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The Impact of NOD2 Variants on Fecal Microbiota in Crohn’s 
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Background/Aims: Current models of Crohn’s disease (CD) describe an inappropriate immune response to gut microbiota in genetically sus-
ceptible individuals. NOD2 variants are strongly associated with development of CD, and NOD2 is part of the innate immune response to bacte-
ria. This study aimed to identify differences in fecal microbiota in CD patients and non-IBD controls stratified by NOD2 genotype.

Methods: Patients with CD and non-IBD controls of known NOD2 genotype were identified from patients in previous UK IBD genetics studies 
and the Cambridge bioresource (genotyped/phenotyped volunteers). Individuals with known CD-associated NOD2 mutations were matched to 
those with wild-type genotype. We obtained fecal samples from patients in clinical remission with low fecal calprotectin (<250 µg/g) and controls 
without gastrointestinal disease. After extracting DNA, the V1-2 region of 16S rRNA genes were polymerase chain reaction (PCR)-amplified and 
sequenced. Analysis was undertaken using the mothur package. Volatile organic compounds (VOC) were also measured.

Results: Ninety-one individuals were in the primary analysis (37 CD, 30 bioresource controls, and 24 household controls). Comparing CD 
with nonIBD controls, there were reductions in bacterial diversity, Ruminococcaceae, Rikenellaceae, and Christensenellaceae and an increase in 
Enterobacteriaceae. No significant differences could be identified in microbiota by NOD2 genotype, but fecal butanoic acid was higher in Crohn’s 
patients carrying NOD2 mutations.

Conclusions: In this well-controlled study of NOD2 genotype and fecal microbiota, we identified no significant genotype-microbiota associa-
tions. This suggests that the changes associated with NOD2 genotype might only be seen at the mucosal level, or that environmental factors and 
prior inflammation are the predominant determinant of the observed dysbiosis in gut microbiota.
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INTRODUCTION
The precise etiology of Crohn’s disease (CD) remains 

unknown. However, the key pathogenic process involves an 
inappropriate immune response that results in bowel inflam-
mation and damage. The targets of this response are thought 
to be antigens derived from constituents of the microbiota, 
a view supported by the benefits of altering the microbiota1 
or physically diverting the fecal stream.2 Further, 16S rRNA 
gene sequencing has shown that the microbiota in inflamma-
tory bowel disease (IBD) is abnormal and characterized by 

reduced diversity with fewer Firmicutes species present.3 The 
direction of causality between IBD and alterations in microbi-
ota remains incompletely understood, as does the question of 
whether overall dysbiosis or specific taxa are most important. 
Recent research also has emphasized the functional aspect 
of the gut microbiota through measurement of microbial 
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metabolites such as the volatile organic compounds (VOC) 
present in feces.4

The last few years has seen rapid advances in the genetics 
of IBD as a result of large cohort genome-wide association 
studies (GWAS) of cases and controls. Over 200 IBD suscep-
tibility loci have now been reported.5–7 For some loci, the dis-
ease gene and associated point mutations are known (eg, NOD2 
and ATG16L1). NOD2 has the largest effect, and a large recent 
subphenotype-genotype analysis has confirmed that NOD2 is 
strongly associated in particular with ileal CD.8 Viewed along-
side other functionally interrelated genes that have been associ-
ated with CD (eg, ATG16L1, IRGM, and XBP1), an impaired 
capability of the host to regulate microbial constituents consist-
ently emerges as a major common theme.

NOD2 is a cytosolic pattern recognition receptor (PRR) 
that is a key player in immunity to intracellular bacteria and 
inflammatory responses. NOD2 recognizes muramyldipep-
tide (MDP), a ubiquitous component of bacterial cells walls, 
and its stimulation leads to induction of autophagy in human 
cells.9 Variants of NOD2 associated with CD are mutated in 
the ligand recognition domain and fail to induce autophagy on 
MDP triggering, which results in aberrant bacterial handling 
and antigen presentation in these cells.10–12 NOD2 possesses 
other antibacterial effects, including the ability to prime human 
dendritic cells (DCs) to promote T-helper 17 (Th17) responses 
(via NOD2-induced-expression of IL-23 and IL-1)13 ,and the 
ability to induce antimicrobial peptide defensins in the intes-
tine.14 If  expression of CD-variant NOD2 leads to dysregulated 
bacterial destruction within the cells in which it is expressed, 
bacteria may persist abnormally in the mucosa and activate tis-
sue inflammation in these sites.

