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B = 4N Nuclei in the Skyrme Model

Christopher King

The Skyrme model enables us to approximate nuclei via topological solitons known
as Skyrmions. The B = 4 Skyrmion is of particular importance as its symmetry
and stability means that multiple B = 4 Skyrmions can combine with each other to
form larger B = 4N Skyrmions. In this thesis we investigate the properties of these
B = 4N Skyrmions and compare them with results found in the wider nuclear physics
community.

We go beyond rigid body quantization and develop a formalism of using vibra-
tional quantisation to generate the energy spectrum of the Oxygen−16 nucleus. The
Oxygen−16 nucleus is treated as an arrangement of four B = 4 Skyrmions, whose
dynamics enable us to create a 2−dimensional manifold of B = 16 configurations. We
solve the Schrödinger equation on this manifold and discover new states previously not
found in the B = 16 sector of the Skyrme model. We compare these states with those
found experimentally and find that there is a excellent it to the energy spectrum.

In order to apply vibrational quantization to a wider range of nuclei we create a
novel approximation for Skyrmions and the interactions between them. By generating
Skyrmions with Gaussian sources we find analytic expressions for the pion fields and
interaction energies of Skyrmions, with particular focus on the B = 1 and B = 4
Skyrmions, and show how this could be applied to vibrational quantization and the
clustering of B = 4 Skyrmions.
B = 4N nuclei are the only nuclei with zero spin and isospin, which means that

their electric charge density is proportional to their baryon density. This simplification
makes these nuclei particularly susceptible to investigation via electron scattering. We
develop a classical averaging method to calculate the Patterson function and the form
factor for a B = 4N nucleus and make comparisons with experimental data. We also
discover a way of using the baryon density directly to approximate the locations of
zeroes and stationary points of the form factor.
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Chapter 1

Introduction

1.1 The Skyrme model

The Skyrme model [1, 2] is an effective theory of QCD where we retain only the pionic
degrees of freedom. While the Skyrme Lagrangian can be expressed explicitly in terms
of a triplet of pion fields, π = (π1, π2, π3), and an auxiliary field σ, it is is most easily
expressed in terms of an SU(2) matrix,

U(t,x) = σ(t,x) + iπ(t,x) · τ , (1.1)

where τ = (τ1, τ2, τ3) are the Pauli matrices and the fields satisfy σ2 + π · π = 1 so
that the matrix, U , has determinant 1.

We would like our Lagrangian to be Lorentz invariant but we should also incorporate
the approximate chiral symmetry of QCD. Chiral symmetry is the symmetry concerning
the up and down quarks which gives them equal mass. To model this theory we would
require a chirally symmetric Skyrme Lagrangian. In terms of the Skyrme field, U , this
means that the Lagrangian would be invariant under

U → CUD (1.2)

for any SU(2) matrices C and D.
We also require our Lagrangian to have at most second order time derivatives; this

is because there are difficulties with the stability of the classical solutions of this model
if we allow higher order time derivatives. This condition combined with Lorentz and



2 Introduction

chiral symmetry leads to the Lagrangian,

L0 = −F 2
π

16 Tr (RµR
µ) + 1

32e2 Tr ([Rµ, Rν ][Rµ, Rν ]) , (1.3)

where Rµ = (∂µU)U † is the right current of the Skyrme field and Fπ and e are
parameters which can be calibrated via comparison to experimental data. This
Lagrangian is easiest to work with if we use Skyrme units where the energy and length
units are Fπ/4e and 2/eFπ respectively. In Skyrme units the Skyrme Lagrangian
becomes

L0 = −1
2Tr (RµR

µ) + 1
16Tr ([Rµ, Rν ][Rµ, Rν ]) . (1.4)

The second order term includes the standard kinetic term for the pions and if we only
had this term we would have a sigma model. The fourth order term is called the
Skyrme term and it is this term which allows stable soliton solutions in the Skyrme
model.

In reality the up and down quarks have slightly different masses and we break this
chiral symmetry with the introduction of a mass term for the pions giving us the
massive Skyrme Lagrangian,

L = −1
2Tr (RµR

µ) + 1
16Tr ([Rµ, Rν ][Rµ, Rν ]) + µ2Tr(U − I2). (1.5)

The introduction of the pion mass term breaks the SU(2) × SU(2) chiral symmetry
down to an SU(2) isospin symmetry such that the Lagrangian is now only invariant
under

U → CUC† (1.6)

for any SU(2) matrix C. The effect of this transformation is to rotate the triplet of
pion fields via π → Mπ, where Mij = 1

2Tr
(
τiCτjC

†
)

is an SO(3) matrix. Therefore
we call this transformation an isorotation.

If we now consider the static energy of the Skyrme field,

E =
∫

−1
2Tr (RiRj) − 1

16Tr ([Ri, Rj][Ri, Rj]) − µ2 Tr(U − I2) d3x, (1.7)

we see that the introduction of the pion mass term means that any finite energy solution
must tend to the vacuum, U = I2, as |x| → ∞. Note that a choice of a vacuum is
enough to break chiral symmetry to isospin symmetry and therefore this condition is
enforced by hand to break the chiral symmetry for the massless Skyrme model.
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The choice of a vacuum also means that we compactify physical space, R3∪{∞} ∼= S3,
and, given that the target space SU(2) has group manifold S3, this means that all
finite energy configurations correspond to maps from S3 to S3. Such maps can be
labelled by the degree of the map,

B = − 1
24π2

∫
ϵijkTr (RiRjRk) d3x, (1.8)

which is a topological invariant. This provides a topological charge which we identify
with the baryon number of the configuration.

The presence of a topological charge is not enough to allow stable topological solitons
because we must also overcome Derrick’s theorem [3]. If we look at the static energy
we see that it splits into three parts, E = E2 +E4 +E0, corresponding to terms which
are quadratic and quartic in spatial derivatives and the mass term which has no spatial
derivatives. Therefore under the rescaling x → λx, the energy becomes

E(µ) = 1
λ
E2 + λE4 + 1

λ3E0. (1.9)

Notice that the quadratic and quartic terms scale in opposite ways which means that
we obtain a minimum for a finite non-zero value of λ. This means that the soliton
has a preferred scale and will not expand or contract indefinitely in order to lower its
energy. This shows that we require a term which is at least fourth order in spatial
derivatives along with the kinetic term in order to allow stable solitons. The Skyrme
term is the unique fourth order expression which is Lorentz invariant and has at most
two time derivatives.

By looking at the strain tensor of the Skyrme field one can show that there is a
Bogomolny bound on the static energy of a configuration,

E ≥ 12π2B, (1.10)

but that this bound can not be saturated.

1.2 The B = 1 Skyrmion

Skyrmions correspond to the local minimizers of the energy functional (1.7) and these
are not known analytically for any baryon number. However the B = 1 global minimizer
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has spherical symmetry and its Skyrme field can be expressed as,

U (x) = exp{if(r)x̂ · τ}, (1.11)

with σ and π fields,
σ = cos f(r), π = sin f(r) x̂, (1.12)

where f(r) is the radial profile function subject to the constraints f(0) = π and
f(∞) = 0 so that U → I2 as x → ∞. This is called a hedgehog solution because the
pion fields point radially outwards away from the origin at all points in space. However,
in order to find f(r) we must substitute the expression in (1.11) into (1.7) which gives
the following expression for the energy of the configuration,

E = 4π
∫ ∞

0

(
r2f ′2 + 2(f ′2 + 1) sin2 f + sin4 f

r2 + 2µ2r2(1 − cos f)
)
dr (1.13)

The energy minimizer for (1.13) can not be expressed analytically but can be found
easily numerically via a shooting method. The profile functions for µ = 0 and µ = 1
are shown in Figure 1.1.

μ=0

μ=1

0 2 4 6 8

0

1

2

3

r

f(r)

Fig. 1.1 The profile functions for µ = 0 and µ = 1.

Of particular interest are the asymptotics of f and, if we linearise the Euler-Lagrange
equation that we obtain from (1.13), one can show that

f ∼ A

r
e−µr (1.14)



1.3 The rational map approximation 5

for large r. This means that pion fields are of the form,

π ∼ Ax̂
r
e−µr, (1.15)

and therefore at large distances B = 1 Skyrmions are well approximated by a triplet of
Yukawa dipoles.

For the case of µ = 0 these asymptotics become slightly different with,

f ∼ A0

r2 (1.16)

for large r. This means that pion fields are of the form,

π ∼ A0x̂
r2 , (1.17)

and therefore at large distances B = 1 Skyrmions for µ = 0 are well approximated by
a triplet of Coulomb dipoles.

1.3 The rational map approximation

Skyrmions for higher values of B are not of the hedgehog form, but we can use an
analogue to approximate them. For the domain, R3, we change coordinates such that
x = rnz with

nz = 1
1 + |z|2

(
z + z̄, i(z̄ − z), 1 − |z|2

)
, (1.18)

so that z is the standard Riemann sphere coordinate and r = |x|. For the target space,
S3, we express the Skyrme field as

U (x) = exp{if(r)n̂R(z) · τ} (1.19)

with
nR(z) = 1

1 + |R|2
(
R + R̄, i(R̄ −R), 1 − |R|2

)
, (1.20)

where again R is a Riemann sphere coordinate. The Skyrme field is now encoded by
the maps R : S2 → S2 and f : R+ → R so we have effectively separated the radial and
angular degrees of freedom. The correspondence between rational maps and monopoles
and the similarities between monopoles and Skyrmions suggests that using rational
maps for R may lead to a good approximation to Skyrmions [4]. A rational map from
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S2 to S2 takes the form,
R(z) = p(z)

q(z) (1.21)

where p and q are polynomials in z that do not have a common root. It can be shown
if f satisfies the boundary conditions f(0) = π and f(∞) = 0, then the corresponding
Skyrmion has baryon number B = max(deg(p), deg(q)), where deg denotes the degree
of the polynomial in z. Note that the B = 1 hedgehog solution corresponds to the
rational map R(z) = z.

We now want to find the minimal energy rational map R and corresponding profile
function f for each baryon number and to do this we substitute (1.19) into the expression
for the static energy (1.7), giving

E = 4π
∫ ∞

0

(
r2f ′2 + 2B(f ′2 + 1) sin2 f + I sin4 f

r2 + 2m2r2(1 − cos f)
)
dr (1.22)

where
I = 1

4π

∫ (
1 + |z|2

1 + |R|2

∣∣∣∣∣dRdz
∣∣∣∣∣
)4 2idzdz̄

(1 + |z|2)2 . (1.23)

In order to minimize the energy in (1.22) we must find the rational map, R(z), that
minimizes I and then substitute this value of I into (1.22) and find the radial profile
function, f(r), that minimizes the energy. The rational maps giving the lowest value
of I for B = 1 − 4 are,

R1(z) = z, R2(z) = z2, R3(z) =
√

3iz2 − 1
z3 −

√
3iz

, R4(z) = z4 + 2
√

3iz2 + 1
z4 − 2

√
3iz2 + 1

, (1.24)

which have spherical, toroidal, tetrahedral and cubic symmetry respectively. These
rational maps provide a good approximation for the shape and energies of these
Skyrmions and can be used as a starting point from which to relax solutions numerically.

1.4 Visualising Skyrmions

There are a couple of important aspects of a Skyrmion that we would like to capture
when we visualise it. The first is baryon density, this gives us an idea of where
the nuclear matter actually lies in the Skyrmion and is useful for determining the
symmetries that a Skyrmion has. Therefore when we visualise a Skyrmion we plot a
surface of constant baryon density but we would also like to incorporate the direction
of the pion fields, π = (π1, π2, π3). We can do this by colouring the surface of constant
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baryon density using the Runge colour sphere according to the colour scheme in [5].
We colour the Skyrmion white when π3 = 1, black when π3 = −1 and red, green
and blue when π1 + iπ2 equals 1, e 2iπ

3 and e− 2iπ
3 respectively. We plot the first four

Skyrmions with this visualisation scheme in Figure 1.6 with the B = 1 Skyrmion on
the left increasing B up to the B = 4 Skyrmion on the right.

Fig. 1.2 The first four Skyrmions.

This colouring makes it easier to explain exactly what we mean by a symmetry of
a Skyrmion. A symmetry is a pairing of a rotation and an isorotation that leaves
the Skyrmion invariant. Thus, for a symmetry, the rotation of the Skyrmion must be
equivalent to recolouring it via reorienting the Runge colour sphere. We will see that
these symmetries provide constraints on the spin and isospin states that are permitted
upon quantization the Skyrmions.

1.5 The B = 4 Skyrmion

In this section will consider some more aspects of the Skyrme model and in particular
how they apply to the B = 4 Skyrmion.

1.5.1 Rotational energy

Consider the effect of a rotation and isorotation on a static Skyrme configuration:

U(x) → CU(M(D) x)C†, (1.25)

where C and D are the SU(2) matrices encoding the isorotation and rotation respec-
tively and M(D)ij = 1

2Tr(τiDτjD
†). We perform semi-classical quantization by giving

C and D time dependence [6],

U(x, t) = C(t)U0(M(D(t)) x)C(t)†. (1.26)
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We substitute this expression into the Skyrme Lagrangian to determine the kinetic
energy,

T = 1
2aiUijaj − aiWijbj + 1

2biVijbj, (1.27)

where ai = −iTr(τiC
†Ċ) and bi = iTr(τiḊD

†) are the angular velocities in isospace
and physical space respectively. The inertia tensors Uij, Wij and Vij are defined as
follows,

Uij = −
∫

Tr
(
TiTj + 1

4[Rk, Ti][Rk, Tj]
)
d3x, (1.28)

Wij =
∫
ϵjlmxlTr

(
TiRm + 1

4[Rk, Ti][Rk, Rm]
)
d3x, (1.29)

Vij = −
∫
ϵilmϵjnpxlxnTr

(
RmRp + 1

4[Rk, Rm][Rk, Rp]
)
d3x, (1.30)

where Ti = i
2 [τi, U0]U−1

0 and Ri is the right current of the Skyrme field, U0. The total
kinetic energy can also be expressed as,

T = 1
2 (K,L) .Λ−1. (K,L)T (1.31)

where Ki = Uijaj −Wijbj and Li = −Wjiaj + Vijbj are the body-fixed isospin and spin
angular momenta and

Λ =
 U −W

−W T V

.

The high degree of symmetry that the B = 4 Skyrmion has means that most
of the elements of the inertia tensors are zero. The only non-zero elements are,
U11 = U22 = 142.84 and U33 = 169.41 and V11 = V22 = V33 = 663.16 [7]. Substituting
these into the expression for the kinetic energy (1.31) gives,

T = 1
2V11

J2 + 1
2U11

I2 + 1
2

( 1
U33

− 1
U11

)
K2

3 (1.32)

where J and I are the space fixed spin and isospin angular momenta with J2 = L2 and
I2 = K2.

1.5.2 Finkelstein-Rubinstein constraints

Having found the rotational energy of a given spin state we must now consider which
spin states the B = 4 Skyrmion allows. The symmetries of the B = 4 Skyrmion
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put contraints on the allowed spin states and the reasons behind this are down to
Finkelstein and Rubinstein [8].

The configuration space for Skyrmions of a given baryon number, QB, is connected
but has a non-trivial fundamental group, Z2. In order to have a coherent theory we
must define wavefunctions on the covering space, Q̃B, which is a double cover of QB. If
we have two distinct points p1, p2 in Q̃B corresponding to the same point in QB, then
fermionic quantisation dictates that the wavefunction defined on Q̃B, ψ, must satisfy:

ψ(p1) = −ψ(p2) (1.33)

Symmetries of the Skyrmion correspond to loops in QB and whether these symmetries
should come with an associated flip of sign for the wavefunction can be determined via
a variety of approaches [9].

Finkelstein-Rubinstein quantisation leads to the important result that a 2π rotation
flips the wavefunction of a Skyrmion if and only if B is odd [10]. This means that
Skyrmions with odd baryon number correspond to fermions and in particular the B = 1
Skyrmion, corresponding to a proton or neutron, is fermionic. It can also be shown
that the interchange of two identical Skyrmions flips the wavefunctions if and only if
their individual baryon numbers are odd. The combination of Finkelstein-Rubinstein
constraints with the semi-classical treatment of rotational energy is called rigid body
quantization.

The cubic symmetry group of the B = 4 can be generated by a C3 and a C4 symmetry
both of which have no corresponding sign flip for the wavefunction. Therefore spin
states, |Θ⟩, must obey the following constraints,

e
2iπ

3
√

3(L̂1+L̂2+L̂3)e 2iπ
3 K̂3 |Θ⟩ = |Θ⟩ , (1.34)

e
iπ
2 L̂3eiπK̂1 |Θ⟩ = |Θ⟩ . (1.35)

where L̂i and K̂i are the body fixed spin and isospin angular momentum operators
respectively.

Cubic symmetry is very constraining and there are not many states which satisfy
both (1.34) and (1.35). Using the notation |J, L3⟩ |I,K3⟩ where J and I denote the
total spin and isospin of the state respectively, then the ground state is |0, 0⟩ |0, 0⟩.

The next isospin 0 state that is allowed is,|4, 4⟩ +
√

14
5 |4, 0⟩ + |4,−4⟩

 |0, 0⟩ , (1.36)
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which is at 39.4 MeV for the values of the moments of inertia above. There are no
states observed for Helium−4 with spin 4, however, all the known states have energy
less than 30 MeV and therefore there is no contradiction with the Skyrme model. Spin
1, 2 and 3 states with zero isospin are not permitted by the cubic symmetry.

There is a lower energy state with isospin 1 and spin 2,
(
|2, 2⟩ +

√
2i |2, 0⟩ + |2,−2⟩

)
|1, 1⟩ −

(
|2, 2⟩ −

√
2i |2, 0⟩ + |2,−2⟩

)
|1,−1⟩ , (1.37)

which is at 28.7 MeV. There is a corresponding 2− state with isospin 1 in the experi-
mental spectrum found at 23.3 MeV which is a reasonable agreement with the Skyrme
model.

Along with the C3 and C4 rotational symmetries above, the B = 4 Skyrmion also
has a reflection symmetry. This means that we can determine the effect of the parity
operator, P̂, on the B = 4 Skyrmion and resulting spin states. For a Skyrme field,
U(x), the parity operator acts as follows [7],

U(x) → U †(−x), (1.38)

or in terms of the pion fields,
π(x) → −π(−x). (1.39)

The effect of parity on the B = 4 Skyrmion can be seen in Figure 1.3, which makes
it clear that parity is equivalent to an isorotation of π about (0, 0, 1). Therefore

P̂ = eiπL̂3 (1.40)

and this operator can be used to find the parity of the spin states above. We find that
the spin 0 and spin 4 states with isospin 0 have positive parity and the spin 2, isospin
1 state has negative parity.

In Figure 1.4 we show the experimental spectrum for Helium−4 below 30 MeV
(excluding the ground state). There are 16 states below 30 MeV, of which two are
explained by the rigid body quantization of the B = 4 Skyrmion. The small number of
spin states allowed by the B = 4 Skyrmion is due to its cubic symmetry which is very
restrictive and one way to introduce more states is to consider vibrational excitations
of the B = 4 Skyrmion [11, 12]. In [13] these vibrations are treated as harmonic and
are quantized; this was able to reproduce some of the missing spin-parities seen in the
experimental spectrum but the energies were an order of magnitude too large. A more
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Fig. 1.3 The effect of parity of the B = 4 Skyrmion.

in-depth analysis may be able to lower these energies as would using different values of
Fπ and e.
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Fig. 1.4 The experimental spectrum for Helium−4. Positive parity states are denoted
by circles and negative parity states are denoted by triangles. Isospin 0 states are
coloured black and isospin 1 states are coloured red. There is also the 0+ ground state
which is not shown.

1.5.3 B = 4N nuclei

The chapters of this thesis often involve B = 4N Skyrmions as well as the B = 4
Skyrmion itself. The B = 4 Skyrmion is very strongly bound in comparison to its
neighbours and this is seen in both the Skyrme model and experimental data as shown
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in Figure 1.5; this means that it can be used as a building block for larger Skyrmions
[14]. This is analogous to alpha cluster models in nuclear physics [15, 16].
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Fig. 1.5 The binding energies for B = 1−8 in the Skyrme model and from experimental
data. The B = 5 nucleus is excluded in both cases.

The interactions between constituent B = 4 Skyrmions are relatively weak in a
B = 4N Skyrmion and as a result they can often be easily identified as shown in
Figure 1.6. Another consequence of the weak interaction is that there are usually a
few different arrangements of B = 4 Skyrmions which have roughly the same energy as
shown in Figure 1.7. The presence of multiple low energy configurations for a given
baryon number means that states in the same energy spectrum can be associated
with different configurations. This becomes particularly crucial if the configurations
have different symmetry groups because then they will also have different allowed spin
states. This quantization can either be performed via a rigid body quantization as in
[17, 18] for Carbon−12 and Oxygen−16 respectively or better still via a vibrational
quantization which connects the different configurations as in [19] for Carbon−12. We
provide an in-depth analysis of the vibrational quantization of Oxygen−16 in chapter
2 of this thesis.

One positive aspect of the spectrum of Helium−4 is that the lowest energy excitation
is around 20 MeV because of the strong binding of the alpha particle. This means
that for the states below 20 MeV in the experimental spectra of B = 4N nuclei the
constituent alpha particles must each be in its ground state and that these states
are explained by the rotations, isorotations and vibrations of the collection of alpha
particles. Therefore the Skyrme model does not need to have an accurate model of the
alpha particle in order to explain the low-lying states of B = 4N nuclei.
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Fig. 1.6 Arrangements of B = 4 Skyrmions for B = 8, 12, 16 and 32.

Fig. 1.7 Different low energy arrangements of B = 4 Skyrmions for the B = 12
Skyrmion.





Chapter 2

A dynamical alpha cluster model of
Oxygen−16

This chapter is based on a joint paper with C.J. Halcrow and N.S. Manton [20].

2.1 Introduction

The energy spectrum of Oxygen−16 has presented a problem to nuclear physicists for
decades. The ground state has spin-parity 0+, as would be expected for a nucleus with
an equal and even number of protons and neutrons. The ground state is the base of a
rotational band containing a 3− state at 6.13 MeV and a 4+ state a 10.36 MeV. The
absence of a spin 2 state in this rotational band implies that the ground state nucleus
has some enhanced symmetry. The first excited state is also 0+ at 6.05 MeV and the
lowest lying spin 2 state is 2+ at 6.92 MeV. It is difficult to explain just these five
states and the interpretation of them varies from model to model.

Much of the early work on the energy spectrum of Oxygen−16 [21, 22] uses alpha
cluster models, in particular a tetrahedral arrangement of four alpha particles. The
tetrahedron is the most symmetric arrangement of the four particles and is therefore
an appealing candidate for the configuration with the lowest energy. Tetrahedral
symmetry is also consistent with the observed 0+, 3−, 4+ ground state band and forbids
any spin 2 states.

In terms of explaining the other low energy states in the spectrum there are a few
different alpha cluster approaches that have been employed. One approach is to consider
the perturbations of the tetrahedral arrangement [22]. One of these perturbations is
the breathing mode, the symmetric stretching and squashing of the tetrahedron whilst
retaining tetrahedral symmetry; in many models the breathing mode is thought to be
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responsible for the first excited 0+ state. Other, less symmetric, perturbations are able
to explain spin 2 states, but this local approach has some difficulties with parity. The
tetrahedron is not invariant under parity and is not linked with its dual configuration,
the configuration obtained via the action of parity, via a small perturbation. This
means that for a local vibrational wavefunction there is an even and an odd parity
version globally which have exactly the same energy. This leads to pairs of states,
which have the same spin but opposite parities, having the same energy, which is not
observed in the experimental spectrum. In our model we propose the existence of a low
energy path between the dual tetrahedra which alleviates this problem. Such alpha
cluster models have also been shown to be a limit of the algebraic cluster model in
[23, 24].

An alternative is to consider the rotational excitations of additional arrangements of
alpha particles, such as the flat square, bent square and chain configurations as seen
in [25]. These arrangements, along with the tetrahedron, were observed to be local
minima of the configuration energy for a range of different models. In particular, rigid
body quantization of these configurations has been looked at in the Skyrme model
in [18]. Such approaches are able to reproduce some of the low lying states in the
experimental spectrum but often struggle with matching the energies. We believe that
this is because the tetrahedra, flat square and bent square arrangements are too close
to each other in configuration space to be quantized separately.

The Oxygen−16 nucleus has also been considered in ab initio and shell models. In
[26] they consider nucleons interacting via an effective theory and find that the ground
state is correlated with a tetrahedral arrangement of alpha particles. The first excited
0+ state is correlated with a flat square arrangement of alpha particles, with the lowest
energy 2+ corresponding to rotational excitation of the square. Interestingly this ab
initio approach still suggests that the nucleons form alpha particles which then cluster
together to form the Oxygen−16 nucleus and therefore there is significant overlap with
alpha cluster models.

The ground state of Oxygen−16 is spherically symmetric in the shell model, but it
is shown that this is equivalent to a tetrahedral arrangement of alpha particles for a
harmonic approximation in [27]. There appears to be some difficulty in explaining the
first excited 0+ state with a four-particle-four hole interpretation being suggested in
[28], but it is difficult to imagine this having sufficiently low energy [29].

The two different approaches in alpha clustering have been effective in explaining
parts of the experimental spectrum but both have significant shortcomings. In our
model we attempt to take the best parts of each approach by using the Skyrme model to
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construct a vibrational manifold containing the tetrahedral, flat square and bent square
configurations. This allows some states to be correlated with small perturbations of the
tetrahedron, others to be correlated with the flat square or bent square configurations
and some to be viewed as a mix of the two. Of particular importance is whether we
can shed any light on the nature of the first excited 0+ state, which in some models is
viewed as correlated with a flat square configuration and in others is explained via the
breather mode of the tetrahedral configuration.

2.2 Rigid body quantization

There are a number of different low energy configurations in the B = 16 sector of
the Skyrme model, but each of these can be viewed as an arrangement of four B = 4
Skyrmions. Of particular importance are the tetrahedral, flat square and bent square
configurations which are displayed in Figure 2.1. The presence of multiple low energy
configurations means that all of these configurations must be taken into account in
order to replicate the experimental energy spectrum of Oxygen−16. The simplest way
to do this is via rigid body quantization, where we consider the states obtained by
quantizing the rotational degrees of freedom of each individual configuration.

Fig. 2.1 The tetrahedral, flat square and bent square B = 16 configurations.

The T symmetry of the tetrahedral configuration gives the Finkelstein-Rubinstein
constraints,

e
2iπ

3
√

3(L̂1+L̂2+L̂3)e 2iπ
3 K̂3 |Ψ⟩ = |Ψ⟩ (2.1)

eiπL̂1 |Ψ⟩ = |Ψ⟩ , (2.2)

where |Ψ⟩ denotes a spin state. The D4 symmetry of the flat square configuration lying
in the x− y plane gives the constraints,

e
iπ
2 L̂3e

iπ
2 (K̂1−

√
3K̂2) |Ψ⟩ = |Ψ⟩ (2.3)
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J Tetrahedron Flat Square Bent Square
0 |0, 0⟩ |0, 0⟩ |0, 0⟩
1 None None None

2 None |2, 0⟩ |2, 0⟩
|2, 2⟩ + |2,−2⟩

3 |3, 2⟩ − |3,−2⟩ None |3, 2⟩ − |3,−2⟩

|4, 0⟩ |4, 0⟩
4

√
5 |4, 4⟩ +

√
14 |4, 0⟩ +

√
5 |4,−4⟩ |4, 4⟩ + |4,−4⟩ |4, 2⟩ + |4,−2⟩

|4, 4⟩ + |4,−4⟩

5 None |5, 4⟩ − |5,−4⟩ |5, 2⟩ − |5,−2⟩
|5, 4⟩ − |5,−4⟩

6

|6, 0⟩
√

7 |6, 4⟩ −
√

2 |6, 0⟩ +
√

7 |6,−4⟩ |6, 0⟩ |6, 2⟩ + |6,−2⟩
√

5 |6, 6⟩ −
√

11 |6, 2⟩ −
√

11 |6,−2⟩ +
√

5 |6,−6⟩ |6, 4⟩ + |6,−4⟩ |6, 4⟩ + |6,−4⟩
|6, 6⟩ + |6,−6⟩

Table 2.1 The allowed rigid body spin states for configurations in the B = 16 sector.

eiπL̂1 |Ψ⟩ = |Ψ⟩ , (2.4)

and the D2 symmetry of the bent square gives the constraints,

eiπL̂3 |Ψ⟩ = |Ψ⟩ (2.5)

eiπL̂1 |Ψ⟩ = |Ψ⟩ . (2.6)

Note that all three configurations have at least D2 symmetry, therefore any state
allowed by the tetrahedral or flat square configurations is also allowed by the bent
square configuration. In table 2.1 we show the allowed spin states, up to spin 6, for
each configuration.

However, there are a couple of reasons why we believe that rigid body quantization
of these configurations is not sufficient to replicate the experimental energy spectrum
of Oxygen−16.

First, whilst there is only one tetrahedral and one flat square configuration for a
choice of the z axis, there is a whole family of configurations which could be classed as
bent squares, that is configurations with D2 symmetry. In particular the tetrahedral
and flat square configurations are members of this family and therefore we should
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quantize over this family of configurations rather than choosing just one of them to
perform rigid body quantization upon.

Second, as seen in table 2.1, none of these configurations allow a spin 1 state, but
there are spin 1 states present in the experimental spectrum of Oxygen−16. Therefore
we must consider more configurations than those found in Figure 2.1 in order to
replicate the entire spectrum.

