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Nederlandse samenvatting
–Summary in Dutch–

De meeste fysische systemen hebben begrenzingen op de grootte van hun ingangs-
en uitgangssignalen door de aanwezigheid van fysische en/of economische beper-
kingen en/of om veiligheidsredenen. Bij traditionele regelaars wordt in de ont-
werpfase geen rekening gehouden met deze begrenzingen wat er toe kan leiden dat
deze worden overschreden. Deze overschrijding kan instabiel gedrag en/of ernstig
rendementsverlies veroorzaken afhankelijk van de toepassing. Model-gebaseerde
voorspellende regelsystemen (MPC-Model based Predictive Control) voorzien een
systematische behandeling van alle vormen van begrenzingen wat heeft geleid tot
een enorme impact op de praktijk van de industriële regeltechniek. MPC is een
vorm van regelen waarbij de actuele processtuuringang wordt verkregen door bij
elke bemonstering een eindige horizon open kring begrensd optimaal controle-
probleem op te lossen, gebruik makend van de huidige toestand (dwz voorgaande
in- en uitgangswaarden) van de installatie als initiële toestand. De optimalisatie le-
vert een optimale controle sequentie en de eerste controlewaarde in deze sequentie
wordt op de installatie toegepast. Bij de volgende bemonstering vindt een nieuwe
optimalisatie plaats gebaseerd op de nieuwe metingen; dit is het principe van re-
geling met terugwijkende horizon (receding horizon principle).

Drie decennia zijn verstreken sinds enkele fundamentele publicaties van indu-
striële en academische onderzoekers aanleiding gaven tot een grote toename van
onderzoek en commerciële en industriële activiteiten op het vlak van MPC. De
verbetering van de efficiëntie van het on-line optimalisatie-gedeelte heeft geleid
tot de verspreiding van MPC in mechanische en mechatronische systemen, naast
de eerdere toepassingen in procesbesturing en petrochemische installaties. Ge-
zien de noodzaak voor het ontwerpen van veilige regelaars, vooral voor productie-
machines, is het essentiëel om de stabiliteit van het gesloten-kring feedback re-
gelsysteem te garanderen. De enorme vooruitgang geboekt door de academische
gemeenschap in het waarborgen van de stabiliteit door middel van een MPC aan-
pak in het toestandsdomien kon niet altijd rechtstreeks toegepast worden in een
industriële omgeving. De reden is dat de meeste van de industriële implementa-
ties vermijden om stabiliserende terminale voorwaarden te gebruiken (dwz termi-
nale penalisaties, terminale begrenzingen, terminale regelaars) en in het ingangs-
uitgangs domein werken. Een groot deel van dit proefschrift gaat over het ontwerp
en de certificering van de haalbaarheid en stabiliteit van de ingangs-uitgangs MPC
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regelaars voor industriële toepassingen zonder terminale voorwaarden.

De meeste fysische systemen zijn niet-lineair en een bepaalde klasse van deze
systemen zijn bovendien gedistribueerd dwz systemen van erg grote schaal die
zijn samengesteld uit verschillende subsystemen met interactie. De aanwezigheid
van praktische begrenzingen in deze gevallen in combinatie met de noodzaak van
het voorspellen van toekomstige gecontroleerde scenario’s, maakt MPC tot de lo-
gische keuze voor niet-lineaire gedistribueerde systemen. De uitwerking van de
niet-lineaire MPC (NMPC) vereist een iteratief mechanisme en de gedistribueerde
NMPC (DNMPC) vereist een andere iteratieve procedure tussen de verschillende
NMPCs die de subsystemen controleren. De rest van de bijdrage van dit proef-
schrift ligt in het bewijzen van convergentie van NMPC iteraties en het garanderen
van een verbetering van de totale kost met elke iteratie in het geval van een DN-
MPC zonder terminale voorwaarden. Uiteraard hebben al deze real-life systemen
een tijdsafhankelijke dynamica. De ontwikkeling van adhoc leertechnieken om
met deze veranderingen om te gaan is een supplementaire technologische bijdrage
van deze thesis.

Het tweede hoofdstuk brengt de drie belangrijkste formuleringen van voorspel-
lende regeling die al meer dan twee decennia bestaan samen; er wordt gepoogd
om een algemene equivalentie tussen deze technieken te bekomen. De onder-
zoeksgemeenschap actief in adaptieve regeling heeft MPC geformuleerd op basis
van ingangs-uitgangs modellen en filtertechnieken. De Extended Prediction Self-
Adaptive Control (EPSAC) wordt beschouwd als de basis strategie uit deze groep
van online MPC regelaars. Het eerste equivalent van EPSAC is gebouwd voor de
MPC-regelaars die gebaseerd zijn op Diophantine vergelijkingen die leiden tot een
gesloten-vorm oplossing van EPSAC in het onbegrensde geval. Het tweede equi-
valent wordt afgeleid voor de groep van MPC regelaars gebaseerd op toestands-
modellen, die gebruikt worden voor het afleiden van een expliciete oplossing voor
de begrensde EPSAC. Dit hoofdstuk legt niet alleen de grondslag voor de stabili-
teitsanalyse van EPSAC via de afgeleide equivalente formuleringen maar het helpt
ingenieurs ook om deze drie MPC technieken te gebruiken en te analyseren.

Bijna alle MPC onderzoekers hebben stabiliteit van toestandsruimte MPC aan-
getoond door terminale voorwaarden toe te voegen. In tegenstelling tot de indu-
striële werkwijze vermindert dit de haalbare regio waarin het systeem kan functi-
oneren. Het derde hoofdstuk is gewijd aan de haalbaarheid en stabiliteitsanalyse
van de ingangs-uitgangs MPC zonder kunstmatige terminale voorwaarden, waarbij
het aantal wijzigingen in de toekomstige stuursequentie minder is dan de horizon
waarover de proces-dynamica wordt voorspeld. De haalbaarheid van de oplossing
in aanwezigheid van begrenzingen kan ten allen tijde worden gegarandeerd en voor
alle verstoringen, indien de oorspronkelijke toestand zich in een set bevindt die
onveranderlijk is, dwz. dat de toekomstige toestandstrajectories binnen deze set
blijven. De haalbaarheid met onbeperktheid in de tijd zorgt er zo voor dat trajec-
tories altijd begrensd blijven en dit leidt rechtstreeks tot het begrip van praktische
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stabiliteit. Dit wordt op twee manieren bekomen: (i)‘persistente haalbaarheid’ wat
gebaseerd is op het bestaan van een haalbare oplossing en (ii)‘recursieve haalbaar-
heid’ wat de berekening vereist van de expliciete oplossing van het MPC probleem.
Deze hulpmiddelen kunnen worden gebruikt door industriële regeltechniekers om
het werkveld te identificeren waar hun implementaties gegarandeerd veilig zijn en
tevens als richtlijnen voor het ontwerp van veilige MPC regelaars.

In hoofdstuk vier wordt adaptieve penalisatie gebruikt als een mechanisme om
asymptotische stabiliteit van de nominale regelkring zonder terminale voorwaar-
den te bekomen, maar alleen voor repetitieve systemen met enkel begrenzingen op
de procesingang. Dit wordt bereikt door de gewichten van de toekomstige stuur-
acties aan te passen zodanig dat de ingangsbegrenzingen inactief worden. Dan kan
de karakteristieke veelterm voor de aangepaste lineaire MPC afgeleid worden wat
de overeenkomstige stabiliteitsmarges oplevert. Verder wordt het dynamisch ver-
nauwen van de grenzen over de voorspellings horizon ook gebruikt ter verbetering
van de robuuste haalbaarheid. De techniek werd met veelbelovende resultaten uit-
getest op de regeling van een mechanisch massa-veer-demper systeem met sensor
en actuator op verschillende locaties (non-collocated control).

In de praktijk zijn dynamische systemen met begrenzingen niet-lineair van-
wege de onderliggende fysica of variatie van de parameters. De optimalisering in
de NMPC formuleringen zoals de niet-lineaire EPSAC (NEPSAC) maakt gebruik
van een iteratieve techniek. Hoofdstuk vijf begint met het produceren van een
formeel bewijs dat NEPSAC convergeert naar een lokaal optimale oplossing en
een tuning recept om deze eigenschap te garanderen. In een industriële omgeving
overheersen twee soorten niet-lineariteiten. De eerste soort komt voor wanneer
het systeem kan worden beschreven als een stuksgewijs affiene (PWA) vorm. De
ontwikkelingen inzake persistente en recursieve haalbaarheid en stabiliteit zonder
terminale voorwaarden werden uitgebreid voor PWA dynamiek. Ten tweede kan
een niet-lineair systeem een schakelende dynamiek hebben. Voor dergelijke sys-
temen, is een NMPC architectuur op twee niveau’s ontworpen waarbij het hogere
niveau het schakelen tussen de NMPCs op de lagere niveaus coördineert. Deze
regelstrategie werd uitgetest op een proefstand voor het in- en uitschakelen van
mechanische koppelingen. De gepresenteerde NMPC technieken zijn snel, een-
voudig en maken geen gebruik van terminale voorwaarden; ze kunnen dus gemak-
kelijk worden ingezet door industriële gebruikers.

In de praktijk bestaan veel grootschalige systemen uit interagerende, begrensde,
niet-lineaire subsystemen, die elk hun eigen gesloten-kring regeling hebben. Dit
komt omdat een volledig gecentraliseerde regelaar te duur zou uitvallen door de
grote hoeveelheid berekeningen en communicatie. Gedistribueerde NMPCs zijn
een logische keuze omdat ze via de voorspellingen rekening kunnen houden met
de begrenzingen en met de naburige interacties. In hoofdstuk zes worden NEPSAC
controllers zonder terminale voorwaarden gebruikt om een DNMPC opstelling uit
te bouwen waarbij elke NEPSAC de totale kost optimaliseert met betrekking tot
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zichzelf en eenmalig communiceert aan de aangrenzende buurman. Een formeel
bewijs wordt ontwikkeld om aan te tonen dat een dergelijke strategie gegaran-
deerd tot verbetering leidt van de totale kost. Een hydrostatische aandrijflijn wordt
gebruikt als testsysteem om aan te tonen dat de voorgestelde DNMPC aanpak toe-
pasbaar is op snelle, interactieve, niet-lineaire, begrensde industriële systemen.

Terminale voorwaarden zijn in essentie moeilijk te berekenen, ze kunnen de
prestaties verminderen en worden niet gebruikt in de industrie. De belangrijkste
bijdrage van dit proefschrift is dan ook een systematische ontwikkeling en analyse
van MPC zonder terminale voorwaarden voor lineaire, niet-lineaire en gedistri-
bueerde systemen. Dit wordt ondersteund door nieuwe theoretische instrumenten
voor het aantonen van de haalbaarheid, de stabiliteit en de convergentie van de
D/N/MPC regelaars en door testresultaten op industriële benchmark-systemen.



English summary

Most physical systems have limitations in the size of their inputs and outputs due to
the presence of physical, economic and safety constraints. Traditional controllers
do not consider these constraints during the design phase which may lead to their
violation. This violation, depending on the industrial application may cause un-
stable behaviour and/or severe loss in efficiency. Model Predictive Control (MPC)
provided a systematic means of handling all forms of constraints leading to tremen-
dous impact on industrial control practice. MPC is a form of control in which the
current control action is obtained by solving, at each sampling instant, a finite
horizon open-loop constrained optimal control problem, using the current state
(i.e. past inputs, past outputs) of the plant as the initial state. The optimization
yields an optimal control sequence and the first control value in this sequence is
applied to the plant. At the next sampling instant a new optimization is performed
based on the new measurements; this marks the idea of receding horizon control.

Three decades have passed since milestone publications by several industrial
and academic researchers spawned a flurry of research and commercial, industrial
activities on MPC. The improvement in efficiency of the on-line optimization part
of MPC led to its adoption in mechanical and mechatronic systems from process
control and petrochemical applications. Given the need for designing safe con-
trollers, especially for production machines, ensuring stability of the closed-loop
MPC is quintessential. However, the massive strides made by the academic com-
munity in guaranteeing stability through state-space MPC have not always been
directly applicable in an industrial setting. The reason being that most of the in-
dustrial implementations avoided using stabilizing terminal conditions (i.e. termi-
nal penalty, terminal constraint, terminal control) and worked in the input-output
domain. A major part of this thesis is concerned with design and certification
of feasibility, stability of input-output MPC controllers for industrial applications
without terminal conditions.

Most physical systems in practice are nonlinear and a class of these are dis-
tributed i.e. large scale systems composed of interacting subsystems. The presence
of practical constraints in these cases combined with the need for forecasting fu-
ture controlled scenarios makes MPC a natural choice for nonlinear and distributed
systems. The nonlinear MPC (NMPC) realization requires an iterative mechanism
and the distributed NMPC (DNMPC) requires another iterative procedure between
the several NMPCs controlling the subsystems. The rest of the contribution of this
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thesis remains in proving convergence of NMPC iterations and guaranteeing an
improvement in the overall cost with every iteration in the case of DNMPC, both
without terminal conditions. Needless to say, all these real-life systems have time-
varying dynamics. A minor technological contribution has been the development
of adhoc learning techniques to cope with these changes.

The second chapter brings together the three main families of predictive control
formulations which have existed for more than two decades; an attempt is made
to establish a generalized equivalence between these techniques. The adaptive
control community formulated MPC based on input-output models and filtering
techniques. Extended Prediction Self-Adaptive Control (EPSAC) is considered as
the baseline representative strategy from this family of online MPC controllers.
The first equivalence of EPSAC is constructed to the MPC controllers based on
Diophantine equations leading to a closed-form solution of EPSAC in the uncon-
strained case. The second equivalence of EPSAC is given towards the family of
state-space based MPC controllers which is used to derive an explicit solution for
constrained EPSAC. This chapter not only prepares the groundwork for stability
analysis of EPSAC through the derived equivalent formulations but also helps an
engineer to use and analyze these three MPC techniques.

Almost all the MPC researchers have shown stability of state-space MPC by
adding terminal conditions, which is contrary to the industrial practice and reduces
the feasible region where the plant can operate. The third chapter is devoted to fea-
sibility, stability analysis of input-output MPC without imposing artificial terminal
conditions and where fewer changes are made to future controls than the horizon
over which the process dynamics are predicted. Constraint satisfaction (i.e. fea-
sibility) can be guaranteed for all time and for all disturbances if the initial state
is inside a set which is invariant i.e. future state evolutions remain within this set.
Infinite time feasibility thus ensures that trajectories remain bounded always, di-
rectly leading to the notion of practical stability. This is achieved in two ways :
(i) ‘persistent feasibility’ that relies on the existence of a feasible solution and (ii)
‘recursive feasibility’ that requires computation of the explicit (particular/optimal)
solution to the MPC problem. These tools can be used by the industrial control
practitioners to identify the operating region where their implementations are cer-
tified safe and also as guidelines for designing safe MPC controllers.

In chapter four, penalty adaptation is used as a mechanism to deliver a more
rigorous asymptotic stability derivation of the nominal closed loop MPC with-
out terminal conditions, but only for input constrained repetitive systems. This is
achieved by adjusting the weights of the future control moves in a way that makes
the constraints inactive. Hence closed form polynomial expression for the adapted
linear MPC can be derived which allows to specify the corresponding stability
margins. Further, dynamic tightening of constraints through the future horizon is
used as a means of improving robust feasibility. The technique is tested for the
control of non collocated (actuator, sensor act at different locations) systems with
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promising results.

In practice, constrained dynamical systems are nonlinear due to the underlying
physics, space or parameter variance. The optimization associated with the NMPC
formulations such as the nonlinear EPSAC (NEPSAC) uses an iterative technique.
Chapter five starts by giving a formal proof of convergence of NEPSAC to lo-
cally optimal solution and a tuning prescription to guarantee this property. In an
industrial setting, two types of non-linearity are predominant. Firstly, when the
system can be expressed in a piecewise affine (PWA) form. The developments on
persistent and recursive feasibility, stability without terminal conditions have been
extended for PWA dynamics. Secondly, a nonlinear system can have switching
dynamics. A two-level NMPC architecture has been designed for such systems,
in which the higher level coordinates the switching between the low level NMPCs
and is tested for the smooth engagement control of clutches. The presented NMPC
techniques are fast, simple and do not use terminal conditions, thus readily adopt-
able by the industry.

Many large scale systems in practice are composed of interacting constrained
nonlinear subsystems, each running their own closed-loop controls. This is be-
cause one fully centralized controller is expensive in terms of both computation
and communication. Distributed NMPCs are a natural choice as they can account
for the constraints and the neighbouring interactions through predictions. In chap-
ter six, NEPSAC controllers without terminal conditions are used to construct the
DNMPC setup where each NEPSAC optimizes a global cost with respect to itself
and communicates once to its adjacent neighbour. A formal proof is developed
to show that such a policy leads to guaranteed improvement in the global cost. A
hydrostatic drivetrain is used as a benchmark to show that the proposed DNMPC
approach is applicable to fast, interacting, nonlinear, constrained industrial plants.

In essence terminal conditions are difficult to compute (requires involvement
of the designer which is not so simple), may compromise performance and are
not used in the industry. The main contribution of the thesis is a systematic de-
velopment and analysis of MPC without terminal conditions for linear, nonlinear
and distributed systems (the industrial engineer in this case does not need to know
what is under the hood of the certifier). This has been supported by new theoretical
tools for proving feasibility, stability and convergence of the D/N/MPC controllers
and by test results on industrial benchmark systems.





1
Introduction

1.1 Introduction

Three decades have passed since the seminal papers on Model Heuristic Predictive
Control [3], Dynamic Matrix Control (DMC) [4], Extended-horizon Self-Adaptive
Control (EPSAC) [5] and Generalized Predictive Control (GPC) [6] appeared.
These publications, along with earlier papers reporting similar ideas generated an
unprecedented level of excitement within the process control community and ush-
ered in the era of Model Predictive Control (MPC). Three decades later, it is re-
garded by many as one of the most important developments in control engineering,
mainly because it is the only systematic way of handling hard constraints through
online optimization [7].

MPC is a form of control in which the current control action is obtained by
solving, at each sampling instant, a finite horizon open-loop constrained optimal
control problem, using the current state (i.e. past inputs, past outputs) of the plant
as the initial state. The optimization yields an optimal control sequence and the
first control value in this sequence is applied to the plant. At the next sampling time
a new optimization is performed based on the new measurements; this is the idea of
receding horizon control. MPC has had a tremendous impact on industrial control
practice. Nowadays it is found in the control rooms of almost every petrochemical
plant [8]. Equally important is the impact MPC made on control research. Through
the effort of many researchers, MPC now rests on a firm theoretical foundation
[9], coupled with development in fast optimization algorithms that are orders-of-
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magnitude faster [10]. These developments enabled the implementation of MPC
for applications involving mechanical and electronic systems [11].

1.2 Motivation

All physical systems have complex dynamics and the requirements on the perfor-
mance of the controller are usually quite demanding. Additionally, their inputs and
outputs are limited in size due to the presence of safety, physical limits, etc. Fur-
thermore, an application might also require a certain level of performance, which
can be translated to a synergetic combination of economic cost function and con-
straints.

Omitting these constraints in the controller design and analysis phase may lead
to a control action that results in the violation of these constraints. Depending on
the criticality of the constraint in the associated industrial application, this vio-
lation might result in unstable behaviour causing system failure, possibly even
leading to loss of human life. Similarly, it is possible that a controller which does
not take into account changing environmental conditions, would drive the system
into an unsafe region.

Given this need for designing safe controllers, especially for production sys-
tems, this thesis concentrates on designing receding horizon constrained optimal
controllers with practical adaptation mechanisms and guarantee that the constraints
will not be violated.

Next to the developments in process industry and adaptive control community
stemming from the input-output/transfer-function based MPC, the research liter-
ature on MPC began to adopt a state-space formulation and rigorous feasibility
and stability proofs followed by means of adding terminal weights, terminal con-
straints and terminal control law [9]. However, a theoretical framework is not very
useful unless it can be implemented for practical systems. On the other hand, the
transfer function formulation was more intuitive and used matured system identi-
fication tools. Next, the ad hoc terminal conditions reduced the feasibility of the
problem, apart from being difficult to compute. Thus, the industrial implementa-
tions largely continued to use input-output formulations of MPC and avoided the
use of the mentioned terminal stabilizing ingredients, thus appearing to defy using
mathematical analysis.

In this thesis, practical stability, i.e. boundedness of trajectories, is proven for
these industrial input-output MPC formulations without terminal conditions, by
deducing the largest ‘safe’ region from which the closed-loop system can never
exit, thus remaining bounded for infinite time. This region could be smaller than
the pre-specified region defined by the safety and performance constraints. The
reason for this is that the specified constraints do not necessarily take into account
the actual physics of the process. For example, the speed limit for cars does not
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always take into account the conditions of the road and if one encounters a very
sharp bend in the road then this limit might not be safe.

Next, another means of certifying asymptotic stability for input constrained
systems by penalty adaptation is introduced for vibrating systems. Many real-life
systems have switched nonlinear dynamics in nature, e.g. a car moving over a
terrain with changing slopes. Many others can be viewed as a composition of
interacting subsystems like harvester machines, wind mills etc. Further in this
thesis, practical solutions for controlling such nonlinear and distributed systems
with MPC under changing environmental conditions is demonstrated on real test
setups. Formal proofs of convergence and guaranteed improvement in cost are also
given for the nonlinear and distributed MPCs.

1.3 Organization and Main contributions

This dissertation is organized as follows:

Chapter 2: Equivalence in Predictive Control Formulations

This chapter introduces a framework that brings together a number of ideas from
the last thirty years in MPC and attempts to place them in a more general, modern
context. The adaptive control community proposed an input-output MPC based
on filtering techniques. De Keyser’s EPSAC would be taken as a representative
strategy from this family of online MPC controllers. The first equivalence of EP-
SAC stems from Clarke’s GPC through the use of Diophantine equations and a
corresponding 3-DOF closed-loop expression is derived. The second equivalence
is constructed towards the family of state-space MPC controllers and more specif-
ically to Bemporad et al.’s explicit solution of the optimal control problem.

Though parts of this chapter have been developed independently, they have
parallels in the literature. The contribution is thus minor and limited to (i) gen-
eralizing the Diophantine based closed-form solution and (ii) deriving the special
cases of the state-space representation of EPSAC.

The results presented in this chapter have been published in:
A. Dutta, R. De Keyser, C.-M. Ionescu, J. Stoev, G. Pinte, and W. Symens, “Ro-
bust predictive control design for optimal wet-clutch engagement,” in American
Control Conference (ACC), pp. 4576–4581, IEEE, 2012

A. Dutta, C.-M. Ionescu, R. De Keyser, B. Wyns, J. Stoev, G. Pinte, and W. Symens,
“Robust and two-level (nonlinear) predictive control of switched dynamical sys-
tems with unknown references for optimal wet-clutch engagement,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 228(4), pp. 233–244, 2014

A. Dutta, R. De Keyser, Y. Zhong, B. Wyns, G. Pinte, and J. Stoev, “Robust
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predictive control of a wet-clutch using evolutionary algorithm optimized engage-
ment profile,” in System Theory, Control, and Computing (ICSTCC), 2011 15th
International Conference on, pp. 1–6, IEEE, 2011

Chapter 3: Certified Predictive Control without Terminal
Conditions

Set invariance is a fundamental concept in the analysis of controllers for con-
strained systems. The reason for this is that constraint satisfaction can be guar-
anteed for all time and for all disturbances if and only if the initial state is con-
tained inside a robust control invariant set. Two ways of guaranteeing infinite time
feasibility are identified: (i)‘persistent feasibility’ which relies only on a feasible
solution to the optimization associated with the MPC and (ii)‘recursive feasibil-
ity’ which relies on explicit computation of a particular/optimal solution but is
less conservative. Both these techniques directly lead to practical stability of the
closed-loop and is demonstrated on longitudinal flight control.

The main contribution of this chapter is in adapting the existing techniques in
set invariance to characterize the feasibility region in the case where (i) control
horizon is shorter than prediction horizon and (ii) no terminal conditions are used.
Building on this, a priori and a posteriori techniques in certifying feasibility/sta-
bility of the MPC problem have been developed.

The results presented in this chapter have been published in:
A. Dutta, E. Hartley, J. Maciejowski, and R. De Keyser, “Certification of a class
of industrial predictive controllers without terminal conditions,” in Decision and
Control, 53rd IEEE Conference on, IEEE, 2014.

Chapter 4: Penalty Adaptive Predictive Control

Penalty adaptive MPC (PAMPC) is introduced as an alternative means of certify-
ing asymptotic stability of the closed-loop. This is achieved by a mechanism of
adjusting the weight of the control moves such that the constraints are rendered in-
active, thereby circumventing the nonlinearity introduced by the constraints. Thus
closed-form polynomial expressions for the adapted linear controller can be de-
rived which allows us to give stability margins in the input-constrained case for
nominal repetitive systems. Further, dynamic tightening of constraints through the
control, prediction horizon is introduced as a means to enhance robust feasibility.
Test results are given over a non-collocated mass-spring-damper setup.

The novelty here is the presentation of a tool i.e. penalty adaptation which may
enable to derive the nominal closed-form solution for the adapted MPC problem
for input-constrained repetitive systems, with an extension to the disturbed case.

The results presented in this chapter have been published in:
A. Dutta, M. Loccufier, C. M. Ionescu, and R. De Keyser, “Penalty adaptive model
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predictive control (PAMPC) of constrained, underdamped, non-collocated mecha-
tronic systems,” in Control Applications (CCA), 2013 IEEE International Confer-
ence on, pp. 1006–1011, IEEE, 2013

A. Dutta, M. Loccufier, C. M. Ionescu, and R. De Keyser, “Robust penalty
adaptive model predictive control (PAMPC) of constrained, underdamped, non-
collocated systems,” Journal of Vibration and Control, 2014.

Chapter 5: Switched Nonlinear Predictive Control

In practice, non-linearity is ubiquitous; De Keyser’s iterative NEPSAC algorithm
is adopted for the control of nonlinear systems and a formal proof of convergence
is developed. Two types of switching nonlinearity are identified. In the first type,
the nonlinear system can be expressed in a piecewise affine (PWA) fashion. Such
a system controlled by MPC without terminal conditions can be certified by both
persistent and recursive feasibility tests. This is illustrated on an example of a car
navigating a terrain with time-varying slope. In the second type, the switching can
be between linear and non-linear system which have different state representations.
For such systems, a new architecture called two-level NMPC (2L-NMPC) in which
reference adaptation is used to transit from one phase to another is introduced. The
2L-NMPC is demonstrated experimentally for wet-clutch control.

The major contributions of the chapter for nonlinear systems are: (i) a full
convergence proof of nonlinear MPC i.e. NEPSAC, (ii) extension of the new fea-
sibility tools developed in chapter 3 to PWA nonlinear systems, (iii) a two-level
NMPC architecture for switching nonlinearity.

The results presented in this chapter have been published in:
A. Dutta, B. Depraetere, C. Ionescu, G. Pinte, J. Swevers, and R. De Keyser, “Com-
parison of two-level nmpc and ilc strategies for wet-clutch control,” Control Engi-
neering Practice, vol. 22, pp. 114–124, 2014

A. Dutta, C. Ionescu, B. Wyns, R. De Keyser, J. Stoev, G. Pinte, and W. Symens,
“Switched nonlinear predictive control with adaptive references for engagement
of wet clutches,” in Nonlinear Model Predictive Control, 4th IFAC conference on,
vol. 4, pp. 460–465, 2012

A. Dutta, C.-M. Ionescu, B. Wyns, R. De Keyser, J. Stoev, G. Pinte, and W. Symens,
“Switched predictive control design for optimal wet-clutch engagement,” in IFAC
Workshop on Engine and Powertrain Control, Simulation and Modeling (ECOSM-
2012), pp. 319–324, 2012.

Chapter 6: Distributed Nonlinear Predictive Control

A pragmatic distributed nonlinear MPC without terminal conditions is developed
for global mechatronic systems composed of interacting sub-systems and a mono-
tonic decrease in the global cost (possibly non-convex) is guaranteed. Further-
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more, in order to tackle time-varying process dynamics, a learning algorithm is
developed, thereby improving the performance of the global control. A first prin-
ciples modeling of the hydrostatic drivetrain has been developed and used for the
design of distributed control of the coupled nonlinear benchmark system. Experi-
mental validation on the benchmark suggests that the proposed control methodol-
ogy is successful in practice.

The novelties of this chapter to distributed control are: (i) guaranteeing im-
provement in global cost with every iteration of the distributed NEPSAC algo-
rithm, (ii) inclusion of a distributed learning mechanism for time-varying dynam-
ics.

The results presented in this chapter have been published in:
A. Dutta, C. M. Ionescu, and R. De Keyser, “A pragmatic approach to distributed
nonlinear model predictive control: Application to a hydrostatic drivetrain,” Opti-
mal Control Applications and Methods, 2014

A. Dutta, R. De Keyser, and I. Nopens, “Robust nonlinear extended prediction
self-adaptive control (NEPSAC) of continuous bioreactors,” in Control & Automa-
tion (MED), 2012 20th Mediterranean Conference on, pp. 658–664, 2012.

Chapter 7: Concluding Remarks and Perspectives

This chapter summarizes the contributions made by this thesis and outlines direc-
tions for future research.

Appendix A: MPC Certification Algorithm

A novel algorithm to certify a MPC controller without terminal conditions together
with the computation of the associated sets is presented.

Appendix B: Model-based and Model-free Learning Control
Strategies

The 2L-NMPC technology and the obtained results are compared to other model-
based and model-free learning strategies for wet clutch control.

The main contribution is a detailed evaluation of model-based and model-free
learning control strategies.

The results presented here have been published in:
A. Dutta, Y. Zhong, B. Depraetere, K. Van Vaerenbergh, C. Ionescu, B. Wyns,
G. Pinte, A. Nowe, J. Swevers, and R. De Keyser, “Model-based and model-free
learning strategies for wet clutch control,” Mechatronics, 2014
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Equivalence in Predictive Control

Formulations

MPC is not that different from the optimal control problems studied in the 50s
and 60s. However, in the classical approaches, the aim was to derive an explicit
form of an optimal feedback law offline. This required a solution to the Hamilton-
Jacobi-Bellman (HJB) equation, which is generally not solvable except a few cases
like the celebrated Linear Quadratic Regulator (LQR) problem [24]. Because of
this, most interesting optimal control problems, practically speaking, remained
unsolved. The MPC approach bypasses the need to solve the HJB equation by
performing an open-loop optimal control calculation online based on the current
state of the process as feedback.

2.1 Introduction

In the 60s and early 70s, the idea of MPC continued to show up sporadically in
the literature. Propoi [25] proposed to use linear programming to control linear
systems with hard constraints. Richalet and coworkers [3] introduced a technique
called Model Heuristic Predictive Control employing a finite impulse response
model and at the same time Charlie Cutler was generating a lot of interest through
DMC based on truncated step response model [4]. Both these methodologies saw
large scale industrial implementations.

Independent from these developments in the process industry, the adaptive con-
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trol community saw a rise of its own version of MPC. EPSAC [5] and GPC [6,26]
amongst others naturally employed a transfer function model, like much of the
work in adaptive control, and stochastic aspects played a key role from the very
beginning. Because of the finite horizon, stability was not guaranteed. At the
commencement of 90s, stability was successfully addressed in a series of papers
[27], [28]; these papers established stability of linear, unconstrained, input-output
systems by imposing terminal equality constraints on inputs and outputs over a
finite interval; equivalent to imposing terminal constraint employed by [29]. Be-
cause the system is linear, cost quadratic, terminal constraint is linear equality, and
control and output constraints are absent, an analytical solution can be computed.
However, in the more relevant situation when output and/or input constraints are
enforced, guaranteeing infinite time feasibility is as important as stability. This
chapter develops the analytical tools necessary to be able to give such guarantees
without using too restrictive terminal conditions and without constraining the first
state prediction to be in a precomputed invariant set.

Next to these, the state-space based MPC matured through the efforts of many
researchers [30], [31] and now rests on a firm theoretical foundation, with though
restrictive but rigorous stability conditions [9]. The restriction comes from the ad-
dition of stabilizing terminal conditions due to which the online problem has more
chances of becoming infeasible (may be due to small perturbations that put the
process outside the nominal region of attraction) and in process control infeasibil-
ity is very costly. In most practical problems, measurements of state variables are
not directly available and one typically employs a state estimator for output feed-
back [32]. An equivalent offline solution to the constrained optimization problem
was developed by Bemporad et al. [33] where the control law was shown to be
piecewise linear and continuous, and could be applied online by solving a point
location problem and then using a lookup table to obtain an affine local state feed-
back law. This explicit characterization of the solution will be used as one of
the building blocks in our analysis through multi-parametric quadratic program-
ming [33].