However, approximately 11%–14% of white Europeans 
are heterozygous and 0.4%–0.9% homozygous or com-
pound-heterozygous for CD-risk-variant NOD2 but remain 
healthy, which reinforces the role for coexistent genetic or en-
vironmental factors in initiation of CD.15,16 The association of 
defective antibacterial mechanisms with CD-associated poly-
morphisms in NOD2 suggest that the presence of these variants 
may influence the nature of the microbiota over time. This in 
turn might either lead to a critical dysbiotic state being reached, 
or the presence of specific microbes emerging to initiate the 
cycle of inflammation observed in disease. For example, altered 
release of antibacterial peptides from variant-NOD2-express-
ing Paneth cells, defective Th17 responses, or defective auto-
phagic bacterial processing in the gut mucosa could change gut 
bacterial burden or species diversity.

Little is known of the nature of the microbiota in the pres-
ence of NOD2 mutations. Human studies to date have been lim-
ited in scope due to small numbers of individuals homozygous 
for NOD2 mutations without accurate matching of controls. 
Frank and colleagues revisited the dataset from their index 2007 
study on the microbiota in IBD, stratifying patients retrospect-
ively for NOD2 and ATG16L1 genotype. Due to its retrospective 

design, this study is severely constrained by limited power; des-
pite this, they observed clear shifts in microbial composition as 
a result of genotype.17 The aim of the current study was to pro-
spectively define the role of NOD2 genotype in influencing the 
nature of the host microbiota in health and in CD.

METHODS
Individuals with CD of known NOD2 genotype 

were identified from the UK IBD genetics consortium 
(Fig. 1). Patients were selected if  they carried 2 copies of the 
CD-associated NOD2 variants [ie, homozygotes or compound 
heterozygotes for R702W (rs2066844), G908R (rs2066845), or 
L1007fs (rs2066847)]18,19 as measured using genotyping arrays 
for the original genetics studies in which they had been involved 
(Affymetrix GeneChip 50020 and ImmunoChip6). Patients were 
recruited if  they were deemed by their treating physician to be 
in clinical remission. Each NOD2-mutant patient was matched 
to a homozygous NOD2-wild-type patient. Exclusion criteria 
for CD patients included antibiotics within the months before 
recruitment, active CD (by physician global assessment), and 
presence of an ileostomy. For all CD patients, a household con-
trol was approached (usually an unrelated spouse). Healthy vol-
unteers stratified by the same NOD2 variants were recruited from 
the Cambridge BioResource.21 The Cambridge BioResource is 
a panel of around 16,000 volunteers, both with and without 
health conditions, who have previously submitted DNA for 
genotyping. Participants can be approached for studies on the 
basis of genotype and phenotypic characteristics. Volunteers 
from the BioResource had no known gastrointestinal diagnosis 
and had not taken antibiotics in the preceeding 3 months. All 
study participants had fecal calprotectin (FC) measured by a 
standard ELISA (Calpro AS, Norway). CD patients with FC 
>250 µg/g and controls (household or BioResource) with FC 
>50 µg/g were excluded from further analysis.

Clinical data including medical and surgical history, 
smoking status, medication history, antibiotic use, probiotic 
use, weight, height, Montreal disease location, and behavior22 
were collected using a patient questionnaire, interrogation of 
the medical record, and use of previous phenotype informa-
tion recorded on the IBD cohorts as part of a rephenotyping 
exercise.8 Probiotic and medication use were documented at the 
time of sampling. Participants with missing data were excluded 
from the analysis of that specific datapoint.

Fecal samples were collected from each study participant 
using the Fisher Fecal Commode Collection Kit. The collec-
tion container was held in the toilet bowl using the supplied 
trivet, and whole fecal samples collected without contamin-
ation by urine. Samples were kept cold using phase-change 
refrigerant gel packs and processed within 24 hours of  collec-
tion. This short period of  storage is not expected to signifi-
cantly influence molecular estimation of  microbial community 
composition,23 nor the VOC profile (unpublished data). Each 
sample was thoroughly mixed and aliquots were transferred 
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into lysing matrix E tubes (MP Biomedicals, Santa Ana, 
CA, USA) for subsequent DNA extraction, head space vials 
(Supelco, Bellefonte, PA, USA) for (VOC) analysis, and uni-
versal containers for fecal calprotectin analysis. Samples were 
stored at −80 °C before shipping to a central processing lab-
oratory in Aberdeen, UK, where DNA was extracted within 
1 month of  collection.