2.3 The vibrational spaces of the tetrahedron

Now that we know that rigid body quantization can not explain many of the states in
the experimental spectrum of Oxygen−16 we must decide how to incorporate some
vibrational degrees of freedom and then how to quantize these. We consider each B = 16
configuration to be made up of four B = 4 Skyrmions, to simplify matters significantly
we treat these as point particles. This is equivalent to the assumption that given the
positions of the four B = 4 Skyrmions, these Skyrmions are in orientations so as to
minimize the configuration energy. We have twelve degrees of freedom corresponding
to the positions of the four B = 4 Skyrmions and another three corresponding to global
isorotations of the whole configuration, meaning that we have a 15-dimensional space.

This is a prohibitively large dimension to quantize globally and therefore we would
like to express this as a product of lower dimensional vibrational spaces. We know
that 9 degrees of freedom come from zero energy modes: the translations, global
rotations and isorotations of the configuration. The remaining six dimensional space
is complicated in general but can be simplified if the configuration has symmetries,
because then the vibrations must fall into representations of the symmetry group of the
configuration [13] . Therefore we focus on the configuration with the most symmetry,
the tetrahedron which has symmetry group T and representations A, E and F . The
remaining six degrees of freedom can be classified by one these representations and split
into the A, E and F vibrational spaces which have dimensions 1, 2 and 3 respectively.
We will now show explicitly how these three vibrations act on the positions of the four
B = 4 Skyrmions.

The A vibration consists of the symmetric stretching and squashing of the tetrahedron,
retaining the tetrahedral symmetry as seen in the leftmost image of Figure 2.2. This is
often called a breather mode.

The E vibration is most easily imagined if you imagine the tetrahedron embedded in
a cube, with each edge of the tetrahedron corresponding to a face diagonal of the cube.
The E vibration corresponds to the squashing or stretching of this cube applied to
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Fig. 2.2 The A vibration and a basis for the E vibration.

pairs of opposing faces. This can be applied in three possible ways, but stretching in all
three ways equally and simultaneously would correspond to a tetrahedrally symmetric
stretching which would be the A vibration. Therefore, after we quotient this one
dimensional space out, the E vibration is only two dimensional and it can be generated
by the vibrations shown in the central and rightmost image of Figure 2.2.

Fig. 2.3 A basis for the F vibration

The F vibration is generated by vibrations where a pair of particles gets closer
together and the other pair gets further apart as seen in Figure 2.3. Given that
there are three possible pairings of particles, this means that the F vibration is three
dimensional. It also includes a vibration where one alpha particle separates from the
remaining three.

In this chapter most of our focus will be upon the E vibration. This is because the
E vibration is the vibration which retains D2 symmetry, therefore, if we consider large
vibrations away from the tetrahedron, we can incorporate the flat and bent square
configurations from section 2.2 into the E vibration. This means that the E vibration
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contains most of the low energy configurations known in the B = 16 sector of the
Skyrme model and by quantising it we should be able to explain a lot of the low lying
states of Oxygen−16. The focus of this chapter is how to extend this local vibrational
analysis to a global vibrational manifold and then how to quantize this.

2.4 The vibrational manifold of the E vibration

We know that the vibrational manifold, M, of the E vibration should contain the
configurations with D2 symmetry, but we would like to know where the tetrahedral, flat
square and bent square configurations lie on this manifold. Using the Skyrme model
for dynamics we find a scattering line which includes all three of these configurations.

We start with two well separated B = 8 Skyrmions, with orientations differing by π
2

as seen in Figure 2.4, and boost them towards each other. As they approach each other,
the interactions between the B = 8 Skyrmions causes them to deform and then break
to form a tetrahedron of B = 4 Skyrmions. This in turn flattens out going through
the bent square configurations to form the flat square. The scattering continues, going
through the dual tetrahedron, before again forming two B = 8 Skyrmions which
separate. Note that all configurations in the first half of this line have their dual
configuration, which is rotated by π

2 with respect to the original configuration, in the
second half of the line.

Fig. 2.4 The scattering line containing the tetrahedral, flat square and bent square
configurations.

To see how this scattering line fits into our vibrational manifold, M, we consider
how many scattering lines of this nature pass through the tetrahedral configuration.
As we saw in section 2.3, the E vibration is generated by modes corresponding to
the stretching of the tetrahedron applied to opposing edges. The scattering line in
Figure 2.4 is the extension of this stretching and therefore we have three scattering
lines passing through one tetrahedron corresponding to its three pairs of opposing
edges.
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The vibrational manifold is defined such that the four B = 4 Skyrmions that make
up a configuration lie on M. If one of the B = 4 Skyrmions is located at x = (x, y, z)
then the others must be at (x,−y,−z), (−x, y,−z) and (−x,−y, z) because each
configuration has D2 symmetry. This gives us three degrees of freedom, but one of
these corresponds to the overall scale, r = |x|, of the configuration. This degree of
freedom therefore corresponds the breather mode of the configuration and can be
quotiented out leaving us with a two dimensional space of configurations. This means
that M contains one configuration for each unit vector, x̂, with a corresponding scale,
r, which minimizes the energy of the configuration.

The configurations at different unit vectors will have different preferred scales
and therefore M will not be a sphere. In particular we know that our manifold
should have six directions where r tends to ∞, corresponding to the three different
ways that a tetrahedron can break into pairs of well separated B = 8 Skyrmions.
Therefore we expect M to resemble the manifold in Figure 2.5 with tetrahedral
configurations corresponding to the points where three coloured regions meet and flat
square configurations to the points where four coloured regions meet.

Fig. 2.5 An approximation of M. Regions of the same colour are related by D2
symmetry and the black line corresponds to the scattering line from Figure 2.4.

Presently we have some redundancy in our description of M because a configuration
corresponds to four points on M, the locations of the four constituent B = 4 Skyrmions.
Therefore the points (x, y, z), (x,−y,−z), (−x, y,−z) and (−x,−y, z) on M all corre-
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spond to the same configuration because they are related by D2 transformations. It
makes sense to quotient out this D2 redundancy and focus on a quarter of M with
edges identified so that every point corresponds to a different configuration. We denote
this manifold Mq.

Given that we are trying to replicate the experimental spectrum of Oxygen−16,
we will still want to quantize the rotational and isorotational degrees of freedom of
configurations to find spin and isospin states. Therefore the total space that we wish
to quantize is Mq × SO(3)J × SO(3)I . We must then solve the Schrödinger equation,

− ~2

2 ∆Ψ + V (x)Ψ = EΨ, (2.7)

where ∆ is the kinetic operator on Mq ×SO(3)J ×SO(3)I and V (x) is the static energy
of the configuration at x. Note that the potential only depends on the co-ordinates of
Mq because rotation and isorotation do not affect the static energy of a configuration.
We must now decide upon a kinetic operator and a potential in order to solve equation
(2.7).

2.4.1 The kinetic operator

Rather than using the Euclidean Laplacian for our kinetic operator we must use the
extension of the Laplacian to a general manifold. This extension depends on the metric
and is called the Laplace-Beltrami operator. The Laplace-Beltrami operator applied to
a scalar function is,

∆f = 1√
|g|
∂i

(√
|g|gij∂jf

)
, (2.8)

where g is the determinant of the metric and gij is the inverse metric. Thus it is clear
that we need to choose a metric on Mq × SO(3)J × SO(3)I . The metric is determined
by the kinetic energy,

T = 1
2 (ẋ,b, a) · g · (ẋ,b, a)T , (2.9)

where x is the co-ordinate on Mq, b is the angular velocity in physical space, and a is
the angular velocity in isospace.

The kinetic energy must respect the D2 symmetry of our configurations which means
there can be no terms linear in ẋ in equation (2.9) because these would change sign under
one of the D2 transformations. For example ẋ → −ẋ under (x, y, z) → (−x, y,−z).
The lack of linear terms in ẋ corresponds to a lack of cross-terms in g between the
vibrational and rotational/isorotational parts. The constituent B = 4 Skyrmions do
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not have spin-isospin cross terms in their metrics and therefore neither does our metric
on Mq × SO(3)J × SO(3)I . As a result the g is block diagonal with respect to Mq,
SO(3)J and SO(3)I . This means that the kinetic operator splits,

∆ = ∆q + ∇2,

where ∇2 is the standard Laplacian for a rigid rotor in rotational and isorotational
space and ∆q is the kinetic operator on Mq.

At this point we approximate Mq by the six-punctured sphere with constant negative
curvature. Most importantly this is to capture the fact that r tends to ∞ in the six
directions shown in Figure 2.5, but it also incorporates the fact that the scale r, is
minimal at the tetrahedral configurations and has a saddle point at the flat square
configurations.

Quantum mechanics on n−punctured spheres is facilitated by the fact that they are
conformally equivalent to subsets of the upper half plane with the hyperbolic metric
for n ≥ 3. Generically these maps and subsets are not known explicitly, but for highly
symmetric cases such as ours they can be determined. First we map from Mq to the
Riemann sphere by mapping each point x to the corresponding unit vector x̂. Then,
defining the complex coordinate ζ = η+ iϵ for the upper half plane and the unit vector
x̂ = (x̂, ŷ, ẑ) on the Riemann sphere, the map is

(x̂, ŷ, ẑ) = 1
1 + |H(ζ)|2

(
2Re[H(ζ)], 2Im[H(ζ)], 1 − |H(ζ)|2

)
(2.10)

where
H(ζ) =

(
Θ(0, 3, ζ)
Θ(1, 3, ζ)

)
(2.11)

and
Θ(a, n, ζ) = exp

(
2πi

(1
8a

2ζ + 1
8

))
θ̃n

(
π

(
1
4 + a

ζ

2

)
, eiπζ

)
, (2.12)

where θ̃n are the Jacobi theta functions [30]. The subset of the upper half plane that
covers Mq is denoted MH and the equivalence is shown in Figure 2.6.

The benefit of mapping into the upper half plane is that here the metric with constant
negative curvature is known and has a simple form, so the kinetic operator on MH is

− ∆q = −ϵ2
(
∂2

∂η2 + ∂2

∂ϵ2

)
. (2.13)
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∼=

Fig. 2.6 The equivalence between Mq and MH .

Returning to the Schrödinger equation from (2.7) we now have,

− ~2

2 ϵ
2
(
∂2

∂η2 + ∂2

∂ϵ2

)
Ψ − ~2

2 ∇2Ψ + V (η, ϵ)Ψ = EΨ. (2.14)

Given the separation of the kinetic operator into vibrational and rotational parts
it makes sense to try a separable solution. Therefore the total wavefunction can be
expressed as

Ψ =
∑

L3,K3

ψL3,K3(ζ) |J, L3⟩ |I,K3⟩ , (2.15)

where Li and Ki are the body-fixed spin and isospin eigenvalues and J and I are
the total space-fixed spin and isospin with Ĵ2 = L̂2 and Î2 = K̂2. For a general
configuration the rotational kinetic operator takes the form,

− ~2

2 ∇2 = ~2

2

 L̂1
2

V11
+ L̂2

2

V22
+ L̂3

2

V33
+ K̂1

2

U11
+ K̂2

2

U22
+ K̂3

2

U33

 (2.16)

where Vij and Uij are the moments of inertia and isoinertia which depend on the
configuration and therefore depend on η and ϵ. D2 symmetry ensures that we can
chose a frame globally in which all configurations have diagonal moments of inertia
and isoinertia. In order to use a separable solution we must split this kinetic operator
into two parts,

− ~2

2 ∇2 = ~2

2Vtet

Ĵ2 + ~2

2Utet

Î2 + ~2

2
∑

i

Vtet − Vii

VtetVii

L̂2
i + ~2

2
∑

i

Utet − Uii

UtetUii

K̂2
i . (2.17)
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where Vtet and Utet are such that the moments of inertia and isoinertia at the tetrahedron
are Vtet δij and Utet δij . The first two terms of equation (2.17) give us the leading order
contribution to the rotational energy, EJ,I which does not depend on the coordinate ζ.
The second two terms give us the next order contribution, E(1)

rot(ζ), which does depend
on ζ but is zero at the tetrahedron. We assume that the majority of the rotational
energy comes from EJ,I , and so we neglect E(1)

rot for now and calculate this contribution
later using perturbation theory.

When we plug the ansatz (2.15) into equation (2.14) we get the following equation
for the vibrational wavefunction ψ to leading order,

− ~2

2 ϵ
2
(
∂2

∂η2 + ∂2

∂ϵ2

)
ψ + V (η, ϵ)ψ = λψ (2.18)

where λ = E − EJ,I is the vibrational energy of the wavefunction.

2.4.2 Boundary conditions

In order to solve equation (2.18) we require boundary conditions, and these can be
obtained via the symmetries that we have on the vibrational manifolds Mq and MH . In
order to find the symmetry group of Mq, it is easiest to first consider the manifold M,
the six-punctured sphere. The six punctures correspond to vertices of an octahedron
and therefore M has octahedral symmetry, O. When we quotient by the global D2

symmetry to reduce to Mq we are left with S3 symmetry. We now choose an element
from each of the cosets in O/D2 to represent each element of this residual S3 symmetry
and these are shown in Table 2.2. This S3 group of rotations can be viewed as the
permutation group of the x, y and z axes of the 6-punctured sphere which we will label
1, 2 and 3 respectively.

The corresponding isorotations can be found by imagining the tetrahedral configu-
ration embedded in a cube, with the edges of the tetrahedron corresponding to the
faces of the cube. We colour a face according to the pion field colouring of the edge of
the tetrahedral configuration as in Figure 2.7. This cube should be invariant under
any rotation-isorotation pair of transformations in O and, by considering figures 2.7
and 2.8, we can see that (1 2 3) requires an isorotation of 2π

3 about (0, 0, 1) and (1 2)
requires an isorotation of π about (−1

2 ,
√

3
2 , 0) to invert the corresponding rotations.

These transformations can also be viewed as acting on the position of an alpha
particle on Mq, which can be realised as a Möbius map acting on MH . In table 2.2
we provide details of both the rotation-isorotation pairs and the corresponding Möbius
map of MH for all five non-trivial elements of S3.
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→

Fig. 2.7 The correspondence between the tetrahedral configuration and a coloured
cube.

Fig. 2.8 The effect of the (1 2 3) and (1 2) rotations on the coloured cube.

We must also take account of parity, and in order to determine how this acts on a
configuration and our vibrational manifold it is easiest to consider the transformation
in two steps. The first step is to treat each configuration as a collection of four point
particles and the effect of parity on this collection is to take each particle from its
position x to the position −x, corresponding to the transformation ζ → −ζ̄ or more
conveniently η → −η on MH . This tell us that the parity acts on the vibrational
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Element of S3 Rotation-Isorotation Pair Möbius Map

(1 2 3)
2π
3 about (1, 1, 1)

ζ → 1
1−ζ2π

3 about (0, 0, 1)

(1 3 2)
4π
3 about (1, 1, 1)

ζ → ζ−1
ζ4π

3 about (0, 0, 1)

(1 2) π about (1,−1, 0)
ζ → ζ − 1

π about (−1,
√

3, 0)

(1 3) π about (−1, 0, 1)
ζ → −1

ζ
π about (1, 0, 0)

(2 3) π about (0, 1,−1)
ζ → − ζ

1−ζ
π about (−1,−

√
3, 0)

Table 2.2 The effect of elements S3 on Mq and MH .

wavefunction according to,

P̂ψ(ζ) = ψ(−ζ̄) = Pψ(ζ) (2.19)

where P̂ is the vibrational part of the parity operator and P is the parity eigenvalue of
the vibrational wavefunction. The second step is to consider the effect of parity on a
single B = 4 Skyrmion and here we know that parity is equivalent to an isorotation of
π about (0, 0, 1). The total effect of parity on a configuration is the combination of
these two actions.

Rigid body quantization also provides a method of calculating parity for configu-
rations with a reflection symmetry. If a configuration has reflection symmetry then
parity can be expressed as a rotation operator for that configuration. This means that
the spin states have an intrinsic parity at such configurations, in particular any spin 0
state must have positive parity because it will be invariant under any rotation. We will
see that using the vibrational manifold to calculate parity allows us more freedom than
rigid body quantization but we must remain consistent with it for all configurations
with a reflection symmetry. Note that all of the configurations on the scattering lines
like the one in Figure 2.4 have a reflection symmetry and thus states an intrinsic parity
along such scattering lines.

The vibrational wavefunction must fall into one of the irreducible representations
of S3 of which there are three: the trivial, the sign and the standard representations.
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This representation, combined with the parity of the wavefunction, will determine the
boundary conditions on MH that the vibrational wavefunction must satisfy.

Vibrational wavefunctions in the trivial representation, ψT , are invariant under any
element of S3 and this can be used to determine the boundary conditions for the
wavefunction. First we apply the element (1 3) to a point ζ+ to take us to the point ζ0,

ζ+ → − 1
ζ+

= ζ0, (2.20)

then we apply parity to ζ0 to take us to the point ζ−

ζ0 → −ζ̄0 = ζ−. (2.21)

The result is that ζ+ and ζ− lie on opposite sides of the boundary C as shown in Figure
2.9. Then we have the following for ψT ,

ψT (ζ+) (1 3)= ψT (ζ0) P̂= PψT (ζ−). (2.22)

We then consider the limit as ζ+ and ζ− tends towards the same point ζ on the

⨯⨯
⨯⨯ ⨯⨯

1 0.5 0 0.5 1
η

0.5

1

1.5

2
ϵ

ζ+
ζ0 ζ-

C

Fig. 2.9 The effect of (1 3) and then parity on the point ζ+. The curve C is highlighted
in red.
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boundary C and this gives us a boundary condition depending on whether P = ±1,

∂⊥ψT (ζ) = 0 for P = 1 (2.23)
ψT (ζ) = 0 for P = −1, (2.24)

for all ζ lying on the boundary C, where ∂⊥ denotes the derivative in the direction
perpendicular to C.

Vibrational wavefunctions in the sign representation, ψS, are invariant under 3-cycles
but flip sign under the transpositions of S3. This provides a slight variation of equation
(2.22),

ψS(ζ+) (1 3)= −ψS(ζ0) P̂= −PψS(ζ−), (2.25)

this change of sign essentially swaps the boundary conditions from the trivial case, so
we have the boundary conditions,

ψS(ζ) = 0 for P = 1 (2.26)
∂⊥ψS(ζ) = 0 for P = −1 (2.27)

for vibrational wavefunctions in the sign representation.
The third irreducible representation of S3 is the standard irrep, which is two di-

mensional. However it is most easily viewed as acting on a triplet of vibrational
wavefunctions u, v and w subject to the constraint, u+ v + w = 0. The action of S3 is
to permute these three wavefunctions in the obvious way; for example (1 3) has the
effect,

u → w, v → v, w → u. (2.28)

We then focus on the combinations u ± w in order to find convenient boundary
conditions,

(u+ w)(ζ+) (1 3)= (w + u)(ζ0) P̂= P (u+ w)(ζ−), (2.29)

and
(u− w)(ζ+) (1 3)= (w − u)(ζ0) P̂= −P (u− w)(ζ−). (2.30)

This provides two boundary conditions on C for the two wavefunctions u and w as
follows,

u(ζ) = −w(ζ) and ∂⊥u(ζ) = ∂⊥w(ζ) for P = 1 (2.31)
u(ζ) = w(ζ) and ∂⊥u(ζ) = −∂⊥w(ζ) for P = −1. (2.32)
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These conditions are sufficient to determine u and w and thus v = −(u+ w) as well.
This gives us boundary conditions along the curve C and we can use the Möbius maps
from table 2.2 and parity to generate conditions for all of the boundaries between the
coloured regions of MH shown in Figure 2.6. In particular positive parity wavefunctions
have vanishing derivative across the lines η = −1, 0 and 1 and the negative parity
wavefunctions vanishing along these lines.

2.4.3 The potential on MH

We must now determine the potential to insert into the Schrödinger equation in (2.18).
We know that it must have be S3 symmetric because configurations which are related
by a rotation and/or an isorotation have the same energy. Therefore we need only
determine the potential in one of the coloured regions of MH in Figure 2.6 and then
use this symmetry to determine the potential elsewhere; we shall use the red region of
MH for convenience.

Ideally we would use the Skyrme model to find the static energy of each configuration
in our vibrational manifold. However, it is not known how to generate most of the
configurations of M, only the ones which are particularly symmetric such as the
tetrahedral, flat square and bent square configurations. In chapter 3 we will consider
how we could use an approximation scheme to generate a potential on MH . Additionally,
there are many modifications to the Skyrme model which would alter the energies
of the configurations and therefore the potential. However, the symmetries of the
configurations and scattering lines found via the Skyrme model would be unlikely to
changes much under modest modification. Therefore what we have said about the
representations and boundary conditions of vibrational wavefunctions would still hold.

Alpha cluster models usually point to the tetrahedron as being the lowest energy
arrangement of alpha particles and we would expect the energy of the two well-separated
B = 8 Skyrmions to be the highest energy configuration. Our choice of potential
incorporates these details with the additional benefit that we can solve the Schrödinger
equation explicitly for our choice. In the red region of MH our potential takes the
form,

V (η, ϵ) = ϵ2
(

1
2ω

2
(
η − 1

2

)2
+ ν2

)
, (2.33)

where ω and ν are free parameters which can be chosen to produce a closer fit to the
experimental energy spectrum. We find that ω2 = 6 and ν2 = 128 are able to provide
a excellent fit to the experimental spectrum. One problem with this potential is that
it diverges asymptotically as ϵ → ∞, whereas it should tend to the two times the
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configuration energy of the twisted B = 8 Skyrmion. However, our main aim is to
approximate the low energy states of Oxygen−16 which will be concentrated around
the lower energy configurations and so this divergence should only have a small effect
on these states.

2.4.4 Solving the Schrödinger equation

Using the potential in (2.33), the Schrödinger equation (2.18) becomes

− ~2

2 ϵ
2
(
∂2

∂η2 + ∂2

∂ϵ2

)
ψ + ϵ2

(
1
2ω

2
(
η − 1

2

)2
+ ν2

)
ψ = λψ (2.34)

in the red region of MH . If we consider the following separation of variables ansatz,

ψ(η, ϵ) =
∑

n

Xn(η)Yn(ϵ)
√
ϵ, (2.35)

then the equation for Xn(η) becomes

− ~2

2 X
′′
n + 1

2ω
2
(
η − 1

2

)2
Xn = enXn, (2.36)

where we have incorporated the ν2 term in the potential into the eigenvalue en.
We have the boundary conditions Xn(0) = Xn(1) = 0 for odd parity wavefunctions

and X ′
n(0) = X ′

n(1) = 0 for even parity wavefunctions which discretise the allowed
values of en. This system has analytic solutions which can expressed in terms of
confluent hypergeometric functions, 1F1(a; b; z). In particular for ω = 0, they can be
expressed in terms of trigonometric functions. The equation for Yn then becomes,

ϵ̃2Y ′′
n (ϵ̃) + ϵ̃Y ′

n(ϵ̃) −
(
ϵ̃2 − Λ2

)
Y ′

n(ϵ̃) = 0 (2.37)

where ϵ̃ =
√

2en

~ ϵ and Λ = 2λ
~2 − 1

4 . We see that (2.37) is the modified Bessel equation,
which has known solutions KiΛ(ϵ̃) and IiΛ(ϵ̃) but we discard the latter because it
diverges as ϵ̃ tends to ∞.

Combining the solutions, Xn and Yn, we get the following series for the vibrational
wavefunction (with shifted origin),

ψ
(
η + 1

2

)
=
∑

n

a2n 1F1

(
1
4 − e2n

~ω
; 1
2; ωη

2

~

)
e− ωη2

2~ KiΛ

(√
2e2n

~
ϵ

)
√
ϵ
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+
∑

n

a2n+1 η1F1

(
3
4 − e2n+1

~ω
; 3
2; ωη

2

~

)
e− ωη2

2~ KiΛ

(√
2e2n+1

~
ϵ

)
√
ϵ. (2.38)

The first sum in (2.38) contains even parity solutions and the second sum contains odd
parity solutions.

In order to place restrictions on the an and Λ we must enforce the boundary
conditions from section 2.4.2. First we must truncate the series in (2.38), which is
reasonable because the modified Bessel functions, KiΛ

(√
2e2n

~ ϵ
)
, decay faster as n

increases. Supposing that we allow only the first N terms in (2.38) and (??), then
we fix Λ and apply the boundary conditions at N points on the boundary C, which
will uniquely determine the coefficients an. We then apply boundary conditions at
a different set of N points on the boundary and calculate the coefficients an using
these points. We usually find that N ≈ 5 is sufficient to find accurate solutions. If the
two sets of coefficients agree then we have a solution and Λ is a permitted eigenvalue,
if they disagree then there is no solution satisfying the boundary conditions across
the whole of C and so we discard this value of Λ. In this way we can generate all of
the solutions of the Schrödinger equation (2.34) and obtain the energy spectrum for
Oxygen−16.

2.4.5 Rovibrational states

Now that we have found vibrational wavefunctions for each of the representations we
must combine them with spin states to form rovibrational states. The idea is that if
we apply an element of S3 or parity to the rovibrational state, then it shouldn’t matter
how it is applied, whether as a rotation-isorotation pair or on MH directly. This means
that the spin state has to be in the same representation as the vibrational wavefunction
that it is paired with. It is worth remembering that since all configurations on M
have D2 symmetry, all spin states must at least satisfy D2 symmetry. There are then
extra restrictions depending on the representation of the corresponding vibrational
wavefunction.

The representation that a spin state or set of spin states falls under is determined
by how it transforms under the elements (1 2 3) and (1 2) of S3. As seen in table 2.2,
the element (1 2 3) corresponds to the rotation-isorotation operator,

Ĉ3 = e
2iπ

3
√

3(K̂1+K̂2+K̂3)e 2iπ
3 L̂3 , (2.39)
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and the element (1 2) is represented by

Ĉ2 = e
iπ√

2(K̂1−K̂3)e
iπ
2 (−L̂1+

√
3K̂2). (2.40)

A spin state in the trivial representation must be invariant under all elements of S3

and therefore we have the constraints,

Ĉ3 |Θ⟩ = |Θ⟩ and Ĉ2 |Θ⟩ = |Θ⟩ . (2.41)

A spin state in the sign representation must be invariant under 3-cycles but flip sign
under the transpositions of S3 and therefore we have the constraints,

Ĉ3 |Θ⟩ = |Θ⟩ and Ĉ2 |Θ⟩ = − |Θ⟩ . (2.42)

Spin states in the standard representation are most easily constructed using a
triplet of spin states: |U⟩, |V ⟩ and |W ⟩, which pair with our triplet of vibrational
wavefunctions in the following way,

|Ψ⟩ = u |U⟩ + v |V ⟩ + w |W ⟩ . (2.43)

It is important to note that since we are working with a basis of spin states, S3 must
act passively on the spin states such that,

Ĉ3 |U⟩ = |W ⟩ , Ĉ3 |V ⟩ = |U⟩ , Ĉ3 |W ⟩ = |V ⟩ , (2.44)
Ĉ2 |U⟩ = |V ⟩ , Ĉ2 |V ⟩ = |U⟩ , Ĉ2 |W ⟩ = |W ⟩ . (2.45)

As with the vibrational wavefunctions, the triplet of spin states must also sum to zero,

|U⟩ + |V ⟩ + |W ⟩ = 0, (2.46)

to take us from the natural representation to the standard irrep.
We will now look at which spins are permitted for each representation and how this

relates to the experimental energy spectrum of Oxygen−16. A summary of the spin
states in the trivial, sign and standard representations is also provided in table A.1 in
Appendix A.
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Trivial Representation

The spin state |0, 0⟩ is invariant under any rotation and therefore necessarily lies in
the trivial irrep and so our 0+ ground state is the combination

ψ+
T,0 |0, 0⟩ . (2.47)

This is the combination of the vibrational wavefunction with the least energy and the
spin state with no rotational energy. However there are other rovibrational state that
use the vibrational wavefunction, ψ+

T,0, such as

ψ+
T,0

(√
5 |4, 4⟩ +

√
14 |4, 0⟩ +

√
5 |4,−4⟩

)
, (2.48)

ψ+
T,0

(√
7 |6, 4⟩ −

√
2 |6, 0⟩ +

√
7 |6,−4⟩

)
. (2.49)

These three states are responsible for the positive parity states in the ground state 0+,
3−, 4+, 6+ rotational band found in the experimental spectrum. As seen in Figure 2.10,
the vibrational wavefunction, ψ+

T,0, is focussed around the tetrahedral configurations at(
±1

2 ,
√

3
2

)
and this agrees with the rigid body analyses where this rotational band is

due to quantization of the tetrahedron. We will see that rigid body quantization is
frequently just a simplification of our vibrational model and as such the interpretation
of states is often similar. The spin states above can be paired with any of the vibrational
wavefunctions in Figure 2.10 to create a rovibrational state.

Fig. 2.10 The vibrational wavefunctions ψ+
T,0, ψ+

T,1, ψ+
T,2 and ψ+

T,3.

Another rovibrational state of particular importance is,

ψ+
T,1 |0, 0⟩ , (2.50)

which is responsible for the first excited 0+ state found at 6.05 MeV in the experimental
energy spectrum. We can see from the vibrational wavefunction in Figure 2.10 that
this state is correlated with the tetrahedral and flat square configurations in equal
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measure. This is in contrast to many rigid body analyses where it is solely explained
by the flat square configuration [18] or the breather mode of the tetrahedron [22, 23].
This shows the importance of considering vibrational degrees of freedom; even the first
excited state in our model can not be well approximated by the rotational excitations
of a single configuration. Like the ground state this excited 0+ is also the base of a
rotational band containing 0+, 4+ and 6+ states.