2.2 Input-Output MPC

Some of the advantages of transfer functions over state-space, amongst others, are
in the compact representation of time delays, availability of matured system iden-
tification techniques and intuitiveness. In the multivariable case too, obtaining a
transfer function matrix is simpler but it must be noted that a state-space transfor-
mation in this case cay be more appropriate for representation and control. In this
section we briefly describe the EPSAC-MPC formulation which is based on input-
output modelling and filtering techniques. Due to its simplicity of implementation,
this algorithm has been used extensively in industrial applications. This will be
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Figure 2.1: A schematic representation of the principles of model-based predictive control.

used as the baseline linear MPC strategy for real-time implementations. The aim
of this chapter is then to analyze the EPSAC formulation by means of Diophantine
equations (that analytically separates the response based on past and future inputs,
outputs) and subsequently present an equivalent state-space representation. These
equivalent realizations form the basis of the stability analysis of EPSAC in the
subsequent chapters.

The process is modeled in discrete time with y(t), ŷ(t), n(t) as process out-
put, model output, disturbance respectively with t ∈ Z denoting time and q−1 the
backward shift operator (i.e. acts on an element of time series to produce the pre-
vious element and can be raised to arbitrary integer powers k: q−ky(t) = y(t−k))
as [34]:

y(t) = ŷ(t) + n(t) =
q−dB(q−1)

A(q−1)
u(t) +

C(q−1)

D(q−1)
e(t) (2.1)

where B/A represents the model dynamics with d ≥ 0 samples delay and C/D is
chosen to form the disturbance filter, with e(t) as white noise with zero mean. Let
the system polynomials be defined as (without loss of generality):

A = 1 + a1q
−1 + . . .+ ana

q−na

B = b1q
−1 + . . .+ bnb

q−nb

C = 1 + c1q
−1 + . . .+ cncq

−nc

D = 1 + d1q
−1 + . . .+ dnd

q−nd (2.2)

The fundamental step is based on the prediction using the basic process model
given by:

y(t+ k|t) = ŷ(t+ k|t) + n(t+ k|t) (2.3)
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where y(t + k|t) is the prediction of process output k steps in future computed at
time t, based on prior measurements and postulated values of inputs. Prediction of
model output ŷ(t + k|t) and of colored noise process n(t + k|t) can be obtained
by the recursion of process model and filtering techniques respectively. The future
response can then be expressed as:

y(t+ k|t) = ybase(t+ k|t) + yoptimize(t+ k|t) (2.4)

The two contributing factors have the following origins:

• ybase(t + k|t) is the cumulative effect of past control inputs, base future
control sequence ubase(t + k|t) which is chosen a-priori and predicted dis-
turbances.

• yoptimize(t + k|t) is the discrete time convolution of the future control ac-
tions
{δu(t|t), . . . δu(t + Nu − 1|t)} with impulse, step response coefficients of
the system, where δu(t+ k|t) = u(t+ k|t)− ubase(t+ k|t).

The design parameter Nu is the control horizon. The optimal control is then ob-
tained by minimizing the following cost function with respect to u(.|.):

V =

N2∑
k=N1

[r(t+ k|t)− y(t+ k|t)]2 + γ

subj. to ∆u(t+ k|t) = 0 ∀k ∈ [Nu, N2) (2.5)

u(t+ k|t) ∈ U, ∀k ∈ [0, N2), y(t+ k|t) ∈ Y, ∀k ∈ [N1, N2]

where r(t+ k|t) is the desired reference trajectory and control increment
∆u(t+ k|t) = u(t+ k|t)− u(t+ k − 1|t). The prediction horizon is the interval
fromN1 toN2. The second cost term γ can take any of the following formulations:

γ = ∀{0, λ
Nu−1∑
k=0

[u(t+k|t)]2, λ
Nu−1∑
k=0

[δu(t+k|t)]2, λ
Nu−1∑
k=0

[∆u(t+k|t)]2} (2.6)

with λ being the control penalty. The cost function in the multivariable case lead-
ing to distributed control is discussed in chapter 6.

The various input and output constraints can all be expressed in terms of say,
δU , [δu(t), . . . , δu(t+Nu−1)]T , resulting in the matrices M̄, N̄ with M̄.δU ≤
N̄ . For example, if the constraint on the vector of future inputs U is |U | ≤ U, then
it can be expressed as |Ubase + δU | ≤ U, where Ubase is the vector of future base
control. Similarly, if the constraint on the vector of predicted outputs Ŷ is given
by |Ŷ | ≤ Y, then it can be expressed as |Ȳ + G · δU | ≤ Y, where G, Ȳ are the
impulse/step response matrix, vector of future base response respectively. From
these relations, it is straightforward to deduce the M̄, N̄ matrices.
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Note that, in the case of output constraints, N̄ is composed of the constraint
value itself minus components which include base response and disturbance pre-
diction. As a result, it leads to dynamic constraint tightening (as the disturbance
estimate is computed online) and thus improved feasibility. The convex polytopic
constraints lead to a convex quadratic program (QP) optimization which can be
solved by an active sets based method, leading to an explicit solution:

γact = −(Mact.H̄.M
T
act)
−1(Nact +Mact.H̄

−1.J) (2.7)

δU = −H̄−1(J +MT
act.γact) (2.8)

where H̄, J are the respective Hessian, gradient of the cost V in (2.5). The solu-
tion itself is obtained in a straightforward way by taking partial derivatives of the
Lagrangian (cost+constraints) and is detailed in 2.4.2. The algorithm iteratively
computes the Lagrange multipliers γact and keeps the ones which are positive,
thus forming the active constraint sets Mact, Nact. The existence of H̄−1 guaran-
tees the convergence of γact and hence optimality. In essence, i.e. the inequality
constrained QP is converted to a sequence of equality constrained QPs and the
purpose of the active set QP solver is to find the correct set of active constraints
to minimize the cost function without violating the constraints [35]. The sketch of
the iterative procedure follows:

1. Compute a feasible solution, for instance by solving the system of constraint
equations, called the working set Mact, Nact.

2. Compute the Lagrange multipliers γact using (2.7)

3. Drop the constraints corresponding to the negative γact from the working
set Mact, Nact.

4. Solve the new equality constrained problem for γact corresponding to the
new working set using (2.7).

5. If γact is non negative, compute the optimal δU using (2.8), else go to step
2.

2.3 Diophantine MPC
Here, we derive the analytic expressions for the input-output MPC by introducing
Diophantine equations. This allows us to derive polynomial expressions for the
predictor dynamics and consequently the closed loop in the unconstrained case (to
be used later in chapter 4 for asymptotic stability).

The k-step ahead prediction of the EPSAC process model leads to:

y(t+ k|t) = q−d · B
A
·u(t+ k|t) +

C

D
· e(t+ k|t) (2.9)
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Now, consider the first Diophantine equation [6]:

C

D
= Ek + q−k · Fk

D
(2.10)

The orders of Ek, Fk are ne = k − 1, nf = max(nd − 1, nc − k) respectively.
Now, using (2.10), the prediction of the disturbance can be written as:

n(t+ k|t) =
C

D
· e(t+ k|t) =

Fk
D
· e(t) + Ek · e(t+ k|t) (2.11)

Note that,Ek · e(t+k|t) consists of only future terms and hence the best prediction
possible is 0. Then, using (2.1) and (2.10), we get:

Fk
D
· e(t) =

Fk
C

(y(t)− q−d+1 · B
A
·u(t− 1)) (2.12)

which can be substituted back into (2.11) to have

n(t+ k|t) =
Fk
C

(y(t)− q−d+1 · B
A
·u(t− 1)). (2.13)

The following Diophantine equation is introduced to split up the predictor into
parts that are known at time t and future signals (with ∆ = 1− q−1):

B

A ·∆
= Gk−d+1 + q−k+d−1 · Hk−d+1

A ·∆
(2.14)

The orders ofGk−d+1, Hk−d+1 are ng = k−d−1, nh = max(na, nb−k+d−1)

respectively. Now, the entire predictor, using (2.13) and (2.14) can be written as:

y(t+ k|t) =Gk−d+1 ·∆u(t+ k − d|t) +
Hk−d+1

A
·u(t− 1)

+
Fk
C

(y(t)− q−d+1 · B
A
·u(t− 1)) (2.15)

≡ y(t+ k|t) =yoptimize(t+ k|t) + ybase(t+ k|t)

It is important to understand that computing the prediction in this way is exactly as
that in EPSAC. This is because, (i)Gk−d+1 due to (2.14) is the step response which
is convolved with future control increments to form yoptimize(t + k|t) and (ii)the
rest of the terms constitute the base response ybase(t + k|t). Akin to EPSAC,
the base response has two components: (i)second term in RHS of (2.15) is the
free response of the system due to the past inputs and outputs and (ii)rest of the
terms in (2.15) constitute the disturbance prediction. The disturbance prediction
computed in this way by letting future white noise to 0 and filtering the current and
past disturbance estimates through 1/C is same as that used by EPSAC filtering
technique. Now, the following cost function is minimized:
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Figure 2.2: Block diagram of the closed loop formulation of EPSAC-MPC strategy. The
polynomials I, J,K which have been derived in section 2.3 constitute the closed form

solution: K · r(t+N2|t) = J · y(t) + I ·u(t|t).

N2∑
k=N1

[y(t+ k|t)− r(t+ k|t)]2 + λ[∆ ·u(t+ k −N1|t)]2

subj. to : ∆u(t+ k̃|t) = 0, ∀k̃ ∈ [Nu, N2 − d− 1] (2.16)

whereN1(= d+1), N2, Nu, λ, r(.|.) are the minimum, maximum prediction hori-
zon, control horizon, control penalty, and reference trajectory respectively, with d
the delay in samples. This gives a closed form solution similar to the original
EPSAC formulation:

U∗ = ∆u(t|t) =

N2∑
k=N1

γk[r(t+ k|t)− ybase(t+ k|t)] (2.17)

where γk are the elements of first row of the matrix (GT ·G+ λ · I)−1GT , where
G is the step response matrix formed by collecting the polynomials Gk−d+1 for
k ∈ [1, N2]. Only the first value from U∗ is applied to the plant. Now, substituting
ybase(t+ k|t) from (2.15) in (2.17) results in:

A ·C ·
N2∑
k=N1

· γk · q−N2+k · r(t+N2|t) = A ·
N2∑
k=N1

γk ·Fk · y(t)

+ (A ·C ·∆ + C ·
N2∑
k=N1

γk · q−1 ·Hk−d+1 −B ·
N2∑
k=N1

γk · q−d ·Fk) ·u(t|t)

≡K · r(t+N2|t) = J · y(t) + I ·u(t|t) (2.18)

where polynomials K,J, I are the coefficients of r(t + N2), y(t), u(t|t) respec-
tively as indicated above. Relation (2.18) represents the polynomial form of EPSAC-
MPC, depicted in Fig. 2.2. The closed loop transfer function for tracking Ty/r and
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regulation Ty/n can then be derived graphically to be:

Ty/r =
q−d ·B ·K

φc
(2.19)

Ty/n =
A · I
φc

(2.20)

with φc the characteristic polynomial:

φc = A · I + q−d ·B · J (2.21)

The expression for the controller is obtained by applying conversion to unity feed-
back on Fig. 2.2:

CMPC =
J

I
(2.22)

Note that, the work by [36] also formulates the transfer functions of the un-
constrained MPC starting from input-output models, but introduces two extra Dio-
phantine equations to handle the difference between control and prediction hori-
zons and hence the approach presented by us is far more compact and usable.
One of the advantages of MPC is that multivariable processes can be handled in
a straightforward manner. An input-output model for an n-output, m-input multi-
variable process can be expressed as:

ĀD · ȳ(t) = B̄ · ū(t) + C̄ · ē(t) (2.23)

where ĀD, C̄ are n × n, n ×m monic polynomial matrices respectively, defined
as:

ĀD = In×n + ād1q
−1 + . . .+ ādnad

q−na

B̄ = b̄1q
−1 + . . .+ b̄nb

q−nb

C̄ = In×n + c̄1q
−1 + . . .+ c̄nc

q−nc (2.24)

The variables ȳ(t), ū(t), ē(t) are the n × 1,m × 1, n × 1 output, input, noise
vectors respectively (the delay can be absorbed in B̄). The matrices ĀD, B̄, C̄ can
be obtained by matrix fraction description [37]. The Diophantine based analysis is
analogous to the derivations made in the single in single out case except that now
we get polynomial matrices instead of polynomials.

2.4 State-space MPC
In several publications, the problem of deriving a controller of the same properties
based on the state-space description has been considered. Ordys et al. [38] con-
sidered one of the early approaches of comparing the state-space and polynomial
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approaches to GPC control, followed by [39] where the equivalence is made only
for the nominal case. We present here more generalized transformation matrices
(from input-output to state-space) in the constrained case under both nominal as
well as perturbed settings.

2.4.1 The Mappings

In this thesis, we consider disturbance augmented state-space description of the
form [40]:[

x̂(t+ 1)
n(t+ 1)

]
=

[
Â 0
0 α

]
·
[
x̂(t)
n(t)

]
+

[
B̂
0

]
·u(t) +

[
0
β

]
· e(t) (2.25a)

y(t) = [Ĉ κ] ·
[
x̂(t)
n(t)

]
(2.25b)

where the first state vector x̂(t) and the associated terms represent the dynamics
of the nominal model and the vector n(t) and its associated terms are used for
disturbance evolution with the output y(t) summing up the respective effects. A
concise representation of (2.25) is given below in (2.26) with the respective terms
having direct correspondence:

x(t+ 1) = A ·x(t) + B ·u(t) + E · e(t) (2.26a)

y(t) = C ·x(t) (2.26b)

The disturbances are bounded by:

n(t) ∈W ⊂ Rw, w(t) = E .e(t) ∈ E ⊂ Rd. (2.27)

The system is subject to pointwise-in-time constraints on the control input and/or
the states:

u(t) ∈ U ⊂ Rm, x̂(t) ∈ X ⊆ Rn. (2.28)

where w, d,m, n are the disturbance, noise, input, state dimensions respectively.
The set U is compact (closed and bounded), while X,W,E are closed. It is as-
sumed that the system and constraints are time invariant.

Theorem 2.4.1. The input-output process model of (2.1) (after absorbing the de-
lay in B) can be transformed to state-space form of (2.26) by choosing the state
vector x(t) ∈ Rna+nb+nd+nc−2 as: x(t) = [ŷ(t), . . . ŷ(t− na + 1),

u(t− 1), . . . u(t− nb + 1), n(t), . . . n(t− nd + 1), e(t− 1), . . . e(t− nc + 1)]T.

Proof. The time-series model of (2.1) as explained before has two additive parts
i.e. the model ŷ(t) = B/A ·u(t) and the disturbance n(t) = C/D · e(t). There-
fore, the time history of all these four variables constitute the state vector and a
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final addition gives the output, through the following transformation matrices:
A = 

−a1 . . . −ana
b2 . . . bnb

0 . . . 0 0 . . . 0
1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 1 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 −d1 . . . −dnd

c2 . . . cnc

0 . . . 0 0 . . . 0 1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 0 . . . 1 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 1 0



B =



b1
0
. . .
0
−
1
0
. . .
0
−
0
0
. . .
0
−
0
0
. . .
0



E =



0
0
. . .
0
−
0
0
. . .
0
−
c1
0
. . .
0
−
1
0
. . .
0



C =
[
1 0 . . . 0 |0 0 . . . 0 |1 0 . . . 0 |0 0 . . . 0

]

(2.29)
This formulation, though non-minimal is crucial for deriving set theoretic prop-
erties starting from input-output models. It is now trivial to see that, substitution
of the derived A,B, E , C matrices in the state-space model of (2.26) gives exactly
the same output as obtained starting from the input-output equations of (2.1). Ab-
sorption of the delay in the B polynomial means inclusion of zeros as the leading
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coefficients corresponding to d samples.

Corollary 2.4.1. The state transformation can be extended to the multivariable
case in a straightforward way by considering the associated variables and co-
efficients as matrices. Consider the multivariable input-output model given by
(2.23), the corresponding state-space representation can be recovered by: x(t) =

[ŷ(t), . . . ŷ(t− na + 1),

ū(t− 1), . . . ū(t− nb + 1), n̄(t), . . . n̄(t− nd + 1), ē(t− 1), . . . ē(t− nc + 1)]T .

Proof. The model of (2.23) can be rewritten as:

ȳ(t) =
B̄

ĀD
· ū(t) +

C̄

ĀD
· ē(t) = ŷ(t) + n̄(t) (2.30)

Now the following transformation matrices completes the proof:
A =

−ād1 . . . −ādnad
b̄2 . . . b̄nb

0 . . . 0 0 . . . 0
I . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . I 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 I . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . I 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 −ād1 . . . −ādnad

c̄2 . . . c̄nc

0 . . . 0 0 . . . 0 I . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 0 . . . I 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . I 0
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B =



b̄1
0
. . .
0
−
I
0
. . .
0
−
0
0
. . .
0
−
0
0
. . .
0



E =



0
0
. . .
0
−
0
0
. . .
0
−
c̄1
0
. . .
0
−
I
0
. . .
0



C =
[
I 0 . . . 0 |0 0 . . . 0 |I 0 . . . 0 |0 0 . . . 0

]

(2.31)

Lemma 2.4.1. If the disturbance is represented as an auto-regressive model i.e.
with C = 1, the state-space system is reduced to:

x(t+ 1) = A ·x(t) + B ·u(t) (2.32a)

y(t) = C ·x(t) (2.32b)

with the state vector x(t) ∈ Rna+nb+nd−1 as:
x(t) = [ŷ(t), . . . ŷ(t−na+1), u(t−1), . . . u(t−nb+1), n(t), . . . n(t−nd+1)]T .

Proof. The disturbance prediction in this case is of the form
n(t+ 1|t) = d1 ·n(t) + . . .+ e(t+ 1|t), but the best prediction of the zero mean
stochastic noise is e(t+ 1|t) = 0 and thus the disturbance prediction only depends
on its past values, which concludes the proof. The state transformation matrices in
this case take the following form:
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A =



−a1 . . . −ana
b2 . . . bnb

0 . . . 0
1 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 1 0 0 . . . 0
0 . . . 0 0 . . . 0 −d1 . . . −dnd

0 . . . 0 0 . . . 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 0 . . . 1 0



B =



b1
0
. . .
0
−
1
0
. . .
0
−
0
0
. . .
0



C =
[
1 0 . . . 0 |0 0 . . . 0 |1 0 . . . 0

]
(2.33)

The result is significant, given that most practical cases can be represented in this
way (e.g. constant, ramp, sinusoid disturbances).

Corollary 2.4.2. In the nominal case i.e without disturbance, the state-vector
x(t) ∈ Rna+nb+nd−1 is given by:
x(t) = [y(t), . . . y(t − na + 1), u(t − 1), . . . u(t − nb + 1)]T and the following
transformation matrices can be derived:

A =



−a1 . . . −ana b2 . . . bnb

1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 1 0 0 . . . 0
0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 1 0
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B =



b1
0
. . .
0
−
1
0
. . .
0


C =

[
1 0 . . . 0 |0 0 . . . 0

]
(2.34)

Lemma 2.4.2. The constraints from the input-output model i.e ŷ(t) ∈ Y, u(t) ∈
U, n(t) ∈W, e(t) ∈ E are mapped to the constraints on the state as follows:
x(t) ∈ X = [Y× . . .× Y× U× . . .× U×W× . . .×W× E× . . .× E]T .

Proof. Directly follows from the transformed state-vector representation in theo-
rem 2.4.1.

Corollary 2.4.3. In the case with C = 1, the time-series constraints are mapped
to:
x(t) ∈ X = [Y× . . .× Y× U× . . .× U×W× . . .×W]T .

Corollary 2.4.4. In the nominal case, the input-output constraints are mapped to:
x(t) ∈ X = [Y× . . .×Y×U× . . .×U]T through the corresponding state-vector
transformation.

Remark 2.4.1. Note that, the obtained state-space representations are non-minimal
and indeed may have higher order due to the inclusion of the memory involving
the inputs and disturbances. However, there exists a strong reason that motivates
this choice, which in principle has to do with lemma 2.4.1. This is in fact a com-
pact way of representing disturbances and dealing with them by including them
as a part of the state that makes redundant any additional terms for disturbance
dynamics (which are needed in the case of canonical state-space forms). In doing
so, nominal set theoretic tools can now be applied directly to the disturbed case,
which will be the way forward in chapter 3. The non-minimal representation also
gives an exact correspondence to the way input-output models are formulated (i.e.
keeping record of past values of variables).

Theorem 2.4.2. The finite horizon constrained optimal control problem in the
input-output formulation of (2.5) translates exactly to the minimization over u(.|.)
of the following cost in the state-space framework:

V =

N2∑
k=N1

[r(t+ k|t)− C.x(t+ k|t)]2 + γ

subj. to ∆u(t+ k|t) = 0 ∀k ∈ [Nu, N2) (2.35)

u(t+ k|t) ∈ U, ∀k ∈ [0, N2), x(t+ k|t) ∈ X, ∀k ∈ [N1, N2]
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where all the terms have exactly the same meaning as before and γ is defined in
(2.6). The predictions are made by using the state-space maps of (2.26). Note that,
the formulation is also referred to as independent model with augmented distur-
bance dynamics which has similar interpretation as realigned model for open-loop
stable linear systems.

Proof. Since the state-space model of (2.26) has been proven to be equivalent
to the input-output model of (2.1) in theorem 2.4.1, the cost function of (2.35)
exactly matches that of (2.6) through the transformation vector C. Further, the
state constraints in (2.35) are obtained from the input-output constraints by using
lemma 2.4.2.

By substituting

x(t+ k|t) = Ak ·x(t) +
k−1∑
i=1

Ai · B ·u(k − 1− i|t) (2.36)

into the cost function of problem (2.35), the optimization can be rewritten as

U∗Φ(x(t)) = arg min
U

1

2
UT ·Φ ·U + UT ·Ω ·x(t) + x(t)T ·Ψ ·x(t)

subject to Ξ ·U � f + Π ·x(t) (2.37)

where U , [u(t), . . . , u(t + Nu − 1)]T . The matrices and vectors Ψ,Ω,Ξ,Π, f

and Φ � 0 are obtained by collecting terms [7]. The term involving Ψ is usually
dropped, since it does not affect the optimal solution U∗Φ(x(t)).

2.4.2 Explicit solution

Note that both the cost function and the constraints, and hence the optimal solution
(and hence the corresponding Lagrange multiplier µ∗), are dependent on x(t). The
MPC problem can therefore be treated as an multi-parametric Quadratic Program
(mp-QP) for which an explicit solution can be computed offline [33]. The feasible
setXF is the set of states x(t) for which a feasible control sequence U to the MPC
problem (2.37) exists.

XF , {x(t) ∈ Rn|∃U : Ξ ·U � f + Π ·x(t)}. (2.38)

The Kahrush-Kuhn-Tucker (KKT) conditions provide some insight into the re-
lation of the Lagrange multipliers to x(t). The Lagrangian of the optimization
problem (2.37) is

L(U, µ, x(t)) =
1

2
UT ·Φ ·U + UT ·Ω ·x(t) + x(t)T ·Ψ ·x(t)+

µT (Ξ ·U − f −Π ·x(t)) (2.39)
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A stationary point for the Lagrangian occurs when 5UL(U, µ, x(t)) = 0, hence
the corresponding KKT optimality conditions are [41]

Φ ·U + Ω ·x(t) + ΞT ·µ = 0 (2.40a)

µ � 0, µ ∈ Rq (2.40b)

Ξ ·U − f − Ω ·x(t) � 0 (2.40c)

diag(µ)(Ξ ·U − f −Π ·x(t)) = 0 (2.40d)

where q is the number of non-redundant linear inequalities in (2.37). Provided
Φ � 0 (as is the case when control penalty matrix λ · I � 0, from (2.40a) one can
solve for the unique

U = −Φ−1(Ω ·x(t) + ΞT ·µ) (2.41)

and check that U satisfies (2.40) . For a given x(t), the U and µ which solve (2.40)
are equal to the solution U∗Φ(x(t)) and Lagrange multipliers µ∗ of (2.37).

Theorem 2.4.3. [33] For a given x(t), let µ̆(x(t)) = 0 and µ̃(x(t)) denote the
Lagrange multipliers corresponding to the inactive and active constraints at the
optimal solution, respectively. The Lagrange multipliers corresponding to the ac-
tive constraints are given by

µ̃(x(t)) = S ·x(t) + v (2.42)

and the optimal solution is given by

U∗Φ(x(t)) = (−Φ−1 ·Ω− Φ−1 · Ξ̃T ·S)x(t)− Φ−1 · Ξ̃T · v (2.43)

where

S = −(Ξ̃ ·Φ−1 · Ξ̃T )−1(Π̃ + Ξ̃ ·Φ−1 ·Ω) (2.44a)

v = −(Ξ̃ ·Φ−1 · Ξ̃T )−1f̃ (2.44b)

and Ξ̃, f̃ , Π̃ correspond to the set of active constraints. Furthermore, these expres-
sions are valid for all x(t) contained in the polyhedron

CR = {x(t) ∈ Rn|
(
−Ξ ·Φ−1 ·Ω− Ξ ·Φ−1 · Ξ̃T ·S −Π

−S

)
x(t)

�
(
f + Ξ ·Φ−1 · Ξ̃T · v

v

)
} (2.45)

Proof. Substitute (2.41) into (2.40d) to obtain the complementary slackness con-
dition

diag(µ)(Ξ · (−Φ−1(Ω ·x(t) + ΞT ·µ))− f −Π ·x(t)) = 0 (2.46)
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For the inactive constraints µ̆(x(t)) = 0.
Let the rows of Ξ̃, f̃ , Π̃ correspond to the set of active constraints. For the active
constraints µ̃ � 0 and hence (2.40d) implies that

Ξ̃(−Φ−1(Ω ·x(t) + Ξ̃T · µ̃))− f̃ − Π̃ ·x(t)) = 0 (2.47)

and solving for µ̃ it follows that

µ̃(x(t)) = −(Ξ̃ ·Φ−1 · Ξ̃T )−1(f̃ + (Π̃ + Ξ̃ ·Φ−1 ·Ω)x(t)) (2.48)

The inverse exists because the rows of Ξ̃ are assumed to be linearly independent
(valid in most practical cases). By defining S and v as in (2.44), the expression
µ̃(x(t)) = S ·x(t) + v results.
Substituting the expression for µ̃(x(t)) into (2.41) one gets

U∗Φ(x(t)) = −Φ−1(Ω ·x(t) + Ξ̃T · (S ·x(t) + v)) =

(−Φ−1 ·Ω− Φ−1 · Ξ̃T ·S)x(t)− Φ−1 · Ξ̃T · v (2.49)

U∗Φ(x(t)) has to satisfy the constraints (2.37) and the Lagrange multipliers µ̃(x(t))

corresponding to the active constraints have to be non-negative. These two con-
straints combine to define the critical region

CR = {x(t) ∈ Rn|Ξ(−Φ−1 ·Ω− Φ−1 · Ξ̃T ·S) � f + Π ·x(t), S ·x(t) + v � 0}

= {x(t) ∈ Rn|
(
−Ξ ·Φ−1 ·Ω− Ξ ·Φ−1 · Ξ̃T ·S −Π

−S

)
x(t)

�
(
f + Ξ ·Φ−1 · Ξ̃T · v

v

)
} (2.50)

The result implies that the resulting MPC control law is a continuous, piecewise-
affine function with domainXF . The following algorithm is an effective procedure
to determine the complete expression over all of XF :

1. Set i← 0.

2. Choose an arbitrary x(t) ∈ XF .

3. Solve the corresponding QP.

4. By looking at the constraints which are active at the solution of this QP,
compute the affine functions for U∗Φ(x(t)) and µ∗(x(t)) as in theorem 2.4.3.

5. Compute the resulting critical region CRi and remove the redundant con-
straints.
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6. Terminate if ∪ij=0CRj = XF , else set i← i+ 1 and continue.

7. Choose an arbitrary x(t) ∈ XF but not in ∪i−1
j=0CRj (an obvious procedure

would be to explore the neighbouring critical regions) and go to step 3.

The procedure guarantees that all feasible combinations of active constraints will
be computed (efficiency depends on procedure for choosing x(t) in step 7 [33]).

2.5 Summary
This chapter brought together a number of ways of defining, analyzing and solving
the predictive control problem. An input-output MPC formulation i.e. EPSAC and
its algorithm has been described. Next, Diophantine equations based analysis is
performed to derive the analytical equivalence to the input-output MPC, in the
unconstrained case.

A state-space equivalence to EPSAC is then derived through some transforma-
tion techniques, which are valid for nominal as well as perturbed case, together
with mapping of the constraint sets. A solution to the constrained optimal prob-
lem is then derived as a piecewise affine control law, affine in the state variable by
making use of the Lagrangian function. Thanks to the state transformation, this
solution is exactly the same as that to the original input-output MPC problem.

The transformations described in this chapter are used for proving stability in
the following chapters, therefore the novelty in this chapter itself is marginal but
can still be stated as the following: (i) the Diophantine based analysis is carried out
for a very general disturbance modelC/D as opposed toC/(A ·∆) which is vastly
considered in the literature (ii) a lemma which explicitly gives the input-output to
state-space mappings for constrained systems with frequently encountered distur-
bance dynamics 1/D.



3
Certified Predictive Control without

Terminal Conditions

The vast majority of research in stabilizing MPC and guaranteeing infinite time
feasibility under constraints has invariably enforced one or all of the three ingredi-
ents: terminal penalty, terminal constraints, terminal control law [9]. The desirable
features of this approach are [42]:

1. Nominal stability follows easily from the properties of stabilizing ingredi-
ents.

2. The problem is infinite time feasible (i.e. a solution exists that satisfies the
constraints every time).

The objections raised to this method of stabilization include:

1. The stabilizing ingredients may be difficult to compute.

2. Adding a fictitious terms may compromise performance.

3. The region where the problem is feasible may shrink.

4. Most of the stabilizing ingredients are not used in the process industry.

The last point is not an objection per say, but the industry does not use them as
stabilization happens anyway. Mostly it is because, engineers do not want to com-
promise feasibility (at the price of having to switch to hard safety mechanisms). It
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is not always wanted nor easy to construct an MPC controller which has a-priori
guarantee of infinite feasibility and stability, either due to theoretical complica-
tions, or pragmatic decisions in practice [43]. Instead, we might have a situation
where we are given an MPC controller, and the goal is to deduce a region where
the problem is infinite time feasible/stable. This is common for industry where the
criticality of the process inhibits one from stopping and re-designing the controller,
in which case providing the knowledge about a safe region of operation could be
indispensable. The principal contribution of the thesis and in particular this chap-
ter is to deduce such a region of inputs and outputs where the industrial controllers
without stabilizing ingredients are certifiable with respect to stability through in-
finite feasibility. Further new tuning guidelines are given which can give a-priori
guarantee on closed-loop feasibility/stability.

3.1 Introduction

The research literature on MPC has adopted the following formulation as standard
(which is a regulation problem in the nominal case) [44]:

Problem 3.1.1.

V ∗(x(t)) = min
u(.|.)

T (x(t+N2|t)) +

N2−1∑
k=0

L(x(t+ k|t), u(t+ k|t)) (3.1)

subj. to u(t+ k|t) ∈ U, x(t+ k|t) ∈ X, x(t+N2|t) ∈ T, ∀k ∈ [0, N2)

under the state-space model x(t + 1) = f(x(t), u(t)) together with the as-
sumption that all the sets contain origin within their interior.

Theorem 3.1.1. The MPC problem 3.1.1 is infinite time feasible and the origin
is asymptotically stable fixed point if the stage cost L(.) and terminal cost T (.)

are positive definite; T (.) is a control Lyapunov function (CLF) for the closed-
loop system under a terminal control law h(x(t + k|t)),∀k ≥ N2 that ensures a
minimum cost decrement by −L(.); terminal constraint set T is invariant under
h(.) (which is admissible with respect to the state and input constraints) and the
optimization is initially feasible.

