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We report electrical conductivity σ measurements on a range of two-dimensional electron gases
(2DEGs) of varying linear extent. Intriguingly, at low temperatures (T ) and low carrier density
(ns) we find the behaviour to be consistent with σ ∼ Lα, where L is the length of the 2DEG along
the direction of transport. Importantly, such scale-dependent behaviour is precisely in accord with
the scaling hypothesis of localization [Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)] which
dictates that in systems where the electronic wavefunction ξ is localized, σ is not a material-specific
parameter, but depends on the system dimensions. From our data we are able to construct the ‘β-
function’ ≡ (h/e2)d lnσ/d lnL and show this to be strongly consistent with theoretically predicted
limiting values. These results suggest, remarkably, that the electrons in the studied 2DEGs preserve
phase coherence over lengths ∼ 10 µm. This suggests the utility of the 2DEGs studied towards
applications in quantum information as well as towards fundamental investigations into many-body
localized phases.

The scaling hypothesis of localization [1], formulated
over thirty years ago, is a statement that the electrical
conductivity σ is lengthscale-dependent in finite systems
where the conduction electrons are short-ranged or local-
ized. This can be understood by considering electronic
states with localization length ξ in systems of different
spatial extents: as depicted in Fig. 1a, if ξ is greater than
the linear extent of the system, then electrons are able
to communicate across the system ends and there will be
a finite conductance G even at T = 0 K. However, this
conductance will decrease as the system size increases,
ultimately vanishing for infinitely large systems. On the
other hand, if the electronic states are extended, ξ →∞,
then even in the infinite system-size limit, G 6= 0. This
intuitive picture is at the very heart of the scaling hypoth-
esis which distinguishes between metallic and insulating
states on the basis of the range of ξ: if the electronic
states at the chemical potential µ are extended, then the
system is a metal, but if they have a finite extent, the sys-
tem is an insulator. In other words, the metallic state is
defined by σ independent of system dimensions, whereas
the insulating state is characterised by σ decaying with
increasing system dimensions. This underlies the An-
derson metal-to-insulator transition in which a ‘mobility-
edge’ in wavevector k-space demarcates short-ranged and
long-ranged states [2].

However, since the scaling hypothesis was put for-
ward, there have been no experimental reports of length-
dependent σ. In this manuscript, working with meso-

scopic GaAs-based 2DEGs of varying linear extent L, we
provide the first experimental demonstration of σ-scaling
consistent with the scaling hypothesis. We continuously
tune ξ in the 2DEGs by applying a top-gate voltage VG

and observe a crossover from a regime in which the elec-
trical resistivity ρ ≡ 1/σ is independent of L to one where

it is strongly dependent on L. We find our results to be
strongly consistent with the scaling predictions [1].

In low-disorder two-dimensional (2D) systems ξ ∼
ℓ exp(kFℓ), where ℓ is the electronic mean free path and
kF is the Fermi wavevector. Using a 2DEG equiped with
a top-gate electrode allows one to tune the carrier density
ns and thereby kF =

√
2πns. Furthermore, since ns gov-

erns the degree to which any charged scattering centres
are screened, this process also serves to vary ℓ which, in
turn, can be estimated from the measured σ [13]. Clearly,
when kFℓ >> 1, ξ can be macroscopically large, and this
results in what is known as the ‘weakly localized’ (WL)
phase of electrons. The WL phase displays many out-
wardly metallic characteristics [3–6] including dσ/dT ≤ 0
to the lowest achievable T [7–9], the hallmark of metal-
lic conduction. When kFℓ ≈ 1 experiments observe an
abrupt crossover to the ‘strongly’ or ‘Anderson’ localized
(AL) phase in which ξ ∼ a⋆B, the effective Bohr radius
in GaAs-based 2DEGs ≈ 11 nm. In this regime σ is
completely suppressed, although at finite T conduction
occurs through phonon-assisted ‘hops’. This gives rise
to σ(T ) ∼ exp(−(∆/kBT )