The states above all feature in the rigid body quantization of Oxygen−16 configura-
tions even if the interpretation of them may differ. However, we also find states in our
vibrational model of Oxygen−16 which rigid body quantization does not allow. The
state

ψ−
T,0 |0, 0⟩ , (2.51)

corresponds to a 0− state, where the vibrational wavefunction, ψ−
T,0, is shown in the

left image of Figure 2.11. It vanishes along all of the scattering lines which means that
is highly constrained and therefore has high energy. It is precisely because it vanishes
at all of the low energy configurations that it does not feature in a rigid body analysis
of Oxygen−16. It is the base of a rotational band containing 0−, 4− and 6− states.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

η

ϵ

Fig. 2.11 The vibrational wavefunctions ψ−
T,0 and ψ+

S,0.

Sign Representation

The lowest spin where we see states in the sign representation is spin 3, with the 3−

state,
ψ−

S,0 (|3, 2⟩ − |3,−2⟩) . (2.52)

As seen in Figure 2.12, this vibrational wavefunction, ψ−
S,0 is focussed around the

tetrahedral configurations like the lowest energy trivial rep wavefunction, ψ+
T,0, and

these wavefunctions look very similar in left hand side of MH . The ψ−
S,0 is slightly
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more constrained because it has odd parity but this only has a small effect on the
energy of the state. This 3− state, and a corresponding 6− state, lie slightly above the
ground state 0+, 4+, 6+ rotational band of states in the trivial representation and so
we reproduce the 0+, 3−, 4+, 6± band seen in the experimental energy spectrum. Thus
we see that positive parity states in the trivial rep and negative parity states in the
sign rep states are exactly those found via rigid body quantization of the tetrahedron.
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Fig. 2.12 The vibrational wavefunctions ψ−
S,0, ψ−

S,1, ψ−
S,2 and ψ−

S,3.

However, our vibrational approach again allows us states not permitted in rigid body
quantization because we can also have positive parity states in the sign rep. The state
3+

ψ+
S,0 (|3, 2⟩ − |3,−2⟩) , (2.53)

has the lowest energy of such states where ψ+
S,0 is shown in the right image of Figure

2.11. Again this is severely restricted because it vanishes along all scattering lines
and therefore has rather high energy. It has slightly lower energy than the trivial
rep wavefunction, ψ0

T,−, because it has even parity; therefore we expect the 3+ and
corresponding 6+ state to lie slightly below the 0−, 4−, 6− rotational band.

Standard Representation

The lowest spin where we see states in the standard representation is spin 2, with the
lowest energy state corresponding to a 2+ state,

(u+
0 − v+

0 ) (|2, 2⟩ + |2,−2⟩) −
√

6(u+
0 + v+

0 ) |2, 0⟩ (2.54)

As seen in Figure 2.14, the combination u+
0 − v+

0 vanishes at the points
(
±1

2 ,
1
2

)
which

correspond to the flat square configuration lying in the x− y plane. As a result the
rovibrational state in (2.54) is proportional to |2, 0⟩ here which is the only spin state
allowed at this flat square in a rigid body analysis. We also see in figures 2.13 and 2.14
that both of the vibrational wavefunctions, u+

0 ± v+
0 , have greatest magnitude at some
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of the flat square configurations (with the flat squares lying in the y − z and z − x

planes corresponding to the points (±1, 1) and (0, 1) respectively) and therefore we are
in agreement with models stating that the flat square configuration is responsible for
this state. There are higher spin states with the same vibrational wavefunctions such
as the spin 4 state,

2(u+
0 − v+

0 ) (|4, 2⟩ + |4,−2⟩) − (u+
0 + v+

0 )
(√

7 |4, 4⟩ −
√

10 |4, 0⟩ +
√

7 |4,−4⟩
)
, (2.55)

and spin 5 and 6 states. These states form a 2+, 4+, 5+, 6+ rotational band; even
though we are no longer quantizing the rotational degrees of freedom of a single
configuration we still obtain rotational bands from our vibrational wavefunction. The
spin states in (2.54) can be paired with any of the wavefunctions in figures 2.13 and
2.14 to form a positive parity state.
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Fig. 2.13 The vibrational wavefunctions u+
0 + v+

0 , u+
1 + v+

1 and u+
2 + v+

2 .
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Fig. 2.14 The vibrational wavefunctions u+
0 − v+

0 , u+
1 − v+

1 and u+
2 − v+

2 .

If we look closer at the spin 4 state in (2.55) we find that it is proportional to√
7 |4, 4⟩ −

√
10 |4, 0⟩ +

√
7 |4,−4⟩ at the flat square lying in the x − y plane. This

is orthogonal to the spin 4 state in the trivial representation found in (2.48). In a
rigid body analysis of the flat square any combination of the spin states |4, 0⟩ and
|4, 4⟩ + |4,−4⟩ would be permitted, whereas in our vibrational approach the spin state
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must be in either the trivial or standard representation and a combination of these
two states is not allowed.

There is a slightly higher energy spin 2− rovibrational state corresponding to the
negative parity vibrational wavefunctions,

(u−
0 − v−

0 ) (|2, 2⟩ + |2,−2⟩) −
√

6(u−
0 + v−

0 ) |2, 0⟩ (2.56)

This state has higher energy than the 2+ state because its vibrational wavefunctions
are more constrained because they vanish along the line η = 0. Notice that both
combinations of vibrational wavefunctions, u−

0 ± v−
0 , (figures 2.15 and 2.16) vanish

at all of the flat square configurations. This is analogous to the fact that rigid body
quantization of the flat square configuration does not allow negative parity states.
This 2− state is the base of a 2−, 4−, 5−, 6− rotational band analogously to the positive
parity 2+ state . The spin states in (2.56) can be paired with any of the vibrational
wavefunctions in figures 2.15 and 2.16 to form a negative parity state.
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Fig. 2.15 The vibrational wavefunctions u−
0 + v−

0 , u−
1 + v−

1 and u−
2 + v−

2 .
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Fig. 2.16 The vibrational wavefunctions u−
0 − v−

0 , u−
1 − v−

1 and u−
2 − v−

2 .

All of the spin states which lie in the trivial, sign and standard representations up
to spin 6 are listed in A.1 in Appendix A.
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2.4.6 Energies of the rovibrational states

In order to find the energies of our rovibrational states we have to reintroduce the
first order correction to the rotational energy of |Ψ⟩ for the configuration at ζ from
equation (2.17),

E1
rot(ζ) = ~2

2
∑

i

Vtet − Vii(ζ)
VtetVii(ζ)

⟨Ψ| K̂2
i |Ψ⟩ + ~2

2
∑

i

Utet − Uii(ζ)
UtetUii(ζ)

⟨Ψ| L̂2
i |Ψ⟩ . (2.57)

We then integrate (2.57) over the domain MH to give the first order correction to the
rotational energy, E1

rot. Therefore in order to calculate E1
rot we require an ansatz for

the inertia tensors, Vij and Uij.
The simplest approximation would be to treat each configuration as an arrangement

of four point particles and this means that we have to approximate the surface M.
The map (2.12) takes us from MH to the Riemann sphere, giving us a coordinate x̂(ζ).
The asymptotic configurations consisting of two well-separated B = 8 Skyrmions tells
us that V11(ζ) and V22(ζ) should tend to infinity as ẑ(ζ) tends to 1. As we go along
the scattering line in Figure 2.4 it can be shown that V33 is essentially constant. We
should also take account of the fact that the constituent B = 4 Skyrmions are not point
particles but rather extended objects and this has the effect of adding a constant to
each of the three diagonal entries of inertia tensor. Putting all of these ideas together
we arrive at the following ansatz for the inertia tensor in the red region of Figure 2.6,

V11(ζ) =
(
a
ŷ(ζ)2 + ẑ(ζ)2

1 − ẑ2(ζ) + b

)
, (2.58)

V22(ζ) =
(
a
ẑ(ζ)2 + x̂(ζ)2

1 − ẑ2(ζ) + b

)
, (2.59)

V33(ζ) =
(
a
x̂(ζ)2 + ŷ(ζ)2

1 − ẑ2(ζ) + b

)
. (2.60)

We then calibrate so that moments of inertia match those from the Skyrme model for
the tetrahedral and flat square configurations [18] giving a = 6586 and b = 2562. In
order to find the moments of inertia in the other coloured regions of MH one must act
on the denominators of (2.58), (2.59) and (2.60) with elements of S3.

We can then use these moments of inertia to calculate the first order correction to
the rotational energy, E1

rot, and therefore the total energy of each rovibrational state.
In Figure 2.17 we plot the low lying states from our vibrational model and the states
they correspond to in the experimental spectrum. In table 2.3 we list the low lying
states with their vibrational wavefunctions, the vibrational energy, Evib, the zeroth
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order rotational energy, EJ,I and the first order correction to the rotational energy,
E1

rot. For the lowest lying states it is also possible to match our rovibrational states
to states in the experimental spectrum and we show the experimental energy of the
experimental state if there is such a match. The experimental values are taken from
[31]. As the energy of the states increases, the experimental energy spectrum becomes
more densely packed with states and this pairing off of calculated and experimental
states is rarely possible. We use the first excited 0+ state and the lowest energy 4+

state to calibrate the vibrational and rotational energy units respectively. There are
some discrepancies with the table in [32] due to a slightly different calibration.
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Fig. 2.17 The states from our vibrational model and corresponding states in the
experimental spectrum of Oxygen−16. The hollow black shapes denote experimental
states, the blue shapes denote states in the sign or trivial representations and the green
shapes denote states in the standard representation. Circles denote positive parity
states and triangles denote negative parity states.

The lowest energy 0+ and 4+ states and the lowest energy 3− state have different
vibrational wavefunctions and there is freedom in our model for them to not form a
rotational band. They form an approximate band because both vibrational wavefunc-
tions are focussed around the tetrahedron and its dual. This is evidence that the path
between the dual tetrahedra is sufficiently high energy that a local vibrational analysis
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JP Wavefunction(s) Evib EJ,I E1
rot E EExp

0+ ψ+
T,0 0 0 0 0 0

0+ ψ+
T,1 6.05 0 0 6.05 6.05

3− ψ−
S,0 0.24 7.52 −1.24 6.52 6.13

2+ u+
0 , v+

0 3.51 3.76 −0.57 6.69 6.92
2− u−

0 , v−
0 5.33 3.76 −0.61 8.48 8.87

4+ ψ+
T,0 0 12.53 −2.17 10.36 10.36

2+ u+
1 , v+

1 8.73 3.76 −1.21 11.28 11.52
4+ u+

0 , v+
0 3.51 12.53 −3.37 12.67 11.10

2− u−
1 , v−

1 11.09 3.76 −1.03 13.82 12.53
0+ ψ+

T,2 14.63 0 0 14.63 −
2+ u+

2 , v+
2 12.15 3.76 −1.26 14.65 −

4− u−
0 , v−

0 5.33 12.53 −3.11 14.75 14.30
4+ ψ+

T,1 6.05 12.53 −2.81 15.77 −
0− ψ−

T,0 16.38 0 0 16.38 10.96
3− ψ−

S,1 10.64 7.52 −1.67 16.49 −
5+ u+

0 , v+
0 3.45 18.80 −5.37 16.94 −

3+ ψ+
S,0 12.61 7.52 −2.70 17.43 15.79

4+ u+
1 , v+

1 8.73 12.53 −3.33 17.93 −
0+ ψ+

T,3 18.81 0 0 18.81 −
5− u−

0 , v−
0 5.33 18.80 −4.90 19.23 −

4− u−
1 , v−

1 11.09 12.53 −3.85 19.77 −
6+ ψ+

T,0 0 26.32 −4.57 21.75 21.05
6− ψ−

S,0 0.18 26.32 −4.33 22.23 −
6+ u+

0 , v+
0 3.45 26.32 −4.33 25.50 −

6− u−
0 , v−

0 5.27 26.32 −4.48 27.17 −

Table 2.3 The low energy states and the four lowest energy spin 6 states from our vibra-
tional model. The table headings are the spin-parity, the vibrational wavefunction(s),
the vibrational energy, the zeroth order rotational energy, the first order correction to
the rotational energy and the total energy of the state. We also provide an identification
with a state in the experimental spectrum if this is possible.
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of the tetrahedron is valid for low energy vibrations. The higher the energy of the
vibrational wavefunctions, the less valid a local analysis becomes and the larger the
energy difference between wavefunctions with opposite parities.

The first excited 0+ state has a novel interpretation as a mix of the tetrahedral
and flat square configurations. This interpretation is consistent with the idea that
different models view this state as being correlated with the tetrahedral or the flat
square configurations, but ours is the first model to view it as a combination of the
two.

The energies of the lowest 2+ and 2− states, at 6.69 MeV and 8.48 MeV respectively,
in our model is in good agreement with the experimental spectrum as is the gap between
them, 1.79 MeV, compared with 1.96 MeV in the experimental spectrum. In many
local vibrational analyses of the tetrahedron these states have the same energy and
thus the matching of this gap with experimental data is a test of the global structure of
our vibrational manifold and potential. In [24] it is proposed that this splitting can be
explained via higher order terms in the rotational Hamiltonian. However, given that
the energy splitting is of the order of the total rotational energy of these states, this
seems unlikely. It should also be noted that the first excited state 0+ does not form a
rotational band with the lowest lying 2+ and 2− states in our model because they lie in
different representations, which is in contrast with rigid body quantization approaches.

The corresponding spin 4 states, those with the same vibrational wavefunctions as
the spin 2 states above, have energies 12.67 MeV and 14.75 MeV and are matched with
the states at 11.10 MeV and 14.30 MeV in the experimental spectrum. The 4+ from
our model has rather too high energy and we believe that the rotational energy of the
state may be responsible for this. This state lies in the standard representation and
thus its vibrational wavefunction vanishes at the tetrahedron. Therefore our method
of calculating the rotational energy loses some validity, because the zeroth order
approximation of the rotational energy uses the moments of inertia of the tetrahedron.
Calculating the rotational energy as a perturbation away from the flat square may lead
to a more promising result. The 4− state is in good agreement with the experimental
spectrum.

Our model has some difficulties for states with higher vibrational energies and
we find that we often overestimate the energies of the higher energy states in the
spectrum. One reason for this is that the more vibrational energy a state has the
more correlated it is with the asymptotic configurations of MH ; our potential diverges
asympotically thereby giving these states more energy than they would have for a
potential that flattens out asymptotically. However, due to the scarcity of 0− states in
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the experimental spectrum, we identify our state at 16.38 MeV with the one at 10.96
MeV in the experimental spectrum. Whilst this gap is rather large it is worth bearing
in mind that many models are not able to incorporate any 0− states at all and so the
very existence of this state in our model is a plus. We also identify the 3+ state at
17.43 MeV in our model with the one at 15.79 MeV in the experimental spectrum.

Our model also overestimates the energies of states with a lot of rotational energy,
such as the spin 5 and spin 6 states. The only states with spin 5 from our model
are in the standard representation, with our lowest state having spin-parity 5+ and
an energy of 16.94 MeV compared with the lowest energy 5+ state at 14.40 MeV
in the experimental spectrum. We would expect some centrifugal stretching of the
configurations upon rotation, which scales like L2(L+ 1)2 and therefore becomes more
relevant for high spins. Such stretching increases the moments of inertia and therefore
decreases the rotational energies of these states. This would also have an effect on the
4+ state at 12.67 in our model.

2.5 Local vibrations of the tetrahedron

Our model can not explain all of the states in the experimental energy spectrum
of Oxygen−16, in particular it does not admit any spin 1 states because they are
incompatible with D2 symmetry. In order to find some of the missing states in the
experimental spectrum of Oxygen−16, we need to consider more than just the E
vibration of the tetrahedron. With this is mind we will consider local and harmonic
vibrations of the tetrahedron in order to find the states obtained by quantizing the A
and F vibrations from section 2.3.

2.5.1 The A Vibration

The A vibration corresponds to the symmetric stretching and squashing of the tetrahe-
dral configuration, as shown in Figure 2.2, which means that it permits the same spin
states as the positive parity trivial representation and negative parity sign represen-
tation found in our vibrational model. Therefore the trivial and sign representations
are equivalent to the A representation close to the tetrahedron. We find a 0+, 3−, 4+,
6+ rotational band, with the vibrational energies of the states found by matching the
energy with the 0+ state found at 12.05 MeV in the experimental spectrum because
this is the lowest lying 0+ state not accounted for in our model. This gives a harmonic
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frequency ωA such that ~ωA = 12.05 MeV and as shown in [32] this frequency can be
also used to accurately approximate the breather mode energy from Carbon−12.

2.5.2 The F Vibration

As seen in section 2.3, the F vibration is a three dimensional space. However, it is
most easily described via a set of four vibrations which sum to zero. Each one of these
vibrations corresponds to one alpha particle pulling away from the other three with
the whole configuration retaining C3 symmetry as seen in Figure 2.18.

Fig. 2.18 A C3 symmetric vibration in the F vibrational space.

Each of the four C3 symmetric vibrations of the F vibrational space can be labelled
by the particle that moves away from the others, which corresponds to a vertex of
the tetrahedron. The tetrahedral symmetry group, T , can then be imagined as the
orientation preserving permutations of its four vertices and so is isomorphic to A4, the
alternating group of the 4 vertices. A4 is generated by the elements C3 = (1 2 3) and
D2Z = (1 2)(3 4).

The most natural way to consider vibrational wavefunctions in the F representation
is via a quartet: a, b, c and d (with a+b+c+d = 0), which A4 acts on via permutation,
such that

C3(a) = a, C3(b) = c, C3(c) = d, C3(d) = b (2.61)

and
D2Z(a) = b, D2Z(b) = a, D2Z(c) = d, D2Z(d) = c. (2.62)
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The generators of A4 can also be explicitly expressed in terms of rotation-isorotation
pairs:

Ĉ3 = e
2iπ

3
√

3(L̂1+L̂2+L̂3)e 2iπ
3 K̂3 , (2.63)

D̂2Z = eiπL̂3 . (2.64)

We then construct the rovibrational state,

a |A⟩ + b |B⟩ + c |C⟩ + d |D⟩ , (2.65)

with lies in the F representation so long as the spin states transform passively according
to,

Ĉ3 |A⟩ = |A⟩ , Ĉ3 |B⟩ = |D⟩ , Ĉ3 |C⟩ = |B⟩ , Ĉ3 |D⟩ = |C⟩ , (2.66)
D̂2Z |A⟩ = |B⟩ , D̂2Z |B⟩ = |A⟩ , D̂2Z |C⟩ = |D⟩ , D̂2Z |D⟩ = |C⟩ , (2.67)

and
|A⟩ + |B⟩ + |C⟩ + |D⟩ = 0. (2.68)

We make the approximation that the F vibration is harmonic and therefore each
rovibrational state has vibrational energy that is a multiple of ~ωF and we calculate
the rotational energy of the state using the moment of inertia of the tetrahedral
configuration.

The lowest energy state is the spin 1 state,

− (X − iY ) |1, 1⟩ +
√

2Z |1, 0⟩ + (X + iY ) |1,−1⟩ (2.69)

where X = a+ c− b− d, Y = a+ d− b− c and Z = a+ b− c− d.
In order to calculate the parity of this state it helps to consider what the configuration

looks like if we only excite the vibrational mode, a. However, this means that b = c =
d = −1

3a because the four modes must sum to zero. Now the state in (2.69) becomes
proportional to

(−1 + i) |1, 1⟩ +
√

2 |1, 0⟩ + (1 + i) |1,−1⟩ . (2.70)

Such an excitation corresponds to the particle in the (1, 1, 1) direction pulling away
from the other three particles and such a configuration has a reflection symmetry.
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Therefore we can express the parity operator in terms of rotations and isorotations,

P̂ = e
iπ√

2(L̂1−L̂2)e
iπ
2 (√

3L̂1+L̂2). (2.71)

If we apply P̂ to the state in (2.70) we see that it flips sign, therefore we have a 1−

state. We then identify this with the lowest lying 1− in the experimental spectrum at
7.12 MeV and use this determine to the vibrational frequency, ~ωF = 5.84 MeV. This
1− state is the base of rotational band consisting of the states 1−, 2+, 3±, 4±, 5±, 6±.
Additional spin states that fall under the F representation are listed in A.2 in Appendix
A.

2.5.3 Combining vibrations

So far we have only considered vibrations which are excited in either the A, E or F
channels. However, it is also possible to excite more than one channel at the tetrahedron
simultaneously and thereby combine different types of vibrations.

The combination of a state in the A representation with a state in any other
representation gives a state in this other representation, this is because the A vibration
is tetrahedrally symmetric. The combination of a state in the E representation with
another state in the E representation gives states in the A or E representations. The
combination of a state in the E representation with a state in the F representation only
gives states in the F representation. The combination of a state in the F representation
with another state in the F representation gives states in the A, E and F representations.
Details of how these combinations work explicitly for our rovibrational states are given
in Appendix B.

Notice that the combination of two states in the E representation can give states in
the A representation. The E representation is equivalent to the standard representation
and this explains how we can get states in the trivial and sign representations from our
vibrational model. This also means that states in the trivial and sign representations
in our vibrational model should have approximately two times the vibrational energy
of the lowest energy states in the standard representation. As seen in table 2.3, the
first excited 0+ state has 6.05 MeV of vibrational energy and the lowest 2+ state has
3.51 MeV of vibrational energy giving a ratio of 1.72. This ratio is not exactly two
because we consider a global vibrational analysis rather than a local harmonic analysis.

We must also consider more closely how states in the E representation couple with
states in the F representation because we have a global model of the E vibration. An
example of this is the lowest energy 1− state which has one unit of F vibration and no
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units of A or E vibration. However, there is still the question of whether this state
should be paired with the vibrational wavefunction in the trivial representation, ψ+

T,0,
or the sign representation, ψ−

S,0, because both of these wavefunctions have no units of
E vibration in a local analysis of the tetrahedron.

Recalling that all of our S3 transformations in section 2.4 left the point (1, 1, 1) fixed,
it makes sense to look at the 1− state when b = c = d = −1

3a because in this excitation
one of the alpha particles moves along the (1, 1, 1) direction. For this excitation the
rovibrational state is of the form,

|Ψ⟩ = ψ?
(
(−1 + i) |1, 1⟩ +

√
2 |1, 0⟩ + (1 + i) |1,−1⟩

)
, (2.72)

as shown in (2.70) where ψ? is the unknown vibrational wavefunction from the E
vibration in either the trivial or sign representation. We can then apply our Ĉ2 and Ĉ3

operators to this spin state to find that

Ĉ2 |Ψ⟩ = − |Ψ⟩ and Ĉ3 |Ψ⟩ = |Ψ⟩ . (2.73)

This should be equivalent to performing these actions on the vibrational wavefunction,
ψ?, directly and therefore we know that ψ? must be in the sign representation and
therefore is the wavefunction ψ−

S,0. Conversely we find that the 2+ state which has
one unit of F vibration and no units of A or E vibration should be paired with the
vibrational wavefunction ψ+

T,0, which is why the lowest energy 1− and 2+ states in table
2.4 have slightly different vibrational energies.

The states below 20 MeV that can be obtained via combining A, E and F vibrations
are listed in table 2.4 along with the representations that they fall under, their
vibrational, rotational and total energies and identifications with experimental states if
known.

In Figure 2.19 we plot all of the states that we have found using both our vibrational
model and the local vibrations of the tetrahedron. We see that by including in the
F vibration we are able to explain the spin 1 states in the experimental spectrum
which were not permitted by our vibrational model. The F vibration also increases the
number of spin 2 and spin 3 states that we find which gives a stronger agreement with
the experimental spectrum as well. There is a rather surprising gap in the energies of
the spin 2 states between 15 and 17 MeV for our model which is not observed in the
experimental spectrum. However, this is because we have used a crude approximation
for the rotational energy of the spin 2 states in the F representation. A more accurate
approximation of the rotational energy would make this gap disappear. We have a
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(AE F ) JP Rep. Evib Erot E EExp

(0 0 1) 1− F 6.08 1.04 7.12 7.12
(0 0 1) 2+ F 5.84 3.11 8.95 9.84
(0 1 1) 1− F 9.35 1.04 10.39 9.59
(0 0 2) 0+ A 11.69 0 11.39 11.26
(1 0 0) 0+ A 12.05 0 12.05 12.05
(0 0 1) 3+ F 5.84 6.21 12.06 11.08
(0 1 1) 1+ F 11.17 1.04 12.21 13.66
(0 0 1) 3− F 6.08 6.21 12.30 11.60
(0 1 1) 2+ F 9.35 3.11 12.46 −
(0 2 1) 1− F 11.89 1.04 12.93 12.44
(0 0 2) 1− F 11.93 1.04 12.96 13.01
(0 1 1) 2− F 11.17 3.11 14.28 −
(0 0 2) 2+ E 11.69 3.11 14.79 −
(0 0 2) 2+ F 11.69 3.11 14.79 −
(0 2 1) 2+ F 11.89 3.11 15.00 −
(0 0 2) 2− E 11.93 3.11 15.04 −
(0 1 1) 3± F 9.35 6.21 15.57 −
(0 2 1) 1− F 14.57 1.04 15.61 −
(0 0 1) 4+ F 5.84 10.36 16.20 −
(0 0 1) 4− F 6.08 10.36 16.44 −
(0 1 1) 3∓ F 11.17 6.21 17.38 −
(0 2 1) 1+ F 16.48 1.04 17.52 −
(0 2 1) 2+ F 14.57 3.11 17.68 −
(0 0 2) 3+ F 11.69 6.21 17.90 −
(0 2 1) 1+ F 16.93 1.04 17.97 −
(0 0 2) 3− F 11.93 6.21 18.14 −
(0 0 2) 3− A 11.93 6.21 18.14 −
(1 0 0) 3− A 12.05 6.21 18.26 −
(1 1 0) 2+ E 15.56 3.11 18.74 −
(1 0 1) 1− F 18.13 1.04 19.17 −
(0 2 1) 2− F 16.48 3.11 19.59 −
(0 1 1) 4± F 9.35 10.36 19.71 −

Table 2.4 The low energy states produced by combining vibrations. (AE F ) describes
the number of vibrational units there is in each channel. We have listed the spin-parity
of the state, the representation that it falls under, its vibrational energy, its rotational
energy and its total energy. We have provided an identification with an experimental
state if such a pairing seems clear.
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very good agreement with the number of spin 4 states below 20 MeV and their energies
are quite close to those found in the experimental spectrum.
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Fig. 2.19 The states of the E vibration in our model along with the states from the
A and F vibrations of the tetrahedron and states in the experimental spectrum of
Oxygen−16 below 20 MeV. The hollow black shapes denote experimental states with
isospin 0, the hollow orange shapes denote experimental states with unknown isospin,
the blue shapes denote states in the trivial or sign representations, the green shapes
denote states in the standard representation and the red shapes denote states in the
F representation. Circles denote positive parity states and triangles denote negative
parity states.

2.6 Isospin

So far we have only considered states with isospin 0, but, since every rotational operator
that we have used comes with a paired isorotational operator, we can easily expand
our method to non-zero isospin. The vibrational wavefunctions are the same as for
the isospin 0 states and the spin and isospin states that couple with them are given in
tables A.3 and A.4 of Appendix A.
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In order to calculate the energies of the states in our model we need an ansatz for the
moments of isoinertia; fortunately these are much easier to calculate than the moments
of inertia because the isoinertia tensor is approximately four times that of the B = 4
Skyrmion for any B = 16 configuration [18]. Therefore, using the values for a B = 4
Skyrmion found in [7], we take our moments of isoinertia to be U11 = U22 = 571 and
U33 = 678 for all of our configurations, with all other elements equal to zero. The
lowest energy states from our model are plotted in Figure 2.20 against the states from
the experimental spectrum and listed in table 2.5.
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Fig. 2.20 The isospin 1 states of the E vibration in our model along with the states from
the A and F vibrations of the tetrahedron and states in the experimental spectrum of
Oxygen−16 below 20 MeV. The hollow black shapes denote experimental states with
isospin 1, the hollow orange shapes denote experimental states with unknown isospin,
the blue shapes denote states in the trivial or sign representations, the green shapes
denote states in the standard representation and the red shapes denote states in the
F representation. Circles denote positive parity states and triangles denote negative
parity states.

The lowest energy isospin 1 state has spin parity 0− and is in the sign representation.
This agrees with the spin parity of the lowest energy isospin 1 state at 12.85 MeV
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JP Rep. Evib Erot Eisorot E

0− A 0.24 0 12.61 12.85
2− A 0 3.11 11.62 14.73
2+ A 0.24 3.14 11.62 15.00
0− E 3.51 0 11.62 15.13
0+ E 5.33 0 11.62 16.95
2− E 3.51 2.87 11.62 18.00
1− F 5.84 1.04 11.62 18.50
1+ F 6.08 1.04 11.62 18.74
1+ F 6.08 1.04 12.61 19.73
2+ E 3.51 2.56 12.61 18.68
2+ E 5.33 2.92 11.62 19.87

Table 2.5 The isospin 1 states below 20 MeV. We have listed the spin-parity of the
state, the representation that it falls under, its vibrational energy, its rotational energy,
its isorotational energy and its total energy.

in the experimental spectrum and so we use this state to calibrate the isorotational
energy unit.

The lowest lying 1−,2− and 3− states are well explained by a shell model approach
[33] but we have no interpretation for them in our model. The next lowest isospin 1
state is in the trivial representation and has spin-parity 2− which agrees with the fifth
lowest energy state in the experimental spectrum. However, we find that the energy of
the state is a little high in our model and this is true for all of the states that we find.
Despite the fact that we are able to produce states with the correct spin-parity in our
model, these differences in energies could indicate a problem with the Skyrme model.