Household controls had not been previously geno-
typed. Saliva samples were acquired using Oragene kits (DNA 
Genotek, Ottawa, Canada). DNA was extracted following 
the manufacturer’s protocol and was genotyped for the 3 
CD-associated NOD2 variants listed above using TaqMan 
assays (Applied Biosystems, Carlsbad, CA, USA). Where a 
genotype was not determined, the allelic discrimination plots 
were examined manually to ensure homozygotes for the minor 
allele had not been missed. For the purposes of analysis of the 
household controls, missing genotypes were inferred to be wild-
type genotypes.

Ethical Considerations:
Ethical approval was granted by the North of Scotland 

Research Ethics Committee (reference 12/NS/0050). All partic-
ipants provided written consent.

DNA Extraction
For each fecal sample, an approximately 400 mg aliquot 

was placed in a lysing matrix E tube and 978 µl of sodium phos-
phate buffer and 122  µl MT buffer were added to each tube 
and vortex mixed. This then was processed using the FastDNA 
SPIN kit for Soil following the manufacturer’s instructions (MP 
Biomedicals) as described previously.24

PCR Amplification and Sequencing
The V1-V2 region of the 16S rRNA gene was amplified 

using 27F and 338R primers.25 The primers were designed with 
the Illumina adapter sequences already included and with 1 of 
200 barcode sequences included in the 338R reverse primer, 
thus avoiding the need for a separate step to add the adapter 
sequences and barcode. Twenty cycles of polymerase chain 
reaction (PCR) amplification were performed using the Q5 
polymerase kit following the manufacturer’s instructions (New 
England Bio, Ipswich, MA, USA). Postamplification, samples 
were quantified using a Qubit fluorometer (Thermo Fisher, 
Waltham, MA, USA) and then pooled to obtain equimolar 
concentrations.

FIGURE 1. Flow diagram of recruitment.
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Sequencing was performed using an Illumina MiSeq se-
quencer using Illumina V2 chemistry and paired-end 2 × 250 
base pair reads. Initial sequence data processing was performed 
in the Illumina MiSeq Reporter to demultiplex samples and 
strip adapters and primers and sequence data were exported in 
the FASTQ format.

Bioinformatics Analysis
The 16S rRNA gene sequence data were further pro-

cessed using mothur26 following the MiSeq SOP.27

Alignment and classification were done against the 
SILVA v119 reference set.28 Community structures were com-
pared using trees generated using Jaccard and Yue Clayton dis-
tance metrics after subsampling to 3943 reads per sample. The 
trees were then plotted graphically using the Interactive Tree 
of Life.29,30 Trees were compared using the parsimony com-
mand within mothur. Subsequent statistical analysis was done 
in R 3.2.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Microbial diversity was assessed using inverse Simpson 
and compared using a Mann-Whitney U test.31 Comparisons at 
the family, genus, and operational taxonomic unit (OTU) level 
were done using Mann-Whitney U tests for binary comparisons 
and corrected using Holm’s method.32 The 12 most abundant 
families were selected for plotting graphically.

Volatile Organic Compound Analysis
VOC data were generated using previously described 

methodology.33 Briefly, gas chromatography-mass spectroscopy 
(GCMS) was used to quantify the metabolites in the headspace 
gas taken from vials containing an aliquot of participants’ feces. 
The raw GCMS data were processed using AMDIS (National 
Institute of Standards and Technology, Gaithersburg, MD, 
USA). Compounds detected in fewer than 20% of the study 
population were filtered out. The resultant ion intensity data 
were log transformed and the limma package used to facilitate 
running multiple linear models including disease status and 
NOD2 genotype as covariates.34 P values were corrected using 
Holm’s method.