p), where ∆ is the hopping en-
ergy, kB is the Boltzmann constant and p = 1, 1/2 or 1/3
depending on whether the hopping is nearest-neighbour
hopping [10], hopping in the presence of the Coulomb
gap [11], or variable-range hopping [10], respectively. In
other words, the sign of dσ/dT can serve as a diagnos-
tic to distinguish between metallic and insulating states.
However, as we will directly show in this manuscript, the
T -dependence alone is an insufficient test of metallicity.
This is because, even in situations where ξ 6= ∞, (i.e.,
the system is, by definition, an insulator) dσ/dT can be
negative if L <∼ ξ.

Experiments so far are consistent with the two lim-
iting instances of ξ >> L (WL) and ξ << L (AL),
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FIG. 1. (a) If the conducting electrons in a material are extended, i.e., localization length ξ →∞, then the electrical conductance
G is finite and the conductivity σ is well-defined. However, for short-ranged states the relative extents of ξ and the system L
decide the precise value of G. If ξ > L, then electrons can ‘bridge’ the system and behave as though extended, i.e., induce a
metallic character to the system. However, the metallicity is a finite-size effect, and in the large-L limit, G → 0.(b) Scanning
electron microscope (SEM) image of the six top-gate-defined 2DEGs in a device similar to those used in this study. The light
regions represent Ti-Au top-gate electrodes overlaid on a conducting mesa which is patterned into two parallel channels. Each
top-gate can be individually addressed using a voltage source (see Ref. [13] for details). (c) Each panel shows ρ as a function
of 1/T for a different sized 2DEG at an arbitrarily chosen gate voltage Vg = −0.913 V. Here all the 2DEGs are ostensibly in
the Anderson localized regime and it is expected that ρ ∼ exp(1/T ) (shown as a broken line in bottom-right panel). However,
the data seem consistent with the co-existence of metallic and insulating states. The solid lines are fits to Eq. 2.

neither of which, importantly, are expected to show σ-
scaling. This is obvious in the AL or ‘hopping’ regime
since phonons, which mediate the hopping transport, ex-
ist homogeneously in space. The reasons for the absence
of scaling behaviour in the WL regime are, however, more
subtle and perhaps linked to the macroscopic samples
employed. Localization arises due to interference of the
electronic wavefunction and thus relies crucially on phase
coherence. The phase coherence length ℓφ is defined as
the length over which the phase of the electron is com-
pletely randomized through inelastic interactions. There-
fore scaling behaviour is only expected when L < ξ < ℓφ,
a condition which may not have been rigorously met in
earlier experiments [12].

Here we perform a systematic size-dependence study
of 2DEGs with varying L and width, W . As shown in
Fig. 1b, our devices each contain six top-gate-defined
2DEGs with constant width W , and length L ranging
from 2 µm to 10 µm. We have fabricated devices with
W = 3 µm (D3), 9 µm (D9), and 11 µm (D11) and here
we focus on the results from D9 and D11. Please refer to
the Supplementary Material [13] for details of the wafers
used, device fabrication and measurement setup.

Figure 1c shows resistivity ρ ≡ 1/σ against 1/T for
the six 2DEGs in D9 at gate-voltage Vg = −0.913 V.
Here ρ is evaluated as R ×W/L, where R is measured

in a quasi-four-terminal setup [13]. The corresponding
ρ-values are all >∼ h/e2 and kFℓ <∼ 1 [13] with ℓ deter-
mined from Drude theory. This would normally be the
strongly localized regime where the T -dependence for an
insulator can be expected. Remarkably, dσ/dT >∼ 0 for
T <∼ 1K, indicating the presence of metallic states as de-
fined above [14–18]. While the device geometry has very
little influence on the value of T at which metallic con-
duction sets in, it is noteworthy that the ρ(T → 0)-value
is strongly device-dependent. This is despite the fact that
the data are at the same value of Vg, that the 2DEGs are
located close to each other on the host wafer, and that
they are all cooled down simultaneously under the same
conditions. Importantly, while this behaviour stands in
stark contrast to the commonly observed 2D ‘metal-to-
insulator’ transition, it suggests that the insulating and
metallic states might be intimately linked.