This problem is even more serious for isospin 2 states; the lowest energy isospin 2
state in our model has spin-parity 0+ and is at 37.82 MeV whereas the lowest energy
isospin 2 state in the experimental spectrum has spin-parity 0+ and is at 22.72 MeV.
Whilst it is promising that we are able to match the spin-parity, the colossal difference
in energies indicates that something is severely wrong with our method. In the Skyrme
model isorotational energy scales like I(I + 1) whereas the experimental spectrum
would indicate that the isospin energy scaling linearly with isospin would be more
appropriate for these isospin 2 states. This would mean that isospin energy is more
akin to vibrational energy than rotational energy for some states, indicating that there
may be a fundamental misunderstanding of isospin in the Skyrme model.
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One possibility for rectification of this problem is that Skyrmions deform at high
values of isospin [34]. The isospin moments of inertia for a B = 16 Skyrmions would
still be bounded by sixteen times the isospin moments of inertia for a B = 1 Skyrmion,
giving Uij = u δij where u ≤ 760. However, this is still not large enough to account
for gap between energies of the isospin 2 states in our model and the experimental
spectrum.

2.7 Conclusions

Previous alpha cluster analyses of the Oxygen−16 have focussed on a tetrahedral
arrangement of four alpha particles and the local vibrations of this tetrahedron. We
have used the Skyrme model to create a vibrational manifold for the E vibration
of the tetrahedron which incorporates the bent square and flat square arrangements
of alpha particles as well. This global approach provides a fresh perspective on the
first excited 0+ state as a mixture of the tetrahedral and flat square configurations
and is able to explain the gap between the lowest energy spin 2 states, which has
proved challenging for other alpha cluster approaches. We have seen that a global
treatment of the E vibration has a significant effect on the resulting energy spectrum,
in particular providing us with challenging states such as the 0− and 3+ states seen in
the experimental spectrum. It would be interesting to apply this idea of globalization
to the F vibration as well. Combining the A, E and F vibrations is simple at the
tetrahedron but if the vibrations were treated globally we would have to consider
cross-terms in the metric which are not well understood at present.

We have found that there are some problems with the higher energy states in our
model. States with high vibrational energy often have too much energy due to our
potential losing validity for asymptotic configurations. States with high rotational
energy also have too much energy because we do not incorporate the centrifugal
deformation of configurations at higher spins. The vibrational energy problem could
be resolved via a different choice of potential, this would likely lead to the loss of
analytic solutions and require more extensive numerical work but seems a possible
avenue for future work. The rotational energy problem could be resolved by looking at
the effect of rotation on Skyrmions and the degree to which they deform. This project
has also indicated some problems with isospin, in that the Skyrme model seems to
overestimate the energy of higher isospin states. It would be worth considering how
vibrations and isospin interact with each other and in particular whether isospin can
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be generated without the quantizing of isorotational degrees of freedom via a rigid
rotor interpretation.



Chapter 3

Interactions between Skyrmions

3.1 Introduction

A growing area of interest in the Skyrme model is vibrational quantization, which is
the idea that when we want to quantize a Skyrmion we must consider configurations
other than the configuration with the lowest energy (the energy minimizer). This is as
opposed to rigid body quantization where we only quantize the zero energy modes of
the energy minimizer (rotations and isorotations) [7].

The spin states allowed by a configuration depend on the amount of symmetry
that it has; more symmetry leads to more restrictions on a spin state and as a result
fewer spin states are permitted [9]. As a result, when we only consider rigid body
quantization the Skyrme model frequently predicts less spin states than are present in
the experimental energy spectrum. In vibrational quantization we take into account
some additional low energy configurations which often have less symmetry than the
energy minimizer [35, 11]. This reduction in symmetry leads to more allowed spin
states and so a fuller spectrum in agreement with experimental findings.

In order to perform vibrational quantization we need to know the energy of the
configurations far away from the energy minimizer in configuration space; such con-
figurations frequently become composite and can be viewed as a collection of smaller
Skyrmions. The energy of these configurations could be found via numerical simula-
tion [36] but it would be very time consuming to find the energy of several different
configurations and completely intractable if the dimension of the configuration space is
large. An alternative, for these composite configurations, is to find the total energy of
the constituent Skyrmions and subtract from this the total interaction energy between
these constituents.
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A related area is B = 4N cluster nuclei; in the Skyrme model these are presented as
arrangements consisting of N B = 4 Skyrmions [14]. The idea here is that the B = 4
Skyrmion (corresponding to the Helium nucleus or alpha particle) is a particularly
stable configuration with high binding energy and so it is a good candidate for a
‘building block’ with which to construct larger nuclei. Once we know the number of
B = 4 blocks that are present we need to find which arrangement of them has the
lowest energy; given that the total energy of the constituent B = 4 Skyrmions is
fixed this will depend entirely on the interaction energy between the pairs of B = 4
Skyrmions.

Both of these problems require the evaluation of interaction energies between
Skyrmions for a range of separations and orientations. Again this could be done
numerically, but for a pair of Skyrmions the space of possible separations and relative
orientations is six dimensional (or even higher if we allow isorotations as well) so it
is not feasible to find the energy for every possible situation numerically. Another
approach is to treat Skyrmions as interacting point multipoles [37]; this has the benefit
of producing an analytic expression for the interaction energy and so can be applied
easily to all separations and orientations. However since the Skyrmions are treated
as point particles the approximation loses accuracy as the Skyrmions approach each
other.

In this chapter, we consider Skyrmions as sourced by extended Gaussian multipoles;
this retains the analytic formulae from the point multipole approach whilst retaining
some accuracy as the Skyrmions approach each other. We develop formulae for the pion
fields and interaction energies of Skyrmions before applying these to some important
examples of Skyrmions and their interactions.

3.2 Yukawa interactions

In this section we consider how a first approximation to interaction energy can be
achieved via point multipole sources and then show how we can improve upon this
approximation by extending this to Gaussian multipole sources.

3.2.1 Massive scalar field theory

In [38] it is shown that to linear order the interactions between Skyrmions are described
by massive scalar field theory. In a massive scalar theory with scalar field, π, source, ρ
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and mass, µ, the static energy is given by,

E =
∫ (1

2∇π · ∇π + 1
2µ

2π2 + ρ π
)
d3x, (3.1)

resulting in the field equation
(∇2 − µ2)π = ρ. (3.2)

The field, π, corresponds to a pion field of the Skyrmion and µ corresponds to the pion
mass; however, ρ does not have a direct counterpart and should be viewed as a source
which generates the pion field, π. However, the duality between massive scalar theory
and the Skyrme model only applies to interactions between Skyrmions so we can not
use (3.1) to calculate the energy of a Skyrmion.

We define the interaction energy between two sources ρ(1) and ρ(2) (which generate
pion fields π(1) and π(2) respectively) as

Eint = E
(
ρ(1) + ρ(2), π(1) + π(2)

)
− E

(
ρ(1), π(1)

)
− E

(
ρ(2), π(2)

)
. (3.3)

This is related to the binding energy of the system; the difference between the energy
of the system and the energy of its constituent parts.

Plugging the expression for the energy found in (3.1) into (3.3) and using the field
equation (3.2) to simplify, we find a simple expression for the interaction energy,

Eint =
∫
d3xρ(1)π(2). (3.4)

In our approximation the sources, ρ, will be the fundamental fields, despite not
appearing in the Skyrme model directly, and so we would like to have expressions for
π and Eint that only depend on these sources. Using the Green’s function of (3.2), we
find,

π(x) = −
∫
d3yρ(y) e

−µ|x−y|

4π|x − y|
= −

∫
d3yρ(x + y)e

−µ|y|

4π|y|
, (3.5)

and a corresponding interaction energy,

Eint = −
∫
d3xd3yρ1(x)ρ2(x + y)e

−µ|y|

4π|y|
. (3.6)

Note that (3.6) shows us that these sources interact via a Yukawa interaction. Ad-
ditionally given that each Skyrmion has a triplet of pion fields the total interaction
energy will involve three pairs of sources.
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3.2.2 Point multipole sources

We now have integral expressions for the pion field generated by a source and the
interaction energy between two sources. The problem is that, as stated in section
3.1, it is important to have an analytic expression for the interaction energy between
Skyrmions, in order to apply it to range of different separations and orientations. This
means that we need to generate our Skyrmions with sources for which the integrals in
(3.5) and (3.6) can be performed explicitly.

In [38] it is shown that a point multipole source of the form,

ρ(x) = (−1)lQi1···il
∂i1 · · · ∂il

δ(x), (3.7)

generates a pion field of the form,

π(x) = (−1)l+1Qi1···il
∂i1 · · · ∂il

(
e−µ|x|

4π|x|

)
, (3.8)

and that interaction between two sources of the form,

ρ(1)(x) = (−1)lQ
(1)
i1···il

∂i1 · · · ∂il
δ(x) and ρ(2)(x) = (−1)mQ

(2)
j1···jm

∂j1 · · · ∂jmδ(x − X),
(3.9)

gives an interaction energy of

Eint = −Q
(1)
i1···il

Q
(2)
j1···jm

∂i1 · · · ∂il
∂j1 · · · ∂jm

(
e−µ|X|

4π|X|

)
. (3.10)

Both the formulae for the pion field and the interaction energy are in a very
convenient form, only requiring the evaluation of derivatives of e−µ|x|

4π|x| . The Qi1···il
’s are

the multipole moments of the Skyrmion and, as shown in (3.10), these determine how
two well-separated Skyrmions interact with each other. The multipole moments of a
Skyrmion tell us about its symmetry group and this in turn determines the spin states
that it permits; therefore it is of vital importance that our approximation scheme can
also account for these multipole moments.

The approximation outlined here, using point sources, captures the leading order
behaviour of the Skrymion’s pion field perfectly and as a consequence provides an
accurate approximation of the interaction energy of Skyrmions at large separations.
However, as the Skyrmions approach each other the accuracy of the interaction energy
decreases significantly, because the effect of using a point source rather than an extended
source is significant. We would like to find a form for the sources which retains the
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convenient form for the expressions found in equations (3.8) and (3.10), whilst still
remaining accurate as the interacting Skyrmions get closer to one another.

3.2.3 The Gaussian monopole source

A natural candidate for an extended source is a Gaussian and so we consider a source
of the form,

ρ(G; x) = e− G
2 r2
, (3.11)

where r = |x|. We then use (3.5) to calculate the pion field which is generated by this
source,

π(G; x) = −
∫
d3ye− G

2 (x+y)2 e−µ|y|

4π|y|
(3.12)

= −1
2e

− G
2 r2

∫ ∞

0

∫ 1

−1
dy d(cos θ) y e− G

2 y2
e−Gry cos θ e−µy (3.13)

= 1
2Gre

− G
2 r2

∫ ∞

0
dy e− G

2 y2(e−Gry − eGry)e−µy (3.14)

= 1
2Gr

∫ ∞

0
dy

(
e− G

2 (y+r+ µ
G

)2
eµre

µ2
2G − e− G

2 (y−r+ µ
G

)2
e−µre

µ2
2G

)
(3.15)

= e
µ2
2G

2Gr

(
eµr

∫ ∞

µ
G

+r
e− G

2 y2
dy − e−µr

∫ ∞

µ
G

−r
e− G

2 y2
dy

)
(3.16)

= π
1
2 e

µ2
2G

(2G) 3
2 r

(
erfc

(
µ+Gr√

2G

)
eµr − erfc

(
µ−Gr√

2G

)
e−µr

)
(3.17)

≡ f(G; r). (3.18)

where the second equality involves going to spherical polars and performing the
azimuthal integral. The expression in (3.17) is defined as the function f(G; r) because
this function will appear in many expressions later in this chapter. We see that the
pion field generated by the Gaussian monopole source can be expressed in terms of
convenient functions as in the case of a point source. Note that we have suppressed
the µ dependence of the function f(G; r). This is because we only consider µ = 1 in
this chapter and do not treat it as a variable; however, this dependence could be easily
reinstated if one wanted to consider other pion masses.

Consider what happens to f(G; r) as we take the limit of G → ∞:

f(∞; r) = lim
G→∞

π
1
2 e

µ2
2G

(2G) 3
2 r

(
erfc

(
µ+Gr√

2G

)
eµr − erfc

(
µ−Gr√

2G

)
e−µr

)
= −

(2π
G

) 3
2 e−µr

4πr .

(3.19)
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As we take G → ∞ the Gaussian monopole source becomes point-like and so we
recover the pion field for a point monopole of the form in (3.8) (adjusting for the
fact that the total charge of the source in (3.11) is

(
2π
G

) 3
2 ); thus we see that the point

monopole source is just a limit of the Gaussian monopole source. We will consider this
idea further when we have considered a larger class of Gaussian sources.

3.3 Gaussian multipole sources

So far we have shown that the pion field generated by a Gaussian monopole source has
a convenient form; however, as mentioned in subsection 3.2.2 we also need to account
for the multipole moments and symmetries of the Skyrmions that we are trying to
approximate. This can be achieved by adding angular dependence to our sources via
the use of solid harmonics,

ρl,m(G; x) = Ym
l (θ, φ)e− G

2 r2
, (3.20)

where Ym
l = rlY m

l are the solid harmonics and Y m
l are the usual spherical harmonics.

However, now we have the perform the following integral,

πl,m(G; x) = −
∫
d3yYm

l (x + y)e− G
2 (x+y)2 e−µ|y|

4π|y|
, (3.21)

in order to generate the pion field generated by this source. We see that the solid
harmonic in (3.21) has a shifted origin and that there is angular dependence in the solid
harmonic and the exponent of the Gaussian; these factors make the integral in (3.21)
rather challenging. We now introduce a generating function for the solid harmonics
which alleviates both of these problems and enables us to perform this integral more
easily.

3.3.1 The Herglotz generating function

The Herglotz generating function uses an exponential to package the solid harmonics
into a form which is easier to work with than the solid harmonics themselves. To see
the idea behind the Herglotz generating function we consider the application of the
Laplacian to the dot product a · x,

∇2((a · x)l) = l(l − 1)(a · a)(a · x)l−2, (3.22)
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and notice that if a ·a = 0 then ∇2((a ·x)l) = 0. But if (a ·x)l is killed by the Laplacian
and is degree l in r then it must be a linear combination of the solid harmonics Ym

l (θ, φ).
We then choose a parametrization of a that will provide us with convenient coefficients
for this linear combination. Choosing

a =
(

−λ

2 + 1
2λ,−i

(
λ

2 + 1
2λ

)
, 1
)
, (3.23)

leads to get the following expression for (a · x)l,

(a · x)l = l!
l∑

m=−l

√
4π

2l + 1
λm√

(l +m)!(l −m)!
Ym

l (θ, φ). (3.24)

The Herglotz generating function then combines all of these (a · x)l into one expo-
nential,

eva·x =
∞∑

l=0

l∑
m=−l

√
4π

2l + 1
vlλm√

(l +m)!(l −m)!
Ym

l (θ, φ), (3.25)

and as a result we can now find any solid harmonic by considering the coefficients of v
and λ in the Taylor expansion of eva·x.

This means that we can package our multipole Gaussian source into a more convenient
format,

ρl,m(G; x) = Ym
l (θ, φ)e− G

2 r2 =
√

2l + 1
4π

√
(l +m)!(l −m)!

[
eva·xe− G

2 r2]
vlλm

, (3.26)

where [· · · ]vlλm denotes the coefficient of vlλm of the expression inside the square
brackets. Now instead of using a source of the form in (3.20), we can work with a
‘generating’ source,

ρgen(G; x) = eva·xe− G
2 r2 = e− G

2 (x− va
G

)2
e

v2a·a
2G = e− G

2 (x− va
G

)2
, (3.27)

where the last equality follows from the fact that a · a = 0. We now see the benefits of
using the Herglotz generating function; the ‘generating’ source is simply a Gaussian
with a shifted origin and so the integral (3.17) can be performed easily to give,

πgen(G; x) = f
(
G;
∣∣∣∣x − va

G

∣∣∣∣) , (3.28)
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where the shift of origin in ρgen(G; x) just results in the same shift of origin for
πgen(G; x).

3.3.2 Gaussian multipole pion fields

We have managed to package our multipole Gaussian sources into the generating source
in (3.27) and then found the pion field generated by this source. However we would
like to calculate the pion field which is generated by our multipole Gaussian source in
(3.20) and so we need to unpackage the pion field in (3.28). We know from (3.26) that,

ρl,m(G; x) =
√

2l + 1
4π

√
(l +m)!(l −m)! [ρgen(x)]vlλm , (3.29)

and so it follows that,

πl,m(G; x) =
√

2l + 1
4π

√
(l +m)!(l −m)! [πgen(x)]vlλm , (3.30)

where πl,m(G; x) is the pion field generated by ρl,m(G; x). Therefore we need to find
the vlλm coefficient of πgen(G; x); to this end we consider the Taylor expansion of
f
(
G; |x − va

G
|
)

about x. We find that the vl coefficient of πgen(G; x) is

(−1
G

)l ai1 . . . ail

l!
∂lf(G; r)
∂xi1 . . . ∂xil

. (3.31)

When we apply the derivatives to f(G; r) successively we obtain,

∂lf(G; r)
∂xi1 . . . ∂xil

= ∂(l−1)

∂xi2 . . . ∂xil

(
xi1

(
1
r

∂

∂r

)
f(G; r)

)

= ∂(l−2)

∂xi3 . . . ∂xil

xi1xi2

(
1
r

∂

∂r

)2

f(G; r) + δi1,i2

(
1
r

∂

∂r

)
f(G; r)


...

= xi1 . . . xil

(
1
r

∂

∂r

)l

f(G; r). (3.32)

In the second equality we see that we have two distinct terms; however, the δi1,i2 term
would result in an a · a term in (3.31) which is 0 and so this term can be neglected.
Similarly any subsequent derivative acts only on the f(G; r) part of the expression
to avoid the creation of a Kronecker delta and so iteratively the final equality holds.
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Plugging the expression in (3.32) back into (3.31) we get,

(−1
G

)l ai1 . . . ail

l!
∂lf(G; r)
∂xi1 . . . ∂xil

=
(−1
G

)l (a · x)l

l!

(
1
r

∂

∂r

)l

f(G; r). (3.33)

Then using (3.21), we can extract the λm term from (3.33) to find that

πl,m(x) = Ym
l (θ, φ)

(−1
G

)l
(

1
r

∂

∂r

)l

f(G; r). (3.34)

Here it is important to note that the solid harmonics decouple from each other, with
the radial dependence of πl,m(G; x) depending only on l (and not m). This is crucial
because if we have a source of the form,

ρ(x) =
l∑

m=−l

amρ
l,m(G; x) =

 l∑
m=−l

amYm
l (θ, φ)

 e− G
2 r2
, (3.35)

then the generated pion field is

π(x) =
l∑

m=−l

amπ
l,m(G; x) =

 l∑
m=−l

amYm
l (θ, φ)

(−1
G

)l
(

1
r

∂

∂r

)l

f(G; r). (3.36)

This means that if the source has a symmetry (as exhibited by a linear combination
of solid harmonics) then the generated pion field will have this same symmetry and
vice versa. When we consider a Skyrmion we look at its pion fields rather than the
sources which generate them; the result above means that we can look at the symmetry
found in the pion fields, calculate which combination of solid harmonics it represents
and then know which combination of solid harmonics the generating source has. This
makes it easier to determine which source generates the pion field.

3.3.3 Further Gaussian multipole sources

Currently we have exactly one Gaussian source for each multipole moment, but we
would like to have more freedom when it comes to approximating Skyrmions and their
interaction energies. Although the angular dependence of a source is fixed by the
multipole moment, the radial dependence is not and it is here that we have room to
introduce more sources. We require our sources to be regular at the origin which means
that the degree in r must be at least the order of the spherical harmonic; however, this
still allows us with sources of the form, p(r2)Ym

l (θ, φ)e− G
2 r2 , where p is a polynomial in
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r2. We choose the following basis for these polynomials,

ρn,l,m(G; x) = Radn(G; r)Ym
l (θ, φ)e− G

2 r2
, (3.37)

where Radn(G; r) = (∇2ne− G
2 r2)eG

2 r2 . Radn(G; r) is a polynomial of degree n in r2 and
can be viewed as an analogue to the Hermite polynomials, with a slight difference
because ∇2 ̸= ∂2

∂r2 . Note that Rad0(G; r) = 1 and therefore ρl,m(G; x) = ρl,m,0(G; x).
We now consider the generating source,

ρn
gen(G; x) ≡ Radn(G; r)e− G

2 (x− va
G

)2 =
[
∇2n

X

(
e− G

2 (x+X)2
eva·xe− v2a·a

2G

)]
X=0

(3.38)

=
[
∇2n

X

(
e−va·Xe− G

2 (x+X− va
G

)2)]
X=0

, (3.39)

where the first equality comes from expanding the bracket in the Gaussian and noticing
that

[
∇2n

X e
− G

2 (x+X)2
]

X=0
=
[
∇2ne− G

2 (x+X)2
]

X=0
= ∇2ne− G

2 r2 = Radn(G; r)e− G
2 r2 . The

pion field that is generated by this source is,

πn
gen(G; x) =

[
∇2n

X (e−va·Xf
(
G;
∣∣∣∣x + X − va

G

∣∣∣∣)]
X=0

(3.40)

=
[(
v2(a · a) − 2vai

∂

∂Xi

+ ∇2
X

)n

f
(
G;
∣∣∣∣x + X − va

G

∣∣∣∣)
]

X=0
(3.41)

=
(

−2vai
∂

∂xi

+ ∇2
)n

f
(
G;
∣∣∣∣x − va

G

∣∣∣∣) , (3.42)

where the first equality follows from (3.34), the second equality follows from the Leibnitz
rule and the third equality follows from a · a = 0. Focusing on the powers of v that
come from the bracketed term in (3.42), we find that the coefficient of vp is

(−2)p

(
n

p

)
ai1 . . . aip

∂p

∂xi1 . . . ∂xip

∇2(n−p)f
(
G;
∣∣∣∣x − va

G

∣∣∣∣) . (3.43)

We now focus on the coefficient of the vl term of the entire expression in (3.42) and
require the remaining powers of v to come from the Taylor expansion of f

(
G;
∣∣∣x − va

G

∣∣∣),
resulting in

(−1)l(2)p

Gl−p

(
n

p

)
ai1 . . . aip

aip+1 . . . ail

(l − p)!
∂p

∂xi1 . . . ∂xip

∂l−p

∂xip+1 . . . ∂xil

∇2(n−p)f (G; r) . (3.44)

This expression is similar to equation (3.31) with some additional prefactors. We then
sum over all possible p to get all possible contributions to the vl term, and then focus
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on the λm term to find that

πl,m,n(G; x) =
min(l,n)∑

p=0
(−1)l Ym

l (θ, φ)
Gl

(
1
r

∂

∂r

)l (
(2G)pp!

(
n

p

)(
l

p

)
∇2(n−p)

)
f(G; r).

(3.45)
where πl,m,n(G; x) denotes the pion field that is generated by the source ρl,m,n(G; x).
Again the radial dependence decouples from the angular dependence which means that
symmetry is carried over from the source to the generated pion field.

3.3.4 Asymptotics of Gaussian multipole pion fields

The asymptotics of the generated pion fields give the leading order contribution to the
interaction energy so it is worthwhile considering how the asymptotics of πl,m,n(G; x)
depend on l,m and n. First we consider the asymptotics of the function f(G; r) as r
tends to infinity,

f∞(G; r) = lim
r→∞

f(G; r) ∼ e−µr

r
. (3.46)

As we can see from equation (3.45), πl,m,n(G; x) involves two types of derivatives acting
on f(G; r): 1

r
∂
∂r

and ∇2. We now investigate the effect that each of these derivatives
has on f∞(G; r). For the derivative 1

r
∂
∂r

,

1
r

∂

∂r
(f∞(G; r)) ∼ 1

r

∂

∂r

(
e−µr

r

)
∼ −µe−µr

r2 − e−µr

r3 ∼ e−µr

r2 . (3.47)

We see that 1
r

∂
∂r

has the effect of reducing the power of r by one and this works
iteratively such that

(
1
r

∂
∂r

)l
reduces the power of r by l. For the derivatives ∇2,

∇2 (f∞(G; r)) ∼ 1
r2

∂

∂r

(
r2 ∂

∂r

(
e−µr

r

))
∼ µ2e−µr

r
− 2µe−µr

r2 ∼ e−µr

r
. (3.48)

We see that ∇2 has no effect on f∞(G; r) and thus neither does ∇2p for any value of p.
πl,m,n(G; x) has l derivatives of the form 1

r
∂
∂r

, l powers of r coming from the solid
harmonics and a varying number of derivatives of the form ∇2. The combination of
the two results above show that,

πl,m,n(G; x) ∼ e−µr

r
, (3.49)
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as r tends to infinity. This means that the asymptotics of the pion field is independent
of n, l and m which shows the importance of considering a large range of sources rather
than just those with small values of l and n.

Notice, how this changes if we consider a Coulomb rather than Yukawa interaction
(setting µ equal to zero). Now equation (3.47) shows that the leading order terms
vanish and that the orders of r in the asymptotics of the pion field would decrease as
the order of the multipole increases. Equation (3.48) shows that ∇2 (f∞(G; r)) = 0 and
that therefore πl,m,n(G; x) is asymptotically zero for n not equal to 0 (this is equivalent
to the fact that Coulomb multipoles are traceless). In combination this shows the
importance of considering ‘higher order terms’ for a Yukawa interaction as opposed to
focusing on the leading order terms for a Coulomb interaction.

3.3.5 Interaction energies between Gaussian multipole sources

We have shown that for a given Gaussian mutlipole source we can obtain an analytic
expression for its generated pion field. However, the main focus of this chapter is the
approximation of interaction energies to aid vibrational quantization and the evaluation
of energies of cluster nuclei. Fortunately the process for calculating the interaction
energy between Gaussian sources is rather similar to the one used to generate pion
fields.

Recall that the interaction energy between two sources separated by R has the
integral expression,

Eint(R) = −
∫
d3xd3yρ1(x)ρ2(x − R + y)e

−µ|y|

4π|y|
. (3.50)

We now consider two generating sources of the form,

ρ1,gen(G; x) = e− G
2 (x− va

G
)2 and ρ2,gen(H; x) = e− H

2 (x− V A
H

)2
, (3.51)

where

a =
(

−λ

2 + 1
2λ,−i

(
λ

2 + 1
2λ

)
, 1
)

and A =
(

−Λ
2 + 1

2Λ ,−i
(

Λ
2 + 1

2Λ

)
, 1
)

(3.52)

such that a · a = A · A = 0. Note that

a · A = 1 − λ

2Λ − Λ
2λ, (3.53)
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which is generically non-zero.
We will only work through the derivation for sources with n = 0 for the sake of

brevity; however, the derivation is easily generalized to n ̸= 0 and we state the result
for all n at the end. Again we perform the integral using generating sources, which
package the solid harmonics into a convenient form, and then extract the result for
solid harmonics afterwards. Plugging the sources ρ1,gen(G; x) and ρ2,gen(H; x) into
(3.50) to calculate a generating interaction energy, we find

Egen(R) = −
∫
d3xd3ye− G

2 (x− va
G

)2
e− H

2 (x−R+y− V A
H

)2 e−µ|y|

4π|y|
(3.54)

= −
∫
d3y

(
π

G+H

) 3
2
e− GH

G+H (y−R− va
G

+ V A
H )2 e−µ|y|

4π|y|
(3.55)

=
(

π

G+H

) 3
2
f

(
GH

G+H
;
∣∣∣∣∣R − va

G
+ VA

H

∣∣∣∣∣
)
. (3.56)

The first equality comes from integrating the product of the two Gaussians, which
creates another Gaussian. The subsequent integral is of the form that we have been
dealing with for the pion fields and so we use (3.17) for the final equality.

In direct analogy with the pion field derivation, in order to calculate the interaction
energy between sources ρl,m,0(G; x) and ρL,M,0(H; x − R), as defined in (3.20), we must
focus on the coefficient of vlV L in Egen(R),

(−1)l

GlHLl!L!ai1 . . . ail
Aj1 . . . AjL

∂l

∂Ri1 . . . ∂Ril

∂L

∂Rj1 . . . ∂RjL

f
(

GH

G+H
;R
)
. (3.57)

To calculate the pion field generated by a Gaussian multipole source we relied upon the
fact that a · a = 0, which is again a crucial aspect of our derivation of the interaction
energy; however, we have an added complication because, although a · a = 0 and
A · A = 0, a · A is non-zero.

Let us suppose that l ≥ L and apply all of the Ri derivatives first; these derivatives
are all dotted with a and so must all act radially to avoid the creation of Kronecker
deltas (as for the pion field derivation in equation (3.32)),

(−1)l

GlHLl!L!ai1 . . . ail
Aj1 . . . AjL

∂L

∂Rj1 . . . ∂RjL

Ri1 . . . Ril

(
1
R

∂

∂R

)l

f

 . (3.58)

The Rj derivatives can either act on one of the Ri’s (creating a δij) or act on f

radially (we will suppress the argument of f from now on for brevity). Note that a



68 Interactions between Skyrmions

Kronecker delta with one i index and one j index is permitted because this creates an
a · A term in equation (3.58) which is non-zero. Let us consider the terms where k ∂

∂Rj

derivatives act on k different Ri’s, giving

(−1)l

GlHLk!(l − k)!k!(L− k)!(a · R)l−k(A · R)L−k(a · A)k

(
1
R

∂

∂R

)l+L−k

f. (3.59)

We now substitute in the explicit expressions for the dot products, using a combination
of (3.24) and (3.53), to obtain,

∑
m,M

4π(−1)lClmLMk

GlHLk!k!

