intronic 1.66 (1.5-1.82) 5.44e-10 

rs28645493  9:136305738_G/C ADAMTS13 intronic 1.86 (1.66-2.05) 3.44e-10 

rs558240  9:136157133_A/G ABO intergenic 1.4 (1.29-1.52) 8.74e-09 

 

Table 3.9  Significant SNPs in the pre-imputation GWAS analysis 

Association testing for 1250 CTEPH cases and 1492 healthy controls prior to 

imputation using the SNPs available on the original micro-array chip (n=640,744 SNPs 

following QC).  Logistic regression was performed using pre-imputation SNPs 

assuming an additive model and adjusted for 5 ancestry informative principal 

components.  The column headings and additional details are described in Table 3.6. 
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Figure 3.26  Case-control association testing pre-imputation 

Analysis of 1250 CTEPH cases (discovery and validation cohorts combined), 1492 

healthy controls and 640,744 SNPs.  Logistic regression was performed using pre-

imputation SNPs assuming an additive model and adjusted for 5 ancestry informative 

principal components.  A p-value of <5x10-8 was considered genome-wide significant 

(dotted grey line B).  Genomic inflation factor (lambda)=1.05.   

A Quantile-quantile (QQ) plot of the observed and expected p-values. 

B Manhattan plot of p-values plotted against genomic position. 

P-values are transformed to a -log10 scale. 
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Figure 3.27  Micro-array clustering plots for the lead SNP associations 

A, B and C micro-array cluster plots for the lead SNP association rs635634 in 

chromosome 9 prior to imputation from a joint analysis. 

D, E and F micro-array cluster plots for the lead SNP association rs2289252 in 

chromosome 9 prior to imputation from a joint analysis. 

Micro-array plot interpretation is described in Figure 3.9.  

 

 

3.2.4  The ABO association 

The ABO locus was associated with CTEPH in the discovery, validation and joint 

analysis.  ABO groups have been associated with CTEPH in international 

observational studies with an over-representation of non-O blood groups.(68)  There 

are different risk associations within the non-O blood groups for venous 

thromboembolism.  The A1 subtype has a higher VTE risk association than the A2 

subgroup, however both would be classified as blood group A on serological 

testing.(253)  Reconstructing genetic ABO groups enabled investigation of CTEPH 

associations with comprehensive ABO subgroups. 

 

A B C

D E F

Batch1 Batch2 Batch3
rs635634 rs635634 rs635634

rs2289252 rs2289252 rs2289252
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The allele frequencies of the 4 “tagging" SNPs used to reconstruct the ABO subgroups 

are shown in Table 3.10.  The SNP associated with the A1 ABO group (rs507666) is 

over-represented in CTEPH compared with study healthy controls and a European 

(non-Finnish) reference population (EAF: 0.316 vs. 0.166 vs. 0.185 respectively) 

(Table 3.10).  This SNP is also the third most significant association in the joint 

analysis (OR (95% CI): 2.38 (2.23-2.53), p=8.89x10-31) and highly correlated with the 

lead SNP (LDlink: R2 = 0.991, p<0.001, European (non-Finnish)).  Conversely, the 

SNP that tags the O ABO group is under-represented in CTEPH compared with 

healthy controls and a reference population (EAF: 0.537 vs. 0.685 vs. 0.647 

respectively) (Table 3.10).  The SNPs tagging the A2 and B subgroups have similar 

allele frequencies in CTEPH and healthy controls. 

 

Reconstructing ABO subgroups resulted in 10 genotype groups (A1A1, A1A2, A1B, 

A1O, A2A2, A2B, A2O, BB, BO, OO), from which blood groups A, B, AB and O were 

inferred.  The A1 group was enriched in CTEPH compared with healthy controls 

(Figure 3.28A).  The inferred A blood group occurred in 719 (59%) CTEPH cases and 

567 (38%) healthy controls (Figure 3.28B).  The inferred O blood group was under-

represented in CTEPH (317 (26%)) compared with healthy controls (697 (47%)). 

 

The risk of CTEPH differed within the comprehensive genetic non-O groups with the 

highest risk in the A1A1 group (OR (95% CI) 4.39 (2.92-6.69), p<0.001) and the 

subgroups enriched by A1 (Figure 3.29A).  Interestingly, the risk of CTEPH was not 

increased in the largest A2 enriched group (A2O: OR (95% CI) 1.11 (0.80-1.53), 

p=0.544) but was increased in the equivalent A1 group (A1O: 3.04 (2.46-3.75), 

p<0.001).  The risk of CTEPH was increased in the largest B enriched subgroup (BO: 

1.66 (1.22-2.27), p<0.001) but the magnitude was less than the A1 enriched groups.  

The risk of CTEPH was increased in the A, B and AB groups when they were inferred 

from the 10 comprehensive genetic ABO genotypic groups (Figure 3.29B).  The 

differential effects of A1 and A2 on CTEPH risk results in a lower odds ratio for the A 

groups (containing A1 and A2) than described for A1 enriched subgroups in Figure 

3.29A. 
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Genetic ABO group rsID CHR:POS_EA/NEA EAF_A EAF_U EAF_REF OR (95% CI) p  

O rs687289 9:136137106_G/A 0.537 0.685 0.647 0.53 (0.50-0.57)  1.10e-22 

A1 rs507666 9:136149399_A/G  0.316  0.166 0.185 2.38 (2.23-2.53)  8.89e-31 

A2 rs8176704 9:136135552_A/G  0.062 0.072 0.090 0.88 (0.64-1.13)  0.324 

B rs8176746 9:136131322_T/G 0.077  0.073 0.066 1.04 (0.82-1.27)  0.711 

 

Table 3.10  Effect allele frequencies for the tagging SNPs used to reconstruct ABO subgroups  

The odds ratios and allele frequencies are for the effect allele which tags the ABO subgroup (see Table 2.1 Material and Methods).  

Consequently, for rs687289 the effect and non-effect alleles are reversed compared to those reported in Tables 3.6 - 3.8.  The 

column headings and additional details are described in Table 3.6. 
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Figure 3.28  Genetic ABO groups in CTEPH and healthy controls 
A The percentages of the comprehensive genotypic ABO groups 

B The percentages of the inferred A, AB, B and O ABO groups 

The numbers in each group are shown in Figure 3.29. 

 

 

ABO group frequencies can vary by populations and subpopulations.(254)  To 

investigate whether the ABO association was being driven by allele frequency 

differences in certain subpopulations, the genetic ABO group frequencies were 

subdivided by centre (Figure 3.30).  In CTEPH, the over representation of the A group 

and the under representation of the O ABO group was consistent across all centres. 
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Figure 3.29  Genetic ABO groups and CTEPH risk 
Odds ratios for CTEPH (with respect to healthy controls) in different genetic ABO 

groups were calculated using logistic regression and adjusted for 5 ancestry 

informative principal components. 

A Comprehensive genetic ABO groups 

B 4 inferred genetic ABO groups (O, A, AB and B) 

Of 1492 healthy controls and 1250 CTEPH cases, genetic ABO groups could not be 

inferred for n=22 and n=32 respectively. 

 

 

A

B
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Figure 3.30  The percentage of genetic ABO groups in recruiting study centres 
WTCCC (Wellcome Trust Case Control Consortium, the healthy control group) 

 

 

3.2.5  Fine mapping 

3.2.5.1  Credible set analysis 
A Bayesian analysis was performed for the combined cohort (discovery and validation) 

and used to calculate a 99% credible SNP set (Section 2.1.9.1) (Table 3.11 and 

Figure 3.31).  This comprised the lead SNP (rs2519093) (in the frequentist association 

testing) and the next two most significant SNPs (rs532436 and rs507666).  Rs507666 

is the SNP used to tag the A1 genetic ABO group described in Section 3.2.4.   

 

There is a high degree of correlation between rs2519093, rs532436 and rs507666 

(R2=1.00-0.992, European (non-Finnish) 1000Genomes phase 3 data). 
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rsID  CHR:POS_EA/NEA BF PP CumPP Rank  
rs2519093  9:136141870_T/C  2.59e+26  4.60e-01  0.460  1  

rs532436  9:136149830_A/G  2.03e+26  3.60e-01  0.820  2  

rs507666  9:136149399_A/G  1.01e+26  1.79e-01  0.999  3  

rs635634  9:136155000_T/C  6.15e+23  1.09e-03  1.000  4  

rs600038  9:136151806_C/T  8.52e+21  1.51e-05  1.000  5 

 

Table 3.11  Fine mapping: 99% credible SNP set for the chromosome 9 
association 
Bayesian analysis was performed in SNPtest as described in Section 2.1.9.1.  The 

posterior probabilities were then calculated by dividing the Bayes factor for each SNP 

(within a 200kb region of the peak associated SNP) by the sum of all Bayes factors for 

that region (5.64e+26).  Posterior probabilities were ranked in descending order and 

the SNPs included in the 99% cumulative sum comprised the 99% credible set.  Bayes 

factors and posterior probabilities are displayed using exponential notation.  BF 

(Bayes factor), PP (posterior probability), CumPP (cumulative posterior probability). 
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Figure 3.31  Regional association plot of 99% credible SNP set for the 
chromosome 9 association 
The 3 SNPs that comprise the 99% credible set are named and highlighted with the 

blue rectangle.   

 

 

3.2.5.2  Genomic functional annotation 

The fumaGWAS tool was used to visualise functional annotations for associated loci, 

using a range of data resources that are described in Section 2.1.9.2.  The lead SNP 

(rs2519093) had a CADD score of 6.85 (unlikely to be highly deleterious), no available 

evidence of regulatory elements (regulomeDB score=7) and is an eQTL for the SURF1 

gene in the atrial appendage of the heart (p = 7.02x10-8, normalised effect size (NES) 

= -0.380, GTEx v7 data) (Figure 3.32).  rs532436 and rs507666 have CADD scores 

suggesting low deleteriousness (3.11 and 4.11 respectively) and regulomeDB scores 

suggesting minimal evidence of regulatory elements (3a and 4 respectively, see 

Figure 3.32 for explanation).  Both rs532436 (p = 6.95x10-8, NES = -0.371) and 

rs507666 (p = 6.95x10-8, NES=-0.371) are also eQTLs for the SURF1 gene in the 

atrial appendage of the heart. 
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Figure 3.32  Fine mapping: functional annotations for the 99% credible SNP set 
in chromosome 9 
The top panel shows the ABO associated locus with correlated SNPs (LD calculated 

from 1000 Genomes phase 3 data). 
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The CADD score is shown in the second track with a higher score indicating increased 

likelihood of deleteriousness.   

The third track displays the regulomeDB score (range 1-7) for SNPs, with a lower 

score indicating greater evidence of regulatory elements. 

Cis-expression quantitative trait loci (eQTL) are shown in the fourth panel for selected 

tissues (GTEx v7: lymphocytes, whole blood, aorta, coronary artery, tibial artery, heart 

(atrial appendage, left ventricle), liver, lung, spleen).  Different colours represent 

different tissue/cell types.  P-values on the y-axis are -log10 scale. 

There are no chromatin interactions present for genomic region in the selected tissues 

(aorta, left ventricle, liver, lung, right ventricle, spleen), displayed in the final, empty 

track (Hi-C data). 

SNPs coloured grey are those not in LD (R2 < 0.1) with lead SNP (top panel) or those 

than were not used for the mapping of the respective tracks.  

 

 

Additionally, rs507666 was associated with the expression of SURF1 in left ventricle 

and lung tissues (p = 1.56x10-5, NES = -0.288 and p = 2.09 x10-5, NES = -0.190, 

respectively).  

 

There were no chromatin interactions present for the genomic region containing the 

99% credible SNP set (Figure 3.32) in selected tissues (aorta, left ventricle, liver, lung, 

right ventricle, spleen) using Hi-C (a chromosome conformation capture method) data 

via fumaGWAS.(255) 

 

There were no additional effects when visualising chromatin interactions and the cis-

eQTLs over a wider genomic range (by chromosome) (Figure 3.33A and 3.33C).  The 

lead SNP (rs2036914) in the chromosome 4 locus (discovery cohort) was an eQTL for 

the F11 gene (p = 3.74, NES = -0.247).  Rs4253409 is moderately correlated 

(R2=0.615) with the lead chromosome 4 SNP and is an eQTL for the KLKB1 gene in 

aortic and tibial artery tissues (Figure 3.33B and 3.33D). 
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Figure 3.33  Circos plots of chromatin interactions and eQTLs for the 
associations in chromosome 9 (combined analysis) and chromosome 4 
(discovery cohort) 
The outer layer displays a Manhattan plot of SNPs and the associated loci in A 

chromosome 9 (combined analysis) and B chromosome 4 (discovery cohort).  The 

next layer (yellow or red) is the chromosome co-ordinates with the risk locus in blue.  

The inner circle displays the eQTLs (green) and chromatin interactions (orange) for 

the mapped genes.  When a gene is mapped to both, it is coloured red.  Zoomed in 

C D

A B
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views of A and B are shown in C and D respectively.  The chromatin interactions use 

Hi-C data and the eQTLs are from GTEx v7.(255, 256)   

 

 

3.2.6  Gene-based and gene-set analysis 
Genome-wide association testing was repeated with genes rather than individual SNP 

markers using MAGMA via fumaGWAS.(226)  SNPs were mapped to 19,311 protein 

coding genes and association testing was performed to assess the joint effect of 

multiple SNP markers across genes.  The FGG and CACFD1 genes were statistically 

significant across the genome when adjusting for multiple testing (Figure 3.34).  

Importantly, ABO was not included in the genes that were tested as it was unavailable 

on the panel of genes used by fumaGWAS.  The CACFD1 gene is ~200kb 

downstream of ABO and in close proximity to ADAMTS13, which was shown to be in 

moderate-low LD with ABO (Section 3.2.3.1.3).  Furthermore, SNPs in the CACFD1 

are associated with CTEPH in the joint analysis (Table 3.6), but this association is not 

independent when a conditional analysis is performed (Figure 3.23).  Consequently, 

the CACFD1 gene association is likely to be a proxy association of ABO. 

 

 
Figure 3.34  Gene-based association testing: combined group (discovery and 
validation cohort) 
Gene-based association was performed using MAGMA via fumaGWAS for 1250 

CTEPH patients and 1492 healthy controls.  SNPs (n=7,675,738) were mapped to 

19,311 protein coding genes.  MAGMA performed multiple regression (SNP-wise 

model) using the summary statistics data from the combined GWAS analysis 
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described in Section 3.2.3.1.2.  The horizontal red line represents a genome-wide 

significance threshold of p=2.59x10-6 (0.05/19,311). 

 

 

Gene-set analysis was then performed utilising the gene-based p-values for 4,728 

curated gene sets and 6,166 gene ontology terms.(221)  The most significantly 

associated gene-set was for cardiac muscle contraction however, this was not 

statistically significant when adjusted for multiple testing (Table 3.12).  The most 

associated tissue in the MAGMA tissue expression analysis was whole blood, followed 

by atrial appendage and left ventricle of the heart (Figure 3.35).  No tissue was 

significantly associated after adjustment for multiple testing. 

 
Gene Set N 

genes 
Beta P Pbon 

Curated_gene_sets: 
kegg_cardiac_muscle_contraction  

72 0.364 6.08e-5 0.647 

GO_bp: 
go_cytoplasmic_translation  

39 0.452 1.12e-4 1.000 

Curated_gene_sets: 
korkola_embryonal_carcinoma_dn  

12 0.877 1.78e-4 1.000 

Curated_gene_sets: 
biocarta_intrinsic_pathway  

23 0.581 2.18e-4 1.000 

GO_bp: 
go_regulation_of_amine_transport  

71 0.339 2.34e-4 1.000 

Curated_gene_sets: 
creighton_endocrine_therapy_resistance_5  

460 0.135 3.04e-4 1.000 

Curated_gene_sets: 
missiaglia_regulated_by_methylation_up  

117 0.256 4.33e-4 1.000 

Curated_gene_sets: 
korkola_seminoma_dn  

11 0.827 4.73e-4 1.000 

Curated_gene_sets: 
kondo_colon_cancer_hcp_with_h3k27me1  

26 0.53 5.24e-4 1.000 

Curated_gene_sets: 
matzuk_meiotic_and_dna_repair  

38 0.386 6.21e-4 1.000 

 

Table 3.12  MAGMA gene-set analysis 
MAGMA gene-set analysis was performed via fumaGWAS.  P-values from the gene-

based analysis were utilised for an analysis with curated gene sets and GO terms 

obtained from MsigDB.  Only the top 10 most significant gene-sets are displayed.  No 

gene-set was significantly associated when adjusted for multiple testing.  N genes 

(number of genes in the gene-set), Pbon (p-value adjusted for Bonferroni correction). 
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Figure 3.35  MAGMA tissue expression analysis 
MAGMA tissue expression analysis was performed using the p-values from the gene-

based analysis and tissue specific gene expression values from GTEx v7 for 53 

general tissue types.  Average gene expression values are log2 transformed.(221)  No 

tissues were significantly associated when adjusted for false discovery rate.  