Proof. Consider the optimal input sequence: U∗ = {u∗(t), . . . , u∗(t+N2− 1)}.
At the next time step, the shifted input sequence will have a tail under the terminal
control law: Ũ = {u∗(t+ 1), . . . , h(x(t+N2|t))}. Now the cost associated with
the shifted sequence (after applying u∗(t)) can be written down as follows:

V (f(x(t), U∗(x(t))) = V ∗(x(t))− L(x(t), u∗(t))− T (x(t+N2|t))+
L(x(t+N2|t), h(x(t+N2|t))) + T (f(x(t+N2|t), h(x(t+N2|t))) (3.2)
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For stability, the last three terms must be negative, which is in fact ensured by
choosing the terminal cost T (.) as a CLF under the terminal control law h(.),
giving:

T (f(x(t), h(x(t)))− T (x(t)) ≤ −L(x(t), h(x(t))),∀x(t) ∈ T (3.3)

From this condition, it follows (with an optimally computed sequence U∗):

V ∗(f(x(t), U∗(x(t)))− V ∗(x(t)) ≤ −L(x(t), u∗(t)) (3.4)

and therefore the optimal cost is a Lyapunov function for the closed-loop system,
and convergence to the origin is guaranteed.
Next, since T is chosen to be invariant under constraint admissible h(.), given an
initial feasible input trajectory U at time t, the shifted input sequence Ũ is bound
to be feasible at time t+ 1, after implementing u∗(t). This concludes the proof of
infinite time feasibility.

Note that the terminal control law is actually never used to control the system,
it is only used as a proof argument and to compute the terminal cost and set.

However in the industrial MPC formulation, none of the three mentioned in-
gredients are considered in the design phase. For the sake of clarity, we once again
state the industrial MPC regulation problem in the nominal case:

Problem 3.1.2.

V ∗(x(t)) = min
u(.|.)

N2∑
k=N1

(C ·x(t+ k|t))2 + λ

Nu−1∑
k=0

(u(t+ k|t))2 (3.5)

subj. to u(t+ k|t) ∈ U, ∀k ∈ [0, N2), x(t+ k|t) ∈ X, ∀k ∈ [N1, N2]

under the state-space model x(t+ 1) = A ·x(t) +B ·u(t) and y(t) = C ·x(t),
where A,B, C are the transformation matrices derived in chapter 2. Note that,
the extension to the multivariable case is straightforward by considering another
summation over all the outputs and/or inputs; a more elegant way of formulating
the problem in a distributed sense is dealt with in chapter 6. One can immediately
write down the differences between the academic MPC of problem 3.1.1 to the
industrial MPC of problem 3.1.2 as follows:

D1 The predictions are made over input-output models together with distur-
bance filter.

D2 The control and prediction horizons are not equal.

D3 There is no terminal constraint T.

D4 There is no terminal cost T (.).
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D5 There is no terminal control law h(.).

In this case neither stability can be guaranteed (as the optimal cost is not explicitly
constructed to be a Lyapunov function for the closed-loop), nor that the problem
remains infinite time feasible (due to lack of invariance). Some authors have in-
deed considered omission of terminal constraint [D3], in which the control horizon
(=prediction horizon) is made sufficiently large to ensure that the terminal con-
straint is automatically satisfied [45, 46]. A recent book [47] deals extensively in
solving [D3-5] via the choice of an appropriate horizon employing the assumption
that the system is asymptotically controllable through the cost function. Finally,
some tools for showing infinite-feasibility have been developed in [48, 49] using
invariance and a means of detection of initial conditions that lead to infeasibil-
ity of a MPC controller with [D3-5] has been proposed in [43] by using bi-level
programming.

To our knowledge, there has been no prior-work in dealing with all the five
mentioned differences [D1-5] together and delivering to the industry a region of
attraction for which the controller (either optimal or not) is certified infinite time
feasible/stable. Thus, we build upon the necessary set-theoretic tools in the next
section to be able to develop a procedure to certify stability through infinite time
feasibility. A feature that distinguishes our method is that it does not need conver-
gence of the associated sets (which is hard to obtain in all cases).

3.2 Invariant Set Theory

Invariant set theory has been shown to be crucial in understanding the behavior of
constrained systems, since constraints can be satisfied if and only if the initial state
is bounded in a set which is invariant (i.e. trajectories do not exit this set).
Notation: To distinguish robust sets, i.e. the ones which consider effect of distur-
bances, a ‘tilde’ will be appended. The symbols ⊕,	 denote the Minkowski sum
and Pontryagin difference respectively, which are analogous operations to +,−
but over sets. The set A \B is the complement of B contained in A. The notation
A ⊂ B,A ⊆ B is used to denote A is a proper subset, subset of B respectively.
The symbols ∃,∈, |, : mean there exists, belongs to, constrained to, such that re-
spectively.
Consider once again the following discrete-time system:

x(t+ 1) = f(x(t), u(t), n(t)) (3.6a)

y(t) = g(x(t), n(t)) (3.6b)

u(t) ∈ U, x(t) ∈ X (3.6c)

n(t) ∈W (3.6d)
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Note that, in the case of non-minimal state-space derived from input-output repre-
sentation, n(t) is implicitly a part of the state vector
x(t) = [ŷ(t), . . . u(t − 1), . . . n(t), . . .], not necessarily otherwise. As usual, the
set U is compact, while X,W are closed. In the nominal case the map reduces to
x(t+ 1) = f(x(t), u(t)). An admissible control input sequence or law is one that
satisfies the input constraints.

3.2.1 Invariant sets

Definition 3.2.1. [50] The set X ⊂ Rn is robust positively invariant for the
autonomous system x(t + 1) = f(x(t), n(t)) iff ∀x(t) ∈ X,∀n(t) ∈ W, the
system evolution satisfies x(t+ k) ∈ X,∀k.

Definition 3.2.2. [51] The set Õ∞(X) is the maximal robust positively invari-
ant set contained in X for the autonomous system x(t + 1) = f(x(t), n(t)) iff
Õ∞(X) is robust positively invariant and contains all robust positively invariant
sets contained in X.

A closed loop system is also viewed as an autonomous system with
x(t+ 1) = f(x(t), h(x(t)), n(t)) evolving under the control law h(.).

Definition 3.2.3. [50] The set X ⊂ Rn is robust control invariant for the sys-
tem x(t + 1) = f(x(t), u(t), n(t)) iff there exists a feedback control law u(t) =

h(x(t)) such that X, is robust positively invariant set for the closed-loop system
x(t+ 1) = f(x(t), h(x(t)), n(t)) and u(t) ∈ U,∀x(t) ∈ X.

Definition 3.2.4. [50] The set C̃∞(X) is the maximal robust control invariant
set contained in X for the system x(t + 1) = f(x(t), n(t)) iff C̃∞(X) is robust
control invariant and contains all robust control invariant sets contained in X.

Theorem 3.2.1. Given the time-invariant system of (3.6a), the constraints (3.6c)
can be satisfied for all time iff the initial state x(t) ∈ C̃∞(X).

Remark 3.2.1. A similar condition holds for autonomous systems and the corre-
sponding maximal robust positively invariant set.

Definition 3.2.5. [52] The robust pre set Q̃(X) is defined as the set of states in
Rn for which an admissible control input exists which will drive the system to X in
one step, for all allowable disturbances i.e.

Q̃(X) , {x(t) ∈ Rn|∃u(t) ∈ U : f(x(t), u(t), n(t)) ∈ X,∀n(t) ∈W} (3.7)

Theorem 3.2.2. [52] Geometric condition for invariance: The set X is robust
control/positive invariant set iff X ⊆ Q̃(X) i.e. Q̃(X) ∩ X = X.
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Definition 3.2.6. The robust output admissible set X̃g is the set of states for which
the output constraints are satisfied for all allowable disturbances, i.e.

X̃g , {x(t) ∈ X|y(t) ∈ Y,∀n(t) ∈W} (3.8)

Definition 3.2.7. The robust reach set R̃(X) is the set of states to which the sys-
tem will evolve at the next time step given any x(t), admissible control input and
allowable disturbance, i.e.

R̃(X) , {x(t+ 1) ∈ Rn|∃x(t) ∈ X, u(t) ∈ U, n(t) ∈W :

x(t+ 1) = f(x(t), u(t), n(t))} (3.9)

At this point, the following couple of definitions on stability of dynamical
systems would be handy.

Definition 3.2.8. An equilibrium point xe is practical Lyapunov stable if all the
solutions to the corresponding dynamical system that start out near xe stay near
xe forever.

Definition 3.2.9. An equilibrium point xe is asymptotically stable if all the so-
lutions to the corresponding dynamical system that start out near xe converge to
xe.

3.2.2 Computation of invariant sets

The robust pre set Q̃(X) is the orthogonal projection of the set {(x(t), u(t)) ∈
Rn×Rm : f(x(t), u(t), n(t)) ∈ X, u(t) ∈ U, n(t) ∈W} onto the first coordinate
(i.e. x(t)).

Definition 3.2.10. The i − step robust controllable set K̃i(X,T) is the set of
states in X which can be driven by an admissible input sequence of length i to an
arbitrary target set T in exactly i steps, while keeping the evolution of the state
inside X for the first i− 1 steps, for all allowable disturbances i.e.

K̃i(X,T) ,{x(t) ∈ Rn|∃{u(t+ k) ∈ U}i−1
k=0 : {x(t+ k) ∈ X}i−1

k=1 ∈ X,
{n(t+ k) ∈W}i−1

k=0, x(t+ i) ∈ T} (3.10)

where K̃∞(X,T) is the robust infinite-time controllable set with determined-
ness index i∗K = i for which (3.11c) is satisfied.

Definition 3.2.11. The i− step robust admissible set C̃i(X) contained in X is the
set of states for which an admissible control sequence of length i exists, while keep-
ing the evolution of the state inside X for i steps, for all allowable disturbances
i.e.

C̃i(X) , {x(t) ∈ Rn|∃{u(t+ k) ∈ U}i−1
k=0 : {x(t+ k) ∈ X}ik=1 ∈ X,

∀{n(t+ k) ∈W}i−1
k=0} (3.12)
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The robust controllable sets of a system can be computed via the following iterative
procedure:

K̃0(X,T) = T (3.11a)

K̃i+1(X,T) = Q̃(K̃i(X,T)) ∩ X (3.11b)

If K̃i(X,T) = K̃i+1(X,T), then K̃∞(X,T) = K̃i(X,T), terminate.
(3.11c)

algorithm 1: Robust controllable sets

The maximal robust control invariant set C̃∞(X) can be computed using algorithm
1 by noting that:

C̃i(X) = K̃i(X,X) (3.13a)

If C̃i(X) = C̃i+1(X) then C̃∞(X) = C̃i(X), terminate. (3.13b)

algorithm 2: Maximal robust control invariant set

If the condition (3.13b) holds for a finite i∗C , then C̃∞(X) is finitely determined
and i∗C is called the determinedness index. If the input, state constraints are com-
pact and the state update is continuous, then the convergence is guaranteed [53].

Now, we introduce a new set tailored towards solving problems with control
horizons shorter then prediction horizons.

Definition 3.2.12. An i − step robust tunnel set L̃i(X) is an i-step robust ad-
missible set C̃i(X) subject to the constraint that the admissible control sequence
remains constant i.e.

L̃i(X) , {C̃i(X)|{∆u(t+ k) = 0}i−1
k=1} (3.14)

Lemma 3.2.1. The i-step robust tunnel set L̃i(X) can be derived by computing the
orthogonal projection of the i−step robust positively invariant set (i.e. robust posi-
tively invariant for i steps) for the system with augmented state vector [x(t), u(t)]T

onto the first coordinate.

Proof. Follows from the fact that augmenting the input as a state ensures that
constancy on the future inputs is enforced through state evolution, i.e. choosing
the state as: [x(t)T , u(t)T ]T and the augmented state dynamics for a LTI system

as:
[
A B
0 I

]
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Figure 3.1: A conceptual depiction of the derivation of the feasible set starting from the
constraint set through the tunnel set: XF (X, Nu, N2) = KNu(X, LN2−Nu(X))

Remark 3.2.2. The maximal robust tunnel set L̃∞(X), contained in X (i.e. a
set which is never exited by holding a constant control) is obtained by noting the
relationship (3.14) and using it in algorithm 2. If the algorithm converges for a
finite value of i∗L then, L̃∞(X) = L̃i∗(X), where i∗L is the determinedness index.

Lemma 3.2.2. The maximal robust tunnel set L̃∞(X) is convex and converges.

Proof. For linear systems with convex, polytopic input, state constraints, the re-
sulting maximal robust control invariant set C̃∞(X) is convex and converges [53].
Since, the maximal robust tunnel set L̃∞(X) uses augmented system which is
again linear with convex polytopic constraints and is derived from C̃∞(X) with
a projection operation which preserves the properties, the L̃∞(X) set inherits the
characterization of the C̃∞(X) set and hence is convex and converges.

Note that, all the tools developed for robust sets remain perfectly valid for
nominal systems, in which case n(t) = 0 and the invariant sets are represented
devoid of the ‘tilde’. The development of the tunnel set is not to be confused with
the literature on tube-based methods where the control applied to the uncertain
system is the composition of conventional MPC control for the nominal system
added to gain times difference between nominal and actual state trajectories [54] .

3.3 Persistent Feasibility
In practice, especially when the system is nonlinear, one cannot guarantee that
the solution is unique nor that the solver will return the optimal solution to the
problem 3.1.2. It would therefore be useful if a result could be derived which
allowed one to guarantee that the MPC controller is feasible for all time and for all
disturbance sequences, even if a suboptimal control input is computed each time
i.e. checking the existence of ‘a’ feasible solution. In this section, we derive the
region of attraction for the given MPC problem 3.1.2:

1. that satisfies conditions [D2−D5]
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2. and without requiring optimality of the solution

to be infinite-time (persistent) feasible/stable (recollect that, the requirementD1 is
already satisfied by the transformation matrices introduced in chapter 2). Now, we
introduce new definitions and characterizations for the feasible region of our MPC
problem 3.1.2 with short control horizon and no terminal conditions.

Definition 3.3.1. The robust feasible set X̃F is the set of states for which an
admissible control sequence exists that satisfies the state/output constraints i.e.
a feasible control sequence to the MPC problem 3.1.2 exists, for all disturbance
sequences.

Theorem 3.3.1. The robust feasible set X̃F (X, Nu, N2) of the MPC regulation
problem 3.1.2 is given by:

X̃F (X, Nu, N2) = K̃Nu
(X, L̃N2−Nu

(X)) (3.15)

Proof. The robust feasible set can be divided into two parts in time by approach-
ing it from the end.
Consider the second part of the MPC problem 3.1.2 i.e. between control and pre-
diction horizon N2 − Nu, where the requirement is to keep the control moves
constant to an admissible set U and satisfy the state constraints X, for disturbance
set W. This set by definition 3.2.12 is the robust tunnel set L̃N2−Nu

(X).
Next, we consider the first part of the MPC problem 3.1.2 i.e. the window over
the control horizon Nu, now the requirement is again to be able to find a con-
trol sequence in U that satisfies the state constraints X and lies in the target set
L̃N2−Nu

(X) after Nu moves, for all disturbances. This by definition 3.2.10, is the
robust controllable set K̃Nu

(X, L̃N2−Nu
(X)), which is the overall robust feasible

set and completes the proof. The entire process is depicted conceptually in Fig.
3.1 for the nominal case.

Remark 3.3.1. Due to finite-horizon nature of MPC, it is possible that a bad
choice of design variables could lead to a solution with x̂∗(t + 1|t) ∈ X \ X̃F .
This will result in infeasible problem next time instant, even in the absence of
disturbances.
Next, if X̃F \ C̃∞(X) 6= 0, it is possible that x̂∗(t + 1|t) ∈ X̃F \ C̃∞(X) which
will cause x(t + 1) /∈ C̃∞(X). Since there does not exist a control sequence that
satisfy the constraints if the state is outside the robust maximal control invariant
set, the MPC problem will become infeasible eventually.

Definition 3.3.2. The MPC problem is robust persistently feasible iff the ini-
tial state and future evolutions belong to the robust feasible set i.e. x(t + k) ∈
X̃F ,∀k ∈ N.
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Theorem 3.3.2. The MPC problem is robust persistently feasible iff
x(t) ∈ X̃F ∩ C̃∞(X) and x̂∗(t+ 1|t) ∈ X̃F ∩ C̃∞(X), that must hold for all t.

Proof. If x(t) /∈ X̃F∩C̃∞(X), then it results in infeasibility from remark 3.3.1, so
by contradiction x(t) ∈ X̃F ∩C̃∞(X) is necessary for feasibility. The requirement
x̂∗(t+ 1|t) ∈ X̃F ∩ C̃∞(X) means that the problem is robust persistently feasible
by mathematical induction, thereby proving the sufficiency.

If the dynamics are linear and the constraints are compact, convex polyhedra,
then X̃F is also a compact convex polyhedron.

3.3.1 Guidelines for stabilizing horizons

First, we establish through the following proposition that robust stability is a deriva-
tive of robust persistent feasibility.

Proposition 3.3.1. If the robust feasible set X̃F is bounded and the MPC prob-
lem is robust persistently feasible, then the system is robust stable in a practical
Lyapunov sense (i.e. boundedness of the closed-loop trajectories).

Now, for the MPC problem to be robust stabilizing, we must ensure robust
persistently feasibility through the parameters which are the control and the pre-
diction horizon. Note that, the robust persistently feasible set X̃F is independent
of the cost function and optimality of the solution. Therefore N1 does not play
a role as a non-zero value of N1 is the same as choosing an appropriate penalty
on the state predictions and the penalties being a part of the cost function have no
effect on X̃F .

Theorem 3.3.3. If X̃F (X, Nu, N2) is robust control invariant, then the same MPC
problem with control, prediction horizons Nu + n,N2 + n respectively producing
X̃F (X, Nu + n,N2 + n), n ≥ 1 is robust persistently feasible.

Proof. The robust control invariance of X̃F (X, Nu, N2) by definition implies that
X̃F (X, Nu, N2) ⊆ K̃1(X, X̃F (X, Nu, N2). However,
X̃F (X, Nu + 1, N2 + 1) = K̃1(X, X̃F (X, Nu, N2) by application of the MPC
control law. This implies that X̃F (X, Nu+n,N2 +n) ⊆ X̃F (X, Nu, N2), for n =

1 and is true ∀n > 1 by induction, which concludes robust persistent feasibility.

Theorem 3.3.4. If N2 ≥ Nu + i∗L, then the size of the robust feasible set X̃F

increases with the control horizon Nu until it exceeds the determinedness index
i∗Kof the infinite robust controllable set K̃∞(X, L̃N2−Nu

(X)).

Proof. The maximal robust tunnel set L̃i∗L being control invariant, induces con-
trol invariance on K̃Nu(X, L̃i∗L(X)),∀Nu ∈ N+. The sets being enclosed inside
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the other with increasing Nu is a property of robust control invariant sets. The
size increase stops beyond the determinedness index i∗K of controllable sets, as by
definition the sets converge.

Corollary 3.3.1. For a fixed control horizon Nu, the size of the feasibility set
decreases with increasing prediction horizon until the determinedness index of the
tunnel set i.e. X̃F (X, Nu, N2a) ⊆ X̃F (X, Nu, N2b), N2a > N2b for all N2 ≤ i∗L.

Theorem 3.3.5. The MPC problem is robust persistently feasible if the difference
between the prediction and control horizons is larger than the determinedness in-
dex i∗L of the maximal robust tunnel set L̃∞(X) i.e. N2 −Nu ≥ i∗L.

Proof. Since, L̃∞(X) is control invariant under constant control, any i−step con-
trollable set to it i.e K̃i(X, L̃∞(X)),∀i ≥ 1 is also control invariant, which is
in fact also the robust feasible set, and by the nesting property of invariant sets
X̃F (X, Nu1, i

∗
L) ⊆ X̃F (X, Nu2, i

∗
L), Nu1 < Nu2, which is necessary for robust

strong feasibility. Note that, this is same as explicitly enforcing a positively invari-
ant terminal constraint under the constant terminal control. The cost between the
control and prediction horizons sum up to form the terminal cost.

Based on the above three theorems, the following algorithms for tuning the
horizons are proposed to stabilize the MPC problem without terminal conditions.

1. Compute determinedness of the robust tunnel set i∗L, if finitely determined.

2. The stabilizing horizons are Nu = 1, N2 = i∗L + 1.

algorithm 3: Control horizon-1 tuning procedure

Now, if an additional requirement is to obtain the largest possible robust feasi-
ble region X̃F , then:

1. Compute determinedness of the robust tunnel set i∗L, if finitely determined.

2. Compute determinedness of the robust controllable set i∗K , if finitely deter-
mined.

3. The stabilizing horizons are Nu = i∗K , N2 = i∗L + i∗K .

algorithm 4: Maximal robust feasible region X̃F tuning procedure

If, the robust tunnel set is not finitely determined, then:
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1. Iterate over different values of the horizons with Nu < N2 until
X̃F (X, Nu, N2) is robust control invariant for N∗u , N

∗
2 .

2. The stabilizing horizons are Nu = N∗u + 1, N2 = N∗2 + 1.

algorithm 5: Heuristic robust persistent X̃F tuning procedure

3.3.2 A posteriori certification of stability

In order to guarantee robust constraint satisfaction in safety-critical applications
it is desirable that infeasibility of the MPC optimization problem is avoided at all
costs. In other words, once inside the feasible set the system evolution should
remain inside the feasible set for all time and for all disturbance sequences. Here,
we develop test for checking robust persistently feasibility, given the MPC problem
3.1.2 without terminal conditions and shorter control horizon has already been
implemented.

Theorem 3.3.6. The MPC regulator that solves problem 3.1.2 is robust persis-
tently feasible iff:

R̃(X̃F (X, Nu, N2)) ∩ X̃F (X, Nu − 1, N2 − 1) ⊆ X̃F (X, Nu, N2) (3.16)

Proof. R̃(X̃F (X, Nu, N2)) is the set of states reachable from the robust feasible
set X̃F (X, Nu, N2) using admissible inputs, while the set
R̃(X̃F (X, Nu, N2)) ∩ X̃F (X, Nu − 1, N2 − 1) is the subset which is reachable
using feasible control inputs which obey the state constraints. Therefore, after ap-
plying the feasible control computed by the MPC regulator, the next state
x̂(t+ 1|t) ∈ R̃(X̃F (X, Nu, N2))∩ X̃F (X, Nu − 1, N2 − 1). Now, if x̂(t+ 1|t) ∈
X̃F (X, Nu, N2), then by mathematical induction all future evolutions of the sys-
tem remain within the robust feasible set, which completes the proof.

Corollary 3.3.2. In the special case of control horizon Nu = 1, the robust persis-
tent feasiblity test reduces to:

R̃(X̃F (X, 1, N2)) ∩ L̃N2−1(X) ⊆ X̃F (X, 1, N2) (3.17)

Proof. In the case with Nu = 1, X̃F (X, 0, N2 − 1) = LN2−1(X).

Lemma 3.3.1. In case of output disturbance, the state constraints X must be re-
placed by the robust output admissible set X̃g , refer definition 3.2.6. Note that,
input disturbances can be moved to the output by filtering it through the plant
denominator A.
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Property Tunnel set Terminal set
Offline Computation Admissible Set Positively invariant set
Dependency Controllable set, reach set Terminal cost, control
Convergence Not necessary Strict requirement
Online Computation No extra terms Terminal set, cost added
Feasible region Largest possible Shrunk
Stability Practical Asymptotic
Certification A priori, a posteriori A priori

Table 3.1: The main differences between Tunnel set based certification and Terminal set
based stabilization

This result in practice can be conservative, as optimality of the solution is
not considered. Note that all the derived results, as usual, hold for the nominal
case with zero disturbance i.e. n(t) = 0 and the corresponding sets are repre-
sented without the ‘tilde’. Further, if the summation of cost between the control
and prediction horizons is considered as a terminal cost resulting in equal control
and prediction horizons and this terminal cost turns out to be a control Lyapunov
function, asymptotic stability can be inferred. A sketch of the entire certification
algorithm, together with the detailed computation of the associated sets is given in
appendix A. Table 3.1 highlights the main differences between the MPC certifica-
tion mechanisms based on the development of the tunnel set and the one that uses
terminal constraint.

3.4 Recursive Feasibility

This section is concerned with robust feasibility when the solution to the finite
horizon optimal control problem 3.1.2 is unique (e.g. optimal solution to a convex
optimization problem).

Assumption 3.4.1. For all x(t) ∈ X̃F , a unique solution to problem 3.1.2 exists.

The above assumption is made to guarantee that the MPC controller U : X̃F →
U is a single-valued map. It can be relaxed if the optimum is global as then an
arbitrary selection can be made from the optimal set valued map to obtain a single-
valued input each time.

Definition 3.4.1. The MPC controller is robust recursively feasible iff for a subset
X̃s
F of all states inside the feasible set X̃F and for all disturbances inside W, the

state of the plant at the next time instant lies inside the set X̃s
F , i.e.

∀x(t) ∈ X̃s
F : f(x(t),U(x(t)),W) ⊆ X̃s

F (3.18)
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Once more, robust recursively feasibility is very strongly related to the ideas in
set invariance. The concept of the robust reach set of the closed-loop is particularly
useful in this context.

Theorem 3.4.1. The MPC problem is robust recursively feasible iff the robust
feasible set is a robust positively invariant set for the closed-loop system x(t+1) =

f(x(t),U(x(t)),W).

Proof. In this case, by definition of robust positive invariance, the closed-loop
system trajectories never leave the robust feasible set, thereby ensuring robust re-
cursive feasibility.

Now, a given set is robust positively invariant iff the set of states reachable
from the given set is contained within itself. From this statement, the following
can be said:

Proposition 3.4.1. The MPC controller U is robust recursively feasible iff
R̃(X̃s

F ) ⊆ X̃s
F for the autonomous system comprised of the original plant in closed

loop with the MPC controller U .

From the above proposition, it follows that for the MPC controller to be robust
recursively feasible, it is necessary that X̃s

F is robust control invariant.
In order to derive a test or algorithm which implements the above condition,

some structure regarding the problem has to be known. An explicit expression for
the MPC control law needs to be derived, which we have duly presented in chapter
2.

Theorem 3.4.2. Consider the constrained finite time optimal control problem
3.1.2. Then, the feasible set XF is polyhedral, the optimizer U∗ : XF → R is
continuous and PWA, i.e.

U∗(x(t)) = Fr ·x(t) +Gr if x(t) ∈ Pr (3.19)

Pr = {x(t) ∈ Rn|Hr ·x(t) ≤ Kr}, (3.20)

and the optimal solution J∗ is continuous, convex and piecewise quadratic (PWQ).

Proof. Exactly the same as that of theorem 2.4.3. The two equations above should
be matched with (2.43), (2.45) to get the expanded expressions of the terms in-
volved. In particular {Pr}Rr=1 is a polyhedral partition of X̃F with region indexed
by r.

Note that the evaluation of the PWA solution provides the same result as solv-
ing the quadratic program. Due to finite horizon, even in case of no model mis-
match, the optimal open-loop trajectory is different from the trajectory which re-
sults form the closed-loop control [9]. This may therefore affect not only feasibility
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but stability as well. As stated in introduction, this problem can be dealt with by
enforcing terminal constraints but this inevitably results in large optimization prob-
lems which are unsuitable for fast systems [9]. Therefore the scheme here consists
of implementing controllers with short horizons and subsequently analyzing for
stability through feasibility of the closed-loop system.

The associated closed-loop dynamics are given by:

x(t+ 1) = (A+ B ·Fr)x(t) + B ·Gr if Hr ·x(t) ≤ Kr. (3.21)

Lemma 3.4.1. For a given robust feasible compact set X̃F , a robust positively
invariant subset Õ(X̃F ) ⊆ X̃F induces robust recursive feasibility and practical
Lyapunov stability, when the controller is applied in receding horizon manner.

Proof. Follows from theorem 3.4.1. Note that, stability is in the sense of bound-
edness as limit cycles cannot be ruled out.

One way to find such a positively invariant set is to iteratively remove states
from which the trajectory exits the feasible set until no such states can be found.
Let the transition matrix V ∈ {0, 1}R×R (where R denotes the number of regions)
and the modification vectorM ∈ {0, 1}R store the feasible transitions and keep
track of set modifications respectively.

V(s, v) = 1, if ∃x(t) ∈ Ps : x(t+ 1) ∈ Pv, else V(s, v) = 0; (3.22)

M(r) = 1, if P i+1
r 6= P ir , elseM(r) = 0. (3.23)

where i is the iteration number used in the algorithm 6, which is presented for
completeness [55] (may be skipped without loss of continuity), following which
the union of all remaining regions is equal to Õ(X̃F ).

Lemma 3.4.2. The presented polyhedral-invariant-set algorithm always converges
(though not necessarily in finite time), as the initial feasible regionXF is finite and
the volume is strictly decreasing. Further the convexity of the robust positively in-
variant set Õ(X̃F ) is a necessary condition for it to be maximal i.e. Õ∞(X̃F ) [55].

Remark 3.4.1. In case of output disturbance, the state constraints X must be re-
placed by the robust output admissible set X̃g . This is called constraint tightening.

Remark 3.4.2. If constraints are tightened adaptively by estimating the distur-
bance online, then the region of attraction must be within the robust persistently
feasible set Õ(X̃F ). Õ(X̃F ) guarantees that even after the disturbance, the con-
troller will not exit the nominal O(XF ), thus remaining feasible for all time.
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1. Given a controller partition {Pr}Rr=1, compute the entries of the tran-
sition matrix V . Subsequently create a transition set Π = {s, v ∈
{1, . . . , R}|V(s, v) = 1}, initialize M(r) = 1,∀r ∈ {1, . . . , R} and set
i = 0.

2. For all s, v ∈ Π, do:
If M(v) = 1, compute and store the subset Si+1

s,v = {x(t) ∈ Rn|x(t) ∈
Pis, x(t + 1) ∈ Piv} for the dynamics in (3.21). If M(v) = 0, set Si+1

s,v =

Sis,v .

3. For each start region Pis, attempt to create the union Pi+1
s = ∪(s,v)∈ΠSi+1

s,v .
Pi+1
s ⊆ Pis corresponds to the set of points x(t) ∈ Pis which remains within

the partition ∪{1,...,R)}Pr in one time step.

(a) The union Pi+1
s is convex:

SetM(s) = 0 if Pi+1
s = Pis and setM(s) = 1 if Pi+1

s ⊂ Pis.
(b) The union Pi+1

s is non-convex:
Add new regions to the controller partition, i.e. ∀Si+1

s,v 6= 0, set
Pi+1
R+1 = Si+1

s,v and R = R + 1. In addition, the matrices V,Π and
vectorM are updated accordingly.

4. If no region has been modified (M(r) = 0 ∀r ∈ {1, . . . , R}), the algorithm
has converged and the invariant subset is found. Otherwise set i = i+ 1 and
goto step 2.

algorithm 6: Positive invariant subset computation

3.5 Examples
In this section, we demonstrate the procedure of obtaining and testing persis-
tent feasibility in the nominal and perturbed cases, starting from transfer func-
tion model and using horizon Nu � N2 without any terminal conditions, over a
mass-spring-damper (MSD) setup followed by an unstable double integrated pitch
dynamics.

3.5.1 Mass-Spring-Damper

The continuous time input-output model of the MSD Fig. 3.2 is given by,

m · ÿ(t) + c · ẏ(t) + k · y(t) = F (t) = u(t) (3.24)

where y(t), u(t) = F (t) are the measured output displacement and input force
respectively with parameters m, c, k being the mass, damping and spring constant
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Figure 3.2: A schematic representation of the mass-spring-damper system.

respectively. Now, this is discretized with sampling time Ts = 10ms with the
parameter valuesm = 1.7kg, c = 9N/m/s, k = 450N/m to obtain the following
system:

y(t)[mm] =
0.0545

1− 1.902q−1 + 0.9264q−2
u(t)[N] + n(t)

subj. to ||y(t)||∞ ≤ 2mm, ||u(t)||∞ ≤ 1N ||n(t)||∞ ≤ γ (3.25)

An input-output MPC regulator is designed with control horizon Nu = 1 and
prediction horizonN2 = 8. In the nominal case γ = 0 and in the robust case γ > 0

is the upper bound on the output disturbance. Note that, no other information is
required as the persistent feasibility technique is independent of the cost function.

The first-step is to deduce the state-space representation. The state vector is
x(t) = [y(t), y(t− 1), u(t− 1)]T and the transformation matrices:

x(t+ 1) =

1.902 −0.9264 0.0545
1 0 0
0 0 0

 ·x(t) +

 0
0
1

 ·u(t)[N] (3.26a)

y(t)[mm] = [1 0 0] ·x(t) + n(t) (3.26b)

subj. to ||x(t)||∞ ≤ [2× 2× 1]T 	 [γ × 0× 0]T , ||u(t)||∞ ≤ 1N (3.26c)

Recollect that, in case of output disturbance, the state constraints are mapped to
the output admissible set defined in 3.2.6. This is equivalent to tightening the
constraint set on the first state, which is the output by the disturbance set acting on
the output and is achieved by the Pontryagin difference operator in (3.26c).