(
1 − λ

2Λ − Λ
2λ

)k

λmΛMYm
l−kYM

L−k

(
1
R

∂

∂R

)l+L−k

f (3.60)

where

ClmLMk =

√√√√ (2(l − k) + 1)(l − k +m)!(l − k −m)!
(2(L− k) + 1)(L− k +M)!(L− k −M)! (3.61)

and the sums over m and M are between ±(l − k) and ±(L− k) respectively. Note
that the arguments of all solid harmonics in this derivation are θ and φ such that the
separation vector R = (R, θ, φ) in spherical polars. If we now expand the bracket in
(3.60), we get the expression,

∑
m,M,i,j

4π(−1)lClmLMk

GlHLk!
(−1)i+jλm+i−jΛM−i+j

2i+j(k − i− j)!i!j! Ym
l−kYM

L−k

(
1
R

∂

∂R

)l+L−k

f, (3.62)

where i goes between 0 and k and j goes between 0 and k − i. We then read off
the coefficient of λmΛM in (3.62) to find the interaction energy between the sources
ρl,m,0(G; x) and ρL,M,0(H; x − R),

min(l,L)∑
k=0

∑
i,j

(
π

G+H

) 3
2 (−1)l+i+j

GlHLk!(k − i− j)!i!j!
ClmLMk

ClmLM0
Ym−i+j

l−k YM+i−j
L−k

(
1
R

∂

∂R

)l+L−k

f.

(3.63)
If we now wish to calculate the interaction energy between the two sources, ρl,m,n(G; x)

and ρl,m,n(H; x − R), as defined in equation (3.37), then it can be shown that we
simply perform the replacement,

f →
min(l,n)∑

p=0

min(L,N)∑
P =0

(
(2G)p(2H)Pp!P !

(
n

p

)(
N

P

)(
l

p

)(
L

P

)
(∇2)n+N−p−P

)
f, (3.64)

in equation (3.63).
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Although equation (3.63) looks rather complicated, it does provide an analytic
expression for the interaction energy between any two multipole Gaussian sources
enabling us to quickly generate the interaction energy for the whole range of separations
and orientations of the Skyrmions.

3.4 Modeling Skyrmions

In this section we look at the process for the modelling the pion fields of Skyrmions
and apply this to the first four Skyrmions.

3.4.1 Calibration of coefficients

We use our Gaussian multipole sources as a basis for the source of a particular Skyrmion,
such that,

ρ(x) =
∑

l,m,n

al,m,n ρ
l,m,n(Gl,m,n; x), (3.65)

where ρ(x) is the source which generates a pion field, π(x), of the Skyrmion. Note
that the Gl,m,n which features in the sources ρl,m,n(Gl,m,n; x) may vary for different
values of l,m and n. The process of modeling a Skyrmion now comes down to choosing
the coefficients, al,m,n, in this expansion and to do this we need to decide which
characteristics of the Skyrmion we would like to capture in our approximation.

One important aspect is the symmetry of the Skyrmion because if we want to
quantize the Skyrmion then its symmetries decide which spin states it allows. Another
important aspect is the multipole moment; these decide how the pion field behaves at
large r and determine the leading order contribution to the interaction energy at large
separations. These two aspects are strongly interlinked; the multipole moments of a
Skyrmion determine its symmetries at large r. Therefore if we capture the multipole
behavior of the Skyrmion we get its symmetries as well for free. Skyrmions interact
via a Yukawa interaction at large separations so we start by considering the multipole
expansion of the Yukawa potential [39],

− e−µ|x−y|

4π|x − y|
= −µ

∞∑
l=0

l∑
m=−l

il(µR)kl(µr)Y m
l (θ, φ)Y −m

l (α, β), (3.66)

where x = (r, θ, φ), y = (R,α, β) and R > r. il(r) and kl(r) are the modified spherical
Bessel functions of the first and second kind respectively and can be expressed in terms
of hyperbolic trigonometric functions. Recall that the pion field, π(x), for a source,
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ρ(x), is determined by

π(x) = −
∫
d3yρ(y) e

−µ|x−y|

4π|x − y|
. (3.67)

Combining (3.66) and (3.67) we see that,

π(x) =
∞∑

l=0

l∑
m=−l

Mm
l kl(µr)Y m

l (θ, φ), (3.68)

where we have the multipole moment,

Mm
l = −µ

∫
ρ(y) il(µR)Y −m

l (α, β) d3y. (3.69)

Recalling that our basis sources are of the form,

ρl,m,n(G; x) = Radn(G; r)Ym
l (θ, φ)e− G

2 r2
, (3.70)

orthogonality of the spherical harmonics implies that the multipole moment Mm
l only

receives contributions from the sources, ρl,m,n(G; x), where n is allowed to vary. For
highly symmetric Skyrmions many of the multipole moments, Mm

l , are zero which
means that the corresponding coefficients, al,m,n, are all zero as well. The most obvious
way to calculate the moments which are not zero would be to use (3.69) directly;
however this integral involves the source whereas for a Skyrmion it is the pion fields
which are fundamental. This means that instead we invert (3.68) to calculate the
multipole moments for a Skyrmion, giving the formula,

Mm
l (r) =

∫
π(x)Y −m

l (θ, φ) sin θ dθ dφ
kl(µr)

. (3.71)

This gives us a multipole moment which depends on r, the radius of the spherical shell
that we are integrating over); we then take r to infinity to get the multipole moment
Mm

l .
Taking the limit of Mm

l (r) as r → ∞ ensures that our approximation matches the
Skyrmion asymptotically and guarantees that the interaction energy will be correct to
leading order for well separated Skyrmions. However we still have some freedom in
our approximation; calibrating to the multipole moment Mm

l just gives us a constraint
which the coefficients, al,m,n, must satisfy (which we usually enforce by expressing al,m,0

in terms of the other al,m,n coefficients). We can use (3.71) to calculate Mm
l (r) for both

the actual Skyrmion and for our approximation of the Skyrmion and then compare
these two functions for all r. In practice we choose the coefficients, al,m,n, to minimize
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the absolute difference between the approximate and actual function, Mm
l (r), across

the whole range of r; further details of this process will be provided in subsection 3.4.5
where we model the B = 4 Skyrmion. Of particular importance is how we decide to
truncate the series in (3.65), that is, how we decide how many non-zero al,m,n we will
include for each value of l and m.

We will now detail our approximations for the pion fields of the first four Skyrmions,
starting with the B = 1 Skyrmion.

Fig. 3.1 The B = 1 and B = 2 Skyrmions.

3.4.2 The B = 1 Skyrmion

The B = 1 Skyrmion is a hedgehog solution, meaning that the vector of pion fields (and
corresponding sources) always points radially outwards. It is very well approximated
by a set of dipole moments and the spherical symmetry means that any two pion fields
can be found in terms of the third. As a result the sources of the B = 1 Skyrmion
can be very closely approximated using just two parameters, A1 and G1. We use the
sources

ρ1(x) = A1√
2
(
ρ1,−1,0(G1; x) − ρ1,1,0(G1; x)

)
= A1

2

√
3
π
xe− G1

2 r2
, (3.72)

ρ2(x) = iA1√
2
(
ρ1,1,0(G1; x) + ρ1,−1,0(G1; x)

)
= A1

2

√
3
π
ye− G1

2 r2
, (3.73)

ρ3(x) = A1 ρ
1,0,0(G1; x) = A1

2

√
3
π
ze− G1

2 r2
, (3.74)

where ρi(x) denotes the source which generates the pion field πi(x).
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Using the calibration scheme in subsection 3.4.1, we find that G1 = 3.72, (A1 =
−68.2), where A1 has been put in brackets because it is determined by G1 and the
dipole moment of the B = 1 Skyrmion.

The spherical symmetry of the B = 1 Skyrmion means that we can write its pion
fields in the following way,

π(x) = (π1(x), π2(x), π3(x)) = sin g(r) x̂ (3.75)

where g(r) is called the radial profile function. Using (3.34), we obtain the following
approximation for the pion fields for the B = 1 Skyrmion:

π(x) = A1

2G1

√
3
π

∂f(G1; r)
∂r

x̂ = sin gA(r) x̂, (3.76)

where gA(r) is the radial profile function obtained via our approximation. In order
to assess the accuracy of our approximation of the B = 1 Skyrmion we need only
compare the radial profile functions (or their sines). To this end, in Figure 3.2 we
plot sin gA(r)−sin g(r)

sin g(r) (where sin g(r) is taken from the numerical solution of a B = 1
Skyrmion) against r to find the relative error of our approximation.

1 2 3 4 5
r

-0.010

-0.005

0.005

0.010

sin gA (r) - sin g (r)

sin g (r)

Fig. 3.2 The relative error of the function sin gA(r)

The relative error is always less than 1.2% and so, whilst the purpose of this chapter
is to discuss the interaction energy between Skyrmions, we have managed to find a very
close approximation to the pion field of B = 1 Skyrmion. Although this fit could be
further improved by including more non-zero coefficients we believe that the simplicity
gained from using the smallest possible number of parameters outweighs any slight
improvement in accuracy.

Explicitly the formula for the sine of the radial profile function for our approximation
of the B = 1 Skyrmion is,
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sin gA(r) =
√

3A1

8G
5
2
1 r

2

 −2
√

2G1√
π
re− G1

2 r2 + e−µre
µ2

2G1 (µr + 1)erfc
(

µ−G1r√
2G1

)
+eµre

µ2
2G1 (µr − 1)erfc

(
µ+G1r√

2G1

)
 .

3.4.3 The B = 2 Skyrmion

The B = 2 Skyrmion is toroidal and this axial symmetry means that the ρ1(x) and
ρ2(x) sources are rotations of one another and both can be well described by quadrupole
moments. The distinct ρ3(x) source corresponds to the axial direction and has a dipole
and octupole contribution. The sources are as follows

ρ1(x) =A2√
2

(ρ2,−2,0(G2; x) + ρ2,2,0(G2; x)) =
√

15
π

A2

4 (x2 − y2)e− G2
2 r2

, (3.77)

ρ2(x) =iA2√
2

(ρ2,−2,0(G2; x) − ρ2,2,0(G2; x)) = −
√

15
π

A2

2 xye− G2
2 r2

, (3.78)

ρ3(x) =B2ρ
3,0,1(H2; x) + C2ρ

3,0,0(H2; x) +D2ρ
1,0,1(I2; x) + E2ρ

1,0,0(I2; x)

=1
4

√
7
π

(H2B2r
2 + (C2 − 3B2))z(5z2 − 3r2)e− H2

2 r2

+1
2

√
3
π

(I2D2r
2 + (E2 − 3D2))ze− I2

2 r2
, (3.79)

where G2 = 3.01, I2 = 3.28, H2 = 3.65, B2 = 3.76, D2 = −14.0 (A2 = −85.9, C2 = 33.1,
E2 = −72.3).

The pion fields generated by these sources have more interesting angular dependence
than the B = 1 case and so we now consider contour plots in order to check the
accuracy of our approximation. For all of the contour plots in this section, the left plot
is the numerical Skyrmion’s pion field and the right plot is our approximation of the
pion field. Contours are taken between −0.9 and 0.9 at intervals of 0.2 unless stated
otherwise.

The axial symmetry of the B = 2 Skyrmion means we need only show contour
plots in the x − z plane because the rest of the pion fields of the Skyrmion can be
extrapolated from this. We plot π1 in Figure 3.3 and π3 in Figure 3.4 and find a good
agreement between the numerical and approximate fields in both cases
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Fig. 3.3 The numerical and approximate π1 field in the x − z plane for the B = 2
Skyrmion.

Fig. 3.4 The numerical and approximate π3 field in the x − z plane for the B = 2
Skyrmion.

3.4.4 The B = 3 Skyrmion

If the B = 3 Skyrmion is rotated and isorotated into the configuration shown in Figure
3.5, then all three of the pion fields are the same up to rotation; the trade off is that
now each pion field involves a dipole, quadrupole and octupole moment. The source
ρ3(x) can be expressed as,

ρ3(x) =A3ρ
3,0,1(G3; x) +B3ρ

3,0,0(G3; x) + iC3√
2
(
ρ2,2,0(H3; x) − ρ2,−2,0(H3; x)

)
+D3ρ

1,0,1(I3; x) + E3ρ
1,0,0(I3; x)
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=1
4

√
7
π

(G33A3r
2 + (B3 − 3A3))z(5z2 − 3r2)e− G3

2 r2 −
√

15
π

C3

2 xye− H3
2 r2

+1
2

√
3
π

(G31D3r
2 + (E3 − 3D3))ze− I3

2 r2
. (3.80)

where I3 = 2.81, H3 = 2.48, G3 = 2.58, D3 = 6.83, A3 = −1.44, (E3 = 21.0,
C3 = −58.4, B3 = 38.7). ρ1(x) and ρ2(x) can be found by replacing (x, y, z) with
(y, z, x) and (z, x, y) respectively.

Fig. 3.5 The B = 3 and B = 4 Skyrmions.

We plot contours of the π3 field in the x− y (Figure 3.6) and z = 0.75 (Figure 3.7)
planes and find that there is good agreement between the numerical and approximate
fields. Given the symmetries of the B = 3 Skyrmion this is sufficient to show that
there is good agreement for the all pion fields of the whole Skyrmion.

Fig. 3.6 The numerical and approximate π3 field in the x − y plane for the B = 3
Skyrmion.
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Fig. 3.7 The numerical and approximate π3 field in the z = 0.75 plane for the B = 3
Skyrmion.

3.4.5 The B = 4 Skyrmion

The B = 4 Skyrmion corresponds to a Helium−4 nucleus or alpha particle; its high
binding energy means that it is frequently observed as a building block for larger nuclei
(particularly B = 4N Skyrmions). If we can approximate the B = 4 Skyrmion and the
interaction energy between two of them accurately then we will be able to get insight
into these larger nuclei.

One of the reasons that the B = 4 Skyrmion has comparatively low energy is
because of its cubic symmetry which we need to capture in our approximation. The
cubic symmetry means that ρ1(x) and ρ2(x) are related and have quadrupole and
hexadecapole moments, whereas ρ3(x) has an octupole moment. We use the sources

ρ1(x) =A4

4
(√

14ρ4,4,1(G4; x) − 2
√

5ρ4,0,1(G4; x) +
√

14ρ4,−4,1(G4; x)
)

+B4

4
(√

14ρ4,4,0(G4; x) − 2
√

5ρ4,0,0(G4; x) +
√

14ρ4,−4,0(G4; x)
)

+
√

3C4ρ
2,0,1(H4; x) +

√
3D4ρ

2,0,0(H4; x)

=3
8

√
5
π

(G4A4r
2 + (B4 − 3A4))(x4 + y4 − 2z4 + 6x2z2 + 6y2z2 − 12x2y2))e− G4

2 r2

+1
4

√
15
π

(H4C4r
2 + (D4 − 3C4))(2z2 − x2 − y2)e− H4

2 r2
, (3.81)

ρ2(x) =A4√
2
(
ρ4,2,1(G4; x) + ρ4,−2,1(G4; x)

)
+ B4√

2
(
ρ4,2,0(G4; x) + ρ4,−2,0(G4; x)

)
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+ C4√
2
(
ρ2,2,1(H4; x) + ρ2,−2,1(H4; x)

)
+ D4√

2
(
ρ2,2,0(H4; x) + ρ2,−2,0(H4; x)

)
=3

8

√
5
π

(G4A4r
2 + (B4 − 3A4)(x2 − y2)(6z2 − x2 − y2)e− G4

2 r2

+1
4

√
15
π

(H4C4r
2 + (D4 − 3C4))(x2 − y2)e− H4

2 r2
, (3.82)

ρ3(x) = − iE4√
2

(ρ3,2,1(I4; x) − ρ3,−2,1(I4; x)) − iF4√
2

(ρ3,2,0(I4; x) − ρ3,−2,0(I4; x))

=1
2

√
105
π

(I4E4r
2 + (F4 − 3E4))xyze− I4

2 r2
, (3.83)

where H4 = 2.75, G4 = 3.03, I4 = 2.88, C4 = −11.3, A4 = −1.30, E4 = −10.6
(D4 = −36.0, B4 = −17.9, F4 = 85.7).

In Figures 3.8 and 3.9 we look at contours in the x− y plane for the π1 and π2 fields
respectively. We look at contours for the π3 field in the z = 0.75 plane because this is
around where some of the corners of the B = 4 Skyrmion lie and where the π3 field has
greatest magnitude. These contours are plotted in Figure 3.10. We see from all three
contour plots that there is good agreement between the numerical and approximate
pion fields.

Fig. 3.8 The numerical and approximate π1 field in the x − y plane for the B = 4
Skyrmion.

We will now take a closer look at how calibration works for the example of the ρ3

source of the B = 4 Skyrmion for which the multipole moments are M−2
3 = M2

3 = 1.38i,
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Fig. 3.9 The numerical and approximate π2 field in the x − z plane for the B = 4
Skyrmion.

Fig. 3.10 The numerical and approximate π3 field in the z = 0.75 plane for the B = 4
Skyrmion.

otherwise 0. If we allow more coefficients than in (3.83) then:

ρ3(x) =X4(ρ3,−2,2(x; I4) − ρ3,2,2(x; I4)) + E4(ρ3,−2,1(x; I4) − ρ3,2,1(x; I4))
+F4(ρ3,−2,0(x; I4) − ρ3,2,0(x; I4))

=1
2

√
105
π

(I2
4X4r

4 + I4(E4 − 10X4)r2 + (F4 − 3E4 + 15X4))xyze− I4
2 r2 (3.84)

We put this source into (3.69) to find that
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M−2
3 =

√
πµ4i

2|I4|
9
2
e

µ2
2I4

(
F4 + E4

(
6 + µ2

I4

)
+X4

(
24 + 12µ2

I4
+ µ4

I2
4

))
. (3.85)

It is helpful to use (3.85) to express one of the coefficients, F4, E4, X4, in terms of
the other coefficients and the multipole moment, M−2

3 . This is to incorporate the fact
that the multipole moment is fixed. We choose to express F4 in terms of the other
coefficients and the multipole moment,

F4 = 2|I4|
9
2

√
πµ4i

e
− µ2

2I4M−2
3 − E4

(
6 + µ2

I4

)
−X4

(
24 + 12µ2

I4
+ µ4

I2
4

)
. (3.86)

There is a trade-off between the number of terms in the expansion of ρ3(x) in (3.84)
and the accuracy of our fit. We start by considering the minimal set of parameters
with X4 = E4 = 0 and find the value of I4 (recalling that F4 is determined by I4 and
the multiple moment) which gives the least absolute error for M−2

3 (r) as shown in
Figure 3.11.
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I4=2.52

I4=3

I4=4

Fig. 3.11 The moment functions, M−2
3 (r), with varying values of I4 (E4 = 0, X4 = 0).

We find that the optimal value of I4 is 2.52 and that there is quite a close fit as
shown in Figure 3.11 where the green and blue curves almost lie on top of each other.
However, we would like to see how much better a fit we can achieve by allowing E4 to
be non-zero and then by allowing E4 and X4 to both be non-zero.

We see in Figure 3.12 that we can achieve a significant decrease in the absolute
error by allowing E4 to be non-zero but only a slight further improvement by allowing
X4 to be non-zero as well. Therefore we choose the parameter set I4 = 2.88, E4 =
−10.6, X4 = 0.00 for the ρ3 field of the B = 4 Skyrmion, finding that this provides the
best compromise between simplicity and accuracy of the fit.
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Fig. 3.12 The difference between the numerical and approximate moment functions for
different sets of parameters.

3.5 The interaction energy between Skyrmions

Having found accurate approximations for the pion fields of the first four Skyrmions
we can now use the calculated coefficients, al,m,n, to determine the interaction energy
between them for a range of different separations and orientations. In this section, we
go into the details of some important interactions and show how our approximation
can be applied to vibrational quantization and B = 4N cluster nuclei.

3.5.1 Two B = 1 Skyrmions

The simplest interaction that we can consider is between two B = 1 Skyrmions; this
interaction depends on the separation vector, X, between the two Skyrmions and also
their relative orientations. Their relative orientations can be captured via the Euler
rotation matrix, R(α, β, γ), that relates them. The combinations of the positional and
rotational degrees of freedom gives us a six dimensional configuration space in total.
In [40] it is shown that the interaction potential must be of the form,

V (X,R) = V0(|X|) + V1(|X|)Tr(R) + V2(|X|)XT RX
|X|2

. (3.87)

This means that once we have calculated V0, V1 and V2 in our approximation we can
express any interaction in terms of them. Following the method outlined in [40], we
find that, in our approximation, the potentials are,

V0(r) = 0 (3.88)
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Fig. 3.13 The attractive channel for two B = 1 Skyrmions.

V1(r) = A2
1

8G7/2
1 π3/2

(
1
r

∂

∂r

)
f
(
G1

2 ; r
)

(3.89)

V2(r) = A2
1

8G7/2
1 π3/2

r2
(

1
r

∂

∂r

)2

f
(
G1

2 ; r
)
. (3.90)

where f is defined in equation (3.17).
We now apply equation (3.87) to find the potential for two B = 1 Skyrmions in the

attractive channel: this is the interaction between two B = 1 Skyrmions where the
Skyrmions’ orientations differ by a rotation of π about an axis orthogonal to their
separation vector, X. In other words the points of least separation for each Skyrmion
have the same colour as seen in Figure 3.13. Note that one can rotate the B = 1
Skyrmions about the axis of separation and the interaction energy will not change.
Two B = 1 Skyrmions in the attractive channel have the least interaction energy for
a given separation and will form a B = 2 torus when they get sufficiently close. In
our approximation the interaction energy of the attractive channel, as a function of
separation, r, is,

Vatt(r) = − A2
1

8G7/2
1 π3/2

1
r

∂

∂r
+ r2

(
1
r

∂

∂r

)2
 f (G1

2 ; r
)
. (3.91)

In Figure 3.14 we plot the interaction energy between two B = 1 Skyrmions in the
attractive channel as a function of separation. We also plot the interaction energy
obtained via numerical simulation and the interaction energy given by the point
multipole model (found by taking the limit G1 → ∞ in our model). The numerical
simulations in this chapter, which are for the interactions between two Skyrmions, are
all performed by taking an initial configuration with two well-separated Skyrmions
with small initial velocities towards each other and evolving via second order time
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evolution as in [41]. We remove the kinetic energy from the system if the system has
increased its total energy after a step.

Numerical

Gaussian Multipole

Point Multipole
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Vatt(r)

r

Fig. 3.14 The interaction energy for two B = 1 Skyrmions in the attractive channel.

At this point it is worth pointing out one of the benefits of using our approximation
rather than a numerical simulation. In our approximation, each source has an origin and
we can use this origin to define the position of the Skyrmion; this means that we have
a concrete definition of the separation between two Skyrmions. The numerical solution
for a single Skyrmion also has a good definition for the position of the Skyrmion; there
is usually a central point where the lines of symmetry of the Skyrmion all cross and
this can be considered the position of the Skyrmion. For the B = 1 Skyrmion the
sigma field, σ, takes value −1 at this centre which is a convenient way of finding this
central point numerically.

However, once we consider two Skyrmions interacting with each other the positions
of the individual Skyrmions become less well defined. The individual Skyrmions begin
to deform as they approach each other, which breaks some of the symmetries of the
Skyrmions and so we no longer have central points and thus positions of the Skyrmions.
Eventually the Skyrmions may coalesce entirely as with the B = 2 torus which is the
end point of two B = 1 Skyrmions interacting in the attractive channel; by this point
there is no notion of individual Skyrmions at all and hence no notion of their positions
or the separation between them.
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In order to plot the interaction energy we require some notion of separation; to this
end we consider the points at which σ = −1 to correspond to the centres and thus
positions of the individual Skyrmions. This definition of position is more coherent for
greater separations, because there is less deformation of the individual Skyrmions, and
therefore it is important for the asymptotics of our approximated interaction energy to
match those of the interaction energy obtained via numerical simulation; however, for
shorter separations this definition breaks down and we focus on matching the minimum
value of the interaction energy rather than the separation at which it occurs.

For the interaction of two B = 1 Skyrmions in the attractive channel we find that
both the Gaussian and point multipole approximations capture the asymptotics well,
and the Gaussian approximation provides a very close approximation to the minimal
interaction energy. Note that the point multipole approximation does not exhibit
a minimum on the graph in Figure 3.14 and indeed there is not a minimum at any
separation.

This highlights a key advantage of the Gaussian multipole approximation over the
point multipole approximation: the Gaussian multipole approximation will produce
a stationary point for any interaction because all of the derivatives of f(G; r) have
a stationary point whereas the interaction between individual point multipole pairs
never has a stationary point. The total interaction energy itself may have stationary
points because it is a sum of many pairwise point multipole interactions some of which
may be attractive and others repulsive.

The existence of a minimum for an attractive interaction is important because this
means that the Skyrmions settle at some fixed separation from each other forming a
composite Skyrmion. For the case of the B = 1 Skyrmions in the attractive channel
we get a preferred separation of r0 = 1.57 Skyrme units. This can be thought of as the
bond length between these two Skyrmions and the radius of the B = 2 Skyrmion.

As seen in Figure 3.14 the Gaussian multipole approximation provides an interaction
energy for separations shorter than r0, but we would not expect this to be accurate
because at lengths shorter than r0 we can no longer say that the interaction is asymptotic.
As the Skyrmions become closer short-range interactions come into effect, which act
repulsively, and thus we expect the interaction energy to increase rapidly after it
reaches its minimum value.

3.5.2 Two B = 4 Skyrmions

In order to investigate which arrangements of alpha particles have the lowest energy
for B = 4N cluster Skyrmions, we must first investigate the accuracy of our approxi-
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mation of the interaction energy between two B = 4 Skyrmions. The lowest energy
arrangements of two B = 4 Skyrmions are those shown in Figure 3.15, where the
separation vector passes through the faces of the individual B = 4 Skyrmions and
these faces have the same colour. As the two B = 4 Skyrmions approach each other

Fig. 3.15 The lowest energy arrangements of two B = 4 Skyrmions.

they combine to form a B = 8 Skyrmion of which there are two particularly important
configurations. As seen in Figure 3.16, the unwisted B = 8 Skyrmion has the con-
stituent B = 4 Skyrmions with the same orientation and the twisted B = 8 Skyrmion
has the constituent B = 4 Skyrmions differing by a π

2 rotation about the separation
vector. Using our approximation we can consider the whole range of different relative

Fig. 3.16 The untwisted and twisted B = 8 configurations.

orientations and separations. In Figure 3.17, we see the effect that rotating one of
the B = 4 Skyrmions has on the interaction energy for a separation of 3 and 4 units.
This shows us that for large separations the untwisted configuration is favourable, but
as the B = 4 Skyrmions approach each other the twisted configuration becomes the
energy minimizer.

We now focus upon the untwisted and twisted channels and plot the interaction
energy as a function of separation (figures 3.18 and 3.19); we find that in both cases
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Fig. 3.17 The interaction energy as a function of angle of rotation θ for a separation of
4 and 3 Skyrme units.

our approximation predicts a minimum at a much lower interaction energy than is
found via the numerical simulations. We also find that the difference between the
energies of the untwisted and twisted configurations is less in our approximation than
in the numerical simulations. In order to explain these discrepancies we need to break
down the interaction energy into the individual interactions between multipoles.

Numerical

Gaussian Multipole
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Fig. 3.18 The interaction energy as a function of separation for the untwisted channel.

Each Skyrmion has three pion fields and each pion field for one Skyrmion only
interacts with the same pion field for the second Skyrmion. Within these pion fields
interactions there are interactions between the different multipole moments. Let Ei;a,b

denote the interaction energy between the order 2a and order 2b multipoles of the ith
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Fig. 3.19 The interaction energy as a function of separation for the twisted channel.

pion fields. Given that π1 and π2 have quadrupole and hexadecapole moments and π3

has an octupole moments the total interaction energy can be expressed as,

Eint = E1;2,2 + E1;2,4 + E1;4,2 + E1;4,4 + E2;2,2 + E2;2,4 + E2;4,2 + E2;4,4 + E3;3,3, (3.92)

the sum of nine different multipole-multipole interactions.
Now as for the B = 1 Skyrmions in the attractive channel, none of these multipole-

multipole interactions are trustworthy beyond their first stationary point. We find
that, for both the untwisted and twisted channels, the interaction with the greatest
separation at their first stationary point is E1,4,4 with r0 = 3.75, beyond this separation
we would expect short-range forces to be repulsive and significant and so the interaction
energy would increase sharply. When we introduce this cut-off to the total interaction
energy (as shown by the ending of the solid line in figures 3.18 and 3.19) we find that
the approximated interaction energy for the untwisted channel is close to the value
found numerically. The energy for the twisted channel is not as accurate and we believe
that this is because there is significant deformation of the individual B = 4 Skyrmions
as they approach each other in the twisted channel, which can not be captured by our
approximation.

We conclude that our approximation of the interactions between twoB = 4 Skyrmions
is trustworthy for large separations and always provides a closer fit to the interaction
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energy found numerically than the point multipole approximation. As the Skyrmions
get closer to each other we have to introduce a cut-off for the interaction energy which
retains accuracy for the untwisted channel but the twisted channel is still difficult
to model in our approximation. With this in mind we give particular attention to
B = 4N cluster nuclei where all of the shortest bonds are untwisted such as the B = 32
Skyrmion and the Skyrme crystal.

3.5.3 The B = 32 Skyrmion

The lowest known energy B = 32 Skyrmion is that of eight B = 4 cubes with the
same orientation in a cubic arrangement as shown in Figure 3.20. If there were no

Fig. 3.20 The arrangement of eight B = 4 cubes in a B = 32 Skyrmions.

interactions between the constituent B = 4 Skyrmions then the B = 32 Skyrmion
would have a configuration energy of 41.44 which is eight times the configuration energy
of a B = 4 Skyrmion [5]. However, we must calculate the energy due to interactions
between B = 4 Skyrmions and add this to 41.44.