 

 

3.2.7 GWAS putative associations 

To assess putative associations, loci with a higher p-value threshold (p<1x10-5) are 

summarised in Table 3.13.  These regions may contain genuine SNP-trait 

associations that are currently under-powered with current sample numbers.  Care 

should be taken in interpreting the putative associations, as lowering the p-value 

threshold also increases false positive associations.  
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rsID CHR:POS_EA/NEA GENE FUNC EAF_A EAF_U EAF_REF INFO OR (95% CI) p 

rs7594443 2:206668450_C/T NRP2 intergenic 0.027       0.047 0.037 0.766 2.33 (1.97-2.69) 3.71e-06 

rs6794945 3:133518463_C/T SRPRB intronic 0.504        0.550 0.666 0.695 1.68 (1.47-1.89) 1.25e-06 

rs13130318 4:155538470_G/T FGG intergenic 0.318        0.241 0.219 0.935 1.41 (1.28-1.54) 4.45e-07 

rs264994 5:79165176_T/C CMYA5 / MTX3 intergenic 0.026       0.046 0.067 0.730 2.43 (2.06-2.80) 2.49e-06 

rs678409 6:74299575_C/T SLC17A5 intergenic 0.601        0.655 0.624 0.928 1.34 (1.22-1.46) 3.79e-06 

rs117853706 9:6972010_G/A KDM4C intronic 0.989       0.980 0.968 0.809 3.62 (3.05-4.19) 9.80e-06 

rs72784778 10:31961058_T/A RP11-472N13.3 intergenic 0.970      0.953 0.975 0.916 2.17 (1.83-2.50) 5.79e-06 

rs12413249 10:6714659_C/T RP11-554I8.1 intergenic 0.783        0.831 0.801 0.992 1.41 (1.25-1.56) 9.59e-06 

rs7297105 12:127495362_C/T RP11-575F12.1 intronic 0.411        0.468 0.430 0.719 1.42 (1.28-1.56) 1.02e-06 

rs73324509 14:90404239_T/G EFCAB11 intronic 0.014       0.031 0.026 0.944 2.72 (2.27-3.17) 9.71e-06 

rs142103720 18:33140192_G/A GALNT1 intergenic 0.984       0.969 0.975 0.780 2.74 (2.30-3.18) 8.45e-06 

 

Table 3.13  Putative GWAS associations: joint analysis group 
Putative associations (p<1x10-5) from the analysis described in Section 3.2.3.1.2 (1250 CTEPH patients, 1492 healthy controls and 

7,675,738 SNPs).  The associations previously described in chromosome 9 (ABO) and 4 (F11) are not included in the table.  Only 

the lead (most significant) SNP is shown.  The column headings and additional details are described in Table 3.6.  Gene names 

starting with “RP11” are long non-coding RNAs. 
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3.3  Discussion 

 

3.3.1  Overview 
This multi-centre international GWAS is the largest study undertaken in CTEPH.  The 

ABO locus was identified as the most significant common variant genetic association 

in CTEPH in both a discovery and validation cohort.  There was a putative association 

in the discovery cohort in the F11 gene locus.  The A1 subgroup of ABO was enriched 

in CTEPH and this may result in multiple functional consequences given the pleiotropy 

displayed by ABO.  

 

3.3.2  Associated Loci 
3.3.2.1  The ABO association 
The most significant SNP associated with CTEPH is an intronic variant in the ABO 

gene (rs2519093, OR (95% CI) = 2.4 (2.3-2.5), p=3.42x10-31).  The effect allele is over-

represented in CTEPH cases compared with healthy controls in the current study and 

a reference European population (0.316, 0.165 and 0.182 respectively).  A conditional 

analysis did not identify any additional variants that were independently associated 

with CTEPH at the chromosome 9 locus.  Fine mapping using a Bayesian analysis 

identified a 99% credible set of 3 SNPs (rs2519093, rs507666 and rs532436), which 

are most likely to contain the causative variant.  The limitation of this analysis is that it 

assumes the causative SNP is present in the region tested and that only one variant 

is causative.(257)  One of these SNPs (rs507666) is the variant used to “tag” the A1 

genetic ABO group.  

 

When genetic ABO subgroups were reconstructed, the risk of CTEPH was increased 

for the A1 enriched groups, which was most marked in the A1A1 group (OR (95% CI) 

4.39 (2.92-6.69), p<0.001). CTEPH risk was also increased to a lesser degree in group 

B individuals but the A2 group was not associated.  This is consistent with VTE, which 

also exhibits an association with A1 enriched ABO subtypes but not with the A2 group. 

(253)  Individuals possessing A1 enriched ABO groups have higher plasma levels of 

VWF and factor VIII compared with the O and A2 enriched groups.(253)  This 

functional consequence of ABO may be an aetiological mechanism in CTEPH. 
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The ABO groups vary by the ABH(O) antigens (oligosaccharide residues) and are 

found on red blood cells, platelets and VWF, a protein involved in haemostasis.(80)  

Genetic variation in ABO has been associated with ischaemic stroke, coronary artery 

disease and venous thromboembolism.(70, 258)  Whilst the exact mechanism linking 

ABO antigen groups to thrombotic risk has not been defined, it may be mediated by 

VWF levels, which are 25% lower in O group individuals.(121)  The relationship 

between ABO groups and the ADAMTS13-VWF axis is discussed further in Chapter 
4. 

 

ABO is likely to have additional functional effects as it is a pleiotropic locus that is 

associated with a large number of diseases and traits.  There are 99 studies, 236 

associations and 78 traits related to the ABO locus recorded in the GWAS Catalog 

(accessed March 2019).(140)  The ABO-disease associations include: VTE (259), 

CAD (260), ischaemic stroke (261), allergy (262) and type 2 diabetes mellitus (263).  

Additional traits associated with ABO include: coagulation factor levels (VWF and 

factor VIII) (264), alkaline phosphatase (265), blood cell trait variation (266), P- and E-

selectins (267, 268), lipid traits (269), endothelial growth factors (270) and Intercellular 

Adhesion Molecule 1 (ICAM-1) (271).  The GWAS Catalog traits associated with the 

3 SNPs comprising the CTEPH GWAS 99% credible set (rs2519093, rs507666 

and rs532436) include VTE, CAD, ICAM-1, and lipid levels.(140)   

 

A recent study charting the human plasma proteome identified 64 plasma protein 

levels that were associated with ABO variants. (272)  Of these associations, there 

were 12 in the 3 SNPs (rs2519093, rs532436 and rs507666) that comprised the 99% 

credible set in the CTEPH GWAS.  The protein levels influenced by these ABO 

variants included: P- and E-selectins, Interleukin-3 receptor subunit alpha (IL3RA), 

Vascular endothelial growth factor receptor 3 (FLT4), Protein FAM3B (FAM3B), 

Thrombospondin type-1 domain-containing protein 1 (THSD1), Insulin receptor (INSR) 

and ICAM-1.(272)  ABO is a pleiotropic locus that may have a wide range of functional 

consequences that result in thrombotic disease including CTEPH. 

 

3.3.2.2  The F11 putative association 
There was a significant association in the discovery cohort with a F11 gene intronic 

variant (rs2036914, OR (95% CI) = 1.43 (1.30-1.56), p = 4.79x10-8) that was not 
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replicated in the validation cohort.  This SNP has also been associated with venous 

thromboembolism and activated partial thromboplastin time.(70, 273)  

 

Coagulation factor XI (FXI) is a component of the blood coagulation pathway that acts 

downstream of factor XII, and is able to activate factors FX, FV and FVIII.(274)  FXI 

has a significant role in promoting thrombosis and is associated with ischaemic stroke 

and myocardial infarction in addition to VTE.(274) 

 

3.3.3  Genomic functional annotations, gene-set and gene-based analyses 
Genomic functional annotations were utilised to investigate the lead ABO SNP 

(rs2519093).  This variant is an expression quantitative trait locus (eQTL) for the 

Surfeit locus protein 1 (SURF1)  gene on chromosome 9 particularly in the atrial 

appendage of the heart.  SURF1 is associated with oxidative phosphorylation, which 

has been implicated in the pathobiology of other forms of PH.(275)  Right ventricular 

adaptation is important in CTEPH and therefore alterations in the oxidative 

phosphorylation pathways of the heart is a plausible pathobiological mechanism in 

CTEPH.(276) 

 

Exploratory gene-set and gene-based analysis was performed as an alternative to 

single variant association testing due to the studies small sample size and relative lack 

of power.  Gene-based analysis identified significant associations in the Fibrinogen 

Gamma (FGG) and calcium channel flower domain containing 1 (CACFD1) genes.  

The CACFD1 association was unlikely to have been independent from ABO and 

therefore not unique.  FGG has been associated with venous thromboembolism and 

is discussed in Section 3.3.4.1.  There were no significant associations for the gene-

set and tissue expression analyses. 

 

3.3.4  Absence of genetic associations 
As well as the presence of genetic associations, the absence of associations in the 

CTEPH GWAS may be also informative.  SNPs in FGG and genetic variants that occur 

in other types of pulmonary hypertension which have previously been investigated in 

CTEPH are discussed in Sections 3.3.4.1 and 3.3.4.2.  Genetic variants in the CTEPH 

GWAS that relate to previously described VTE associated variants and warfarin 

metabolism associations are investigated in Chapter 5.   
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3.3.4.1  The FGA-FGB-FGG locus 
No single variant in the FGA-FGB-FGG locus was associated with CTEPH in the 

GWAS.  A SNP in the FGA gene (rs6050; missense variant) encoding the fibrinogen 

Aα chain protein has previously been associated with CTEPH.(42, 66)  

Suntharalingam et al, described that the rs6050 polymorphism was over-represented 

in 214 CTEPH cases compared with 200 healthy controls.(66)  A subsequent study by 

Li et al in 101 patients with CTEPH, 102 with pulmonary embolism and 108 healthy 

controls confirmed that rs6050 was overrepresented in CTEPH compared with healthy 

controls but not in PE.(42)  Furthermore, fibrin resistance has been demonstrated to 

vary in CTEPH patients with rs6050 genotype and this SNP variant is associated with 

clot structure that may predispose to embolisation.(42, 277)  These CTEPH studies 

were limited by small sample sizes (for genetic studies) and an inability to adjust for 

important potential confounding factors including population structure. 

 

Rs6050 was poorly imputed in the current study and therefore not included in the 

CTEPH GWAS analysis.  However, rs6050 is highly correlated (LDlink: R2 = 0.872, 

p<0.001, European (non-Finnish)) with rs13130318 (OR (95% CI) = 1.41 (1.28-1.54), 

p=4.45x10-7) a putative CTEPH association (Table 3.13).  Furthermore, rs6050 is 

highly correlated with rs2066865 (R2 = 0.879) which is associated with VTE in a GWAS 

meta-analysis (Chapter 5, Table 5.2).  The absence of an FGA-FGB-FGG locus 

association using single variant GWAS statistical testing may reflect a lack of study 

power.  There is putative evidence of an association between CTEPH and the FGA-

FGB-FGG locus when a higher p-value threshold (p<1x10-5) is applied or when 

utilising gene-based analysis.  Gene-based analysis has the advantage that less 

statistical tests are performed by grouping variants into genes which can increase 

power to detect associations compared with single-variant analysis.(226)  They are 

limited by assigning non-coding variants to adjacent genes, which may not be the 

causal variant/gene is some circumstances.(278)  Nevertheless, the putative 

association in the single-variant GWAS analysis and the gene-based significance of 

the FGA-FGB-FGG suggest that this is a likely association that may become 

significant as sample size increases.  
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3.3.4.2  Pulmonary hypertension related genes in CTEPH 

Genetic variants that occur in other types of pulmonary hypertension have been 

previously investigated in CTEPH and are summarised in Section 1.3.3.  In the 

CTEPH GWAS, there is no association with common variants in these PH related 

genes.  However, many of the PH associated variants are rare / very rare and would 

not be included in this GWAS analysis.  Previous CTEPH studies that have reported 

genetic variant associations have used a candidate gene / variant approach and 

methodologies that may have resulted in false positive associations.(131)  

Alternatively, some genetic variants associated with CTEPH may be specific to the 

population being studied and their absence in the current study may be a consequence 

of the Caucasian composition. 

 

3.3.5  Strengths and limitations 
This multi-centre international GWAS is the largest study undertaken in CTEPH, an 

uncommon disease that occurs following acute pulmonary embolism.  CTEPH patients 

included in the study had a robust diagnosis that is defined at expert PH centres using 

a range of investigations and international guidelines.  The significant ABO locus 

occurs in VTE and is therefore likely to represent a genuine association. 

 

Separate studies from Bonderman et al have shown a prevalence of non-O ABO blood 

groups of 77% in CTEPH patients compared with 58% in non-CTEPH and an odds 

ratio 2.1 (95% CI 1.1-3.9) for the non-O blood group.(12, 35)  In an international 

CTEPH registry of 679 patients, the prevalence of non-O blood groups was 76% and 

this compares with 55% in a UK biobank cohort.(68, 279)  In the current GWAS, 

inferred non-O blood groups occurred in 74% of CTEPH patients compared with 43% 

in healthy controls.  The current GWAS finding of an association between ABO and 

CTEPH is more robust than previous observational studies that had not adjusted 

adequately for confounding factors particularly population structure, which is important 

as ABO frequencies vary widely with ethnicity.(280) 

 

Whilst ABO is definitively associated with CTEPH in this study, a limitation of the 

GWAS methodology is that it does not necessarily prove aetiological causality or 

provide a mechanism by which genetic ABO association predisposes to CTEPH.  

Alternatively, patients with CTEPH may have ABO associations due to another 
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“hidden” confounder that causes CTEPH rather than directly via ABO, or ABO may 

interact with other genes/variants predisposing to CTEPH, which is possible given the 

pleiotropic nature of the ABO locus.  The GWAS study cohort is biased towards 

containing patients with more severe CTEPH that are being assessed for PEA.  

Therefore, ABO may be associated with CTEPH disease severity and progression 

rather than disease aetiology, which is addressed in Chapter 5. 

 

The current study sample size limits the ability to identify genetic variants associated 

with CTEPH with more modest effect sizes.  This may account for the absence of 

previously reported VTE genetic associations that may be expected given that three-

quarters of CTEPH patients have had a preceding VTE.  This is investigated in 

Chapter 5.  There were a large number of samples (CTEPH 305, health controls 44) 

that were removed during the quality control steps.  This was necessary to account for 

variable genotyping quality between batches and to adhere to robust GWAS 

methodology.  Alternative statistical approaches such as linear mixed modelling could 

be utilising to retain some samples (e.g. those removed due to ethnicity), although this 

is likely to have minimal impact on the overall study power.(281)  Shared control 

samples were used between the discovery and validation cohort and whilst this is an 

accepted methodology, power could have been increased by having separate control 

groups.(204, 282)  Furthermore, comparing allele frequencies from the validation 

cohort that contained European and American patients to a UK based control group 

required additional statistical correction for population structure and it is possible a 

degree of residual confounding remains.  Ideally a population matched control group 

should be used for the discovery and validation cohorts, although this can be 

challenging in modern international GWAS consortia. 

   

The fine mapping using genomic functional annotations was limited by the tissue types 

available in the reference datasets.  Non-coding variants can affect transcriptional 

regulation differently dependent upon the tissue and cell type.(156)  Therefore, 

annotations should ideally be interrogated in the tissues implicated in disease 

pathobiology, which for CTEPH would primarily be pulmonary vascular endothelial 

cells, right heart samples and blood cells.  The most complete set of tissue types that 

were available were analysed from annotation datasets, including 53 from GTEx and 
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127 from ENCODE, however neither contained pulmonary vascular endothelial cells 

or right heart tissue which limited the analysis.(221)   

 

 

In summary, the ABO locus is associated with CTEPH in a GWAS and this is driven 

by an over-representation of the A1 subtype.  The genetic ABO association may result 

in functional consequences related to CTEPH pathobiology. 
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4  The ADAMTS13-VWF axis 
 
4.1  Introduction 
 
The ABO gene locus was the most signification association in the CTEPH GWAS 

(Chapter 3).  The ADAMTS13 gene locus is situated ~200kb distal of ABO and in low-

moderate linkage disequilibrium with ABO.  Whilst the ADAMTS13 locus was initially 

associated in the GWAS, this was not independent of the ABO association. 
 

The ABO gene is linked to the ADAMTS13-VWF axis, as ABO groups determine a large 

proportion of the variation in VWF.(200)  ADAMTS13 has only one known substrate, VWF 

and therefore, it regulates VWF activity by cleaving the more procoagulant ultra-large 

VWF multimers. 

 

Increased VWF and reduced ADAMTS13 are associated with thrombotic diseases 

including coronary artery disease, ischaemic stroke and venous thromboembolism.(191-

193)  Moreover, micro-vessel thrombosis occurs when ADAMTS13 activity levels are 

severely decreased by autoantibodies in thrombotic thrombocytopenic purpura.(188) 

 

Abnormalities in haemostasis including elevated VWF and an association with non-O 

blood groups have been described in CTEPH.(35, 68)  The role of ADAMTS13 in CTEPH 

has not been investigated to date. 

 

The aim of this Chapter was to investigate the ADAMTS13-VWF axis in CTEPH patients 

including its relationship to ABO groups and ADAMTS13 genetic variants. 
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4.2  Results 
 
4.2.1  Study samples and participants 
ADAMTS13 and VWF plasma concentrations were measured in 208 CTEPH patients and 

68 healthy controls.  Additional disease groups comprised: 35 patients with CTED, 30 

with IPAH and 28 following PE.  Baseline group characteristics are summarised in Table 
4.1 and Table 4.2.  Age and sex differed across the groups (p<0.001 and p=0.014) with 

CTEPH patients being older (median ± IQR: 64 ± 19 years) than healthy controls (49 ± 

24 years).  As ADAMTS13 levels can vary with age and sex, multivariable linear 

regression was used to adjust for these variables (Section 4.2.2.1).(201)  Ethnicity also 

differed (p<0.001) with more non-Caucasians in the PE group.  In the whole CTEPH 

group, 176 (87%) had a proximal distribution of pulmonary arterial obstruction deemed to 

be surgically accessible and 150 (72%) underwent PEA.  