Figures 2a and 2b show ρ as a function of L at T =
0.28 K for D9 and D11, respectively. Interestingly, we
find that the dependence seems broadly consistent with
ρ(L) ∝ Lα. The exponent α decreases as T increases
and, as shown in Fig. 2d, goes to zero at a Vg-dependent
T . We emphasize that the data shows the resistivity and
not resistance, and thus any geometry-dependent char-
acteristics are very unexpected. Figure 2c shows ρ(L)
at 10 K and remarkably, we still find a clear and sys-
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∆/kB (K) ρ0(kΩ) ρL(kΩ)
9x10 2.25±0.08 273.87±14.41 1713±18.94
9x8 1.68±0.06 114.22±4.14 409.51±4.93
9x6 6.49±0.39 43.79±4.66 281.22±5.20
9x4 1.50±0.04 78.00±2.26 260.92±3.04
9x3 1.64±0.06 63.21±1.37 45.14±0.22
9x2 0.97±0.04 74.09±1.12 24.76±0.12

TABLE I. Summary of fitting parameters for Fig. 1c using
Eq. 1.

FIG. 2. Geometry-dependent electrical characteristics. In
(a) and (b) we see that ρ ∼ Lα for both D9 and D11. (c)
The power-law dependence of ρ on L persists upon heating to
T = 10 K, but α is markedly reduced when compared to (a).
(d) Phase diagram of α(Vg, T ) for D9. The black line shows
the locus of points where α becomes zero.

tematic L-dependence in ρ. It even appears that at the
lowest |Vg| there is a slight negative slope (also seen in
the top-right corner in Fig. 2d), but this is a measure-
ment artifact that becomes important only at low |Vg|
(see [13]). In all our measurements, we came across only
one 2DEG (D11, L = 8 µm) in which log ρ deviated by
more than 10% from α logL.

In the following, we analyse our experimental findings
in light of the scaling hypothesis which states that:

σ(L) =
e2

2πh̄
(kFℓ◦)−

e2

h̄π2
ln(L/ℓ◦) (1)

Here the first term on the right is the conductivity at
a microscopic lengthscale ℓ◦ and the second term is the
size-dependent reduction in σ arising due to the exponen-
tially decaying envelope of ξ. The microscopic length-
scale is the smaller of ℓ and ℓφ. We assume that T is
sufficiently low such that ℓφ > L, ℓ, an assumption which
we will reexamine later. Therefore the first term is identi-
cally equal to the Drude conductivity σD = nse

2τ/m [13],
where e is the electron charge, τ is the momentum

scattering time, and m is the electron effective mass
in GaAs = 0.067me, with me being the bare electron
mass. It is therefore important to note that σ = σD

only when L/ℓ = 1, and suppressed for larger L. The
lengthscale over which σ → 0 is ≈ ℓ exp(πkFℓ/2) and
this provides an estimate for ξ. On intermediate length-
scales, Eq. 1 clearly indicates that (incorrectly) identi-
fying σ(L) as σD results in an underestimate for ℓ and,
importantly, that (h/e2)/ρ 6= kFℓ. Indeed, as shown in
Fig. 3a, upon fitting the measured ρ(L) to Eq. 1, we ob-
tain ℓ ≈ 100 nm at the lowest accessible Vg, which is sig-
nificantly greater than the nominally obtained ℓ-values.
We are able to map from Vg to ns by tuning the device to
the quantum Hall regime and observing edge-state reflec-
tions as Vg is decreased [19], and thereby ascertain that
the corresponding ns = 1.4 × 1014 m−2. This results in
kFℓ =

√
2πnsℓST ≈ 3, even though the measured ρ is

orders of magnitude greater than h/e2 and kF ℓDrude < 1
(see Fig. 2). For kFℓ = 3, we estimate ξ ≈ 11 µm which,
crucially, is comparable to the device dimensions. Sim-
ilar results are obtained for D11 and ξ is plotted as a
function of ns in Fig. 3b.