The shortest bonds are between nearest neighbour B = 4 Skyrmions sharing an edge
of the B = 32 cube which are untwisted; there are 12 of them in the B = 32 cube and



88 Interactions between Skyrmions

we suppose they have length r0. The next shortest bonds are between B = 4 Skyrmions
separated by a face diagonal of the B = 32 cube, there are also 12 of them and they
have length

√
2r0. The longest bonds are between B = 4 Skyrmions separated by a

body diagonal of the B = 32, there are only 4 of these and they have length
√

3r0.
We see that the lengths of all the bonds only depend on the length of the shortest

bond, which must be no shorter than 3.75. We then minimize the total interaction
energy with this constraint and find that r0 = 3.75 is the preferred length of the
shortest bond. The total interaction energy is −1.04 with −0.92 of this coming from
the shortest bonds alone, therefore it is not surprising that these bonds are at the
optimal length for an untwisted bond. Whilst the other bonds are not untwisted
they are sufficiently long that our approximation is trustworthy without worrying
about cutoffs. This interaction energy means that, in our approximation, the B = 32
Skyrmion has a configuration energy of 40.40, which is comparable with the value of
40.51 found in [5].

3.5.4 The Skyrme crystal

The Skyrme crystal can be viewed as an infinite cubic lattice of B = 4 Skyrmions,
which are in the same orientation [42], and we can apply our approximation method to
calculate the energy per baryon of this lattice.

We again break this down into the number of bonds of each type. Using the same
terminology as subsection 3.5.3 we find that each B = 4 cube has 6 bonds of the first
type, 12 of the second type and 8 of the third type (bonds longer than the third type
have a negligible contribution to the interaction energy); we then halve these numbers
to account for the fact that each bond is between two B = 4 cubes and add up the
interaction energies. We find that each B = 4 Skyrmion has an interaction energy of
−0.243, which means that, in our approximation, the Skyrme crystal has an energy
per baryon of 1.234, which is comparable with the value of 1.238 found in [38].

3.5.5 The B = 12 Skyrmion

Whilst our approximation does not accurately model the twisted channel for two
interacting B = 4 Skyrmions it does still provide a potential for all possible interactions
of B = 4 Skyrmions and can provide some insight into arrangements of B = 4
Skyrmions. The B = 12 Skyrmion consists of three B = 4 Skyrmions and there are
three distinct arrangements with low energy: the linear chain; the bent chain; and the
triangle as shown in Figure 3.21. We use a bent chain with a 90◦ angle because we
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believe that there may be a local minimum in the configuration energy close to this
angle because the two shortest bonds are optimal here.

Fig. 3.21 The linear chain, bent chain and triangle configurations of the B = 12
Skyrmion

In these configurations the orientations are fixed and all bond lengths can be expressed
in terms of the shortest bond present; as a result we can set up each arrangement and
find the length of the shortest bond which gives the least interaction energy. We can
then add this to the individual energies of the three constituent B = 4 Skyrmions to
calculate the total energy of each of the three configurations.

In our approximation scheme the triangle has the lowest configuration energy at
15.02, the bent chain is next at 15.16 with the linear chain having the highest energy
at 15.20. The ordering of the triangular configuration and the linear chain agrees with
the ordering found in [17] and [19], which is required to explain the ground-state and
Hoyle-state bands in the energy spectrum.

We also have reason to believe that the bent chain should have lower energy than the
linear chain; both arrangements have two twisted bonds of roughly the same length r0.
The remaining bond has length

√
2r0 for the bent chain and 2r0 for the linear chain,

both of these are sufficiently long that we can trust our approximation again. Since
both bonds are in an attractive channel the bent chain has lower configuration energy
because its longest bond is much shorter than the longest bond for the linear chain.

3.5.6 The E vibration of the B = 16 Skyrmion

We can go even further for the B = 16 Skyrmion because in [20] the Skyrme model
is used to find dynamics along a line on the vibrational manifold as shown in Fig-
ure 3.22. This provides details about the positions and the orientations of the in-
dividual B = 4 Skyrmions which helps us to generate a potential along this line.
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Fig. 3.22 The scattering line from θ = 0 to θ = π

Along this line the four B = 4 Skyrmions have positions
(
− r√

2 sin θ,− r√
2 sin θ, r cos θ

)
,(

− r√
2 sin θ, r√

2 sin θ,−r cos θ
)
,
(

r√
2 sin θ,− r√

2 sin θ,−r cos θ
)

and
(

r√
2 sin θ, r√

2 sin θ, r cos θ
)

with Euler angles
(

π
4 , β,

π
4

)
,
(
−π

4 ,−β,−
π
4

)
,
(
−π

4 , β,−
π
4

)
and

(
π
4 ,−β,

π
4

)
respectively.

As we go along the line we vary θ and then calculate the values of r and β which
minimize the interaction energy. In Figure 3.23 we show how the interaction energy,
Eint, scale factor, r, and orientations, β, of the Skyrmions vary with θ. Note that since
r tends to infinity as θ tends to 0 or π so we cut off this graph at r = 4.
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Fig. 3.23 The energy, scale factor and orientations of the B = 16 Skyrmion as a function
of θ.

In the limit of θ → 0, we see that Eint → −0.332, r → ∞ and β → π
2 , this

corresponds to two well separated twisted B = 8 Skyrmions as seen in the left image of
Figure 3.24. We require r → ∞ because the bond in the B = 8 Skyrmions has length
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2r sin θ and this must tend to r0 = 2.78 as θ → 0 because this is the optimal length of
a twisted bond.

As θ increases, the B = 8 Skyrmions approach each other and the interaction energy
decreases because the B = 8 Skyrmions are attracting each other. Within each B = 8
Skyrmion the individual B = 4 Skyrmions pull away from each other and eventually at
θ = arccos 1√

3 we have a tetrahedral arrangement of B = 4 Skyrmions as seen in the
central image of Figure 3.24. This is the minimal energy arrangement of four B = 4
Skyrmions with an interaction energy of −0.915 and also gives the smallest scale factor
of any configuration at 1.66 which means that all bonds between B = 4 Skyrmions
have length 2.72; note that each bond has interaction energy of −0.153, so each bond is
close in energy and length to the optimal twisted bond between two B = 4 Skyrmions,
which has length 2.78 and energy −0.165.

Fig. 3.24 The θ = 0, θ = arccos 1√
3 (tetrahedral) and θ = π

2 (flat square) arrangements
of B = 4 Skyrmions.

As θ increases further, the interaction energy decreases and the scale factor increases
up until θ = π

2 where we get the flat square arrangement as seen in the right image
of Figure 3.24. This has an interaction energy of −0.705 and a scale factor of 1.94,
both of which are local maxima, this means that the four shortest bonds have length
2.74 and the two longer diagonal bonds have length 3.88. This explains why the flat
square has a higher configuration energy than the tetrahedron; they both have very
similar short bonds but the tetrahedron has more of these bonds and therefore has
lower energy.

As θ increases beyond π
2 , we get the same arrangements as before but they are

reflected meaning that Eint and r are unaltered but β changes sign. Across the whole
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range of θ between 0 and π we can replicate the dynamics found in the Skyrme model
as shown in Figure 3.22. This not only serves to provides us with a parameterization of
this line in terms of θ but also gives us a potential, Eint(θ), along this line. We find that
we agree with the general shape of the potential that was used as an approximation in
chapter 2; along this line the tetrahedral arrangement is a global energy minimum, the
flat square arrangement is a local energy maximum and the energy of the arrangements
increases asymptotically to the arrangement of two well separated and twisted B = 8
Skyrmions.

3.5.7 The E vibration of the B = 4 Skyrmion

The energy minimizer in the B = 4 sector is the B = 4 Skyrmion with cubic symmetry,
but this symmetry poses a problem when it comes to finding the energy spectrum via
rigid body quantization. The large symmetry group means that spin states are heavily
restricted, resulting in a calculated energy spectrum [40] which has many less states
than the spectrum found experimentally for Helium−4. If instead we quantize over a
wider range of low energy configurations, we can decrease the amount of symmetry and
allow more quantum states. The B = 4 Skyrmion admits many different vibrational
spaces, which are catergorised by their symmetries, and the rational map approximation
can be used to get a general idea for the configurations which feature in each space
[43]. However, in order to quantize these spaces we will require a potential and the
rational map approximation only provides a very crude approximation for the energies
of configurations, especially far away from the cubic B = 4 Skyrmion.

We will use our approximation scheme to generate the potential for the E vibration
of the B = 4 Skyrmion. The E vibration is part of the space of configurations which
have D2 symmetry and includes the minimal energy cubic B = 4 Skyrmion. The D2

symmetry helps us determine the degrees of freedom and here it is useful to consider
B = 4 configurations as arrangements of four B = 1 Skyrmions as in Figure 3.25.

Suppose that one of the B = 1 Skyrmions is at (x, y, z) with orientation (α, β, γ)
(where α, β and γ are the Euler angles required to get to the orientation from the
standard B = 1 Skyrmion orientation in Figure 3.1). Then the D2 symmetry forces the
other Skyrmions to be at (−x,−y, z), (−x, y,−z) and (x,−y,−z) with orientations
(π + α, β, γ), (π − α, π − β, π + γ) and (2π − α, π − β, π + γ) respectively. This gives
us a 6-dimensional vibrational manifold which is still rather large; however, when we
look at the individual interactions between pairs of B = 1 Skyrmions we find that
all interactions are in the attractive channel for any values of (α, β, γ) and so the



3.5 The interaction energy between Skyrmions 93

Fig. 3.25 The arrangement for four B = 1 Skyrmions at θ = π
4 , φ = π

6 , α = β = γ = 0.

interaction energy does not depend on (α, β, γ). Changing (α, β, γ) just has the effect
of performing a global isorotation which can be quantised via rigid body quantization.

We currently have a 3-dimensional vibrational manifold, but this can be further
split into a 1-dimensional vibration and a 2-dimensional vibrational manifold which
are orthogonal. The 1-dimensional space is called the breather mode and corresponds
to changing the overall size of the configurations by changing the scale factor, r. The
remaining 2-dimensional space is called the E vibration and can be parametrized by
(θ, φ), where (r, θ, φ) denotes the position of one of the B = 1 Skyrmions in spherical
polars. We must then find the value of r which minimizes the interaction energy for
each configuration, which will define a surface. The four B = 1 Skyrmions reside on
this surface and are constrained by D2 symmetry. When it comes to quantization we
would deal with this constraint by focusing on one B = 1 Skyrmion residing on a
quarter of the surface with periodic boundary conditions.

There are six directions in which the B = 1 Skyrmions can escape to infinity; this
occurs via the Skyrmions pairing off (and thus forming B = 2 tori) and then these
B = 2 Skyrmions separating from each other. If we consider a B = 4 cubic Skyrmion
(corresponding to the centre of the red regions in Figure 3.26) then this separation
can be imagined as pulling opposing faces away from each other. This is analogous
to the quantization of the B = 16 Skyrmion’s E vibration by treating it as four
B = 4 Skyrmions and as such we would expect the vibrational manifold to resemble a
6-punctured sphere as in Figure 3.26; however, whilst the vibrational manifold and the
techniques used to quantize it may be similar to the B = 16 case, the potential that
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we place on this manifold will be very different because we have the interactions of
B = 1 Skyrmions rather than B = 4 Skyrmions.

The energy of a B = 4 configuration can be expressed as the energy of the four
constituent B = 1 Skyrmions plus the interaction energy between them. This means
that we have to consider the interactions between the six pairs of B = 1 Skyrmions.
As stated previously all interactions are in the attractive channel and so have energy,

E1+1(r) = Vatt(r) = − A2
1

8G7/2
1 π3/2

1
r

∂

∂r
+ r2

(
1
r

∂

∂r

)2
 f (G1

2 , r
)
. (3.93)

as in (3.91). The configuration with a particle at (x, y, z) has three pairs of bonds with
lengths

√
2x2 + 2y2,

√
2z2 + 2x2 and

√
2y2 + 2z2, so the total configuration energy is

E4B=1 = 4EB=1+2
(
E1+1

(√
2x2 + 2y2

)
+ E1+1

(√
2z2 + 2x2

)
+ E1+1

(√
2y2 + 2z2

))
.

(3.94)
Now that we have an expression for the interaction energy of a generic configuration

with D2 symmetry, we can use this to determine the vibrational manifold for the
E vibration by finding the scale factor, r, which minimizes the interaction energy
in (3.94). The potential on the manifold is just the value of the interaction energy
at this minimum. However, for some configurations this method of determining the
vibrational manifold and potential becomes problematic. There are four different
regimes of configurations, corresponding to different relative lengths of bonds within
the configuration, that we have to consider. Let us focus on the line φ = π

4 between
θ = 0 and π

2 in our vibrational manifold, which corresponds to the black line in Figure
3.26, this means that one bond, denoted B1, has length

√
2r sin θ and two bonds,

denoted B2 and B3, have lengths r
√

2 cos2 θ + sin2 θ.

Regime 1: B1 ≪ B2, B3

In regime 1 the shortest bond is much shorter than the other two bonds and in
particular along our line we have B1 ≪ B2, B3. We plot the interaction energies of
these bonds in Figure 3.27 for θ = π

18 . The curve corresponding to B1 has a minimum
at r = 4.511 and the curves corresponding to B2 and B3 have minima at r = 0.789,
both with interaction energy −0.101; note that r does not correspond to the bond
length but rather the scale factor of the entire configuration. All three bonds have
a minimum at the same value of interaction energy because they all correspond to
an interaction between two B = 1 Skyrmions in the attractive channel: the geometry
of the configuration just means that the bonds have different lengths and therefore
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Fig. 3.26 Approximation of the vibrational manifold for four B = 1 Skyrmions. Regimes
1, 2, 3 and 4 are denoted by the purple, blue, red and green regions respectively. The
line φ = π

2 between θ = 0 and π
2 is shown in black.

minima at different values of the scale factor, r. As seen with the blue curve of Figure
3.28, the global minimum of total interaction energy is at r = 4.51 with an interaction
energy of −0.202. We see that the minimum is dominated by the shortest bond, B1,
which dictates its location and value, with B2 and B3 having very little effect.
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Fig. 3.27 The energies of the bonds B1, B2 and B3 at θ = π
18 , φ = 0 (regime 1) and

θ = π
8 , φ = 0 (regime 2).

However, there is another local minimum at r = 0.83 with an interaction energy of
0.054. This is due to the minima of the B2 and B3 bonds, but there is a large positive
interaction energy coming from B1, because, at r = 0.83, B1 is far shorter than its
preferred length. However, the approximation for the interaction energy of B1 is not
trustworthy beyond its minimum value and therefore we can discount this second local
minimum. Fortunately in regime 1, it is easy to separate the two minima due to the
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substantial difference between the bond lengths of B1 and B2, B3. But as we increase
θ, the bond lengths get closer to each other and we move into regime 2.
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Fig. 3.28 The total interaction energy for θ = π
18 (regime 1), θ = π

8 (regime 2), θ = π
3

(regime 3) and θ = π
2 (regime 4).

Regime 2: B1 < B2, B3

In regime 2, the length of the shortest bond is much closer to the lengths of the other
two bonds and along our line we have B1 < B2, B3. As seen in Figure 3.27, at θ = π

8
the curve corresponding to B1 has a minimum at r = 2.05 and the curve corresponding
to B2 and B3 has a minimum at r = 0.814, but now the total interaction energy has
two minima with very similar values. As shown by the orange curve of Figure 3.28,
the first minimum is at r = 1.813 with an interaction energy of −0.231 and the second
is at r = 1.02 with an interaction energy of −0.234. The existence of two minima at
similar values presents a problem in terms of how we choose the scale factor, r, and
interaction energy for our vibrational manifold.

To see why there is a problem, consider moving along the line φ = π
4 . There is a value

of θ (θ = 0.389) where both of the minima present have the same height. Therefore for
θ < 0.389 the first minimum (the minimum at a larger value of r) has lower energy
and for θ > 0.389 the second minimum has lower energy. This bifurcation presents a
problem because the preferred scale factor, the value of r at which the global minimum
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lies, will be discontinuous at θ = 0.389. This discontinuity will make it difficult to do
quantum mechanics on our vibrational manifold.

One way to solve this problem, is to always take the scale factor and interaction
energy that correspond to the first minimum of the total interaction energy, the mini-
mum at the largest value of r. This takes into account the fact that if the shortest
bond is shorter than the preferred length, r0 = 1.57, as shown by the dotted parts of
the curves in figures 3.27 and 3.29, then the interaction energy for this bond is not
accurate and therefore neither is the total interaction energy. Therefore any minima
beyond the first minimum would have a significant positive energy contribution from
the shortest bond which would negate the negative interaction energies of the other
longer bonds. However, this method of solving the problem is not sufficient because we
see that the location of the first minimum of the total interaction energy is at a smaller
value of r than the minimum of the shortest bonds interaction energy and therefore
the energy is still not trustworthy at this first minimum.

Regime 3: B1 ≃ B2, B3

As we increase θ further we enter regime 3 and the bonds lengths get closer to each
other, becoming equal at θ = arccos 1√

3 . In this regime the location of the minimum is
approximately equal for all three bonds, as seen in Figure 3.29 for θ = π

3 , and therefore
the location of the minimum of the total interaction energy, as seen with the green
curve in Figure 3.28, is very close to the location of the minimum of the interaction
energy of the shortest bond. This means that both the preferred scale factor and
potential can be determined accurately for configurations lying in regime 3.
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Fig. 3.29 The energies of the bonds B1, B2 and B3 at θ = π
3 (regime 3) and θ = π

2
(regime 4).

Regime 4: B2, B3 < B1
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In regime 4, there are two short bonds of similar length and one longer bond, which
for our line corresponds to θ > arccos 1√

3 where B1 becomes the longest bond. As seen
in Figure 3.29 for θ = π

2 , the curve corresponding to B1 has a minimum at r = 0.783
and the curve corresponding to B2 and B3 has a minimum at r = 1.108. The total
interaction energy only has one minimum, as seen in Figure 3.28, but it is at a location
(r = 1.011) which means that B2 and B3 are shorter than their preferred length and
therefore the interaction energies for these bonds are inaccurate. Therefore the value
and location of this minimum is of dubious accuracy.

The problem that our approximation scheme has in regimes 2 and 4 mean that we
need to change our method for finding the potential and scale factor on our vibrational
manifold. The solution that we propose is that we always set the scale factor, r, of
our configuration such that the shortest bond has length r0. This is equivalent to
saying that a bond has infinite positive interaction energy for lengths less than r0.
We then calculate the interaction energy for this value of r and take this to be the
interaction energy of the configuration. In reality we would expect the scale factor of
the configuration to be slightly less than the one from our method, because the longer
bonds should have some effect on where the minimum lies. However, the true minimum
should be very close to the minimum of the shortest bond because we expect the energy
of this shorter bond to increase rapidly once it is shorter than r0 thus increasing the
interaction energy rapidly as well. This provides us with a scale factor and interaction
energy which are continuous, but may have discontinuous derivatives in regimes 2 and
4; however, continuity is sufficient to quantize states on the vibrational manifold.

In Table 3.1 we show the effect that introducing this cut-off has on the location and
value of the minima of the total interaction energy. We that in regime 1 the cut-off
does not have an effect on the location or value of the minimum, but it does remove the
second minimum. In regime 2 the cut-off still removes the second minimum, but there
is also a significant adjustment to the location of the first minimum, this is because
the longer bonds effect the location of the minimum of the total interaction energy but
not the value. In regime 3 the cut-off only has a slight effect on the location and value
of the minimum and in regime 4 the cut-off changes both the location and value of the
minimum by a small amount.

We see that in the regimes where the total interaction energy is trustworthy at its
minimum then the cut-off only has a small effect on this minimum; it is important
that there is a good match between the cut-off and normal calculation for the location
and value of the minimum for some configurations. The cut-off is able to alleviate the
problem of multiple minima which means that it can be used to generate the potential
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θ
No Cut-off Cut-off

Location(s) Value(s) Location Value
π
18 0.827, 4.510 0.054,−0.202 4.511 −0.202
π
8 1.022, 1.812 −0.234,−0.231 2.048 −0.224
π
3 0.962 −0.601 0.991 −0.599
π
2 1.011 −0.546 1.108 −0.530

Table 3.1 The locations and values of the minima of the total interaction energy with
and without a cut-off.

and vibrational manifold for the E vibration of the B = 4 Skyrmion. We are able to
calculate the scale factor and interaction energy for each value of θ and φ and thus
generate the surface on which the four B = 1 Skyrmions must lie and this surface is
shown in Figure 3.30.

Fig. 3.30 The vibrational manifold and potential for four interacting B = 1 Skyrmions.
Red corresponds to low interaction energy, blue corresponds to high interaction energy.

We see that this manifold still resembles the 6-punctured sphere from Figure 3.26;
however the asymptotic directions now resemble cylinders rather than tapering towards
a singularity. These asymptotic directions correspond to two B = 2 tori separating
from each other and the diameters of these tori should tend to the value r0 rather
than tending to 0. This is what we see in Figure 3.30; the B = 1 Skyrmions do not
get arbitrarily close to each other along these asymptotic directions. We see that
the energy of the configurations increases in these asymptotic directions because the
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separated B = 2 tori are in the attractive channel and prefer to be close to each other.
We also see that the configuration with the lowest energy is the standard B = 4 cubic
Skyrmion which agrees with our expectations of it being the energy minimizer. We
have now defined the manifold and placed a potential on it. After choosing a metric
on the manifold we could quantize this system numerically and investigate parts of the
energy spectrum for Helium−4.

3.6 Conclusion

In this chapter we have tackled the problem of approximating the interaction energies
between Skyrmions by expanding upon the ideas of [37] and [38] and using Gaussian
multipole sources rather than point mulitpole sources to generate the pion fields of
Skyrmions. We have found that our approximation is always an improvement upon the
point multipole method and is able to accurately capture interactions between a range
of Skyrmions. Crucially we are able to retain an analytic expression for the interaction
energies between Skyrmions which makes our approximation well suited to tackling
the problem of vibrational quantization.

We have also outlined a method for approximating the pion fields of Skyrmions and
applied this to the first four Skyrmions, showing that our approximation scheme is
versatile and can be applied to any Skyrmion. In particular we have found a very good
analytic approximation for the radial profile function of the B = 1 Skyrmion. We have
also applied our approximation to calculating the energies of B = 4N cluster nuclei
and found close agreement with results found numerically in the Skyrme model.

We have also found the potential along a scattering line of the E vibration of the
B = 16 Skyrmion where the orientations of the Skyrmions is known. We have looked
at the E vibration of the B = 4 Skyrmion and generated a potential for the entire
vibrational manifold: a neccessary piece to quantize the system. This was possible
because the orientations of the individual B = 1 Skyrmions has no effect on the
interaction energy.

We would also require the metric to quantize the E vibrations of both systems;
however, in [44], it is shown that the metric for the case of two interacting B = 1
Skyrmions can be approximated by treating them as point dipoles. It would be
interesting to see whether this can be extended to our Gaussian multipole approximation
as well.

Given that our approximation is most accurate at large separations it could also be
applied to the scattering of Skyrmions. The scattering of B = 1 Skyrmions is considered
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in [45], where they use the point dipole approximation to approximate the interaction
energy; this could be improved by use of the Gaussian multipole approximation meaning
that scattering for a larger range of impact parameters could be approximated by our
method





Chapter 4

Electron scattering intensities and
Patterson functions of Skyrmions

This chapter is based on a joint paper with M. Karliner and N.S Manton [46].

4.1 Introduction

In this chapter we look at the problem of electrons scattering off Skyrmions. Ex-
periments usually involve the electrons scattering from a sample of many identical,
uncorrelated nuclei. We will model each of these nuclei as a quantised Skyrmion. An
analogous approach to pion-nucleon scattering reproduces experimental phase shifts
quite well [47–50]. The wavefunction of the Skyrmion provides the probabilities for
each of the different orientations of the classical Skyrmion. If the spin is non-zero,
then the wavefunction is not uniform with respect to body-fixed axes (and must satisfy
Finkelstein–Rubinstein constraints). However, the projection of spin onto space-fixed
axes is unconstrained if the nuclei are not polarised, so these projections occur with
equal probability. The net effect is that all orientations of a Skyrmion occur with equal
probability whatever the spin state.

In this chapter we will require each Skyrmion to have spin and isospin zero. These
Skyrmions do not have an electric quadrupole or magnetic dipole moment; as a result
their charge density is proportional to half their baryon density, ρ(x) = 1

2B0(x) [6, 51],
which simplifies the calculation of scattering intensities. Note that only the B = 1
Skyrmion has a spherically symmetric baryon density.

An isospin zero nucleus must have equal numbers of protons and neutrons. Within
the nucleus, nucleons have a strong tendency to pair with like nucleons such that their
spins are anti-parallel; therefore in an even-even nucleus all protons and neutrons pair
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in this manner, resulting in a spin and isospin zero nucleus. In an odd-odd nucleus we
are left with a single proton and neutron after pairing; these have a stronger nuclear
attraction between them if their spins are aligned, resulting in at least a spin one
nucleus. Therefore spin and isospin zero nuclei must have baryon number B = 4N
where N is an integer.

The stationary Schrödinger equation for the electron involves the electrostatic
potential, V . In turn V is related to the nucleus’ charge density by Poisson’s equation

∇2V = −ρ . (4.1)

Phenomenological models of the nucleus describe the charge density as being spheri-
cally symmetric and approximated quite accurately by a Fermi distribution, ρ(r) =

ρ0
1+exp ( r−a

c ) . Variants with small oscillations and a central depression are also used,
particularly for larger nuclei [52]. However, these variants require more parameters to
fit the data closely and do not have a theoretical grounding which explains their values.
We wish to see whether the Skyrme model can provide as good a fit with experimental
scattering data, whilst being able to vary only one parameter, the length scale (we use
the same pion mass throughout this chapter).

One method of calculating the electron scattering intensity off a Skyrmion is to
consider the semiclassical, spin zero quantum state, and then calculate the form
factor. The electron effectively scatters off the spherically averaged charge density of
the Skyrmion. We call this the quantum averaging method; it has been considered
previously [53, 54].

An alternative method of calculation is to consider the electrons as moving fast and
scattering off the Skyrmion in a brief moment. In this scattering time the Skyrmion has
no time to change orientation. Nuclear rotational motion, from a classical perspective,
is slow, like molecular rotational motion. We can therefore model the nucleus by a
Skyrmion with a fixed orientation at the time that the electron scatters off it. We
then average over Skyrmion orientations, because the nuclei are not polarised and all
orientations are equally likely. We call this the classical averaging method.

For both methods of calculation we use the Born approximation [55], used routinely in
quantum mechanical and X-ray scattering calculations. The classical averaging method
involves the Patterson function of the Skyrmion because the method is analogous to
an X-ray powder diffraction calculation, where the crystal fragments have random
orientations [56–58].
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The electron is energetic and fast because we want to probe length scales comparable
to the nuclear radius. In fact the electron can have energy of order 1 GeV and be
relativistic; therefore we use QED to calculate the cross section, resulting in the Mott
scattering formula. The Born approximation is then equivalent to the one-photon
exchange approximation.

4.2 Form factors and intensities

4.2.1 Scattering from a fixed Skyrmion

The expression for the electromagnetic current of a Skyrmion is

Jµ = 1
2Bµ + I3

µ , (4.2)

where Bµ is the baryon current and I3
µ is the third component of the isospin Noether

current. A Skyrmion in an isospin zero state has I3
0 equal to zero and so J0 is half the

baryon density; thus we consider scattering off a charge density ρ(x) = 1
2B0(x).

In the Born approximation, the electron scattering amplitude off a Skyrmion with
fixed orientation is a constant multiple of

Ṽ (q) =
∫
V (x) e−iq·x d3x . (4.3)

Here qµ = kµ−k′µ = (q0,q) is the momentum of the photon, where kµ = (E, 0, 0, E) is
the momentum of the incoming electron, and k′µ = (E ′, E ′ sin θ cosφ,E ′ sin θ sinφ,E ′ cos θ)
is the momentum of an electron scattered in the direction (θ, φ) (Figure 4.1). We
neglect the electron’s mass because it is negligible compared to its kinetic energy. The
invariant photon mass satisfies q2 = −4EE ′ sin2 θ

2 = − 4E2 sin2 θ
2

1+ 2E
M

sin2 θ
2
, where M is the mass

of the nucleus being scattered off. V (x) is the electrostatic potential of the Skyrmion
and Ṽ is simply the Fourier transform of this. The differential cross section, dσ

dΩ , is
proportional to |Ṽ (q)|2.

It is desirable to have an expression for the scattering amplitude in terms of the
charge density, ρ, rather than the potential, V , as it is the charge density (half the
baryon density) that is known for Skyrmions. V and ρ are related by (4.1), and
fortunately, the Laplacian is simple in Fourier space. The Fourier transform of the
charge density

F (q) =
∫
ρ(x) e−iq·x d3x , (4.4)
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N

γkµ

k′µ qµ

pµ
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Fig. 4.1 Feynman diagram of the scattering process

is called the form factor. Equation (4.1) implies that q2Ṽ (q) = F (q), and the differential
cross section [59] is

dσ

dΩ = (Bα)2

16E2 sin4 θ
2

cos2 θ
2

1 + 2E
M

sin2 θ
2
|F (q)|2. (4.5)

Here α is the fine-structure constant and B is the Baryon number. The prefactor is
present for any charge density, so it is generally the modulus of the form factor |F (q)|
that is discussed. The scattering intensity is defined as |F (q)|2.

The relationship between the form factor and the charge density in equation (4.4)
only holds in the Breit frame (the frame where q0 = 0 and q2 = −|q|2), therefore one
should take the Fourier transform of the Lorentz boosted charge density, not the static
charge density. One of the effects of the Lorentz boost is to simply contract the nucleus
when observed in the Breit frame; this has the effect of altering the argument of the
Fourier transformed charge density. However, it is not trivial to determine how the
boost operator acts upon a composite system and there are several different models
[60, 61] which provide a relation between the form factor and the Fourier transform of
a spherical charge density. They can be written in the form:

F (q2) =
(

1 + q2

4M2

)−n

ρ̃

 q2

1 + q2

4M2

 (4.6)

where ρ̃ is the Fourier transform of the charge density. The exponent n is model
dependent, but typically a small positive integer.