 

 
 Healthy 

control 
CTEPH CTED IPAH PE p 

Subjects  68 208 35 30 28 <0.001 

Age, Years 49 ± 24 64 ±19 58 ± 27 64 ± 27 52 ± 26 0.013 

Sex, Female 32 (47) 90 (43) 9 (26) 21 (70) 15 (54) <0.001 

Ethnicity, Caucasian 53 (78) 180 (95) 28 (88) 26 (90) 13 (54) <0.001 

WHO functional class 
   1 

   2 

   3 

   4 

  

4 (2) 

42 (21) 

151 (74) 

7 (3) 

 

6 (18) 

17 (50) 

11 (32) 

0 (0) 

 

5 (17) 

4 (13) 

21 (70) 

0 (0) 

  

<0.001 

6mwd, Metres  318 ± 176 366 ± 180 342 ± 244  0.204 

Pulmonary 
haemodynamics 
   mPAP, mmHg 

   CI, L/min/m2 

   PVR, dynes.s.cm-5 

  

 
42 ± 18 

2 ± 0.6 

639 ± 476 

 

 
21 ± 4 

2.4 ± 0.6 

151 ± 71 

 

 
42 ± 17 

1.7 ± 0.8 

808 ± 642 

  

 
<0.001 

<0.001 

<0.001 

Clinical blood tests 
   Haemoglobin, g/dL 

  

140 ± 27 

 

138 ± 16 

 

142 ± 22 

  

0.848 
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   Platelet count, x109 

   WCC, x109 

   Lymphocyte, % 

   Neutrophil, % 

   CRP, mg/L 
   NT-proBNP, pg/mL 

246 ± 82 

7 ± 3 

25 ± 10 

64 ± 14 

5 ± 10 
592 ± 1576 

200 ± 56 

6.6 ± 2.1 

28 ± 13 

59 ± 14 

3 ± 3 
113 ± 194 

222 ± 77 

6.9 ± 2.4 

18 ± 13 

72 ± 14 

3 ± 4 
334 ± 695 

0.014 

0.273 

0.025 

0.007 

0.035 
0.006 

Smoking status 
   Never 

   Ex-smoker 

   Current smoker 

  

91 (47) 

87 (45) 

15 (8) 

 

16 (50) 

13 (41) 

3 (9) 

 

15 (52) 

11 (38) 

3 (10) 

  

0.943 

Anticoagulation 
medication 

 137 (94) 15 (94) 30 (100)  0.004 

 

Table 4.1  Baseline group characteristics 
Data is presented as median ± interquartile range or number of patients (%).  

Percentages were calculated using the number of patients that data was available for as 

the denominator.  The differences in categorical variables between groups were assessed 

using Chi-squared or Fisher’s exact test, and the Cochran-Armitage test for WHO 

functional class.  The difference across groups in continuous variables was assessed 

using the Kruskal-Wallis test; the non-parametric equivalent of a one way analysis of 

variance (ANOVA).  P-values adjusted for the number of statistical tests performed using 

FDR correction.  6mwd (6-minute walk distance), CI (cardiac index), CRP (C-reactive 

protein) mPAP (mean pulmonary artery pressure), NT-proBNP (N-terminal pro b-type 

natriuretic peptide), PVR (pulmonary vascular resistance), WCC (white cell count). 
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 n (%) 

CTEPH  

   Disease distribution 

      Proximal 

      Distal 

 

176 (87) 

25 (13) 

   PEA 

      Residual PH (>25mmHg) 

150 (72) 

83 (63) 

   Co-morbidities 

      IHD 

      DM 

      Malignancy 

      Thrombophilia 

      Splenectomy 

      Systemic hypertension 

      Atrial fibrillation / flutter 

      COPD 

 

20 (14) 

19 (13) 

19 (13) 

9 (6) 

9 (6) 

48 (34) 

14 (10) 

8 (6) 

PE  

   VQ defects post PE 

      None 

      Present 

 

8 (40) 

12 (60) 

   Idiopathic PE 8 (40) 

  

Table 4.2  Additional clinical phenotype data for the CTEPH and PE groups 

COPD (chronic obstructive pulmonary disease), IHD (ischaemic heart disease), DM 

(diabetes mellitus), PH (pulmonary hypertension), VQ (ventilation-perfusion). 
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4.2.2  ADAMTS13 and VWF plasma concentrations 
4.2.2.1  ADAMTS13 plasma concentrations 

ADAMTS13 antigen levels were decreased in CTEPH patients (0.889 ± 0.397 μg/mL; 

p<0.001) compared to healthy controls (1.15 ± 0.300 μg/mL) (Figure 4.1A).  Furthermore, 

ADAMTS13 was reduced in CTED cases (0.831 ± 0.224 μg/ml, p<0.001) but levels were 

similar to CTEPH (p=0.205) (Table 4.3).  There was no difference in ADAMTS13 levels 

between IPAH (1.12 ± 0.413 μg/mL; p=0.373) and healthy controls, though the PE group 

did exhibit slightly lower levels (0.969 ± 0.704; p=0.049) (Table 4.3). 

 

Since ADAMTS13 levels can vary with age and sex, group associations were assessed 

with multivariable linear regression adjusted for age, sex and additionally batch and 

ethnicity (Table 4.4).(201)  This confirmed that ADAMTS13 was lowest in the CTEPH (β 

(% change) = -23.4%, p<0.001) and CTED groups (β = -25.9%, p<0.001).  These 

observations should be interpreted together with the additional models that utilise 

interaction terms presented in Section 4.2.2.3.  Furthermore, increasing age was also 

associated with lower ADAMTS13 (β = -5% per 10 years, p<0.001).  ADAMTS13 antigen 

levels were not significantly associated with the PE group (β = -12%, p=0.089), nor were 

they associated with IPAH, sex or ethnicity. 
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Figure 4.1  ADAMTS13 and VWF antigen (Ag) levels by diagnostic groups 

Dunn’s test with FDR adjustment was used to calculate p-values. ****: p <=0.0001, ***: 

p<=0.001, **: p<=0.01, *: p<=0.05, ns (not significant): p>0.05. Healthy control (n=68), 

CTEPH (chronic thromboembolic pulmonary hypertension, n=208), CTED (chronic 

thromboembolic disease, n=35), IPAH (idiopathic pulmonary arterial hypertension, n=28), 

PE (pulmonary embolism, n=28). 
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ADAMTS13 

 
Healthy 
control 

CTEPH CTED IPAH 

CTEPH 3.00x10-08 - - - 

CTED 9.70x10-07 0.205 - - 

IPAH 0.373 0.003 0.001 - 

PE 0.049 0.131 0.038 0.294 

VWF 

 
Healthy 
control 

CTEPH CTED IPAH 

CTEPH 4.00x10-12 - - - 

CTED 2.20x10-06 0.834 - - 

IPAH 0.071 0.006 0.021 - 

PE 0.433 1.90x10-04 0.002 0.433 

 

Table 4.3  ADAMTS13 and VWF antigen level pair-wise diagnostic group 
comparisons 

Dunn’s test with FDR adjustment was used to calculate p-values. 
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 Model1 Model2* 

 β (%) 95% CI (%) p β (%) 95% CI (%) p 

Healthy Control Reference 

CTEPH -23.4 -30.9, -15.1 5.91x10-07 -17.6 -27.9, -5.78 0.005 

CTED -25.9 -35.1, -15.4 1.18x10-05 -23.1 -35.1, -8.75 0.003 

IPAH -2.18 -14.7, 12.2 0.752 1.17 -14.7, 20.0 0.894 

PE -12.0 -24.0, 1.97 0.089 -7.84 -23.3, 10.7 0.381 

Female Reference 

Male -1.07 -7.57, 5.89 0.756 -1.98 -9.92, 6.65 0.641 

Age -0.518 
-0.732, -

0.303 
3.30x10-06 -0.541 

-0.810,  

-0.271 
9.99x10-5 

Batch1 Reference 

Batch2 -2.16 -10.5, 6.95 0.630 13.5 1.71, 26.8 0.024 

Caucasian Reference 

Non-Caucasian -5.58 -15.2, 5.10 0.293 -6.7 -18.4, 6.59 0.306 

 

Table 4.4  Multivariable linear regression model of ADAMTS13 antigen levels 
Beta (β) coefficients and 95% confidence intervals (95% CI) are presented as percentage 

change with respect to healthy controls.  The reference diagnostic group is healthy 

control, the reference sex is female, the reference batch is batch1 and the reference 

ethnicity is Caucasian.  n=343 individuals included in the models.   
*Model2 additionally adjusted for VWF antigen levels. 

 

 

4.2.2.2  VWF plasma concentrations 

VWF antigen levels were confirmed to be increased in CTEPH (16.7 ± 15.2 μg/mL; 

p<0.001) compared to healthy controls (8.45 ± 8.77 μg/mL) and PE (9.23 ± 9.82 μg/mL; 

p<0.001) (Figure 4.1B).  Furthermore, VWF was increased in CTED (17.0 ± 10.1 μg/mL, 

p<0.001) compared to healthy controls, but were no different to CTEPH (p=0.834) (Table 
4.3).  There was no difference in VWF antigen levels between IPAH (11.6 ± 12.3 μg/mL; 

p=0.071) or PE (p=0.433) and healthy controls. 
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Multivariable linear regression was also used for VWF plasma concentrations as 

described for ADAMTS13.  This confirmed that VWF was significantly increased in the 

CTEPH (β=+75.5%, p<0.001) and CTED groups (β=+89.5%, p<0.001) (Table 
4.5).  Furthermore, increasing age was also associated with increased VWF (β=+6% per 

10 years, p=0.005).  VWF plasma concentrations were not significantly associated with 

the IPAH or PE groups, sex or ethnicity. 

 

 β (%) 95% CI (%) p 

CTEPH 75.5 44.8, 113 2.00x10-8 

CTED 89.5 48.0, 143 6.19x10-7 

IPAH 26.7 -1.93, 63.7 0.070 

PE 19.4 -9.26, 57.2 0.205 

Male 7.11 -5.65, 21.6 0.288 

Age 0.584 0.180, 0.990 0.005 

Batch 7.33 -9.10, 26.7 0.403 

Non-Caucasian -14.5 -30.0, 4.42 0.124 

 

Table 4.5  Multivariable linear regression model of VWF antigen levels 

Reference groups are the same as described in Table 4.4.  n=343 individuals included 

in the model.  

 

 

There was a modest negative correlation between ADAMTS13 and VWF plasma levels 

in CTEPH (rho = -0.164, p=0.018) but they were not correlated in healthy controls (rho = 

-0.0622, p=0.614) (Figure 4.2).  Furthermore, adjusting the multivariable linear 

regression model of ADAMTS13 antigen levels (Table 4.4) by VWF had minimal effect 

(on the β value), suggesting that the associations are not mediated by VWF antigen 

levels. 
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Figure 4.2.  Correlation of ADAMTS13 with VWF antigen levels in CTEPH (n=208) 
and healthy controls (n=68) 
Spearman's rank correlation in other diagnostic groups: CTED (rho = -0.161, p = 0.354), 

IPAH (rho = 0.329, p = 0.076), PE (rho = -0.0504, p = 0.799). 

 

 

Converting ADAMTS13 antigen levels to a percentage of the median value of the healthy 

control group (set at 100%) allowed comparisons with thrombotic diseases in other 

studies.  The majority of the CTEPH group (n=136, 65%) were in the lowest quartile 

(Q1<88% ADAMTS13) (Table 4.6). 

 

The combination of low ADAMTS13 and high VWF antigen levels has a synergistic effect 

on the odds of CTEPH (Odds ratio (OR) = 14.5, p<0.001) compared with healthy controls 

(Figure 4.3 and Table 4.7). 
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 CTEPH (n=208) Healthy control (n=68) 

Q1 (<88%) 136 (65) 16 (24) 

Q2 (88-100%) 24 (12) 18 (26) 

Q3 (100-114%) 12 (6) 17 (25) 

Q4 (>114%) 36 (17) 17 (25) 

 

Table 4.6  ADAMTS13 antigen level quartiles for CTEPH and healthy controls 

ADAMTS13 levels were divided by the median of the healthy control group and expressed 

as a percentage.  The CTEPH group was then divided into quartiles (Q1-Q4) of the 

ADAMTS13 distribution of the healthy control group.   

 

 

  
Figure 4.3  The odds ratios of CTEPH in relation to healthy controls for combined 
ADAMTS13 and VWF groups 

The ADAMTS13 and VWF group ORs are adjusted for age, sex, ethnicity and batch in a 

logistic regression model. N represents the total for both the CTEPH and healthy control 
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groups.  Threshold criteria and n (%) within the CTEPH and healthy control groups are 

shown in Table 4.7.  Forest plot generated with the R package `forestmodel`.(247) 

 

 

Groups Thresholds 
Healthy 
Control 

CTEPH 

low VWF &  

high ADAMTS13 

VWF: < 165% (Q1-Q3) 

ADAMTS13 > 88% (Q2-Q4) 
38 (56) 33 (16) 

low VWF &  

low ADAMTS13 

VWF: < 165% (Q1-Q3) 

ADAMTS13: <= 88% (Q1) 
13 (19) 45 (22) 

high VWF &  

high ADAMTS13 

VWF: >= 165% (Q4) 

ADAMTS13: > 88% (Q2-4) 
12 (18) 39 (19) 

high VWF &  

low ADAMTS13 

VWF: >= 165% (Q4) 

ADAMTS13: <=88% (Q1) 
5 (7) 91 (44) 

 

Table 4.7  Summary table for combined ADAMTS13 and VWF groups 
Threshold criteria are described in the table with the n (%) for CTEPH and healthy 

controls.  ADAMTS13 and VWF antigen levels were converted to a percentage (the 

median of the healthy control group) and the quartile thresholds were then determined 

(healthy control group).  The lowest quartile (Q1) was used to represent “low ADAMTS13” 

and the other quartiles (Q2-4) were used for “high ADAMTS13”. The highest quartile (Q4) 

was used to represent “high VWF” and the other quartiles (Q1-3) were used for “low 

VWF”. These cut points were used (as opposed to the median) due to the skewed 

distribution of ADAMTS13-VWF (Table 4.6) and to enable a comparison with other 

published thrombotic diseases that used a similar methodology.(212)  The odds ratios for 

each group are shown in Figure 4.3.  The combined numbers in each group vary from 

Figure 4.3, which used additional variables in a logistic regression model, some of which 

were missing. 
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4.2.2.3  Interaction effects  
Interaction effects for the variables used in Tables 4.4 and 4.5 were investigated.  For 

ADAMTS13 antigen levels, there was a significant interaction between age and CTEPH 

(p=0.007) and additionally between age and sex (Age:Sex) (p=0.019) (Table 4.8 and 

Figure 4.4).  There was insufficient sample size to investigate 3-way interactions, 

including what was driving the interaction effect of age and sex.  This suggests that the 

reduction in ADAMTS13 levels with increasing age is of more relevance within the CTEPH 

group.  Consideration of the interaction terms is most relevant for the extreme values.  

For example, there is less difference between a 30-year-old Caucasian female with 

CTEPH and a 30-year-old Caucasian male healthy control (predicted ADAMTS13: 1.07 

vs. 1.28 μg/mL, 16% reduction) than an 80-year-old Caucasian male with CTEPH and an 

80-year-old Caucasian female healthy control (0.688 vs. 1.18 μg/mL, 42% reduction).  

There were no significant interaction effects for a separate model of VWF antigen levels 

using the variables in Table 4.5. 

 
 

β 95% CI p 

(Intercept) 0.827 -0.194, 0.359 0.557 

CTEPH 0.192 -0.135, 0.519 0.249 

CTED  -0.325 -0.785, 0.136 0.167 

IPAH 0.218 -0.236, 0.672 0.345 

PE -0.0728 -0.499, 0.353 0.737 

Male 0.286 0.0305, 0.541 0.028 

Age 0.00101 -0.00386, 0.00587 0.684 

Batch  -0.0237 -0.111, 0.0638 0.594 

Non-Caucasian -0.0535 -0.16, 0.0527 0.322 

CTEPH:Age  -0.00768 -0.0133, -0.00207 0.007 

CTED:Age  0.000386 -0.00766, 0.00844 0.925 

IPAH:Age  -0.00420 -0.012, 0.00358 0.289 

PE:Age  -0.000410 -0.00825, 0.00743 0.918 

Age:Sex  -0.00500 -0.00917, -0.000817 0.019 
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Table 4.8  Multivariable linear regression of ADAMTS13 plasma levels and 
interaction effects 
The reference groups for diagnostic group, batch and ethnicity are the same as described 

in Table 4.4.  The interaction terms included in the model are those that were significant 

(p<0.05) and informative from the combination of variables in Table 4.4.  The beta 

coefficients should be interpreted with consideration of the interaction effects.  For 

example, the predicted ADAMTS13 antigen level in an 80 year old male Caucasian with 

CTEPH from experimental batch1 would be: exp(0.0827 + 0.192 + (80 x 0.00100) + 

(0.286) + (80 x -0.00768) + (80 x -0.00500)) =  0.688 μg/mL.  This is 34% lower than an 

80 year old male Caucasian healthy control from experimental batch1: exp(0.827 + (80 x 

0.00100) + 0.286 + (80 x -0.00500)) = 1.04 μg/mL.  n=343 included in the model. 

