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We propose that the constants of Nature we observe (which appear as parameters in the classi-
cal action) are quantum observables in a kinematical Hilbert space. When all of these observables
commute, our proposal differs little from the treatment given to classical parameters in quantum
information theory, at least if we were to inhabit a constants’ eigenstate. Non-commutativity in-
troduces novelties, due to its associated uncertainty and complementarity principles, and it may
even preclude hamiltonian evolution. The system typically evolves as a quantum superposition of
hamiltonian evolutions resulting from a diagonalization process, and these are usually quite distinct
from the original one (defined in terms of the non-commuting constants). We present several exam-
ples targeting G, c and Λ, and the dynamics of homogeneous and isotropic Universes. If we base
our construction on the Heisenberg algebra and the quantum harmonic oscillator, the alternative
dynamics tends to silence matter (effectively setting G to zero), and make curvature and the cosmo-
logical constant act as if their signs are reversed. Thus, the early Universe expands as a quantum
superposition of different Milne or de Sitter expansions for all material equations of state, even
though matter nominally dominates the density, ρ, because of the negligible influence of Gρ on the
dynamics. A superposition of Einstein static universes can also be obtained. We also investigate the
results of basing our construction on the algebra of SU(2), into which we insert information about
the sign of a constant of Nature, or whether its action is switched on or off. In this case we find
examples displaying quantum superpositions of bounces at the initial state for the Universe.

I. INTRODUCTION

It is sombering to recognise that we have never success-
fully predicted the values of any fundamental dimension-
less constants of Nature, yet we measure them with our
most accurate experiments: they combine our greatest
experimental knowledge with our greatest theoretical ig-
norance. Historically, there have been different attitudes
and expectations regarding the numerical values of the
constants of Nature. Einstein [1] believed there was a
single logically self-consistent, rigid, theory of everything
(a “unified field theory”) whose defining constants were
uniquely and completely specified. The direction of mod-
ern particle physics and cosmology now prefers the oppo-
site view that there are many self-consistent theories of
everything, with different suites of defining constants of
Nature, and we inhabit one of them as a result of random
symmetry-breakings at ultra-high energies. The question
of how much of our known low-energy physics must nec-
essarily reside in the vacuum state of one of these many
possible theories of everything remains open [2].

These scenarios open up the possibility that the low-
energy constants of physics could be different – and may
even be different in widely separated places in the uni-
verse on both sub and super-horizon scales. An added
complexion arises from the prospect that the quantities
we call constants of Nature may not be the fundamen-
tal unchanging constants defining the most basic theory
of everything. Our observed “constants” may therefore
be allowed to be time and/or space dependent variables
[3] without undermining the invariant status of the true

constants in the most basic theory. A simple example
is provided by 3-d constants in a 3-d submanifold of a
higher-dimensional theory in which any time change in
the mean size of additional dimensions will be seen in
the time change of the 3-d “constants” [4], like the fine
structure constant and its effects on quasar spectra at
high redshifts [5].

We note that all previous attempts to variabilize the
constants of Nature have been classical: one produces an
action principle for which one or more constants (e.g. the
particles masses, the coupling constants, and G, c or even
~) are promoted to dynamical (scalar) fields [6–8]. Any
quantization of these fields is banned. In this paper we
speculate further that the set up of “varying constants”
may be purely quantum and devoid of a classical counter-
part. In such a situation the constants that we observe
would have fixed values but they would not need to be
unique. That is the speculative avenue to be explored in
this paper.

Usually we start from a classical system (or theory),
and then “quantize” via a given prescription, such as
canonical quantization or the path integral formalism.
The possible pitfalls are well-known. The quantum the-
ory contains more information than the classical theory,
so ambiguities arise, such as ordering issues, inner prod-
uct uncertainties, or a multitude of options for the quan-
tum implementation of constraints, should they exist.
Quite often a given classical system or theory leads to
a variety of quantum analogues, no matter how careful
the quantization procedure is, and we know of no way
to generate quantum solutions of a theory directly from
solutions of its classical counterpart.



2

Another example of the conceptual difficulties plaguing
the interaction between the classical and quantum worlds
is found in the opposite direction, when one seeks a classi-
cal or semi-classical limit of quantum theories. Quantum
gravity has been a major source of trouble in this re-
spect, with mathematically consistent non-perturbative
constructions risking being nothing but a figment of our
imagination for want of a suitable (semi-) classical limit.
Even in more mundane situations (and ignoring the noto-
rious measurement problem) one can say that the quan-
tum and classical worlds sit together rather uneasily. But
could it be that in some situations, such as near the
start of our universe, this interaction happens in a to-
tally novel way? In this paper we propose that the con-
stants of Nature are quantum observables in a purely
kinematic Hilbert space, and that we are currently liv-
ing in an eigenstate of their corresponding operators. An
eigenstate corresponds to a classical lagrangian with fixed
constants and a dynamics which may then be quantized
by traditional methods. We present the formalism in
Section II, allowing for superpositions of such dynamics.

The non-trivial aspects of this proposal start when we
elaborate this basic picture: for example, by allowing two
constants to be non-commuting observables (Section III).
Then, a fundamental indeterminacy would even be built
into the classical dynamics. In fact complementarity may
preclude hamiltonian evolution altogether. We illustrate
these points with a toy model in Section IV: a simple
harmonic oscillator for which the mass and the spring
constant are non-commuting constant observables. De-
pending on technical assumption, a diagonalization pro-
cedure may be possible, leading to alternative dynamics.
The general evolution of the system is then a quantum
superposition of these qualitatively different evolutions.

For the rest of the paper we transpose this construction
to cosmology, targeting G, c and Λ, and the dynamics of
homogeneous and isotropic Universes. In Sections V, VI
and VII we examine what happens if G and c are com-
plementary variables. We find that, even though matter
dominates the spatial curvature K and Λ early on, it
does not affect the expansion of the Universe, which can
be a general superposition of Milne (if K = 1 and Λ = 0)
or de Sitter (if K = 0 and Λ < 0) expansion profiles.
In general the universe evolves as a quantum superposi-
tion of dynamics ruled by effectively setting G to zero,
quantizing the speed of light, and reversing the effective
signs of K and Λ. A similar pattern can be obtained by
making c and Λ a complementary pair (Section VII B).
Superpositions of stable static universes also appear as
solutions (Section VII C).

Instead, in Section VIII and IX we base our construc-
tion on the algebra of SU(2), into which we insert infor-
mation about the sign of G, Λ and K, or whether their
action is switched on or off. We find examples displaying
quantum superpositions of bounces at the initial state for
the Universe.