In the Skyrme model we know that the charge density is proportional to the
0th component of the baryon current, Bµ, therefore we can simply apply a Lorentz
transformation to this four vector to calculate the charge density in the boosted frame.
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However, the largest value of q2 that we consider in this chapter is 100 fm−2, whereas
the smallest nucleus considered is Helium−4 with mass M ≃ 20 fm−1, and so the
largest value of q2

4M2 that we consider is around 1/16. This is sufficiently small that we
have decided to neglect the difference between the Breit frame and the lab frame in
this chapter.

4.2.2 The quantum averaged intensity

We assume now that the electrons scatter off quantised Skyrmions in their spin zero
ground state. The electrons therefore scatter off the spherically averaged charge density.
This is obtained by integrating over a rotation matrix R, depending on three Euler
angles, (α, β, γ), with the standard normalised measure

dR = 1
8π2 sin β dα dβ dγ . (4.7)

The spherically averaged charge density is

ρ(r) =
∫
ρ(Rx) dR (4.8)

and is just a function of the radial coordinate, r. The form factor of the spherically
averaged charge density is then

F(q2) =
∫
ρ(r) e−iq·x d3x , (4.9)

and only depends on q2. (A calligraphic letter corresponds to a spherically averaged
roman letter.)

To simplify this integral we may assume that q = (0, 0, q). Then using polar
coordinates,

F(q2) =
∫
ρ(r) e−iqr cos θr2 sin θ drdθdφ

= 2π
∫
ρ(r) e−iqr cos θr2 sin θ drdθ

= 2π
∫
ρ(r)

[
e−iqr cos θ

iqr

]π

0
r2 dr

= 4π
∫ ∞

0
ρ(r)sin(qr)

qr
r2 dr ≡ 4π

∫ ∞

0
ρ(r)j0(qr)r2 dr , (4.10)

where j0(u) = sin u
u

is the zeroth spherical Bessel function.
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As the Fourier transform is a linear operation, and the measure d3x is rotationally
invariant, the form factor of the spherically averaged charge density is the same as the
spherically averaged form factor of the initial charge density. Therefore an alternative
expression for F(q2) is

F(q2) =
∫
F (Rq) dR , (4.11)

where F (q) is the form factor (4.4). Although this expression is less explicit than
(4.10), we will have some use for it.

This form factor (or rather its modulus |F|) is the function that is usually extracted
from the experimental cross section data and gives one information about the spherically
averaged charge density.

4.2.3 The angular velocity of a Skyrmion

It is important to know which electron energies allow us to treat the nucleus as having
a fixed orientation, and therefore allow us to use the classical approximation.

Whilst the Skyrmion is originally spin 0 and therefore stationary, the electron
scattering could cause the Skyrmion to rotate. It is difficult to know exactly what the
resulting angular velocity would be, but we can consider the angular velocity of a spin
1 Skyrmion to get an estimate.

In order to calculate the angular velocity of the B = 4 Skyrmion, we need to choose
values for Fπ and e. The best way to do this is to calibrate to the mass and mean
charge radius of an alpha particle, which requires Fπ = 87.3 MeV and e = 3.65. This
gives an energy unit of Fπ

4e
= 5.98 MeV and a length unit of 2

eFπ
= 1.24 fm. Thus the

Skyrme unit of energy length becomes Fπ

4e
2

eFπ
= 7.39 MeV fm, whilst ~ = 197 MeV fm;

therefore ~ = 26.7 = 2e2 in Skyrme units.
Consider the B = 4 Skyrmion rotating about the 3rd axis with angular momentum

L3 = 1; this means that the angular velocity ω = ~
V33

, where V33 = 663 is the (3, 3)
component of the spin inertia tensor in Skyrme units. Using this angular velocity and
the mean charge radius (around 1.36 in Skyrme units), we calculate that the speed
at the surface of the Skyrmion is around 1

20 of the speed of light. This means that
the time for the electron (travelling close to the speed of light) to cross the nucleus is
around 1

60 of the time for the nucleus to complete a full rotation.
For a roughly spherical object the moment of inertia is proportional to MR2, where

M is the mass of the object and R is the radius, with the mass being proportional to
R3. Thus, as we increase the baryon number of the Skyrmion (thereby increasing its
mean charge radius), its angular velocity has a large supression due to the increased
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size. This means that the larger B = 4N Skyrmions rotate more slowly than the B = 4
Skyrmion.

Therefore for all the Skyrmions considered, the time for the electron to scatter off
the nucleus is much less than the period for a full rotation of the nucleus. Thus it
is reasonable to treat the nucleus as having a fixed orientation during the scattering
process for all electron energies of interest.

4.2.4 The classically averaged intensity

Here we assume that each electron scatters off a Skyrmion with fixed but random
orientation, the Skyrmion having a non-spherically symmetric charge density. The
contributions of the different orientations add incoherently, so the scattering intensities
need to be spherically averaged over the orientations to find the total intensity.

For a Skyrmion with fixed orientation, the intensity is

I(q) = |F (q)|2 (4.12)
=

∫
ρ(x) ρ(x′) eiq·(x−x′) d3x d3x′ . (4.13)

If one writes x′ = x + w, and replaces the x′ integral by an integral over w, then

I(q) =
∫
ρ(x) ρ(x + w) e−iq·w d3x d3w . (4.14)

The x integral here,
P (w) =

∫
ρ(x) ρ(x + w) d3x , (4.15)

is called the Patterson function. Then

I(q) =
∫
P (w) e−iq·w d3w , (4.16)

so the intensity is the Fourier transform of the Patterson function.
The Patterson function is employed in crystallography as a method of determining

the interatomic distances in a crystal. It is not possible to calculate the charge density
precisely as this would require knowledge of the phase and amplitude of the form
factor, whereas the scattering intensity only provides the amplitude. A diffraction
experiment has no way of finding out these phases, therefore the Patterson function is
an important tool when trying to determine the structure of a crystal because it only
requires knowledge of the scattering intensity.
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Changing the orientation involves a rotation matrix R depending on Euler angles,
(α, β, γ), as before. We can define a rotationally averaged Patterson function

P (w) =
∫
P (Rw) dR , (4.17)

which is just a function of w = |w|. Then, by repeating the steps in subsection 2.2, we
obtain the classically averaged intensity

I(q2) = 4π
∫ ∞

0
P (w)j0(qw)w2 dw . (4.18)

Again there is an alternative expression, directly in terms of the charge density,

I(q2) =
∫
ρ(x) ρ(x′) eiRq·(x−x′) d3x d3x′ dR , (4.19)

which simplifies to

I(q2) =
∫
ρ(x) ρ(x′)j0(q|x − x′|) d3x d3x′ , (4.20)

a Debye-type scattering formula.
Note that we can also express this classically averaged intensity in terms of the form

factor. From (4.19),
I(q2) =

∫
|F (Rq)|2 dR . (4.21)

While it is straightforward to calculate I(q2) from a given charge density, one cannot
reconstruct the charge density from I(q2). There are essential ambiguities in the
reconstruction.

Properties of the Patterson function

The Patterson function has a couple of properties which hold for any charge distribution.
It is invariant under w → −w; this follows easily from the definition:

P (w) =
∫
ρ(x) ρ(x + w) d3x =

∫
ρ(x − w) ρ(x) d3x = P (−w) , (4.22)

where the second equality follows from a simple change of variables.
The second universal property is that P (w) is maximal at w = 0. We have, for any

real a, ∫ (
ρ(x) + aρ(x + w)

)2
d3x ≥ 0 , (4.23)
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and after expanding the bracket,∫
ρ(x)2 d3x + 2a

∫
ρ(x) ρ(x + w) d3x + a2

∫
ρ(x + w)2 d3x ≥ 0 . (4.24)

The first and third integrals are both equal to P (0) =
∫
ρ(x)2 d3x, because the domain

of integration is all of space. The second integral is equal to P (w), therefore

(1 + a2)P (0) + 2aP (w) ≥ 0 (4.25)

for all a. This implies the discriminant condition

P (w)2 ≤ P (0)2 , (4.26)

so the Patterson function is maximal at the origin.

4.2.5 Comparison of the scattering intensities

The classically averaged intensity, I(q2), is the average of |F (q)|2 over all directions q,

I(q2) =
∫

|F (Rq)|2 dR , (4.27)

whereas the quantum averaged intensity, |F(q2)|2, is the modulus squared of the average
of F (q) over all directions q,

|F(q2)|2 =
∣∣∣∣∫ F (Rq) dR

∣∣∣∣2 . (4.28)

These are fundamentally different objects, and a Cauchy–Schwartz inequality informs
us that |F(q2)|2 ≤ I(q2).

We will present |F| and
√

I against q2 for all the Skyrmions in this chapter, in order
to illustrate the differences between the quantum and classically averaged intensities.
Experimental electron scattering data is usually presented as the modulus of the form
factor, |F|, plotted against q2. It should be noted that extrema of F appear as extrema
of |F|, but |F| has additional sharp minima at the zeros of F . Thus it can be helpful
to plot F as well as |F|, but this is only known in theoretical calculations, and not
from the experimental data.

The formula (4.27) shows that I(q2) is non-negative, and I(q2) is zero for some
value of q2 only if F (q) = 0 for all q with q2 = |q|2. For a non-spherically symmetric
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charge distribution this is a shell of independent conditions, not generally all satisfied,
so we would not expect I(q2) to have any zeros.

For a spherically symmetric charge density, F (q) is independent of the direction of
q, so this shell of conditions collapses to a single condition, and the intensity I(q2) will
generically have zeros. There are also extreme examples of non-spherically symmetric
charge distributions for which I(q2) has zeros.

This shows that there is an important difference between the electron scattering
intensities of spherically and non-spherically symmetric models of nuclei; we expect
some zeros in the former case and no zeros in the latter. This is also a difference
between quantum and classically averaged intensities. Unfortunately, it is a difference
that is difficult to probe by experiment. In an electron scattering experiment the
differential cross section can only be found for a discrete set of momenta, q. This
means that there is effectively no chance of finding a value of q2 that yields a zero in
the intensity; thus, we are not able to distinguish between a sharp minimum and a
zero.

4.3 Scattering intensities of B = 4N Skyrmions

4.3.1 Calibration of Skyrme units

In order to compare our intensities with experimental scattering data, we need to
perform some calibrations. We normalise the charge density ρ, so that it integrates to
1 over all space. This means that

√
I and |F| will be equal to 1 at q2 = 0. In graphs

of experimental scattering data the form factor is usually presented as |F(q2)|/|F(0)|,
so our choice of normalisation enables easier comparison with the data.

The Skyrmion’s length scale is measured in Skyrme units, and the parameters Fπ

and e decide the conversion factor from Skyrme units to MeV and fermi. We must
decide on a length scale of the nucleus to calibrate to, and there are a few choices.
The most sensible choice [62] appears to be the (root mean square) charge radius, the
square root of

⟨r2⟩ =
∫
ρ(x) r2 d3x = 4π

∫ ∞

0
ρ(r) r4 dr . (4.29)

This is a measure of the total size of a nucleus, and ⟨r2⟩ appears naturally in the
spherically averaged form factor. For small q2

F(q2) = 4π
∫ ∞

0
ρ(r)sin qr

qr
r2 dr ≈ 4π

∫ ∞

0
ρ(r)

(
1 − 1

3!q
2r2
)
r2 dr = 1− q2

6 ⟨r2⟩ . (4.30)
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We see that ⟨r2⟩ is −6 times the gradient of F(q2) with respect to q2 at the origin, so
by calibrating to this we will have the correct charge radius.

An alternative calibration would be to fix the length scale such that the first minimum
of the calculated and experimental scattering intensities are at the same value of q2.
But this seems less fundamental, especially since the relation between characteristic
length scales and locations of minima in momentum space is a complicated one.

The parameter set Fπ = 75.2 MeV, e = 3.26 and mπ = 138 MeV provide reasonable
accuracy for the masses and mean charge radii of several Skyrmions [62]. However, in
this chapter we decided to recalibrate the parameter values such that the mean charge
radius was correct for all the Skyrmions considered and the pion mass was fixed at 1.
Therefore the parameters depend on baryon number.

Experimental values in Table 4.1 for ⟨r2⟩ 1
2 are taken from [63]. The charge radius

of Beryllium−8 is unknown due to its instability, so we will use the charge radius of
Beryllium−9 instead (the instability also results in a lack of experimental scattering
data to compare with, thus calibration is less important). B = 108 also poses a problem;
an isotope with equal numbers of protons and neutrons at that baryon number would
be highly unstable. In addition, charge radii calculations are usually model dependent
in this region; we choose 107

47 Ag as a candidate, taking the value of ⟨r2⟩ from [64].

Baryon Number B = 4 B = 8 B = 12 B = 16 B = 32 B = 108
⟨r2⟩ 1

2 fm 1.68 2.52 2.47 2.70 3.26 4.50
Table 4.1 Table of charge radii for nuclei with zero isospin. The entries for B = 8 and
B = 108 are estimates.

We ignore most of the Skyrmions after B = 16 because there is less confidence in
their baryon densities. There is more confidence in B = 32 and B = 108 because of
their cubic structure.

4.3.2 The B = 4 Skyrmion

The B = 4 Skyrmion is cubically symmetric (left image of Figure 4.2). The charge
density (half the baryon density) is easily evaluated, and from this the spherically
averaged form factor is calculated. Evaluating the Patterson function leads to the
classically averaged intensity.
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Fig. 4.2 Charge density and Patterson function isosurfaces for the B = 4 Skyrmion.

The Patterson function of the B = 4 Skyrmion

There are two main ways to see how the Patterson function, P (w), varies with shift
vector, w. The first is to take an isosurface plot of P (w), which shows surfaces of
constant P . The second is to take a planar slice in w-space and plot contours of
constant P . All representations of the Patterson function will be in Skyrme units;
these will then be converted into fermi (fm) to calculate intensities.

The Patterson function of the B = 4 Skyrmion is spherically symmetric for small w,
where w = |w|, and as w increases it takes on the shape of a concave octahedron (right
image of Figure 4.2). The slowest descent occurs along shift vectors w corresponding to
the primary x, y, z axes of the B = 4 Skyrmion. We see from the left image of Figure
4.2 that the regions of highest charge density are the corners and edges of the B = 4
cube, so when we shift along the Cartesian axes by w = a ≈ 1.4, the distance between
opposite faces, there is strong overlap of high density regions. This is in contrast to
shifting along the body diagonal direction; here one of the corners travels into the
hollow centre of the cube, resulting in a weak overlap. As w increases further, the
concave edges of the octahedron become convex. This is followed by the faces becoming
convex, producing approximately cubic contours.

Figure 4.3 shows a contour plot of P (w) in the x − y plane. Red corresponds to
the highest values of P and blue to the lowest; this colour scheme is retained for all
contour plots in this chapter. Taking a slice in the x− y plane allows us to see in which
regions P varies the least. We observe that the contours are most widely spaced at
the points (0, a), (a, 0) and (a, a) (ignoring (0, 0), which is always a maximum). The
Patterson function approximately levels off at shift vectors, w, corresponding to the
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three distinct types of separation vector between corners of the B = 4 Skyrmion (along
an edge, diagonally across a face, and diagonally across the body).

Fig. 4.3 Patterson function contours in the x− y plane for the B = 4 Skyrmion.

The scattering intensity of the B = 4 Skyrmion

In Figure 4.4 the blue curve represents
√

I and the red curve represents |F| for the
B = 4 Skyrmion, plotted on a logarithmic scale; this colour scheme and log scale are
retained throughout the chapter. The Skyrmion has a characteristic length of around
1 fm, so our main interest is in q2 greater than 1 fm−2. We observe a minimum at
q2 ≈ 4.5 fm−2 and close agreement between

√
I and |F| for q2 < 15 fm−2.

The B = 4 Skyrmion is the best of the B = 4N Skyrmions to compare with
experimental data because electron scattering experiments on Helium−4 have been
done up to q2 = 80 fm−2. This is almost an order of magnitude greater than the highest
energy data for other B = 4N nuclei.

In Figure 4.4 the green circles represent experimental data for the form factor from
electron scattering off a Helium−4 nucleus [65]. The shapes of the theoretical and
experiemental curves are quite similar for low values of q2, which is to be expected,
because normalisation forces all three of them to have both F(0) = 1 and the same
gradient at q2 = 0. There is a quite a difference in the q2 value at the first minimum
and an order of magnitude discrepancy in |Fmax|, the value of |F| at the first maximum
beyond the first minimum. The value of q2 at the first minimum could be fixed by
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Fig. 4.4 Comparison of
√

I (blue) and |F| (red) for the B = 4 Skyrmion with the form
factor from experimental scattering data (green) for the Helium−4 nucleus.

a different length calibration (although the derivatives at the origin would no longer
match), but |Fmax| is much harder to rectify because it is independent of the calibration.

The experimental data curve has a second minimum at q2 ≈ 52 fm−2, whereas the
classically averaged Skyrmion curve (blue) fails to predict a second diffraction minimum
at any value of q2. The quantum averaged Skyrmion curve (red) fares better, although
it has too many minima in the region that we are considering. However, if the Skyrme
length unit is recalibrated such that the first minima of the quantum averaged curve
and data curve are at the same value of q2, then the second minima of the curves are
within a few fm−2 of each other, and the third minimum of the quantum averaged
curve moves outside the region that has been probed by experiment. This does not
fix all of the problems; the values of |F| at the second maxima of the curves would
disagree by two orders of magnitude.

4.3.3 The B = 8 Skyrmion

The B = 8 Skyrmion is approximated by a pair of B = 4 cubes joined on a face. It
comes in two different forms with very similar energies: linear and twisted [14]. There
is only a small difference between the form factors and Patterson functions of these two
Skyrmions; therefore we will only present the twisted variant (left image of Figure 4.5).
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Fig. 4.5 Charge density and Patterson function isosurfaces for the twisted B = 8
Skyrmion.

The Patterson function of the B = 8 Skyrmion

The B = 8 Skyrmion has D4h symmetry and this symmetry is inherited by the Patterson
function (right image of Figure 4.5). In the x− z plane (left image of Figure 4.6), with
the y-axis corresponding the axis of C4 symmetry, the Patterson function’s contours
display similar behavior to those of the B = 4 Skyrmion, which is not surprising,
because shifting in this plane does not allow the two B = 4 cubes to overlap with each
other. There is a slight reduction in concavity of the Patterson function for small w
in comparison with the B = 4 Skyrmion, because the middle section of the B = 8
Skyrmion has different intrinsic axes to the cubes either side of it.

We see different behavior to the B = 4 case when shift vectors, w, have a non-zero
y component. The isosurface has an oscillatory nature, with level regions close to the
various separation vectors between the 16 B = 4 cube corners of the B = 8 Skyrmion.
There is a small range of values of P which exhibit disjoint isosurfaces; two balls occur
when the shift vector is such that one cube coincides almost perfectly with the other
cube. These balls indicate local maxima of the Patterson function, a feature not present
for the Patterson function of the B = 4 Skyrmion.

A contour slice in the x− y plane (right image of Figure 4.6) confirms these maxima.
The slice also shows the locations of saddle points.

The scattering intensity of the B = 8 Skyrmion

The first minimum of |F| is not very close to a stationary point of
√

I as seen in
Figure 4.7. The first minimum is related to the size of the Skyrmion, and we see
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Fig. 4.6 Patterson function contours in the x − z and x − y planes for the twisted
B = 8 Skyrmion.

that the intensity for the B = 8 Skyrmion has a first minimum at a lower value of q2

(≈ 3.4 fm−2) than the B = 4 Skyrmion.

Fig. 4.7
√

I and |F| for the twisted B = 8 Skyrmion

The spin zero B = 8 Skyrmion represents Beryllium−8, but this is very unstable,
and there is no high-energy electron scattering data to compare with.
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4.3.4 The B = 12 Skyrmion

We consider two different forms of the B = 12 Skyrmion: triangular and linear [14] as
seen in the left and right images of Figure 4.8 respectively. The triangular Skyrmion,
which has D3h symmetry, corresponds to the ground state of 12C modeled as a triangle
of alpha particles. The linear Skyrmion, which has D4h symmetry, corresponds to the
Hoyle state modeled as a chain of alpha particles [17].

Fig. 4.8 Charge density isosurfaces for the triangular and linear B = 12 Skyrmions.

Patterson functions of the B = 12 Skyrmions

The triangular B = 12 Skyrmion:
The triangular B = 12 Skyrmion has C3 symmetry about the z-axis, and this combines
with the intrinsic w → −w symmetry of the Patterson function to give an overall D6h

symmetry of P (w). The isosurface plots resemble a rounded hexagonal bipyramid (left
image of Figure 4.9). The axes are chosen for this Skyrmion are defined such that the
x − z plane includes the origin and the centre of one of the three cubes. As seen in
the left image of Figure 4.10 we see that the axis directions are distinguished for all
but the largest shift vectors. This is because these directions correspond to one of the
cubes shifting along an intrinsic axis, which results in a strong overlap of charge density.
Rotating this plane by 30° about the z direction results in similar contours, but they
are less oblong. When the cubes shift in the z direction, they have no overlap with
themselves after moving more than a side length, so the Patterson function decreases
rapidly.
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Fig. 4.9 Pattterson function isosurfaces for the triangular and linear B = 12 Skyrmions.

The contours in the x − y plane (right image of Figure 4.10) have a hexagonal
structure, which reflects the symmetry of the Skyrmion.

Fig. 4.10 Pattterson function contours in the x− z and x− y planes for the triangular
B = 12 Skyrmion.

The linear B = 12 Skyrmion:
The linear B = 12 Skyrmion is a chain of three B = 4 cubes with D4h symmetry about
the y-axis, and we expect similar characteristics to the B = 8 twisted Skyrmion. The
Patterson function (right image pf Figure 4.9) also shares characteristics with that of
the B = 8 Skyrmion.

In the x− y plane (left image of Figure 4.11) there is a series of maxima and saddle
points on the y-axis, with the oscillatory decreasing behaviour that we saw previously.
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The presence of an extra cube increases the number of shift vectors between cube
corners, which results in a greater number of local maxima and saddle points.

The Patterson function contours in the x− z plane (right image of Figure 4.11) are
almost the same as for the B = 8 Skyrmion; the presence of three B = 4 cubes rather
than two making little difference.

Fig. 4.11 Pattterson function contours in the x − y and x − z planes for the linear
B = 12 Skyrmion.

Scattering intensities of the B = 12 Skyrmions

The triangular B = 12 Skyrmion:
The first stationary point of |F| at q2 ≈ 2.3 fm−2 does not have a corresponding
stationary point for

√
I (left image of Figure 4.12). The next two stationary points

are in good agreement, but
√

I has a broad, flat maximum in between. This difference

Fig. 4.12
√

I and |F| for the triangular and linear B = 12 Skyrmions.

can be explained via looking at the profiles of ρ(r)r2 and P (w)w2, recalling that ρ(r)
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and P (w) refer to the spherically averaged charge density and Patterson function
respectively.

The left image of Figure 4.13 displays the radial profile functions relevant to the
triangular B = 12 Skyrmion. The green curve represents ρ(r)r2, the blue curve
represents P (w)w2 and the red curve represents j0(qw) = sin qw

qw
for q2 ≈ 12 fm−2 which

is the value at the midpoint of the broad maximum of
√

I. As q2 deviates slightly,
away from 12 fm−2, the third zero of j0(qw) moves across the maximum of P (w)w2.
However, this deviation does not produce a large change in

√
I because P (w)w2 has a

broad maximum. By contrast ρ(r)r2 has quite a thin maximum, and this translates
into a thinner maximum in |F|.

Fig. 4.13 Radial profile functions for the triangular and linear B = 12 Skyrmions:
ρ(r)r2 (green), P (w)w2 (blue) and j0(qw) (red).

The linear B = 12 Skyrmion:
There is better agreement between the location of zeros and stationary points of |F| and√

I (right image of Figure 4.12) for the B = 12 linear Skyrmion. The broad maximum
of

√
I found for the triangular Skyrmion is no longer a feature because P (w)w2 does

not have a broad maximum. The second zero of |F| is at a considerably larger value of
q2 than the corresponding zero for the triangular Skyrmion. This is equivalent to saying
that F is negative for a larger range of q2. This increased range is caused by F having
a negative maximum between the two zeros (at around q2 = 17 fm−2); this feature can
be explained by looking at the radial profile, ρ(r)r2. ρ(r)r2 has three distinct peaks as
seen in the right image of Figure 4.13, and the negative maximum of F occurs when
the first non-trivial maximum of j0(qr) coincides with the central maximum of ρ(r)r2.



4.3 Scattering intensities of B = 4N Skyrmions 123

F has a negative value because there is also coincidence of negative minima of j0(qr)
with the two other positive maxima of ρ(r)r2.

Comparison of the scattering intensity of the triangular B = 12 Skyrmion
with experimental data

We only compare the triangular Skyrmion with experimental scattering data for
Carbon−12 [66] because this is the Skyrmion that corresponds to the ground state.
The comparison is shown in Figure 4.14.

The comparison of the scattering data with the classically averaged intensity
√

I
suggests that the shoulder found in

√
I around q2 = 2.5 fm−2 is not a desirable feature.

The classical averaging method does, however, agree with the data about the number
of minima in the range of q2 considered.

|F| has quite a good agreement with the data up to the first minimum. But it predicts
a second minimum shortly after the first, and this is not found in the experimental
data.

Fig. 4.14 Comparison of
√

I and |F| for the triangular B = 12 Skyrmion with the
form factor from experimental scattering data for the Carbon−12 nucleus.



124 Electron scattering intensities and Patterson functions of Skyrmions

4.3.5 The B = 16 Skyrmion

The B = 16 Skyrmion (left image of Figure 4.15) is a bent square of four B = 4
cubes lying in the x− z plane. It is midway between a flat square and a tetrahedral
arrangement of B = 4 cubes as seen in chapter 2.

Fig. 4.15 Charge density and Patterson function isosurfaces for the B = 16 Skyrmion.

The Patterson function of the B = 16 Skyrmion

If one superimposes a second copy of the bent square that has undergone an inversion,
w → −w, on top of the original bent square, then this combination would have D4h

symmetry about the y-axis. The Patterson function has an intrinsic inversion symmetry,
so it has this D4h symmetry. Thus we have another example of the Patterson function
having more symmetry than the Skyrmion that it is derived from. The Patterson
function isosurface (right image of Figure 4.15) and contour plots (Figure 4.16) display
this additional symmetry.

The scattering intensity of the B = 16 Skyrmion
√

I has a shoulder whereas |F| has a zero at around q2 = 1.8 fm−2 (Figure 4.17). This
shoulder occurs when the first minimum of j0(qw) coincides with the maximum of
P (w)w2. P (w)w2 has a broad maximum, which leads to a broad region of almost
constant

√
I. After this initial difference there is good agreement between the locations

of stationary points and zeros of
√

I and |F|.
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Fig. 4.16 Patterson function contours in the x − z and x − y planes for the B = 16
Skyrmion.

The calculated intensities for the B = 16 Skyrmion are compared with experimental
electron scattering data off a Oxygen−16 nucleus [66] in Figure 4.17. The colour
scheme is the same as in Figures 4.4 and 4.14.

We have further reinforcement that the shoulders observed in the classically averaged
intensities of Skyrmions are not a desirable feature; they are again not present in the
experimental data. The classically averaged intensity,

√
I, bears little resemblance to

the data curve.

Fig. 4.17 Comparison of
√

I and |F| of the B = 16 Skyrmion with the form factor
from experimental scattering data for the Oxygen−16 nucleus.
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The form factor |F| again produces a closer fit to the data with quite good agreement
up to the first minimum of the data curve. However, it still predicts too many minima
in the data range that we are considering.

4.3.6 The B = 32 Skyrmion

The B = 32 Skyrmion has cubic symmetry as seen in the left image of Figure 4.18; it
combines the internal symmetry of each B = 4 cube with the cubic arrangement of
these cubes.

Fig. 4.18 Charge density and Patterson function isosurfaces for the B = 32 Skyrmion.

The Patterson function of the B = 32 Skyrmion

The cubic symmetry of the B = 32 translates to the Patterson function as seen in the
right image of Figure 4.18. For small shift vectors, w, the structure of the Patterson
function is similar to that of a single B = 4 Skyrmion because the cubes are not yet
overlapping. As we increase the shift vector, the Patterson function has local maxima
occurring at shift vectors going between the centres of cubes; these manifest themselves
as disjoint balls in the isosurface plots. Interestingly there are now some local minima,
which appear as disjoint balls lying within the volume enclosed by the main isosurface.
These minima occur at shift vectors going between the corner of a cube and the central
cavity of a different cube.

The contour plot in Figure 4.19 give further information; P (w) is small along vertical
or horizontal lines with an axis intercept of 2.6 Skyrme units. P (w) is large for axis
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intercepts of 3.2 Skyrme units. This shows that alignment of the cubes in just one axis
direction leads to a large value for P .

Fig. 4.19 Patterson function contours in the x− y plane for the B = 32 Skyrmion.

The scattering intensity of the B = 32 Skyrmion
√

I and |F| are in good agreement up to the first maximum at q2 ≈ 2.2 fm−2 (Figure
4.20). As q2 increases, the agreement gets worse because

√
I has a shoulder whereas |F|

has a minimum/maximum pair, but both curves have a minimum around q2 = 7.7 fm−2.

4.3.7 The B = 108 Skyrmion

The B = 108 Skyrmion is essentially a larger version of the B = 32 Skyrmion [5]. It is
a cubic arrangement of 27 B = 4 cubes as seen in the left image of Figure 4.21.