Figs. 3c and 3d provide a complementary look at the
scaling behaviour in our data by examining the scaling
function β ≡ d ln g/d lnL as a function of ln g, where
g ≡ σ/(e2/h). β is evaluated from each pair of neigh-
bouring points in Figs. 2a and 2b. The general trend
in β (solid red line) agrees well with the theoretical lim-
its of β for very large and small ln g. These theoretical
limits arise from a combination of dimensional consider-
ations in the low-disorder (g >> 1) regime, and some
basic assumptions about the overlap of localized states
in the high-disorder (g << 1) regime. In the former,
where disorder and scattering are weak, the electronic
wavefunction will have a very large extent and it is rea-
sonable to expect that σ(L) is intensive ∼ GLd−2, where
d is the dimensionality of the system under study. In
the latter, where disorder is strong and the electronic
wavefunction is localized, conduction is governed by the
spatial overlap of neighbouring states. However, such lo-
calized states cannot cumulatively result in an extended
state since states in close spatial proximity are necessarily
widely separated in energy. Thus σ(L) is exponentially
suppressed ∼ exp (−L/ξ), independent of dimensional-
ity. These expressions for σ provide the theoretically
expected limits in β, which in 2D reduce to β = 0 for
g >> 1 and β = ln g for g << 1. We find the averaged
β, obtained from our measurements, exactly in the range
in between the theoretically expected limiting values. It
is noteworthy that Fig. 3 provides evidence of finite ξ
within the WL regime where 3 < kFℓST < 7.

Thus the picture emerges that the 2DEGs studied are,
in fact, in the WL regime but with σ significantly reduced
due to the finite extent of ξ. Therefore, the weak depen-
dence and even positive slope of ρ against T are entirely
expected. The question then arises as to why above 1 K
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the 2DEGs show activated transport. The point here is
that the metallic character below 1 K is imparted by the
relatively long ξ >∼ L electronic states at E = µ, but
states with E << µ, which nominally do not contribute
to transport due to phase space restrictions, are continu-
ally hopping due to inelastic interactions with phonons.
These therefore provide an additional transport chan-
nel with an activated form. We thus propose a simple
‘parallel-resistor’ model to understand the T -dependence
of ρ in which the conducting states (at E = µ) and hop-
ping states (at E < µ− kBT ) conduct in parallel:

1

ρ
=

1

ρL
+

1

ρ0
exp (−∆/kBT ). (2)

Here ρL is the contribution due to the effectively ex-
tended states assumed to be T -independent, and the sec-
ond term on the right is the hopping term. As shown in
Fig. 1c, we are able to obtain excellent fits to the data
using ρL, ρ0 and ∆ as fitting parameters. A noteworthy,
though small, feature that the model does not capture is
the mildly positive dρ/dT seen at 1/T > 2 K−1 in the
lower-middle panel of Fig. 1c (see also ref. [15]). How-
ever, this is trivially so due to the assumption of constant
ρL which disregards effects such as electron screening [20]
and inter-electron interactions [21] accounting for which
will, no doubt, result in more accurate models.

We now return to our assumption that ℓφ > L, which
is a necessary requirement for coherent electron interfer-
ence and, thus, for localization effects to manifest. As
T → ∞ phase coherence is lost and it is to be expected
that localization phenomena be suppressed. We see clear
evidence of this in Fig. 2c, where α gradually diminishes
to 0 as T increases. In addition, the thermopower S of
similar 2DEGs displays strong oscillations and even sign
changes [22] which might have their origin in phase co-
herent transport [23]. Thus, there are various indications
that electrons retain phase coherence over the length of
the devices studied. This is a remarkable observation
given that (i) the largest 2DEGs have L ∼ 10 µm, which
is significantly longer than conventionally measured ℓφ
(see, for example, Ref. [24]), and (ii) the L-dependence
is seen even at 10 K! We comment on why this might be
so further on in the manuscript, but at this stage em-
phasize the strong applicability of the systems studied in
quantum information schemes.