 

 

 
 

Figure 4.4  ADAMTS13 multivariable linear model interaction effects 
Interaction effects for the model described in Table 4.8.  The predicted ADAMTS13 

values are plotted with the interaction terms:  

A.  Age:Diagnostic group. 
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The ADAMTS13 difference between CTEPH patients and healthy controls is more 

pronounced for older patients than for younger patients.  ADAMTS13 levels remain lower 

in CTEPH patients across all ages compared with healthy controls.  The rate of 

ADAMTS13 reduction in the CTED group is similar to healthy controls and is also lower 

than healthy controls across all ages. 

B. Sex:Age. n=343 individuals (from all groups) included in models 

The rate of ADAMTS13 reduction with age is more pronounced for males than for 

females. 

 

 

4.2.2.4  Replicates and ADAMTS13 batch adjustment 
The median of the differences in ADAMTS13 protein levels between the replicates (n=24) 

of batch1 and batch2 (0.19 μg/mL; p<0.001) was used to adjust each batch2 ADAMTS13 

value.  This batch correction resulted in a larger CTEPH group size for subsequent 

genotype analyses.  It was consistent with the ADAMTS13 antigen concentrations that 

have been previously reported with the same methodology.(212)  As batch2 only 

contained CTEPH patients, no adjustment was applied to the other diagnostic 

groups.  The validity of this approach was assessed with a multivariable linear model 

using the uncorrected ADAMTS13 values from batch2 together with values from batch1 

(the dependent variable) and including the covariates batch, age, sex, ethnicity and 

diagnostic group (Table 4.9).  This confirmed that the β coefficients and p-values were 

similar to the previous ADAMTS13 (corrected) multivariable linear model (Table 4.4) with 

the expected addition of a difference with batch (β=+35.1% (for batch2 with respect to 

batch1); p<0.001).  Furthermore, the findings are maintained when limiting the analysis 

to the data from batch1 (Figure 4.5).   

 

The median of differences in VWF protein levels between the replicates (n=12) of batch1 

and batch2 was not significantly different (-0.98 μg/mL; p=0.970) and therefore a 

correction factor was not applied.  
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β (%) 95% CI (%) p 

CTEPH -23.4 -30.9, -15.1 5.91x10-7 

CTED -25.9 -35.1, -15.4 1.18x10-5 

IPAH -2.20 -14.7, 12.2 0.752 

PE -12.0 -24.0, 2.00 0.089 

Batch 35.1 23.6, 47.7 1.20x10-10 

Age -0.500 -0.700, -0.300 3.30x10-6 

Male -1.10 -7.60, 5.90 0.756 

Non-Caucasian -5.60 -15.2, 5.10 0.293 

 

Table 4.9  Multivariable linear regression model of uncorrected (batch2) ADAMTS13 
antigen levels 
Reference groups are the same as described in Table 4.4.  n=343 individuals included in 

the model. 
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Figure 4.5  ADAMTS13 antigen levels by diagnostic groups for batch1  

ADAMTS13 plasma levels for batch1 study participants without batch2 adjusted values 

for the CTEPH group (n=93).  n: Healthy control=68, CTED=35, IPAH=28, PE=28. 

 

 

4.2.2.5  ADAMTS13 and VWF: pre- and post-pulmonary endarterectomy 

In 22 CTEPH patients matched samples were taken post-PEA, after a median of 343 

days.  There were no differences in ADAMTS13 (median of differences ± IQR: -0.0328 ± 

0.250 μg/mL, p=0.777) or VWF protein levels (-3.05 ± 10.7 μg/mL, p=0.777) following 

removal of proximal organised thrombus material by PEA (Figure 4.6). 

 

ADAMTS13 and VWF levels did not change pre- and post-PEA and this also applied 

when limited to patients with normal post-operative haemodynamics (mPAP <25mmHg) 

(n=7, ADAMTS13: p=0.742, VWF: p=0.195). 

 

 
 

Figure 4.6  ADAMTS13 and VWF antigen levels pre- and post-pulmonary 
endarterectomy 

A. ADAMTS13 and B. VWF antigen levels (n=22).  Wilcoxon signed-rank test was used 

to calculate p-values. 
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4.2.3  ADAMTS13 activity, D-dimer and VWF multimers 
ADAMTS13 activity and D-dimer concentrations were measured in a subset of patients 

with CTEPH (n=23) with the lowest ADAMTS13 protein concentrations (below the 1st 

Quartile of the CTEPH group) (0.556 ± 0.130 μg/mL) and compared to a subset of healthy 

controls (n=14, ADAMTS13: 1.03 ± 0.284 μg/mL).   

 

VWF multimeric size was assessed in a subset of CTEPH (n=21) with the highest VWF 

protein concentration (above the 3rd quartile) (32.5 ± 6.80 μg/mL) and compared to the 

same subset of healthy controls (n=14, VWF: 9.97 ± 4.99 μg/mL).   

 
4.2.3.1  ADAMTS13 activity 

ADAMTS13 activity was reduced in CTEPH (84 ± 15%) compared with healthy controls 

(107 ± 14%; p<0.001) (Figure 4.7A).  

 

The ADAMTS13 FRET assay is influenced by ADAMTS13 antigen levels, with apparently 

low ADAMTS13 activity, if antigen levels are reduced.  Therefore, the ADAMTS13 activity 

was adjusted for the ADAMTS13 antigen levels in each individual sample.  Specific 

ADAMTS13 activity (Activity:antigen (Act:Ag) ratio) was increased in CTEPH (Act:Ag 1.57 

± 0.32) compared with healthy controls (1.05 ± 0.190; p<0.001) (Figure 4.7B).  Specific 

ADAMTS13 activity (Act:Ag) is not correlated with VWF:Ag in either CTEPH or healthy 

controls (Figure 4.8A).   

 

4.2.3.2  D-dimers 

Plasmin and thrombin are able to inactivate ADAMTS13 proteolytically in vitro and 

plasmin mediated ADAMTS13 cleavage has been observed in TTP.(283, 

284)  Furthermore, abnormalities in the fibrinolysis pathway have been implicated in 

CTEPH.(39)  Therefore, fibrinogen degradation products measured by D-dimer were 

used as a potential surrogate marker of plasmin and thrombin activity.  D-dimer was 

increased in CTEPH (1.24 ±1.25 μg/mL) compared to healthy controls (0.538 ± 0.344 

μg/mL; p=0.030) (Figure 4.7C).  Specific ADAMTS13 activity was not correlated with D-
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dimer in the CTEPH (rho=0.0938, p=0.761) or healthy control groups (rho=-0.220, 

p=0.313) (Figure 4.7D). 

 

4.2.3.3  VWF multimeric size   

It was hypothesised that a decrease in ADAMTS13 antigen levels would result in reduced 

VWF cleavage and an increase in high multimeric VWF as occurs in TTP.(285)  There 

was no difference in VWF multimeric size between CTEPH (VWF CBA:Ag ratio, 0.659 ± 

0.537) and healthy controls (0.866 ± 0.494; p=0.160) (Figure 4.7E).  VWF:CBA was not 

correlated with ADAMTS13:Ag in CTEPH or healthy controls (Figure 4.8B).  VWF:CBA 

was correlated with VWF:Ag in healthy controls but not in CTEPH (Figure 4.8C). 
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 163 

Figure 4.7  ADAMTS13 activity, D-dimer and VWF multimeric size in CTEPH and 
healthy controls 

A subset of CTEPH patients (n=23) with the lowest ADAMTS13 antigen levels (below the 

first quartile of the CTEPH group) and healthy controls (n=14) were used for A-D.  VWF 

multimeric size was measured in CTEPH (n=21) samples with the highest VWF antigen 

concentrations (above the third quartile of the CTEPH group) using the same healthy 

control subset and displayed in E.  The Mann-Whitney U test was used to calculate group 

differences (A, B, C, E) and correlation was assessed with Spearman’s rank correlation 

coefficients (D).  A. ADAMTS13 activity (%)  B. Specific ADAMTS13 activity (Act:Ag ratio). 

C. D-dimer antigen levels. D. Specific ADAMTS13 activity and D-dimer antigen 

correlation.  Healthy control correlation: rho=0.0938, p=0.761; CTEPH correlation:  

rho=-0.220, p=0.313.  E. VWF multimeric size (VWF Collagen binding assay:Antigen 

ratio).  
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Figure 4.8  ADAMTS13 activity, D-dimer and VWF multimeric size correlation in 
CTEPH and healthy controls 

Correlation was assessed with Spearman’s rank correlation coefficients for both the 

healthy control (green circles) and the CTEPH (red triangles) groups.  Additional analysis 

from the data shown in Figure 4.7 (See Figure 4.7 for group details). 
A. ADAMTS13 Act:Ag ratio vs. VWF:Ag.  Healthy control correlation: rho=0.36, p=0.210; 

CTEPH correlation: rho=0.24, p=0.270. 

B. ADAMTS13:Ag ratio vs. VWF:CBA.  Healthy control correlation: rho=-0.61, p=0.022; 

CTEPH correlation: rho=-0.02, p=0.930. 

C. VWF:Ag vs. VWF:CBA.  Healthy control correlation: rho=0.670, p=0.008; CTEPH 

correlation: rho=-0.088, p=0.700. 
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4.2.4  Clinical phenotype associations with ADAMTS13 and VWF 

The association between clinical phenotypes and ADAMTS13 or VWF antigen levels was 

assessed in all patients with CTEPH (n=208).  ADAMTS13 and VWF did not significantly 

correlate with pulmonary vascular resistance, 6-minute walk distance or N-terminal pro b-

type natriuretic peptide (NT-proBNP), which are markers of disease severity (Figure 
4.9).  Since inflammation has been associated with both CTEPH and abnormalities in the 

ADAMTS13-VWF axis, correlation between the ADAMTS13-VWF axis and inflammatory 

markers was investigated.(46, 286)  There were no correlations with blood markers of 

inflammation (CRP, WCC, neutrophil and lymphocyte %) (Figure 4.10), including 

when confining the analysis to samples that were taken on the same day as ADAMTS13 

and VWF sampling (n=81, for WCC, neutrophil and lymphocyte %; n= 77 for CRP). 

 
As proximal operable CTEPH has different risk associations to distal inoperable CTEPH 

and thus potentially different pathophysiological mechanisms, the disease sub-types 

were investigated.(78)  There was no difference in ADAMTS13 (p=0.070) or VWF 

(p=0.253) between the different sub-diagnostic categories of CTEPH (Figure 4.11A and 
4.11B).  Furthermore, there was no difference in ADAMTS13 (p=0.366) or VWF (p=0.078) 

in those with and without post-operative residual pulmonary hypertension (mPAP ³ 

25mmHg) (n=83, 63%), which is a potential marker of distal vasculopathy (Figure 4.11C 
and 4.11D).(15) 
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Figure 4.9  Correlation of ADAMTS13 and VWF antigen levels with markers of 
disease severity in CTEPH at baseline 

Correlation was assessed by Spearman’s rank test.  Baseline was defined as the value 

closest to diagnosis.  P-values adjusted for the number of statistical tests performed using 
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FDR correction.  6mwd (6-minute walk distance), NT-proBNP (N-terminal pro b-type 

natriuretic peptide), PVR (pulmonary vascular resistance).  NT-proBNP log-transformed 

to improve visualisation. Numbers per group: PVR = 169, 6mwd = 165, NT-proBNP = 

144. 

 

 

CTEPH is a potential severe consequence of acute PE, however there are a spectrum of 

changes following PE (post-PE syndrome) that may have differing pathobiology.(9) 

ADAMTS13 and VWF antigen levels were evaluated in groups with varying degrees of 

post-PE perfusion defects on available VQ scans (n=20).  There was no difference in 

ADAMTS13 (p=0.812) or VWF (p=0.678) levels in those that had residual perfusion 

defects post-PE (n=12) compared with those with no perfusion defects (n=8) (Figure 
4.12A and 4.12B).  Furthermore, there was no difference in ADAMTS13 (p=0.938) or 

VWF (p=0.427) levels when the PE group was stratified into provoked PE (n=8) and 

idiopathic PE (n=12) (Figure 4.12C and 4.12D). 
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Figure 4.10  Correlation of ADAMTS13 and VWF antigen levels with blood markers 
of inflammation at baseline 
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Correlation was assessed by Spearman’s rank test.  P-values adjusted for the number of 

statistical tests performed using FDR correction.  CRP log-transformed to improve 

visualisation.  CRP (C-reactive protein), WCC (white cell count).  Numbers in each group: 

WCC = 169, Neutrophils = 169, Lymphocytes = 168, CRP = 95. 

 

 

 
 

Figure 4.11  ADAMTS13 and VWF antigen levels in CTEPH sub-diagnostic and post-
PEA residual pulmonary hypertension groups 

A, B. ADAMTS13 and VWF antigen levels in CTEPH diagnostic sub-groups.  Numbers 

in each group: proximal PEA = 150, proximal no PEA = 25, distal (surgically inaccessible) 

= 24, insufficient clinical data in 9 patients to classify them. 
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C, D. ADAMTS13 and VWF antigen levels in CTEPH post-PEA residual pulmonary 

hypertension (mPAP ³ 25mmHg) groups.  Numbers in each group: no residual PH = 49, 

residual PH = 83, insufficient clinical data in 18 patients to classify them.  The group 

differences were assessed using the Kruskal-Wallis test (A, B) and the Mann-Whitney U 

test (C, D). 

 

 

 

 
 

Figure 4.12  ADAMTS13 and VWF antigen levels in PE stratified by residual 
perfusion defects and provoked PE 
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The group differences were assessed using the Mann-Whitney U test.  Numbers in each 

group: no perfusion defect on VQ scan = 8, residual perfusion defect on VQ scan = 12, 

unprovoked (no VTE risk factors) = 12, provoked (VTE risk factors) = 8.  Of those with 

residual perfusion defects, the majority were minor (n=10). 

 

 
4.2.5  ADAMTS13-VWF and genotype analyses 
Imputed genotype dosages were available from the CTEPH GWAS described in Section 
2.1.6.  All individuals were genotyped on commercially available Illumina assays and 

imputed to the Haplotype Reference Consortium Build 1.1. 

  

208 CTEPH patients with ADAMTS13 / VWF antigen levels and 28 patients with CTED 

were also included in the CTEPH GWAS (CTED patients were not included in the final 

GWAS analysis and were removed due to incorrect phenotype, see Section 
3.2.2.2).  Genotypes were available for 207 (187 CTEPH; 23 CTED) after GWAS quality 

control exclusions.  These patients were included in the genetic ABO group and protein 

quantitative trait loci (pQTL) analyses.  Matched genotypes and ADAMTS13 / VWF 

antigen levels were not available for the healthy control, IPAH or PE groups.  

 
4.2.5.1  Genetic ABO groups and ADAMTS13-VWF 
Reconstructing genetic ABO groups allowed us to explore more complex 

associations within the ABO subgroups.  Whilst the A1 and A2 groups would be classified 

as non-O on serological testing, they have been associated with different effects on VWF 

levels and VTE risk.(253)  There was no difference in ADAMTS13 antigen levels when 

stratified by simple genetic ABO groups (O, A, B, AB) (Figure 4.13A) (p=0.443) or more 

comprehensive genetic ABO groups (Figure 4.14A) (p=0.616). 
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Figure 4.13  ADAMTS13 and VWF antigen levels by ABO genetic groups 
CTEPH (n=182) and CTED (n=22) patients with genotypes and protein levels available 

(in n=3 a genetic ABO group could not be inferred) were included.  Dunn’s test with FDR 

adjustment was used to calculate p-values.  Numbers in each group: O = 51, A = 128, B 

= 12, AB = 13.   
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Figure 4.14  ADAMTS13 and VWF antigen levels by comprehensive ABO genetic 
groups 

The group differences were assessed using the Kruskal-Wallis test.  Numbers in each 

group: OO = 51, A1A1 = 18, A1A2 = 11, A1B = 11, A1O = 81, A2A2 = 2, A2B = 2, A2O = 

16, BB = 1, BO = 11 (in n=3 a genetic ABO group could not be inferred). 

 

 

VWF levels did not vary by ABO groups (Figure 4.13B and Figure 4.14B) however, when 

accounting for covariates (Table 4.10), ABO group B had a higher VWF level (β=+51.3%, 

p=0.025) compared to group O.  ABO group A also had a higher VWF level, although this 

was not statistically significant (β=+19.8%, p=0.073).  Patients with ABO group O had the 

lowest VWF levels within the CTEPH group (14.5 ± 13.0 μg/mL), however this was still 
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significantly higher than healthy controls (8.45 ± 8.77 μg/mL, p<0.001) (Figure 4.1).  This 

implies that the increase in VWF observed in the CTEPH group is not only driven by ABO. 