RESULTS
Out of the 110 individuals recruited, 91 were used in the 

primary analysis (Table 1). Reasons for exclusion are shown in 
Supplementary Table 1. There were 37 CD patients (57% NOD2 
mutant), 30 bioresource volunteers (58% NOD2 mutant), and 
24 household controls. All were of white European ethnicity. 
There were no differences in phenotype within the CD patients 
by NOD2 status (Table  1). Five of 21 genotyped household 
controls with genotype information had single CD-associated-
NOD2-associated mutations. Three of these had a first degree 
relative with CD.

The total number of raw reads was 3,410,868, with a 
median number of reads per sample of 34,302. After quality 

control and removal of samples with very low read numbers, 
the remaining samples had a minimum of 3943 reads and 
median of 20,338. The sequence data are available from the 
European Nucleotide Archive under Study Accession Number 
PRJEB21593.

There was a significant reduction in diversity (as assessed 
by calculating the inverse Simpson index) between CD cases and 
both Bioresource and household controls (P < 0.001 and 0.003, 
respectively, Fig. 2). No difference was observed in diversity by 
NOD2 genotype either within the CD cases or the Bioresource 
controls (P = 0.32 and 0.65). Hierarchical clustering using the 
Jaccard metric demonstrated clustering by CD versus controls in 
either cohort (P < 0.001), but not by NOD2 genotype (P = 0.16 
within cases (Fig.  3)). The CD cases also clustered with each 
other rather than their household controls; indeed the Jaccard 
distance between cases and their household control was no dif-
ferent from the distance between cases and unmatched house-
hold controls (P = 0.81, Mann-Whitney U test).

At a family level, there were significant decreases in 
Ruminococcaceae, Rikenellaceae, and Christensenellaceae (P 
all <0.001 uncorrected and <0.01 corrected), and an increase 
in Enterobacteriaceae (P  <  0.001 corrected) in samples from 
CD patients vs controls (Fig.  4A). There were no differences 
in relative abundance of any bacterial families when stratified 
by NOD2 status, either within the CD patients or Bioresource 
controls (Fig. 4B). There also were no differences by genotype 
at the genus or OTU level in each case, comparisons were made 
using a Mann-Whitney U test with correction for multiple test-
ing using Holm’s method, and no corrected P value was less 
than 0.05.

Volatile Organic Compound Analysis
For the VOC analysis, there were 314 compounds identi-

fied in at least 1 sample, and 198 of those were present in at least 
5 CD patients and 5 Bioresource controls.

Linear models were constructed for log2-transformed 
data of each compound, with the presence of CD and NOD2 
genotype as the independent variables. These analyses revealed 
significant reductions in CD patients versus controls in penta-
noic acid [log2 fold change (logFC) −2.11], piperidinone 
[logFC −2.43], butanone [logFC −2.19], and acetone [logFC 
−3.90],Table 2].When looking at the effect of carrying 2 of the 
previously defined NOD2 mutations, there was a single sig-
nificant association after correction for multiple testing using 
the Holm’s method with butanoic acid (logFC 1.25, corrected 
P = 0.024). On further examination, this VOC was noted to be 
less abundant specifically in patients with CD with wild-type 
NOD2 (Fig. 5).

DISCUSSION
This prospective study examines the relationship between 

NOD2 genotype and the fecal microbiota in human participants 
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stratified by NOD2 genotype. It further confirms previously 
identified shifts in gut microbiota in CD patients when com-
pared to non-IBD  controls, notably a reduction in obligate 
anaerobic lineages in tandem with an increase in the faculta-
tively anaerobic Enterobacteriaceae family. These changes have 
previously been described in both inflamed and uninflamed tis-
sue and in both fecal and mucosal samples.35–38 However, no 
significant differences in fecal microbiota were seen when ana-
lysed by NOD2-status, at any of the taxonomic levels assessed. 
The present study also includes VOC data and demonstrates 
the value of having a means to assess the functional aspects 
of the gut microbiota, and we were able to demonstrate higher 
butanoic acid concentrations in CD patients with NOD2 muta-
tions than those without.