Finally, in two concluding Sections we discuss the phys-
ical meaning of our construction, summarise its main re-

sults and outline some of its open problems,

II. THE SIMPLEST MODEL

Let us consider a classical dynamics defined by an ac-
tion, S, which is a functional over generic variables (or
fields) globally denoted by x, and that depends on n “con-
stants”, κi:

S =

∫
L(x;κi). (1)

The associated hamiltonian (obtained while keeping κi
constant) is:

H = H(x, p;κi) = L − pq, (2)

with x and conjugate momenta p satisfying a diagonal
Poisson bracket:

{x, p} = δ, (3)

(where the Dirac/Kronecker δ involves all indices and
variables on which the x and p depend). First, we con-
struct a Hilbert space H in which the κi are represented
by Hermitian operators, κ̂i (“observables”), with eigen-
states associated with eigenvalues κi for the constants:

κ̂i|κi〉 = κi|κi〉. (4)

Since this is a theory of these “constants”, no dynamics
(or quantum hamiltonian) is given to Hilbert space H,
i.e. it is a purely kinematical Hilbert space. This is the
first non-conventional assumption of our proposal1.

Next, we first assume that the various constants, κi,
commute with each other, so that their operators can be
diagonalized simultaneously. Then, there is an orthogo-
nal basis of eigenvectors for all the κ̂i, satisfying:

〈κ′1...κ′n|κ1...κn〉 =

n∏
i=1

δ(κ′i − κi). (5)

We propose that being in an eigenstate of the κ̂i entails
not only the observation of the values of the constants κi
corresponding to their eigenvalues, but also of the clas-
sical dynamics defined by H(x, p;κi) on the base space
defined by x, p and endowed with a Poisson bracket. This
system is never classical overall; however, there is classi-
cal behaviour, if we are in the eigenstate. Note that the
constants are not “varying” in time or space, they can
just be observed to on take different values: each quan-
tum outcome has different fixed constants. We might

1 For an attempt to regard constants as solutions to an eigenvalue
problem see, for example, Ref. [12]. Note that the focus of our
paper is significantly different, once the structure of the Hilbert
space and emphasis on non-comutativity are brought into play.
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think of this picture as a Hilbert space of theories. As
long as we stick to eigenstates we have a variation on
the theme of the “multiverse” [13], perhaps with a more
quantum flavour, but not substantially different in its
implications.

We can ask what happens to the classical dynamics
encoded in H(x, p;κi) should we have a superposition of
the |κi〉? We postulate that we would then have a su-
perposition of classical phase spaces, each endowed with
a different hamiltonian labelled by the κi. That is, we
would have a superposition of all the solutions mapped
from the initial conditions by the different evolutions.
This proposal has a definite flavour of the many-worlds
interpretation of quantum mechanics, but applied to the
full set of classical solutions and dynamics2.

We represent the total hamiltonian of the system by

Ĥtot(x, p) =

∫
dnκi |κi〉〈κi| ⊗ H(x, p;κi). (6)

Here, the H(x;κi) are (at least initially) classical, and
the Poisson bracket structure only applies to them. The
Ĥtot|Ψ〉 represents the postulated superposition for the
state |Ψ〉 ∈ H. The symbol ⊗ could represent the usual
bilinear tensor product or any other structure, possibly
more complex. Some notational simplification can be
obtained by defining a composite object

xΨ(t) = |Ψ〉 ⊗ x =

∫
dκi Ψ(κi)|κi〉 ⊗ x(t;κi), (7)

representing the superposition of hamiltonian evolutions
for the various parameters κi, with amplitudes deter-
mined by the wavefunction:

|Ψ〉 =

∫
dκiΨ(κi)|κi〉. (8)

Then, we can define

ẋΨ = {xΨ, Ĥtot}, (9)

ṗΨ = {pΨ, Ĥtot}, (10)

as long as we assume that, by definition, all the quan-
tum quantities to the left of ⊗ act only on themselves as
appropriate, and the Poisson bracket only involves the
classical quantities on the right of ⊗. Indeed, the left-
hand side of (9) can then be written as:

{|Ψ〉 ⊗ x, Ĥtot} =

∫
dκi|κi〉〈κi|Ψ〉 ⊗ {x,H(x, p;κi)}

=

∫
dκiΨ(κi)|κi〉 ⊗ ẋ(t;κi)

= |Ψ〉 ⊗ ẋ = ẋΨ, (11)

2 For an earlier consideration of such superpositions see [14], where
the role of “collapse” of superpositions is also examined in the
context of variations of the speed of light and their implications
for Lorentz invariance.

and likewise, for (10).
As long as we live in an eigenstate of the constants’

operator (which assumes they commute), the proposal
in this Section is very similar to the treatment given
to classical parameters in quantum information the-
ory [9], where they are elevated to bras and kets with
the property (5). The total hamiltonian is then written
as (6), except that in quantum information theory the

H(x, p;κi) ≡ Ĥ(x̂, p̂;κi) already is a quantum hamilto-
nian operator. Thus, at this stage, our proposal is quite
standard, as long as the Ψ are eigenstates. Inevitable
novelties arise though if we now move on to assume that
the κ̂i do not commute.

III. NON-COMMUTING CONSTANTS

Our model becomes significantly different if some of
the constants do not commute. In general, they might
form an algebra:

[κ̂i, κj ] = ifijkκ̂k, (12)

and later we will consider examples targeting particular
“constants”, for example, Ĝ, ĉ and Λ̂. This would in-
troduce a fundamental indeterminacy in their value, ac-
cording to the Heisenberg Uncertainty Principle. First
consider the situation in which just two constants are
conjugates:

[κ̂1, κ̂2] = ih (13)

where h is a possibly dimensionful constant (the dimen-
sions will depend on the model), which may or may not
be proportional to the usual Planck constant. As is well
known, following a purely kinematical argument, we must
have:

∆2κ1∆2κ2 ≥
h2

4
. (14)

One might therefore think that the evolution would take
place in the form of a “fuzzy” hamiltonian evolution in
which the parameters are undetermined, at least if the
|Ψ〉 wavefunction is taken to be a coherent state.

However, this is not the case. It turns out that the
evolution is qualitatively different, and in fact there may
not be any form of conventional hamiltonian evolution at
all. The key point is that we now have a complementar-
ity principle in operation: asking the system about the
value of one constant precludes asking questions about
the other. Although it is true that an eigenstate of, say,
κ̂1 can be written as a superposition of eigenstates of κ̂2,
this superposition does not represent a superposition of
the simultaneous observation of the original eigenvalue
κ1 and each of the eigenvalues of κ̂2. This is a trivial
point, but it should be stressed. Therefore, not only can
we never be in an eigenstate of all the constants, but we
can also never be in a superposition of states with a well
defined hamiltonian in terms of the original constants.
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In terms of the original hamiltonian, there can never be
any hamiltonian evolution for the system, or even a su-
perposition thereof, because we cannot muster enough
information to define the classical hamiltonian, or even a
superposition as envisaged in Section II.