In the nominal case γ = 0, the feasibility set is computed as per theorem 3.3.1
to:

XF (X, 1, 8) = K1(X, L7(X)) (3.27)

after the computation of the 7-steps tunnel setL7(X) and the 1-step controllable set
to it i.e. K1(X, L7(X)). Next, the reach set of the feasibility set R(XF (X, 1, 8))

is computed and to check nominal persistent feasibility of the MPC problem, we
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Figure 3.3: Persistent feasibility test:
R(XF (X, 1, 8)) ∩ L7(X) (cyan) ⊆ XF (X, 1, 8) (red)

make use of corollary 3.3.2:

R(XF (X, 1, 8)) ∩ L7(X) ⊆ XF (X, 1, 8) (3.28)

Indeed, this test is fulfilled as can be seen graphically in Fig. 3.3 and thus a certifi-
cate of practical nominal stability can now be issued to this MPC controller.

Next, a perturbation in the form of 10% additive output disturbance is con-
sidered i.e. with γ = 0.2mm in (3.25). In this case, the robust feasibility set is
computed as per theorem 3.3.1 to:

X̃F (X, 1, 8) = K̃1(X, L̃7(X)) (3.29)

Next, to prove robust persistent feasibility of the MPC problem, we make use of
corollary 3.3.2:

R̃(X̃F (X, 1, 8)) ∩ L̃7(X) ⊆ X̃F (X, 1, 8) (3.30)

As one would expect, there is a reduction in the region of attraction as compared
to the nominal case, to account for the disturbance and the test is fulfilled. A
graphical verification can be made through Fig. 3.4.

Thus far, we have shown a posteriori certification of the MPC controller. How-
ever, one may design a persistently feasible and stabilizing MPC controller to start
with, by following the guidelines of 3.3.1. The resulting algorithms 3-5 can be
applied to the MSD system of (3.26). Following algorithm 3, the determinedness
index of the tunnel set is found to be i∗L = 31 leading to the stabilizing horizons
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Figure 3.4: Robust Persistent feasibility test:
R̃(X̃F (X, 1, 8)) ∩ L̃7(X) (cyan) ⊆ X̃F (X, 1, 8) (red)

Nu = 1, N2 = 31 + 1 = 32. Note that the MPC controller with these parameters
returns a feasibility region with volume 7.6Nmm2 compared to 8.6Nmm2 for the
case before with Nu = 1, N2 = 8. This reduction in the region of attraction is
because of making the tunnel set control invariant, which is an implicit way of
imposing terminal constraint.

In case, a larger Nu is admissible, algorithm 4 may be used. It further requires
the computation of the determinedness index of the controllable set which in this
case is i∗k = 9, suggesting the stabilizing horizons to be Nu = 9, N2 = 9 + 31 =

40. A shorter but closer pair of control, prediction horizons may be obtained by
the application of algorithm 5. It requires the horizons which make the feasible
set control invariant and for the MSD the numbers are Nu = 2, N2 = 3, leading
to the stabilizing horizons of Nu = 2 + 1 = 3, N2 = 3 + 1 = 4. All the three
algorithms, of course satisfy the persistent feasibility subset test of theorem 3.3.6.

3.5.2 Longitudinal Flight Control

It is well know that the relationship between the flight moment to pitch angle is
that of a double integrator. However, while performing an automatic take-off, the
available moment is limited which makes it a constrained control problem. Such
a double integrator plant is one of the most fundamental systems in control ap-
plications, representing single-degree-of-freedom translational and rotational mo-
tion comprising of several other applications of low-friction, free rigid body mo-
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Figure 3.5: (a): Longitudinal dynamics of an aircraft, (b): Pitch control with MPC using
input moment.

tion. Saturated control of double integrator has been studied in [56] using Linear
Quadratic Gaussian, output feedback, directive adaptive controllers amongst oth-
ers and are shown to have performance, stabilizing problems.

The (simplified) equations of motion describing longitudinal flight dynamics
of a fixed wing aircraft can be written down as [57]:

m · ẍb = Fx +m · g · sinθ −m · żb · θ̇ (3.31)

m · z̈b = Fz −m · g · cosθ +m · ẋb · θ̇ (3.32)

Iyy · θ̈ = M (3.33)

Ṫl = Fx, Fz = max(sat(Tl),m · g) (3.34)

ẋe = ẋb · cosθ + żb · sinθ (3.35)

że = żb · cosθ − ẋb · sinθ (3.36)
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a

b

Figure 3.6: (a): A pitch controlled automatic take-off scenario, (b): Persistent feasibility
test: R(XF (X, 2, 12)) ∩XF (X, 1, 11) (cyan) ⊆ XF (X, 2, 12) (red).

wherem = 1000kg, Iyy = 1000kgm2, g = 9.81m/s2 are the flight mass, moment
of inertia about y-axis, acceleration due to gravity respectively, Fx, Tl, Fz, xb, zb
are the net thrust, take-off lift, lift, forward, vertical displacements with respect to
the body axis respectively and xe, ze,M, θ are the forward, vertical displacements
with respect to the earth axis, moment, pitch angle respectively. The first two,
third are the translational, rotational equations of motion in body axis respectively
and the last two relate to the earth axis. The fourth equation develops the lift as
the maximum between saturated take-off lift and plane weight ground compensa-
tion, with the upper saturation set to 11000N. The schematic of the longitudinal
dynamics of a fixed wing aircraft is given in Fig. 3.5(a).

Consider an automatic take-off scenario where the the maximum net throttle
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of Fx = 3000N is applied and after 1s as the lift force develops, we are required
to pitch the aircraft to a certain commanded angle θr = −0.1867rad by manip-
ulating the input moment constrained to ||M ||∞ ≤ 5Nm as part of the aircraft
take-off regulations to quickly attain height. A further constraint on the pitch angle
||θ||∞ ≤ 0.1867rad is imposed to guarantee no overshoot. Naturally, certification
of the associated controllers is quintessential to passenger safety.

The above set of equations in continuous time is discretized with a sampling
time of Ts = 0.05s and an output feedback MPC controller is designed withNu =

2, N2 = 12; note that the control horizon is chosen to be at least equal to the
number of unstable plant modes. The results are plotted in Fig. 3.5(b), the desired
pitch is attained very fast while obeying the input constraints. A snapshot (not
to scale) of the take-off animation is shown in Fig. 3.6(a). Next, as part of our
certification procedure, the feasibility set is computed as:

XF (X, 2, 12) = K2(X, L10(X)) (3.37)

followed by the subset test from theorem 3.3.6:

R(XF (X, 2, 12)) ∩XF (X, 1, 11) ⊆ XF (X, 2, 12) (3.38)

The MPC pitch controller satisfies the above subset test as can be seen graphically
in Fig. 3.6(b) and thus is certified persistent feasible and stable under nominal
conditions.

Note that even though the examples consider a single input single output sys-
tem, the technique can be applied seamlessly to multivariable input-output systems
by formulating the equivalent state-space by using corollary 2.4.1. The nominal
feasible region is then composed of the time history of multiple outputs and inputs.
Subsequently, the developed tests and guidelines for persistent/recursive feasibili-
ty/stability can be used as usual.

3.6 Summary

This chapter makes the most fundamental contribution of the thesis i.e. it devel-
ops an apologia for not using terminal stabilising conditions in industrial model
predictive control. The reasons for the industry not using the terminal conditions
in their MPC formulations like difficulty in computation, compromising perfor-
mance, reduction of feasible region etc. have been highlighted. This gave us
enough motivation to construct a theoretical framework to be able to certify the
industrial implementations that in addition use a shorter control horizon than pre-
diction horizon.

The foundations of our work is through invariant set theory. Therefore, a num-
ber of ideas, definitions and results from invariance theory are presented together.



CERTIFIED PREDICTIVE CONTROL WITHOUT TERMINAL CONDITIONS 3-23

A robust controllable set is shown to be one of the key ingredients for computation
of feasible sets i.e. the region in which the MPC has a solution. Further, a new
set called the tunnel set is introduced to tackle the industrial MPC scenario where
control horizon is shorter then prediction horizon. A brief note on computation of
these sets and on the important concept of control invariance i.e. existence of a
feasible control that would restrict the evolution to the same feasible set has been
included.

The notion of robust persistent feasibility was introduced. It was particularly
tailored towards MPC with shorter control horizon compared to prediction horizon
through tunnel sets. An MPC problem is robust persistently feasible if and only if it
is feasible for all time under the maximum allowed disturbances, and relies on the
existence of ‘a’ solution. The robustness against output disturbances is guaranteed
through output admissible sets, which are particularly easy to construct as the state
vector in our case is formed by the time-history of the outputs.

New guidelines have been developed and presented adequately for choosing
control and prediction horizons such that the MPC problem without terminal con-
ditions is guaranteed robust persistently feasible. In case of fast applications, these
rules may be deliberately violated in order to have very short horizons resulting in
simpler MPC problem. In such cases, a sufficient condition was derived for guar-
anteeing a posteriori robust persistent feasibility, for the MPC without terminal
conditions.

The concept of recursive feasibility is introduced to reduce the conservative-
ness compared to persistent feasibility as it takes into account the structure of the
problem (i.e. uses the cost function to derive an explicit solution). The downside
is that it requires the off-line computation of the explicit solution to the MPC prob-
lem and then deriving a positively invariant subset. The robust recursive feasibility,
once again, is through the computation of output admissible sets.

Finally, we successfully certify (robust) persistent feasibility/stability of input-
output MPC of constrained mass-spring-damper and longitudinal flight dynamics
without any terminal conditions, both in the nominal and perturbed cases and apply
the prescribed stabilizing guidelines to obtain safe horizons.





4
Penalty Adaptive Predictive Control

The MPC controller’s popularity can almost solely be attributed to the fact that it
is a means of systematically handling constrained optimal control problems [44].
However, the two immediate bottlenecks which stem out of it are: (1) the lin-
ear problem suddenly becomes nonlinear due to constraints and thus none of the
powerful classical linear system tools can be used for analysis and (2) constrained
optimization can be expensive due to online quadratic programming (especially
for fast processes).

The only comprehensive set of tools for nonlinear systems are the Lyapunov
based methods, which have been used by far in the literature [9]. We proposed
to use invariant sets based methods in chapter 3 to guarantee stability in the sense
of boundedness of trajectories and also suggested the stabilizing lengths of hori-
zons without terminal conditions. Now, the natural question is to ask, can we go
another step further towards asymptotic stability of MPC without terminal condi-
tions and give some guidelines for tuning the penalties on control moves to achieve
this? Well, turns out that through an appropriate penalty adaptive mechanism,
asymptotic stability without terminal conditions can be given for the adapted input
constrained system in the nominal case, and we like to call this penalty adap-
tive MPC (PAMPC). Since this method preserves linearity of the problem in the
case of repetitive applications like positioning systems in nominal settings, there
is no need of quadratic programming and hence is much efficient as well, com-
pared to [47] where similar properties are obtained but in a nonlinear setting. Thus
PAMPC provides a solution for both the problems stated above.
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4.1 Introduction

Some ideas have existed in the literature which mention removing a constraint
from the optimization problem and thereby making it computationally attractive,
by penalizing the excess control action, thus removing the constraints on the min-
imum and maximum sizes of inputs [44]. Some others [58] have redefined the
objective function to include the optimization of the weights on the magnitude of
the inputs. However, neither of these approaches have come up with a systematic
means of adapting the weights such that the closed-loop system becomes linear.
Moreover, we adapt penalties on the control increments which is more logical to
get zero steady state error in the perturbed case. An efficient offline formulation
of robust MPC is proposed in [59] but at the expense of using linear matrix in-
equalities and online bisection search. Another track of research [60] made use of
reference governors which make the constraints of the inner loop inactive at the
expense of introducing another QP problem for generating references to be solved
at the outer loop.

In this chapter, we present a constraint management method, PAMPC that
adapts the weights on the control increments. PAMPC is a constrained MPC for-
mulation that allows to derive closed loop transfer functions in the case of input
constrained repetitive systems under nominal conditions, thus enabling the use of
linear system tools for instance to prove asymptotic stability for the adapted MPC
without terminal conditions. All this can be achieved by first fixing the control
and prediction horizons to the stabilizing values prescribed in section 3.3.1 or by
alternate tuning mechanisms like relating controller parameters to the structure of
the model. Then the penalty adaptation adapts the control increment weight matrix
based on the current state, reference trajectory and active constraints to satisfy the
input constraints. Further, we present tunneling as a straightforward method to re-
cover performance and feasibility under process disturbances as opposed to more
conservative and computationally demanding approaches like min-max MPC [7].
In the second part of the chapter the PAMPC is tested on the control of challeng-
ing non-collocated systems in which the actuation and sensing occurs at different
locations.

When the sensor measures at the same point where the actuation occurs, such
systems are termed as collocated. It turns out that the dynamic characteristics of
collocated systems are favourable for control system design. However, in real
life, mechatronic applications generally are non-collocated and in addition un-
derdamped which pose unique challenges for the control engineer. Some such
cases include, bridges or flexible beams [61] and production machines e.g. har-
vesters [62]. When controllers are designed for lightly damped structures, shifting
or damping resonances is often the main concern. However, when it comes to
non-collocated systems, anti-resonances should be considered as well. Further, an
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inaccurate model estimation may result in interchanging the order of poles and ze-
ros. This, together with the presence of hard actuator constraints, could render the
closed-loop unstable. Therefore, classical control techniques like pole-zero com-
pensators with no systematic means of handling constraints can perform poorly
given these characteristics of non-collocated systems [63].

In a collocated setting, GPC has been found to be suitable for damping the first
vibration mode of a pinned-free beam model by [64]. In [65] GPC is once again
used for reducing the vibration of ground vehicles but without constraints. The
work carried by [66] highlighted the usefulness of MPC in handling constraints
for active noise and vibration control. However, to our knowledge no results are
reported on model based predictive control of non-collocated systems subjected to
constraints. Here, we demonstrate the effectiveness of PAMPC for the control of
constrained non-collocated system.

4.2 Constrained MPC by Penalty Adaptation

We consider the following cost function formulation, without terminal conditions:

V ∗ = min
∆U

(R− Y )T (R− Y ) + ∆UT ·Λ ·∆U (4.1)

subj. to : ∆U ∈ ∆Uc

where ∆Uc is the set of point-wise in time convex constraints. In addition,R, Y,∆U
are now vectors of references, predicted outputs, control increments respectively
introduced in section 2.3 and Λ a diagonal matrix of penalties. Further, it is possi-
ble to define a first order reference trajectory over set-point with time-constant τ .
Note, that the cost function is the same as that introduced in chapter 2 formulated
in the input-output domain.

The advantage of directly penalizing ∆U makes sense as it penalizes the high
frequencies, which is of particular relevance for underdamped systems. It is well
known that all forms of constraints i.e. on input, output, input rate can be accom-
modated in ∆Uc. For instance, ∆Uc can be obtained from the input constraint
vector |U | ≤ Uc through the relation |u(t − 1) + L ·∆U | ≤ ∆Uc, where L is
a lower triangular matrix of ones. Now we have a quadratic programming (QP)
problem which can be solved either by interior-point, active-set based iterative op-
timizers or even fast gradient methods [44]. Note that, by doing so not only do we
increase the computational burden but also loose the analytical solution to (4.1).
Moreover a whole set of controller parameters need to be tuned.

The original contribution of this chapter lies in re-formulating the entire con-
strained optimization problem to an equivalent unconstrained one with adapted
penalties such that all the constraints are satisfied. Thus, as a first step all the
controller parameters like horizons, etc., must be fixed beforehand either by the
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stabilizing conditions derived in chapter 2 or any other tuning mechanism and
only then the penalty is adapted online to ensure optimal constraint satisfaction.
We call this controller the PAMPC, the details follow.

In the second step, the controller is initialized with the unconstrained solution
to (4.1), which is:

∆U = (GTG+ Λ)−1GT (R− Ȳ ) (4.2)

i.e. the well known least squares solution with G, the step response matrix and Ȳ
the vector of base response.

In the third step, we check for constraint violation. Let us say v is the index
of the constraint in the set ∆Uc that is violated. Denote the error by E = R − Ȳ .
Now rewrite (4.2) as:

Λ.∆U = −GTG ·∆U +GT ·E (4.3)

The idea is to fix the violated constraint ∆u(t + v − 1|t) with its limit in ∆Uc
in the above system of equations and solve for the corresponding control penalty
together with the rest of the control inputs, thus maintaining the solvability of the
system. Let us denote the vth column of matrixG byGv and the matrix formed by
rest of the columns other than v by G̃v . Similarly, let the vector ∆Ũv denote all the
elements except vth and ∆uv the vth element. Finally Λv denotes the vth diagonal
element of matrix Λ and Λ̃v the matrix with vth row and column removed.

Collecting all the ∆u’s other than the one which is violated, we have:

Λ̃v ·∆Ũv = −G̃Tv G̃v ·∆Ũv −∆uv · G̃TvGv + G̃Tv ·E (4.4)

Thus, a solution to the above set of equations can be found as:

∆̃Uv = (G̃Tv G̃v + Λ̃v)
−1(−∆uv · G̃TvGv + G̃Tv ·E) (4.5)

The fourth step is to form the optimal control move vector ∆U by inserting
the fixed value ∆uv in the above computed control sequence ∆̃Uv . Now, we are
in a position to compute the control penalty such that the active constraint ∆uv is
respected:

λv ·∆uv = −GTv ·G ·∆U +GTv ·E (4.6)

The steps three and four are repeated by sequentially checking for constraint
violations in the future time steps until all constraints are satisfied. Once all
constraints are satisfied, the absolute control applied to the plant is formed by:
u(t|t)∗ = u(t − 1) + ∆u1. This forms the outer loop which runs within each
sampling interval. In the next sampling time, this loop along with step two are
repeated and so on.

Theorem 4.2.1. Convergence of PAMPC control loop is always achieved.
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Proof. Consider a compact constraint set with origin in its interior. The PAMPC
algorithm makes |∆u(t+ v − 1|t)| smaller every time when it exceeds constraint
|∆uv| by making ∆u(t + v − 1|t) = ∆uv . This in turn means that λv increases
with each iteration. Finally, infinite penalty on ∆u(t + v − 1|t)2 would mean
∆u(t+v−1|t)→ 0, ∀v, refer (4.2), which satisfies the stop criterion of PAMPC.

Remark 4.2.1. The PAMPC algorithm can have two variations. In the first vari-
ation which is applicable to repetitive applications under nominal conditions, the
optimal penalty matrix is computed only once offline for the MPC problem. This
can be done by reinitializing the penalty matrix at the next iteration to the one
computed before and in case there are no further adaptations, then the Λ of the
first iteration would satisfy constraints every time. However, if this is not the case,
then Λ can be chosen as the supremum amongst all the adaptations. Thus with
Λ fixed, the closed-loop system remains linear and the closed loop characteristic
polynomial can be derived to be:

φc = A · I + q−d ·B · J (4.7)

The expressions for the polynomials I, J have been derived in section 2.3 through
Diophantine equations. This allows us to comment on the asymptotic stability of
the adapted nominal system by checking if the polynomial φc is Hurwitzian (i.e.
roots within unit circle).
In the second variation of the PAMPC, the penalty matrix is re-initialized to 0 or a
very small constant at the beginning of each iteration, and runs online. A closed-
form solution in this case would be more involved and may be given in the form of
a bound over the set of closed-form solutions corresponding to the set of changes
in the penalty matrix. This is effective in the presence of unknown disturbances, as
the associated change in dynamics can necessitate a re-adaptation of the penalty
matrix. However, this adaptation cannot be estimated beforehand and hence the
closed-form solution is lost in this case.

Thus, PAMPC as well satisfies the stringent conditions D1 − 5 of chapter 3,
for the input constrained case.

4.3 Robust Design of PAMPC

4.3.1 Robust Feasibility of PAMPC by Tunneling

Robustness is delivered by PAMPC through an appropriate design of the dis-
turbance filter. For well damped processes, it is common to choose C/D =

1/(1 − q−1). However, for poorly damped systems, the ‘integrator’ disturbance
filter gives oscillatory response.
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Therefore, the first adaptation we make is to introduce the process denominator
A as an additional factor of D which ensures that A cancels out of the closed loop
transfer functions of (2.19). The second step is to choose C = (1−ρ.q−1)nA with
0 ≤ ρ < 1 in order to ensure that the closed loop is stable. In general, higher
values of parameter ρ increases robustness but disturbances are rejected slower.

For constrained systems, however, feasibility should not be lost i.e. under
possible acting disturbances, the controller output must lie within the constraints.
As opposed to taking a conservative approach of computing the controller for the
worst case scenario of disturbance sequence, we propose an online methodology
to maintain feasibility by ‘tunneling’ i.e. creating tunnels through the input con-
straints. This approach is presented in the following two steps:

1. Compute and store the error at output as the difference between predicted
model output and actual measured output i.e n(t). From this, estimate the
disturbance acting on the input: ud(t) = (A/B).n(t). Note that the plant
must be inverse stable. In case of noise, filtered measurements must be
stored.

2. Predict future input disturbance based on:
ud(t+ k) = f(ud(t+ k− 1), ud(t+ k− 2), . . .) where k ∈ [0, Nu− 1] and
f is a dynamic system learning kernel like neural network, the complexity
of which depends on the complexity of the disturbance signal. Next, update
the input constraints Uc based on the tunnel: Ut = Uc − Ud, where Ut is
the updated tunneled point-wise in time input constraint and Ud contains the
predicted ‘ud’s.

Theorem 4.3.1. Consider a PAMPC controller with disturbance filter designed
for robustness against a class of disturbances. Robust feasibility can then be guar-
anteed if the predicted input disturbance sequence Ud is subtracted from input
constraints Uc through the control horizon Nu.

Proof. Consider a robust PAMPC controller that computes an optimal, constraint
admissible sequence U∗. Since, the optimization problem is solved for constraints
Uc, any or all of the future control values can lie on the constraint. In that case,
the real control input to plant is: Up = Uc + Ud, clearly violating the constraints.
But, if the constraint set is tunneled to Ut = Uc − Ud, we have: Up = Ut + Ud =

(Uc − Ud) + Ud = Uc which is feasible.

The above approach would guarantee that the robust control inputs remain con-
straint admissible even under process disturbances.

4.3.2 An Alternate Tuning Procedure

Here we present the choice of tuning parameters except penalty Λ which are
needed in the first step for PAMPC. Tuning of MPC controllers has drawn sig-
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nificant attention in the literature, however the vast majority of analytical tuning
methods are applicable only when the constraints are inactive [67]. The rest of the
tuning methods are trial and error iterative approaches [68] or heuristic auto-tuners
like particle swarm optimization [69]. It has been pointed in [10] that a manifold
increase in computation speed occurs if the structure of the MPC problem at hand
(e.g. warm starting for interior point methods) is exploited.

The first approach of obtaining the values for stabilizing control and predic-
tion horizons is by following the guidelines which were developed in section 3.3.1.
This gives the minimum horizons that make the feasible region control invariant,
and subsequently persistently feasible. Recollect that, these rules are valid inde-
pendent of the cost function and hence the penalty adaptation mechanism will not
alter the sanctity of the tuning mechanism. As was noted earlier, this mechanism
could be a little conservative and hence we present another alternative (not so rig-
orous) way here.

The computational complexity in each iteration scales with the square of con-
trol horizon i.e O(N2

u) for PAMPC and thus it is advisable to use short control
horizons. However a control horizon of Nu = 1, which results in mean-level
control is not capable of optimal performance in high order systems which have
multiple modes [6]. A time-optimal performance can definitely be guaranteed by
choosing the dead-beat settings for the unconstrained case.

Theorem 4.3.2. If N2 ≥ nA + nB + d, N1 = nB + d, Nu = nA + 1 with
d ≥ 1, then minimization of the cost function drives y(t) in nB + d samples to the
reference (nA, nB are the degrees of polynomials A,B respectively) [70].

Proof. A regulation problem by minimization of the cost function (4.1) between
the chosen [N1, N2] with zero penalty ensures the only solution is when
y(t + nB + d) = 0. Further the equality constraints ∆u(t + k − 1|t) = 0 for
k > Nu ensures the output remains at 0 as well.

For the case with constraints, the control horizon Nu and minimum prediction
horizon N1 remain the same as in dead-beat settings as these are strongly related
to the structure of the plant. One way of choosing the prediction horizon is by
fixing it to N2 = int(settling time)/Ts [71]. This choice of Nu � N2 increases
the stability of the closed loop, as this is equivalent to large terminal penalty. The
time constant of the reference trajectory τ dictates the closed loop pole and thus
must be fixed according to the desired speed of the closed loop. This leaves only
the penalty term Λ which should be initialized to a very small value ≈ 0 and is
then adapted online by PAMPC. Note that, in general Λ is fixed beforehand, and
such a choice cannot be optimal under constraints.
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4.4 Test case: Non-collocated mass-spring-damper

Non-collocation arises when the input force acts on the system at one point and
the sensor measures the response at another. These are limitations posed by the
design of the mechatronic systems. It may be seldom feasible to act and sense
at the same location in reality. The flexible beam model is often used to analyze
several characteristics of underdamped, non-collocated systems and their control.
In [72], the cantilever beam model was used to study vibration suppression with
non-collocated piezoelectric actuator and accelerometer.

Collocated systems, where the sensor and actuator are placed in the same posi-
tion has the following property [63]: there is just one anti-resonance between two
consecutive resonances. However, for non-collocated actuator-sensor systems, the
above property is lost. It additionally poses the following problems:

1. As the sensor moves away from the actuator, the zeros migrate along the
imaginary axis towards infinity and reappear from infinity on real axis.

2. If the resulting non-minimum phase zeros are within the system bandwidth,
they can put severe restriction on the control system.

3. A pole-zero flipping might result due to modest variations in system param-
eters and can cause the corresponding branch in the root locus to become
unstable!

As a direct consequence of the above, non-collocated control suffers from lack
of robustness. We prove this over a mass-spring-damper set-up, that classical con-
troller like PID lacks severely in terms of performance and stability.

4.4.1 Mass-spring-damper setup

The setup of Fig. 4.1 corresponds to a rectilinear electromechanical apparatus
from ECP. The input of the plant is the voltage sent to the motor u and the outputs
of the plant are the mass displacements (y1 and y2).

The electrical motor dynamics are fast compared to the mechanical dynamics,
which means that the motor can be represented by a pure static gain:

F (t) = K ·u(t) (4.8)

The parameters of the system are:

m1 = 1.7kg,m2 = 1.2kg, k1 = k2 = 800N/m,

k3 = 450N/m, c1 = 9N/m/s,K = 3.35N/V (4.9)
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Figure 4.1: Mass spring damper setup

A mathematical representation of the system in Fig. 4.1 is derived from the
free body diagram and the application of Newton’s Second Law of motion.

F (t) = m1 · ÿ1 + k2 · (y1 − y2) + k1 · y1

0 = m2 · ÿ2 + c1 · ẏ2 + k3 · y2 − k2 · (y1 − y2) (4.10)

Assuming zero initial conditions, the Laplace transform of (4.10) results in :

F (s) = m1 · s2 ·Y1(s) + (k1 + k2) ·Y1(s)− k2 ·Y2(s) (4.11)

0 = m2 · s2 ·Y2(s) + c1 · s ·Y2(s) + (k2 + k3) ·Y2(s)− k2 ·Y1(s)

Further algebraic manipulations lead to:

Y1

F
=
m2 · s2 + c1 · s+ (k2 + k3)

CharPoly
,

Y2

F
=

k2

CharPoly
(4.12)

or, including also model of the motor:

Y1

U
= K

m2 · s2 + c1 · s+ (k2 + k3)

CharPoly
,

Y2

U
= K

k2

CharPoly
(4.13)

where the characteristic polynomial CharPoly is given by:

m1 ·m2 · s4 +m1 · c1 · s3 + [m1 · (k2 + k3) +m2 · (k1 + k2)] · s2+

c1 · (k1 + k2) · s+ k1 · k2 + k2 · k3 + k3 · k1 (4.14)

In the first case, the position encoder measures the displacement of mass one
y1, at the same point as the input force from motor actuation, u, thus making
the system collocated. In the second case, the displacement of mass two y2 is
measured at a different point than the input force u, thus making the system non-
collocated.

The plot of Figs. 4.2(a), 4.2(b) demonstrates some of the key distinguishing
features of collocated and non-collocated systems. The first is the alternating poles
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Figure 4.2: Root locus diagram of (a): mass-1 with all stable branches, (b): mass-2 with
unstable branches.

and zeros near the imaginary axis. This is the case for collocated systems i.e. mass-
1 and does not exist for non-collocated systems like mass-2. Another principal
feature is stability. For mass-1, the stable region is the negative real plane, and
therefore this collocated system is and will be stable because the poles stay in the
LH plane with increasing gain. However, for mass-2, since the complex conjugate
zeros are no longer present, thus the system can very quickly become unstable as
the poles travel to the RH plane. The step response of mass-2 is plotted in Fig.
4.3(a) which highlights the oscillatory response and long settling time.

A system identification using prediction error method is performed on the
MSD system, and the corresponding frequency response function for the non-
collocated case of mass-2 is plotted in Fig. 4.3(b). Multisine excitation signals
covering the band of interest were used for the identification with 10 ms sampling
time.

Recollect that, a feature of collocated systems like mass-1 is the presence of
an anti-resonance between two consecutive resonance frequencies. This means
the phase always oscillates within 0o and −180o. Furthermore, the zeros of the
collocated system are in fact the natural frequencies of the same system with the
additional restraint at the collocated sensor and actuator. Since the anti-resonant
frequencies are based on the actuator-sensor location, the mass-2 bode plot of
Fig. 4.3(b) depicts the absence of the anti-resonance between the same two res-
onant frequencies and thus there is no 180o phase lead.

4.4.2 PID control

The objective is to control the position of the second mass which is a non-collocated
scenario. A trivial but not at all suitable choice is PID control. The PID-controller
possesses three tuning parameters: the proportional gain Kp, the integration time
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Figure 4.4: (a): Auto-tuner root locus with a pair of overlapped zeros, (b): Nyquist of
AH-autotuner open loop

Ti and the differentiation time Td. Towards tuning, a relay feedback test with relay
amplitude r is applied to the process which makes the output oscillate around the
set-point with a certain critical amplitude Ac and critical period Tc. Consequently,
the critical gain can be computed as Kc = 4r

πAc
. The experiment is performed on

the mass-spring-damper and yields :

r = 0.5V, Tc = 0.25s, Ac = 0.35cm (4.15)

Starting from (4.15), Åström and Hägglund have suggested several ways to
compute the PID tuning parameters. We use a tuning method similar to Ziegler-
Nichols [73]:

Kp = 0.6Kc; Td = 0.125Tc; Ti = 4Td (4.16)
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The resulting PID makes the closed loop unstable. This can be explained by
the root locus analysis presented in Fig. 4.4(a).

In our case, the PID has a pole at origin and two overlapped real zeros. This
clearly does not suffice to control a system with two pairs of underdamped poles.
As marked on this plot, the closed loop corresponding to the tuning parameters
(4.16) is clearly unstable, as the underdamped pole pair is already on the right half
plane. This is a consequence of a non-collocated system with relative order 3,
i.e. 3 zeros at infinity. The root locus of Fig. 4.4(a) has one asymptote along the
negative real axis and two asymptotes at ±π3 with unstable branches.

This can be further explained with the Nyquist diagram of Fig. 4.4(b). The
auto-tuning methods determine the critical frequency of the plant by the relay ex-
periment and then enforce the open loop i.e. controller*plant to pass through the
desired point on the complex plane at the plants critical frequency. However, in
our special case with resonances, the open loop frequency response encircles the
(−1, 0) point at a frequency greater then the critical frequency, which leads to the
instability.

The poorly damped fourth order system gives an unstable closed loop when
PID controllers are tuned with auto-tuners or at best oscillatory response with
settling time larger than open loop with other tuning techniques [74]. PIDs can
neither control the oscillations, because of the poorly damped pole pair near the
imaginary axis of the closed loop. A further inclusion of actuator limits can have
disastrous consequences on the closed loop, as it is well known that clipping sig-
nals can make the system output unbounded [37]. Therefore, a more sophisticated
model based control which cannot only counter the system dynamics but also deal
with the constraints in a systematic manner, is necessary.

4.4.3 PAMPC applied to position control of MSD

MPC has been applied to vibrating systems, the most relevant for our study would
be the work by [75] which deals with the predictive control of a mass spring
damper system. However the study excludes analysis based on the structure of
the system. The control system design based on the properties of underdamped
non-collocated systems has been noted as a challenging problem in [76]. More-
over, the majority of research in vibration control has focused on unconstrained
systems [77]. The PAMPC approach presented in 4.2 manages the constraints on-
line by finding optimal penalties after tuning rest of the parameters as in 4.3. Let
us demonstrate the efficiency of PAMPC on a simulation of the MSD benchmark
system.