 
 

β (%) 95% CI (%) p 

ABO group - O Reference 

ABO group - A  19.8 -1.75, 46.1 0.074 

ABO group - B  51.3 5.30, 117 0.025 

ABO group - AB  4.41 -26.9, 49.1 0.811 

CTEPH Reference 

CTED 7.43 -18.5, 41.6 0.609 

Male  4.40 -11.9, 23.7 0.617 

Age  0.921 0.341, 1.50 0.002 

Batch  11.8 -5.88, 32.8 0.203 

Non-Caucasian -1.71 -51.7, 100 0.962 

 

Table 4.10  Multivariable linear regression model of VWF antigen levels and genetic 
ABO groups in CTEPH 
The reference ABO group is O and the reference diagnostic group is CTEPH.  Otherwise, 

reference groups are the same as described in Table 4.4.  n=204 included in the model. 

 

 

There was no difference in ADAMTS13 antigen levels between ABO groups, when 

accounting for covariates with multivariable linear regression.   

 

4.2.5.2  Protein quantitative trait loci for ADAMTS13 

There were 5 SNPs in the ADAMTS13 ± 40kb region that were significantly associated 

with ADAMTS13 protein in a linear regression model (Table 4.11).  The most significant 

SNP (rs3739893, risk allele C, information score=0.960, β = -37.1%, p=3.78x10-06) is a 5' 

untranslated region (UTR) variant in the C9orf96 gene, which is ~8kb 5' of the ADAMTS13 

gene.  In a model adjusted for age, sex and batch, the lead SNP (rs3739893) explained 

7.7% of the variance in ADAMTS13 levels within the CTEPH group (Table 



   
 

 175 

4.12).  However, as only 10 CTEPH patients had the rs3739893 effect allele, this 

accounts for a small proportion of the ADAMTS13 antigen level reduction observed in 

CTEPH.  In the whole CTEPH GWAS cohort, the effect allele frequency for rs3739893 in 

CTEPH cases (0.0128) and healthy controls (0.0158) was not significantly different, which 

suggests that it is not associated with CTEPH disease risk.  The effect allele frequency 

of the study healthy controls was similar to a European (non-Finnish) reference population 

(0.0160) (http://gnomad.broadinstitute.org/, accessed Feb 2018). 

 

The most variance in ADAMTS13 antigen levels was attributable to age (16%) (Table 
4.12), which is higher than reported in healthy cohorts.(231)  The 4 other significant SNPs 

were highly correlated with the lead SNP (R2=0.91-1.00, p<0.001).  Additional analysis 

correcting for the first 5 ancestry informative principal components and VWF antigen 

levels did not alter the results.  Furthermore, the results were unchanged when the 

analysis was confined to the CTEPH group. 

 

rsID CHR Position β (%) 95% CI (%) p 

rs3739893 9 136243324 -37.1 -48.1, -23.8 3.78x10-6 

rs28407036 9 136252654 -39.0 -51.3, -23.5 2.42x10-5 

rs8181039 9 136253927 -37.4 -49.5, -22.5 2.42x10-5 

rs78883179 9 136241818 -41.0 -54.1, -24.1 5.05x10-5 

rs77533110 9 136286789 -43.0 -56.4, -25.5 5.20x10-5 

 

Table 4.11  Protein quantitative trait loci for ADAMTS13 antigen levels in CTEPH 

Associations were assessed using multivariable linear regression and the SNPs included 

were those in the ADAMTS13 gene ± 40 Kilobases (n=396).  The model was adjusted for 

age, sex and batch.  A Bonferroni p-value threshold <1.26x10-4 (0.05/396 variants) was 

used to denote statistical significance. rsID (reference SNP identification), CHR 

(chromosome), position (base position).  GRCh37 was used for the genomic positions of 

the SNPs.  n=207 individuals included in the model.  
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 β (%) 95% CI (%) p Variance (%) 

rs3739893 -37.1 -48.1, -23.8 3.78x10-6 7.70  

Age -0.935 -1.21, -0.660 2.23x10-10 16.3  

Male -4.55 -11.7, 3.34 0.253 0.651  

Batch -2.40 -9.67, 5.47 0.537 0.0748 

  

Table 4.12  Multivariable linear regression with the percentage of variance of 
ADAMTS13 antigen levels explained by SNPs and other characteristics 
Reference groups are the same as described in Table 4.4.  Partitioning of the variance 

explained by each variable within the models was performed by averaging over orders 

using the R package `relaimpo`.(233)  n=207 individuals included in the model.  

 

 
4.2.6  Immunohistochemistry 

Immunohistochemistry was assessed to determine if ADAMTS13 is expressed in vascular 

endothelial cells, which is a major site of disease pathogenesis.  ADAMTS13 was 

expressed in the vascular endothelium of CTEPH and control lungs with no clear 

differences (Figure 4.15).  Furthermore, ADAMTS13 was expressed in the endothelial 

neovessels of chronic thromboembolic material.  
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Figure 4.15  Expression of ADAMTS13 in lung tissue evaluated by 
immunohistochemistry 

Serialised sections of lung tissue from controls, explanted lungs from patients with chronic 

thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic material 

removed during pulmonary endarterectomy (PEA).  Scale bars = 50 µm.  Negative (Neg) 

control (A-C) H&E staining (D-F); VWF (G-I); ADAMTS13 (J-L); ADAMTS13 high power 
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field views (M-O).  The negative control images are from the same tissue but a different 

location (as images from the same location were unavailable) and are representative.   
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4.3  Discussion 

 

4.3.1  Overview 
This is the first study demonstrating a marked reduction in levels of ADAMTS13 in 

CTEPH. This is independent of pulmonary hypertension, disease severity or systemic 

inflammation.  VWF was confirmed to be increased in CTEPH and this implicates 

dysregulation of the ADAMTS13-VWF axis in CTEPH pathobiology.  

 

4.3.2  ADAMTS13-VWF plasma levels and other diseases 
The ADAMTS13-VWF axis is dysregulated in other thrombotic diseases including 

coronary artery disease and ischaemic stroke.(191, 193)  However, the magnitude of 

ADAMTS13 reduction and VWF increase in CTEPH is greater than observed in studies 

of ischaemic stroke using the same methodology.(212)  Furthermore, levels are lower in 

CTEPH than CAD when considering the proportion of patients in the lowest ADAMTS13 

quartile (65% versus 28% respectively), although direct comparison is precluded by 

differing thresholds.(193)  Additionally, the combination of decreased ADAMTS13 and 

increased VWF has a synergistic effect on the odds of CTEPH that is greater than 

observed in CAD or ischaemic stroke.(212)  The more pronounced ADAMTS13-VWF 

dysregulation in CTEPH may reflect the larger surface area of the vascular endothelium 

involved or alternatively that ADAMTS13-VWF dysregulation is more important in CTEPH 

pathobiology.  Although ADAMTS13 is predominately produced by the liver, the 

contribution to plasma levels from vascular endothelial cells could be substantial given 

the large surface area of the lung vasculature.(177)   

 

Following PEA and removal of proximal thromboembolic material, the ADAMTS13-VWF 

axis remains dysregulated despite normalisation of haemodynamic 

parameters.  Additionally, there is an equal perturbation of the axis in CTED, and no 

correlation with CTEPH disease severity, confirming the changes are not due to the 

presence of pulmonary hypertension or organised thrombus per se.  Interestingly, there 

was no abnormality in ADAMTS13 levels in IPAH despite this group having a higher 

pulmonary vascular resistance, implying that distal pulmonary artery endothelial 
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dysfunction and small vessel vasculopathy are not responsible.(287)  Taken together, 

these observations demonstrate the dysregulation of the ADAMTS13-VWF axis in 

CTEPH pathogenesis.  

 

4.3.3  ADAMTS13-VWF: dysregulation mechanism and role in CTEPH pathobiology 
It has been hypothesised that low ADAMTS13 is driven by activation of fibrinolytic 

pathways and an increase in thrombin and/or plasmin, which have the potential to 

proteolytically inactivate ADAMTS13.(283)  Whilst D-dimer was raised in CTEPH there 

was no correlation with ADAMTS13 implying this was not the mechanism by which 

ADAMTS13 was reduced.  High multimeric forms of VWF appear not to be increased in 

CTEPH.  This is surprising, as increased high multimeric VWF occurs when ADAMTS13 

is reduced in TTP and has been suggested to occur in ischaemic stroke and CAD.(212, 

285)  VWF multimeric size measured systemically may not reflect the local disease 

microenvironment in the pulmonary vascular endothelium.  Additionally, localised flow 

conditions that may be altered in CTEPH are important in VWF structure, cleavage by 

ADAMTS13 and thrombus resolution.(178)  Shear stress is required to unfold VWF and 

expose its A2 binding domain to ADAMTS13 however, pulmonary arterial shear stress is 

decreased in pulmonary hypertension.(178, 288)  This may result in reduced cleavage of 

ultra-large VWF by ADAMTS13 and coupled with reduced ADAMTS13 levels a  

prothrombotic state predisposing to, or causing progression of  CTEPH.  Specific 

ADAMTS13 activity was increased in CTEPH, which may be a consequence of an 

increased ratio due to both ADAMTS13 activity and antigen levels being reduced, but 

antigen levels proportionally more so.  Alternatively, an increased specific ADAMTS13 

activity level may reflect an increased conformational activation of ADAMTS13 by its 

substrate VWF, due to the altered ADAMTS13:VWF ratio in CTEPH patients.(289) 

 

Further evidence of the role of ADAMTS13 in the pathobiology of thrombosis comes from 

animal models.  ADAMTS13 deficiency increases the infarct size in ischaemic stroke and 

myocardial infarction murine models and this can be attenuated by recombinant human 

ADAMTS13 (rhADAMTS13).(290, 291)  Furthermore, rhADAMTS13 decreases fibrotic 

remodelling in a left ventricular pressure overload murine model, which may better reflect 
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elements of the chronic pathological features in CTEPH.(292)  Whilst right ventricular and 

vascular remodelling occur in CTEPH, right ventricular hypertrophy is not a feature of 

CTED, in which ADAMTS13-VWF dysregulation also occurs.(276)  In ischaemic stroke 

and myocardial infarction murine models, the cerebral and myocardial injuries induced by 

ischaemia are VWF-dependent and partially mediated by inflammation.(61, 293)  

 

Inflammation has been linked to CTEPH pathogenesis and some chronic infections are 

associated risk factors.(294)  PEA specimens contain inflammatory cells that correlate 

with circulating inflammatory markers, which are also increased in CTEPH.(46)  The 

ADAMTS13-VWF axis is abnormal in acute and chronic inflammatory conditions and is 

posited as a unifying link between inflammation and thrombosis.(286, 295)  ADAMTS13 

deficiency results in increased leucocyte rolling and adhesion and an increased neutrophil 

recruitment to the infarcted area in stroke models.(290, 295) Recombinant ADAMTS13 

reduces inflammation and platelet recruitment in a left ventricular overload model.(292)  In 

CTEPH, reduced ADAMTS13 would be expected to result in increased inflammation and 

increased platelet recruitment.  No correlation was observed between systemic markers 

of inflammation and ADAMTS13 or VWF levels suggesting the ADAMTS13-VWF 

imbalance is not secondary to systemic inflammation.  There may still be an interaction 

with local inflammation in the pulmonary arteries in CTEPH. 

 

4.3.4  ADAMTS13-VWF and ABO 
ABO blood groups are associated with CTEPH with an over-representation of the non-O 

blood group.(68)  Genetic variation in ABO has also been associated with ischaemic 

stroke, coronary artery disease and venous thromboembolism.(70, 258)  The proposed 

mechanism of this association has been via VWF plasma levels, which are 25% higher in 

non-O individuals.(121)  VWF is increased in some non-O groups within CTEPH however, 

VWF is still significantly higher in the CTEPH O group compared with healthy controls.  

This implies there are other causes of increased VWF and conversely, ABO may have 

additional effects in CTEPH.  This would be consistent with studies in VTE where ABO 

remains an independent risk factor after adjusting for VWF levels.(115)  ABO is a 

pleiotropic locus and may have alternative functional effects in CTEPH including 



   
 

 182 

mediating pathways involved in inflammation and angiogenesis.(232)  Inadequate 

angiogenesis with a paucity of neovessels and failure to recanalise obstructed vessels 

has been implicated in CTEPH pathobiology.(45, 46)  Interestingly, ADAMTS13 can 

promote angiogenesis in endothelial cells and therefore, a reduced ADAMTS13 in 

CTEPH may result in inadequate angiogenesis.(296)  Furthermore, in stroke models, 

ADAMTS13 controls key steps of vascular remodelling and rhADAMTS13 enhances 

ischaemic neovascularisation.(297) 

 

4.3.5  ADAMTS13 protein quantitative trait loci in CTEPH 
A protein quantitative trait loci (rs3739893) was identified in the C9orf96 gene (~8kb 5’ of 

the ADAMTS13 gene) that is associated with ADAMTS13 protein levels and has been 

described in two previous studies.(201, 231)  In a GWAS of ADAMTS13 antigen levels in 

a healthy cohort, this SNP is significantly associated with a similar effect size (β = -22.3%).  

The rs3739893 SNP is highly correlated (R2=0.867, p<0.001) with a missense variant 

(rs41314453) that is the most significant association in an ADAMTS13 activity 

GWAS.(231)  Whilst this suggests that ADAMTS13 protein is genetically regulated, this 

SNP only accounts for a small amount of variance (~8%) in ADAMTS13 protein levels 

and is not associated with CTEPH disease risk.  ADAMTS13 rare genetic variants have 

been associated with VTE, which would not have been detected with our minor allele 

frequency threshold of 1%.(298)  Future studies could examine if rare ADAMTS13 genetic 

variants are associated with ADAMTS13 protein in CTEPH and if the frequency is 

different from VTE. 

 

4.3.6  Strengths and limitations 
A strength of this study is that it investigated the ADAMTS13-VWF axis in a spectrum of 

thromboembolic disease from acute PE to chronic thromboembolic disease with and 

without pulmonary hypertension.  The study contains a large sample of well characterised 

CTEPH patients, who have been phenotyped in expert tertiary centres.  ADAMTS13-VWF 

imbalance does not occur in PE when assessed by multivariable regression.  This is 

consistent with the largest study of ADAMTS13 in VTE, which showed it was not reduced 

overall.(195)  Whilst the study may have been underpowered to detect smaller magnitude 
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changes in the PE group, ADAMTS13-VWF dysregulation was observed in CTED, a 

group with a similar sample size.  This raises an intriguing possibility, that there are 

differences in the ADAMTS13-VWF axis in the spectrum of thromboembolic disease 

(Section 7.3). 

 

Immunohistochemistry demonstrated that ADAMTS13 is expressed in vascular 

endothelial cells in control, CTEPH and PEA neovessel samples.  However, a limitation 

was the inability to comprehensively quantify ADAMTS13 in these tissues and establish 

if the expression differed.  Semi-quantitative methods supported by computer-assisted 

image analysis could be used to assess the expression of the ADAMTS13 antigen 

between different samples.(229)  Alternative methods could be used including 

quantitative reverse transcription polymerase chain reaction (qRT-PCR), a means of 

quantifying gene expression by converting ribonucleic acid (RNA) to complementary DNA 

(cDNA) using reverse transcriptase followed by amplification of specific DNA targets by 

PCR.(299)  Transcriptomics (RNA-sequencing) could be used to quantify ADAMTS13 in 

different tissues, again by converting messenger RNA (mRNA) to cDNA followed by high-

throughput sequencing and alignment with a reference genome or reference 

transcripts.(300) 

 

The areas for future research for investigating the ADAMTS13-VWF axis in CTEPH are 

discussed in Section 7.2 and the potential implications for clinical practice are explored 

in Section 7.3. 
 

 

In summary, the ADAMTS13-VWF axis is dysregulated in CTEPH and this is unrelated 

to pulmonary hypertension, disease severity or systemic inflammation.  This implicates 

the ADAMTS13-VWF axis in CTEPH pathogenesis.  
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5  CTEPH phenotype - genotype associations 
 

5.1  Introduction 

 

This chapter explores additional phenotype-genotype associations by utilising deeply 

phenotyped data (Section 5.2.1). 

  

The ABO gene locus was the most signification association in the CTEPH GWAS 

(Chapter 3).  The F11 locus was a putative association that was significant in the 

discovery cohort.  Genetic risk scores have been developed for venous 

thromboembolism, whereby disease risk is increased by each additional risk 

allele.(301, 302)  Furthermore, the combination of factor V Leiden and non-O blood 

group has a supra-additive effect on VTE risk.(115)  The effect of a combination of 

ABO and F11 risk alleles on CTEPH risk is explored in Section 5.2.2.1. 

 

The absence of genetic associations in the CTEPH GWAS may also be revealing 

important insights into the pathobiology of CTEPH.  The majority of CTEPH patients 

have a preceding VTE (three quarters have a PE and half have a DVT), a polygenic 

disease with known SNP associations (Section 1.5.5).  In Section 5.2.2.2, the loci 

associated with VTE are examined in the CTEPH case-control GWAS to identify 

differential associations.  Abnormalities in haemostasis and fibrinolysis are implicated 

in the pathobiology of CTEPH and patients with CTEPH are treated with 

anticoagulation, predominately the drug warfarin.  Previous GWASs have identified 

genetic loci that are associated with warfarin metabolism.(236)  In Section 5.2.2.3, 

these loci are examined to establish whether inadequate anticoagulation due to 

genetic variants related to warfarin metabolism are associated with CTEPH. 