Earlier animal studies have shown an association 
between NOD2 genotype and gut microbiota. Both Rehman 
et  al and Mondot et  al showed reductions in diversity and 
changes in specific taxa when comparing wild-type and 
NOD2 knockout mice.39,40 However, more recently, Shanahan 
et  al conducted experiments where the knockout and wild-
type mice were cohoused and failed to demonstrate a NOD2 
genotype-specific effect on gut microbiota. They concluded 
that the cage environment was more important than geno-
type. Carmody et  al went further and looked at the relative 
impact of  genotype and diet on the gut microbiota in mice; 
they demonstrated dominant effects of  diet, regardless of  the 
underlying host genetics.41 Nonetheless, Nabhani et al found 
NOD2-related differences in mucosal microbiota even when 

TABLE 1: Study Demographics

A: Whole Cohort

CD Patients (n = 37) Bioresource Controls (n = 30) Household Controls (n = 24) P

Sex: Female 23 (62%) 16 (53%) 9 (38%) 0.18
Age/years 53 (44–65) 60 (52–64) 51 (43–61) 0.30
BMI 23.5 (21.7–27.2) 25.4 (23.0–27.5) 25.0 (22.8–28.2) 0.12
Probiotic use 3 (8%) 3 (10%) 0 (0%)

(1 not recorded)
0.37

Antibiotics within 
past 12 months (but 
>3 months)

17 (47%)
(1 not recorded)

4 (13%) 9 (39%)
(1 not recorded)

0.01

Smoking Current 5 (14%) 1 (3%) 0 (0%) 0.03
Ex 18 (49%) 8 (27%) 12 (52%)
Never 14 (38%) 21 (70%) 11 (48%)

B: CD subcohort (from UK IBD genetics consortium)

Wild- type NOD2 (n = 16) Mutant NOD2 (n = 21) P

Female Sex 10 (62%) 14 (64%) 1.00
Age/years 56 (46–66) 52 (41–64) 0.36
Smoking Current 2 (12%) 3 (14%) 0.81

Ex 9 (56%) 9 (43%)
Never 5 (31%) 9 (43%)

Montreal location L1 9 (60%) 8 (44%) 0.35
L2 0 (0%) 3 (17%)
L3 7 (40%) 7 (39%)

Unknown 1 3
Montreal behaviour B1 3 (20%) 4 (22%) 0.73

B2 9 (60%) 8 (44%)
B3 3 (20%) 6 (33%)

Unknown 1 3
History of surgical resection for IBD 15 (94%) 19 (90%) 1.00
Current 5-aminosalicylate or sulphasalazine 3 (19%) 7 (33%) 0.46
Current immunomodulator 8 (50%) 5 (24%) 0.17

Data are presented as medians and interquartile range, or numbers and percentages as appropriate. P values are Kruskal Wallis for continuous variables and Fisher’s exact test 
for categorical variables.
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FIGURE 2. Inverse Simpson index of microbial diversity by NOD2 status and case type.

FIGURE 3. Hierarchical clustering by Jaccard distance metric of the 16S rRNA gene data showing differences by study group and NOD2 status. The 
panel on the right shows the relative proportions of the 10 most prevalent bacterial families and the cumulative relative proportion of all other bac-
teria (shown in black).
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FIGURE 4. A, Relative abundance of the 12 most prevalent bacterial families in both CD patients and non-IBD controls. P values are corrected for 
multiple testing using Holm’s method across all 59 families seen in the sequencing data. Corrected P values < 0.05 are highlighted in bold. B, Relative 
abundance of the 12 most prevalent bacterial families where samples have been grouped by diagnosis and by NOD2 genotype. P values are cor-
rected for multiple testing using Holm’s method across all 59 families seen in the sequencing data. Mutant NOD2 is defined here as the presence of 2 
CD associated mutations (rs2066844, rs2066845, rs2066847); wild-type NOD2 is defined as the absence of any of these mutations.
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NOD2-knockout and wild-type mouse embryos were mixed 
and transferred to wild-type surrogates and were subsequently 
cohoused.42

In humans, others have previously reported an effect 
of  NOD2 on intestinal microbiota. Knights et  al reported 
results from cohorts comprising a total of  474 individuals 
with IBD, though not stratified by NOD2 status.43 They iden-
tified an association between 6 causal NOD2 variants and 
increased Enterobacteriaceae measured in intestinal biop-
sies. Of  note, they were able to identify similar patterns in 
ulcerative colitis patients with NOD2 mutations, suggesting 

that the observed effect is not just one of  disease phenotype. 
However, in a network of  associations between bacterial 
taxa, host, and environmental factors, the effect of  NOD2 
genotype was only modest compared to antibiotic usage, 
immunosuppressants, biopsy location, and cohort of  origin. 
Li et  al reported differences in intestinal biopsy microbial 
profile related to NOD2 genotype alongside disease pheno-
type, with an increase in the C. coccoides-E. rectales group 
in patients with ileal CDcarrying a risk NOD2 allele.44 More 
recently, Imhann et  al reported an interaction between an 
IBD genetics risk score that included NOD2 variants and the 

