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ABSTRACT

We investigated alloy fluctuations at dislocations in III-Nitride alloys (InGaN and AlGaN). We found that in
both alloys, atom segregation (In segregation in InGaN and Ga segregation in AlGaN) occurs in the tensile part
of dislocations with an edge component. In InGaN, In atom segregation leads to an enhanced formation of In-N
chains and atomic condensates which act as carrier localization centers. This feature results in a bright spot
at the position of the dislocation in the CL images, suggesting that non-radiative recombination at dislocations
is impaired. On the other hand, Ga atom segregation at dislocations in AlGaN does not seem to noticeably
affect the intensity recorded by CL at the dislocation. This study sheds light on why InGaN-based devices
are more resilient to dislocations than AlGaN-based devices. An interesting approach to hinder non-radiative
recombination at dislocations may therefore be to dope AlGaN with In.

Keywords: dislocation, III-Nitrides, segregation, carrier localization, aberration-corrected TEM, cathodolumi-
nescence.

1. INTRODUCTION

III-Nitrides are a hugely important family of semiconductors which mainly consists of GaN and its alloys with
InN and AlN. While the former enables the fabrication of efficient blue and green light emitting diodes (LEDs),1

the latter holds the key for the fabrication of ultraviolet (UV) LEDs.2 It is common knowledge that the efficiency
of an LED varies substantially with its emission wavelength λ , which is controlled for the most part by its alloy
content. For example, external quantum efficiencies of 44%,3 84%4 and 20%5 have been reported for InGaN green
LED (λ ∼ 527 nm), InGaN blue LED (λ ∼ 440 nm), and AlGaN UV LED (λ ∼ 275 nm), respectively. III-Nitride
materials are also plagued by a high density of dislocations, classically in the range of 107-1010 cm−2, which
act as non-radiative recombination centers,6–9 and whilst InGaN-based devices exhibit a remarkable resilience
to this defect,10 dislocations are thought to play an important role in the relatively low efficiency reported in
AlGaN-based devices.11

In order to better understand the seemingly different behaviors of dislocations in InGaN and AlGaN devices,
in this study we compare the structural (alloy distribution) and optical properties of dislocations in InGaN and
AlGaN thick films. We report that alloy segregation occurs at the dislocations in both samples, with the largest
atom (In in InGaN film, Ga in AlGaN film) segregating in the tensile part of the dislocation. However while this
leads to the enhanced formation of localization centers in InGaN, therefore limiting the impact of dislocations
on the optical properties of the material, no such improvement was observed in the case of AlGaN.
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2. METHODS

An InGaN and an AlGaN epilayers were grown by metal organic vapor phase epitaxy in a Thomas Swan 6 × 2
inch close-coupled showerhead reactor. Trimethylgallium (TMG), trimethylaluminum (TMA), trimethylindium
(TMI), diluted silane in hydrogen (SiH4), and ammonia (NH3) were used as precursors for the Ga, Al, In, Si,
and N elements, respectively. Hydrogen (H2) was used as carrier gas for the growth of GaN, AlN, and AlGaN,
while a mixture of H2 and nitrogen (N2) was employed for the growth of InGaN. A c-plane sapphire substrate
was employed for both samples.

For the AlGaN epilayer, following the growth of a 30 nm AlN buffer layer at 1050◦C, a 2 µm AlN layer
was grown at 1130◦C. A SiNx interlayer was then deposited to allow for the subsequent growth of faceted GaN
islands at 980◦C for 120 s. Finally the 3 µm AlxGa1−xN epilayer with an Al content of x ∼ 46% (as determined
by X-ray diffraction (XRD)) was deposited at 1090◦C. From XRD analysis, the AlGaN layer was found to be
89% relaxed with regards to the strain-free AlN layer. Further details about the growth of the sample can be
found in Ref. 12.

For the InGaN epilayer, a 5 µm GaN buffer layer (of which 2 µm undoped and 3 µm Si-doped to 5 × 1018

cm−3) was first deposited. Following the growth of an additional 500 nm of GaN, a 135 nm InxGa1−xN epilayer
with an In content of x ∼ 9% (as determined by XRD) was deposited at 749◦C. From XRD analysis, the InGaN
layer was found to be fully strained to the strain-free GaN layer. Further details about the growth of the sample
can be found in Ref. 13.