Before presenting our concluding remarks, we first con-
sider the important issues of (i) the background disor-
der potential the 2DEGs reside in [25–27]; and (ii) inter-
electron interactions. Implicit in our analysis based on
the scaling hypothesis is the assumption that the back-
ground disorder experienced by the various 2DEGs is
statistically homogeneous. However, we believe this as-
sumption to be amply justified by the systematic ρ vs
L trend observed in all three sets of 2DEGs, D9, D11
and D3 [13]. We have also found this trend to be repro-

FIG. 3. Localization and conductivity scaling in the 2DEGs.
(a) The 5 lower curves show ℓ extracted using the Drude ex-
pression for σ [13] and the top curve shows ℓ estimated using
the scaling hypothesis [1]. The corresponding kFℓ-values are
shown along top axis and lie well in the ‘metallic’ regime. (b)
Even at the lowest ns where σ ≈ 0.01e2/h for L = 10µm we
find ξ to be comparable to L. (c) and (d) show the scaling
function β as a function of ln g, where g ≡ σ/(e2/h). The ex-
perimental data is in clear agreement with the theoretically
predicted limiting values (shown as broken lines) for g << g0
and g >> g0, where g0 = e2/h. The red lines are guide to the
eyes.

ducible between cooldowns, albeit with marginally differ-
ent pinch-off characteristics [13]. Thus, it seems reason-
able to believe that the statistical degree of inhomogene-
ity in the disorder is small, perhaps responsible for the de-
partures from perfect linearity in Figs. 2a and b. It is also
conceivable that ‘fluctuations’ in ξ due to the mesoscopic
nature of the 2DEGs are influencing transport [28–31].
In other words, it is possible that the small scale of the
2DEG facilitates observation of certain ballistic electron
trajectories which are not observable at longer length-
scales. However, we believe we have minimized the effect
of such non-ergodicities by (i) working at Vg-values where
ℓ < L (see Fig. 3a and also Ref. [13]); and (ii) averaging
our data over long times before recording [13]. The sec-
ond important point to consider is that of inter-electron
interactions which, importantly, must be present in the
2DEGs since the interaction parameter rs, which is the
ratio of the Coulomb energy EC and kinetic energy EK of
the electrons = 1/(a⋆B

√
πns), attains values as large as 5

in our studies. However, as was demonstrated recently in
Ref. [32], qualitative changes in β are not expected even
in the presence of strong interactions and this is con-
sistent with our findings. It will be interesting to under-
stand whether the recently observed strong enhancement
in the magnitude of S measured in similar 2DEGs [17] or
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the observed violation of the Mott formula [17, 22] where
S and ρ were observed to oscillate asynchronously, reflect
strong interaction effects or not. Lastly, we also wish to
point out the remarkable similarities between our exper-
imental results and the phenomenology of many-body
de-localized phases in translationally-invariant 2D sys-
tems [33]. While it is debatable whether our experimen-
tal system stringently fulfills the criteria for many-body
delocalization, namely complete isolation from the envi-
ronment, we note that this is certainly consistent with
the lack of electron decoherence even at ≈ 10 K.