Recall that, the objective is to control the position of mass-2 with an input
voltage to the motor for fast response with minimum oscillations and overshoot.
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Figure 4.5: (a): MSD control with PAMPC and QP, (b): The penalty adaptations within
the first sampling interval.

This system is subjected to the following asymmetric input constraints:

− 1.82V ≤ u ≤ +2.86V (4.17)

The process model of (4.13) is used with the pole structure shown in Fig. 4.2(b),
and the sampling time is same as before i.e. 10ms. A discretization of the system
yields nB = 3, nA = 4, d = 0. We detail the PAMPC design procedure:

• Use a quadratic cost V (∆U) without terminal conditions.

• Fix Nu = nA + 1 = 5, N1 = nB + d+ 1 = 4.

• Compute rounded value of N2 = int(settling time/Ts) = 28.

• Obtain a minimum positive integer τ which ensures no overshoot (through
simulation), in this case τ = 6.

• Initialize Λ ≈ 0 · I4.

With these settings the first variant of the PAMPC controller is implemented on
the MSD and the results are plotted in Fig. 4.5(a) vis-a-vis a corresponding uncon-
strained MPC controller. For PAMPC, the settling time is within 0.23s (10 times
faster than open loop, see Fig. 4.3(a)) with no overshoot and the constraints are
respected as well. The penalty matrix Λ which has Nu = 5 entries in its diag-
onal adapts considerably from initial value to [0.13, 0.036, 0.036, 0.433, 0.036]T ,
to deliver the required performance with constraint satisfaction. The evolution of
Λ within the first sampling interval is plotted in Fig. 4.5(b), which confirms its
monotonic increasing property used in theorem 4.3.1. This adapted Λ matrix for
the constrained problem does not change any further and thus enables the compu-
tation of the polynomial form of the PAMPC controller; the open loop frequency
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response of which is plotted in Fig. 4.6(b) with the phase and gain margins. The
modulus margin i.e. the minimum distance between the open loop frequency re-
sponse curve and the critical point is used as a measure of robustness and is 0.35

for the PAMPC. Further, the closed loop characteristic equation is a Hurwitzian,
which guarantees asymptotic stability without terminal cost, terminal penalty, ter-
minal control law, and the closed loop bandwidth of the system is 4.66 Hz.

For the sake of comparison, a MPC controller having more degrees of freedom
is now designed with Nu = 14, N1 = 1, N2 = 15,Λ = 0 · I14, τ = 1 and opti-
mized by a QP solver instead of the penalty adaptation procedure. The constrained
optimal solution in this case is plotted in the same Fig. 4.5(a) vis-a-vis PAMPC.
PAMPC delivers much better performance for this underdamped non-collocated
benchmark system. This is because the penalty matrix Λ which has Nu = 5 en-
tries in its diagonal adapts considerably from initial value to deliver the required
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Figure 4.8: (a): Robust feasibility under process disturbances, (b): Evolution of Penalty
adaptations till convergence

performance with constraint satisfaction. The QP based MPC however uses the
conventional parameterization and can only guarantee constraint satisfaction, but
has no means to find the correct penalty matrix and hence ends up with higher set-
tling time and control effort. Computation time is a critical factor for the evaluation
a control algorithm especially for fast systems, hence we compared the computa-
tion costs of active-set and interior-point QP solvers with PAMPC. The results are
plotted in Fig. 4.6(a) for the first few iterations which are relevant due to active
constraints. It is clear that PAMPC is at least 5 times faster than the QP solvers.

Further, in one case we deliberately detune the control horizon to unity leaving
the rest of the parameters to nominal and in another detune the prediction horizon
to half of its original value leaving the rest of the parameters to nominal, to show
the effectiveness of our suggested tuning procedure. It can be noted from Fig.
4.7(a) that a mean-level control obtained from Nu = 1 induces oscillations and
increases the settling time. Similarly, for N2 = 14 case, an increase in oscillations
and settling time can be noted from Fig. 4.7(a) compared to Fig. 4.5(a). Next,
we consider the case where the model has ±5% uncertainty in terms of the gain,
the two natural frequencies and damping ratios. Under these settings, the PAMPC
with the same parameters as above but now with the disturbance filter designed
as: C/D = 1/(A.(1 − q−1)) is considered. The results are plotted in Fig. 4.7(b)
which shows the settling time is now just over 0.3s and has zero overshoot. This
is then compared to the one where a standard integrator filter is used. Notice, that
in this case the oscillations persist in the controlled closed loop.

In a last test, an additive input step disturbance equal to one third of the input
range is introduced at 0.15s. In this scenario we keep the above tuning with the
improved filter for PAMPC and add the tunneling mechanism from the previous
section. The learning function here is just a constant with no memory; the results
are illustrated in Fig. 4.8(a). The PAMPC controller maintains the nominal per-
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formance with no constraint violations. Notice that in Fig. 4.8(b), the penalties
are adapted once again after 0.15s to cope with the step disturbance, before they
converge again. This is compared to the controller without tunneling, and it can be
clearly seen that it results in serious constraint violations.

4.5 Summary
First, a predictive control strategy PAMPC is introduced which manages con-
straints by adaptation of weights on control increment. The novelty is that in the
case of input constrained nominal repetitive dynamics, the resulting closed-loop
system can be made linear which allows for the use of linear system tools to guar-
antee asymptotic stability of the adapted MPC without terminal conditions through
the closed-loop characteristic polynomial. Second, an online constraint tunneling
approach is presented towards robust feasibility of the PAMPC controller under
process disturbances. None of these schemes need any quadratic programming as
the analytical solution is derived.

Next, the control challenges posed by constrained, underdamped, non-collocated
mechatronic systems have been highlighted through a mass-spring-damper repre-
sentative system. The PAMPC is shown to be effective for control of the MSD
system, which poses all the mentioned challenges. Extensive simulations are per-
formed which validate the controller under nominal and perturbed settings.



5
Switched Nonlinear Predictive Control

A logical extension to MPC over linear models (which has been largely dealt with
in the previous chapters) is to use nonlinear dynamical systems, given the ubiq-
uitousness of nonlinear control problems and the lack of an universally accepted
nonlinear control solution [44]. Extending the MPC formulation for constrained
linear systems to nonlinear systems is conceptually straightforward but met with
practical difficulties. Most of the stability results for the constrained linear sys-
tems apply to nonlinear systems without modification (the Lyapunov and invari-
ance techniques considered a general nonlinear state-space representation).

However the implementation is greatly complicated by the computational com-
plexity in finding a globally optimal solution to a non-convex optimization prob-
lem. Despite the progress made in the area of nonlinear programming, compu-
tational complexity remains a major obstacle for designing a practically imple-
mentable nonlinear MPC algorithm [44]. Naturally, the researchers focused on
finding a formulation that does not require a globally optimal solution to be found,
just a feasible solution, for example in [78]. Once a feasible solution is found, the
subsequent solution preserves the feasibility and tries to merely improve the cost.
Recently, some progress has been made in developing tools in C + + for fast op-
timization in control [79]. Chen and Allgower [80] presented an approach called
quasi-infinite-horizon MPC, where a quadratic terminal penalty corresponding to
the infinite horizon cost of linearized system is imposed. Because a terminal con-
straint is used to force the state to lie within a terminal region, within which the
system is stabilized by linear feedback, feasibility alone implies asymptotic sta-
bility. However, our focus here, once again, will be on nonlinear MPC without
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terminal conditions due to the same reasons as presented in chapter 3.

5.1 Introduction

In fact, the theory presented in chapter 3 on robust persistent feasibility to guar-
antee practical stability made use of a very general nonlinear system model, and
hence all the results which were obtained are generally valid for nonlinear MPC
without terminal conditions. The paper [81] provides an exposé to the computation
of control invariant sets for nonlinear systems. More so, since the results on robust
persistent feasibility are based on set invariance and are independent of the cost
function or the optimality of the solution, therefore the practical stability proofs
derived in chapter 3 are valid for nonlinear MPC where optimality of the solution
cannot be guaranteed. Therefore the conditions D2 − D5 of chapter 3 are satis-
fied for nonlinear MPC. If the nonlinear models are already in state-space form,
then condition D1 is fulfilled by default, and if not a nonlinear state-space can be
derived from the input-output representation by using similar rules as in the linear
systems case (refer 2.4.1).

Remark 5.1.1. The input-output model in the nominal form is represented as:
y(t) = fy(y(t−1), y(t−2), . . . , u(t−1), u(t−2), . . .). An equivalent state-space
representation would be with the state vector as:
x(t) = [y(t), y(t− 1), . . . u(t− 1), u(t− 2), . . .]T . Correspondingly there would
be one big equation for the first state update x1(t + 1) = f(x(t), u(t)) with the
rest updated through a shift register (i.e. appear as equalities to their previous
values). The input, output constraints U,Y are mapped to the state constraint
[Y× Y× . . .× U× U× . . .].

The reverse direction is a hard problem, i.e. to come up with a nonlinear input-
output representation from a nonlinear state-space model. A few ideas in this
direction would be to use state elimination technique (not guaranteed to work in
all cases) [82] or to perform a nonlinear auto-regressive exogenous system identi-
fication over the state-space model [83].

Amongst the NMPC techniques, the nonlinear EPSAC (NEPSAC) [34] is a
pragmatic choice for the industry as it is generally valid for any nonlinear system
and is computationally tractable. However, the convergence of the NEPSAC algo-
rithm remained an open problem for around two decades. One of the fundamental
contributions of the thesis is to formally present the proof of convergence.

Many nonlinear systems in the mechatronic domain appear as piecewise affine
systems or systems with switching dynamics [44]. Moreover, any nonlinear sys-
tem, in principle can be expressed as a piecewise affine (PWA) system with bounded
uncertainty [84].
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Figure 5.1: NEPSAC flowchart (The base input trajectory Ubase is used to compute the
base response Ȳ which is added to the convolution of impulse response matrix G with

optimal U (computed by optimizer) to realize target reference R. Then, Ubase is
incremented with U and the steps repeated until Ubase converges to a local optimal,

following which the first element of the update Ubase + U giving
u(t|t) = ubase(t|t) + δu(t|t) is applied to the process and output y(t) is measured.

Hence, we extend our stability certification mechanisms to MPC of PWA sys-
tems without terminal conditions which could then be used to certify the cor-
responding nonlinear MPC without terminal conditions. Next to it, a two-level
NMPC architecture is developed to control switched dynamical systems.

5.2 Nonlinear MPC (NEPSAC) with guaranteed
convergence

The nonlinear EPSAC i.e NEPSAC is an iterative execution of the EPSAC algo-
rithm until convergence to the locally optimal control effort within each sampling
period [34]. The advantages of NEPSAC over classical NMPC strategies are (1)
direct use of the nonlinear prediction model, avoiding local linearization; (2) intrin-
sic capability to deal with repetitive disturbances; and (3) ease of implementation.
All these are feasible because NEPSAC does not demand significant modification



5-4 CHAPTER 5

of the basic linear EPSAC concept which is computationally simple and fast, mak-
ing it suitable for real-time online control.

When a nonlinear system f [.] is used for ŷ(t), the superposition of (2.4) is still
valid only if the term yoptimize(t+ k|t) is small enough compared to Ȳ (t+ k|t),
which is true if δu(t + k|t) is small, with k ∈ [1, . . . , N2]. This can in turn only
happen if ubase(t + k|t) is close to the optimal u∗(t + k|t). Notice that, in the
nonlinear case the step responses are different for each operating point, and hence
unlike the linear controller, NEPSAC requires re-computation of the G matrix at
every sampling instant. However, the exact values of the matrix are not critical,
since the effect ofG would gradually disappear. This can be realized iteratively by
going over the following steps for each sampling interval:

1. Initialize ubase(t+ k|t) to the previous optimal control sequence
i.e. u∗(t+ k|t− 1).

2. Compute δu(t+ k|t) using the linear EPSAC procedure of section 2.3.

3. Calculate the corresponding yoptimize(t+k|t) (same as the linear case, refer
2.3) and compare it to Ȳ (t+ k|t).

• In case the difference is not small enough, redefine ubase(t+ k|t) as
ubase(t+k|t)+δu(t+k|t) and return to step 2. The underlying concept
is that this optimal input can act as a second estimate for the nonlinear
system.

• In case the difference is within certain tolerance,
u∗(t) = ubase(t|t) + δu(t|t) is the locally optimal control for the cur-
rent sampling instant.

This algorithm is graphically illustrated in Fig. 5.1, where R, Ȳ , Ubase are now in
the vector form of the signals r(.|.), Ȳ (.|.), ubase(.|.) introduced before. The algo-
rithm after convergence results in the locally optimal control for a given nonlinear
system. The number of iterations required depends on how far the optimal control
is from its prior value.

Theorem 5.2.1. The NEPSAC nonlinear MPC controller without terminal condi-
tions converges to a local optimum, provided the value of the control penalty forces
a monotonic decrease of the cost function through every iteration.

Proof. The NEPSAC algorithm recursively computes the locally optimal base re-
sponse through the locally optimal base input vector. Therefore, the algorithm
starts by initializing the base input vector, to Ubase resulting in output vector Ȳ .
Then the corresponding quadratic cost function takes the form (without terminal
conditions):

V (Ubase) = (R− Ȳ )T · (R− Ȳ ) (5.1)
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Now, the problem is to find the locally optimal U∗base which minimizes the above
cost function. The standard way to tackle such a nonlinear optimization problem
is by gradient descent. Hence the next approximation of the optimal U∗base should
be the initial Ubase plus a perturbation vector δU . To approximate δU , we need an
expansion of the nonlinear system around Ȳ . This can be done by Taylor’s series
approximation to the first derivative term:

Y ≈ Ȳ + J · δU (5.2)

where J is the Jacobian of the nonlinear system f [.]. It is here, that NEPSAC uses
the clever trick, that the Jacobian is nothing other than the matrix G of impulse
and step responses. Hence the Taylor expansion can equivalently be written as:

Y ≈ Ȳ +G · δU (5.3)

At the minimum of the sum of squares, the gradient of V with respect to δU will
be zero. The above first order approximation gives:

V (Ubase + δU) ≈ (R− Ȳ − J · δU)T · (R− Ȳ − J · δU) (5.4)

Taking the derivative with respect to δU and setting the result to zero gives:

δU = (JT · J)−1JT (R− Ȳ ) = H−1JT (R− Ȳ ) (5.5)

Note that the Hessian i.e. the second derivative is in fact, H = JT · J and this is
called the Newton method of optimization. Here is the second trick of NEPSAC
as the Hessian can simply be re-written as H = GT ·G, as we established through
Taylor series that J = G. Therefore the Hessian computation comes as free again
from the G matrix. This exactly leads to the NEPSAC iterate:

δU = (GT ·G)−1GT (R− Ȳ ) (5.6)

This formulation however has the disadvantage that convergence cannot be guar-
anteed, partly because a requirement that GT ·G � 0 may not be always true.
Therefore Levenberg-Marquardt algorithm [85] proposed a solution to this prob-
lem, by adding a so called damping term to the Hessian matrix: Λ = λ · I where
I is the identity matrix and λ > 0 is a scalar called the damping factor, which is
to be adjusted to guarantee a cost decrease. Here comes the third and final trick
of NEPSAC: the damping factor λ turns out to be exactly identical to the control
penalty by re-writing the cost as:

V (Ubase + δU) ≈ (R− Ȳ − J · δU)T · (R− Ȳ − J · δU) + δUT ·Λ · δU (5.7)

Now the iterate, which is obtained by equating the derivative to zero, is exactly the
same as Levenberg-Marquardt algorithm, with J = G:

δU = (GT ·G+ Λ)−1GT (R− Ȳ ) (5.8)
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In the next step, of course the initial solution is then updated toUbase = Ubase+δU

and this NEPSAC algorithm which we have just shown is equivalent to the
Levenberg-Marquardt optimization is guaranteed to converge to a locally optimal
solution because of the damping λ that forces a monotonic cost decrease through
every iteration.

Remark 5.2.1. As the above theorem suggests the choice of λ is critical to guar-
antee convergence, a heuristic way of finding the right λ is, to first initialize it and
then:

1. Compute a NEPSAC iterate.

2. Evaluate the cost function as a result of the optimization.

3. If the cost has increased, increase λ by a factor of 10.

4. Go to step 1.

Lemma 5.2.1. A more robust way of getting a correct λ is to replace it with:
Λ = λ · diag(H) = λ · diag(JT · J) = λ · diag(GT ·G).

Proof. The scaling of each component of the gradient JT = GT by the Hessian
matrix H = JT · J = GT ·G results in larger movement along the directions
where the gradient is smaller. Since the Hessian is proportional to the curvature of
V , (5.8) implies a large step in the direction with low curvature (i.e., an almost flat
terrain) and a small step in the direction with high curvature (i.e., a steep incline).

Remark 5.2.2. Note that, with control horizon Nu = 1, the constrained solution
equals to the unconstrained one, passed through a saturation, therefore no mod-
ification is necessary to the theorem 5.2.1. However, for longer control horizons,
and in the presence of input, output constraints, the step where the unconstrained
optimal solution is found i.e. (5.8) has to be replaced by the active sets quadratic
programming constrained optimal solution. The rest of the steps in the proof re-
mains the same.

5.3 Example: Longitudinal Flight Control

The complete set of equations describing the longitudinal flight dynamics were
introduced in (3.31) and a linear MPC pitch controller was presented during au-
tomatic take-off. Now, we are interested in controlling the height of the aircraft
i.e. ze to a target zr = 60m using the constrained moment ||M ||∞ ≤ 100Nm

as the control input. The associated equations of (3.31) are non-linear with state
multiplications, saturation and trigonometric non-linearity.
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Figure 5.2: Illustration of the impact of control penalty on the convergence of (a): cost
function, (b): NEPSAC iterates.

Therefore, a NEPSAC nonlinear MPC controller is now designed with Nu =

1, N2 = 100 in order to obtain stabilizing response. The closed-loop as usual is
sampled at Ts = 0.05s and all the model parameters have the same values as in
section 3.5.2. The impulse/step matrix should be re-computed at certain operating
points which gives improved computational cost. An automatic take-off is per-
formed with full throttle Fx = 3000N and after 8s when the aircraft is airborne,
the controller is switched on. The main purpose of this example is to validate
theorem 5.2.1 i.e. to illustrate that adapting the penalty is necessary to obtain a
monotonic decrease in the cost (V ) as well as a reduction in NEPSAC iterates
(δU ) within every sampling interval. So, at first the control penalty is initialized to
an arbitrary value of λ = 0.001. It turns out that the associated costs of the NEP-
SAC iterates within the same sampling time do not decrease monotonically, refer
Fig. 5.2(a). The resulting NEPSAC iterates as one would expect do not converge
either and one such case is plotted in Fig. 5.2(b).

Now, we apply the algorithm of remark 5.2.1 and increase the penalty by a
factor of 10 to λ = 0.01 and recompute the controller. Even this time, the in iter-
ation cost does not decrease which prompts a further ten-fold increase of penalty
to λ = 0.1. The NEPSAC controller with λ = 0.1 does enforce a monotonic de-
crease of the cost function with every NEPSAC iteration for most of the sampling
intervals. In those few instances, when the cost still increases, an infinite penalty is
imposed or in other words the previous control is maintained. This penalty adap-
tation strategy also results in the convergence of the NEPSAC control iterates.
The iterations within a representative sampling time illustrating the monotonic de-
crease of the cost and convergence of NEPSAC iterates are plotted in Figs. 5.2(a),
5.2(b) respectively.

The performance of the NEPSAC controller is satisfactory with a settling time
of 20s and the input constraints are obeyed. These results are plotted in Fig. 5.3(a).
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Figure 5.3: (a): Nonlinear MPC control of aircraft height, (b): A height controlled
automatic take-off scenario.

A snapshot (not to scale) of the corresponding animation can be seen in Fig. 5.3(b).

5.4 Piecewise Affine Systems

PWA systems can model a large number of physical processes, such as systems
with static nonlinearities, and can approximate nonlinear dynamics via multiple
linearizations at different operating points [86]. Piecewise affine systems in the
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nominal case are described by the state-space equations:

x(t+ 1) =Ai ·x(t) + Bi ·u(t) + fi, (5.9a)

y(t) =Ci ·x(t) + gi, (5.9b)

Mxi
·x(t) +Mui

·u(t) ≤Mi, i ∈ I (5.9c)

if [xT (t), uT ]T ∈ χi (5.9d)

whereby the dynamics (5.9a) with associated constraints (5.9c) are valid in the
polyhedral set defined in (5.9d). The set I represents all possible dynamics. If
all the fi = 0, then the system is said to be piecewise linear (PWL) and if all
Ai = 0,Bi = 0, then the system is piecewise constant. Henceforth, we will
abbreviate (5.9a) and (5.9c) with x(t + 1) = fPWA(x(t), u(t)). Note that there
is no general description of PWA systems in the input-output space and can be on
a case-by-case basis be transformed to the above state-space form by considering
the state vector x(t) = [y(t), y(t−1), . . . u(t−1), u(t−2), . . .] and the constraints
mapped through χi = [Yi × Yi × . . .Ui × Ui × . . .] for each respective region i.
An illustrative example is given in the next section.

The MPC problem 3.1.2 is restated below for the PWA case (without terminal
conditions):

V ∗Nu
(x(t)) = min

U

N2∑
k=N1

(xT (t+ k|t) ·CTC ·x(t+ k|t))

+λ

Nu−1∑
k=0

(uT (t+ k|t) ·u(t+ k|t))

subj. to Mxi
·x(t) +Mui

·u(t) ≤Mi, if [xT (t), u(t)T ]T ∈ χi,
i ∈ I, ∀k ∈ [N1, N2] (5.10)

For the invariant set computations for the PWA systems, note the basic differ-
ence in the definition of the pre set:

Definition 5.4.1. The pre set for PWA systems is stated as:

QPWA(X) , {x(t) ∈ Rn|∃u(t) ∈ U, x(t+ 1) ∈ X :

x(t+ 1) = fPWA(x(t), u(t))} (5.11)

The i-step controllable set for PWA systems,KPWA
i (X,T) and i-step tunnel

set for PWA systems, LPWA
i (X) have exactly the same definition as before, but

use the PWA dynamics and their computation is based on QPWA(X) through the
algorithm 1.

Corollary 5.4.1. Now, the feasibility setXPWA
F is not necessarily convex, but can

still be described by the union of convex polyhedra:

XPWA
F (X, Nu, N2) = KPWA

Nu
(X, LPWA

N2−Nu
(X)) (5.12)
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Proof. The feasibility set is the same as that derived in theorem 3.3.1 and hence
the same proof applies. The fact that it can be an union of convex polyhedra is a
direct consequence of the state constraints now being an union of convex polyhe-
dra.

Remark 5.4.1. The guidelines for stabilizing horizons without terminal conditions
derived in 3.3.1 are all valid for the PWA case, except that we use the respective
controllable set and its determinedness index i∗KPWA and the tunnel set and its
determinedness index i∗LPWA and N∗uPWA , N

∗
2PWA as the horizons which deem

the feasible set invariant. Then the three algorithms presented in section 3.3.1
apply to give the stabilizing horizons Nu, N2.

A posteriori certification of stability is through the following test:

Corollary 5.4.2. The MPC regulator that solves PWA problem 5.10 is persistently
feasible iff ∀i ∈ I:

Ai((χi ∩XPWA
F (X, Nu, N2))⊕ Bi ·U⊕ fi)

∩XPWA
F (X, Nu − 1, N2 − 1) ⊆ XPWA

F (X, Nu, N2) (5.13)

Proof. The proof is the same as that of 3.3.6, except that the reach set of the feasi-
bility set has been explicitly computed by mapping it through the PWA dynamics
in the LHS to: Ai((χi ∩XPWA

F (X, Nu, N2)).

Remark 5.4.2. Note that, from corollary 3.3.2, for the special case with
Nu = 1, XPWA

F (X, Nu − 1, N2 − 1) = LPWA
N2−Nu

(X).

Stability in the practical Lyapunov sense follows, from persistent feasibility,
which is independent on the optimality of the solution. A less conservative test
is checking for recursive feasibility which though requires the knowledge of the
optimal control law. Therefore, an explicit solution to the problem 5.10 is to be
computed, with the only difference this time being it is over a PWA partition of
the feasibility region. Therefore, intuitively, a mp-QP problem needs to be solved
for each PWA partition, followed by merging the partitions, which would clearly
still produce a PWA controller. This is done using dynamic programming i.e.
backwards through the control horizon, the algorithm is briefly presented at a high
level here:

Note that the algorithm is initialized with feasibility set equal to the union of
all the χi over which the problem is defined as there is no terminal constraint,
with |XPWA

Fk+1
| denoting its cardinality and s the number of modes. The resulting

PWA controller with feasibility setXPWA
F may have multiplicity i.e. one partition

with more than one control laws, which can be resolved by picking the one which
minimizes the associated stage cost. This algorithm is used as a mere tool to
check recursive feasibility, hence for more details in to the algorithm itself, please
refer [86].
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For k = Nu − 1, . . . , 0
For j = 1, . . . , |XPWA

Fk+1
|

For i = 1, . . . , s
Solve the mp-QP (using theorem 2.4.3),
S(k, j, i) = minu(t+k) x

T (t+ k|t) ·CTC ·x(t+ k|t) + uT (t+ k|t) ·u(t+ k|t)
+V ∗k+1(Ai ·x(t) + Bi ·u(t) + fi)

Subj. to: Ai ·x(t) + Bi ·u(t) + fi ∈ XPWA
Fk+1

,Mxi
·x(t) +Mui

·u(t) ≤Mi,

[xT (t+ k|t), u(t+ k|t)T ]T ∈ χi
End
End
End

algorithm 7: The explicit solution to PWA MPC

Corollary 5.4.3. A positively invariant subset for PWA systems,OPWA(XPWA
F )

of the feasibility set XPWA
F induces recursive feasibility and practical Lyapunov

stability, when the above derived explicit controller is applied in receding horizon
sense.

Proof. The proof follows from infinite time boundedness of the trajectories, by
definition of invariance.

The positive invariant set (not necessarily convex in the PWA case) can be
found, by following the algorithm 6. The online implementation involves identi-
fying the partition which contains the current state x(t), and invoking the corre-
sponding control law, which are available as a result of the above algorithm. One
problem of the approach is that the number of regions grows quickly with the con-
trol horizon size and number of partitions of the model. This is another motivation
for us to consider very short control horizons.

5.5 Example: Car

Assume a frictionless car moving horizontally on a hill with different slopes, as
illustrated in Fig. 5.4. Dynamics of the car is driven by Newton’s laws of motion
(in the input-output form):

m · ÿ(t) = u(t)−m · g · sinα (5.14)

where y denotes horizontal position in m, α is the slope of the road and g =

9.81m/s2 is the acceleration due to gravity and u the force applied in N. Assume
the mass m = 1kg and discretize the system with sampling time Ts = 0.5s,
we obtain the following affine system in the state-space form using the nominal
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Figure 5.4: Car moving on a PWA hill [1].

transformations introduced in chapter 2:

x(t+ 1) =

2 −1 0.25
1 0 0
0 0 0

x(t) +

0
0
1

u(t) +

−2.45 · sinα
0
0

 (5.15)

y(t) =
[
1 0 0

]
x(t) (5.16)

where the state vector is x(t) = [y(t), y(t − 1), u(t − 1)]T . It can be seen that
speed of the car depends only on the force applied to the car (manipulated variable
u) and slope of the road α, which is different in different sectors of the road. In
particular we have:

Sector 1 : y(t) ≥ −0.5m⇒ α = 0o

Sector 2 : −3m ≤ y(t) ≤ −0.5m⇒ α = 10o

Sector 3 : −4m ≤ y(t) ≤ −3m⇒ α = 0o

Sector 4 : y(t) ≤ −4m⇒ α = −5o (5.17)

Substituting slopes α from (5.17) to (5.15), we obtain 4 tuples [Ai,Bi, fi, Ci] for
i ∈ 1, . . . , 4. Furthermore, we need to define parts of the state-input space where
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Figure 5.5: Persistent feasibility test: LHS of (5.20) [lighter box] ⊆ RHS of (5.20) [darker
box].

each dynamics is active. We do this using the corresponding sectors as follows:

Sector 1 :
[
−1 0 0

]
x(t) ≤ 0.5

Sector 2 :

[
1 0 0
−1 0 0

]
x(t) ≤

[
−0.5

3

]
Sector 3 :

[
1 0 0
−1 0 0

]
x(t) ≤

[
−3
4

]
Sector 4 :

[
1 0 0

]
x(t) ≤ −4 (5.18)

Further, the following global constraints are imposed: −7m ≤ y(t) ≤ 1m on
output displacement and −3N ≤ u(t) ≤ 3N as limit on input force, which can be
transformed to the state constraint: [−7,−7,−3]T ≤ x(t) ≤ [1, 1, 3]T .

The PWA MPC controller to be verified is designed with control horizonNu =

1 and prediction horizon N2 = 10 and no terminal conditions. The nominal feasi-
bility set for this PWA system is computed as per corollary 5.4.1 to:

XPWA
F (X, 1, 10) = KPWA

1 (X, LPWA
9 (X)) (5.19)

after the computation of the 9-steps tunnel set LPWA
7 (X) and the 1-step control-

lable set to it i.e. KPWA
1 (X, L7(X)). Next, the reach set of the feasibility set

and tunnel set for the PWA system are computed and to check nominal persistent
feasibility of the MPC problem, we make use of corollary 5.4.2 and remark 5.4.2:

Ai((χi∩XPWA
F (X, 1, 10))⊕Bi ·U⊕fi)∩LPWA

9 (X) ⊆ XPWA
F (X, 1, 10) (5.20)
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Figure 5.6: Recursive feasibility test through construction of OPWA(XPWA
F ).

Indeed, this test is fulfilled as can be seen graphically in Fig. 5.5 and thus a certifi-
cate of practical nominal stability can now be issued to this PWA MPC controller.

Now, we want to compare the above test with the PWA test of recursive fea-
sibility. Since, we have an intuition of it being less conservative, an PWA MPC
controller is designed with much smaller prediction horizon N2 = 4 and same
control horizon Nu = 1 and no terminal conditions with Λ = I. So, an explicit
solution to the PWA MPC is constructed through algorithm 7 and then a positively
invariant subset OPWA(XPWA

F ) of the feasibility set is computed by using corol-
lary 5.4.3, thereby guaranteeing practical stability. The positive invariant set has
161 partitions and is plotted in Fig. 5.6.

5.6 Switched Nonlinear Systems

The switched nonlinear dynamical systems are characterized (and hence different
from PWA systems) in the following ways: (1) the entire system can be broken
down into a series of linear or nonlinear interconnected systems (as against only
linear for PWA) (2) and the state or input-output mapping is not preserved i.e. the
meaning of the state or input-output vectors may change, in order and dynamics
(as opposed to PWA where it is preserved).
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For repetitive mechatronic applications with hard nonlinear transitions, a sin-
gle nonlinear control algorithm is complex and difficult to develop. For an optimal
control of switched systems, the optimal switching sequence as well as the optimal
input are to be found and solving such a problem is generally very difficult [87]. To
reduce the complexity, we propose to use separate controllers for each phase. This
makes the identification easier as it now suffices to develop a model for each phase
separately instead of a global model. As a further simplification, we only con-
sider tracking controllers, as these are typically easier to develop and implement
than controllers with more complex cost functions. These tracking controllers are
included in the low level of the proposed two-level control scheme.

On the high level iterative learning algorithms are then included that learn the
parameters of the parameterized references for the low level. These are added to
ensure the following:

1. Transition between the different phases happens in a smooth manner.

2. Since the specifications cannot readily be translated into references, these
learning algorithms also learn references corresponding to the optimal per-
formance.

3. The optimal reference trajectories may vary with changes in the operat-
ing conditions, to which these algorithms can automatically compensate for
these changes as well.

At the low level, if the constituent process is linear, then a linear MPC controller
suffices, however if the constituent process is nonlinear, a nonlinear MPC con-
troller may be necessary. The theory of these constituent MPC and NMPC con-
trollers including stability and convergence properties have been adequately dealth
with in chapters 2 to 4 and section 5.2. The high level control mechanism is pre-
sented next. Note that, the two-level NMPC design philosophy is strongly inspired
from solving the engagement control problem of wet-clutches which is a typical
example of a switched nonlinear system. Hence, section 5.7 gives a very compre-
hensive account of its application.