Alloy fluctuations around dislocations in the AlGaN epilayer were assessed using energy dispersive X-ray
spectroscopy (EDS) in an FEI Titan G3 80-200 ChemiSTEM microscope operated at 200 kV with detector
collection semiangle of 69 mrad.14 The sample was observed in plan-view geometry (i.e. dislocations seen
end-on) by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). EDS
quantification was performed using a standard background subtraction and the Cliff-Lorimer factor method.

To correlate the optical and morphological properties of the materials, we employed a “multi-microscopy”
approach whereby the same dislocation is analyzed by atomic force microscopy (AFM) and scanning electron
microscopy combined with cathodoluminescence (SEM-CL).15 AFM was conducted on a Veeco dimension 3100
microscope in tapping mode, and was here used to determine the dislocation type, obtained from the diameter
of the V-pit terminating the dislocation.16 AFM was also used to measure the distance to nearest neighbor for
each dislocation. SEM-CL was conducted on an FEI XL30 microscope equipped with a Gatan MonoCL4 system
operated at 3kV at room temperature (for the InGaN sample), and an Attolight Rosa 4634 CL microscope
operated at 3kV at liquid He (10 K) temperature (for the AlGaN sample). (The AlGaN epilayer was analyzed
at low temperature because the CL signal at room temperature was too low.) CL was used to measure the CL
integrated intensity at the dislocation position compared to that of the surrounding material unaffected by the
dislocation (thereafter referred as “intensity ratio”), as well as the shift in CL emission energy between these
regions (thereafter referred as “energy shift”). A more detailled description of the experiment is provided in Ref.
13.

3. RESULTS AND DISCUSSION

3.1 AlGaN epilayer

Figure 1 shows an example of TEM observation of dislocation in AlGaN. The dislocation core configuration can
be identified in the HAADF-STEM image - here consisting of a mixed-type dislocation with double 5/6-atom ring
core. The atomic resolution allows for further treatment to be performed, such as in this case, geometric phase
analysis (GPA). GPA allows to draw a qualitative strain map of the region around the dislocation. With regards
to the εxx strain component (with x = [112̄0]), we can see in Figure 1(b) that the dislocation is bounded on
both sides by a region of tensile strain and a region of compressive strain, as expected by the elastic theory for a
dislocation with an edge component. An EDS line scan taken across the dislocation core (as shown shematically
in Figure 1(b)) reveals alloy fluctuations near the dislocation. As illustrated in Figure 1(c), the composition of
the alloy is not constant across the dislocation. We report that the alloy is Ga-rich at the nm-scale on the side of
the dislocation corresponding to the region under tensile strain, and Al-rich on the other side of the dislocation
corresponding to the region under compressive strain. This result could be explained from an energetic aspect:
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Figure 1. (a) HAADF-STEM image and (b) GPA map of a mixed-type dislocation. The GPA map corresponds to the
εxx strain component, with x = [112̄0]. (c) Al and Ga composition profiles obtained from the EDS line scan taken across
the dislocation (position shown schematically in (b), with a 1 nm analysis width).

given that the Ga-N bond is longer than Al-N bond, the elastic energy of the dislocation is reduced if the tensile
part is Ga-rich and the compressive part is Al-rich. We note that this alloy segregation was observed for edge
and mixed-type dislocations (no screw-type dislocations were analyzed in this study). This is not surprising
given that, according to the elastic theory, the εxx profile for edge and mixed dislocations is the same - i.e. the
dislocation is bounded by a tensile and compressive strain region.

To investigate whether the alloy segregation observed by TEM has any implications on the optical properties
of the dislocations, we observed a set of dislocations by multi-microscopy. An example is presented in Figure 2. At
first we can see that the dislocations observed in the AFM image correspond to a dark spot on the CL integrated
intensity image. This result is in line with previous observations of dislocations by CL,6–9 and suggests that the
dominant carrier recombination process at dislocations is non-radiative. In terms of CL emission energy we can
see that the dislocations are bounded on both sides by a blue-shifted and a red-shifted region (as highlighted by
the dislocation indicated by a square in Figure 2(c)). The shifts in emission energy are of the order of −4±2 meV
and 3± 2 meV for the red-shifted and blue-shifted parts, respectively, and could be accounted for the most part
by the variation of strain around the dislocation. In light of our TEM observations, these results indicate that
the segregation of Ga atoms in the vicinity of the dislocation has no significant effect on the optical properties
of the dislocation.