In conclusion we emphasize that the observed L-
dependence of σ in mesoscopic 2DEGs is strongly con-
sistent with the scaling hypothesis which, in turn, sug-
gests that the 2DEGs are, in fact, in the kFℓ > 1 regime,
but perceptibly Anderson localized, i.e., with σ sup-
pressed due to the finite ξ. In macroscopic 2DEGs where
L >> ℓφ, conductivity scaling may not be apparent since
blocks of size ℓφ × ℓφ contribute in an incoherent fash-
ion. Nevertheless, it is important to note that as long
as ℓφ > ℓ the conductivity of such a block must be di-
minished from its value at size ℓ× ℓ, rendering imprecise
the identification that kFℓ = (h/e2)/ρ. The observation
of scaling-like behaviour at lengthscales of several µm
and at temperatures of ≈ 10K suggest the system under
study to be remarkably robust to decoherence effects.
While we do not fully understand why this might be, we
speculate that this has to do with the specific device ge-
ometry [13] in which the ohmic contacts are at a large
spatial separation from the 2DEGs being studied. Thus,
the primary link the 2DEGs have to the environment
is the tenuous low-T electron-phonon coupling. Impor-
tantly, this opens up several possibilities towards study-
ing novel, many-body localized electron phases [34].
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UK and the Engineering and Physical Sciences Research
Council (EPSRC), UK. We also acknowledge D. Joshi
for assistance with device fabrication. DB and VN ac-
knowledge useful discussions with Margarita Tsaousidou,
Chris Ford, Charles Smith, Moshe Kaveh and Richard
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1. Equivalence of σD/(e2/h) and kFl 

 

The Drude conductivity σD = nse
2τ/m, where the symbols are defined in the main text. The momentum 

relaxation time τ = vFl, where vF is the Fermi velocity = ћkF/m. Substituting the expression for vF into 

σD and rearranging, we arrive at the expression: σD /(e2/h) = kFl. 

 

However, the point we make is that according to the scaling hypothesis (Eq. 1 in the main text) the 

experimentally measured σ is almost always smaller than σD due to the finite extent of ξ. Therefore, 

naively estimating l as σ/(e2/hkF) would result in an underestimate for l, and the appropriate manner 

in which to estimate l is from fitting the size-dependence of σ to Eq. 1 of the main text. 

 

2. Experimental methods 

 

 
Figure S1: The top panel shows a schematic of the quasi-four terminal measurement setup. The blue regions indicate the 

conducting mesa, the yellow regions indicate ohmic contacts and the orange represents the top-gate. Regions outside the 

top-gated area contribute a constant R ≈ 200 Ω to the measurement. The middle panel shows a top-view of the device layout 

focusing highlighting the central area containing the 2DEGs under study. The bottom panel is a scanning electron microscope 

(SEM) image of the six 2DEGs (light areas depict Ti-Au gates overlaid on the patterned mesa). 

2.a. Wafer details and device fabrication 

 

The wafers used in this experiment are MBE-grown δ-doped structures in which the 2DEG resides 

300 nm below the surface. The δ-dopants lie 40 nm above the 2DEG. At 4 K, the mobility of a 

macroscopic (L × W = 1000 μm × 100 μm) Hall bar sample was measured to be 220 m2/Vs with carrier 

density ns = 2.1 × 1015 m-2. 

 



Devices were fabricated using three stages of optical lithography. First, the conducting mesa was 

defined using a wet chemical etch, after which Au-Ge-Ni Ohmic contacts were deposited by thermal 

evaporation. These were annealed at 450 ◦C in an atmosphere of forming gas in order for electrical 

contact to the buried 2DEG. Finally, Ti-Au top-gates were thermally evaporated onto the patterned 

sample surface. As shown schematically in Fig. S1, each device contains six top-gate-defined 2DEGs. 

The mesa was defined with two parallel arms, rather than one long one in which the 2DEGs would all 

be in series. This was done in order to keep the 2DEGs in close proximity to each other (to minimize 

variations in the background disorder), and also to avoid the large series resistance associated with 

long, narrow sections of mesa (see next section for further details). 

 

2.b. Electrical measurements 

 

The measurements were performed between 0.3 K and 10 K in a He-3 cryostat equipped with a 

superconducting magnet. Devices were cooled down from room temperature to 4 K over a period of 

20 hours and only 2DEGs that were cooled down simultaneously were compared against each other. 