Two-level Control

For the high level reference adaptation, process knowledge is used to select a pro-
file or procedure that allows to construct the reference trajectories from a few dis-
crete parameters, say wi(k), with i the variable index and k the iteration number.
After a set of parameters and corresponding references are selected, the low level
tracking controllers are allowed to operate. Next, the obtained performance is as-
sessed and used by the high level controller to update the parameters using iterative
learning algorithms, and new references are calculated. The parameter update is
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based on the difference between the desired and the measured performance indices
PIdi , PIesti respectively with gain ηi as follows:

wi(k + 1) = wi(k) + ηi · (PIdi (k)− PIesti (k)) (5.21)

This process is repeated until the parameters of the references converge. At the
low-level either MPC, NMPC controllers are deployed and the references are
adapted after every iteration after computation of the performance index. The al-
gorithm 8 summarizes the learning process (variables in capitals represent vectors
in time of the corresponding signals over each iteration of the closed-loop control).

Data: (Non)linear models, Tuned (N)MPCs
Data: Initialize parameters W , reference R
Result: Adapted R
while true do

apply input U(k) to system and measure output Y (k) NMPC controller com-
putes U(k+1) Evaluate performance, update parameters W (k+ 1) Compute
new reference R(k + 1) from W (k + 1) k + +

end

algorithm 8: Automated two-level learning control

The two-level control scheme can also be applied to other mechatronic appli-
cations performing repetitive operations, where reference trajectories cannot easily
be obtained. This can be due to specifications that can not easily be translated into
reference trajectories and the optimal references changing with operating condi-
tions. Other potential applications are control problems where different controllers
need to be coordinated for different phases of a process.

5.7 Test case: Clutch Engagement

Note that, this section is a result of collaborative work done jointly with FMTC
(Flanders’ Mechatronics Technology Centre), KUL (Catholic University of Leu-
ven), VUB (Free University of Brussels) under the framework of the IWT (agency
for Innovation by Science and Technology) SBO (Strategic Basic Research) funded
LeCoPro (Learning Control for Production machines) project. In particular, high-
level learning algorithms developed in 5.7.2, system identification in 5.7.3 are due
to KUL and VUB respectively. The experimental setup including hardware and
interfacing in 5.7.4 is due to FMTC.

Wet-clutches are commonly used in automatic transmissions for off-highway
vehicles and agricultural machines to transfer torque from the engine to the load.
By dis-engaging one clutch and engaging another, different transmission ratios can
be obtained. These machines are operated through several years and under varying
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Figure 5.7: Schematic overview of a wet-clutch and its components.

environmental conditions such that clutches undergo significant amount of wear
and tear. Operators however always expect a fast and smooth response without
system oscillations induced by poor engagement performance. These expectations,
combined with the intrinsic time varying and nonlinear dynamics, make the wet-
clutch control a challenging industrial problem [88].

Contrary to wet-clutches, the modeling and control of dry-clutches, has re-
ceived considerable attention in research but only considering a stick-slip hybrid
model for analysis. A slip control using linear quadratic regulator with force on
clutch piston as input is developed in [89]. Explicit Model Predictive Control
(MPC) is used in [90] over a piece-wise affine model for slip control in dry-
clutches, and [91] has concluded that an online MPC scheme for clutch control
is not practically implementable due to high computation costs.

However, research in advanced identification and control of wet-clutches has
not reached the necessary maturity for production objectives. The electro-hydraulic
wet-clutches, as opposed to stick-slip in dry-clutches, have dynamics in both fill
and slip phases. A fill phase control based on piston position measurement feed-
back is carried out in [92] and through pressure control, requiring a pressure sensor,
in [93].

5.7.1 Wet-clutch

Typically, a clutch contains two sets of friction plates, one that can slide in grooves
on the inside of the drum, and another that can slide in grooves on the outgoing
shaft. As illustrated in Fig. 5.7, the torque can be transferred between the shafts
by pressing both sets together with a hydraulic piston, i.e. by sending a current
signal to the servo-valve in the line to the clutch (i.e. the manipulated variable is
current).

The objective is to obtain a good clutch engagement i.e. a fast response without
significant drivetrain vibrations that can be uncomfortable to the operator. This
can be realized by first quickly moving the piston towards the plates, as there is no
significant torque transfer before the piston makes contact, after which the piston
is gently pressed into the plates and the force is built up gradually, such that any
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torque spikes and vibrations of the drivetrain are avoided. This is a challenging
control task as the two objectives are conflicting and compounded by the absence
of sensors measuring the piston position.

For this task, the measurements that are available are the pressure in the clutch
and the rotational speeds of the shaft. From these speeds, the slip can also be cal-
culated, which is defined as the difference between the speeds of the clutchs’ input
shaft (engine) and output shaft (vehicle), relative to the speed of the input shaft.
The complexity of the control task is increased further since optimal references
for pressure, slip variables cannot readily be derived from the specifications i.e. to
achieve a fast and smooth engagement.

Since operator comfort is one of the specifications for a good clutch engage-
ment, a measure has to be used to quantify the comfort. In the remainder of this
paper, the absolute value of the second derivative of the slip, i.e. the jerk, will
be used for that purpose, since it is strongly related to the experienced operator
discomfort [94]. For a fixed duration, the smoothest engagement is then obtained
when the absolute value of jerk is either minimized or kept within (relatively small)
bounds.

When engaging, the chamber of the clutch first has to fill up with oil, after
which the pressure builds up until it is high enough to compress the return spring
and move the piston towards the friction plates. This is called the fill phase, and it
ends once the piston advances far enough and presses the plates together such that
the transfer of the torque is initiated.

When the piston comes into contact with the plates, it triggers a sudden change
in system dynamics, entering the slip phase. The slip value starts to decrease until
both the input and output shafts rotate with the same speed (i.e. zero slip), at
which point the clutch is considered engaged. Therefore, the wet-clutch is clearly
composed of two sequential dynamical subsystems and optimal control of such
switched systems is considered a hard problem [87].

To validate the practical applicability of this control scheme of algorithm 8, it is
applied to the control of wet-clutch engagements. Since two phases can be distin-
guished during an engagement, two low-level controllers are used consecutively.
The first aims to track a pressure reference in the filling phase, and is deactivated
once the slip phase begins, at which point a second controller is activated to track a
slip reference. These low level tracking controllers are discussed in the following
sections.

Assuming well-performing tracking controllers for the pressure and slip at the
low level, the remaining challenge is the selection and learning of appropriate ref-
erence trajectories at the high level. Even though an approximate shape can be
defined based on knowledge of the clutch dynamics, the exact quantitative expres-
sions are difficult to obtain. To this end, both reference trajectories are parame-
terized, each having two parameters that can be learned by the high-level learning
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Figure 5.8: A schematic illustration of the proposed two-level control scheme. At high
level, the pressure reference pref is parameterized by duration of high pressure pwid and
the low pressure value plow at tswitch = pwid + 100ms beyond which the slip reference
sref is parameterized using the initial slip value and its derivative sinit, ṡinit respectively

and the duration ∆T to go to zero slip. At low level the pressure and slip references are
tracked by MPC and NMPC controllers respectively. The measured pressure, slip and

servovalve current to the clutch are denoted by Pc, Sc, Ic respectively.

laws to ensure an optimal performance is achieved and smooth transitions are ob-
tained between the separate phases, as well as enabling adapting for variations in
the operating conditions. The resulting two-level control architecture is illustrated
in Fig. 5.8. The references and their update laws are discussed in the remainder of
this section.

5.7.2 High-level learning algorithms for clutch control

5.7.2.1 Pressure reference profile and updating laws

The reference profile that has to be tracked by the pressure controller in the first
part of the engagement, consists of two distinct parts. In the first part, the goal is to
move the piston towards the plates such that it can press the pack of friction plates
together. Since there is no significant amount of torque being transferred before
this moment, and to reduce the delay before an operator can feel the reaction to a
requested engagement, it is desired to move the piston as quickly as possible, so
the pressure is maintained at a high level during this first part. When the piston
approaches the friction plates however, it is needed to slow down the piston to
avoid it hitting the plates brusquely causing drivetrain oscillations. To achieve
this, the pressure reference is reduced to a low level and then gradually increased
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again. Ideally, contact with the plates should occur just after the pressure dip,
where the piston velocity will be lowest. Once the contact occurs, the gradual
pressure increase then serves to build up the torque transfer needed to accelerate
the output shaft and the attached load.

To parameterize this pressure reference, a piecewise expression is used con-
taining two unknown parameters which are learned at the high level. The first of
these two parameters is the duration of the high-pressure part at the beginning, in-
dicated by the time pwid in Fig. 5.8. The second parameter is the end-pressure to
which the pressure is maintained at the end of the pressure control phase, denoted
by plow. The other values are all fixed in advance, with the duration of the pressure
dip and the gradual increase both being 50 ms, and the low pressure value during
the dip being 2 bar. A cosine function is used to ensure a smooth transition from
the high to the low pressure. With these values, the overall pressure reference can
now be expressed as: pref (t) =

12bars, t ≤ pwid,

12− 9.5( 1
2 −

1
2 cos

(
t−pwid
0.05 π

)
)bars, pwid ≤ t ≤ pwid + 0.05s,

2.5 + (plow − 2)( 1
2 −

1
2 cos

(
t−0.05−pwid

0.05 π
)

)bars, pwid+0.05≤ t≤pwid+0.1s.

(5.22)

To learn the optimal parameter values at the high level, we use the knowledge
that there is already some torque transfer happening prior to the piston making
contact with the plates. This happens when the piston is close to the plates due to
fluid coupling in the clutch. The absolute value of these torques is quite low, but
it can still be detected by observing the speed changes of the in- and output shafts
of the clutch. As a result, an estimate can be made of the time instant tdrag,est the
drag torque reaches a certain threshold value, by observing when the slip speed has
also changed with a corresponding amount. At that time the piston is then close
to, but not yet in contact with, the friction plates. Ideally, we want the piston to
make contact with the plates after the dip in the reference, so we will try to get the
instant tdrag,ideal at which the drag reaches the threshold to occur just at the end of
the dip, just before contact should happen. Since the drag is mainly influenced by
the value of pwid, the value of pwid is then updated according to

pwid(k + 1) = pwid(k) + η1(tdrag,ideal(k)− tdrag,est(k)), (5.23)

where the learning gain η1 now needs to be selected. In this case, η1 < 0. As
a result, if the drag then starts too soon, the value of pwid is reduced, making it
likely that the drag will start at a later time during the next iteration. Similarly,
if the drag starts too late, the value of pwid is increased and the drag should start
sooner during the next iteration. To select the absolute value of η, the typical errors
(tdrag,ideal− tdrag,est) and the desired changes of pwid are taken into account, and the
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Figure 5.9: Updating mechanism for the pressure reference trajectory.

learning speed is selected low enough to avoid excessive changes. An illustration
of this updating mechanism is given in Fig. 5.9.

A similar updating mechanism is used for the second pressure parameter, plow.
Since the pressure will be controlled to this value at the end of the pressure control
phase, it should be chosen such that it ensures contact takes place and the slip
phase commences. The moment contact occurs, tcontact,est, is again estimated by
observing the speed changes of the in- and output shafts of the clutch. This value
is then compared to that of the ideal contact time, tcontact,ideal, which we define as
50 ms after the pressure dip, and the difference is used to update the value of plow

according to

plow(k + 1) = plow(k) + η2(tcontact,ideal(k)− tcontact,est(k)), (5.24)

where η2 is again the learning gain, chosen in a similar manner as described for η1.
Since its value is negative, it will cause the value of plow to be reduced if contact
happens sooner than desired, and vice versa. This updating mechanism is also
illustrated in Fig. 5.9.

5.7.2.2 Slip reference profile and updating laws

To ensure a smooth transition is obtained between the filling and slip phases, we
will impose that the slip reference has to commence with certain initial conditions,
which are updated by the high level learning laws. These initial conditions are
the initial slip value and its derivative, denoted as sinit and ṡinit. Once these are
specified, the reference profile sref that has to be tracked by the slip controller in
the second phase can be derived analytically.

Besides these initial conditions

sref (0) = sinit ∧ ṡref (0) = ṡinit, (5.25)
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Figure 5.10: Evolution of bang bang jerk profile with ∆t fixed to 1 s

the clutch also has to fully engage after the predefined duration ∆T , so that

sref (∆T ) = 0 (5.26)

Taking into account these specifications, the goal of the slip controller is to reduce
the slip to zero while keeping the values of the jerk s̈ low, since the jerk is an
important factor in the comfort experienced by the operator during a clutch en-
gagement [94, 95]. For a given allowable duration ∆T , the best neutral-to-drive
shift will thus be found when the highest absolute value of the jerk, ‖s̈ref‖∞, is
minimized. The resulting slip reference profile corresponding to these specifica-
tions and its derivatives are shown in Fig. 5.10, where the jerk shown on the right
clearly displays a bang-bang profile, with the absolute value of the jerk always
being equal to the same value, s̈max. Initially, there is a period where s̈ = −s̈max

during which the slip is reduced as quickly as possible. In the next period, s̈ = s̈max

is maintained up to the time t = ∆T . Even though this leads to a slower reduction
of the slip, this is needed to ensure that the slip derivative at synchronization equals
0, since otherwise an infinite jerk would be obtained at that time. If the moment
where the value of s̈ changes is denoted by T1, the values of ṡ can be found by
integrating this bang-bang profile as:

ṡ(t) =

{
ṡinit − s̈maxt, t ≤ T1,

ṡ(T1) + s̈max(t− T1), t > T1.
(5.27)

With this set of equations, it then becomes possible to integrate again to find the
value of s in a similar manner

s(t) =

{
sinit + ṡinitt − s̈maxt

2/2, t ≤ T1

s(T1) + ṡ(T1)(t− T1) + s̈max(t− T1)2/2, t > T1

(5.28)

The first lines of equations (5.27) and (5.28) can be used to find values for
s(T1) and ṡ(T1), which can be inserted in the second lines of these equations.
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When the resulting equations are combined with equation (5.26), a system of two
equations is obtained, where all values are known except for T1 and,

s̈max =


0 = ṡinit − s̈maxT1 + s̈max(∆T − T1)

0 = sinit + ṡinitT1 − s̈maxT
2
1 /2+

(ṡinit − s̈maxT1)(∆T − T1) + s̈max(∆T − T1)2/2

(5.29)

After some manipulation of these equations, a solution can be found by solving

0 = T 2
1 (2ṡinit) + T1 (4sinit) + (−2sinit∆T − ṡinit∆T 2). (5.30)

This yields two solutions for T1, from which the value needs to be selected such
that

T1 ≥ 0 ∧ T1 ≤ ∆T, (5.31)

after which this value for T1 can be used to find s̈max by inserting it into equa-
tion (5.29) as

s̈max =
ṡinit

2T1 −∆T
. (5.32)

Once the values of T1 and s̈max are found, the profile for sref = s(t) can be found
by evaluating equation (5.28), and this profile can be used for the slip controller
during the second phase of the overall control strategy.

At the time the slip controller is activated, the piston is already in contact with
the plates and the slip is already changing. The main difficulty with generating
good slip references is then simply the selection of the initial values sinit and
ṡinit. These are set equal to the measured values of the slip and its derivative
during the last trial. This ensures that the initial tracking error is close to zero,
making the control task easier, and avoids any transitional effects that could cause
operator discomfort.

5.7.3 Low-level stabilizing (N)MPC controllers for clutch
control

For the filling phase, a model predicting the generated oil pressure Pc as a function
of the valve current Ic is needed. Since the system is quasi-linear (i.e. mild static
nonlinearity) in the filling phase itself, a linear model suffices. To obtain this, a
frequency response function (FRF) is first estimated by averaging its response to
a number of multisine periods and realizations. Based on this FRF, a finite order
rational transfer function is then fitted in the z-domain. For the open clutch i.e.
before the piston touches the friction plates, the resulting model is given by [12]:

Pc(q
−1)[Output in Bars]

Ic(q−1)[Input in Amps]
=

0.234 · q−2

1− 2.736 · q−1 + 2.515 · q−2 − 0.7764 · q−3

(5.33)
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Figure 5.11: The positively invariant subset of feasibility set demonstrating recursive
feasibility of the EPSAC controller without terminal conditions.

Since the pressure system has a relatively high bandwidth, the model is sampled at
Ts = 1 ms, and is used to develop a linear EPSAC-MPC controller with the same
sampling time. This controller takes into account the following constraints, which
come from the physical limits on the actuation of the system:

0 ≤ Ic(Input in Amps) ≤ 0.8

0 ≤ Pc(Output in Bars) ≤ 14 (5.34)

The various control parameters are chosen as N1 = 2, Nu = 1, N2 = 10, λ =

10−3, CD = 1
1−q−1 for nominal performance. This combination of extended pre-

diction horizon and short control horizon achieves mean level control and ensures
robustness towards varying parameters. The default integrator filter is to obtain
zero steady-state error. The constrained optimization problem is feasible in the
nominal conditions and the application being repetitive would remain recursively
feasible. Moreover the optimal solution is computed well within 1 ms by the
active-set strategy implemented in real-time over a dSPACE 1103 control board.

Now we analyze the a posteriori practical stability of the given input-output
EPSAC MPC controller without terminal conditions. Recollect from chapter 2,
that the first step is to transform the input-output model to state-space. Since the
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model from input current to output pressure is of 3rd order with a unit delay, the
state vector takes the form: x(t) = [Pc(t), Pc(t − 1), Pc(t − 2), Ic(t − 1)]T and
the corresponding state constraints in the nominal case: [0, 0, 0, 0]T ≤ x(t) ≤
[14, 14, 14, 0.8]T . The state-space maps A,B, C can be computed by using corol-
lary 2.4.2. Now, as per the a posteriori feasibility testing methodology developed
in chapter 3, there are two options for proving practical stability: one is the con-
servative test of persistent feasibility and the other is the less conservative test of
recursive feasibility. It turns out that the persistent feasibility test fails to certify
the EPSAC controller for the given model using the specified horizons. Therefore,
the explicit solution to the EPSAC controller is found using theorem 2.4.3 along
with its feasibility set XF . Next a positively invariant region O(XF ) with 37 re-
gions is computed within the feasibility set by using algorithm 2, as shown in Fig.
5.11. The presence of such a set certifies recursive feasibility and induces practical
stability of the EPSAC clutch controller.

For the slip phase, a model capturing the dynamics between the current Ic to
the servo-valve and the slip Sc is needed. An MPC using a linear slip model has
not been considered here since it has been shown to be suboptimal in our previ-
ous work [19]. Given that a linear MPC controller is inadequate for slip control,
other linear control methods like PID would neither work. A nonlinear model is
therefore needed, mainly due to variation in the values of the friction coefficient
depending on the slip value. To find such a non-linear model, a frequency response
function (FRF) is first estimated as before. Using the linear model parameters as an
initial guess, a polynomial nonlinear state space model is then estimated by solv-
ing a nonlinear least squares optimization problem with the Levenberg-Marquardt
(LM) algorithm [96]. This results in a polynomial nonlinear state space model
from input u(t) = Ic Amps to normalized output y(t) = Sc (the states x(t) have
no physical meaning):

x(t+ 1) = As ·x(t) +Bs ·u(t) + Es · v(t)

y(t) = Cs ·x(t) +Ds ·u(t) + Fs · v(t) (5.35)

withAs ∈ R4×4,Bs ∈ R4×1,Cs ∈ R1×4,Ds ∈ R,Es ∈ R4×15 and Fs ∈ R1×15.
The vector v(t) contains the state and input monomials and is
v(t) = [x2
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4]′.
A NEPSAC controller is designed taking into account he following constraints:

0.15 ≤ Ic(Input in Amps) ≤ 0.25

0 ≤ Sc(Output normalized) ≤ 1 (5.36)

The constraint on current has been tightened as the nonlinear slip model is bounded
input bounded output stable only within this region. The constraints on the slip are
trivial. The control parameters are tuned to N1 = 1, Nu = 4, N2 = 5, λ =
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Figure 5.12: Testbench consisting of an electromotor driving a flywheel via two
mechanical transmissions.

O(102), CD = 1
1−q−1 . As stated earlier, the controller can be helped by selecting

a good base input vector, which is achieved here by setting it to plow. This also
helps to avoid running into issues with the model at the edges of the stability region
and getting into local minima, as the second term in the cost function (5.7) then
penalizes deviations from this value, thereby increasing the robust feasibility of
the NMPC. The chosen combination of control horizon and control penalty gives
the controller enough degrees of freedom (equal to the model order) and ensures
a low controller activity such that the constraints are satisfied and the output does
not deviate from the reference. Since a high value of λ is chosen the NEPSAC
algorithm by theorem 5.2.1 is almost sure to converge to a locally optimal solution.
Note that, in this nonlinear case, the active-set based primal-dual solver embedded
in the NEPSAC controller is called multiple times within the same sampling instant
till convergence. For the slip phase, convergence is achieved within 4 iterations,
but a sampling time of 1 ms is no longer sufficient for the associated computations.
Moreover, since the nonlinear dynamics of slip phase has a lower bandwidth, this
model is sampled at Ts = 10 ms, thus allowing sufficient time for the 4 iterations
to be completed each time.

5.7.4 Experimental results

The developed methodology is validated on the experimental test setup shown in
Fig. 5.12, where an electromotor (of power 30kW) drives a flywheel (of inertia
2.5kgm2) via a torque converter and two mechanical transmissions. The transmis-
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Figure 5.13: Evolution of the reference signal parameters for the 2L-NMPC, with from top
to bottom: pressure peak duration, pressure level at the end of the filling phase, the initial

slip speed, initial slip derivative.

sion to be controlled comes equipped with incremental encoders measuring the
rotational speeds of the in- and output shafts, and also comes with a sensor mea-
suring the pressure in the line to the clutch. An additional sensor is used to measure
the transferred torque, but this is used only for illustrative purposes and is not typ-
ically available in production units. A dSPACE 1103 control board is used to run
the controller and drive the servo-valve current. A cooling system is installed that
allows to maintain the oil temperature at a constant level, so that during the tests
the temperature is either 40◦C or 70◦C. To reiterate, the control objective is to
minimize the maximum jerk, with ∆T = 1s, refer 5.7.2.2.

In a first test at nominal conditions, the oil is maintained at 40◦C and the
second transmission is set such that the observed inertia at the clutch becomes
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Figure 5.14: Engagements achieved by the 2L-NMPC at nominal conditions.

8.4kgm2. For this test, the parameter values for the reference trajectories are in-
tentionally initialized poorly to illustrate the convergence process. Then the learn-
ing starts and the parameters are adapted after each engagement for 2L-NMPC
(two-level NMPC) with their evolution shown in Fig. 5.13. The corresponding
input current and measured pressure, slip and torque at several points during the
convergence process is shown in Fig. 5.14 for the 2L-NMPC.

The initial performance is expectedly poor with a high torque peak due to
an initial overfilling, resulting in an uncomfortable engagement for an operator.
As a result, during the first parameter update after an engagement by 2L-NMPC,
the high-level controller reacts by reducing tswitch as shown in Fig. 5.13. The
corresponding engagement in Fig. 5.14 already reports significant improvement in
performance. The slip reference is however not yet adapted to the new conditions
at the end of the pressure control phase which causes some tracking error in the
slip control loop. Another issue is the jerking of the torque that appears when
synchronization occurs with a steep slope of the slip profile. Over the course
of next engagements, the parameters of the pressure reference converge further
such that they eventually remain almost unaltered, see Fig. 5.13. Consequently,
the initial conditions for slip control remain fixed, allowing the slip parameters to
converge as well. As a result, an appropriate start of the slip reference trajectory is
found by the 12th iteration of the 2L-NMPC, ensuring that the transitional effects
have completely disappeared, and jerk free smooth engagements are obtained.

To test the robustness, two additional test cases are considered. Firstly, the load
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Figure 5.15: Demonstration of the robustness against variations in temperature and load
by the 2L-NMPC (after 10 iterations)

is kept at the same value but the oil temperature is increased to 70◦C. Secondly,
the oil is again at 40◦C, but the second transmission is set such that the observed
inertia is increased to 28.6kgm2.

Fig. 5.15 shows the results obtained by the 2L-NMPC controller. Since the
oil viscosity decreases strongly when the temperature increases, the filling can be
completed sooner and with less effort. The controller has mainly compensated
for this by reducing pwid of the pressure reference trajectory. As a result, the
performance is very close to the nominal case, but the engagements start a little
bit sooner. For the test where the observed load is increased, higher torques and
pressures are required to accelerate the larger load, but the slip signals remain
very similar to the nominal case. Since the NMPC controllers are designed using
models obtained at the nominal settings, the fact that a good performance can still
be achieved during these tests at different operating conditions demonstrates the
robustness of the developed controllers.

The two-level control technique can be seamlessly extended to be used for a
vast majority of switching systems. For example, the immediate foreseeable ex-
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tension is controlled gear shifting in automatic transmissions. This leads to various
phases of operation and depending on the number of phases, appropriate high and
low level controllers may be designed. Next, control of flexible manipulators is an
exciting field of research. The system transits between two types of output feed-
back: (i)only the base angle of the manipulator is measured, (ii) the tip angle is
also measured (when it is greater than some threshold). Thus two controllers are
designed optimized for feedback from (i)base angle only, (ii)base and tip angle.
High level control algorithm is then used for switching. The two-level NMPC can
also be used in adaptive supervisory control where the supervisor must try to de-
termine which is the correct process model by observing inputs and outputs and
then select the appropriate controller.

The 2L-NMPC scheme is compared with other model-based and model-free
learning control technologies both at qualitative and experimental levels in ap-
pendix B and significant conclusions are drawn on their applicability.

5.8 Summary

In this chapter, the entire philosophy of designing and proving stability for linear
MPC controllers in the input-output formulation without terminal conditions has
been extended to nonlinear systems and NMPC controllers. The NEPSAC control
algorithm, which has been widely used in the industry due to its simplicity has
been adopted in the thesis as the baseline NMPC strategy. However, the proof of
convergence of NEPSAC iterations remained an open problem for long. A major
contribution of this thesis is in tackling this problem and giving a formal proof
of convergence to locally optimal solution by using Taylor’s series expansion and
using control penalty to guarantee a monotonic decrease in cost. This is illustrated
on an example of nonlinear longitudinal flight control.

Industrial systems especially production machines exhibit switching nonlin-
earity. The switching dynamics has been categorized into piecewise affine sys-
tems and switched nonlinear systems. Many nonlinear systems can be identified
as a PWA system i.e. a collection of linear systems with associated regions with
bounded uncertainty. Since the explicit MPC law is also PWA, the application of
explicit MPC to PWA system would also lead to PWA controller and should be
rather simple. The invariant set theory is now extended to PWA systems and a test
of persistent feasibility for MPC of PWA systems is derived in the nominal case.
Further, the skeleton of the algorithm to derive the explicit solution to the PWA
MPC is given, to be able to derive a positively invariant subset of the feasibility set
to prove recursive feasibility.

A representative example of a car riding over a PWA hill is presented in the
input-output domain. A state-space is then derived and persistent feasibility is
shown for Nu = 1, N2 = 10 and recursive feasibility for Nu = 1, N2 = 4 thus
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giving less conservative certificate of practical stability.
Next, switched nonlinear systems are introduced as the class of systems where

the dynamics and the very meaning of states change between the constituent sys-
tems, thus differentiating from PWA systems.

A two-level control scheme is developed and presented in the context of clutch
control where a high level controller generates reference trajectories and switching
instances for the low level tracking controllers of the switched nonlinear systems.
The operation of the wet-clutch engagement has been broken down into linear fill
switching to nonlinear slip phase. A high level iterative learning controller has
been designed to generate the references as well as switching times. At low level
EPSAC controller for fill phase has been designed without terminal conditions and
has been a posteriori certified stable by our developed techniques of feasibility in
chapters 2 and 3. Further, a NEPSAC controller for fill phase has been designed
with high damping or control penalty λ that would result in almost guaranteed
convergence of the NEPSAC algorithm. The engagement control results on a real
wet-clutch test bench under nominal and perturbed conditions are shown to be
superior in terms of obtaining low jerks and engagement times. The two-level
NMPC can be applied to a wide range of switching mechatronic systems requiring
a supervisory control.





6
Distributed Nonlinear Predictive

Control

We have thus far considered the design and stability analysis of linear and nonlin-
ear MPC without terminal conditions of (multivariable) monolithic systems, how-
ever global systems are composed of many such interacting monolithic subsystems
and the associated NMPC(s) throw up new challenges. The ever increasing com-
plexity of large scale systems found nowadays in process industry, manufacturing
systems and traffic networks urged the control community to revise old concepts of
distributed control and develop novel, pragmatic approaches. An excellent review
of the current techniques used in practice is given in [97]. The challenge for con-
trol is that these large scale systems are composed of many interacting subsystems.
They can be difficult to control with a linear centralized control structure due to
nonlinearity, computational complexity and limitations on communication [98,99].

Many industrial systems can be described by a hierarchical structure where an
algorithm at the higher level coordinates the actions of local regulators placed at
a lower level. However, often the high level algorithm becomes so complex that
it becomes hard to justify its advantages over a centralized controller [97]. For
all these reasons, in the last decade, many distributed control structures have been
developed and the nonlinear model predictive control (MPC) approach was rec-
ognized as one of the most suitable candidates [100, 101]. This is not surprising,
since MPC has a great potential to play a crucial role in distributed control due to
its intrinsic forecasting properties which can be exchanged (in part) to neighbour-
ing MPC units [37, 97, 102–104].
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6.1 Introduction

In traditional decentralized control, the interaction between the subsystems is ig-
nored, resulting in suboptimal and at times unstable closed-loop. Centralized con-
trol on the other hand, requires all the information to be available to one con-
troller that results in heavy computation costs, neither of which are feasible. In
this chapter, we introduce a pragmatic approach to distributed NMPC by taking
into account the interaction amongst the constituent sub-systems with minimum
amount of information exchange such that the improvement in overall cost is guar-
anteed. We make use of the in-house developed NEPSAC (Nonlinear Extended
Prediction Self-Adaptive Control) algorithm introduced and analyzed in 5.2, with-
out terminal conditions as a basis for stemming the proposed approach [34]. The
novelty of our approach is the ease of implementation preserving the guarantee of
improvement in cost, pragmatism and ability to tackle constraints without signifi-
cant computational complexity. In order to test these claims, a hydrostat drivetrain
system is used, consisting of two highly nonlinear, time-varying dynamic, inter-
acting sub-systems. This is a representative global mechatronic system (system
composed of interacting sub-systems) widely used in industry, e.g. in mobile ve-
hicles such as ground moving machines, agricultural machines, forest machines,
industrial and mining lifters. The use of hydrostatic transmission as the vehicle
drives is primarily motivated by its large range of continuously variable speed,
high maneuverability and a possibility to increase the overall efficiency [105].

In such machines and other large scale systems including industrial production
lines, wind mills, smart grids etc., centralized control design is not feasible be-
cause of the associated high costs on computation and communication. More so, a
failure would lead to total shut down of the system. This motivates us to develop
a distributed nonlinear model predictive control (DNMPC) framework which can
guarantee an improvement in the overall cost with every cycle of control com-
putation by each of the distributed controllers. This technique is applied for the
distributed nonlinear control of the hydrostat and to the best of our knowledge this
opens up a new way of viewing and controlling such global production machines.

6.2 Distributed Nonlinear MPC

Most large scale industrial systems are still controlled in decentralized way where
the input and output are grouped in disjoint sets. Once this structure has been fixed
the local regulators (R1 and R2) are designed in completely independent fashion,
which is trivial when the interactions (input or state) are weak. However, strong
interactions can cause the system to become unstable [106].

The centralized controller, on the other hand assumes knowledge of all the
information to be used in control computation. This centralized concept is often
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used in the form of a coordinator at a higher level that coordinates the actions of
local regulators placed at a lower level, resulting in a two-level hierarchical control
structure. The immediate drawbacks are the need for centralized communication
and high associated computational costs [97].

The distributed control mechanism lies somewhere in between centralized and
decentralized control. Within the distributed control framework, a limited amount
of information is transmitted between the local regulators, such that each of them
have some knowledge about the behavior of its interacting neighbours. For sim-
plicity, a schematic overview is given in Fig. 6.1, depicting the concept of dis-
tributed MPC with interacting sub-systems. The information exchange can be
performed either:

• noniterative, i.e. information is transmitted/received only once each sam-
pling period; or

• iterative, i.e. information is transmitted/received many times to reach global
consensus within each sampling period.

The cost function can be formulated as either:

• independent, i.e. each regulator minimizes a local performance index; or

• cooperating, i.e. all local regulators minimize a global cost function.