 

ABO is the most significant genetic association in CTEPH however, the 

pathophysiological consequences of this association are unclear.  Evaluation of the 

ADAMTS13-VWF axis in Chapter 4 suggested that ABO may be exerting additional 

effects (Section 4.3.4).  Whilst ABO is associated with CTEPH in a case-control 

GWAS, its role in CTEPH disease severity and outcomes has not been 
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investigated.  Potential associations between ABO and CTEPH haemodynamics and 

survival are examined in Section 5.2.3.1 and Section 5.2.3.2 respectively. 

 

CTEPH is a heterogenous disease with a spectrum of pulmonary arterial disease 

distributions and disease severity.  CTEPH can occur in different anatomical 

distributions from the central, proximal pulmonary arteries to the distal 

vasculature.  Distal and proximal CTEPH have been associated with different risk 

factors that may reflect differing pathobiological mechanisms.(11, 78)  Furthermore, 

patients can have a substantial amount of chronic thromboembolic disease but 

differing degrees of pulmonary hypertension and right ventricular 

adaptation.(237)  Pathobiological mechanisms or adaptive processes related to 

disease distribution and severity may have genetic associations that would not 

necessarily be captured by a case-control analysis.  Separate GWAS analyses 

investigating the common variant associations for CTEPH disease distribution and 

haemodynamics are investigated in Section 5.2.3.3 and Section 5.2.3.4 

respectively.  

 

The aims of this chapter were to investigate: 

1. The effect of combining the ABO and F11 risk alleles on CTEPH risk  

2. The differential genetic associations between CTEPH, VTE and warfarin 

metabolism 

3. The effect of genetic ABO groups on CTEPH disease severity and survival 

4. The genetic associations of CTEPH disease distribution and haemodynamics 

by performing separate GWAS analyses  
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5.2  Results 

 

5.2.1  Data capture, QC and missingness 

To obtain deeply phenotyped CTEPH data for current and future analyses, systematic 

data extraction and QC were performed as described in Section 2.3.1.1.  The 

additional phenotype - genotype analyses in this chapter predominately contain 

phenotype data compiled at a single-centre (Papworth) with the highest recruitment.  

The rationale for this approach is described in Section 2.3.1.  The minimal dataset 

(age, sex and CTEPH disease distribution) missingness varied widely between 

centres (Table 5.1). 

 

There were over 200 parameters available for 619 patients from Royal Papworth 

Hospital included in the GWAS analysis, following QC exclusions.  This included the 

182 parameters detailed in Table 2.2 (Material and Methods) and additional variables 

from echocardiograms, radiological investigations, co-morbidities and demographic 

details. 

 

Extensive QC was performed on the separate datasets as described in Section 
2.3.1.1.  As an exemplar, the QC steps for the haemodynamic parameters (n=30 

variables) from right heart catheterisations at Royal Papworth Hospital (n=3366 

individuals in the starting dataset) will be described.   
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Bad Nauheim  Imperial Leuven  Papworth San Diego  Vienna  Total 

Age  0 (0)  9 (15)  0 (0)  18 (3)  0 (0)  143 (100)  170 (14)  

Sex  0 (0)  7 (12)  0 (0)  18 (3)  0 (0)  0 (0)  25 (2) 

Disease distribution  2 (1)  59 (100)  13 (9)  22 (4)  50 (50)  66 (46)  212 (17)  

 

Table 5.1  Missingness of variables from different recruitment centres in the GWAS minimal dataset following QC 

removals  

n=1250 included in the GWAS analysis (see Figure 3.7 for the numbers included from each centre).   
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Data were harmonised by ensuring the correct data type (e.g. continuous data) and 

units were present.  Physiologically impossible values were removed (e.g. negative 

values) and then physiological rules were applied (e.g. cardiac index is always less 

than cardiac output) with further outlier removal.  Test dates were standardised and 

merged with other datasets to obtain the baseline (closest to the time of diagnosis) 

values.  Additional rules for test dates (e.g. baseline haemodynamic parameters had 

to be prior to surgery for those undergoing PEA) were then applied to select 

appropriate data for the downstream analyses.  The importance of systematic and 

reproducible QC steps is highlighted by the difference in the density plots pre- and 

post-QC shown in Figure 5.1, which are essential for determining the most suitable 

statistical analysis. 

 

 
Figure 5.1  Density plots of selected haemodynamics pre- and post-QC 

A Density plots of CI (cardiac index), mPAP (mean pulmonary artery pressure) and 

PVR (pulmonary vascular resistance) prior to QC and B following QC steps (n=50-100 

removals).  Starting dataset n=3366 (all right heart catheterisations from Royal 

Papworth Hospital).  Subsequently, this dataset was used for the GWAS analysis 

(Section 5.2.3). 
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5.2.2  Additional GWAS case-control analysis 

5.2.2.1  ABO and F11 risk alleles and CTEPH 

The risk of CTEPH is increased as the number of risk (effect) alleles at the significant 

loci in ABO (chr9) and the putative association in F11 (chr4) increase (Figure 

5.2).  CTEPH risk is greater for patients with one risk allele at ABO (rs2519093-T 

allele; OR (95% CI): 2.83 (1.91-4.22)) compared with one risk allele at F11 

(rs2036914-C allele; OR (95% CI): 1.48 (1.09-2.03)).  The combination of one risk 

allele at both the ABO and F11 loci has an additive effect (3.46 (2.49-4.85)), which 

continues with each additional risk allele (Figure 5.2).  Patients with 2 risk alleles at 

both the ABO and F11 loci (4 risk alleles in total) have the highest risk of CTEPH (7.43 

(3.72-15.5)), albeit with a wide 95% confidence interval due to the small group 

size.  Only 7% (n=87) CTEPH patients have no risk alleles compared with 16% 

(n=243) of healthy controls.  

 

 

 
Figure 5.2  ABO and F11 risk alleles and CTEPH 

Odds ratios for CTEPH (with respect to healthy controls) in different ABO and F11 risk 

allele groups calculated using logistic regression adjusted for 5 ancestry 

informative principal components.  The risk allele for rs2519093 (Chr9, ABO) is T and 

the risk allele for rs2036914 (Chr4, F11) is C.  Each additional risk allele generally 
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confers an additive effect on disease risk.  There are some combinations such as 

increasing from 1 to 2 F11 risk alleles (TC / CC versus CC / CC) that may not confer 

an additive effect (OR 1.48 versus 1.70).  However, their 95% CI (1.09-2.03 versus 

1.28-2.37) could still be consistent with an additive effect and moreover the trend of 

increasing risk alleles from 0 to 4 is additive. 

 

 

5.2.2.2  Venous thromboembolism genes in CTEPH 

Of the 9 loci (in 8 gene regions) that are significantly associated with VTE in a GWAS 

meta-analysis (7,507 VTE cases and 52,632 healthy controls), only the ABO locus is 

associated with CTEPH (Figure 5.3 and Table 5.2).(70)  The most significant ABO 

locus SNP in the VTE GWAS (rs529565) is also highly associated with CTEPH (OR 

(95% CI): 1.9 (1.77-2.02), p=4.42x10-23) and moderately correlated with the lead ABO 

SNP association in the CTEPH GWAS (R2=0.433, European (non-Finnish) 

1000Genomes phase 3 data).  The putative SNP association in the F11 locus from 

the CTEPH GWAS (rs2036914) is only in moderate-low correlation with the VTE F11 

SNP association (rs4253417, R2=0.357). 

 

There are no significant CTEPH associations for the other VTE associated SNPs (F5, 

FGG, TSPAN15, SLC44A2 and PROCR) (Figure 5.3 and Table 5.2).  There are 

several non-significant putative association signals particularly in the F5 (lead SNP 

rs2009814, effect allele T, OR (95% CI) = 1.36 (1.22-1.50), p=2.60x10-5), FGA-FGB-

FGG (lead SNP rs13130318, effect allele T, OR (95% CI) = 1.41 (1.28-1.54), 

p=4.45x10-7) and F11 (described in Section 3.2.3) loci (Figure 5.3). 
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Figure 5.3  VTE associated loci in the CTEPH GWAS 

Regional association plots (LocusZoom) from the CTEPH GWAS (1250 CTEPH patients, 1492 healthy controls and 7,675,738 SNPs) 

focusing on the significant loci that have previously been described for VTE.(70)  The significant association in ABO (chr9) detailed 

in Chapter 3 is not shown.  The lead SNPs displayed in the LocusZooms are not necessarily the same as in Table 5.2. 
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VTE CTEPH 

rsID CHR:POS_EA/NAE GENE EAF OR (95% CI) p EAF OR (95% CI) p INFO 

rs4524  1:169511755_T/C  F5  0.736  1.20 (1.14–1.26)  2.65e-11  0.775  1.33 (1.19-1.46)  4.77e-05  1.000  

rs6025  1:169519049_T/C  F5  0.033  3.25 (2.91–3.64)  1.1e-96  0.047  1.02 (0.677-1.36)  9.08e-01  0.588  

rs2066865  4:155525276_A/G  FGG  0.244  1.24 (1.18–1.31)  1.03e-16  0.605  1.38 (1.21-1.55)  1.92e-04  0.525  

rs4253417  4:187199005_C/T  F11  0.405  1.27 (1.22–1.34)  1.21e-23  0.094  0.791 (0.571-1.01)  3.65e-02  0.681  

rs529565  9:136149500_C/T  ABO  0.354  2.29 (1.75–2.99)  1.73e-09  0.463  1.9 (1.77-2.02)  4.42e-23 0.976  

rs78707713  10:71245276_T/C  TSPAN15  0.878  1.15 (1.10–1.21)  1.65e-08  0.907  1.45 (1.25-1.66)  3.29e-04  0.852  

rs1799963 11:46761055_A/G F2  0.010  1.20 (1.13–1.27)  3.48e-09  NA  NA NA  0.030 

rs2288904  19:10742170_G/A  SLC44A2  0.785  1.28 (1.19–1.39)  5.74e-11  0.817  1.32 (1.18-1.47)  2.24e-04  1.000 

rs6087685  20:33777612_C/G  PROCR  0.302  1.19 (1.12–1.26)  1.07e-09  0.192  0.938 (0.769-1.11)  4.55e-01  0.859  

 

Table 5.2  VTE associated loci in the CTEPH GWAS 

The VTE associations shown in the table are from a GWAS meta-analysis and the associations for CTEPH are from the CTEPH 

GWAS (Chapter 3).(70)  The rs1799963 SNP (F2 gene locus) was not analysed in the CTEPH GWAS as it was filtered out due to a 

low effect allele frequency (< 1%) and low information score (INFO < 0.5).  The allele frequencies for the FGG and the F11 gene 

locus SNPs differ markedly between CTEPH, VTE and a European (non-Finnish) reference population (0.239 and 0.403 respectively; 

not shown in table).  This is likely to be related to poorly imputed SNPs reflected by a lower INFO score.  rsID (reference SNP cluster 

ID), CHR (chromosome), POS (Base position, GRCh37 genome build), EF (effect allele), NEA (non-effect allele), GENE (nearest 

gene of the SNP, from ANNOVAR), EAF (effect allele frequency of VTE/CTEPH patients), INFO (information score, imputation 

quality), OR (odds ratio), p (p-value). 
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The F5 SNP (rs6025; the factor V Leiden variant) is the most significant association 

with the highest odds ratio in the VTE GWAS (OR (95% CI): 3.25 (2.91-3.95), 

p=1.1x10-96) but is not significantly associated with CTEPH (OR (95% CI): 1.02 (0.67-

1.36), p=0.908)  The lack of VTE associations in the CTEPH GWAS may be due to 

differing genetic aetiology or a lack of power to detect associations.  To address this, 

power calculations were performed for the F5 locus (Figure 5.4).  With the current 

CTEPH GWAS sample size (cases=1250, controls=1492) there is 100% power to 

detect an rs6025 association assuming a disease prevalence of 0.00003, a disease 

allele frequency of 0.033, an OR of 3.25 (from Table 5.2) and an additive genetic 

model.  However, for the other significant SNP in F5 (rs4524) over 15,000 cases and 

controls would be required to achieve a power of 80% (assuming an OR of 1.2 and 

disease allele frequency of 0.736).  This suggests that we are adequately powered to 

detect a lack of association in rs6025, but under-powered to detect some other VTE 

associations. 

 

5.2.2.3  SNPs associated with warfarin metabolism in the CTEPH GWAS 

The 4 loci (in 3 gene regions: CYP2C9, VKORC1, CYP4F2) associated with warfarin 

metabolism are not associated with CTEPH in the GWAS (Figure 5.5 and Table 
5.3).(236)  Most notably, the SNP in VKORC1 (rs9923231) that explains ~30% of the 

warfarin dose variance does not increase the risk of CTEPH (OR (95% CI): 0.872 

(0.751-0.993), p=0.027). 
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Figure 5.4  Power calculations for the F5 VTE associated loci 
Power calculations for the SNPs rs4524 and rs6025, which are the significant F5 gene 

locus associations in the VTE GWAS.  The power calculations assume an allele 

frequency of 0.736 and OR of 1.2 for rs4524 and an allele frequency of 0.033 and OR 

of 3.25 for rs6025 (taken from the VTE GWAS results shown in Table 5.2).  A disease 

prevalence of 0.00003 and an additive genetic model were used for the 

calculations.  In the top panels power calculations were performed using disease 

cases (n=1250) and healthy controls (n=1492), whereas in the bottom panels only 

disease cases (n=1250) were included in calculations.(303)  Power calculations were 

performed using the GAS online power calculator.(203)   
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Figure 5.5  Warfarin metabolism associated loci in the CTEPH GWAS 

Regional association plots (LocusZoom) from the CTEPH GWAS (1250 CTEPH patients, 1492 healthy controls and 7,675,738 SNPs) 

focusing on the significant loci that have previously been described for warfarin metabolism.(236)  The variants annotated in the plots 

are the most significant ones for that region and do not correspond to the SNPs associated with warfarin metabolism described in 

more detail in Table 5.3. 

 

 

rsID  CHR:BP_EA/NEA  GENE EAF_A EAF_U EAF_REF OR (95% CI) p INFO 

rs1799853   10:96702047_C/T   CYP2C9 0.250 0.243 0.1266 0.958 (0.807-

1.11)  

0.581 0.803 

rs1057910   10:96741053_C/A   CYP2C9 0.0604 0.0694 0.0626 0.835 (0.596-

1.07)  

0.129 1.000 

rs9923231   16:31107689_T/C   VKORC1 0.360 0.383 0.368 0.872 (0.751-

0.993)  

0.027 1.000 

rs2108622   19:15990431_T/C   CYP4F2 0.299 0.302 0.287 1.04 (0.91-1.16)  0.583 1.000 

 

Table 5.3  Warfarin metabolism associated loci in the CTEPH GWAS 

The SNPs associated with warfarin metabolism were defined in a GWAS of ~1500 patients taking warfarin from a Swedish 

population.(236)  It was not clear from the Takuchi et al, study what the effect allele (EA) for each SNP was, so this has been defined 

as the minor allele.  The allele frequencies for rs1799853 (CYP2C9) differ between the CTEPH GWAS and a reference population, 

which may be due to the lower quality imputation of this SNP.  EAF_A (effect (minor) allele frequency of affected CTEPH patients), 
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EAF_U (effect (minor) allele frequency of unaffected healthy controls), EAF_REF (effect (minor) allele frequency of reference, 1000 

genomes phase 3 European (non-Finnish) populations).  The additional column headings are described in Table 5.2. 
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5.2.3  Additional phenotype-genotype associations 

 

5.2.3.1  ABO and CTEPH disease severity 

Haemodynamic parameters from right heart catheterisation performed at the time of 

CTEPH diagnosis are a marker of disease severity.  Higher mean pulmonary arterial 

pressure (mPAP) / pulmonary vascular resistance (PVR) and lower cardiac index (CI) 

reflect more severe disease.  The effect of the alleles for the significant chr9 locus 

(ABO) and the putative chr4 locus (F11) in the CTEPH GWAS on baseline 

haemodynamics was investigated.  There was no difference in the baseline 

haemodynamics of all CTEPH patients with risk alleles in ABO or F11 when analysed 

separately or in combination (Figure 5.6). 

 

Haemodynamics do not vary with inferred genetic ABO groups (described in Section 
2.1.8) for CTEPH patients (Figure 5.7A-C).  Additional markers of CTEPH disease 

severity (six-minute walk distance and WHO functional class) also do not vary with 

genetic ABO groups (Figure 5.7D and 5.7E). 
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Figure 5.6  The effect of risk (effect) alleles for Chr4 (F11) and Chr9 (ABO) on haemodynamics 

CTEPH patients were subdivided by their number of risk (effect) alleles from the ABO (risk allele T) and putative F11 (risk allele C) 

associations in the CTEPH GWAS.  Group differences in haemodynamics (CI, mPAP and PVR) were then assessed using the 

Kruskal-Wallis test.  The number of CTEPH patients with available data for CI, mPAP and PVR were: 551, 625 and 610 respectively.  

The nominally significant p-values in E and H are no longer significant when adjusted for multiple testing.  CI (cardiac index, L/min/m2), 

mPAP (mean pulmonary arterial pressure, mmHg), PVR (pulmonary vascular resistance, dynes/sec/cm-5). 