In other words, the replacement

H(x, p;κ1, κ2)→ Htot(x, p; κ̂1, κ̂2) (15)

may be done, but this can never be unravelled in the for-
mat (6), resulting in a superposition of classical hamil-
tonian evolutions defined by H(x, p;κ1, κ2). At best, we
might be able to obtain, for example, something like:

Ĥtot(x, p) =

∫
dκ1 |κ1〉〈κ1| ⊗ H1(x, p;κ1)

+

∫
dκ2 |κ2〉〈κ2| ⊗ H2(x, p;κ2),

if the classical (“proto”) hamiltonian can be split as

H(x, p;κ1, κ2) = H1(x, p;κ1) +H2(x, p;κ2). (16)

The lack of straightforward hamiltonian evolution would
then be signalled by the time derivatives of the states
xΨ and pΨ not equalling states in the original |Ψ〉 (cf.
eqns. (9) and (10)).

This does not mean that nothing can be said about the
evolution of the system, as we will show in the following
Sections. The technical inputs of the theory are

a. The structure of the Hilbert space H: its inner
product, and kinematic observables κ̂i).

b. The state |Ψ〉 ∈ H in which we live.

c. The algebra of commutators (12).

d. The combined hamiltonian Htot and its ⊗ struc-
ture.

Note that the ⊗ encodes how the quantum constants
interact with the classical hamiltonian. This can be non-
linear and as complex as wanted. Depending on the in-
puts above (point d in particular) we could conceivably
find that hamiltonian dynamics is impossible. However,
it may also be preserved in some form.

To clarify and summarise the proposal made in the
last two sections: we have elevated the constants of Na-
ture to quantum operators, but these live in a purely
quantum kinematical Hilbert space. They do not have
classical counterparts, and their commutator does not re-
sult from a classical Poisson bracket (although this could
be explored and is left for future work; see [10] for an
instance of this approach regarding the quantum cosmo-
logical constant). Concomitantly, the commutators of
these constants do not generate any time evolution for
them: in this sense they are the genuine constants.

Note also the difference with [11], where the existence
of a dynamical hamiltonian for the constants is precluded
by the fact that localized time disintegrates, so that a

hamiltonian structure is not possible. Here, the kinemat-
ical nature of the constants’ Hilbert space is a choice, and
it does blend in with a hamiltonian structure for x and p.
The fact that the constants may not commute precludes
in general the existence of a hamiltonian evolution, at
least in terms of the original hamiltonian, since no state
can summon enough information to specify the hamil-
tonian. In some cases, a counterpart to a hamiltonian
evolution can be found, as we shall now see 3.

IV. AN ILLUSTRATIVE TOY MODEL

We will now apply our formalism to a metaphorical toy
model – not to be taken literally as a physical model. It is
intended only to illustrate our proposal for the constants
of Nature. Consider a harmonic oscillator with action:

S(x, ẋ;m, k) =

∫
dt

(
p2

2m
− kx2

2

)
, (17)

and hamiltonian:

H(x, p;m, k) =
p2

2m
+
kx2

2
. (18)

Here, the spring constant, k, and the mass, m, play the
role of “constants” of Nature. The proposal in this paper
is that m and k should be promoted to observables, m̂

and k̂, in an essentially kinematical Hilbert space, H.
If these observables commute, and if we live in an eigen-

state of the constants’ operator, the usual classical theory
follows, with a treatment given to its parameters remi-
niscent of quantum information theory. We would then
say that there are joint eigenstates |k,m〉 for which:

〈k′m′|k,m〉 = δ(k − k′)δ(m−m′), (19)

such that the total hamiltonian is given by

Ĥtot(x, p) =

∫
dmdk |k,m〉〈km| ⊗ H(x, p;m, k). (20)

If the system lives in an eigenstate |k,m〉 then the dynam-
ics encoded in H(x, p;m, k) are observed. For a general
superposition of states |Ψ〉, we postulate a superposition
of all the possible dynamics and its solution xΨ(t), with
the amplitudes given by 〈km|Ψ〉.

Further quantum behaviour follows if m̂ and k̂ do not
commute. Then, we can never be in an eigenstate of both
constants and, as stated above, classical hamiltonian evo-
lution in terms of the original hamiltonian is generally

3 We stress that if a hamiltonian evolution cannot be found, then
concepts such as energy, pressure, partition functions, and equi-
librium may simply not have an operational meaning. This is not
the case in the situation described in Section II, or if a counter-
part of a hamiltonian evolution can be found when the constants
do not commute, as will be assumed for the rest of this paper.
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not possible. A replacement for a hamiltonian evolution
(or a superposition thereof) might be found, however,
depending on the assumptions of the theory, as we now
exemplify.

One example where some sort of hamiltonian evolution
survives is when the ⊗ product is a simple bilinear tensor
product. Let us consider, furthermore, that:

Ĥtot = κ̂2
2 ⊗

p2

2
+ κ̂2

1 ⊗
x2

2
, (21)

that is, we write operators m̂ and k̂ in terms of variables:

κ̂2
1 =

1̂

m
(22)

κ̂2
2 = k̂ (23)

with the assumption:

[κ̂1, κ̂2] = ih (24)

(in this example dimensions imply [h] = 1/T ). As ex-

plained before, Ĥ is not to be seen as a hamiltonian for
κ̂1 and κ̂2 (i.e., no Heisenberg equations for them are
to be generated): their Hilbert space is kinematical. In
contrast, x and p are classical dynamical variables, with
Poisson bracket: {x, p} = 1.

Although no hamiltonian evolution is possible in terms
of the original constants, with such a simple ⊗ product
we can diagonalize the hamiltonian in κ̂1 and κ̂2 by in-
troducing the non-Hermitian operator α̂, such that:

κ̂1 ⊗ 1 =
α̂+ α̂†√

2
⊗
√

hp

x
(25)

κ̂2 ⊗ 1 =
α̂− α̂†√

2i
⊗

√
hx

p
. (26)

Using the assumed bilinearity of ⊗ we can compute:

[α̂, α̂†] = 1 (27)

and:

Ĥtot =
α̂α̂† + α̂†α̂

2
⊗ hxp =

(
α̂†α̂+

1

2

)
⊗ hxp. (28)

We can therefore set up a Fock space representation for
the Hilbert space where κ̂1 and κ̂2 live, i.e. in terms of
the eigenstates |n〉 of N̂ = α̂†α̂. In this representation
the total hamiltonian is given by:

Ĥtot =
∑
n

|n〉〈n| ⊗ h

(
n+

1

2

)
xp, (29)

so it is diagonal.
We find two interesting results. Firstly, we see that,

although there is no hamiltonian evolution in terms of
the dynamics dependent on the original constants (here

κ1 and κ2), the system does have a hamiltonian evolu-

tion in terms of another observable (here N̂) quite dif-
ferent from the original constants. Since any state in the
Hilbert space can be written as a superposition of the
eigenstates of the new observable, the most general evo-
lution corresponds to a superposition of the new hamil-
tonian evolutions. This includes the eigenstates of the
original constants or any coherent state written in terms
of them. In terms of the original constants, the evolu-
tion is therefore a quantum superposition of hamiltonian
evolutions. For an eigenstate of κ̂1 or (κ̂2) the ampli-
tudes 〈n|κ1〉 would be the usual expressions in terms of
Hermite polynomials. For a coherent state, defined from
α̂|α〉 = α|α〉, we would have instead:

〈n|α〉 = e−
|α|2
2

αn√
n!
. (30)

Secondly, we see that each of the hamiltonian evolu-
tions that the system does admit is qualitatively differ-
ent from the original one (possible only if the original
constants were classical numbers, or commuting quan-
tum operators and we selected one of their simultaneous
eigenstates). Specifically, from (29), we see that each
classical hamiltonian associated with n is given by:

Hn(x, p;n) = h

(
n+

1

2

)
xp. (31)

The dynamical equations are therefore:

ẋ = h

(
n+

1

2

)
x (32)

ṗ = −h
(
n+

1

2

)
p (33)

Ḣn = 0 (34)

with solutions:

x = C exp

[
h

(
n+

1

2

)
t

]
(35)

p = C exp

[
−h
(
n+

1

2

)
t

]
. (36)

Here C is an integration constant related to the constant
hamiltonian:

Hn = C2

(
n+

1

2

)
. (37)

Closer examination shows that the qualitatively differ-
ent dynamics can be traced to the selection of positive
frequencies states |n〉. States with n < 0 exist but are
not normalizable. Excluding them demands xp > 0, so
clearly the dynamics in x, p phase space had to be sig-
nificantly modified (indeed by replacing the original har-
monic oscillator by an inverted one with a quantized in-
stability constant).



6

V. DIRECT COSMOLOGICAL APPLICATIONS

The toy model of the preceding Section turns out to
be formally very close to a real cosmological situation:
a closed Friedmann universe filled with radiation, which
has the dynamics of a simple harmonic oscillator4. In-
deed, we have the Friedmann equation for the metric
scale factor a(τ), in conformal time τ with usual con-
stant curvature parameter K = 0,or ±1:

a′2 +Kc2a2 =
8πG

3
M, (38)

where ′ denotes a derivative with respect to τ , so we have
the simple oscillator in conformal time:

a′′ = −Kc2a.

For a closed Friedmann radiation universe, we take

K = 1, (39)

M = ρa4. (40)

This can be easily transposed into the model in Section
IV. Note that for our proposed constant quantization, it
matters where we put the constants in the initial classi-
cal hamiltonian – as is often the case, equivalent classical
theories may lead to different quantum theories. In par-
ticular, it is not indifferent for our procedure whether
G multiplies the matter density, or divides the Einstein-
Hilbert (EH) action, even though this is equivalent clas-
sically. We will at first assume that the EH action is
multiplied by c2/G, rather than having G/c2 multiplying
the matter hamiltonian, before a transition to operators
is imposed. With this choice the hamiltonian has units
of mass density. Other choices will be explored later.

Specifically, let us assume a situation where we write
the hamiltonian constraint implied by (38) as:

H(a, p;G, c) = G
p2

2
+
c2

G

a2

2
≈ 4πM

3
(41)

where ≈ means on-shell and p = a′/G is implied by the
Hamilton equation:

a′ = {a,H} = Gp, (42)

with the usual Poisson bracket {a, p} = 1. We can sub-
ject this classical theory to our quantization of constants
procedure, directly lifting results from the previous Sec-
tion (cf. Eq.21), with the identifications:

κ̂2
1 =

ĉ2

G
, (43)

κ̂2
2 = Ĝ. (44)

4 This is true for any perfect fluid with equation of state P =
(γ−1)ρ, where P is the pressure, in a closed Friedmann universe
if we transform the scale factor a(τ) to y(τ) = a(3γ−2)/2 where τ
is the conformal time [15]. This transformation shows that y(τ)
satisfies the simple harmonic oscillator equation.

Thus, κ̂2 =
√
Ĝ and κ1 can be any linear combination of

ĉ(Ĝ)−1/2 and (Ĝ)−1/2ĉ, and we can check that

[ĉ, Ĝ] = 2ihĜ (45)

enforces the required (24). Concomitant with the hamil-
tonian having units of a mass density, in this example, the
quantity h (playing the role of a dimensionally corrected
Planck’s constant of unknown numerical value) has units
of a speed.

We can therefore use the results of the previous Section
to conclude that the most general solution for the Fried-
mann metric scale factor is a superposition of solutions
of the form

a = C exp

[
h

(
n+

1

2

)
η

]
, (46)

with n labelling the terms of the diagonalized hamilto-
nian (29), and producing a discretized Hubble expansion
rate. This is a superposition of Milne universes, since
they are exponential in conformal time, not proper time,
t, where dt = adτ . However, the dynamics behind it is
very different from that of the general relativistic Milne
universe (for example, we have K = +1, rather than
K = −1). Note, for example, that the a evolution can be
obtained without p. We find for p, independently, that

p =
4π

3

ρa3

h(n+ 1
2 )
, (47)

either directly from Hn ≈ 4πM
3 , or from the Hamilton

equation for p.

VI. MORE GENERAL EQUATIONS OF STATE

The previous result is very robust. It is valid regardless
of the matter equation of state. This can be checked via
the transformation to y(τ) mentioned above. We present
an alternative method at the end of this Section, to which
we refer the reader who wishes to skip the mathematics
details. It can also be checked that the same result is ob-
tained using either conformal or proper time, dispelling
obvious breaking of Lorentz invariance. We start by ex-
plaining how to do more general calculations, deriving a
general rule of thumb.

Note first that the algebraic manipulations leading to
(29) do not rely on the hamiltonian in x and p being that
of a harmonic oscillator. They rely only on the hamil-
tonian as a function of the quantized constants κ1 and
κ2 being formally that of a quantum harmonic oscillator.
Therefore, in a more general setting we have the follow-
ing recipe. Start from a classical proto-hamiltonian of
the form

H(x, p;κ1, κ2) =
κ2

2

2
f(x, p) +

κ2
1

2
g(x, p) + h(x, p). (48)
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Kinematically quantize its constants κ1 and κ2, subject
to (24). Hence, (48) is replaced by

Ĥtot =
κ̂2

2

2
⊗ f(x, p) +

κ̂2
1

2
⊗ g(x, p) + h(x, p). (49)

As in the calculation leading to (29), this can be diago-
nalized to

Ĥtot =
∑
n

|n〉〈n| ⊗
(
h

(
n+

1

2

)√
fg + h

)
, (50)

where the last term (in h) follows from

1 =
∑
n

|n〉〈n|. (51)

Therefore, as a rule of thumb, the hamiltonian can be di-
agonalized into terms Hn, (labelled by a discrete observ-
able n replacing κi), each containing a term multiplying
h(n+ 1/2) and the geometrical mean of the original fac-
tors multiplying κ2

1 and κ2
2, to which one must add any

terms left outside the non-commuting variables (here de-
noted by h). In addition, any constraint valid for the
original hamiltonian (e.g. H ≈ 0) is now applicable to
each of the diagonal components (e.g. Hn ≈ 0).