3.2 InGaN epilayer

Previous TEM observations of dislocations in InGaN have reported that In atoms segregate in the tensile part
of dislocations.17,18 This result is very similar to what we have reported above for AlGaN, and can be explained

Figure 2. (a) AFM, (b) CL integrated intensity, and (c) CL peak emission energy images of the same region of the AlGaN
epilayer.
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Figure 3. (a) AFM, (b) SEM, and (c) panchromatic CL images of the same region of the InGaN epilayer.

Figure 4. (a-b) Intensity ratio and (c-d) energy shift as a function of the distance to nearest neighbor for (a,c) edge and
(b,d) mixed-type dislocations.

through similar energetic arguments because the In-N bond is longer than the Ga-N bond. In this section we
will mostly focus on understanding the impact of In segregation on the optical properties.

An example of multi-microscopy approach carried out on the InGaN epilayer is given in Figure 3. The
dislocations can be readily identified as V-pits in the AFM and SEM images. From Figure 3(c), we can see that
the dislocations correspond in the CL image to a bright spot surrounded by a dark halo. The presence of the
bright spot indicates an enhanced light emission at the dislocation, which seems at first to challenge common
views that dislocations act as non-radiative recombination centers. If mainly non-radiative recombination were
to occur, one would expect to see a dark spot at the position of the dislocation,6–9 similar to what we noticed in
the previous section for example.
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To understand the nature of the bright spot, we quantified the CL intensity and emission energy at the center
of the V-pit (i.e. at the position of the dislocation) relative to the surrounding material (i.e. far away from the
dislocation). The results are presented in Figure 4, for edge and mixed-type dislocations. We can at first see
that all graphs show a similar dependence with distance to nearest neighbor, whereby the intensity ratio and
energy shift increase with distance to nearest neighbor, then stabilize. The transition between these two regimes
correspond to dislocations with spacing around 100-120 nm. Here we will focus on the dislocations with distance
to nearest neighbor longer than 120 nm to avoid additional effects due to the interaction between neighboring
dislocations.

For such “isolated” dislocations, the intensity ratio remains generally above 1 (Figure 4(a-b)), which supports
our qualitative observation of the bright spot. Compared to that of the surrounding material, the emission
intensity is increased in average by 15% and 17% at edge and mixed-type dislocations, respectively. Turning our
attention to the energy shift (Figure 4(c-d)), we can see that the emission energy from the dislocation is very
close to that of the surrounding material. We observe shifts ranging from −5 meV to +9 meV (with an average
value of −1 meV) for edge dislocations, and from −7 meV to +7 meV (with an average value of −1 meV) for
mixed dislocations.

We note that the bright spot is a very local feature, which involves low magnitude energy shifts (which can be
positive or negative), and which properties are fairly independent with dislocation type. This seems to support
the hypothesis that the luminescence is due to In-N chains and atomic condensates19–21 that very possibly formed
as a result of the segregation of In at the dislocation. (Other possible explanations such as, strain relaxation or
“bulk” change in alloy composition, can be ruled out as these would lead to much stronger and systematically
negative energy shifts.) In-N chains and atomic condensates correspond to N atoms bonded to more than one In
atom, and have been shown theoretically19,21 and experimentally20 to strongly localize holes. Moreover, Schulz
et al. found that holes were localized over several excited states, up to 50 meV from the top of the valence band.
Hence the energy shift associated with In-N chains and atomic condensates would be expected to range between
−8 meV and +42 meV for two In atoms sharing a common N atom, −18 meV and +32 meV (three In atoms),
and −29 meV and +21 meV (four In atoms), which seems to agree with the values reported in Figure 4.

4. CONCLUSION

In conclusion, we report that alloy fluctuations occur at dislocations in III-Nitride alloys (InGaN and AlGaN),
such that the largest atoms (In for InGaN and Ga for AlGaN) segregate in the tensile part of dislocations with
an edge component. In InGaN, In atom segregation leads to the enhanced formation of In-N chains and atomic
condensates which localize carriers. This feature results in a bright spot in the CL images, showing that non-
radiative recombination at dislocations is reduced. On the other hand, Ga segregation at dislocations in AlGaN
does not significantly affect the intensity recorded by CL at the dislocation. The strong localization properties of
In atoms seem to be at the origin of this discrepancy. Therefore, to limit the deleterious impact of dislocations
in AlGaN-based devices, an interesting approach may be to dope AlGaN with In.
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