 

 

 



   
 

 202 

 

 
Figure 5.7  Genetic ABO groups and CTEPH disease severity 

CTEPH patients were subdivided into their inferred genetic ABO group (A, AB, B and 

O).  Group differences in haemodynamics (CI, mPAP and PVR) and 6mwd were 

assessed using the Kruskal-Wallis test and the Cochran-Armitage test for WHO 

functional class.  The number of CTEPH patients with available data for CI, mPAP, 

PVR, 6mwd and WHO functional class were: 535, 604, 589, 455 and 525 

respectively.  The available haemodynamic data differs from Figure 5.6 as a genetic 

ABO group could not be inferred in all CTEPH patients (see Section 2.1.8).  In Figure 
5.7E the percentage for each group is shown above the bars.  CI (cardiac index, 

L/min/m2), mPAP (mean pulmonary artery pressure, mmHg), PVR (pulmonary 

vascular resistance, dynes/sec/cm-5), 6mwd (six-minute walking distance, metres), 

WHO (World Health Organisation).  
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5.2.3.2  ABO groups and CTEPH survival 
Survival was investigated in CTEPH patients following PEA as this represented the 

largest group that received the same intervention.  Mortality data was only available 

from Royal Papworth Hospital.  Of the 619 CTEPH patients from Papworth included 

in the CTEPH GWAS analysis, 454 underwent PEA and 421 of these had both 

mortality data and genetically inferred ABO groups available.  There was no difference 

in survival following surgery between genetic ABO groups in CTEPH (log-rank: 

p=0.29) (Figure 5.8 and Table 5.4).  Survival was worse with increasing age (hazard 

ratio (95% CI) per 1 year increase: 1.04 (1.02-1.06), p<0.001) (Table 5.4). 

 

 
 

Figure 5.8  CTEPH survival following pulmonary endarterectomy in different 
ABO groups 

Kaplan-Meier survival curves of survival time for post-PEA CTEPH patients stratified 

by genetic ABO group.  Group differences were assessed with a log-rank test.   

As multiple variables can influence post-PEA survival in CTEPH, a cox proportional 

hazards model was constructed.(15)  Survival did not vary by genetic ABO groups 

when adjusting for age, sex and baseline pre-operative disease severity (mPAP) 

(Table 5.4).  The small sample size of some ABO groups (e.g. B and AB) made it 

difficult to be definitive on their survival effect. 
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n HR 95% CI p 

ABO:  O 103 Reference 
  

ABO:  A  237 1.05 0.64 - 1.75  0.836  

ABO:  B  34 0.70  0.26 - 1.85  0.467  

ABO:  AB  26 1.89  0.83 - 4.3  0.131  

Female 174 Reference 
  

Male 226 0.94  0.62 - 1.44  0.779  

Age  400 1.04  1.02 - 1.06  <0.001 

mPAP: Baseline 400 1.01  0.99 - 1.03  0.429  

 

Table 5.4  Cox proportional hazards model of post-PEA survival in CTEPH  

Cox proportional hazards model assessing time to death following PEA 

surgery.  There were 400 CTEPH patients (54 removed due to missing variables) and 

89 events (deaths) included in the model.  Hazard Ratios (HR) are shown with 95% 

confidence intervals.  mPAP was included as a covariate to account for baseline pre-

surgical disease severity as it was the haemodynamic measurement with the most 

data points.  Data analysis was performed and models checked using the R packages: 

`survival` and `survminer`.(249, 250) 

 

 

5.2.3.3  CTEPH disease distribution GWAS 

1035 (83%) of patients included in the CTEPH GWAS had a disease subtype (CTEPH 

distal / proximal or CTED) recorded.  Of the 983 patients with CTEPH, 847 (86%) had 

a proximal distribution in the pulmonary arteries and 136 (14%) had a distal 

distribution.  The variation in disease sub-type proportions by centre is shown in 

Figure 5.9. 
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Figure 5.9  CTEPH disease subtypes by recruiting centre 

Barplot of the number of CTEPH disease subtype (CTEPH: proximal or distal, and 

CTED) patients from each centre.  1035 patients had information on disease subtype 

and 215 were missing these data.  The count (n) for each group is shown above the 

bars.  Centres that did not supply data on disease subtype are not included in the plot. 

 

 

A separate GWAS analysis was performed to investigate if there were genetic 

associations with CTEPH disease subtype.  Imputed genotype dosages were used to 

test for an association between proximal (n=847) and distal (n=136) CTEPH patients 

following QC and imputation steps as previously described (Chapter 3).  Association 

testing was performed as described using logistic regression with post-imputation SNP 

dosages (n=7,675,738) assuming an additive model and adjusted for 5 principal 

components, age, sex and centre (Figure 5.10A, C and D).  The additional covariates 

(age, sex and centre) were included as they can vary between proximal and distal 

disease.(11, 78)  No locus was genome-wide significant (p<5x10-8).  The most 
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significant SNPs are rs2313920 (OR (95% CI) 0.317 (0.303-0.331), p=7.63x10-8) an 

intronic variant in the KSR1 (Kinase Suppressor of Ras 1) gene and rs68044424 (OR 

(95% CI) 4.44 (3.88-5.01), p=2.15x10-7) an intergenic SNP in chromosome 11. 

 

 
 

Figure 5.10  Distal/Proximal CTEPH GWAS association testing 

Analysis of 136 distal CTEPH, 847 proximal CTEPH and 7,675,738 SNPs.  Statistical 

testing of individual SNPs using allelic dosage (range 0-2) for an association with 

CTEPH disease subtype was performed using logistic regression assuming an 

additive genetic model and age, sex and 5 ancestry informative principal components 

were included as covariates.  A p-value of <5x10-8 was considered genome-wide 

significant (grey dotted line).  P-values are transformed to a -log10 scale. 

A Distal vs. Proximal CTEPH association testing.  The most significant associations 

in chromosome 17 (rs2313920) corresponds to 17:25863625, and in chromosome 

11 (rs68044424) to 11:96725054 on the plot. 
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B Distal (including post-PEA residual pulmonary hypertension) (n=349) vs. Proximal 

CTEPH (n=635)  

C and D Regional association plots of chromosomes 11 and 17 showing the most 

significant putative associations from Figure 5.10A. 

 

 

The distal/proximal CTEPH association testing is limited by the small sample size of 

the distal CTEPH group.  Over 50% of patients have persistent pulmonary 

hypertension following pulmonary endarterectomy.(15, 20)  As the majority of proximal 

thromboembolic material is removed during surgery, the residual pulmonary 

hypertension may be a consequence of distal vasculopathy.  There may be an overlap 

in the pathobiology of distal CTEPH and post-PEA residual pulmonary hypertension 

with shared genetic associations.  This was explored by performing a GWAS analysis 

that included post-PEA residual pulmonary hypertension patients (n=213) with distal 

CTEPH (n=136) in one group (n=349 total) and compared them to proximal CTEPH 

(n=635) in the second group.  Association testing was performed as described for the 

original distal/proximal CTEPH groups.  There were no loci that achieved genome-

wide significance (Figure 5.10B). 

 

5.2.3.4  CTEPH haemodynamics GWAS 

Another separate GWAS analysis was performed to investigate if there were genetic 

associations with CTEPH haemodynamics, which are a marker of disease 

severity.  Haemodynamics (mPAP, CI and PVR) obtained at the time of baseline 

(diagnostic) right heart catheterisation were utilised in linear regression with post-

imputation SNP dosages (n=7,675,738).  The model was adjusted for 5 ancestry 

informative principal components and factors that could affect haemodynamics: age, 

sex and recruiting centre.  No locus was genome-wide significant (Figure 5.11).  The 

most significant association occurred in the cardiac index GWAS (rs4240181, b (95% 

CI):-0.148 (-0.150 to -0.146), p=4.16x10-7) and was an intronic variant in the TUSC3 

(Tumour Suppressor Candidate 3) gene.  Another putative association was the SNP 

rs145980813 (b (95% CI):-0.340 (-0.191 to -0.489), p=4.4510-7) an intronic variant in 

MALRD1 (MAM And LDL Receptor Class A Domain Containing 1). 
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Figure 5.11  CTEPH haemodynamic GWAS association testing  
GWAS analysis of baseline (diagnostic) haemodynamics (mPAP, CI and PVR) 

obtained at right heart catheterisation for CTEPH utilising 7,675,738 SNPs.  The 

number of individuals with mPAP, CI and PVR data available were: 610, 537 and 595 

respectively.  Statistical testing of individual SNPs using allelic dosage (range 0-2) for 

association with CTEPH haemodynamics (mPAP, CI or PVR) was performed using 

linear regression assuming an additive genetic model and age, sex and 5 ancestry 

informative principal components were included as covariates.  As some 

haemodynamic parameters had skewed distributions, linear models were first 

constructed without the SNP allelic dosages to evaluate the normality of 

residuals.  Appropriate transformations were then applied if required (square root 

(PVR), log (CI)) and used in the linear models with the SNP allelic dosages and 

covariates.  A p-value of <5x10-8 was considered genome-wide significant (grey dotted 

line).  P-values are transformed to a -log10 scale. 
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D and E Regional association plots for the most significant putative associations in 

chromosomes 8 and 10 from the cardiac index analysis (Figure 5.11B) 
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5.3  Discussion 

 

5.3.1  The effect of combining the ABO and F11 risk alleles on CTEPH risk  
ABO is the most significant genetic association for CTEPH followed by a putative 

association in a F11 locus.  Combining risk alleles at these two loci does not result in 

a supra-additive effect on CTEPH disease risk.  Only 7% of CTEPH patients have no 

risk alleles at ABO and F11 compared with 16% of healthy controls.  However, given 

the common allele frequencies of the ABO and F11 SNPs, these variants are neither 

necessary nor sufficient to develop CTEPH.  

 

5.3.2  The differential genetic associations between CTEPH, VTE and warfarin 
metabolism 

Given that three quarters of CTEPH patients have had a preceding pulmonary 

embolism, we may expect similar common variant genetic associations.  Of the 9 

common genetic loci associated with VTE, only ABO is significantly associated in the 

CTEPH GWAS.  This may be due to a relatively small sample size and lack of power 

to detect associations.  However, the CTEPH GWAS is adequately powered to 

exclude a factor V Leiden variant (rs6025) association.  This suggests that either the 

factor V Leiden variant is not significantly associated with CTEPH, or that an 

association exists but with a smaller effect size. 

 

The factor V Leiden polymorphism is a missense mutation that results in activated 

protein C resistance and a procoagulant state (56).  It affects ~5% of Caucasians and 

is much rarer in other ethnic groups.(254)  Individuals heterozygous for factor V Leiden 

have a 3-5 fold increased lifetime risk of VTE, and in homozygotes the risk is increased 

over 10 fold.(56)  Furthermore, 20-25% of patients with a first episode of unprovoked 

VTE have the factor V Leiden polymorphism.(304)  The risk of VTE recurrence in 

heterozygous carriers of factor V Leiden is only modest (OR ~1.4).(305)  Whilst the 

mutation occurs more frequently in isolated PE than healthy controls (OR ~2), there is 

an even higher frequency in DVT (OR ~4).(106, 306, 307)  The stronger association 

with DVT than PE is termed the factor V paradox.  The reasons for the apparent 

paradox are unclear, but may relate to a reduced embolization risk conferred by factor 

V Leiden.(308)   
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In the CTEPH GWAS, the lack of association with factor V Leiden could be attributable 

to differences in the CTEPH and VTE GWAS cohorts.  All VTE GWAS cohorts have 

pooled patients diagnosed with DVT, PE or a combination of both.(70)  To date, the 

potential genetic differences between DVT and PE have not been explored fully in a 

GWAS.  The CTEPH GWAS cohort is likely to comprise more patients that have had 

a preceding isolated PE than isolated DVT alone.(11)  As our CTEPH cohort is 

enriched for preceding PEs, we may be underpowered to detect more modest genetic 

associations with healthy controls that would manifest with a DVT enriched cohort. 

Alternatively, there could be genuine differential genetic associations between PE and 

CTEPH.  A comparative GWAS could be performed to explore this hypothesis.  This 

would require a well characterised PE cohort to define several phenotypic aspects.  In 

addition to defining isolated PE or combined DVT and PE (and recurrence), the 

radiological resolution of pulmonary arterial perfusion defects should be elucidated to 

confirm the absence of CTED.  Ultimately, access to a deeply phenotyped cohorts of 

patients with resolved DVT/PE, persistence of CTED and CTEPH would be required 

to establish pathobiological and genetic differences. 

 

CTEPH is not associated with the genetic determinants of warfarin 

metabolism.  Ineffective anticoagulation of pulmonary embolism due to SNPs 

associated with warfarin metabolism, is unlikely to be involved in the pathogenesis of 

CTEPH.  Furthermore, genetic differences in the vitamin-K dependent clotting factor 

pathways that may result in increased thrombus formation prior to the introduction of 

anticoagulants are also unlikely to be involved in the aetiology of CTEPH. 

 

5.3.3  The effect of genetic ABO groups on CTEPH disease severity and survival 
Genetic ABO groups were not associated with CTEPH disease severity (baseline 

haemodynamics, 6mwd or WHO functional class) or survival post-PEA.  This suggests 

that the ABO association is related to disease aetiology rather than a confounding 

association from selecting more severe CTEPH phenotypes that would present to 

specialist pulmonary hypertension recruiting centres.  The survival analysis is limited 

by the relatively small sample size and number of deaths.  As peri-operative mortality 

post-PEA is low in expert centres and long-term mortality is not driven by right 

ventricular failure (CTEPH), alternative outcome measures need to be considered for 

future analyses.(7, 15) 
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5.3.4  CTEPH disease distribution and haemodynamics GWASs 

No SNPs were significantly associated in the CTEPH disease subtype 

(proximal/distal) GWAS.  The most significant putative association (rs2313920, OR 

(95% CI) 0.317 (0.303-0.331), p=7.63x10-8) was in KSR1.  KSR1 is a gene in 

chromosome 17 that encodes the protein Kinase suppressor of Ras 1 (KRS1).  KSR1 

is expressed in 27 different tissues including heart and lung.(309)    KRS1 is an 

enzyme that functions in multiple receptor tyrosine kinase pathways and participates 

in the activation of mitogen-activated protein kinase (MAPK) pathways.(310)  SNPs in 

the KSR1 gene have been associated with monocyte count (rs1105527), inflammatory 

bowel disease (rs2945412) and other chronic inflammatory diseases 

(rs10775412).(266, 311, 312)  However, there is very little correlation between these 

SNP associations and the putative KSR1 SNP associations in the CTEPH GWAS (R2: 

0.156, 0.153 and 0.042 respectively).  The other disease distribution putative 

association is an intergenic SNP (rs68044424) in chromosome 11 without any known 

associations in the GWAS catalog or ClinVar database.(140, 313) 

 

There were also no significant associations in the CTEPH haemodynamic (CI, mPAP 

and PVR) GWASs.  The rs4240181 intronic TUSC3 gene variant in chromosome 8 

was the most significant putative association (p=4.16x10-7) in the cardiac index 

GWAS.  TUSC3 is a proposed tumour suppressor gene that encodes the protein 

Tumour suppressor candidate 3 and is downregulated in some epithelial 

cancers.(314)  TUSC3 is expressed in 25 different tissues including heart and 

lung.(309)  Rs4240181 has no trait associations in the GWAS Catalog, but SNPs in 

the TUSC3 gene have been associated with body mass index and DNA 

methylation.(315, 316)   

 

The separate GWASs were limited by the sample sizes which would only be 

adequately powered to detect large effects.  This particularly applied to the 

distal/proximal GWAS, which was limited by the distal disease group size (n=136).  

These analyses should be revisited when the CTEPH GWAS cohort expands and 

there is adequate power to detect associations. 
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In summary, there may be differential genetic associations between CTEPH and VTE 

that could be investigated with a comparative GWAS.  ABO groups are not associated 

with CTEPH disease severity or post-PEA survival.  Separate GWASs for CTEPH 

disease subtype and haemodynamics identified putative, but no genome-wide 

associations. 
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6  Conclusions 
 

This multi-centre international GWAS is the largest study undertaken in CTEPH and 

included 1250 CTEPH cases, 1492 healthy controls and ~7 million SNPs.  The ABO 

locus was identified as the most significant common variant genetic association in 

CTEPH in both a discovery and validation cohort.  In a joint analysis of both the 

discovery and validation cohort combined, an intronic variant (rs2519093) in ABO was 

the most significant association with an OR of 2.4 (95% CI 2.3-2.5; p=3.42x10-31).  Fine 

mapping using statistical methods identified a 99% credible set of 3 genetic variants 

that included the SNP (rs507666) that “tags” the A1 genetic ABO group.  In a 

subsequent reconstruction of genetic ABO groups using haplotypes, the A1 group was 

enriched in CTEPH patients with the A1A1 group having an odds ratio of 4.4 (95% CI 

2.9-6.7) compared with the OO genetic ABO group. 

 

ABO is a pleiotropic locus that has been associated with a number of diseases 

including venous thromboembolism, coronary artery disease and ischaemic 

stroke.(70, 258)  Genetic variation at the ABO locus and thrombotic risk has 

traditionally been attributed to VWF levels, which are 25% lower in O group 

individuals.(81)  Individuals possessing A1 enriched ABO groups have higher plasma 

levels of VWF and factor VIII compared with the O and A2 groups, which is consistent 

with the enrichment of the A1 group in the current study.(253)  However, over 20 

plasma protein levels have been associated with genetic variation within the ABO 

locus that relate to immunology, vascular endothelial cell function and coagulation. 