Equipped with this rule of thumb, we can now explore
more general settings. Let us work with proper time,
t, for a change (the calculation is almost identical with
conformal time) and take the proto-hamiltonian:

H =
Gp2

2
+

c2

2G
− 4π

3
ρa2, (52)

with the on-shell constraint H ≈ 0 and the separate con-
dition:

ρ =
M

a3γ
, (53)

(we recall that the equation of state is given by P =
(γ − 1)ρ, where P is the pressure and γ is constant). In
(52), ρ is given by (53) and is to be seen as a function
of a. It can be checked that this leads to the Fried-
mann and Raychaudhuri equations via Hamilton’s equa-
tions and/or the constraint (note that p = ȧ/G, where
the dot denotes derivative with respect to proper time
and K = +1). Upon quantization with the same identi-
fications and assumptions as in Section V (i.e. (43) and
(44), with commutator (45) enforcing (24)), we therefore
replace H with

Ĥtot =
κ̂2

2

2
⊗ p2 +

κ̂2
1

2
⊗ 1− 4π

3
ρa2, (54)

and this diagonalizes to

Ĥtot =
∑
n

|n〉〈n| ⊗
(
h

(
n+

1

2

)
p− 4π

3
ρa2

)
. (55)

Each Hn term in the sum leads to

ȧ = {a,Hn} = h

(
n+

1

2

)
(56)

so that:

a = h(n+
1

2
)t, (57)

p =
4π

3

ρa2

h(n+ 1
2 )
, (58)

which is nothing but (46) and (47) in terms of proper
time instead of conformal time. As announced the results
derived in the previous Section for radiation do not in fact
depend on the equation of state. They can also be equally
obtained with proper and conformal time. Indeed, as the
first Hamilton equation for (50) shows (ȧ = {a,Hn}), the
expansion factor a is blind to matter, or put in another
way, matter does not appear to gravitate. The quantized
Hubble constant is given by:

H =
ȧ

a
=

h(n+ 1
2 )

t
. (59)

VII. FURTHER MODELS BASED ON THE
SAME ALGEBRA

Bearing in mind the rule of thumb derived at the start
of Section VI, we can now explore the effects of imposing
a similar algebra on other constants of Nature in the
same setting. We begin by introducing the cosmological
constant, Λ.

A. Models involving Λ

We could have started with a proto-hamiltonian,

H =
Gp2

2
+
Kc2

2G
− Λc2a2

6G
− 4π

3
ρa2, (60)

in order to accommodate a general curvature K and a ge-
ometrical cosmological constant (i.e. a cosmological term
with units 1/L2 arising from the geometrical part of the
action). Then, with the same assumptions (specifically,
Eqns. 43, 44, 45), this would translate into:

Ĥtot =
κ̂2

2

2
⊗ p2 +

κ̂2
1

2
⊗
(
K − Λ

3
a2

)
− 4π

3
ρa2. (61)

So long as

K − Λ

3
a2 > 0, (62)

the quantization and diagonalization can proceed as be-
fore (if this condition is violated we would be quantizing
an inverted harmonic oscillator; we leave this for future
work). Then, applying the rule of thumb given in Sec-
tion VI, we obtain,

Ĥtot =
∑
n

|n〉〈n| ⊗ Hn (63)

Hn = h

(
n+

1

2

)
p

√
K − Λ

3
a2 − 4π

3
ρa2. (64)
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For each n, the first Hamilton equation gives:

ȧ = {a,Hn} = h

(
n+

1

2

)√
K − Λ

3
a2. (65)

This can be easily integrated for the various cases K =
0,±1 and Λ > or ≤ 0.

If K = 0 and Λ < 0, for all matter equations of state
we find exponential expansion:

a = C exp (Ht) (66)

H = h

(
n+

1

2

)√
|Λ|
3

(67)

with a quantized Hubble constant H. We see that even
though the matter ρ dominates at early times, Λ controls
the dynamics of a. Matter, however, still dominates the
conjugate momentum:

p =
4π

3

ρa√
|Λ|
3 h(n+ 1

2 )
. (68)

Likewise, it can be checked that K = −1 and Λ > 0 lead
to AdS-type expansion

a = A sin

(
h

(
n+

1

2

)√
|Λ|
3

)
(69)

with p obtained from Hn = 0.
We could continue listing solutions, but by now a pat-

tern has emerged, which can be understood. Note that
(65) can be seen as the expanding branch of the alterna-
tive effective Friedmann equation:

H2 =

(
ȧ

a

)2

= h2

(
n+

1

2

)2(
K

a2
− Λ

3

)
, (70)

(the analogy is only partial and fails to capture the be-
haviour of the conjugate momentum p). In passing, we
note that the contracting branch would result from the
negative energy spectrum (the “Dirac sea”), and will be
studied elsewhere (its wave functions are not normaliz-
able). Therefore, at least regarding a, the dynamics of
the diagonalized hamiltonian is similar to GR but replac-
ing the original non-commuting constants c and G by the
effective constants:

c → h

(
n+

1

2

)
, (71)

G → 0; (72)

that is, G is switched off and c becomes quantized. In
addition, the modified dynamics effects sign changes in
the other parameters:

K → −K (73)

Λ → −Λ. (74)

This explains the counter-intuitive pattern obtained in
our solutions. We see why, even though ρ dominates the
curvature and Λ terms, the expansion is blind to it in the
diagonalized dynamics: G has switched off and matter is
a mere spectator because it does not gravitate. Unsur-
prisingly, all our solutions for a are also independent of
the matter equation of state. We see also why K = 1
leads to Milne expansion: K appears with opposite sign
in the effective dynamics. Likewise for exponential ex-
pansion with K = 0 and Λ < 0 and AdS expansion for
K = 1 and Λ > 0. The Hubble parameters appear quan-
tized because the conversion constant c is quantized.

B. Complementary G and Λ

One of the solutions above can be reproduced from a
fundamentally different standpoint if G and Λ are pro-
moted to operators that do not commute among them-
selves, but which do commute with c and all the other
constants of the theory. Assume that Λ is forced to be
negative (how a formalism can be developed to deter-
mine the sign of a constant will be presented later in this
paper), and that:

κ̂2
1 =

|̂Λ|
G
, (75)

κ̂2
2 = Ĝ, (76)

with (24) assumed (in this case dimensionally [h] = 1/L).
Then, if K = 0, the proto-hamiltonian (60) now trans-
lates to:

Ĥtot =
κ̂2

2

2
⊗ p2 +

κ̂2
1

2
⊗ c2a2

3
− 4π

3
ρa2, (77)

and diagonalizing into pieces with

Hn = h

(
n+

1

2

)
pca√

3
− 4π

3
ρa2. (78)

For all γ, each of these leads to:

ȧ = {a,Hn} = h

(
n+

1

2

)
ac√

3
. (79)

and to a solution:

a = C exp

(
hc√

3

(
n+

1

2

)
t

)
. (80)

Even though the solution is very similar to that above,
the setting is different. Instead of (71) and (72) we have
induced the effective changes:

Λ → h2

(
n+

1

2

)2

, (81)

G → 0. (82)

That is, we have switched off G, as before, but now quan-
tized Λ instead of c. In addition, Λ effectively acts as if
its sign has been reversed. Including K here is also very
different, since the quantum harmonic oscillator will then
acquire an interaction term.
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C. Models leading to static universes

It could be that the classical theory from which we
start is not general relativity, but some extension or
modification of it, adding new parameters that can be
constrained by observations. The prospect of quantiz-
ing these parameters, however, might make them very
relevant in the early universe, even if irrelevant to the
classical dynamics at late times. We illustrate this point
with an example.