The Patterson function of the B = 108 Skyrmion

The Patterson function of the B = 108 Skyrmion (right image of Figure 4.21) is similar
to that of the B = 32 Skyrmion, only more detailed. Another layer of cubes in the
Skyrmion increases the number of shift vectors going between B = 4 cube corners,
which causes more stationary points of P (w), as seen in Figure 4.22.
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Fig. 4.20
√

I and |F| for the B = 32 Skyrmion.

Fig. 4.21 Charge density and Patterson function isosurfaces for the B = 108 Skyrmion.

The scattering intensity of the B = 108 Skyrmion

The intensities (Figure 4.23) are also rather similar to those of the B = 32 Skyrmion;
there are now more stationary points due to an increased number of relevant shift
vectors.



4.3 Scattering intensities of B = 4N Skyrmions 129

Fig. 4.22 Patterson function contours in the x− y plane for the B1082 Skyrmion.

Fig. 4.23
√

I and |F| for the B = 128 Skyrmion.

4.3.8 The Skyrme crystal

The Skyrme crystal can be viewed as an infinite cubic lattice of B = 4 Skyrmions with
enhanced symmetries [67]. Its Patterson function can be well approximated by taking
the central cube from a B = 108 Skyrmion, creating a 3 × 3 × 3 grid of these, and
calculating the Patterson function for the centre cube of this grid shifting towards its
neighbours. The result is then extended periodically to give the Patterson function
seen in Figure 4.24.
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Fig. 4.24 Patterson function contours in the x− y plane for the Skyrme crystal.

4.4 Approximating the zeros and stationary points
of the form factor

It is important to know the locations of the zeros and stationary points of the form
factor, F . These locations are related to intrinsic features of the charge density, and it
is useful to have an approximate method for finding them.

4.4.1 Zeros of the form factor

Consider the expression for the form factor, F , in terms of the spherically averaged
charge density, ρ(r),

F(q2) =
∫
ρ(r) e−iq·x d3x = 4π

∫ ∞

0
ρ(r) r2

(
sin qr
qr

)
dr . (4.31)

Looking at this expression, it is not immediately obvious where the zeros of F are.
However, ρ(r) r2 is quite localised and approximately symmetric about its maximum,
so a truncated Taylor expansion of sin qr

qr
about its first zero at qr = π should lead to a

good approximation to a value of q2 where F is zero.
For qr close to π,

sin qr
qr

≃ − 1
π

(qr − π) + 1
π2 (qr − π)2 , (4.32)
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which gives an estimate for a zero of F ,

F(q2) ≃ −4π
∫ ∞

0
ρ(r) r2

( 1
π

(qr − π) − 1
π2 (qr − π)2

)
dr = 0 . (4.33)

This implies that
⟨r2⟩

(
q

π

)2
− 3⟨r⟩

(
q

π

)
+ 2 = 0 , (4.34)

where
⟨rn⟩ =

∫
ρ(x) rn d3x = 4π

∫ ∞

0
ρ(r) rn+2 dr . (4.35)

The solutions are

q =
3⟨r⟩ ±

√
9⟨r⟩2 − 8⟨r2⟩
2⟨r2⟩

π, (4.36)

and we choose the lower sign (smaller q) because the upper sign corresponds to the
second zero of sin qr

qr
, and the approximation is poor to the right of this zero. We also

only want to include one zero in the region of non-zero charge density. In conclusion,
one can make a prediction for the location of the first zero of F using only the first
few radial moments of the charge density.

4.4.2 Stationary points of the form factor

The expression for dF
dq2 in terms of the charge density is

dF
dq2 = 2π

q2

∫
ρ(r)r2

(
cos qr − sin qr

qr

)
dr . (4.37)

Using a truncated Taylor series of
(
cos qr − sin qr

qr

)
about its first positive zero leads

to good approximation of the location of zeros of dF
dq2 . The location of the first zero

of
(
cos qr − sin qr

qr

)
will be labeled by qr = b. The quadratic term of the Taylor series

helpfully vanishes, so we are left with a linear equation to solve for q

dF
dq2 ≃ − 1

2q2

∫
ρ(r) sin b (qr − b) dr = 0, (4.38)

which implies that
q = b

⟨r⟩
. (4.39)

The stationary point lies at a value of q2 such that q⟨r⟩ (q times the mean of ρ(r)r2) is
equal to b.
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The broad maxima found in the spherical averaged Patterson function, P (w), means
that the techniques above can not be used to approximate the stationary points of

√
I.

Many Skyrmions have good agreement between the locations of stationary points of√
I and those of F , but there does not seem to be a strong analytical link showing why.

Some stationary points are only present in either
√

I or F , so this good agreement
cannot be used to approximate the locations of the stationary points of

√
I based on

the approximations for F .

4.4.3 Accuracy of approximations

Table 4.2 presents our estimated values of q2 at the first zero and first minimum of F
compared to the actual values.

Skyrmion Location of first zero (fm−2) Location of first minimum (fm−2)
Approximation Actual Approximation Actual

B = 4 4.57 4.57 7.47 8.01
B = 8 twisted 2.37 2.37 3.53 3.65
B = 12 triangular 2.38 2.31 3.66 3.50
B = 12 linear n/a 8.18 3.89 11.63
B = 16 1.80 1.78 2.93 2.82
B = 32 1.15 1.15 2.04 1.96
B = 108 0.61 0.62 1.07 1.02

Table 4.2 Approximate and actual locations of first zero and first minimum of F(q2).

The table shows that the approximations of the first zero and minimum of F are
generally very good. The exception is the linear B = 12 Skyrmion; the quadratic
equation obtained from (4.34) for the zero of F has no roots, and the prediction using
(4.39) for the minimum is very far away from the actual location. This can be explained
by noting the presence of the shoulder near q2 = 4 fm−2 of F (Figure 4.12) for the
linear B = 12 Skyrmion. The location of the shoulder is close to our predicted location
for the first stationary point of F . The approximation finds the shoulder rather than
the first true minimum of F . The fact that F does not have a zero before the shoulder
explains why the quadratic equation (4.34) has no roots in this case.

4.5 Vibrational effects

In the quantum approach the electrons scatter off a spherically averaged charge density
of the Skyrmion and in the classical approach the intensities obtained from scattering
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off a fixed Skyrmion are found for each orientation and then it is these which are
spherically averaged. In both cases the analysis involves scattering off of a rigid body,
whereas we know that Skyrmions have vibrational degrees of freedom and that the
ground state of a nucleus should be understood via a vibrational wavefunction over a
space of distinct configurations [11, 36, 19, 20].

In chapter 2 we explicitly found these wavefunctions for the case of the E vibration
of Oxygen−16. In this section we use these vibrational wavefunctions, along with an
approximation for the charge densities of the configurations involved, to recalculate the
form factor for Oxygen−16 in both the quantum and classical approaches. We show
how this differs from the rigid body approach from section 4.3.5 and the experimental
data in [66].

4.5.1 Approximation for the charge densities of Oxygen−16
In section 2.4.6 of chapter 2 we calculated the inertia tensors of configurations of
Oxygen−16 in the red region of MH by treating configurations as a collection of
four alpha particles with one particle at x̃ = (x̃, ỹ, z̃) =

(
x̂(ζ)√

1−ẑ(ζ)2
, ŷ(ζ)√

1−ẑ(ζ)2
, ẑ(ζ)√

1−ẑ(ζ)2

)
,

where x̂(ζ) = (x̂, ŷ, ẑ) is the point on the Riemann sphere corresponding to the point ζ
on MH , and the other alpha particles at positions related by D2 symmetry. Using these
positions we create a crude approximation for the charge density of the corresponding
configurations,

ρ(x) = 1
4

4∑
i=1

δ(3)(x − x̃i) (4.40)

where x̃1 = x̃ = (x̃, ỹ, z̃), x̂2 = (x̃,−ỹ,−z̃), x̂3 = (−x̃, ỹ,−z̃) and x̂4 = (−x̃,−ỹ, z̃).
The factor of 1

4 is because we want a normalized charge density. Improvements of this
approximation would treat the constituent alpha particles as extended objects with
orientations depending on the coordinate ζ on MH . The approximation in (4.40) has
the benefits of providing analytic expressions for many of the quantities that we wish
to calculate.

4.5.2 The scattering intensity of a single configuration of Oxygen−16
To calculate the quantum averaged intensity it is helpful to first calculate the spherically
averaged charge density, as in (4.8), and this calculation is simplified by the fact that
|x̃i| is the same for all i. Therefore the spherically averaged charge density must be a
radial delta function,

ρ(r) = δ(r − |x̃|)
4πr2 , (4.41)
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where again the factors are determined by the normalisation. We now use the formula
in (4.10) to calculate the spherically averaged form factor,

F0(q2) = sin q|x̃|
q|x̃|

. (4.42)

To calculate the classically averaged intensity is is helpful to consider the spherically
averaged Patterson function, as defined in (4.17), and for the charge density in (4.40)
this gives,

P (w) = 1
16π2w2

(
δ(w) + δ

(
w − 2

√
x̃2 + ỹ2

)
+ δ

(
w − 2

√
z̃2 + x̃2

)
+ δ

(
w − 2

√
ỹ2 + z̃2

))
.

(4.43)
We then use the Patterson function to evaluate the classical averaged intensity as
defined in (4.19) to give,

I0(q2) = 1
4

1 +
sin

(
2q

√
x̃2 + ỹ2

)
2q

√
x̃2 + ỹ2 +

sin
(
2q

√
z̃2 + x̃2

)
2q

√
z̃2 + x̃2

+
sin

(
2q

√
ỹ2 + z̃2

)
2q

√
ỹ2 + z̃2

 .
(4.44)

4.5.3 The scattering intensity of the ground state of Oxygen−16
Now that we have expressions for the quantum and classically averaged intensities
of a single configuration we need to use the vibrational wavefunction for the ground
state, ψ+

T,0, to take an average over the vibrational manifold M. This is achieved by
performing the integrals,

F(q2) =
∫

|ψ+
T,0(ζ)|2F0(q2) dζ and I(q2) =

∫
|ψ+

T,0(ζ)|2I0(q2) dζ, (4.45)

where the integrals are taken over the domain MH . |F| and
√

I are then the quantum
and classical form factors of the ground state of Oxygen−16 in the Skyrme model.
We could also take this vibrational average over a different wavefunction such as ψ+

T,1

which corresponds to the first excited 0+ state of Oxygen−16.
To see the effect of considering the vibrational degrees of freedom we should compare

|F| and
√

I to |F0| and
√

I0 calculated at the tetrahedral configuration; then the
only difference is whether vibrational degrees of freedom are considered because the
approximation for the charge densities is the same. We plot the quantum and classically
averaged form factors for the ground state and first excited state of Oxygen−16 in
Figure 4.25.
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Fig. 4.25 The quantum (left) and classically (right) averaged form factors for the
tetrahedral configuration and the vibrational wavefunctions, ψ+

T,0 and ψ+
T,1.

We see in Figure 4.25 that, for our crude approximation of the charge densities,
there is not a significant difference between taking an average of the form factors over
many different configurations via vibrational wavefunctions or just finding the form
factor for the tetrahedral configuration. The quantum averaged form factor, |F|, is
not too different from the bent square calculation found in section 4.3.5 but there
is a significant difference for the classical averaged form factor,

√
I. The classically

averaged form factor for the point particle approximation of charge density falls away
much slower than the form factor from the more accurate bent square calculation. The
point particle form factor also lacks the shoulder found in the graph of the bent square
form factor in Figure 4.17.

4.6 Conclusions

We have calculated the charge densities and Patterson functions of several Skyrmions
with baryon number a multiple of four. From these we have calculated the quantum
averaged electron scattering intensity, |F(q2)|2, and the classically averaged electron
scattering intensity, I(q2), for the Skyrmion’s states with spin and isospin zero and
found that there is a sizeable difference between them. This shows that it is important to
make the distinction between the methods when considering non-spherically symmetric
charge densities. However, we have found that neither method gives results in good
agreement with experimental electron scattering data.

Of the two methods, the quantum averaged form factor gives the better fit to the
experimental data; however, there are still some problems. For all of the Skyrmions that
we have considered, the calculated intensity has too many minima when compared to
the scattering data and the entire curve |F(q2)| generally lies above the data points (a
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problem exacerbated for the classically averaged intensity because of a Cauchy–Schwartz
inequality).

There is also the problem that the calculated first minimum of the intensity is
frequently at too low a momentum and that the intensity at the second maximum
has a higher value than the experimental data. We have investigated the effect of
introducing a central depression for a few well known charge densities and found that
a large depression causes the various problems stated above. This would indicate that
the region of near-zero baryon density found at the centre of many of the Skyrmions is
a feature which does not agree with experimental electron scattering data.

Our hope was that vibrational averaging using the wavefunctions from chapter 2 of
this thesis would result in a charge density with significantly less structure because the
central region of near-zero baryon density would be partially washed-out. Unfortunately
such vibrational averaging seems to have negligible effect on the form factors from
either the quantum or classical methods.

We have found that it is possible to predict the locations of the first zero and
stationary point of |F| using moments of the charge density. Disappointingly, we have
also found that it is difficult to predict the locations of stationary points of

√
I using

moments of the Patterson function. However, given their similarities, there is probably
a link between the stationary points of

√
I and |F|.



Chapter 5

Conclusions and outlook

In this thesis we have investigated a variety of different problems involving B = 4N
nuclei in the Skyrme model and as a result we have created novel techniques which can
be applied to all Skyrmions. One of the key problems remaining is the energy spectrum
of the B = 4 Skyrmion which should be tackled using vibrational quantisation. We
already know the structure of its vibrational spaces and that a local approach is not
sufficient but we hope that a global approach, as used in Chapter 2, will lead to an
improvement of the current situation.

In Chapter 2 we studied the Oxygen−16 nucleus by approximating it as a collection
of four B = 4 Skyrmions. The Skyrme model provided us with scattering lines
which we then used to construct a vibrational manifold which the low energy B = 16
configurations. This approach provided an excellent fit with experimental data and a
novel interpretation of some of the states in the energy spectrum. However, we only
looked at the E vibration of the tetrahedron with our global approach. Our hope is
that we can use the techniques that we have developed to improve our understanding
of the A and F vibrations as well. Within the E vibration there is also some room for
improvement; we would like to calculate the rotational energy in a non-perturbative
way. We would also like to generate the potential on the vibrational manifold in a less
ad hoc way perhaps by using the method for approximating the interaction energy
between Skyrmions outlined in Chapter 3.

In Chapter 3 we developed a new way of approximating the interactions between
Skyrmions in the hope that this could be used in vibrational quantisation and B = 4N
cluster nuclei. We built on the idea of using point multipoles by using Gaussian sources
to generate the pion fields of Skyrmions. This gave us analytic approximation for
the pion fields of and interaction energies between Skyrmions. We found accurate
approximations for the first four Skyrmions, in particular the B = 1 Skyrmion, using
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a method which could be easily extrapolated to larger Skyrmions such as the B = 7
Skyrmion. We compared our approximations for the interaction energy of Skyrmions
with those obtained through numerical simulation and found a good fit for a few
different situations, in particular we always improve upon the approximation found
using point multipole sources. We then showed how our approximation could be applied
to vibrational quantization and B = 4N cluster nuclei.

In Chapter 4 we considered a novel way of interpreting electron scattering off slowly
rotating nuclei and applied this to Skyrmions. We compared the quantum and classical
methods of calculating scattering intensities and found the Patterson functions for
several B = 4N nuclei. Unfortunately we found that the scattering intensities for both
methods did not agree with experimental data. We considered whether introducing
vibrational degrees of freedom would alleviate this problem but found that it made
little difference. However, we were able to find accurate approximations for the first
zero and minimum of the form factor which could also be applied to different models
for the baryon density of nuclei.
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Appendix A

Spin states for each representation

Below are tables which show how states split into representations for low spin and
isospin. Tables A.1 and A.2 are for isospin 0 and Tables A.3 and A.4 are for isospin 1.
For the higher dimensional representations we only list on the states; the other states
can be found by applying the transformations in (2.44) for the standard representation
and (2.66) for the F representation which are found in chapter 2.

J
Trivial/Sign Standard
|Θ⟩, T/S, P |W ⟩

0 (1), T , + None
1 None None
2 None (0, 0, 1, 0, 0)
3 (0, 1, 0, 0, 0,−1, 0), S, − None

4
(√

5, 0, 0, 0,
√

14, 0, 0, 0,
√

5
)
, T , + (0, 0, 1, 0, 0, 0, 1, 0, 0)

Table A.1 The isospin 0 states in the trivial, sign and standard representations up to
spin 4. The ith component of the vector in the spin J row corresponds to the coefficient
of the spin state, |J, J + 1 − i⟩. The letter T or S next to the state denotes whether
the state is in the trivial or sign representations and the sign next to the state denotes
the intrinsic parity. States in the standard representation allow either parity.
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J
F

|A⟩, P
0 None
1

(
e

3iπ
4 , 1, e iπ

4
)
,−

2
(
−1,

√
2e iπ

4 , 0,
√

2e− iπ
4 , 1

)
,+

3

(√
5e− 3iπ

4 , 0,
√

3e− iπ
4 , 2

√
2,

√
3e− 3iπ

4 , 0,
√

5e iπ
4
)
,−(√

3e 3iπ
4 ,−2i,

√
5e− iπ

4 , 0,
√

5e− iπ
4 ,−2i,

√
3e− iπ

4
)
,+

4

(
2, e iπ

4 , 0,
√

7e− iπ
4 , 0,

√
7e iπ

4 , 0, e− iπ
4 ,−2

)
,−(

0,
√

7e− iπ
4 ,−2, e− 3iπ

4 , 0, e 3iπ
4 , 2,

√
7e iπ

4 , 0
)
,+

Table A.2 The isospin 0 states in the F representation up to spin 4. The ith compo-
nent of the vector in the spin J row corresponds to the coefficient of the spin state,
|J, J + 1 − i⟩. The sign next to the vector denotes the intrinsic parity.

J
Trivial/Sign Standard
|Θ⟩, T/S, P |W ⟩

0

0
1
0

,+

 e
iπ
6

0
e− iπ

6


1 None None

2

e
− 5iπ

6 0
√

2e 2iπ
3 0 e− 5iπ

6

0 0 0 0 0
e

5iπ
6 0

√
2e− 2iπ

3 0 e
5iπ

6

, S, −

 e
2iπ

3 0
√

2e− 5iπ
6 0 e

2iπ
3

0 0 0 0 0
e− 2iπ

3 0
√

2e 5iπ
6 0 e− 2iπ

3


e

− iπ
3 0

√
2e− 5iπ

6 0 e− iπ
3

0 0 0 0 0
e

iπ
3 0

√
2e 5iπ

6 0 e
iπ
3

, T , −

0 0 0 0 0
1 0 0 0 1
0 0 0 0 0



Table A.3 The isospin 1 states in the trivial, sign and standard representations up to
spin 2. The (i, j)th entry of the matrix in the spin J row corresponds to the coefficient
of the spin and isospin state, |J, J + 1 − i⟩ |1, 2 − j⟩. The letter T or S next to matrix
denotes whether the state is in the trivial or sign representations and the sign next to
the matrix denotes the intrinsic parity. States in the standard representation allow
either parity.
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J
F

|A⟩, P
0 None

1

0 e
3iπ

4 0
0 0 0
0 e

iπ
4 0

, +

(2 +
√

3)e− 5iπ
12 (1 +

√
3)e− iπ

6 e− iπ
12

0 0 0
e− iπ

12 (1 +
√

3)e− 5iπ
6 (2 +

√
3)e 5iπ

12

, −

(2 +
√

3)e iπ
12 (1 +

√
3)e iπ

3 e
7iπ
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0 0 0
e− 7iπ

12 (1 +
√

3)e 2iπ
3 (2 +

√
3)e− iπ

12

, +

2

0 0 0 0 0
1 e− 3iπ

4 0 e
3iπ

4 −1
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√

2e i5π
6 (

√
3 − 1)e iπ
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√

3)e 7iπ
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2e iπ

6 (1 +
√
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√
3 − 1)e 11iπ
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2e− 5iπ
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√

2e iπ
3 (

√
3 − 1)e− 5iπ

12 0 (1 +
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3)e iπ
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12
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Table A.4 The isospin 1 states in the F representation up to spin 2. The (i, j)th entry
of the matrix in the spin J row corresponds to the coefficient of the spin and isospin
state, |J, J + 1 − i⟩ |1, 2 − j⟩. The sign next to the matrix denotes the intrinsic parity.





Appendix B

Combining vibrations

In chapter 2 we states how the different representation combine with each other. In
this appendix we show how these combinations work explicitly for some states.

First we look at combining two states in the E representation via the example of
multiplication of the two spin 2 states:

|Ψ1⟩ = (u− v) (|2, 2⟩ + |2,−2⟩) −
√

6(u+ v) |2, 0⟩ (B.1)

and
|Ψ2⟩ = (U − V ) (|2, 2⟩ + |2,−2⟩) −

√
6(U + V ) |2, 0⟩ . (B.2)

We just take the direct product of these states, using Clebsch-Gordan coefficients to
calculate the new rovibrational state. This produces states for a variety of different
spins.

For spin 0, we have the state proportional to

(2uU + 2vV + uV + vU) |0, 0⟩ . (B.3)

In order to find which representation this lies in we must check how the combination
2uU + 2vV + uV + vU , transforms under the elements (1 2) and (1 2 3) of S3. We find
that it is invariant under both of these and therefore lies in the trivial rep.

The product of |Ψ1⟩ and |Ψ2⟩ does not produce any states for spin 1 because these
would have to lie in the F representation which is not permitted.

For spin 2, we have the state proportional to

(u′ − v′) (|2, 2⟩ + |2,−2⟩) −
√

6(u′ + v′) |2, 0⟩ , (B.4)
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where u′ = uU−uV −vU−2vV and v′ = vV −vU−uV −2uU . This states transforms
according to the standard representation of S3.

For spin 3, we have the state proportional to

(uV − vU) (|3, 2⟩ − |3,−2⟩) (B.5)

which transforms under the sign representation.
For spin 4, we have the state proportional to

2(u′ − v′) (|4, 2⟩ + |4,−2⟩) − (u′ + v′)
(√

7 |4, 4⟩ −
√

10 |4, 0⟩ +
√

7 |4,−4⟩
)
, (B.6)

with u′ and v′ defined as above, which is in the standard representation, and another
state proportional to

(2uU + 2vV + uV + vU)
(√

5 |4, 4⟩ +
√

14 |4, 0⟩ +
√

5 |4,−4⟩
)
, (B.7)

which is in the trivial representation.
To show how a state in the E representation combines with a state in the F

representation we consider the product of the states,

|Ψ1⟩ = (u− v) (|2, 2⟩ + |2,−2⟩) −
√

6(u+ v) |2, 0⟩ , (B.8)

in the E representation, with the state,

|Ψ2⟩ = −(X − iY ) |1, 1⟩ +
√

2Z |1, 0⟩ + (X + iY ) |1,−1⟩ , (B.9)

in the F representation.
For spin 1, we have the state proportional to

− (X ′ − iY ′) |1, 1⟩ +
√

2Z ′ |1, 0⟩ + (X ′ + iY ′) |1,−1⟩ , (B.10)

where X ′ = uX, Y ′ = vY and Z ′ = −(u+ v)Z, which lies in the F representation.
For spin 2, we have the state proportional to

Z ′ (|2, 2⟩ − |2,−2⟩) − (X ′ + iY ′) |2, 1⟩ − (X ′ − iY ′) |2,−1⟩ (B.11)

where X ′ = (u + 2v)X, Y ′ = −(v + 2u)Y and Z ′ = (u − v)Z, which lies in the F
representation.
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For spin 3, we produce a positive parity state proportional to

√
3(X ′ − iY ′) |3, 3⟩ +

√
8Z ′ |3, 2⟩ +

√
5(X ′ + iY ′) |3, 1⟩ (B.12)

−
√

5(X ′ − iY ′) |3,−1⟩ +
√

8Z ′ |3,−2⟩ −
√

3(X ′ + iY ′) |3,−3⟩ (B.13)

where X ′ = (u + 2v)X, Y ′ = −(v + 2u)Y and Z ′ = (u − v)Z, which lies in the F
representation. We also produce a negative parity state proportional to

−
√

5(X ′ + iY ′) |3, 3⟩ +
√

3(X ′ − iY ′) |3, 1⟩ +
√

16Z ′ |3, 0⟩ (B.14)
−

√
3(X + iY ′) |3,−1⟩ +

√
5(X ′ − iY ′) |3,−3⟩ (B.15)

where X ′ = uX, Y ′ = vY and Z ′ = −(u+ v)Z, which also lies in the F representation.
To show how two states in F representation combine we consider the product of the

states,
|Ψ1⟩ = −(X − iY ) |1, 1⟩ +

√
2Z |1, 0⟩ + (X + iY ) |1,−1⟩ , (B.16)

and
|Ψ2⟩ = −(x− iy) |1, 1⟩ +

√
2z |1, 0⟩ + (x+ iy) |1,−1⟩ , (B.17)

which are both in the F representation.
For spin 0, we produce a state proportional to,

(xX + yY + zZ) |0, 0⟩ (B.18)

which is in the trivial representation.
For spin 1, we have the state proportional to

− (X ′ − iY ′) |1, 1⟩ +
√

2Z ′ |1, 0⟩ + (X ′ + iY ′) |1,−1⟩ (B.19)

where X ′ = yZ−zY , Y ′ = zX−xZ and Z ′ = xY −yX, which is in the F representation.
For spin 2, we have the state proportional to

Z ′ |2, 2⟩ − (X ′ + iY ′) |2, 1⟩ − (X ′ − iY ′) |2,−1⟩ − Z ′ |2,−2⟩ (B.20)

where X ′ = yZ+zY , Y ′ = zX+xZ and Z ′ = xY +yX, which is in the F representation,
and another state proportional to

(u′ − v′) (|2, 2⟩ + |2,−2⟩) −
√

6(u′ + v′) |2, 0⟩ , (B.21)
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where u′ = 2xX − yY − zZ and v′ = 2yY − zZ − xX, which transform according to
the standard representation of S3.

Now that we know how states from different vibrations combine we can find the
spectrum of these combined vibrations as shown in Table 2.4.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 The Skyrme model
	1.2 The B=1 Skyrmion
	1.3 The rational map approximation
	1.4 Visualising Skyrmions
	1.5 The B=4 Skyrmion
	1.5.1 Rotational energy
	1.5.2 Finkelstein-Rubinstein constraints
	1.5.3 B=4N nuclei


	2 A dynamical alpha cluster model of Oxygen-16
	2.1 Introduction
	2.2 Rigid body quantization
	2.3 The vibrational spaces of the tetrahedron
	2.4 The vibrational manifold of the E vibration
	2.4.1 The kinetic operator
	2.4.2 Boundary conditions
	2.4.3 The potential on MH
	2.4.4 Solving the Schrödinger equation
	2.4.5 Rovibrational states
	2.4.6 Energies of the rovibrational states

	2.5 Local vibrations of the tetrahedron
	2.5.1 The A Vibration
	2.5.2 The F Vibration
	2.5.3 Combining vibrations

	2.6 Isospin
	2.7 Conclusions

	3 Interactions between Skyrmions
	3.1 Introduction
	3.2 Yukawa interactions
	3.2.1 Massive scalar field theory
	3.2.2 Point multipole sources
	3.2.3 The Gaussian monopole source

	3.3 Gaussian multipole sources
	3.3.1 The Herglotz generating function
	3.3.2 Gaussian multipole pion fields
	3.3.3 Further Gaussian multipole sources
	3.3.4 Asymptotics of Gaussian multipole pion fields
	3.3.5 Interaction energies between Gaussian multipole sources

	3.4 Modeling Skyrmions
	3.4.1 Calibration of coefficients
	3.4.2 The B=1 Skyrmion
	3.4.3 The B=2 Skyrmion
	3.4.4 The B=3 Skyrmion
	3.4.5 The B=4 Skyrmion

	3.5 The interaction energy between Skyrmions
	3.5.1 Two B=1 Skyrmions
	3.5.2 Two B=4 Skyrmions
	3.5.3 The B=32 Skyrmion
	3.5.4 The Skyrme crystal
	3.5.5 The B=12 Skyrmion
	3.5.6 The E vibration of the B=16 Skyrmion
	3.5.7 The E vibration of the B=4 Skyrmion

	3.6 Conclusion

	4 Electron scattering intensities and Patterson functions of Skyrmions
	4.1 Introduction
	4.2 Form factors and intensities
	4.2.1 Scattering from a fixed Skyrmion
	4.2.2 The quantum averaged intensity
	4.2.3 The angular velocity of a Skyrmion
	4.2.4 The classically averaged intensity
	4.2.5 Comparison of the scattering intensities

	4.3 Scattering intensities of B=4N Skyrmions
	4.3.1 Calibration of Skyrme units
	4.3.2 The B=4 Skyrmion
	4.3.3 The B=8 Skyrmion
	4.3.4 The B=12 Skyrmion
	4.3.5 The B=16 Skyrmion
	4.3.6 The B=32 Skyrmion
	4.3.7 The B=108 Skyrmion
	4.3.8 The Skyrme crystal

	4.4 Approximating the zeros and stationary points of the form factor
	4.4.1 Zeros of the form factor
	4.4.2 Stationary points of the form factor
	4.4.3 Accuracy of approximations

	4.5 Vibrational effects
	4.5.1 Approximation for the charge densities of Oxygen-16
	4.5.2 The scattering intensity of a single configuration of Oxygen-16
	4.5.3 The scattering intensity of the ground state of Oxygen-16

	4.6 Conclusions

	5 Conclusions and outlook
	References
	Appendix A Spin states for each representation
	Appendix B Combining vibrations