Each 2DEG was addressed individually with a DC voltage source. When a particular 2DEG was being 

measured, a large negative Vg (-5 V) was applied to all three gates on the adjacent mesa arm in order 

to completely cut off any parallel conduction. We ascertained that the resistance of the adjacent arm 

was > 10 GΩ using a Keithly 236 Source-Measure unit. 

Electrical measurements were made in a quasi-four-terminal setup (see below) using an excitation 

current I = 100 pA at frequency f = 7 Hz. We ascertained that there was no appreciable joule heating 

by increasing I to 1 nA, and noting no change in the experimental data. Our measurements are 

performed by sweeping the gate voltage Vg slowly such that each data point is averaged for several 

(10 - 100) seconds before recording. 

 

There are several factors that we had to carefully consider when measuring the mesoscopic 2DEGs: 

i. From the device design it is clear that there are ungated sections of the mesa that contribute to the 

resistance measurement, i.e., there is an extra `lead' resistance RL. At Vg = 0 V, RL ≈ Rm (the measured 

resistance), the approximation arising from not excluding the 2DEG area. However, as seen from 

Fig. S1, this corresponds to an error of < 1%, corresponding to the length of the 2DEG (at most 10 μm) 

divided by the length of the entire mesa (1000 μm). This therefore allows us to subtract RL (≈ 200 Ω in 

all the devices) to estimate the true 2DEG resistance R. Clearly this approximation becomes less 

reliable as |Vg| → 0, due to which we restrict our analysis to large |Vg|. 

ii. A second reason to restrict the analysis to high |Vg| is to minimize any ballistic electron effects that 

might be significant when l ~ L. At Vg = 0 V, the mobility and carrier density correspond to l ≈ 17 μm 

which is larger than the largest 2DEG investigated in this study. By confining the analysis to 

|Vg| ≥ 0.84 V, the 2DEGs are always in a regime where l < 0.1L, i.e., where the electronic motion is 

diffusive. 

iii. And finally, we note that there will be electric-field fringing at the edges of the top-gate defined 

2DEGs. However, we expect these to be of the order of the 2DEG setback distance = 300 nm and, 

moreover, that these will contribute a constant R offset to each 2DEG and therefore, not influence 

the results in a major way. 

The 2DEG resistivity ρ is defined as R × W/L and based on the above arguments, we are confident that 

this is a meaningful definition bereft of any artifacts due to inhomogeneities, ballistic electron 

trajectories, or even surface/boundary scattering. The last of these follows from point 2 where we 

argue that the electrons have a well-defined diffusivity. 

  



3. Extra supporting data 

 

 
Figure S2: The figure shows data from device D9 on two separate cooldowns. The left panel shows Fig. 2a from the main text. 

The clear trend is unmistakable, but equally noteworthy is the fact that the pinch-off characteristics are different between 

cooldowns, suggesting that the disorder profile depends crucially on the cooldown. The missing data points on the right panel 

correspond to devices that were not measured since the experimental run needed to be terminated prematurely due to 

technical issues. 

 

 
 

 

Figure S3: The figure shows ρ vs L for device D3 

in which the width of the mesa is 3μm. This data 

is taken in a dilution refrigerator at 100 mK and 

shows the same trend observed in D9 and D11 

where ρ grows with increasing L. 

 

 

 

 

 

 

Figure S4: The figure shows ρ vs Vg for D11 in the 

presence of a perpendicular B-field = 0 T, 3 T, 6 T, 

and 9 T. In addition to the strong positive 

magnetoresistance, one observes weak oscillations 

in ρ which likely correspond to Shubnikov-de Haas 

oscillations that arise when the chemical potential 

is tuned through Landau levels (see also Fig. S5) 

  



 

 

Figure S5: The figure shows ρ 

vs L for device D11 in which 

the width of the mesa is 

11 μm. This data is taken at 

280 mK and shows the power-

law dependence of ρ on L 

persists in the presence of a 

perpendicular magnetic field 

of up to 9 Tesla. The exponent 

α is seen to assume positive 

as well as negative values. 

The negative values are a 

consequence of Shubnikov-de 

Haas minima.  