For simplicity, consider a Friedmann model with K =
Λ = 0 and proto-hamiltonian containing some parameter
ζ:

H =
Gp2

2
+

ζ

2p2
− 4π

3
ρa2 ≈ 0. (83)

Even at this stage, the first Hamilton equation leads to
a novelty:

ȧ = {a,H} = Gp− ζ

p3
, (84)

so that the Friedmann equation is modified even classi-
cally. Therefore a dimensionless combination involving ζ
must be small, but this does not mean the implications
cannot be large when its quantization is relevant.

Indeed, if we now quantize as in the previous examples,
but with identifications:

κ̂2
1 = ζ̂ (85)

κ̂2
2 = Ĝ (86)

we get the quantum hamiltonian:

Ĥtot =
κ̂2

2

2
⊗ p2 +

κ̂2
1

2
⊗ 1

p2
− 4π

3
ρa2, (87)

which results in diagonalized pieces:

Hn = h

(
n+

1

2

)
− 4π

3
ρa2. (88)

Therefore, the Hamilton equation for a for each of these
pieces gives:

ȧ = 0 (89)

with the hamiltonian constraint, Hn ≈ 0, fixing:

an =
4π

3

ρ(
n+ 1

2

) . (90)

The fact that G and ζ may become complementary vari-
ables at early times therefore makes ζ relevant, no mat-
ter how small it may be classically. Specifically, we need
the wave function to be a coherent state centered around
ζ = 0 and the current value of G. Early on, this decom-
poses into a superposition of Fock states (as in Eq.30),
each corresponding to a static universe with a different
constant expansion factor, and thus containing different
amounts of matter in the same comoving region.

VIII. SWITCHES AND THE ALGEBRA OF
SU(2)

Another class of applications results from taking three
constants, considering a piece of binary information
about them (for example their sign, or whether they are
switched off to zero, or switched on at a fixed value),
and place this information in the fundamental represen-
tation of SU(2). This binary information can only then
be known about one of the constants, with the others just
working as complementary discrete variables. The gen-
eral framework is most easily illustrated by two extreme
cases: when we are concerned with the sign of two con-
stants; and when we use the algebra to switch all three
on or off. Mixed cases will be explained at the end of this
Section.

A. The signs of the constants

Consider a proto-hamiltonian made up of four terms:

H = f + g + h+ r (91)

for which we will explore the sign of the first three. Here,
all terms are functions of generic x and p, as well as con-
stants κi (which we assume can be treated classically or
as eigenvalues of operators for which the universe is in an
eigenstate). If the constants κi appear multiplicatively in
these terms, we are effectively exploring their sign.

As an example, we could revisit the toy model of Sec-
tion IV, add an aharmonic term to it, and set:

f =
p2

2m
,

g =
kx2

2
,

h = λx4,

r = 0.

Our models here would therefore concern the sign of m,
k and λ; that is, whether we have a ghost or not, if the
oscillator is inverted or not, and the sign of the quartic
term.

As before, the idea is to replace the proto-hamiltonian
by a quantum hamiltonian in which the aspect under
consideration is promoted to an operator in a kinematical
Hilbert space. Specifically, we replace (91) by

Ĥtot = σ̂1 ⊗ f + σ̂2 ⊗ g + σ̂3 ⊗ h+ r, (92)

where σi are Pauli matrices. Thus the sign of a given
term is fixed if we are in an eigenstate of its corresponding
σi; however the sign of more than one of the terms can
never be known, due to the laws of quantum mechanics.
As a result the original hamiltonian dynamics cannot be
used to propagate the system.
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Nevertheless, as before, if the ⊗ product is trivial, the
hamiltonian can be diagonalized. The system then gener-
ically evolves as a superposition of alternative hamiltoni-
ans. Diagonalization of (92) leads to

Ĥtot =
∑
S=±
|S〉〈S| ⊗

(
r + S

√
f2 + g2 + h2

)
, (93)

with a single “sign” S = ±1. If one of the three terms
dominates, S corresponds to the choice of sign for that
term in the original hamiltonian. If two or three of these
terms are comparable we must replace the original hamil-
tonian by the root-mean-square (RMS) average of the
three terms before taking the ± sign associated with S.

B. Switching the constants on and off

A similar model can be set up by shifting the Pauli
matrices so that their eigenvalues are either 0 or 1. The
eigenstates are then associated with switching on and off
the corresponding term (or constant, if it appears multi-
plicatively in the term). If we were to apply this to all
three terms, we would have:

Ĥtot =
σ̂1 + 1

2
⊗ f +

σ̂2 + 1
2
⊗ g +

σ̂3 + 1
2
⊗ h+ r.

Diagonalization would then result in:

Ĥtot =
∑
S=±
|S〉〈S|⊗

(
r +

f + g + h

2
+ S

√
f2 + g2 + h2

4

)
.

Again, if one of the three terms dominates then the
hamiltonian does for that term what would be expected
by identifying S and the eigenvalue for that term (S = 1
switches on, S = −1 switches off). If the terms are com-
parable instead, then a suitable average is made, based
on the RMS.

Given the patterns found in the two extreme cases
above, we can guess the result for hybrid cases, where
we are concerned about the sign of some terms but the
on/off nature of others. For example

Ĥtot = σ̂1 ⊗ f +
σ̂2 + 1

2
⊗ g +

σ̂3 + 1
2
⊗ h+ r.

would result in:

Ĥtot =
∑
S=±
|S〉〈S| ⊗

(
r +

g + h

2
+ S

√
f2 +

g2 + h2

4

)
.

IX. COSMOLOGY AND THE SIGN OF THE
CONSTANTS

We now consider a cosmological application of the
formalism developed in Section VIII, starting from the
proto-hamiltonian:

H =
p2c2

4
+K − Λa2

3
− 8πG

3c2
ρa2. (94)

It can be readily proved that the hamiltonian constraint,
H ≈ 0, implies the Friedmann equation (note that with
this hamiltonian ȧ = {a,H} = pc2/2). With this choice
of “where to put the constants” the hamiltonian has units
[H] = 1/L2. We subject this model to the formalism of
Section VIII with choices and notation:

f = K (95)

g = −Λa2

3
= −λa2 (96)

h = −8πG

3c2
ρa2 = −m

a2
(97)

r =
p2c2

4
(98)

where, for simplicity, we have assumed a radiation equa-
tion of state, γ = 4/3 (but what follows generalizes
straightforwardly to other γ). We can now consider what
happens for the various cases in which we use SU(2) to
probe the sign or the on/off nature of the various terms.
For each case we have two types of dynamics labelled by
the eigenvalue S. In some cases no qualitative novelties
were found. Below we highlight those where significantly
different behaviours emerge.