The clear advantages of the distributed NMPC approach are reduction in computa-
tion and communication costs, improvement in robustness with respect to failures
in information transmission, improvement in the modularity and flexibility of the
global system and may synchronize subsystems working at different time scales.
Agent based distributed model predictive control scheme is another approach that
is based on cooperative game theory and has been reported for constrained linear
systems in [107]. In this chapter, we would explore the cooperative approach due
to its established stability properties [108] along with the noniterative scheme to
be able to perform fast computation, and give an extension for nonlinear systems
with a guarantee on monotonic decrease in global cost.

6.2.1 Proposed DNMPC algorithm

In this section, we elaborate on the DNMPC controller design. To facilitate the
exposition, we assume the plant comprises only two subsystems. For a process
with number of inputs nu = 2 and number of outputs ny = 2, the structure of the
generic process model becomes [34]:

y1(t) = ŷ1(t) + n1(t) and y2(t) = ŷ2(t) + n2(t) (6.1)
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Figure 6.1: Distributed MPC of two interacting subsystems with information exchange

with yi(t), ŷi(t), ni(t) as the ith process output, model output, disturbance respec-
tively, where,

ŷ1(t)=f1[ŷ1(t− 1),ŷ1(t− 2) . . . u1(t− 1),u1(t− 2) . . . u2(t− 1),u2(t− 2) . . .]

ŷ2(t)=f2[ŷ2(t− 1),ŷ2(t− 2) . . . u1(t− 1),u1(t− 2) . . . u2(t− 1),u2(t− 2) . . .]
(6.2)

in the case where the system is available in the input-output formulation. In the
case of a state-space realization:

x1(t+ 1) = fx1 (x1(t), x2(t), u1(t), u2(t)),

x2(t+ 1) = fx2 (x1(t), x2(t), u1(t), u2(t)) (6.3)

y1(t) = g1(x1(t), x2(t)) + n1(t), y2(t) = g2(x1(t), x2(t)) + n2(t) (6.4)

The disturbances are modeled by colored noise processes

n1(t) = (C1(q−1)/D1(q−1)) · e1(t) and n2(t) = (C2(q−1)/D2(q−1)) · e2(t)

(6.5)
where e1(t), e2(t) are zero mean white noise sequences. In the linear case, the
future response can then be expressed as:

y1(t+ k|t) = y1base(t+ k|t) + y1opt(t+ k|t) and

y2(t+ k|t) = y2base(t+ k|t) + y2opt(t+ k|t) (6.6)

where the predictions are made at time t over the prediction horizon k ∈ [N1, N2].
In vector notation:

Y1 = Ȳ1 +G11 ·U1 +G12 ·U2 and Y2 = Ȳ2 +G21 ·U1 +G22 ·U2 (6.7)
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where Ȳ1, Ȳ2 are the base responses computed as the cumulative effect of both
the past control inputs/outputs (states), the apriori defined future control actions
U1base, U2base and the predicted disturbances. The rest of the optimizing terms
are the discrete time convolution of the predicted optimal inputs U1, U2 (defined
as the increments to U1base, U2base) with the corresponding impulse response co-
efficients i.e. the respective Gij matrices defined from input j to output i, where
i, j ∈ 1, 2. Thus, U1 = [δu1(t|t) . . . δu1(t+Nu1−1|t)]T whereNu1 is the control
horizon.

Next, consider the following global cooperating cost function (without termi-
nal conditions):

V = V1(U1, U2) + V2(U1, U2),

where, Vi = (Ri − Yi)T · (Ri − Yi) + UTi .Λi.Ui (6.8)

where Ri,Λi are the respective reference trajectories and control penalty matrices
for i = 1, 2. It follows that the optimization problem for MPC-1 is:

U∗1 = min
U1

V, subject to U1 ∈ Uc1 and U2 = U∗−1
2base (6.9)

where U∗−1
2 is the optimal input trajectory communicated by MPC-2 delayed by

one sample (the last control value is repeated to form the full vector), and Uc1 is
the polytopic constraint set for MPC-1, which arise from the input and output con-
straints of the model. An analytical solution can be obtained in the unconstrained
case:

U∗1 = (GT11 ·G11 +GT21 ·G21 + Λ1 · I)−1 · (GT11 · (R1 − Ȳ1) +GT21 · (R2 − Ȳ2))

(6.10)
Similarly, an explicit solution can be derived for U∗2 . Note that, in many cases

a control horizon of Nu = 1 sample suffices and then we can still use the explicit
solution followed by clipping. A short control horizon is widely used in industry,
at least in the case of stable plants when only input constraints are active. When
the underlying process model is nonlinear, for controller-1, the superposition of
(6.6) is still valid only if the term y1opt(t + k|t) is small enough compared to
y1base(t + k|t). This is true when δu1(t + k|t) is small, which is the case if
u1base(t + k|t) is close to the optimal u∗1(t + k|t). To address this issue, the idea
is to recursively compute δu1(t + k|t) using (6.10), within the same sampling
period, until δu1(t + k|t) converges to 0. Inside the recursion, u1base(t + k|t) is
updated each time to u1base(t+ k|t) + δu1(t+ k|t), i.e. the extension of EPSAC
algorithm for nonlinear systems [34, 109]. Notice that linearization of the process
is not necessary in this case, which is a significant advantage over other NMPC
strategies. The procedure is similar for controller-2 and both controllers are further
denoted in the remainder of this paper as NMPC-1 and NMPC-2.
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The steps comprising non-iterative sequential DNMPC for the 2 × 2 process
is summarized in algorithm 9 (after suitable initialization of controls Uibase, i =∈
{1, 2}).

1. NMPC-1:

(a) Compute U∗1 = arg minU1 V subj. to U1 ∈ Uc1, U2base = U∗−1
2base.

(b) Update U1base = U1base + U∗1 .

(c) Communicate U1base to NMPC-2 together with n1(t).

(d) Apply the first input of U1base to subsystem 1.

2. NMPC-2:

(a) Compute U∗2 = arg minU2 V subj. to U2 ∈ Uc2, U1base = U∗1base.

(b) Update U2base = U2base + U∗2 .

(c) Communicate U2base to NMPC-1 together with n2(t).

(d) Apply the first input of U2base to subsystem 2.

3. Go to step 1 at the next sampling period.

algorithm 9: Sequential cooperative DNMPC

There are two main advantages of the proposed strategy. Firstly, if a tempo-
rary drop in communication occurs, NMPC-1 can compute both U∗1 and estimate
of U∗2 (and similarly for NMPC-2) while only the disturbance estimates are ex-
changed until communication is re-established. Secondly, for large scale systems
with for instance nu = 50 decision variables, even by using Nu = 1 for each
input, the resulting MPC problem involves an optimization over nu ∗ Nu = 50

variables, which requires large matrix inversion and complex quadratic program-
ming. However, the DNMPC algorithm simplifies the computation by considering
50 subsystems, each optimizing over the control horizon Nu = 1. In this case,
the analytical solution can be used, which reduces the computational burden to a
scalar division.

A centralized NMPC (CNMPC) i.e multivariable NEPSAC would minimize
the same cost function of (6.8) but now with respect to the multivariable vector
[U1, U2]T at once subject to the constraints on [U1 × U2]. This, even in the limit-
ing case i.e. when both the inputs have individual control horizons of 1, adds up
to a net of 2 optimizing variables and hence can only be solved by quadratic pro-
gramming, which has an exponential cost. Comparatively, in this case the DNMPC
with control horizons 1 will have a polynomial time complexity.
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Figure 6.2: The sequential distributed NMPC algorithm approaching locally optimal
solution of centralized NMPC (u1, u2 is an initial point following which direction 1 is

updated to u1+, then direction 2 to u2+ and so on till local optimum u1∗, u2∗ is attained
shown by the level sets of the cost V ).

Assumption 6.2.1. The cost function of (6.8) is smooth and twice differentiable.

Theorem 6.2.1. The presented sequential non-iterative DNMPC algorithm 9 with-
out terminal conditions achieves a monotonic decrease in global cost with every
iteration, in the nominal case.

Proof. A multivariate nonlinear system usually leads to a non-convex cost func-
tion, which is convex around a multivariate neighbourhood where a local minimum
exists as a function of the constituent variables. An initial cost can be written down
as:

V (U1base, U2base) =

2∑
i=1

(Ri − Yi)T · (Ri − Yi) (6.11)

Around this point, a Taylor’s series expansion in the first direction leads to:

V (U1base + U1, U2base) = (R1 − Ȳ1 −G11 ·U1)T · (R1 − Ȳ1 −G11 ·U1)

+ (R2 − Ȳ2 −G21 ·U1)T · (R2 − Ȳ2 −G21 ·U1) +

2∑
i=1

UTi ·Λi ·Ui

(6.12)
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where the G’s as usual are the respective Jacobians. Now, the presented DNMPC
algorithm freezes the second direction and takes a gradient descent step in the first
direction, leading to the perturbation U∗1 given by (6.10). An appropriate choice
of the corresponding penalty matrix Λ1 (Levenberg-Marquardt damping) ensures
a guaranteed decrease in the overall cost.
Next, the first direction is updated and fixed and based on which a gradient descent
step is taken in the second direction leading to an exactly similar expression for
U∗2 with a guaranteed decrease in this direction ensured by Λ2.
A combination of the above two steps ensures a monotonic cost decrease in both
the directions is achieved.

Lemma 6.2.1. If the steps 2, 3 of algorithm 9 are iterated over and over, conver-
gence is guaranteed to the solution of the centralized NMPC.

Proof. The theorem 6.2.1 established that a monotonic decrease is achieved by the
sequential DNMPC algorithm 9 by computing U∗1 followed by U∗2 . Now, instead
of stopping here, the second direction is frozen and a gradient descent step is taken
in the first direction leading to a new U∗1 and so on and so forth till no further
improvement is possible. At this point, the decrease in the global cost is 0 on both
directions which is only possible if a stationary point is attained leading to the
locally optimal cost:

V ∗(U∗1base, U
∗
2base) (6.13)

where U∗ibase, i ∈ {1, 2} are the locally optimal input trajectories. The satisfaction
of assumption 6.2.1, guarantees that the algorithm does not get stuck in corners of
the level sets of the global cost function and hence the coordinate descent would
stop decrementing only at a locally optimal solution, same as the one obtained
when the optimization is performed in a multivariable fashion by CNMPC. This is
called Coordinate-Descent and is shown in Fig. 6.2.

6.2.2 Distributed Adaptation

The production machines have intrinsic time-varying dynamics (e.g. oil tempera-
ture, density, leakage, etc). They are also intensively operated under varying envi-
ronmental conditions (e.g. process properties, toxic gas, seasonal variations, etc).
Consequently, these factors imply the necessity of an adaptation mechanism for
updating the model parameters in a distributed sense. In this section we propose a
simple, yet effective learning method.

The model equation for the ith subsystem can be written as:

yi(t) = φTi (t) · θi(t) + φTi−(t) · θi−(t) + νi(t) (6.14)

where the nonlinear system is assumed to be linear in the parameter vector θ. The
vector φ contains all the past inputs and measurements (i.e. state), ν denotes the
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error and subscript i− denotes all other parameters except the parameters of ith

subsystem. We employ the classic recursive least squares (RLS) algorithm for the
learning step. The distributed learning mechanism for a 2× 2 system is proposed
as follows:

1. Initialize θ1(t− 1) and θ2(t− 1);

2. RLS-1: Compute,
θ1(t) = θ1(t− 1) +K1 · (y1(t)− φT1 (t) · θ1(t− 1)− φT2 (t) · θ2(t− 1));

in the least squares sense and communicate to RLS-2.

3. RLS-2: Compute,
θ2(t) = θ2(t− 1) +K2 · (y2(t)− φT2 (t) · θ2(t− 1)− φT1 (t) · θ1(t));

in the least squares sense and communicate to RLS-1.

4. Go to step 2 at the next sampling period.

The gain Ki can be computed recursively, refer [110]. Further the error term
multiplied with the gain can be weighted with an exponential forgetting factor
(improves sensitivity) [110]. Since the distributed RLS algorithm has the same
structure as that of DNMPC, it was combined to add the learning feature to the
DNMPC.

The DRLS algorithm itself has mild requirements such as (i) the measurement
noise is assumed to be white (ii) the parameters vary slowly and continuously
which are generally true for RLS even. In such cases, the forgetting factor is
prescribed to be in between 0.98 and 1. For the distributed RLS case, if the incom-
ing information is not uniformly distributed in the parameter space, a directional
forgetting factor may be used [111]. Therefore it is desirable to assign different
forgetting factors to different parameters (however this is to be determined based
on simulation).

Remark 6.2.1. The arguments for the controller have been given for the case of
two subsystems only, but same arguments apply for any finiteM > 0 number of in-
terconnected subsystems, where each subsystem has a copy of the plantwide model
and can evaluate the objective function independently (by definition of cooperative
control).

6.3 Benchmark: Hydrostatic Drivetrain

Note that, this section is a result of collaborative work done jointly with FMTC and
KUL under the framework of the IWT SBO funded LeCoPro project. In particular,
the PID controller developed in 6.3.4 is due to FMTC and the experimental setup
including interfacing and maintenance in 6.3.4 is also due to FMTC.
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a b

Figure 6.3: (a): A schematic of the pump controlled motor [2], (b): Hydrostat benchmark
consisting of two hydromotors driven by a pump.

Generically, the hydrostatic drive uses fluid under pressure to transmit engine
power in order to drive wheels or tracks (as opposed to hydrodynamic drive where
power is transmitted by kinetic energy of the fluid). Mechanical power is converted
to hydraulic power and back to mechanical power by a pump-motor synergy. The
pump and the motor are joined in a closed hydraulic loop as shown in Fig. 6.3(a),
which is good for power transmission when variable output speed is required. Hy-
drostatic transmissions outperform electrical, gear-type transmissions as they can
offer fast response, maintain precise speed under variable load, allows infinitely
variable speed control and can increase torque without changing gears. In a closed
hydrostatic transmission, the torque can be transmitted in both directions, thus al-
lowing hydrostatic breaking. However, this property implies the existence of a
precise control of the traction effort and speed. Another important advantage for
hydrostatic drives is the high efficiency and thereby low fuel consumption, when
compared to hydrodynamic drives [105].

Typically, hydraulic systems are highly nonlinear, complex dynamic plants.
For this reason, linear model-based controllers that are used in practice often fail
to maintain good performance. Although nonlinear differential equations can be
used to describe in detail a hydraulic system, it is difficult to find suitable model-
based controllers without loss of implementability [105].

6.3.1 Modeling

To understand the hydrostatic assembly, we would briefly describe the working
principles of a motor followed by a pump controlled motor. A hydraulic motor
consists of a swash plate connected to a rotating barrel with pistons sitting on the
plate via connectors. Valve plate ports inlet fluid to half of the cylinder barrel and
pistons receiving this are forced against the swash plate. This causes the barrel
attached to the drive shaft to rotate. Variable displacement can be achieved by
varying the angle of the swash plate. A hydraulic motor can be made to work in
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an opposite fashion i.e. the drive shaft rotation (due to a connected engine) now
causes the pistons to generate a pressurized flow. This arrangement is called a
hydraulic pump.

For an ideal hydraulic motor/pump, the mechanical power output is given by
[2]:

hp|out = Tg ·ωm (6.15)

where Tg is the torque generated by the motor and ωm the angular speed of the
motor shaft. The hydraulic power supplied to the motor is:

hp|in = (P1 − P2) ·Qm (6.16)

where P1, P2 are pressures in high, low pressure lines respectively (refer to Fig.
6.3(a)) and Qm is the oil flow through the motor. Assuming 100% motor effi-
ciency, we have that:

Tg = Sm · (P1 − P2) where, (6.17)

Sm = Qm/ωm (by definition) (6.18)

where Sm is the volumetric displacement (stroke) of the motor. However in prac-
tice, leakage flows and friction are important sources of losses. There are two
types of leakage: internal and external. The internal leakage is given by:

Qim = Cim · (P1 − P2) (6.19)

where Cim is the internal leakage coefficient. The external leakage is given by:

Qemi = Cem ·Pi, i ∈ {1, 2} (6.20)

whereCem is the external leakage coefficient. Further, there are two major sources
of torque losses:

1. the damping torque (due to shearing the fluid): Td = Bm ·ωm where, Bm
is the viscous damping coefficient; and

2. the friction force opposing the motion of piston: Tf ∝ Sgn(ωm) · (P1 +P2)

Hence the resultant torque delivered to the load can be written as:

Tl = Sm · (P1 − P2)− Td − Tf (6.21)

From the continuity equation for high (modulated) pressure forward chamber we
have that (refer to Fig. 6.3(a)):

Sp ·ωp − Cip · (P1 − P2)− Cep ·P1 − Cim · (P1 − P2)

−Cem ·P1 − Sm ·ωm =
V0

β

dP1

dt
(6.22)
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where subscript p denotes ‘pump’, V0 is the volume of forward chamber and β is
the bulk modulus of system. The torque balance equation gives:

Tg = Sm · (P1 − P2) = Jt · ω̇m +Bm ·ωm + Tl (6.23)

where Jt is the total inertia of the motor and the load.
In the setup from Fig. 6.3(b), we have one pump with variable displacement

driving two motors with variable displacement. The pump is driven by an engine
which is speed controlled. Thus, the above analysis can be directly extended now
to account for the two motors. It follows from (6.22) that the combined continuity
equation for the high pressure line, P1 becomes:

Sp ·ωp − Cip · (P1 − P2)− Cep ·P1 − 2 ·Cim · (P1 − P2)− 2 ·Cem ·P1

− Sm1 ·ωm1 − Sm2 ·ωm2 =
V0

β

dP1

dt
(6.24)

Subsequently, for the low pressure line, P2 we have:

Sm1 ·ωm1 + Sm2 ·ωm2 − 2 ·Cim · (P1 − P2)− 2 ·Cem ·P1

− Cip · (P1 − P2)− Cep ·P1 − Sp ·ωp =
V0

β

dP2

dt
(6.25)

The torque balance equations at the two hydromotors are:

Sm1 · (P1 − P2) = Jt1 · ω̇m1 +Bm1 ·ωm1 + Tl1

Sm2 · (P1 − P2) = Jt2 · ω̇m2 +Bm2 ·ωm2 + Tl2 (6.26)

where subscripts 1, 2 denote the first and second hydromotors respectively. Finally,
the torque balance equation for the driving electric motor is:

TDrEM = (JDr + Jp) · ω̇p + Sp · (P1 − P2) (6.27)

The equations (6.24), (6.25), (6.26) and (6.27) define the model of the hydrostatic
drivetrain.

6.3.2 Open loop tests

The experimental setup as shown in Fig. 6.3(b) consists of: i) a speed controlled
driving motor, ii) two torque controlled load motors, and iii) a hydraulic pump
attached to the engine which is connected to the two hydromotors via flywheels.
The stroke of the pump is fixed to 40% and the speed of the engine to 1200 rpm.
The objective is to regulate the hydromotor speeds, reject load disturbances and
adapt to effects of varying load. Input constraints are set on the actuators i.e. the
stroke of the two hydromotors must be between 12% to 100%.
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Figure 6.4: (a): Open loop test on the hydrostat model demonstrating the coupled
dynamics and (b): the presence of significant nonlinearity.

In order to access the characteristics of this system, we use the above derived
system equations together with the parameters obtained from the real machine to
demonstrate the presence of coupled and nonlinear dynamics. In the first test,
the displacement volume of the second hydromotor is fixed and that of the first
hydromotor is varied stepwise. As shown in Fig. 6.4(a), changing the displace-
ment volume of the first hydromotor has almost equal, but opposite influence on
the speeds of both hydromotors. This observation suggests that the hydrostat is
composed of highly coupled subsystems.

In the second test, both hydromotor displacement volumes are changed step-
wise. Since both hydromotors are assumed to have the same physical behavior,
the effects of nonlinearity will be more pronounced if the directions of the si-
multaneous variation in the inputs are the same. As depicted in Fig. 6.4(b), the
step changes in the hydromotor displacement volumes produce significantly dif-
ferent dynamics in the hydromotor speeds. These differences are in terms of vary-
ing gain, damping coefficients and time constants, all depending on the operating
point. This observation suggests the presence of significant nonlinearities in the
global system.

6.3.3 Closed loop tests

In order to explicitly demonstrate the superiority of the algorithm 9 in terms of
performance and computation, a centralized NEPSAC controller is designed with
N1 = 1, Nu = 1, N2 = 5,Λ = 10 · I . Note that, a Nu = 1 for each of the
nu = 2 control inputs, results in an optimization over nu ∗ Nu = 2 variables.
Our target is now to show that two distributed NEPSAC controllers with the same
parameters N1 = 1, Nu = 1, N2 = 5,Λ = 10 approaches the centralized perfor-
mance which is the best that can be achieved as all information is available. The
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Figure 6.5: A comparison of centralized and distributed NMPC for tracking

DNMPC controllers communicate sequentially and only once as in algorithm 9.
The control penalty is adapted to a very high value whenever the cost does not
decrease monotonically, essentially freezing the new control to the past value. The
closed loop is sampled at 100ms and the results are plotted in Fig. 6.5. As can be
inferred, there is no difference to the naked eye between the performance of the
CNMPC and DNMPC tracking controllers with the controls almost overlapping
each other. This is a validation of theorem 6.2.1 and lemma 6.2.1 as the distributed
locally optimal solution approaches the centralized one. The graphical verification
is given in Fig. 6.2, where it can be seen that the first steps are enough to guarantee
sufficient decrease in the gradient, which is in fact the case here.

Next, the computational costs for both the methods are compared. The maxi-
mum time, average time required to perform all the computations within one sam-
pling time are 500ms, 20ms for CNMPC and 50ms, 2ms for DNMPC on embedded
Matlab for real-time target. This clearly shows that as the peak computation time
for CNMPC 500ms is greater than the sampling time of 100ms, it cannot be used
in practice. However, the DNMPC controller is well within the limits even in the
worst case.
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Figure 6.6: (a): Tracking performance and disturbance rejection by distributed NMPC
and (b): PID control.

6.3.4 Experimental Results

The hydrostatic drive test setup is equipped with 150kW power hydromotors and
pump. The controllers are developed in matlab and run in real-time on a dSPACE
setup which interfaces with the setup. The nominal settings correspond to tem-
perature of 50◦C, load torques Tl1, Tl2 = 20Nm, dampings Bm1 = Bm2 =

0.55Nm/rad/s, intertias Jp + JDR = 0.7kgm2, Jt1 = Jt1 = 6.5kgm2, and
β/V0 = 1.2 · 1011Pa/m3.

First, we present the design of two PID loops, which would be used for com-
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Figure 6.7: (a): Learning the true motor damping coefficients by the distributed RLS
method and (b): Robust performance of the distributed NMPC after learning the correct

damping coefficients.

parison purposes. It is clear from the analysis in section 6.3.2 that there exists no
unique relation between the stroke of one hydraulic motor and its speed. There-
fore, it is impossible to determine steady-state gains necessary for classic PID
tuning methods. A transformation is thus required that decouples significantly the
hydromotor interaction and is discussed hereafter.

One can rewrite the flow equation (6.24) (assuming incompressible fluid and
negligible leakage) as:

Sp ·ωp = (Sm1 + Sm2) · (ωm1 + ωm2) + (Sm1 − Sm2) · (ωm1 − ωm2) (6.28)
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Ignoring the second term yields:

d(ωm1 + ωm2)/d(Sm1 + Sm2) < 0 (6.29)

Since the pressures across the pump and the two motors are equal, we have:

d(Sm1/Sm2) = d(Tg1/Tg2) = (Tg2 · dTg1 − Tg1 · dTg2)/T 2
g2 (6.30)

where Tg1, Tg2 are the torques of the two hydromotors. Assuming positive torques
in steady state, if Sm1/Sm2 increases, then either Tg1 increases or Tg2 decreases.
Further at the flywheels, dTl1/dωm1 > 0 and dTl2/dωm2 > 0. This leads to the
resulting steady state relation:

d(ωm1/ωm2)/d(Sm1/Sm2) > 0 (6.31)

The relations (6.29) and (6.31) concur that two independent PID controllers can be
designed with one controlling the sum of hydromotor speeds with sum of hydro-
motor strokes and the other controlling the ratio of hydromotor speeds with ratio
of hydromotor strokes. The PID controllers are defined on the sum and the ratio
error signals. The controller outputs are then re-transformed to the hydromotor
strokes through negative exponentials (as it more or less neutralizes the nonlinear
stroke-speed relation). This is indeed by far the most effective PID design, as the
others which fail to induce any decoupling make the system unstable and are not
safe for real tests.

Two identical DNMPC controllers, without terminal conditions have been de-
signed with prediction horizon N1 = 1 to N2 = 5, control horizon Nu = 1, con-
trol penalty Λ = 10, an integrator as disturbance filter i.e. C/D = 1/(1 − q−1).
The embedded DRLS uses a forgetting factor of 0.99 and the closed loop is sam-
pled at Ts = 100ms. The DNMPC uses a cooperative cost function and exchange
the optimal trajectories once every sampling period. The number of iterations in
the nonlinear EPSAC algorithm within the DNMPCs have been restricted to 1 it-
eration per sampling period.

During this first closed loop test, variations in the speed set-points are tested
and, as a disturbance, the load torque values are varied within ±10Nm. The per-
formance of the DNMPC is given in Fig. 6.6(a). For comparison purpose, the
same experiment has been evaluated with the PID controllers and the results given
in Fig. 6.6(b). It can be observed that the DNMPC outperforms the PID control,
generating a much smoother control action compared to the rather oscillatory re-
sponse of the PID control strategy. The net oil flow, which is the product of stroke
and angular velocity, must remain constant. This implies that if both speeds go
up, the strokes go down (similarly for reverse sign). The load change is nicely
compensated by the DNMPC, while significant offsets are present in case of PID
control. Both in nominal and perturbed load settings, the DNMPC controller man-
ages a settling time < 10s with a rise time < 5s whereas the PID though has the
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same rise time of < 5s, the settling time → ∞ because of sustained oscillations
in the nominal case and the PID produces a big steady state error in the perturbed
case i.e. after 50s.

In the next experiment, the controllers have been initialized with erroneous
motor damping coefficients, i.e. 1.9Nm/rad/s. Given that damping varies expo-
nentially with temperature, the ability to continuously learn the right damping is of
high practical importance. As shown in Fig. 6.7(a), the distributed RLS algorithm
converges to the true value of 0.55Nm/rad/s in a reasonable period of time. Con-
sequently, the performance of the controller in terms of settling time and rise time
(plotted in Fig. 6.7(b)) remains comparable to the nominal case, demonstrating
robustness of the proposed control strategy.

6.4 Summary
The global control of large scale production machines composed of interacting
subsystems is a challenging problem due to the intrinsic presence of high cou-
pling, constraints, nonlinearity and communication limitations. In this work a
pragmatic approach to distributed nonlinear model predictive control (DNMPC)
is presented. The main contribution has been to ensure guaranteed improvement
in the cost function by the DNMPC without terminal conditions, even in the lim-
iting non-iterative case and a 10 fold reduction in computation time for nonlinear
non-convex problems. Furthermore, in order to tackle time-varying process dy-
namics, a learning algorithm is developed, thereby improving the performance of
the global control.

The proposed control framework is experimentally validated on a hydrostatic
drivetrain which exhibits nonlinear dynamics through strongly interacting sub-
systems. The experimental results indicate that good tracking performance and
disturbance rejection can be obtained by the proposed DNMPC. This indicates
that the DNMPC technique has great potential in controlling fast, coupled, non-
linear dynamical systems like agricultural and industrial machines, power grids,
production lines, wind mills etc.
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Concluding Remarks and Perspectives

In conclusion, the main contributions of this thesis are summarized and sugges-
tions for possible future directions are outlined.

7.1 Contributions

The central idea behind this thesis was (i) to develop predictive controllers (linear,
nonlinear and distributed) without terminal conditions and with very short control
horizons (different from prediction horizons) for industrial applications and sub-
sequently (ii) certify practical stability through infinite time constraint satisfaction
(feasibility), (iii) guarantee improvement in cost. The main contributions of this
thesis are summarized below.

7.1.1 Linear MPC without Terminal Conditions

• An equivalence between input-output industrial MPC formulation (EPSAC)
and Diophantine analysis based MPC synthesis and state-space based MPC
formulation and its explicit solution is established. The three great tech-
niques are brought together for obvious reasons: EPSAC algorithm is easy
to implement, it is then analyzed with Diophantine equations to get closed-
form solution in the unconstrained case and transformed to the state-space
MPC in the constrained case to synthesize stability certificates.

• The powerful theory of set invariance is presented in a consolidated fashion
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and the important tools like robust controllable sets and reach sets have been
highlighted. A new set which we call the robust tunnel set is introduced
to construct feasibility set for the EPSAC MPC controller with very short
control horizon compared to prediction horizon.

• The a posteriori certification of practical stability of the EPSAC controller
without terminal conditions has been approached in two ways: (1) by guar-
anteeing persistent feasibility i.e. infinite time constraint satisfaction with-
out optimality of the solution i.e. through control invariance of the feasibility
set (2) by guaranteeing recursive feasibility i.e. infinite time constraint sat-
isfaction based on optimality and thereby requiring the explicit solution i.e.
through positive invariance of the feasibility set. Subsequently new rules
which specify the control and prediction horizons for guaranteeing practical
stability of the closed-loop have been derived. A longitudinal flight control
scenario is used for demonstration.

• A more strict condition of nominal asymptotic stability without terminal
conditions has been achieved through penalty adaptation in the input con-
strained case for repetitive systems. This we introduced as PAMPC and
subsequently robust feasibility was improved through tunneling of the con-
straint sets. PAMPC was shown to be effective on a benchmark mass-spring-
damper system.

7.1.2 Nonlinear MPC without Terminal Conditions

• The NEPSAC algorithm is used as the NMPC controller without terminal
conditions and a proof of guaranteed convergence has been derived for the
NEPSAC controller based on Levenberg-Marquardt algorithm.

• The predominant form of nonlinearity in the industry occurs as switching
either between linear well-defined partitions (PWA) or between completely
different dynamics (switched nonlinearity). The results on persistent feasi-
bility and recursive feasibility have been extended for the PWA case without
terminal conditions and demonstrated over position control of a car.

• A two-level NMPC has been introduced to handle the switched nonlinearity
which consists of a high-level learning controller that generates references
to be tracked by low-level (N)MPC controllers depending on (non)linear
dynamics. This has been demonstrated for the engagement control over a
real wet-clutch test-bench in nominal and perturbed settings.
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7.1.3 Distributed NMPC without Terminal Conditions

• A distributed NMPC controller based on multiple NEPSAC controllers min-
imizing a cooperative cost function (i.e. the sum of the individual costs)
without terminal conditions is proposed for fast, highly coupled, nonlinear
dynamical systems. A proof of convergence together with a guarantee on
cost decrease with every iteration is given based on coordinate descent al-
gorithm. A distributed RLS algorithm is used together with the DNMPC
for systems with changing parameters. The scheme has been shown to be
effective in controlling a test setup consisting of a highly coupled nonlinear
hydrostatic drivetrain.

7.2 Directions for future research

Some possible directions for future research are outlined below.

7.2.1 Linear MPC without Terminal Conditions

• The stability guarantee which has been developed is in terms of bounded-
ness as a result of persistent feasibility. It would be interesting to see if the
certification without terminal conditions could be extended to asymptotic
stability.

• Robust stability has been explored without terminal conditions, hence a di-
rect step forward is to guarantee robust performance together with stability.

7.2.2 Nonlinear MPC without Terminal Conditions

• The nonlinear MPC has been explored in terms of switching systems. So,
there is room to make contributions for other classes of nonlinear systems
in terms of proving theoretical properties of the associated NMPC without
terminal conditions.

• A two-level NMPC setup has been proposed to handle plantwide objectives,
however, the two-levels could be merged to a single layer giving rise to the
fascinating subject of economic NMPC. A posteriori feasibility and stability
guarantee in economic NMPC without terminal conditions is still an open
question.

7.2.3 Distributed NMPC without Terminal Conditions

• Strong convergence proof has been given in this thesis for DNMPC. This
prepares the groundwork to extend the presented set invariance techniques
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to distributed NMPC without terminal conditions for rigorous certification
of practical and/or asymptotic stability.

• Finally, economic DNMPC without terminal conditions includes all the pos-
sible ingredients foreseeable at this moment, which we believe is a frame-
work that would remain relevant with enormous potential for the industry.
Therefore future research should be directed towards certifying stability and
performance for economic DNMPC.