(272)  Therefore, the ABO association in the CTEPH GWAS may result in functional 

effects in addition to mediating VWF levels.  Fine mapping of the ABO locus using 

genomic functional annotations revealed the lead SNP is associated with SURF1  

gene expression (eQTL) in the heart.  SURF1 is involved in oxidative phosphorylation, 

which is another plausible mechanism in CTEPH right ventricular pathobiology.(275) 

(276) 

 

There was a putative association in the F11 gene locus (rs2036914) in the discovery 

cohort however, this was not replicated in the validation cohort.  This SNP is also 

associated with venous thromboembolism in a GWAS, and the absence of a validated 
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association in the current study may be due to a lack of power.(70)  Exploratory gene-

based analysis, whereby SNPs are assigned to genes and genome-wide gene 

association testing is performed, identified a significant association in the FGG gene.  

There was also a putative association (p<1x10-5) signal at the FGG locus in the single-

variant GWAS analysis.  FGG is part of the FGA-FGB-FGG fibrinogen locus that has 

been associated with VTE.(70)  Therefore, the lack an association in the CTEPH 

GWAS at the FGA-FGB-FGG locus may be due to an under-powered study. 

 

As three quarters of CTEPH patients have had a preceding pulmonary embolism, we 

may expect similar common variant genetic associations that are seen in VTE.(70)  

The absence of the VTE genetic associations in CTEPH may be due to a lack of power 

to detect them (F11 and FGA-FGB-FGG), although the current CTEPH GWAS should 

be adequately powered to detect the factor V Leiden mutation (rs6025).  This may be 

due to differing genetic associations that predispose to pulmonary embolism or 

CTEPH and this is discussed further in Section 7.  The absence of genetic 

associations (e.g. factor V Leiden mutation) may also improve understanding of 

CTEPH pathobiology and rationalise future research.  SNPs associated with other 

types of pulmonary hypertension were not associated with CTEPH, suggesting a lack 

of shared genetic aetiology that is explored further in Section 7.1.  There was no 

association between genetic determinants of warfarin metabolism and CTEPH 

suggesting this process is not involved in aetiology or again, reflecting a lack of study 

power to detect smaller effect sizes. 

 
A large proportion of the variation in VWF levels is genetically determined, with 30% 

due to ABO groups.(200)  The ADAMTS13 gene locus is situated ~200kb downstream 

of ABO and in low-moderate linkage disequilibrium with ABO.  Whilst the ADAMTS13 

locus was initially associated with CTEPH in the pilot GWAS, this was subsequently 

determined not to be independent of the ABO association. 

 

In a study of 208 patients with CTEPH and 68 health controls, plasma ADAMTS13 

levels were markedly reduced in CTEPH and plasma VWF levels were increased.  The 

ADAMTS13 reduction in CTEPH was independent of pulmonary hypertension, 

disease severity or systemic inflammation.  These findings implicate dysregulation of 

the ADAMTS13-VWF axis in CTEPH pathobiology.  The magnitude of ADAMTS13-
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VWF dysregulation appears greater in CTEPH than in other thrombotic diseases (e.g. 

coronary artery disease and ischaemic stroke) suggesting a greater role in CTEPH 

pathobiology.(193, 212)  Furthermore, the combination of low ADAMTS13 and raised 

VWF has a synergistic effect on the odds of CTEPH.  ADAMTS13-VWF dysregulation 

in CTEPH remains after removal of thromboembolic material during PEA and 

haemodynamic normalisation suggesting an aetiological role rather than an 

epiphenomenon.  ADAMTS13 is reduced and VWF increased in CTED but there is no 

marked dysregulation of the axis in pulmonary embolism or idiopathic pulmonary 

arterial hypertension. 

 

Genetic ABO groups had a modest effect on VWF levels in the CTEPH group with 

some non-O groups having higher VWF however, ADAMTS13 protein levels did not 

vary by ABO group.  Given that ABO is known to affect VWF with O group individuals 

having 25% lower levels, this suggests that there are other causes of raised VWF in 

CTEPH other than differences from genetic ABO groups, and conversely suggests 

ABO may be exerting its disease effects via additional mechanisms.(121)  By utilising 

the genomic data, a protein quantitative trait locus was identified near the ADAMTS13 

gene that was associated with ADAMTS13 protein levels and explained ~8% of the 

variance however, this pQTL is not associated with CTEPH disease risk in the GWAS. 

 

Additional phenotype-genotype analyses did not identify an association between ABO 

genetic groups and CTEPH disease severity or post-PEA survival.  This suggests that 

the ABO association is related to disease aetiology rather than a confounding 

association with disease severity.  Separate GWASs for CTEPH disease subtype 

(proximal versus distal chronic thromboembolic distribution) and haemodynamics 

identified putative, but no genome-wide associations. 

 

The main study limitation was the lack of power in the GWAS to detect genetic variants 

with lower allele frequencies or more modest effect sizes.  This limitation also applied 

to much of the phenotype-genotype analyses that were predicated on GWAS 

associations.  Whilst the ABO locus was associated with CTEPH in discovery and 

validation cohorts, additional work is required to identify a causal variant and a 

pathobiological mechanism for its functional effect.  The main limitation of the 

ADAMTS13-VWF work is that whilst dysregulation of the axis was demonstrated in 
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CTEPH the mechanism by which it is perturbed was not clearly defined.  Future 

studies could address some of these limitations and are discussed further in Section 
7. 
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7  Future research 
 
Areas for future research will be discussed for genome-wide association studies, the 

ADAMTS13-VWF axis and clinical studies in the following sections. 

 

7.1  GWAS 
 
The CTEPH GWAS had a modest sample size which is a recognised limitation for 

uncommon diseases.  The most important area for future research will be to increase 

sample size to detect additional common variant associations.  Work is currently 

ongoing to increase CTEPH cases by an additional ~950 and ~4500 for healthy 

controls.  These samples have genotypes available for them from the Affymetrix 6.0 

microarray platform.  As the current CTEPH GWAS has used a microarray platform 

using different SNPs, it is difficult to combine them directly for quality control and 

analysis steps.  However, they can be integrated into the current CTEPH GWAS by 

performing separate GWAS studies, followed by imputation against the same 

reference platform (to harmonise the SNPs) and then combining datasets prior to 

statistical association testing.  An alternative approach would be to perform completely 

separate GWAS analyses for cases and controls genotyped on each microarray 

platform (Illumina and Affymetrix) and then combine the studies using meta-analysis 

of the summary statistics.(150)  The degree to which increasing sample size leads to 

increasing common variant associations is not clear a priori and varies depending on 

disease.(122)  A complementary strategy for uncovering additional association signals 

for uncommon disease is to perform a Bayesian association analysis rather than 

adopting a traditional frequentist approach, as the strength of evidence with Bayes 

factors does not vary with sample size or MAF, unlike p-values.(317, 318) 

 

The current study has identified common genetic associations in CTEPH, and 

previous studies have identified SNPs associated with venous thromboembolism.(70, 

166)  However, a key question is what causes the progression from acute PE to 

CTEPH in a minority of patients.  A comparative GWAS study looking at the difference 

in allele frequencies between resolved PE and CTEPH could uncover further genetic 

associations leading to mechanistic insight.  The ideal comparator group would be PE 
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patients with radiological evidence of resolution (from the pulmonary vasculature) 

several months after the acute episode.  Current VTE GWASs have used a mixture of 

predominately deep vein thrombosis and to a less extent pulmonary embolism patients 

without objective evidence of radiological resolution.  Whilst CTEPH is uncommon 

following PE, there is increasing recognition that post-PE persistence of thrombi and 

right ventricular impairment occur in up to a third of patients.(9)  It would be important 

to define a precise phenotype for any comparative study with CTEPH and ongoing 

prospective studies in VTE that include bio-banked blood sample may represent an 

appropriate cohort.(9, 319)  An aim for future studies would be to establish if there is 

a different genetic risk profile across the spectrum of thromboembolic disease from 

resolved pulmonary embolism through to post-PE changes, CTED and CTEPH.  

Cross-trait GWAS could be performed to investigate shared genetic associations with 

diseases including other forms of pulmonary hypertension (e.g. PAH) and thrombotic 

diseases (e.g. coronary artery disease and ischaemic stroke) to identify common 

disease mechanisms.(262) 

 

A limitation of GWAS is the accuracy and breadth of phenotyping which becomes more 

challenging as sample size increases.  An advantage of the current CTEPH GWAS is 

that the disease has a clear and objective definition that requires multiple radiological 

modalities and an invasive right heart catherisation.  However, future studies could 

explore sub-phenotypes further.  Whilst the phenotype-genotype analyses in Chapter 
5 suggested that genetic associations were not being driven by disease severity, there 

was still an under-representation of CTEPH patients with less severe disease that did 

not undergo PEA.  The proliferation of electronic health records and ability to perform 

natural language processing of semi structured radiological reports will be future 

resources for CTEPH case finding that can be utilised in genomic and other -omic 

studies.(320)  Another potential future resource are large biobanks, such as UK 

Biobank that have been used for a VTE GWAS however, they would currently lack 

sufficient CTEPH cases based on published studies of PE in UK Biobank.(166)  GWAS 

using deeper phenotyping may reveal novel genetic associations  in disease subtypes 

such as the distribution of disease in the pulmonary vasculature.  Identifying CTEPH 

subtypes is clinically relevant as subtypes may have different disease mechanisms, 

natural histories and treatments.(321)  Currently, disease distribution is broadly 

classified as proximal and distal disease, which is of practical importance to guide 
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stratification for PEA assessment.  However, unstandardised discrete categories may 

not be sufficiently accurate to identify differing disease mechanisms and genetic 

associations.  Improved radiological classification of CTEPH by partitioning the 

pulmonary vasculature and supported by deep learning would provide more precise 

phenotypes for future study.(322, 323)  CTPA scans also capture data on the lung 

parenchyma and right heart that are important in CTEPH pathophysiology and would 

supplement a radiological pulmonary vascular phenotype.  Furthermore, radiological 

phenotypes could be tracked longitudinally from the initial CTPA performed for 

pulmonary embolism to the CTEPH diagnostic scan in each individual to enrich this 

novel phenotype.  Another strategy could be an analysis to identify unknown CTEPH 

subtypes using “reverse” GWAS to cluster CTEPH patients using their genomic data 

with or without additional phenotype data.(324, 325) 

 

Future novel CTEPH-SNP associations that arise from increasing study sample size 

or additional statistical methods could be interrogated with fine mapping.  This can be 

achieved by increasing SNP density (genetic imputation or resequencing), statistical 

methods, integration with genomic functional annotations and trans-ethnic fine 

mapping (Section 1.5.4).  GWAS studies in CTEPH performed across different 

populations may provide unique insights given observed differences in VTE and 

CTEPH with ethnicity.  VTE is five times more common in black individuals than those 

with Asian-ancestry, which is not accounted for by known genetic associations.(326)  

The incidence of CTEPH in various populations are not well described however, there 

are apparent epidemiological differences between Japanese and Caucasian 

cohorts.(83)  Expanding the CTEPH GWAS to additional ethnic groups would enable 

trans-ethnic fine mapping and may also reveal novel associations in different 

ethnicities.  An alternative strategy to gain insight into CTEPH pathobiology is to 

perform a transcriptome wide association study (TWAS).  This involves leveraging 

genotypes from a GWAS and combining them with gene expression datasets to 

identify gene-trait associations.(327, 328)  The advantage of this approach is that it 

does not require directly profiling gene expressions across multiple tissues in all 

GWAS individuals.(327) 

 

Genotypes from GWAS can be used in additional analyses to investigate causal 

factors in CTEPH.  Inflammation has been associated with CTEPH, but it is unclear if 
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this is causal or epiphenomenon.  Plasma C-reactive protein is raised in CTEPH and 

has been implicated in disease pathobiology.(50, 51)  Mendelian randomisation is a 

method of investigating causal relationships using GWAS risk variants as genetic 

instruments (Section 1.5.1).  Data on CRP could be collected for the CTEPH GWAS 

cohort combined with CRP data from a healthy control group (i.e. UK Biobank) and 

Mendelian randomisation performed to explore the potential causal relationship 

between CRP and CTEPH.  This strategy has been used to investigate the role of 

CRP in coronary artery disease and more recently, the role of red cell distribution width 

in pulmonary arterial hypertension.(139, 329) 

 

7.2  ADAMTS13-VWF 
 

The ADAMTS13-VWF axis was demonstrated to be dysregulated in CTEPH but the 

mechanisms by which ADAMTS13 was decreased and VWF increased were not fully 

elucidated.  In addition to quantifying ADAMTS13 in vascular endothelial cells in 

selected tissues that was described Section 4.3.6, the site of ADAMTS13 reduction 

could be further explored.  ADAMTS13 is predominately produced by hepatic stellate 

cells in the liver with a contribution from vascular endothelial cells.(177)  To explore 

whether ADAMTS13 production is reduced by either tissue, reprogrammed induced 

pluripotent stem cells (iPSC) could be utilised.(330)  Blood samples from CTEPH 

patients could be used to generate iPSCs and then derived hepatic stellate cells and 

vascular endothelial cells produced.(331, 332)  The advantage of this approach is that 

the derived cell lines would have the same genotype as the CTEPH individual from 

whom the cells were derived.  This would enable an exploration of the effect of 

common genetic variants on ADAMTS13 production in the liver and vascular 

endothelium with the ability to stratify experiments by plasma ADAMTS13-VWF levels 

and genotypes.  If no change in the production of ADAMTS13 is demonstrated in 

CTEPH patients compared with control cells, then the reduction of ADAMTS13 may 

be related to consumption, sequestration or excretion and these areas could be 

investigated further. 

 

Experimental studies of CTEPH using small animal models have not fully recapitulated 

the chronic changes that occur in the pulmonary vasculature or right heart.(55)  This 

is partly due to differential vascular responses to chronic pulmonary vascular 
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obstruction across species.(55)  One of the most promising animal models is a porcine 

model that could be used for future mechanistic work.(333)  Ideally a CTEPH animal 

model could be developed with either ADAMTS13 and/or VWF knockouts or with an 

induced alteration in ADAMTS13-VWF levels.  Whilst Adamts13-/- and Vwf-/- knockouts 

exist for the study of stroke and TTP in mice, there are currently no robust large animal 

models.(334)  Stroke murine models with perturbed ADAMT13-VWF have revealed 

increased inflammatory cells and increased infarct size in the brains of Adamts13-/-  

mice that are improved by an infusion of recombinant human ADAMTS13 

(rhADAMTS13).(290, 335)  Future studies in CTEPH could explore the mechanisms 

of immunothrombosis using similar methodology in an appropriately developed animal 

model. 

 

Whilst ADAMTS13 common variants were not associated with CTEPH in the GWAS, 

this methodology would not have detected rare variant associations.  Rare 

ADAMTS13 variants were overrepresented in a small study of VTE patients and future 

studies could explore if they are overrepresented in CTEPH compared with healthy 

controls and VTE.(298)  Exome sequencing of the ADAMTS13 gene could be 

performed in CTEPH patients enriched with the lowest ADAMTS13 plasma levels. 

 

7.3  Clinical perspectives 
 

Clinical prediction scores for CTEPH following acute PE do not currently incorporate 

blood biomarkers.  Future studies using robustly phenotyped PE cohorts to ascertain 

the presence and extent of residual perfusion defects, could investigate if the 

ADAMTS13-VWF axis varies in the spectrum of disease encompassing post-PE 

syndrome.  Determining if ADAMTS13-VWF axis dysregulation precedes the 

development of chronic thromboembolic pathology could inform CTEPH risk 

stratification.  In population studies, healthy individuals with low ADAMTS13 have 

increased risk of developing ischaemic stroke, which provides a rationale for 

prospective studies following PE.(336)  However, low ADAMTS13 alone is unlikely to 

be sufficiently robust to predict CTEPH following acute PE, given that even patients 

with severe ADAMTS13 deficiency do not always develop TTP and additional 

environmental and/or genetic contributors are required.(337)  A risk prediction score 

utilising clinical variables has been developed in CTEPH but is yet to be 
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validated.(172)  Whether this CTEPH risk prediction model could be improved with the 

addition of ADAMTS13-VWF levels and genetic ABO group together with established 

clinical risk factors could be investigated in subsequent studies.  If ADAMTS13-VWF 

levels post-PE enable patients to be stratified into risk groups then this could inform 

future clinical drug trials.  Currently, pulmonary embolism is treated with 

anticoagulation to prevent further VTE, and if there is haemodynamic compromise, 

thrombolytic therapies that break down blood clots are considered.(198)  Thrombolysis 

improves right ventricular function in acute PE but does not prevent CTEPH and is 

associated with bleeding complications.(18)  Therefore, alternative treatment 

strategies will require future evaluation including whether ADAMTS13-VWF levels 

following acute PE can be used to stratify CTEPH preventative treatment modalities 

and durations.  In stroke murine models, rhADAMTS13 decreases infarct size and is 

not associated with the excess major bleeding seen with tissue plasminogen activator 

(tPA) thrombolysis.(290)  Furthermore, some thrombotic occlusions in stroke are 

resistant to thrombolysis with tPA but can be thrombolysed with ADAMTS13 

infusions.(338)  Recombinant ADAMTS13 improved neovascularisation, vascular 

repair and stroke outcome in murine models even when administered in the recovery 

phase at 7 days.(297)  Moreover, in stroke patients plasma ADAMTS13 can predict 

response to thrombolytic reperfusion strategies.(339)  Therefore, if risk prediction for 

developing CTEPH following acute PE improves, then future studies could address 

the effect of rhADAMTS13 infusions in a high risk stratified PE population to prevent 

CTEPH. 
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