A. On and off switches for K, Λ and G

Imagine a situation in which we fix the values of K,
Λ (which may be positive or negative) and G (assumed
positive for simplicity), and insert the information on
whether they are switched off or on (set to these val-
ues) into the algebra of SU(2). Then, the hamiltonian
constraint for each HS in

Ĥtot =
∑
S=±
|S〉〈S| ⊗ HS (99)

implies the Friedmann equations for each eigenstate la-
belled by S = ±1:

H2 =
m

2a4
− K

2a2
+
λ

2
+ S

√
m2

4a8
+

1

4a4
+
λ2

4
. (100)

The presence of either a bounce or a turnaround is im-
mediately revealed by the zeros of the right-hand side,
should we choose the S = −1 branch:

a2 =
λ

2K

(
1±

√
1− 4

mλ

)
. (101)

Real roots require mλ ≥ 4, so with m > 0 (i.e. pos-
itive G) we must also have Λ > 0. Since a2 must be
positive (101) then implies K = 1. By drawing the ef-
fective potential (defined from ȧ2 + Veff = 0), we see
that indeed the universe oscillates between a bounce and
a turnaround in this branch. This can be inferred from
Fig. 1, where we depicted Veff for K = 1, m = 4 and
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λ = 4. The universe expands and contracts in the re-
gion where Veff is negative (with kinetic terms given
by ȧ2 = −Veff ), with a bounce (smallest root) and a
turnaround (largest root) where Veff = 0.

0.5 1.0 1.5 2.0 2.5 3.0
a

-1.0

-0.5

0.5

1.0

Veff
K = 1, m = 4, λ = 4

FIG. 1: The effective potential for K = 1, m = 4 and λ =
4. The universe expands and contracts in the region where
Veff < 0 (with ȧ2 = −Veff ), with a bounce and a turnaround
where Veff = 0.

As illustrated in Fig. 2, and as can be read off from
(101), a variety of scenarios can be arranged by dialling
m and Λ. Specifically, by changing m and λ we can make
the bounce as close to zero as required, and the expan-
sion cycle as large as wanted. On the other extreme, by

10 20 30 40 50
a

-15

-10

-5

Veff
K = 1, m = 1000, λ = 1

FIG. 2: The effective potential for K = 1, m = 1000 and
λ = 4. As we see by dialing m and λ we can make the bounce
as close to zero as required, and the expansion cycle as large
as desired.

setting λm = 4, we obtain a static universe with:

a =

√
Λ

6
. (102)

Not only are these conditions different from the usual
Einstein static universe [16], but also, as expected from
the behaviour when λm > 4, we see that such a static
universe is stable. The effective potential is depicted in
Fig. 3 for this case.

0.5 1.0 1.5 2.0 2.5 3.0
a

0.2

0.4

0.6

0.8

1.0

Veff
K = 1, m = 1, λ = 1

FIG. 3: The effective potential for extremal case K = 1,
m = 1 and λ = 4. As the picture shows, a stable static
Universe is found in this case.

B. A single sign switch and two on/off switches

The only other situation where qualitative novelties are
found is when one constant or term is subject to a sign
switch and the other two have an on/off switch within
the algebra of SU(2). Three different cases can be listed:

1. Case I

The most interesting follows from querying the sign of
the gravitational constant and also whether K and Λ are
switched off or on (and set to whatever non-zero value).
Then, the Friedmann equation is:

H2 = − K

2a2
+
λ

2
+ S

√
m2

a8
+

1

4a4
+
λ2

4
, (103)

for the RHS of which we find a single zero at:

a =

(
2m2

−Kλ

) 1
6

, (104)

if S = −1 and KΛ < 0. By drawing the effective poten-
tial (see Fig. 4) we see that it corresponds to a bounce
for K = −1, Λ > 0 and S = −1. A bounce is found;
however, in this case there is no turnaround and recol-
lapse. Nonetheless, the cosmological singularity appears
to be removed here – no doubt due to the uncertainty
in the sign of G early on. Note that, for K = 1, Λ < 0
and S = 1, there is also a root, but it corresponds to a
turnaround, since the effective potential is minus that in
Figure 4. This would be no different from the standard
case.

2. Case II

It could also be that we cannot know simultaneously
whether K = ±1, and whether G and Λ are switched
on or off. The sign issue therefore concerns the spatial
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Veff
K = -1, m = 1, λ = 1

FIG. 4: The effective potential when we query the sign of the
gravitational constant and also whether K and Λ are switched
off or on, with K = −1, m = 1 and λ = 1. A bounce is found,
but in this case there is no turnaround at a maximum and
subsequent recollapse.

curvature K, which we know to be non-zero, but quan-
tum mechanically can be a superposition of K = 1 and
K = −1. Then, the Friedmann equation resulting from
the diagonalized hamiltonian becomes:

H2 =
m

2a4
+
λ

2
+ S

√
m2

4a8
+

1

a4
+
λ2

4
. (105)

Taking the S = −1 branch, we see that there are no
solutions (the RHS is negative) unless mλ = 2 in which
case

H ≡ 0. (106)

Therefore, we obtain static solutions for all a, with in-
different stability.

3. Case III

Finally, let us query the sign of Λ, and whether or not
G and K are switched on (with G > 0 and either K = 1
or K = −1). The Friedmann equation becomes:

H2 =
m

2a4
− K

2a2
+ S

√
m2

4a8
− 1

4a4
+ λ2. (107)

For the S = −1 branch, we have a single zero when
K = −1:

a =

(
−mK
2λ2

) 1
6

. (108)

However, no novelties are found in this case. Plotting the
effective potential (see Fig 5) we see that this zero corre-
sponds to a turnaround. The singularity is still present.

In summary, there are striking qualitative novelties in
the dynamics if we take the S = −1 state and use our
formalism to switch on/off at least two of K, G and Λ.

0.5 1.0 1.5 2.0
a

1

2

3

Veff
K = -1, m = 1, λ = 1

FIG. 5: The effective potential when we query the sign of
Λ and also whether or not G and K are switched on, with
K = −1, m = 1 and λ = 1.

One can see that in all other cases no new zeros for ȧ
are generated, the effects of the new dynamics limiting
themselves to subtle differences in the transition regions
between the eras when one of the 3 species dominates. If
we take the S = −1 state, however, should we probe the
on/off switch of K, G and Λ we find generically an early
bounce. Ditto if we query the on/off switch of K and Λ
and the sign of G. The only other case of any novelty
was discussed in Section IX B 2 and is highly contrived.