A
MPC Certification Algorithm

The three building blocks for the MPC certification procedure presented in chapter
3 are the pre setQ(X), reach setR(X) and the i-step positively invariant setOi(X).
Now, consider a linear state-space system in its nominal form with dynamics:

x(t+ 1) = A ·x(t) + B ·u(t) (A.1)

subject to the constraints:

u(t) ∈ U x(t) ∈ X. (A.2)

Then the pre set as defined in 5.12(b) can be computed as follows:

Q(X) = A−1(X⊕−B ·U) (A.3)

The reach set as defined in 5.12(b) can be computed as follows:

R(X) = A ·X⊕ B ·U (A.4)

The positively invariant set is defined in 5.12(b). The i-step positively invariant set
is the set of states that remain positively invariant for i-steps. In other words, the
state trajectories must respect the constraints for i-steps. Let the constraint set be
polytopic i.e.

X ≡ Zl ·x(t) ≤ zr. (A.5)
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Note that now we consider an autonomous system, hence there is no input. Then
the i-step positively invariant set deduces to:

Oi(X) ≡


Zl

Zl · A
Zl · A2

..
Zl · Ai

 ·x(t) ≤


zr
zr
zr
..
zr

 (A.6)

Now, in order to certify a MPC controlled constrained linear system without ter-
minal conditions, the following need to be known:

1. A nominal input-output model (n(t) = 0):

ŷ(t) =
q−dB(q−1)

A(q−1)
u(t). (A.7)

2. The associated input/output constraints:

u(t) ∈ U y(t) ∈ Y. (A.8)

3. The control and prediction horizons Nu, N2 respectively.

The steps involved in the certification procedure is presented as algorithm 10. Note
that, the methodology is independent of the exact cost function being used in the
MPC problem.
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1. Convert the input-output model of (A.7) to state-space form of (A.1) using
corollary 2.4.2.

2. Map the input/output constraints of (A.8) to state constraints of (A.2) using
corollary 2.4.4.

3. Compute the tunnel set LN2−Nu
(X) as follows:

(a) Construct the augmented autonomous system using lemma 3.2.1.

(b) Compute the i = N2 − Nu-step positively invariant set ON2−Nu
(X)

for the augmented system using (A.6).

4. Compute the pre set Q(X) using (A.4) as preparation for computing the i-
step controllable sets Ki(X).

5. Construct the feasibility set XF (X, Nu, N2) as KNu
(X, LN2−Nu

(X)) by
plugging in Q(X) into algorithm 1.

6. Construct the next feasibility set XF (X, Nu − 1, N2 − 1) as
KNu−1(X, LN2−Nu(X)) in the same way.

7. Compute the reach set of next feasibility set i.e. R(XF (X, Nu−1, N2−1))
using (A.5).

8. Evaluate the subset test: R(XF (X, Nu, N2)) ∩XF (X, Nu − 1, N2 − 1) ⊆
XF (X, Nu, N2).

9. A positive result certifies the MPC controlled loop as persistently feasible
and stable.

algorithm 10: Certification algorithm for a MPC controlled constrained linear system





B
Model-based and Model-free Learning

Control Strategies

This appendix is a result of collaborative work done jointly with FMTC, KUL and
VUB under the framework of the IWT SBO funded LeCoPro project. In particu-
lar, the controllers developed in B.2, B.3 are due to KUL, VUB respectively and
the development and maintenance of the experimental setup in B.4 is credited to
FMTC.

B.1 Introduction

Next to NMPC, other model-based: Iterative Learning Control (ILC), Iterative Op-
timization (IO) and model-free: Reinforcement Learning (RL), Genetic Algorithm
(GA) learning strategies have great potential in the control of repetitive systems
where reference trajectories cannot be readily generated from control specifica-
tions and the trajectories themselves change with operating conditions.

The model-based approaches rely on a model of the system dynamics to update
the control signals after each trial, while in contrast, the model-free ones omit
this model and directly explore the input space of possible control signals using a
guided trial-and-error procedure, attempting to maximize the reward/fitness. The
clutch control problem is considered as the benchmark and the objective remains
the same as in 5.6 i.e. to find the control yielding the lowest absolute jerk for a
given engagement duration.
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Figure B.1: Schematic representation of an ILC controller; first, during trial i, the system
to be controlled is excited using ui, then after completion of this trial, ui is used along

with the measured tracking error ei = r − yi to find the excitation ui+1 to be used during
trial i+ 1.

B.2 Model-Based Learning Control

This section discusses two model-based learning techniques for wet clutch con-
trol. Next to the two-level learning control scheme presented based on NMPC in
5.6, a similar two-level control scheme using ILC is developed instead of NMPC.
Afterwards, the IO technique is presented as an alternative.

B.2.1 Two-Level ILC (2L-ILC)

In this section, a similar approach is used as in the 2L-NMPC (refer Fig. 5.8, but
the low-level controllers are now ILC instead of NMPC controllers. The reason for
doing so it that ILC is itself a learning control technique, unlike NMPC, which uses
experience gained during previous iterations to improve the tracking performance
for repetitive systems [112,113]. An NMPC thus requires an accurate model to be
able to obtain a good tracking performance, whereas an ILC algorithm can, due
to its learning strategy, realize a good tracking performance even when there is a
large model uncertainty due to its learning behaviour. The downside of this is that
we will not be able to update the reference profile parameters after each trial, since
we cannot yet judge the parameter’s quality since the ILC controller has not yet
learned to track the profile closely. Instead, we wait for 5 trials now each time
the parameters are updated, allowing the ILC to converge before we calculate the
performance indices and update the reference parameters.

Fig. B.1 shows a first order ILC control scheme, as is used in this paper. Here,
y is the output of the plant and r is a reference trajectory. The ILC control signal
for the (i + 1)th iteration, ui+1, is calculated based on the previous ILC control
signal, ui and the previous tracking error ei. We use a linear update law such that

ui+1(k) = Q(q−1)
(
ui(k) + L(q−1)ei(k)

)
, (B.1)
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with linear operatorsQ and L that can be chosen during the design of the ILC con-
troller. For this update law, a convenient frequency domain criterion for monotonic
convergence can be derived [112, 113]. For a plant with FRF P (ω), a monotoni-
cally decreasing tracking error is obtained with controller (B.1) if

|Q(jω)
(

1− L(jω)P (jω)
)
| < 1, (B.2)

with Q(jω) and L(jω) the FRF’s of the operators Q and L. It is also possible to
derive an expression for the remaining error after convergence, E∞(jω), which
becomes

E∞(jω) =
1−Q(jω)

1−Q(jω)
(

1− L(jω)P (jω)
)R(jω), (B.3)

where R(ω) is the Fourier transform of the reference r.
Based on these expressions, [112] and [113] show that by selecting L(jω) =

P (jω)−1 and Q(jω) = 1, perfect tracking would be obtained after only one it-
eration. However when there is uncertainty about P (jω), this choice of L(jω)

becomes impossible. It is then needed to select an estimate P̂ (jω) of the plant and
use L(jω) = αP̂ (jω)−1 with 0 < α < 1. This way, the robustness increases
while the learning slows down, but a good performance is still achieved. This is
possible for all frequencies where the angular deviation between the system and
the nominal model does not exceed 90◦. Once this deviation becomes larger, the
value of |Q(jω)| has to be decreased in order to satisfy (B.2). It then follows
from (B.3) that perfect tracking can no longer be achieved, not even by learning
more slowly. As the uncertainty typically increases with the frequency, Q(jω) is
often chosen as a low pass filter, effectively deactivating the ILC controller for
high frequencies with much uncertainty, while obtaining good tracking in the less
uncertain, lower frequency range.

Since an accurate plant model is not required to achieve a good tracking per-
formance, ILC is well suited to the control of wet-clutch engagements, where the
plant dynamics are non-linear and vary significantly over time. For each of the
two ILC controllers, a single, linearized model, approximating the plant dynamics
in all conditions suffices, keeping the required modeling effort small. With these
choices it becomes possible to design ILC controllers that achieve bandwidths of
> 10Hz, but in practise the controllers are detuned intentionally. Especially in the
slip phase this is needed, as it is preferable to keep the jerk low instead of aggres-
sively tracking the reference. A more detailed description of the implementation
applied to the wet clutch can be found in [114].
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B.2.2 Iterative Optimization

Another technique based on learning control, denoted iterative optimization, has
been developed as an alternative to the two-level ILC approach. It is aimed at (i)
reducing the amount of time needed before a good performance is obtained, at (ii)
allowing an easier adaptation mechanism to deal with changes in the oil tempera-
ture and the load, and at (iii) removing the dependence on the parameterization of
the reference profile. The method should however not require accurate models, as
was the case for two-level NMPC scheme, but should instead operate using sim-
plified linear models. To achieve this result, it is useful to note that the two-level
ILC scheme learns in an indirect manner. At the low level learning takes place, but
there the only goal is to accurately track a reference so this reference’s quality can
be evaluated, even though this reference’s parameters are likely to change at the
high level so that the low learning will have to be restarted. This is a consequence
of the fact that the task itself does not deal with tracking at all, but was formu-
lated in such a manner to be able to use classical tracking-based ILC techniques.
The idea in iterative optimization is to omit this indirect approach, and to directly
learn based on the specifications themselves. Solving the problem more directly
will reduce the convergence period and reduce the effort needed to adjust to vary-
ing conditions, and since this effectively removes the parameterized reference, this
will also remove the dependence on the chosen parameterization.

The resulting IO technique again uses a two-level control scheme, but learning
is now only included at the high level. At the low level, a numerical optimal
control problem is solved, formulated directly from the specifications. Since it is
in general very difficult to accurately solve such a problem without a large amount
of prior information, some constraints can be included whose exact value in order
to reach optimality is initially unknown, and afterwards learning laws can be added
at the high level to find appropriate values for these constraints, based on the results
observed using the control signals calculated with the current values. Besides these
laws, the high level also contains algorithms for a recursive model estimation to
describe the system dynamics, combining previously estimated models with the
newly measured data. A schematic overview of this control scheme is presented in
Fig. B.2, where it can be seen that an optimal control problem is essentially solved
before each trial, using models and constraints that are adapted after completion
of each trial based on the observed performance.

When applying this method to the clutch a numerical optimization problem
has to be formulated and solved, and we will again try to separate the two phases,
although a single large optimization is solved. First, in the filling, the goal is to ad-
vance into to the slip phase as soon as possible, without causing unwanted torque
spikes that could cause operator discomfort. Afterwards, once the slip phase be-
gins, the goal becomes to further engage the clutch while keeping the jerk as low
as possible. To optimize the control signals accordingly, a piece-wise linear model
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Figure B.2: Two-level iterative optimization control scheme: At the high level, the models
and constraints for the optimization problem are updated after each engagement, which

are then used at the low level to optimize the control signal for the next engagement.

structure is selected, with one model to predict the pressure and piston position in
the filling phase and one to predict the pressure and the slip in the slip phase, while
recursive estimation techniques are added to learn these online, so that these mod-
els are tuned to the observed behaviour. Transition constraints are also added to
ensure a smooth transition occurs between both phases, but since the optimal con-
ditions in which to go from the filling to the slip are unknown, values for these are
chosen and afterwards their optimal values are found using learning laws. Using
the notation that ż(k) denote the discrete time finite difference (z(k+1)−z(k))/Ts
with Ts the sampling time, the problem to be solved at the low level is then:
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min
u(:),

x(:), p(:), s(:), z̃(:),
jmax,K1,K2

K1 + γ ∗ jmax, (B.4a)

s.t.
filling phase: k = 1 : K1

x(k + 1) = A1x(k) + B1u(k), (B.4b) p(k)

z̃(k)

 = C1x(k) + D1u(k), (B.4c)

umin ≤ u(k) ≤ umax, (B.4d)

pmin ≤ p(k) ≤ pmax, (B.4e)

slip phase: k = K1 + 1 : K1 +K2

x(k + 1) = A2x(k) + B2u(k), (B.4f) p(k)

s(k)

 = C2x(k) + D2u(k), (B.4g)

0 ≤ s(k) ≤ strans, (B.4h)

−jmax ≤ s̈(k) ≤ jmax, (B.4i)

transition and terminal constraints:

x(K1 + 1) = xtrans, (B.4j)

p(K1) = p1, (B.4k)

z̃(K1) = zfinal, ˙̃z(K1) ≤ ε, (B.4l)

s(K1 +K2) = 0, ṡ(K1 +K + 2) = 0 (B.4m)

In this problem, the piecewise structure can clearly be seen, as the problem is
split into two parts with K1 and K2 samples for each phase respectively (with
K1 +K2 = T/Ts), and a set of constraints which need to be respected during the
transition. In order for the solutions of this problem to yield good engagements,
the high-level learning laws recursively identify the matrices Ai, Bi, Ci and Di.
Since the piston position is not measured, its model z̃ can however not be estimated
so easily, so here we use a simple first principles model and rescale it using a rule
similar to (5.21). Similar rules are included for xtrans, p1 and zfinal. A more detailed
description of the implementation can be found in [115].

The control techniques presented so far are based on certain characterization of
the system dynamics. In very complex systems, however, another approach could
be to focus entirely on improving the performance without the intermediate step
of modeling the system. Two representative techniques which fall in this category
are discussed next.
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B.3 Model-free Learning Control

Next to the model-based algorithms described so far in section B.2, the poten-
tial of model-free algorithms has also been investigated. To date, most complex
mechatronic systems are controlled using either a model-based technique, or using
controllers tuned during an experimental calibration. Even though these latter are
often tuned without the use of a model, this tuning is usually done in an ad-hoc
manner derived from system knowledge or insight, and a systematic model-free
machine learning (ML) strategy is rarely applied. These strategies would however
make it possible to also learn controllers for more complex situations, where in-
sight would not be sufficient to yield the desired behavior. This can improve the
current controllers by being able to use more complex control laws, or allowing to
optimize a cost criterion and taking into account constraints. This can further also
make it possible to develop controllers for more complex applications, for which
now no good controllers can be tuned automatically.

Nowadays, wet clutches in industrial transmissions are filled using a feed for-
ward controller of the current (with a set of tunable parameters) to the electro-
hydraulic valve. These are now tuned using some heuristic rules, but now we will
use model-free learning control methods instead, while still looking for optimal
parameterized control signals.

B.3.1 Genetic Algorithm

Genetic Algorithm (GA) is a stochastic search algorithm that mimics the mech-
anism of natural selection and natural genetics, and belong to the larger class of
evolutionary algorithms (EA). They are routinely applied to generate useful solu-
tions for optimization and search problems, often for complex non-convex problem
where gradient-based methods fails to find the correct solution. One of the main
strengths of GA is that multi-objective optimization problems [116, 117] can be
studied.

Unlike conventional optimization techniques, GA starts with an initial set of
random solutions (satisfying the boundary and/or system constraints though), called
the population. Each individual in the population is called a chromosome, which
represents a possible solution to the implementation. Usually, a chromosome is a
string of symbols, but not necessarily is a binary bit string. The idea of a GA is
that the chromosomes evolve through successive iterations called generations, and
converge towards the solution. To achieve this, the chromosomes are evaluated
throughout their evolution by a function to obtain a fitness value. Once a complete
generation is evaluated, the next generation, with new chromosomes called off-
spring, are formed by i) copying from the parents using a reproduction operator;
ii) merging two chromosomes from current generation using a crossover operator;
iii) modifying a chromosome using a mutation operator [118]. The selection of
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Figure B.3: General structure of a genetic algorithm

which parents’ chromosomes will be used is based on the fitness values, with fitter
chromosomes having a higher probability of being selected. Fig. B.3 illustrates
how a generation is used to define the next one in simple genetic algorithm [119].

For the application to the clutch, each chromosome contains values of the pa-
rameters of the parameterized control signal that is applied to engage the clutch.
It contains five variables for tuning as shown in Fig. B.4. First, a step signal with
maximum height and width d1 is sent to the valve to generate a high pressure level
in the clutch. With this pressure, the piston will overcome the force from the return
spring, and start to get closer to the clutch disks. After this pulse, the signal will
give some lower current with fixed height and width to decelerate the piston and
try to position it close to the clutch disks. Once the piston is close to the clutch
disks and with very low velocity, a force is needed to push the piston forward fur-
ther, so that the clutch disks are compressed together. Since, the change between
the fill phase and slip phase would happen within this period, by providing more
freedom to the signal, better engagement performance can be achieved. As a re-
sult, two slopes are used to cover this critical period, defined by combination of
h1, d2, h2, h3. Then a ramp current signal with fixed slope and the end height is
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Figure B.4: Parameterized signal with five tunable parameters d1, h1, d2, h2, h3,
optimized by both GA and RL to obtain fast and smooth engagement

sent to the valve so that the pressure inside the clutch will increase again gradu-
ally. In order to secure the full closing of the clutch, the current signal will be kept
constant at the end.

In each generation, each of the chromosomes is evaluated, which is done by
applying the corresponding control signal experimentally to the clutch, and af-
terwards calculating a scalar reward to express the engagement quality. For the
reward, we want a function that is monotonically decreasing with the maximum
jerk. We could therefore choose it as r(jerk) = ek1(1−jerk/k2), with k2 = 5000,
corresponding to what can be considered a typical value for the jerk during an en-
gagement. Regardless of the value of k1, this will give a reward r = 1 for a jerk
of jerk = k2 = 5000, and rewards higher and lower than 1 for lower and higher
jerk values. The constant k1 controls the steepness of the reward, and we choose
it as k1 = 5. Next, to take into account engagement time, we discount the reward
with a discount factor γ, so the overall reward is given by

r = γent.e(5−jerk/1000) (B.5)

where the ent is the engagement time. Since γ is chosen as γ = 0.8, longer en-
gagements will yield lower rewards than shorter engagements, so that to find the
highest reward it is needed to do an engagement that is both smooth and fast, sim-
ilar to our control objectives. A more detailed description of the implementation
applied to the wet clutch can be found in [120].

B.3.2 Reinforcement Learning

RL problems [121] are a class of machine learning problems, where an agent must
learn to interact with an unknown environment, using a trial and error approach.
At a given timestep t, the agent may execute one of a set of actions, possibly
causing the environment to change its state and generate a (scalar) reward. Both
state and action spaces can be multidimensional, continuous or discrete. An agent
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Figure B.5: A simple example illustrating the effect of one step of PGPE, with no state
information and single stage epochs (T = 1). A single policy parameter A = [0, 1] is
sampled from a Gaussian prior π, with θ = (µ, σ). Left: the first epoch is executed,

drawing a parameter value a0 ∼ π0(a), and observing a return R0. Center: as R0 > b,
following the gradient (B.6) increases π(a0). Right: updated prior π1, ready for the next

epoch.

is represented by a policy, mapping states to actions. The aim of a RL algorithm is
to optimize the policy, maximizing the reward accumulated by the agent.

In this work, we apply an existing variant of the basic Policy Gradient method
[122], called Policy Gradients with Parameter-based Exploration (PGPE) [123].
In this approach, the parameters of a controller are adapted based on the return
collected during the whole epoch, regardless of the trajectory in the state space.
The advantage of using a direct policy search method is that it easily allows to
use a policy that has been optimized on a simulated plant as a good starting point
for learning to control the real plant. In the remainder of this section we briefly
describe PGPE, referring the reader to [123, 124] for further details.

In Policy Gradients (PG) methods, the policy is represented as a parametric
probability distribution over the action space, conditioned by the current state of
the environment. Epochs are subdivided into discrete time steps: at every step, an
action is randomly drawn from the distribution, conditioned by the current state,
and executed on the environment, which updates its state accordingly. After an
epoch has been completed, the parameters of the policy are updated, following a
Monte Carlo estimate of the expected cumulative (discounted) reward.

A major disadvantage of PG methods is that drawing a random action at ev-
ery timestep may result in noisy control signals, as well as noisy gradient esti-
mates. Moreover, the policy is required to be differentiable w.r.t. its parameters.
To overcome these issues, PG with Parameter-based Exploration (PGPE) was in-
troduced [123, 125]. In this method, the random sampling and policy evaluation
steps are, in a sense, ’inverted’: the policy is a parametric function, not necessarily
differentiable, therefore it can be an arbitrary parametric controller; the parame-
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ter value to be used is sampled at the beginning of each epoch from a Gaussian
distribution, whose parameters are in turn updated at the end of the epoch, again
following a Monte Carlo estimate of the gradient of the expected return. In other
words, rather than searching the parametric policy space directly, PGPE performs
a search in a ’meta-parameter’ space, whose points correspond to probability dis-
tributions over the (parametric) policy space.

To simplify notation, we consider a parametric policy fa with a scalar parame-
ter a. Be α = (µ, σ) the meta-parameter defining the Gaussian distribution pα(a)

over parameter values. The index we intend to maximize is the expected value of
the return R given a, J = E{R|a}. The gradient of this expected return J with
respect to the metaparameter α is then estimated as follows (see [123] for details):

∇αJ ≈
1

N

N∑
n=1

∇α log pα(an)(Rn − b), (B.6)

where θn is the parameter used at the n-th of the N epochs considered (typically
N = 1), and b is a baseline return, which, in the simplest case, is the average return
observed so far. Based on this estimated gradient, the policy is then updated, as
illustrated in Fig. B.5.

For application of PGPE to control of the wet clutch, choice of the policy
and reward function are critical. We discard the state information entirely, and
adopt an open loop approach, defining the five DOF control signal parameterized
in d1, h1, d2, h2, h3, as stated before in Fig. B.4 as the policy to be applied to
the plant. Thus the RL problem is reduced to a simpler optimization problem, in
which only the parameters of the control signal need to be optimized. To do so, we
use a scalar reward function r as in (B.5) that favours both the objectives of fast
and smooth engagement at once, which is the same as used by GA described in
the previous section. Note that, the important thing is just that this reward function
monotonically decreases in the objective which we intend to minimize. A more
detailed description of the implementation applied to the wet clutch can be found
in [124].

B.4 Experimental results

The two model-based and two model-free control techniques developed in B.2,
B.3 respectively, they have been applied to the experimental setup described in
section 5.7.4 to compare with the results obtained by the 2L-NMPC in 5.7.4. The
objective remains uniform i.e. to keep the engagement time during slip within 1s
and fill as fast as possible, such that the bound on jerk is minimized.



B-12 APPENDIX B

a b

Figure B.6: (a): 2L-ILC evolution of the reference signal parameters, (b): improving
engagement quality during convergence period at nominal conditions.

B.4.1 Model-based controllers

First, let’s compare the two-level NMPC results of Figs. 5.13, 5.14 with the ILC
approaches, for which the evolution of the reference parameters and the resulting
engagements are shown in Fig. B.6. For both, the initial performance is poor, with
a high torque peak due to an initial overfilling, resulting in an uncomfortable en-
gagement for the operator. As a result, during the first parameter update, which
is after 1 engagement for the NMPC approach and after 5 engagements for the
ILC approach (to allow the low-level tracking time to converge), the high-level
controller reacts by reducing tswitch as shown in Fig. B.6. Over the course of the
following iterations, this and the other parameters are further adapted, and even-
tually smooth engagements are obtained, after 10 and 30 iterations respectively.

The results for the IO technique are shown in Fig. B.7, where similarly to the
two-level NMPC and ILC approaches, we can see that the performance improves
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Figure B.7: Iterative optimization: Improving engagement quality during convergence
period at nominal conditions.

as more iterations pass by, and eventually smooth engagements are found, synchro-
nizing the clutch in a similar timeframe. This improvement is partially due to the
learning of a few constraint parameters, but also due to the improving prediction
accuracy of the models used in the low-level optimization, as shown in Fig. B.8.
The convergence period is 10 trials, significantly shorter than that for the two-level
ILC scheme and similar to that of the two-level MPC scheme. This reduction with
respect to the two-level ILC scheme results form removing the indirect approach
and instead directly optimizing based on the real specifications.

In a second test, the robustness is investigated by changing the operating con-
ditions as in 5.7.4. Fig. B.9 depicts the obtained results of the 2L-ILC controllers,
after convergence, which again takes around 30 iterations (compared to 10 itera-
tions for 2L-NMPC shown in Fig. 5.15). For the increased temperature, the main
difference is that the filling is completed sooner, which results from the decreased
oil viscosity, and which has been compensated for mainly by reducing the value
of pwid in the pressure reference. More differences can be observed when the
observed load is increased, as then higher torques and pressures are required, but
despite this the slip signals remain very similar to the nominal case.

For the IO technique, the same tests have been performed, and the results af-
ter convergence are shown in Fig. B.10. As before, a good performance is still
achieved by having the high-level laws adapt to the observed changes. The fact that
the performance is similar to those of the two-level NMPC and ILC approaches
illustrates that the parameterization used for those two is well-chosen, as they per-
form similar adaptations using only a few parameters. The reconvergence period is



B-14 APPENDIX B

Figure B.8: Iterative optimization: Improving prediction accuracy during convergence
period.

Figure B.9: Demonstration of 2L-ILC robustness to various operating conditions.
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Figure B.10: Iterative optimization: Demonstration of robustness to various operating
conditions.

again around 10 trials, similar to that of the two-level NMPC approach, and shorter
than for the two-level ILC approach.

Apart from the shorter reconvergence period, the two-level and IO techniques
share the additional advantage that if learning were to be restarted for a different
operating point, it is easier to hotstart with a good guess of either the reference
parameters or the constraint parameters and models, since it is easy to store and
interpolate these values. For the two-level ILC approach the reference parame-
ters could also be stored, but to fully allow a hotstarting and reuse all knowledge
learned at a previous set of operating conditions, it would also be needed to trans-
form the learned control signal to the current operating conditions, which is not a
straightforward task.

B.4.2 Model-free controllers

Before we look into the results, it should be noted that each set of control signal
parameters were first tested under conditions with a reduced load, to ensure it
could be safely applied to the clutch under normal operating conditions. These
additional tests are not included in any of the results, nor are they counted in the
number of trials before convergence, but they do slow down the overall learning
process. Ideally, other methods to ensure safety would need to be derived, not
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Figure B.11: GA: Minimum, median, and maximum fitness values during the GA evolution
process.

requiring (as many) additional experiments.
To illustrate the convergence process of the model-free methods, the nominal

conditions defined earlier for model-based controllers are reused. Under these con-
ditions, the optimization processes for both are shown in Fig. B.11 and Fig. B.12
respectively. The GA maximized the fitness within 13 generations; each gen-
eration containing 50 individuals, while for reinforcement learning the reward is
maximized after 85 test runs. The results obtained with each are presented in
Fig. B.13, where it can be seen that engagements similar to those of the model-
based techniques are obtained.

The robustness with respect to an increase in the oil temperature has also been
checked for these methods. In this case, we reuse knowledge from the previous
experiment under nominal conditions to narrow down the range of the parameter’s
value to reduce the amount of learning needed, and the results after convergence
are also included in Fig. B.13. Similar observations can be made as before with
the model-based controllers, with a good performance still being achieved by both
controllers.

B.5 Comparison of model-based and model-free
learning control

This section compares the 2L-NMPC results of 5.7.4 with all the other methods on
the clutch, and presents a general discussion of their benefits and drawbacks.
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Figure B.12: PGPE: Evolution of engagement time (above), jerk (center), and reward
(below) during learning process.

Index 2l-NMPC 2l-ILC IO GA RL
Abs(Max(Jerk)) 3.6683 2.8945 3.4133 3.9256 3.618
Eng.Time(s) 1.199 1.39 1.277 1.434 1.317

Table B.1: An empirical comparison between the model-based and non-model based
control techniques based on jerk and engagement times

B.5.1 Comparison of engagement results

A comparison of all the presented methods for clutch control in terms of engage-
ment time and jerk is presented in Table B.1. Among the model-based methods,
the results are fairly similar, and none of them are clearly worse than any of the
others in both categories. Among the model-free methods, RL performs slightly
better than GA though in both categories, which probably indicates that the GA
has not fully converged yet, as it should normally find a similar result as RL. Com-
paring the model-based and model-free techniques, we see that the model-based
ones find engagements that are both faster and yield lower jerk values. This can be
explained by the parameterization that is used for the model-free methods, which
restricts the possible adaptations made by the controller, and which can lead to a
reduced performance.

B.5.2 Discussion on model-based techniques

Comparing the model-based techniques, we immediately see that the two-level
NMPC and IO technique require a similar convergence period, which is shorter
than for the two-level ILC technique. This is a result of the fact that the two-level
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Figure B.13: GA (a) and RL (b): Illustration of engagements achieved under nominal
conditions and with an increased temperature.
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ILC technique learns at both low and high levels, requiring additional iterations
in which the low level converges, before good high-level updates can be made.
As a result, the reconvergence period when the operating conditions change is
also better for the two-level NMPC and the IO technique. Apart from the shorter
reconvergence period, they have the additional advantage that if learning were to be
restarted for a different operating point, it is easier to hotstart with a good guess of
either the reference parameters or the constraint parameters and models, since it is
easy to store and interpolate these values. This could also be done for the reference
parameters of the two-level ILC approach, but to fully allow a hotstarting and reuse
all knowledge learned at a previous set of operating conditions, it would also be
needed to transform the learned control signal to the current operating conditions,
which is not a straightforward task.

When comparing the required modeling effort, the two-level ILC technique
outperforms the other methods however, as a highly accurate tracking control can
be achieved despite having a large model uncertainty. In contrast, for NMPC it
is needed to have an accurate non-linear model, which requires a time-consuming
identification. For the IO technique this is not needed again, but here the per-
formance is limited by the chosen model structure, of which the parameters are
afterwards learnt online.

Even though the ILC approach improves the tracking behaviour, so that the
references can be tracked more accurately than with the NMPC approach, it turns
out that this may not be beneficial for the current application, where aggressive
control can lead to unwanted vibrations and high jerk values.

B.5.3 Discussion on model-free techniques

Comparing the model-free techniques, we see that with the same reward/fitness
function, both methods manage to yield similar engagements, but RL converges
faster than GA.

The type of reward/fitness that was used is the same for both, and is a trade-
off between the jerk and the engagement duration. These can be combined into a
single scalar reward, which is the way in which RL typically operates. For GA it is
however also possible not to use a fixed trade-off, but to really treat it as multiple
objectives without extra cost, and find a complete pareto-front.

B.5.4 Comparison of model-based and model-free techniques

Model-based methods have a few advantages over model-free methods. First of all,
they allow more freedom in the determination of the shape of the control signals.
They will therefore generally be able to find the optimal solution, whereas for
the model-free methods this is only possible if the chosen parameterization allows
this. The convergence period is also significantly shorter for model-based methods,
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Method/Property 2l-NMPC 2l-ILC IO GA RL
Modeling requirement _ ^ ^ ^^ ^^

Learning rate ^^ ^ ^^ __ _
Stability ^ ^ −− −− −−

Learning transient/Safety ^ ^ ^ __ __
Multi-objective ^ ^ ^ ^^ ^

Table B.2: Characteristic features of the model-based and model-free techniques

and hotstarting is often possible, which makes them more applicable for online
adaptive purposes. Another advantage is that they posses an inherent robustness to
parameter uncertainties due to the ability to use feedback. They finally also make it
easier to predict the behaviour and thus ensure safety, even during the convergence
period.

Despite these advantages of model-based methods, model-free methods also
have some attractive properties for the control of mechatronic systems. Their main
benefit is that they can operate without model, and thus require no identification
or apriori system knowledge. This makes them ideal for usage as an add-on to
complex existing systems, or to automate offline calibration procedures where it
is not possible to rely on heuristics or insight to manually design tuning rules.
It should however be stated that parameterizations are typically needed to limit
the convergence period, and it is practically impossible to select the shape of the
signal beforehand without system knowledge or some simple tests. While these
parameterizations generally do lead to a reduced performance, a well-chosen pa-
rameterization can limit this reduction, and this choice is thus important. Since
more parameters lead to a better performance but longer convergence, the difficult
part is to select parameterizations with only a low number of parameters, yet which
still allow a performance close to the true optimum to be achieved.

These results have been summarized in Table B.2, which gives a qualitative
comparison between the different techniques. The key ^^ means the best in
the category, followed by ^ for good and then _ for bad to __ for worst in
the category. The −− key signifies that the corresponding property has not been
established.

B.6 Summary

The 2L-NMPC and other model-based methods do converge in shorter time peri-
ods, and make it easier to guarantee safety during the convergence period, which
makes then more suitable to online applications. The model-free methods on the
other hand can be applied to complex systems whenever models are hard to come
by, and are especially useful as an automated tuning method when insight in the



MODEL-BASED AND MODEL-FREE LEARNING CONTROL STRATEGIES B-21

dynamics does not allow an experienced user to define proper tuning rules. These
model-free methods can further also be used to learn complete pareto-fronts of
optimal controllers, allowing a selection of which controller to be used to be made
later on.

The combination and extension of all the stated methodologies for distributed
control is a work in progress.
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