TABLE 2: Top Volatile Organic Compounds by Presence of CD a

Compound Log2 fold change P Holm-corrected P

Pentanoic acid -3.29 2.2 × 10–8 2.5 × 10–6

2-Piperidinone 2.10 1.7 × 10–7 2.0 × 10–5

2-Butanone -2.57 3.9 × 10–7 4.4 × 10–5

Dimethyl sulfide -2.47 1.3 × 10–6 1.5 × 10–4

Acetone -2.25 1.6 × 10–6 1.8 × 10–4

1H-Indole, 3-methyl- -4.03 2.3 × 10–6 2.5 × 10–4

Butanoic acid, 3-methyl-, ethyl ester 2.13 3.5 × 10–6 3.8 × 10–4

Furan, 2-methyl- -1.57 1.1 × 10–5 0.001
2-Hexanone, 5-methyl- -1.50 6.1 × 10–5 0.006
Butanoic acid, 2-methyl-, ethyl ester 1.90 1.3 × 10–4 0.013

aDerived from linear model of all CD and non-IBD patients with CD and NOD2 genotype as covariates.

FIGURE 5. Concentration of butanoic acid stratified by cohort and by NOD2 status. P values shown are uncorrected and are for Mann-Whitney 
U tests by NOD2 status within each cohort. Mutant NOD2 is defined here as the presence of 2 CD associated mutations (rs2066844, rs2066845, 
rs2066847); wild-type NOD2 is defined as the absence of any of these mutations.

Downloaded from https://academic.oup.com/ibdjournal/article-abstract/24/3/583/4863708
by guest
on 27 March 2018



Inflamm Bowel Dis • Volume 24, Number 3, March 2018 

591

NOD2 Genotype and Gut Microbiota

fecal microbiota, although the impact of  NOD2 on its own 
was not described.45

Strengths of this present study include the use of patients 
and nonIBD controls of known NOD2 genotype, with close 
matching of the phenotypic characteristics across genotypes. 
Establishing the causal relationship between the gut microbiota 
and IBD remains challenging; intestinal inflammation is well 
established as a cause of dysbiosis.46 The study excluded partic-
ipants with either clinical or biomarker evidence of active dis-
ease, reducing the possibility of confounding by disease activity. 
Although the use of patients in remission will have removed one 
source of variability, it is also possible that the effects of NOD2 
are manifest during active disease. With regards to limitations, 
this study explores only the changes in gut microbiota in the 
fecal contents, which are unlikely to fully reflect changes at 
the mucosal level, particularly in the terminal ileum where one 
might expect NOD2 to exert its strongest effect. This reflects the 
difficulty in accessing colonoscopic biopsy samples in a cohort 
of non-IBD controls and patients in remission. Although only a 
single VOC was significantly different by NOD2 status, this sug-
gests a possibile difference in metabolically active bacteria not 
well-represented in fecal samples. The patient cohort also had 
well-established disease, with a history of surgical resection in 
most participants. This may reflect a higher risk of surgical re-
section in patients with NOD2 mutations, noting that the wild-
type controls were matched using this phenotype among others. 
Shotgun metagenomic analysis might have facilitated detection 
of differences at the species or gene level between cohorts that 
could be missed with 16S rRNA taxonomic analysis.

CONCLUSION
This study confirms associations between altered fecal 

microbiota and Crohn’s disease, but failed to identify any dif-
ferences in microbiota between individuals stratified by NOD2 
genotype. Future studies should explore the relationship be-
tween NOD2 genotype and ileal-associated bacteria, ideally 
using either cohorts again stratified by genotype or very large 
cohorts to generate adequate numbers of individuals carrying 
2 disease-associated mutations. Large cohort studies also offer 
the opportunity to perform more extensive genotype-microbi-
ota-phenotype analyses, which should lead to a better under-
standing of these complex interactions.

SUPPLEMENTARY DATA
Supplementary data are available at Inflammatory Bowel 

Diseases online.
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