X. DISCUSSION

In this Section we briefly discuss the physical mean-
ing of our model within the broader context of theories
of the constants of Nature. We should clearly distin-
guish between variability (e.g. changes in space and time,
or with energy, within a single universe) and diversity
(where the constants remain fixed in each realization of
the universe).

If we envisage theories with dynamical spacetime vari-
ations (for example Refs. [6–8]), then the variability
(rather than the instantaneous, local numerical values)
of dimensionful constants is meaningful because, even
though the variations are tied to a system of units, its
choice is pegged down by the dynamics (e.g. the la-
grangian) given to the fields controlling the variations,
typically rendered simple by that choice of units. Seen
in another way, the dynamics yields dimensionful inte-
gration constants giving meaning to the variations. For
example, in Brans-Dicke (BD) theory [6], the BD scalar
field φ = G−1 is dimensionful but satisfies a second-order
differential equation whose two constants of integration
have the same dimensions, and their ratios with φ are
trivially dimensionless, and so there is no confusion over
Brans-Dicke being a theory for a varying dimensional
constant (G).

Quite another situation arises when we imagine an en-
semble of possible universes, each with its own set of fixed
values for the constants, which then vary throughout the
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ensemble (such as in the Hilbert space proposed here,
if all the operators associated with the constants com-
mute). Then, their different numerical values are devoid
of physical meaning if they produce the same dimension-
less constants, and amount to nothing more than a rigid
(i.e. fixed throughout each universe) change of units.

However, as this paper shows, we now see that, even
in the latter context, if dimensionful constants are as-
sociated with operators that do not commute, the story
changes. A physical meaning can be assigned to “di-
verse” dimensionful constants, because their complemen-
tarity precludes the naive hamiltonian evolution associ-
ated with them. A different operational dynamics arises
from confronting the diversity of non-commuting con-
stants.

A further contribution to this discussion can be ex-
tracted from the models presented in Section VIII. A
change of units can never undo the information about
the sign of a constant, or whether it has a zero or a non-
zero value. This is true even before non-commutativity
is applied to these models.

XI. CONCLUSIONS

We have introduced a new approach to handling tra-
ditional physical constants in a quantum cosmological
setting (quite different from either of the traditional
ones [17–20]) by elevating constants of Nature to quan-
tum operators in a kinematical Hilbert space. They do
not have classical counterparts, and their commutators
do not arise from classical Poisson brackets. Accord-
ingly, the commutators of these constants do not endow
them with any time evolution: in this sense they are
the genuine constants – although their observed values
are not fixed to take only a single set of values. We
began by discussing the situation where the operators
representing constants were commuting. In this case our
proposal resembles the treatment given to classical pa-
rameters in quantum information theory – at least, if we
live in an eigenstate of the constants. The possibility of
non-commutativity introduces novelties, due to its asso-
ciated uncertainty and complementarity principles – and
may even preclude hamiltonian evolution. In this case
the system typically evolves as a quantum superposition
of hamiltonian evolutions resulting from a diagonaliza-
tion process, and these are usually quite distinct from
the original one (defined in terms of the non-commuting
constants).

We presented several toy examples targeting G, c and
Λ, in the context of the dynamics of homogeneous and
isotropic universes. If we base our construction on the
Heisenberg algebra and the quantum harmonic oscillator,
the alternative dynamics tend to silence matter (effec-
tively setting G to zero), and make the spatial curvature
and the cosmological constant terms in the Friedmann
equations act as if their signs are reversed. As a result,
the early universe expands as a quantum superposition

of different Milne or de Sitter metrics regardless of the
material equation of state, even though the matter nom-
inally dominates the density (in ρ but not Gρ). A su-
perposition of Einstein static universes was obtained as
another worked example. We also investigated the re-
sults of basing our construction on the algebra of SU(2),
into which we can insert information about the sign of a
constant of Nature, and whether its action is switched on
or off. In this case we found examples displaying quan-
tum superpositions of bounces in the initial state for the
universe.

Our discussion has targeted the most interesting cases
of quantising the constants c,G and Λ because they have
immediate controlling consequences for the dynamics of
homogeneous and isotropic universes. Other investiga-
tions can be made of cosmological models with differ-
ent dynamics following the same quantum states of con-
stants, where we have found that the quantum behaviour
of simple anisotropies with isotropic 3-curvature does not
reproduce that of massless scalar fields, as in the classi-
cal theory. In order to extend this approach to explore
other constants, like the fine structure constant [7, 8], the
electron-proton mass ratio [21], or the parameters defin-
ing the minimal standard model [22, 23], choices have to
be made about possible non-commuting operator pairs.
These extensions will be subjects for further work.

Another possible extension of this work concerns the
classical limit of these theories, and what the wavefunc-
tion of the constants might be. It was suggested in [11]
that the parameter h controlling non-commutativity
(which need not be directly related to the usual ~) could
be a function of the cosmic density (h = h(ρ)) and that
below a certain density it could be pushed to zero, h→ 0,
possibly at a phase transition. This could assist in bring-
ing about classicality, but it might also require the wave-
function to be a coherent state in the original κ1 and
κ2 in (24). The detailed construction of these states,
however, is not straightforward. Note that they are not
the naive coherent states built from α defined from (25)
and (26), in fact, the latter are time dependent and form
squeezed states in κ1 and κ2 at late times. This is be-
cause the transformation between the αi and the κi is
time-dependent, with implications to be more thoroughly
studied in a paper in preparation.

If the late-time dynamics is brought about by a phase
transition which sets h = 0, then no prediction is made
for the late-time value of the constants (it is simply put
in by hand when the appropriate coherent state is built).
Likewise, there is no implication that a fundamental in-
determinacy between constants might be at work at late
times. However, the phase transition scenario is sim-
ply the minimal model, and further complexity could be
built in. The issue of bringing about the late-time dy-
namics in our model would then be similar to the grace-
ful exit problem in inflation, or the equivalent for all al-
ternative scenarios. In such non-minimal models it is
possible that the formalism proposed here would be at
work nowadays, with interesting phenomenological im-
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plications. Such matters are left for further work. Note
also that the issue of the collapse of the wave-function
does not need to be addressed unless we are ready to
embraced such non-minimal models.

To conclude we should stress that our constructions
are not currently supported by any theory aspiring to
the status of “fundamental” (such as string theory or
loop quantum gravity). For example, there is no known
fundamental principle specifying which constants should
be included in the algebra of SU(N) generalizing Sec-
tion VIII. We are taking the first steps in a new direc-
tion and many questions are raised that we cannot yet
answer. We hope that others will add to our beginnings
and fill these gaps. In particular it would be interesting
to see whether quantum gravity theories have anything
to say in this respect. Although the discussion of matter

coupling constants is hampered by the fact that most for-
malisms apply to vacuum dynamics only, a discussion of
Λ and G should be possible. Some hints in this direction
can be found in [10, 24].
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